Revisions and Errata List
 AISC Steel Design Guide 9, March 2015 Revision (Digital Edition)
 February 16, 2023

The following list represents corrections to the digital edition, March 2015 revision, of AISC Design Guide 9, Torsional Analysis of Structural Steel Members.

Page(s) Item

3

7

In the second column, the definition for $\theta^{\prime \prime}$, has a typographical error. It should be modified to read " θ '" $=$ third derivative of θ with respect to $z "$

In the last paragraph of Section 3.1, the first sentence has a typographical error. It should read, "In the above equations, $\theta^{\prime}, \theta^{\prime \prime}, \theta^{\prime \prime}$, and $\theta^{\prime \prime}$, , are the first, second, third, and fourth derivates of $\theta \ldots$ "

In the left column, beginning with the $5^{\text {th }}$ line from the bottom, replace the existing text as follows:

From Example 5.1,

$$
\begin{align*}
T_{u} & =\frac{-90 \mathrm{kip}-\mathrm{in} .}{2}=-45 \mathrm{kip}-\mathrm{in} . \\
\tau_{t} & =\frac{T_{u}}{2 t A_{o}} \tag{4.4}\\
& =\frac{-45 \mathrm{kip}-\mathrm{in} .}{2(1 / 2 \mathrm{in} .)(9.5 \mathrm{in} . \times 5.5 \mathrm{in} .)} \\
& =-0.861 \mathrm{ksi}
\end{align*}
$$

In the right column, replace the first four lines with the following:

Calculate Combined Stress

$$
\begin{align*}
f_{u v} & =\tau_{b}+\tau_{t} \tag{4.10}\\
& = \pm 0.75 \mathrm{ksi}-0.861 \mathrm{ksi} \\
& =-1.61 \mathrm{ksi}
\end{align*}
$$

In the table at the top of the first column, the value of $f_{u v}$ for the TS10x $6 \times 1 / 2$ should be changed from 2.47 ksi to 1.61 ksi .

In Example 5.4 under the heading, Calculate Maximum Rotation, the calculations should be replaced with:

From Appendix B, Case 3 with $\alpha=0.3$, it is estimated that the maximum rotation will occur at 12.75 ft from the left end of the beam (Point A). At this location, $z / l=0.51$ for T_{B} and $z / l=1-0.51=0.49$ for T_{D}. The service-load torques are:
$T_{B}=(210 \mathrm{kips})(3 \mathrm{in})=.630 \mathrm{kip}-\mathrm{in}$.
$T_{D}=(285 \mathrm{kips})(3 \mathrm{in})=.855 \mathrm{kip}-\mathrm{in}$.
The maximum rotation is

$$
\begin{aligned}
\theta & =0.064\left(\frac{T_{B} l}{G J}\right)+0.065\left(\frac{T_{D} l}{G J}\right) \\
& =0.064 \frac{(630 \mathrm{kip}-\mathrm{in} .)(300 \mathrm{in} .)}{(11,200 \mathrm{ksi})\left(107 \mathrm{in.} .^{4}\right)}+0.065 \frac{(855 \mathrm{kip}-\mathrm{in} .)(300 \mathrm{in.})}{(11,200 \mathrm{ksi})\left(107 \mathrm{in} .^{4}\right)} \\
& =0.024 \mathrm{rad}
\end{aligned}
$$

Replace the Case 2 graph with:

58-59 The torsional end restraints for the four Case $3 \alpha=0.1$ charts should be replaced with:

Torsional End Restraints	
Left End	Right End
Pinned $\theta=\theta^{\prime \prime}=0$	Pinned $\theta=\theta^{\prime \prime}=0$

Replace the top graph for $\theta^{\prime \prime} \times\left(\frac{G J}{t}\right)$ with:

The variable description for the bottom graph should be revised to:

$$
\theta^{\prime \prime \prime} \times\left(\frac{G J}{t} \times \frac{10 a^{2}}{l}\right)
$$

Replace the top graph for $\theta \times\left(\frac{G J}{t} \times \frac{1}{a^{2}}\right)$ with:

Replace the bottom graph for $\theta^{\prime} \times\left(\frac{G J}{t} \times \frac{1}{a}\right)$ with:

Replace the top graph for $\theta^{\prime \prime} \times\left(\frac{G J}{t} \times 4\right)$ with:

Replace the bottom graph for $\theta^{\prime \prime \prime} \times\left(\frac{G J}{t} \times 2 a\right)$ with:

107 Equation C. 9 should be changed to:

$$
\theta=A+B z+C \cosh \frac{z}{a}+D \sinh \frac{z}{a}-\frac{t z^{3}}{6 G J}
$$

For Case 11, the equation for θ should be changed to:

$$
\theta=\frac{t a^{2}}{G J}\left\{1+\frac{l^{2}}{6 a^{2}}-\left(\frac{a}{l}+\frac{l}{2 a}\right) \tanh \frac{l}{a}-\frac{z}{l}+\left(\frac{a}{l}+\frac{l}{2 a}\right)\left(\frac{\sinh \frac{z}{a}}{\cosh \frac{l}{a}}\right)-\frac{z^{3}}{6 l a^{2}}\right\}
$$

