Report on Techniques for Bridge Strengthening

Design Example – Steel Truss Member Strengthening

September 2018

U.S. Department of Transportation Federal Highway Administration

FHWA-HIF-18-042

{cover back blank}

Foreword

This design example is targeted at bridge owners and bridge engineers who have been tasked with strengthening an existing bridge. It is intended to be an aid in designing appropriate bridge strengthening retrofits. Each example, in the set of examples, covers a different situation for which strengthening is commonly needed.

This report is 1 of 5 reports, including a main report, funded under Task 6 of the FHWA Cooperative Agreement DTFH61-11-H-0027.

Notice

This document is disseminated under the sponsorship of the U.S. Department of Transportation (USDOT) in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Quality Assurance Statement

The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.	2. Government Access	ion No. 3. Recipier	nt's Catalog No.	
FHWA-HIF-18-042				
4. Title and Subtitle	5. Report I	Date		
	September	2018		
Report on Techniques for Brid	2n 6. Perform	ing Organization Cod	le:	
Example – Steel Truss Membe		ing organization cot		
7 Author(a)		Q Darfarm	ing Organization Par	ort No
7. Aution(s)		0. Feriorin	nig Organization Rep	JOIT NO.
Ahlskog, C.				
9. Performing Organization N	ame and Address	10. Work U	Jnit No.	
		11. Contra	ct or Grant No.	
Modjeski and Masters				
100 Sterling Parkway, Suite 3	02	DTFH61-1	1-H-00027	
Mechanicsburg PA 17050			• • • /	
12 Sponsoring Agency Name	and Address	12 Type o	f Deport and Deriod	
12. Sponsoring Agency Name	and Address	13. Type 0		
		14. Sponse	oring Agency	
Federal Highway Administrat	ion	Code		
Office of Infrastructure – Brid	ges and Structures			
1200 New Jersey Ave., SE				
Washington, DC 20590				
15 Supplementary Notes				
Work funded by Cooperative	A greement "A dyonging	Steel and Concrete Bri	dae Technology to Ir	nnroue
Information Deufermannen?	Agreement Advancing	Steel and Concrete DI	uge recimology to n	lipiove
Infrastructure Performance b	etween FH w A and Len	ign University.		
16. Abstract				
This design example, steel trus	ss member strengthening	g, involves the addition	of steel cover plates t	o steel truss
members, one-tension membe	r and one-compression i	member. The bridge is	to be strengthened to	meet HL-93
design loading (Existing bridg	ge designed for HS-15 li	ive load). This exampl	e is based on AASHT	TO LRFD
Bridge Design Specifications	7th Edition		• 10 0 000 • 0 0 11 10 11 10 11	o Liu D
Dridge Design Speementonis,	/ III Edition.			
17 Key Words				
17. 1X0y 110140		18 Distribution State	ment	
stal truce member design and	nnla: dasign	18. Distribution State	ment	to the
steel truss member design exam	nple; design	18. Distribution States No restrictions. This c	ment locument is available	to the
steel truss member design examprocedure; summary of design	nple; design /analysis	18. Distribution State No restrictions. This of public through the Na	ment locument is available tional Technical Info	to the rmation
steel truss member design exan procedure; summary of design procedure; worked design exan	nple; design /analysis nple	18. Distribution State No restrictions. This of public through the Na Service, Springfield,	ment locument is available tional Technical Info VA 22161.	to the rmation
steel truss member design exan procedure; summary of design procedure; worked design exan	nple; design /analysis nple	18. Distribution States No restrictions. This of public through the Na Service, Springfield, ' http://www.ntis.gov	ment locument is available tional Technical Info VA 22161.	to the rmation
steel truss member design examprocedure; summary of design procedure; worked design example.	nple; design /analysis nple port) 20. Security C	18. Distribution States No restrictions. This of public through the Na Service, Springfield, V http://www.ntis.gov lassif. (of this	ment locument is available tional Technical Info VA 22161. 21, No. of Pages	to the rmation 22. Price
steel truss member design examprocedure; summary of design procedure; worked design examprocedure; worked design example. Security Classif. (of this relates the classified	nple; design /analysis nple eport) 20. Security C	18. Distribution States No restrictions. This of public through the Na Service, Springfield, V http://www.ntis.gov lassif. (of this	ment locument is available tional Technical Info VA 22161. 21. No. of Pages 37	to the rmation 22. Price
steel truss member design examprocedure; summary of design procedure; worked design examprocedure; worked design example. 19. Security Classif. (of this reduced to the security classified bottle to the securit	nple; design /analysis nple eport) 20. Security C page) Unclassi	18. Distribution States No restrictions. This of public through the Na Service, Springfield, V http://www.ntis.gov lassif. (of this ified	ment locument is available tional Technical Info VA 22161. 21. No. of Pages 37	to the rmation 22. Price

SI* (MODERN METRIC) CONVERSION FACTORS						
APPROXIMATE CONVERSIONS TO SI UNITS						
Symbol	When You Know	Multiply By	To Find	Symbol		
		LENGTH				
in	inches	25.4	millimeters	mm		
ft	feet	0.305	meters	m		
yd	yards	0.914	meters	m		
mi	miles	1.61	kilometers	km		
		AREA		2		
in"	square inches	645.2	square millimeters	mm,		
ft"	square feet	0.093	square meters	m		
Àq.	square yard	0.836	square meters	m*		
ac mi ²	acres	0.405	nectares	na km²		
m	square miles	VOLUME	square kilometers	KIII		
fl.o.7	fluid ouncos	20.57	millilitore	ml		
11 02 cel	nulu ounces	29.07	litore	III.		
ft3	cubic feet	0.028	cubic motors	m ³		
vd ³	cubic vards	0.765	cubic meters	m ³		
j u	NOTE	volumes greater than 1000 L shall b	e shown in m ³			
		MASS				
07	ounces	28.35	grams	a		
lb	pounds	0 454	kilograms	ka		
Ť	short tons (2000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")		
		TEMPERATURE (exact deg	rees)			
°F	Fahrenheit	5 (F-32)/9	Celsius	°C		
		or (F-32)/1.8				
		ILLUMINATION				
fc	foot-candles	10.76	lux	lx.		
fl	foot-Lamberts	3.426	candela/m ²	cd/m ²		
	F	ORCE and PRESSURE or S	TRESS			
lbf	poundforce .	445	newtons	N		
lbf/in ²	poundforce per square in	ch 6.89	kilopascals	kPa		
APPROXIMATE CONVERSIONS FROM SI UNITS						
	APPROX	IMATE CONVERSIONS F	ROM SI UNITS	A		
Symbol	APPROX When You Know	Multiply By	To Find	Symbol		
Symbol	APPROX When You Know	IMATE CONVERSIONS FI Multiply By LENGTH	To Find	Symbol		
Symbol	APPROX When You Know	LENGTH	To Find	Symbol		
Symbol mm	Men You Know	IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 3.28	To Find	Symbol in ft		
Symbol mm m km	APPROX When You Know millimeters meters kilometers	IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621	To Find inches feet yards milee	Symbol in ft yd		
Symbol mm m km	Men You Know millimeters meters meters kilometers	IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621	To Find inches feet yards miles	Symbol in ft yd mi		
Symbol mm m km	APPROX When You Know millimeters meters kilometers	IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016	To Find inches feet yards miles	Symbol in ft yd mi		
Symbol mm m km km	APPROX When You Know millimeters meters kilometers square millimeters	IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764	To Find inches feet yards miles square inches	Symbol in ft yd mi in ² # ²		
Symbol mm m km km	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters	(IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195	To Find inches feet yards miles square inches square feet square vards	Symbol in ft yd mi in ² ft ² yd ²		
Symbol mm m km km m ² m ² m ² ha	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares	IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	rom si units To Find inches feet yards miles square inches square feet square yards acres	Symbol in ft yd mi in ² ft ² yd ² ac		
Symbol mm m km km mm ² m ² m ² ha km ²	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers	(IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	rom si units To Find inches feet yards miles square inches square feet square yards acres square miles	Symbol in ft yd mi in ² ft ² yd ² ac mi ²		
Symbol mm m km km ² m ² m ² ha km ²	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers	IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME	rom si units To Find inches feet yards miles square inches square feet square yards acres square miles	Symbol in ft yd mi in ² ft ² yd ² ac mi ²		
Symbol mm m km km ² m ² m ² ha km ² ha	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters	IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034	rom si units To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz		
Symbol mm m km mm ² m ² m ² ha km ² ha km ²	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters	(IMATE CONVERSIONS F Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	rom si units To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal		
Symbol mm m km mm ² m ² m ² ha km ² ha km ²	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters	(IMATE CONVERSIONS F Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	rom si units To Find inches feet yards miles square inches square feet square feet square yards acres square miles fluid ounces gallons cubic feet	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³		
Symbol mm m km m ² m ² ha km ² ha km ² mL L m ³ m ³	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	Arrian Conversions Fi Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	rom si units To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³		
Symbol mm m km km m ² m ² ha km ² ha km ² mL L m ³ m ³	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	CIMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	rom si units To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³		
Symbol mm m km km mm ² m ² ha km ² ha km ² g	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams	CIMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035	rom si units To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz		
Symbol mm m km km m ² m ² ha km ² mL L m ³ m ³ m ³	APPROX When You Know millimeters meters meters kilometers square millimeters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms	CIMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	rom si units To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb		
Symbol mm m km km m ² m ² ha km ² mL L m ³ m ³ m ³	APPROX When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	AREA 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n") 1.103	rom si units To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb)	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T		
Symbol mm mkm km m ² m ² ha km ² mL L m ³ m ³ m ³	APPROX When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers iters cubic meters cubic meters	AREA 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n*) 1.103 TEMPERATURE (exact deg 0.035 0.035	rees)	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T		
Symbol mm mkm km m ² m ² ha km ² mL L m ³ m ³ m ³ m ³	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers iters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters	KIMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n*) 1.103 TEMPERATURE (exact deg 1.8C+32	rees) Formation for the factor of the factor	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F		
Symbol mm mkm km mm ² m ² ha km ² mL L m ³ m ³ m ³ g kg (or "t")	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters	Arrian Conversions File Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n*) 1.103 TEMPERATURE (exact deg 1.8C+32 ILLUMINATION	rees) For Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards short tons (2000 lb) rees) Fahrenheit	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T		
Symbol mm m mm ² m ² m ² ha km ² mL L m ³ m ³ m ³ g kg (or "t") °C lx	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters megagrams (or "metric to Celsius	KIMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n*) TEMPERATURE (exact deg 1.8C+32 ILLUMINATION 0.0929	rom si units To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit foot-candles	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc		
Symbol mm mkm mm ² m ² ha km ² mL L m ³ m ³ m ³ c ^c	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic m	Arrian Conversions Fi Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n°) TEMPERATURE (exact deg 1.8C+32 ILLUMINATION 0.0929 0.2919	ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit foot-candles foot-Lamberts	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl		
Symbol mm mkm km mm ² m ² ha km ² ha km ² mL L m ³ m ³ m ³ c lx cd/m ²	APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters frams kilograms megagrams (or "metric to Celsius	Arrian Conversions Fi Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n*) TEMPERATURE (exact deg 1.8C+32 ILLUMINATION 0.0929 0.2919 ORCE and PRESSURE or S	ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit foot-candles foot-Lamberts TRESS	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl		
Symbol mm mkm km mm ² m ² ha km ² mL L m ³ m ³ m ³ c kg Mg (or "t") °C kg Mg (or "t")	APPROX When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters frams kilograms megagrams (or "metric to Celsius lux candela/m ²	Arrian Conversions Fi Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n*) TEMPERATURE (exact deg 1.8C+32 ILLUMINATION 0.0929 0.2919 ORCE and PRESSURE or S' 0.225	ROM SI UNITS To Find inches feet yards miles square inches square feet square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit foot-candles foot-Lamberts TRESS poundforce poundforce	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl lbf		

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)

Design Procedure

The following American Association of State Highway and Transportation Officials (AASHTO) documents were used for this example.

Publication Title	Publication Year	Publication Number	Available for Download
AASHTO LRFD Bridge Design Specifications, 7 th Edition, 2014	2014		No
Guide Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges, 2003	2003		No

Summary of Design/Analysis Procedure:

Define the bridge data, material properties, section properties and existing dead load member forces. Identify the standard or specification to be used for the analysis/design along with the required design live loading and applicable load combinations and design factors.

The solution of the example follows the general steps below:

- Step 1. Calculate nominal resistance of members.
- Step 2. Calculate existing bridge member load rating factors.
- Step 3. Design member strengthening,
- Step 4. Calculate strengthened member load rating factors.

A summary will be given at the end of the example, listing the dimensions and location of the strengthening system and the final capacity provided.

Symbols and Notation

Variables used throughout the design example are listed alphabetically below:

a	=	distance between connectors (in.)
A _b	=	gross area of new high strength bolt (in. ²)
A _{ge}	=	gross area of existing member (in. ²)
A _{gn}	=	gross area of strengthening material (in. ²)
A _{gs}	=	gross area of strengthened member (in. ²)
A _{ne}	=	net area of existing member (in. ²)
A _{nn}	=	net area of strengthening material (in. ²)
A _{ns}	=	net area of strengthened member (in. ²)
A _r	=	gross area of existing rivet (in. ²)
b	=	distance between the centerline of the webs of a boxed-shape member (in.)
\mathbf{b}_{f}	=	width of the flange of a rolled shape (in.)
b-to-b	=	back to back distance between shapes in a built-up member (in.)
C _m	=	moment gadient modifier
d	=	depth of a rolled shape (in.)
D _b	=	diameter of new high strength bolt (in.)
D _r	=	diameter of existing rivet (in.)
E	=	modulus of elasticity of steel (ksi)
$f_{a DCge}$	=	dead load axial stress on gross section of existing member (ksi)
f _{a DCgs}	=	dead load axial stress on gross section of new strengthening material (ksi)
f _{a DCne}	=	dead load axial stress on net section of existing member (ksi)
f _{a DCns}	=	dead load axial stress on net section of new strengthening material (ksi)
$f_{a DWge}$	=	wearing surface dead load axial stress on gross section of existing member (ksi)
f _{a DWgs}	=	wearing surface dead load axial stress on gross section of new material (ksi)
f _{a DWne}	=	wearing surface dead load axial stress on net section of existing member (ksi)
$f_{a DWns}$	=	wearing surface dead load axial stress on net section of new material (ksi)
f _{a LLge}	=	live load plus impact axial stress on gross section of existing member (ksi)
f _{a LLgs}	=	live load plus impact axial stress on gross section of new material (ksi)
f _{a LLne}	=	live load plus impact axial stress on net section of existing member (ksi)
f _{a LLns}	=	live load plus impact axial stress on net section of new material (ksi)
f _{au ge}	=	factored axial stress on gross area of existing member (ksi)
f _{au gn}	=	factored axial stress on gross area of new material (ksi)
f _{au ne}	=	factored axial stress on net area of existing member (ksi)
f _{au nn}	=	factored axial stress on net area of new material (ksi)
$f_{b \; DCne}$	=	dead load flexural stress on net section of existing member (ksi)
$f_{b \; DCns}$	=	dead load flexural stress on net section of new material (ksi)

Symbols and Notation

Variables used throughout the design example are listed alphabetically below:

= wearing surface dead load flexural stress on net section of existing member (ksi) f_{b DWne} = wearing surface dead load flexural stress on net section of new material (ksi) f_{b DWns} = live load plus impact flexural stress on net section of existing member (ksi) f_{b LLne} = live load plus impact flexural stress on net section of new material (ksi) f_{b LLns} = factored flexural stress on gross area of existing member (ksi) f_{bu ge} = factored flexural stress on gross area of new material (ksi) f_{bu gn} = factored flexural stress on net area of existing member (ksi) f_{bu ne} = factored flexural stress on net area of new material (ksi) f_{bu nn} = equivalent allowable axial stress on gross section of existing material (ksi) F_{a ge} F_{a gn} = equivalent allowable axial stress on gross section of new material (ksi) F_{a gse} = equivalent allowable axial stress for existing material on strengthened member (ksi) = equivalent allowable axial stress for new material on strengthened member (ksi) F_{a gsn} F_{a ne} = equivalent allowable axial stress on net section of existing material (ksi) = equivalent allowable axial stress on net section of new material (ksi) F_{ann} $F_{b ne}$ = equivalent allowable flexural stress on net section of existing material (ksi) = equivalent allowable flexural stress on net section of new material (ksi) F_{b nn} F_{a nse} = equivalent allowable flexural stress for exist material on strengthened member (ksi) = equivalent allowable flexural stress for new material on strengthened member (ksi) F_{a nsn} = yield strength of existing steel (ksi) F_{ve} **F**_{vn} = yield strength of new steel (ksi) = tensile strength of existing steel (ksi) Fue = tensile strength of new steel (ksi) Fun F_{unb} = tensile strength of new high strength bolt (ksi) = tensile strength of existing rivet (ksi) Fuer = factored strength of existing rivet (ksi) φF_r = bolt or rivet gage (in.) g G = shear modulus of steel (ksi) = depth between the centerlines of the flanges (in.) h IM = live load impact factor = moment of inertia of existing member about the major principal axis $(in.^4)$ I_{xe} moment of inertia of existing member about the major principal axis (in.⁴) I_{xs} = = moment of inertia of existing member about the minor principal axis $(in.^4)$ I_{ve} I_{ys} J = moment of inertia of existing member about the minor principal axis (in.⁴) = St. Venant torsional constant (in.⁴) Κ = effective column length factor = hole size factor (LRFD Table 6.13.2.8-2) Kh = coefficient of friction on faying surface K

Symbols and Notation

Variables used throughout the design example are listed alphabetically below:

KL/r	=	slenderness ratio (in.)
$(KL/r)_m$	=	modified slenderness ratio of built-up member (in.)
L _c	=	clear distance between edge of bolt hole and end of member (in.)
L _x	=	unbraced member length about x-axis (in.)
Ly	=	unbraced member length about y-axis (in.)
M _{DC}	=	moment due to dead load (k-in.)
M_{DW}	=	moment due to wearing surfaces and utilities (k-in.)
$M_{LL^{+}I}$	=	moment due to live load load (k-in.)
M _u	=	moment due to factored loads (k-in.)
M _n	=	nominal moment resistance (k-in.)
M _r	=	factored moment resistance (k-in.)
M _{CR}	=	elastic lateral-torsional buckling moment (k-in.)
My	=	yield moment (k-in.)
M _p	=	plastic moment (k-in.)
N _s	=	number of shear/slip planes in a connection
P _{DC}	=	axial tension or compression due to dead load (kip)
P_{DW}	=	axial tension or compression due to wearing surfaces and utilities (kip)
P _e	=	elastic critical buckling resistance (kip)
P _{LL+I}	=	axial tension or compression due to live load load (kip)
Po	=	equivalent nominal yield resistance (kip)
P _n	=	nominal axial tension or compression resistance (kip)
P _r	=	factored axial tension or compression resistance (kip)
P _t	=	minimum required pretension in bolt (kip)
P _u	=	axial tension or compression due to factored loads (kip)
Q	=	slender element reduction factor
r _i	=	minimum radius of gyration of an individual component shape (in.)
r _{xe}	=	radius of gyration of existing member about the x-x major principal axis (in.)
r _{ye}	=	radius of gyration of existing member about the y-y minor principal axis (in.)
r _{xs}	=	radius of gyration of strengthened member about the x-x major principal axis (in.)
r _{ys}	=	radius of gyration of strengthened member about the y-y minor principal axis (in.)
RF	=	live load rating factor
R _n	=	nominal bolt/rivet resistance (kip)
R _r	=	factored bolt/rivet resistance (kip)

Symbols and Notation

Variables used throughout the design example are listed alphabetically below:

s _{min}	=	minimum allowable bolt spacing (in.)
s _{max}	=	maximum allowable bolt spacing (in.)
S _{xe}	=	section modulus of existing member about the x-x major principal axis (in. ³)
S _{ve}	=	section modulus of existing about the y-y minor principal axis (in. ³)
S _{xse}	=	section modulus of existing material on strengthened member about x-axis (in. ³)
S _{vse}	=	section modulus of existing material on strengthened member about y-axis (in. ³)
S _{xsn}	=	section modulus of new material on strengthened member about x-axis (in. ³)
S _{vsn}	=	section modulus of new material on strengthened member about y-axis (in. ³)
t _f	=	thickness of the flange of a rolled shape (in.)
t _{min}	=	minimum thickness of connected parts (in.)
t _w	=	thickness of the web of a rolled shape (in.)
U	=	reduction factor to account for shear lag in connections subject to a tension load
W _{out-out}	=	the out to out distance of webs in a builtup member (in.)
Z _{xe}	=	plastic section modulus of existing member about the major principal axis (in. ³)
Z _{ye}	=	plastic section modulus of existing member about the minor principal axis (in. ³)
Z _{ys}	=	plastic section modulus of strengthened member about the major principal axis (in. ³)
δ_{b}	=	beam column moment modification factor
γ_{DC}	=	load factor for dead load, non-composite and composite
$\gamma_{\rm DW}$	=	load factor for future wearing surface
γ_{LL}	=	load factor for live load and live load impact
η_D	=	load modifier for ductility
η_i	=	load modifier relating to ductility, redundancy and operational classification
$\eta_{\rm I}$	=	load modifier for operational classification
η_R	=	load modifier for redundancy
λ_{f}	=	slenderness ratio for the compression flange
λ_{pf}	=	limiting slenderness ratio for a compact flange
λ_{rf}	=	limiting slenderness ratio for a noncompact flange
ϕ_{bb}	=	resistance factor for bolt bearing on connected material
ф _с	=	resistance factor for compression
$\phi_{\rm f}$	=	resistance factor for flexure
ϕ_k	=	stiffness reduction factor
$\boldsymbol{\varphi}_s$	=	resistance factor for shear on bolt or rivet
ϕ_{u}	=	resistance factor for fracture on net section of tension member
$\boldsymbol{\varphi}_{y}$	=	resistance factor for yielding on gross section of tension member

Worked Design Example

These examples involve the addition of steel cover plates to steel truss members,
one-tension member and one-compression member. The bridge is to be
strengthened to meet HL-93 design loading (Existing bridge designed for HS-15
live load). This example is be based on AASHTO LRFD Bridge
Design Specifications, 7th Edition.

Bridge Data:

Bridge Type:	Steel Deck Truss
Span length:	Two four span continuous trusses and one simple span steel girder approach span at each end equal 2411' -0" between end bearings.
Year Built:	1958
Location:	State of Tennessee

Material Properties:

Existing Steel Yield Strength:	$F_{ve} = 33$	ksi (ASTM A7)
Existing Steel Tensile Strength:	$\dot{F}_{ue} = 60$	ksi
New Steel Yield Strength:	$F_{yn} = 50$	ksi (ASTM A709, Gr. 50)
New Steel Tensile Strength:	$F_{un} = 65$	ksi
Existing Rivet Tensile Strength:	$F_{uer} = 52$	ksi (ASTM A141)
New H.S. Bolt Tensile Strength:	$F_{unb} = 120$) ksi (ASTM A325)

Existing Member Properties:

U19-L20 (Tension)	L20-U21 (Compression)
Rolled Wide Flange	2-C15x33.9 ($12^{1}/_{4}$ " b-to-b channels)
12WF72	w/ $5/_{16}$ "x2 $1/_4$ " lacing bars (top & bottom)
Riveted Gusset Plates	Riveted Gusset Plates
$L_y = L_x = 47' - 4^{13} / \frac{16}{16}$	$L_y = L_x = 47' - 4^{13} / {}_{16}''$
$A_{ge} = 21.16 \text{ in.}^2$	$A_{ge} = 19.80 \text{ in.}^2$
$A_{ne} = 16.87 \text{ in}^2$	$A_{ne} = n/a$
$I_{ve} = 166.09 \text{ in.}^4$	$I_{xe} = 553.5 \text{ in.}^4$
$S_{ve} = 25.57 \text{ in.}^3$	$I_{ye} = 579.12 \text{ in.}^4$
$Z_{ye} = 49.2 \text{ in.}^3$	$S_{xe} = 79.1 \text{ in.}^3$
$r_{ye} = n/a$	$r_{ye} = 5.62$ in.
$r_{xe} = n/a$	$r_{xe} = 5.41$ in.
K = n/a	K=0.75 (riveted)
K L/r = n/a	K $L/r = 78.86$
	U19-L20 (Tension) Rolled Wide Flange 12WF72 Riveted Gusset Plates $L_y = L_x = 47' \cdot 4^{13}/_{16}''$ $A_{ge} = 21.16 \text{ in.}^2$ $A_{ne} = 16.87 \text{ in}^2$ $I_{ye} = 166.09 \text{ in.}^4$ $S_{ye} = 25.57 \text{ in.}^3$ $Z_{ye} = 49.2 \text{ in.}^3$ $r_{ye} = n/a$ $r_{xe} = n/a$ K = n/a K L/r = n/a

^{© 2018} Modjeski and Masters

LRFD Factors:

For this example use: $\eta_D = 1.0$ $\eta_R = 1.0$ $\eta_I = 1.0$ therefore: $\eta_i = 1.0$

Resistance Factors				
Type of Resistance	Factor, f			
Flexure	$\phi_{\rm f} = 1.00$			
Axial Compression	$\phi_{\rm c} = 0.95$			
Tension, fracture in An	$\phi_u = 0.80$			
Tension, yielding in Ag	$\phi_y = 0.95$			
A325 bolt in shear	$\phi_{s} = 0.80$			
A141 rivet in shear	$\phi_{\rm s}=0.80$			
Fastener bearing on material	$\phi_{bb} = 0.80$			

Load Combinations and Load						
Factors						
Limit	Load Factors					
State	DC	DW	LL	IM		
Strength I	1.25	1.50	1.75	1.75		
Service II	1.00	1.00	1.30	1.30		
Fatigue	-	-	0.75	0.75		

Member Forces:

The following table shows the member forces for both the existing and the new condition. Note that the DC dead load remains the same for both condition, since the truss is being strengthened in the in-service condition. An additional DW is added in the new condition for future wearing surface. The live load is also the same since the existing members are being checked and strengthened for the final HL-93 design live load condition.

Unfactored Member Forces								
	Member Forces							
	DC		DW		LL+I			
wiember	P _{DCx}	M _{DCy}	P _{DWx}	M _{DWy}	P _{LLx}	M _{LLy}		
	(kip)	(k-ft.)	(kip)	(k-ft.)	(kip)	(k-ft.)		
U19-L20 (Existing)	+130	+4	+0	+0	+266	+6		
U19-L20 (New)	+130	+4	+10	+1	+266	+6		
L20-U21 (Existing)	-147	-11	-0	-0	-133	-4		
L20-U21 (New)	-147	+11	-13	+1	-133	-4		

+ indicates tension

- indicates compression

due to symmetry, bending moments are all noted as positive (maximum member stress is independent of the sign of the moment)

Calculate Resistance of Existing Member U19-L20 (Tension):

Axial Tension Resistance:LRFD 6.8.2.1 $A_{ge} = 21.16 \text{ in.}^2$ $A_{ne} = 16.87 \text{ in.}^2$ $F_{ye} = 33 \text{ ksi}$ $F_{ue} = 60 \text{ ksi}$ $\phi_y = 0.95$ $\phi_u = 0.8$ 12WF72:d = 12.25 in. $t_w = 0.430 \text{ in.}$ $b_f = 12.040 \text{ in.}$ $t_f = 0.671 \text{ in.}$

Limit State: yielding on gross area: $P_r = \phi_y F_{ye} A_{ge}$ $P_r = 0.95 \times 33 \text{ ksi} \times 21.16 \text{ in.}^2$ $P_r = 663.4 \text{ kip}$

Limit State: fracture on net area:

LRFD Eq. 6.8.2.1-2

Table 6.8.2.2-1, Case 7bf = 12.04 in. > 2/3 d = 8.167 in. thereforeU = 0.90 $P_r = \phi_u F_{ue} A_{ne} U$ $P_r = 0.80 \cdot 60$ ksi $\cdot 16.87$ in.² $\cdot 0.90$ $P_r = 728.8$ kip $P_r = 663.4$ kipminimum of LRFD Eqs. 6.8.2.1-1 and 6.8.2.1-2

Flexural Resistance (non-composite I-Shape bent about weak axis): LRFD 6.12.2.2.1

from above: $Z_{ye} = 49.2 \text{ in.}^3$ $F_{ye} = 33 \text{ ksi}$ $F_{ue} = 60 \text{ ksi}$ $\phi_f = 1.00$ 12WF72: $b_f = 12.040 \text{ in.}$ $t_f = 0.671 \text{ in.}$

$$\begin{split} \lambda_{\rm f} &= b_{\rm f} \, / \, 2 \, t_{\rm f} & \lambda_{\rm f} = 12.04 \ \text{in.} \, / \, (2 \, x \, 0.671 \ \text{in.}) & \lambda_{\rm f} = 8.97 & \text{LRFD Eq. } 6.12.2.2.1-3 \\ \lambda_{\rm pf} &= 0.38 \sqrt{E/F}_{ye} & \lambda_{\rm pf} = 0.38 \sqrt{29,000 \ \text{ksi} \, / \, 33 \ \text{ksi}} & \lambda_{\rm pf} = 11.26 \ \text{LRFD Eq. } 6.12.2.2.1-4 \\ \lambda_{\rm rf} &= 0.83 \sqrt{E/F}_{ye} & \lambda_{\rm rf} = 0.83 \sqrt{29,000 \ \text{ksi} \, / \, 33 \ \text{ksi}} & \lambda_{\rm rf} = 24.6 \ \text{LRFD Eq. } 6.12.2.2.1-5 \\ \text{If:} \ \lambda_{\rm f} = 8.97 & \leq \lambda_{\rm pf} = 11.26 \ \text{then:} \ M_{\rm n} = M_{\rm p} & \text{LRFD Eq. } 6.12.2.2.1-1 \end{split}$$

$$\phi_{f}M_{n} = \phi_{f} \cdot Z_{ye} \cdot F_{ye}$$
 $\phi_{f}M_{n} = 1.00 \cdot 49.2 \text{ in.}^{3} \cdot 33 \text{ ksi x (1 ft./ 12 in.)}$ $\phi_{f}M_{n} = 135.3 \text{ k-ft.}$

Calculate Resistance of Existing Member L20-U21 (Compression):

Axial Compress	sion Resistance:		LRFD 6.9	
$F_{ye} = 33$ ksi	$F_{ue} = 60 \text{ ksi}$	$\phi_y = 0.95$	$\phi_{\rm c}=0.95$	
$A_{ge} = 19.8 \text{ in.}^2$	$S_{xe} = 79.1 \text{ in.}^3$	$r_{ye} = 5.62$ in.	$r_{xe} = 5.41$ in.	K = 0.75
C15x33.9:	$r_i = 0.904$ in.	$t_w = 0.40$ in.	$b_f = 3.40$ in.	$t_{\rm f} = 0.65$ in.

Check Slenderness of Channel:

LRFD 6.9.4.2

From LRFD Table 6.9.4.2.1-1: k = 0.56 (flange of channel) and 1.49 (web of channel)

$$\frac{b}{t} \le k \sqrt{\frac{E}{Fy}}$$
LRFD Eqn. 6.9.4.2.1-1

3 4 in

29 000 ksi

Check Flange:
$$\frac{3.4 \text{ in.}}{0.65 \text{ in.}} = 5.23 \le 0.56 \sqrt{\frac{29,000 \text{ ksi}}{33 \text{ ksi}}} = 16.6$$
 OK

Check web: $\frac{11.85 \text{ in.}}{0.4 \text{ in.}} = 29.625 \le 1.49 \sqrt{\frac{29,000 \text{ ksi}}{33 \text{ ksi}}} = 44.17 \text{ OK}$

Channel is nonslender, therefore Q = 1.0

Determine Slenderness Ratio of Built-up Member: LRFD 6.9.4.3

where a = 12 in. (rivet spacing for lacing bars) $r_i = 0.904$ in. (min. radius of gyration of single channel) L = 568.8125 in. (unbraced length of member) K = 0.75 (riveted member)

$$\left(\frac{\text{KL}}{\text{r}}\right)_{\text{m}} = \sqrt{\left(\frac{0.75 \cdot 568.8 \,\text{in}}{5.41 \,\text{in}}\right)_{\text{o}}^{2} + \left(\frac{12 \,\text{in}}{0.904 \,\text{in}}\right)^{2}} = 79.96$$

Calculate Equivalent Nominal Yield Resistance:

а

$$P_o = Q F_{ye} A_{ge}$$
 $P_o = 1.0 (33 \text{ ksi})(19.8 \text{ in.}^2)$ $P_o = 653.4 \text{ kip}$

Calculate Resistance of Existing Member L20-U21 (Compression): Continued

Calculate Elastic Critical Buckling Resistance: LRFD Eqn. 6.9.4.1.2-1

$$P_{e} = \frac{\pi^{2}E}{\left(\frac{KL}{r}\right)^{2}} Ag \qquad P_{e} = \frac{\pi^{2}29,000 \text{ ksi}}{(79.96)^{2}} 19.8 \text{ in.}^{2} = 886.4 \text{ kip}$$

Calculate the Axial Compression Resistance:

If $\frac{P_{e}}{P_{o}} \ge 0.44$ then $P_{n} = \left[0.658^{\left(\frac{P_{o}}{P_{e}}\right)}\right]P_{o}$ LRFD Eqn. 6.9.4.1.1-1 if $\frac{P_{e}}{P_{o}} < 0.44$ then $P_{n} = 0.877P_{e}$ LRFD Eqn. 6.9.4.1.1-2

If
$$\frac{P_e}{P_o} = \frac{653.4 \text{ kip}}{886.4 \text{ kip}} = 0.737 > 0.44$$
 then $P_n = \left[0.658^{\left(\frac{653.4}{886.4}\right)}\right] 653.4 = 479.9 \text{ kip}$

Calculate the Flexural Resistance:

LRFD 6.12 – Miscellaneous Flexural Members (6.12.2.2.2 – Box-Shaped Members)

$$M_{CR} = \frac{\pi}{L} \sqrt{EI_x GJ}$$

$$M_n = F_y S \left[1 - \frac{F_y S}{4M_{CR}} \right]$$
LRFD Eqn. C6.12.2.2.2-4
LRFD Eqn. C6.12.2.2.2-4

where:

$$F_{ye} = 33 \text{ ksi} \quad E = 29,000 \text{ ksi} \quad I_{xe} = 553.5 \text{ in.}^4 \quad S_{xe} = 79.1 \text{ in.}^3 \quad L = 568.81 \text{ in.}$$

$$G = 0.385 \quad E = 11,165 \text{ ksi} \quad LRFD \text{ Eqn. } C6.12.2.2.2-2$$

LRFD Eqn. C6.12.2.2-3 $J = \frac{4A^2}{\sum \frac{b}{t}}$ for a boxed shape member.

Since this member is consists of two channels with lacing bars, we will determine an equivalent box-shape and then determine it's Polar Moment of Inertia, J. (see Figure 2).

Calculate Resistance of Existing Member L20-U21 (Compression): Continued

Determine equivalent box-shape:

$$t_{fe} = \frac{2t_f b_f}{W_{out.to.out}} = \frac{2(0.65 \text{ in.})(3.4 \text{ in.})}{12.25 \text{ in.}} = 0.36 \text{ in.}$$

$$h = d - t_{fe} = 15 in. - 0.36 in. = 14.64 in.$$

height, center-to-center of flanges

$$b = W_{out to out} - t_w = 12.25 \text{ in.} - 0.4 \text{ in.} = 11.85 \text{ in.}$$

width, center-to-center of webs

equivalent top flange thickness

from AISC, Design Guide 09- Torsional Analysis of Structural Steel Members, Table 3.1

$$J = \frac{2t_{fe}t_wb^2h^2}{t_wb+t_{fe}h} = \frac{2(.36 \text{ in.})(0.4 \text{ in.})(11.85 \text{ in.})^2(14.64 \text{ in.})^2}{(11.85 \text{ in.})(0.4 \text{ in.}) + (14.64 \text{ in.})(0.36 \text{ in.})} = 865.9 \text{ in.}^4$$

then:

$$M_{CR} = \frac{\pi}{L} \sqrt{EI_x GJ} = \frac{\pi}{568.8 \text{ in.}} \sqrt{(29,000 \text{ ksi})(553.5 \text{ in.}^4)(11,165 \text{ ksi})(865.9 \text{ in.}^4)} = 68,803 \text{ ksi}$$
$$M_n = F_y S_x \left[1 - \frac{F_y S_x}{4M_{CR}} \right] = (33 \text{ ksi})(79.1 \text{ in.}^3) \left[1 - \frac{(33 \text{ ksi})(79.1 \text{ in.}^3)}{4(68,803 \text{ ksi})} \right] = 2,586 \text{ k} \cdot \text{in.}$$

 $\phi_{\rm f} M_{\rm n} = 1.0(2,586\,{\rm k}\cdot{\rm in.}) = 2,586\,{\rm k}\cdot{\rm in.}$

Summary of Existing Members Axial and Flexural Resistances and Factored Forces:

Existing Member Resistances and Unfactored Forces								
	Resistance		Unfactored Forces					
Member Axial (kip)	Avial	Flexural	Axial			Flexural		
	Axiai		DC	DW	LL+I	DC	DW	LL+I
	(kip)	(k-in.)	(kip)	(kip)	(kip)	(k-in.)	(k-in.)	(k-in.)
U19-L20	663.4	1,623.6	130	10	266	48	12	72
L20-U21	-479.9	2,723.7	-147	-13	-133	132	12	48

+ indicates tension

- indicates compression

due to symmetry, bending moments are all noted as positive (maximum member stress is independent of the sign of the moment)

Calculate Demand to Capacity (D/C) Ratios

Member U19-L20:

$$\frac{P_{u}}{P_{r}} = \frac{1.25(130\,\text{kip}) + 1.5(10\,\text{kip}) + 1.75(266\,\text{kip})}{663.4\,\text{kip}} = \frac{643\,\text{kip}}{663.4\,\text{kip}} = 0.969 \qquad \leq 1.0 \text{ OK}$$

$$\frac{M_{u}}{M_{r}} = \frac{1.25(48 \,\mathrm{k} \cdot \mathrm{in.}) + 1.5(12 \,\mathrm{k} \cdot \mathrm{in.}) + 1.75(72 \,\mathrm{k} \cdot \mathrm{in.})}{1,624 \,\mathrm{k} \cdot \mathrm{in.}} = \frac{204 \,\mathrm{k} \cdot \mathrm{in.}}{1,624 \,\mathrm{k} \cdot \mathrm{in.}} = 0.126 \quad \le 1.0 \quad \mathrm{OK}$$

Member L20-U21:

$$\frac{P_{u}}{P_{r}} = \frac{1.25(-147\,\text{kip}) + 1.5(-13\,\text{kip}) + 1.75(-133\,\text{kip})}{-480\,\text{kip}} = \frac{-436\,\text{kip}}{-480\,\text{kip}} = 0.908 \qquad \le 1.0 \quad \text{OK}$$

$$\frac{M_{u}}{M_{r}} = \frac{1.25(132 \,k \cdot in.) + 1.5(12 \,k \cdot in.) + 1.75(48 \,k \cdot in.)}{2,586 \,k \cdot in.} = \frac{267 \,k \cdot in.}{2,586 \,k \cdot in.} = 0.103 \le 1.0 \quad \text{OK}$$

Check Combined Axial and Bending Interations

Member U19-L20: LRFD 6.8.2.3 - Combined Tension and Flexure

From above: if: $\frac{P_u}{P_r} = 0.969 \ge 0.2$, then use LRFD Eqn. 6.8.2.3-2

 $\frac{P_{u}}{P_{r}} + \frac{8.0}{9.0} \left(\frac{M_{ux}}{M_{rx}} + \frac{M_{uy}}{M_{ry}} \right) = 0.969 + \frac{8}{9} (0.126) = 1.08 > 1.0 \text{ No Good (8\% overstressed)}$

Member U19-L20: LRFD 6.9.2.2 - Combined Axial Compression and Flexure

From above: if: $\frac{P_u}{P_r} = 0.908 \ge 0.2$, then use LRFD Eqn. 6.9.2.2-2

before the interaction equation (LRFD Eqn. 6.9.2.2-2) is used, the beam column moment magnification factor, δ_b , from LRFD 4.5.3.2.2b, must be calculated.

$$\delta_{b} = \frac{C_{m}}{1 - \frac{P_{u}}{\phi_{K}P_{e}}} \qquad \text{LRFD Eqn. 4.5.3.2.2b-3}$$

where:

 $\phi_{\rm K} = 1.0$ (stiffness reduction factor, 1.0 for steel and aluminum and 0.75 for concrete)

$$P_{e} = \frac{\pi^{2} EI_{y}}{(KL)^{2}} = \frac{\pi^{2} (29,000 \, \text{ksi})(579.2 \, \text{in.}^{4})}{\left[(0.75)(568.8 \, \text{in.}) \right]^{2}} = 910.9 \, \text{kip} \qquad \text{LRFD Eqn.4.5.3.2.2b-5}$$

 $C_m = 0.6 + 0.4 \frac{M_{1b}}{M_{2b}}$ where: M_{1b} is the smaller end moment LRFD Eqn.4.5.3.2.2b-6 M_{2b} is the larger end moment

Since end moments are relatively small, minor differences in the end moment result in large differences in the M_{1b} / M_{2b} ratios. Therefore, conservatively assume $C_m = 1.0$

$$\delta_{b} = \frac{C_{m}}{1 - \frac{P_{u}}{\phi_{K}P_{e}}} = \frac{1.0}{1 - \frac{436 \,\text{kip}}{1.0(911 \,\text{kip})}} = 1.92$$

Check Combined Axial and Bending Interations: (Continued)

 $\frac{P_{u}}{P_{r}} + \frac{8.0}{9.0} \left(\delta_{b} \frac{M_{ux}}{M_{rx}} \right) = 0.908 + \frac{8}{9} (1.92) (0.103) = 1.08 > 1.0 \text{ No Good (8\% overstressed)}$

Calculate Load Rating Factors for the Existing Members:

This is similar to the LRFD interaction checks for combined axial and flexure. Load rating factors are very typical calculation used to evaluate existing bridge members. The Load Rating Factor, RF, is the ratio of the design live load vehicle's effect that the member can safely carry for the give limit state investigated. The AASHTO Guide Manual For Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges, June 2003, is used for the load rating equations.

The general load rating equation is as follows (simplified LRFR Eqn. 6-1):

 $RF = \frac{C - (\gamma_{DC})(DC) - (\gamma_{DW})(DW)}{(\gamma_{L})(LL + I)}$ where: γ_{DC} , γ_{DW} and γ_{LL} are the LRFD load factors DC, DW and LL+I are the force effects C is the member factored capacity

Member U19-L20: Combine LRFD Eqn. 6.8.2.3-2 with LRFR Eqn. 6-1 (see LRFR Appendix C.6.2 for derivation of the following equation)

$$RF = \frac{1 - \gamma_{DC} \left[\frac{P_{DC}}{P_{r}} + \frac{8}{9} \frac{M_{DC}}{M_{r}} \right] - \gamma_{DW} \left[\frac{P_{DW}}{P_{r}} + \frac{8}{9} \frac{M_{DW}}{M_{r}} \right]}{\gamma_{L} \left[\frac{P_{LL+I}}{P_{r}} + \frac{8}{9} \frac{M_{LL+I}}{M_{r}} \right]}$$
$$RF = \frac{1 - 1.25 \left[\frac{130 \,\text{kip}}{663 \,\text{kip}} + \frac{8}{9} \frac{48 \,\text{k} \cdot \text{in.}}{1,624 \,\text{k} \cdot \text{in.}} \right] - 1.5 \left[\frac{10 \,\text{kip}}{663 \,\text{kip}} + \frac{8}{9} \frac{12 \,\text{k} \cdot \text{in.}}{1,624 \,\text{k} \cdot \text{in.}} \right]}{1.75 \left[\frac{266 \,\text{kip}}{663 \,\text{kip}} + \frac{8}{9} \frac{72 \,\text{k} \cdot \text{in.}}{1,624 \,\text{k} \cdot \text{in.}} \right]}$$

A RF less than 1.0, indicates the member has insufficient capacity to resist the full factored design live load effect.

Calculate Load Rating Factors for the Existing Members: (Continued)

Member L20-U21:Combine LRFD Eqn. 6.9.2.2-1 with LRFR Eqn. 6-1
(see LRFR Appendix C.6.2 for derivation of the following equation)
This is similar to the previous equation except for the addition of
the moment magnification factor, $\delta_{\rm h}$.

$$RF = \frac{1 - \gamma_{DC} \left[\frac{P_{DC}}{P_{r}} + \frac{8}{9} \delta_{b} \frac{M_{DC}}{M_{r}} \right] - \gamma_{DW} \left[\frac{P_{DW}}{P_{r}} + \frac{8}{9} \delta_{b} \frac{M_{DW}}{M_{r}} \right]}{\gamma_{L} \left[\frac{P_{LL+I}}{P_{r}} + \frac{8}{9} \delta_{b} \frac{M_{LL+I}}{M_{r}} \right]}$$

$$\delta_{b} = \frac{C_{m}}{1 - \frac{P_{u}}{P_{e}}} = \frac{1.0}{1 - \frac{\gamma_{DC}P_{DC} + \gamma_{DW}P_{DW} + (RF)\gamma_{L}P_{LL+1}}{P_{e}}}$$

since δ_b depends on RF, set RF = 1.0 and refine with several iterations. $\delta_b = 1.92$ calculated previously. This is the same as setting RF = 1.0

First Iteration:

$$RF = \frac{1 - 1.25 \left[\frac{147 \text{ kip}}{480 \text{ kip}} + \frac{8}{9} (1.92) \frac{132 \text{ k} \cdot \text{in.}}{2,586 \text{ k} \cdot \text{in.}} \right] - 1.5 \left[\frac{13 \text{ kip}}{480 \text{ kip}} + \frac{8}{9} (1.92) \frac{12 \text{ k} \cdot \text{in.}}{2,586 \text{ k} \cdot \text{in.}} \right]}{1.75 \left[\frac{133 \text{ kip}}{480 \text{ kip}} + \frac{8}{9} (1.92) \frac{48 \text{ k} \cdot \text{in.}}{2,586 \text{ k} \cdot \text{in.}} \right]}{2,586 \text{ k} \cdot \text{in.}} \right]} = 0.843$$
$$\delta_{b} = \frac{1.0}{1 - \frac{(1.25)(147 \text{ kips}) + (1.5)(13 \text{ kips}) + 0.843(1.75)(133 \text{ kips})}{911 \text{ kips}}} = 1.781$$

After Four Iterations:

RF = 0.863 (HL-93 at STR-I) and $\delta_b = 1.797$

Both members, U19-U20 and L20-U21, will require strengthening to obtain a Load Rating Factor greater than 1.0 for the HL-93 design live loading, for the Strength-I Limit State.

Design The Member Strengthening:

Assume strengthening for both members will consist of bolted cover plates.

Factors to consider:

- The AASHTO minimum plate thickness is 0.3125" LRFD 6.7.3
- For a long bolted cover plate, the cost of the plate material is minor compared to the labor involved with the bolting operations
- Increasing the plate thickness will increase the allowable bolt spacing for stitching and sealing requirements.
- New material installed on the outside faces of the existing member, typically provides the most effective method to increase the section properties.
- The strengthening plates will need to be fully developed into the gusset plate connection to be effective.
- Bolting to an existing tension member, may cause a reduction in the effective net area of the existing member.
- There will be significant locked-in dead load stresses in the existing member. The dead load forces in the existing member at the time of strengthening, will remain in the existing member as locked-in stresses. The new material will contribute to carrying a portion of the live load, as well as any change in dead loads after strengthening.
- There will be a temporary reduction in the member capacity when removing rivets at the gusset plates, to allow connection of the new plates.

Member U19-L20 (Tension) Strengthening:

Try 5/8" x 12" ASTM A709, Grade 50, cover plates bolted to the outside of the flanges.

(see Figure 3.)

© 2018 Modjeski and Masters

Member U19-L20 (Tension) Strengthening

(continued): Section Properties:

	<u>Existing</u>	Strengthened
Member:	12WF72	12WF72 w/ 2-5/8"x12" Cov. PLs.
End Connections:	Riveted Gusset Plates	Riveted Gusset Plates
Unbraced Length:	$L_{y} = L_{x} = 47' - 4^{13} / \frac{13}{16}$	$L_v = L_x = 47' - 4^{13} / \frac{16}{16}$
Gross Area:	$\dot{A}_{ge} = 21.16 \text{ in.}^2$	$A_{gs} = 36.16 \text{ in.}^2$
Net Area:	$A_{ne} = 16.87 \text{ in.}^2$	$A_{ns} = 27.87 \text{ in.}^2$
Moment of Inertia (y-axis):	$I_{ve} = 166.09 \text{ in.}^4$	$I_{vs} = 320.45 \text{ in.}^4$
Section Modulus (y-axis):	$\ddot{S}_{ve} = 25.57 \text{ in.}^3$	$\dot{S}_{vs} = 48.8 \text{ in.}^3$
Plastic Modulus (y-axis):	$\dot{Z_{ve}} = 49.2 \text{ in.}^3$	$Z_{vs} = 104.7 \text{ in.}^3$

Check if Trail Strengthening is Adequate:

Note: With the use of spreadsheets, MathCAD sheets or other automated software, the design checks can be setup to automatically update with changes in input values. This allows for a trial and error approach, which is often easier than deriving elaborate equations to calculate the required strengthening directly.

When checking the strengthened member, the capacity of both the new material and the existing material of the strengthened member needs to be evaluated. To do this, it is often easier to work with stress values, rather than member forces and capacities. The stress values can easily be computed using the factored loads, factored resistance and the section properties of the member.

Determine the Member Stresses:

from above:

 $\begin{array}{ll} P_{\rm DC} = 130 \ {\rm kip} & P_{\rm DW} = 10 \ {\rm kip} & P_{\rm LL+I} = 266 \ {\rm kip} \\ M_{\rm DC} = 48 \ {\rm k-in.} & M_{\rm DW} = 12 \ {\rm k-in.} & M_{\rm LL+I} = 72 \ {\rm k-in.} \end{array}$

The existing, DC, composite and noncomposite dead load stresses, are locked-in to the existing member material. These stresses are determined from the DC member forces and the existing member section properties.

locked-in dead load tension stress on the gross section of the existing member: $f_{a DCge} = P_{DC} / A_{ge} = 130 \text{ kip} / 21.16 \text{ in.}^2 = 6.14 \text{ ksi}$

locked-in dead load tension stress on the net section of the existing member: $f_{a DCne} = P_{DC} / A_{ne} = 130 \text{ kip} / 16.87 \text{ in.}^2 = 7.71 \text{ ksi}$

locked-in dead load flexural stress on the net section of the existing member: $f_{b DCne} = M_{DC} / S_{xe} = 48 \text{ k-in} / 25.57 \text{ in.}^3 = 1.88 \text{ ksi}$

Member U19-L20 (Tension) Strengthening (continued):

Shared Stresses in New and Existing Material of Strengthened Member:

Any change in dead load, and the live load plus impact member forces is considered to be shared between the new strengthening material and the existing member. These stresses are determined based on ratios of the new material and existing member section properties with the total strengthened member section properties.

Axial Tension Stresses on Gross Area:

 $A_{ge} = 21.16 \text{ in.}^2$ $A_{gs} = 36.16 \text{ in.}^2$ $A_{gn} = A_{gs} - A_{ge} = 36.16 \text{ in.}^2 - 21.16 \text{ in.}^2 = 15 \text{ in.}^2$

ratio of area of gross section of existing member to total gross section area of strengthened member:

 $A_{ge} / A_{gs} = 21.16 \text{ in.}^2 / 36.16 \text{ in.}^2 = 0.585$

ratio of area of gross section of new material to total gross section area of strengthened member: $A_{gn} / A_{gs} = 15 \text{ in.}^2 / 36.16 \text{ in.}^2 = 0.414$

axial stress on gross section of existing member from wearing surface dead loads: $f_{a DWge} = (P_{DW} / A_{gs}) 0.585 = (10 \text{ kip} / 36.16 \text{ in.}^2) 0.585 = 0.16 \text{ ksi}$

axial stress on gross section of new material from wearing surface dead loads: $f_{a DWgn} = (P_{DW} / A_{gs}) 0.415 = (10 \text{ kip} / 36.16 \text{ in.}^2) 0.415 = 0.12 \text{ ksi}$

axial stress on gross section of existing member from live load plus impact: $f_{a LLge} = (P_{LL} / A_{gs}) 0.585 = (266 \text{ kip} / 36.16 \text{ in.}^2) 0.585 = 4.30 \text{ ksi}$

axial stress on gross section of new material from live load plus impact : $f_{a LLgn} = (P_{LL} / A_{gs}) 0.415 = (266 \text{ kip} / 36.16 \text{ in.}^2) 0.415 = 3.05 \text{ ksi}$

Axial Tension Stresses on Net Area:

 $A_{ne} = 16.87 \text{ in.}^2$ $A_{ns} = 27.87 \text{ in.}^2$ $A_{nn} = A_{ns} - A_{ne} = 27.87 \text{ in.}^2 - 16.87 \text{ in.}^2 = 11 \text{ in.}^2$

ratio of area of net section of existing member to total net section area of strengthened member: $A_{ne} / A_{ns} = 16.87 \text{ in.}^2 / 27.87 \text{ in.}^2 = 0.605$

ratio of area of net section of new material to total net section area of strengthened member: $A_{nn} / A_{ns} = 11 \text{ in.}^2 / 27.87 \text{ in.}^2 = 0.395$

Member U19-L20 (Tension) Strengthening (continued):

Axial Tension Stresses on Net Area (cont.):

axial stress on net section of existing member from wearing surface dead loads: $f_{a DWne} = (P_{DW} / A_{ns}) 0.605 = (10 \text{ kip} / 27.87 \text{ in.}^2) 0.605 = 0.217 \text{ ksi}$

axial stress on net section of new material from wearing surface dead loads: $f_{a DWnn} = (P_{DW} / A_{ns}) 0.395 = (10 \text{ kip} / 27.87 \text{ in.}^2) 0.395 = 0.142 \text{ ksi}$

axial stress on net section of existing member from live load plus impact: $f_{a LLne} = (P_{LL} / A_{ns}) 0.605 = (266 \text{ kip} / 27.87 \text{ in.}^2) 0.605 = 5.77 \text{ ksi}$

axial stress on net section of new material from live load plus impact : $f_{a LLnn} = (P_{LL} / A_{ns}) 0.395 = (266 \text{ kip} / 27.87 \text{ in.}^2) 0.395 = 3.77 \text{ ksi}$

Flexural Stresses:

Flexural stresses are determined for the section modulus of the strengthened member. For the new material the section modulus should be based on the extreme fiber distance, c, to the new material. For the existing member the section modulus should be based on the c distance to the outer fiber of the existing material. The net section moment of inertias is used for this example. Since the bending is about the member y-axis, and the new material is the full flange width, the net section modulus is the same for both the new and the existing material.

 $S_{vs} = 48.8 \text{ in.}^4$

flexural stress on net section of existing member from wearing surface dead loads: $f_{b DWne} = (M_{DW} / S_{vs}) = (12 \text{ k-in.} / 48.8 \text{ in.}^4) = 0.246 \text{ ksi}$

flexural stress on net section of new material from wearing surface dead loads: $f_{b DWnn} = f_{b Dwne} = 0.246 \text{ ksi}$

flexural stress on net section of existing member from live load plus impact: $f_{b LLne} = (M_{LL} S_{vs}) = (72 \text{ k-in.} / 48.8 \text{ in.}^4) = 1.48 \text{ ksi}$

flexural stress on net section of new material from live load plus impact : $f_{b \ LLnn} = f_{b \ LLne} = 1.48 \ ksi$

Member U19-L20 (Tension) Strengthening (continued):

Determine Equivalent Allowable Stresses from Factored Resistances and Section Properties:

To work with stress values, the member resistances need to be converted into equivalent allowable stress values, based on the member factor resistances and the member section properties.

Tension on Gross Area:

 $P_{r} = \overbrace{\phi_{y} F_{y}}^{r} A_{g}$ LRFD Eq. 6.8.2.1-1 Allowable Stress of Tension on Gross Area $F_{a ge} = \phi_{y} F_{ye} = 0.95 \cdot 33 \text{ ksi} = 31.4 \text{ ksi (existing steel)}$ $F_{a gn} = \phi_{y} F_{yn} = 0.95 \cdot 50 \text{ ksi} = 47.5 \text{ ksi (new steel)}$

Fracture on Net Area:

$$P_{r} = \oint_{u} F_{u} U A_{n}$$

$$LRFD Eq. 6.8.2.1-2$$

$$F_{a ne} = \phi_{u} F_{ue} U = 0.80 \cdot 60 \text{ ksi} \cdot 0.90 = 43.2 \text{ ksi} \text{ (existing steel)}$$

$$F_{a nn} = \phi_{u} F_{un} U = 0.80 \cdot 65 \text{ ksi} \cdot 0.90 = 46.8 \text{ ksi} \text{ (new steel)}$$

Flexure:

From previous calculations, it was shown that the slenderness ratio for the flange, λ_{f} , is below the limiting slenderness ratio for a compact flange, λ_{pf} . This allows the flexural resistance to be computed based on the plastic moment, LRFD Eq. 6.12.2.2.1-1. However, for ease of stress value computations for the new and existing steel, this example uses the conservative flexural resistance based on the yield moment. Note that since the bending is about the member's weak axis, the section modulus for the strengthened section is used for both the new and the existing material

$$\begin{split} \mathbf{M}_{r} = & \overline{\mathbf{\phi}_{f} \mathbf{F}_{y}} \mathbf{S}_{y} \\ \mathbf{F}_{b ne} = & \phi_{f} \mathbf{F}_{ye} \mathbf{S}_{ys} = 1.0 \cdot 33 \text{ ksi} = 33.0 \text{ ksi} \quad (\text{existing steel}) \\ \mathbf{F}_{b nn} = & \phi_{f} \mathbf{F}_{yn} \mathbf{S}_{ys} = 1.0 \cdot 50 \text{ ksi} = 50.0 \text{ ksi} \quad (\text{new steel}) \end{split}$$

Member U19-L20 (Tension) Strengthening (continued):

Determine Factored Stresses for New and Existing Material:

Existing Member:

Axial Tension on Gross Section:

$$\begin{split} f_{au\ ge} &= 1.25\ (f_{a\ DCge}) + 1.5\ (f_{a\ DWge}) + 1.75\ (f_{a\ LLge}) \\ f_{au\ ge} &= 1.25\ (6.14\ ksi) + 1.5\ (0.16\ ksi) + 1.75\ (4.30\ ksi) = 15.44\ ksi \end{split}$$

Axial Tension on Net Section: $f_{au ne} = 1.25 (f_{a DCne}) + 1.5 (f_{a DWne}) + 1.75 (f_{a LLne})$ $f_{au ne} = 1.25 (7.71 \text{ ksi}) + 1.5 (0.22 \text{ ksi}) + 1.75 (5.77 \text{ ksi}) = 20.07 \text{ ksi}$

Flexure on Net Section:

$$\begin{split} f_{bu ne} &= 1.25 \; (f_{b \ DCne}) + 1.5 \; (f_{b \ DWne}) + 1.75 \; (f_{b \ LLne}) \\ f_{bu ne} &= 1.25 \; (1.88 \; ksi) + 1.5 \; (0.25 \; ksi) + 1.75 \; (1.48 \; ksi) = 5.32 \; ksi \end{split}$$

New Material:

Axial Tension on Gross Section:

$$\begin{split} f_{au\ gn} &= 1.25\ (f_{a\ DCgn}) + 1.5\ (f_{b\ DWgn}) + 1.75\ (f_{a\ LLgn}) \\ f_{au\ gn} &= 1.25\ (0\ ksi) + 1.5\ (.12\ ksi) + 1.75\ (3.05\ ksi) = 5.52\ ksi \end{split}$$

Axial Tension on Net Section: $f_{au nn} = 1.25 (f_{a DCnn}) + 1.5 (f_{b DWnn}) + 1.75 (f_{a LLnn})$ $f_{au nn} = 1.25 (0 \text{ ksi}) + 1.5 (0.14 \text{ ksi}) + 1.75 (3.77 \text{ ksi}) = 6.81 \text{ ksi}$

Flexure on Net Section:

$$\begin{split} f_{bu nn} &= 1.25 \ (f_{b DCnn}) + 1.5 \ (f_{b DWnn}) + 1.75 \ (f_{b LLnn}) \\ f_{bu nn} &= 1.25 \ (0 \ ksi) + 1.5 \ (0.25 \ ksi) + 1.75 \ (1.48 \ ksi) = 2.97 \ ksi \end{split}$$

Member U19-L20 (Tension) Strengthening (continued):

Calculate Demand to Capacity (D/C) Ratios:

Existing Material:

 $\begin{aligned} \frac{f_{au\cdotge}}{F_{a\cdotge}} &= \frac{15.44 \, \text{ksi}}{31.4 \, \text{ksi}} = 0.492 &\leq 1.0 \quad \text{OK} \\ \text{axial tension on gross area (controls over net area)} \\ \frac{f_{au\cdotne}}{F_{a\cdotne}} &= \frac{20.07 \, \text{ksi}}{43.2 \, \text{ksi}} = 0.465 &\leq 1.0 \quad \text{OK} \\ \text{flauene} &= \frac{20.07 \, \text{ksi}}{43.2 \, \text{ksi}} = 0.465 &\leq 1.0 \quad \text{OK} \\ \frac{f_{bu\cdotne}}{F_{b\cdotne}} &= \frac{5.32 \, \text{ksi}}{33 \, \text{ksi}} = 0.161 &\leq 1.0 \quad \text{OK} \\ \text{flexure on net section} \\ \text{From above: if: } \frac{f_{au\cdotge}}{F_{a\cdotge}} = 0.492 &\geq 0.2, \text{ then use LRFD Eqn. 6.8.2.3-2} \\ \frac{f_{au\cdotge}}{F_{a\cdotge}} + \frac{8.0}{9.0} \left(\frac{f_{bu\cdotne}}{F_{b\cdotne}}\right) = 0.492 + \frac{8}{9} (0.161) = 0.635 \leq 1.0 \quad \text{OK} \\ \text{(Existing Member not Overstressed)} \end{aligned}$

New Material:

$$\begin{aligned} \frac{f_{au\cdot gn}}{F_{a\cdot gn}} &= \frac{5.52 \, \text{ksi}}{47.5 \, \text{ksi}} = 0.116 &\leq 1.0 \text{ OK} &\text{axial tension on gross area (controls over net area)} \\ \frac{f_{au\cdot nn}}{F_{a\cdot nn}} &= \frac{6.81 \, \text{ksi}}{46.8 \, \text{ksi}} = 0.146 &\leq 1.0 \text{ OK} &\text{axial tension on net area (controls over gross area)} \\ \frac{f_{bu\cdot nn}}{F_{b\cdot nn}} &= \frac{2.97 \, \text{ksi}}{50 \, \text{ksi}} = 0.059 &\leq 1.0 \text{ OK} &\text{flexure on net section} \\ \text{From above: if: } \frac{f_{au\cdot gn}}{F_{a\cdot gn}} = 0.116 < 0.2, \text{ then use LRFD Eqn. 6.8.2.3-1} \\ \frac{f_{au\cdot nn}}{2 \cdot F_{a\cdot nn}} + \left(\frac{f_{bu\cdot nn}}{F_{b\cdot nn}}\right) = 0.073 + (0.059) = 0.132 &\leq 1.0 \text{ OK} &\text{(New Material not Overstressed)} \end{aligned}$$

By Inspection, the controlling live load rating is controlled by stresses in the existing member. This is typically the case when there are significant locked-in dead load stresses in the existing member.

Member U19-L20 (Tension) Strengthening (continued):

Calculate the Controlling Live Load Rating of the Strengthened Member:

$$RF = \frac{1 - \gamma_{DC} \left[\frac{f_{a} \cdot DCge}{F_{a:ge}} + \frac{8}{9} \frac{f_{b} \cdot DCne}{F_{b:ne}} \right] - \gamma_{DW} \left[\frac{f_{a} \cdot DWge}{F_{a:ge}} + \frac{8}{9} \frac{f_{b} \cdot DWne}{F_{b:ne}} \right]}{\gamma_{LL} \left[\frac{f_{a} \cdot LLge}{F_{a:ge}} + \frac{8}{9} \frac{f_{b} \cdot LLne}{F_{b:ne}} \right]}$$

$$RF = \frac{1 - 1.25 \left[\frac{6.14}{31.4 \text{ ksi}} + \frac{8}{9} \frac{1.88 \text{ ksi}}{33 \text{ ksi}} \right] - 1.5 \left[\frac{0.16 \text{ ksi}}{31.4 \text{ ksi}} + \frac{8}{9} \frac{0.25 \text{ ksi}}{33 \text{ ksi}} \right]}{1.75 \left[\frac{4.3 \text{ ksi}}{31.4 \text{ ksi}} + \frac{8}{9} \frac{1.48 \text{ ksi}}{33 \text{ ksi}} \right]} = 2.18 \quad (\text{HL-93 at STR-I})$$

Therefore, strengthening of tension Member U19-L20 is sufficient.

Member L20-U21 (Compression) Strengthening:

Try 1/2" x 6" ASTM A709, Grade 50, cover plates bolted to the outside of the webs. (see Figure 4.)

Member L20-U21 (Compression) Strengthening (continued):

Section Properties:

	<u>Existing</u>	Strengthened
	2-C15x33.9	Existing Section
	$(12^{1/4})$ " b-to-b channels)	with ¹ / ₂ "x6" Web PLs
End Connections:	Riveted Gusset Plates	Riveted Gusset Plates
Unbraced Length:	$L_y = L_x = 47' - 4^{13} / \frac{13}{16}$	$L_y = L_x = 47' - 4^{13} / \frac{13}{16}$
Gross Area:	$A_{ge} = 19.80 \text{ in.}^2$	$A_{gs} = 25.80 \text{ in.}^2$
Moment of Inertia (x-axis):	$I_{xe} = 553.5 \text{ in.}^4$	$I_{xs} = 565.76 \text{ in.}^4$
Moment of Inertia (y-axis):	$I_{ve} = 579.1 \text{ in.}^4$	$I_{ys} = 823.16 \text{ in.}^4$
Section Modulus (x-axis):	$S_{xe} = 79.1 \text{ in.}^3$	$\dot{S}_{xs} = 81.17 \text{ in.}^3$
Radius of gyration (y-axis):	$r_{ye} = 5.62$ in.	$r_{ys} = 5.65$ in.
Radius of gyration (x-axis):	$r_{xe} = 5.41$ in.	$r_{xs} = 4.99$ in.
Effective length factor:	K = 0.75 (riveted)	K=0.75 (riveted)
Slenderness ratio:	K L/r = 78.86	K L/r = 85.45

Determine the Member Stresses:

from above:

 $\begin{array}{ll} P_{DC} = 147 \ kip & P_{DW} = 13 \ kip & P_{LL+I} = 133 \ kip \\ M_{DC} = 132 \ k\text{-in.} & M_{DW} = 12 \ k\text{-in.} & M_{LL+I} = 48 \ k\text{-in.} \end{array}$

The existing, DC, composite and noncomposite dead load stresses, are locked-in to the existing member material. These stresses are determined from the DC member forces and the existing member section properties.

locked-in dead load tension stress on the gross section of the existing member: $f_{a DCge} = P_{DC} / A_{ge} = 147 \text{ kip} / 19.80 \text{ in.}^2 = 7.42 \text{ ksi}$

locked-in dead load flexural stress on the net section of the existing member: $f_{b DCne} = M_{DC} / S_{xe} = 132 \text{ k-in} / 79.1 \text{ in.}^3 = 1.67 \text{ ksi}$

Member L20-U21 (Compression) Strengthening (continued):

Shared Stresses in New and Existing Material of Strengthened Member:

Axial Compression Stresses on Gross Area:

 $A_{ge} = 19.80 \text{ in.}^2$ $A_{gs} = 25.80 \text{ in.}^2$ $A_{gn} = A_{gs} - A_{ge} = 25.80 \text{ in.}^2 - 19.80 \text{ in.}^2 = 6.00 \text{ in.}^2$

ratio of area of gross section of existing member to total gross section area of strengthened member:

 $A_{ge} / A_{gs} = 19.80 \text{ in.}^2 / 25.80 \text{ in.}^2 = 0.767$

ratio of area of gross section of new material to total gross section area of strengthened member: $A_{gn} / A_{gs} = 6.00 \text{ in.}^2 / 25.80 \text{ in.}^2 = 0.233$

axial stress on gross section of existing member from wearing surface dead loads: $f_{a DWge} = (P_{DW} / A_{gs}) 0.767 = (13 \text{ kip} / 25.80 \text{ in.}^2) 0.767 = 0.39 \text{ ksi}$

axial stress on gross section of new material from wearing surface dead loads: $f_{a DWgn} = (P_{DW} / A_{gs}) 0.233 = (13 \text{ kip} / 25.80 \text{ in.}^2) 0.233 = 0.12 \text{ ksi}$

axial stress on gross section of existing member from live load plus impact: $f_{a LLge} = (P_{LL} / A_{gs}) 0.767 = (133 \text{ kip} / 25.80 \text{ in.}^2) 0.767 = 3.96 \text{ ksi}$

axial stress on gross section of new material from live load plus impact : $f_{a LLgn} = (P_{LL} / A_{gs}) 0.233 = (133 \text{ kip} / 25.80 \text{ in.}^2) 0.233 = 1.20 \text{ ksi}$

Flexural Stresses:

 $S_{xse} = 81.17 \text{ in.}^3$ (top flange of channel) $S_{xsn} = 188.59 \text{ in.}^3$ (top of new plate)

flexural stress on net section of existing member from wearing surface dead loads: $f_{b DWne} = (M_{DW} / S_{xse}) = (12 \text{ k-in.} / 81.17 \text{ in.}^3) = 0.148 \text{ ksi}$

flexural stress on net section of new material from wearing surface dead loads: $f_{b DWnn} = (M_{DW} / S_{xsn}) = (12 \text{ k-in.} / 188.59 \text{ in.}^3) = 0.064 \text{ ksi}$

flexural stress on net section of existing member from live load plus impact: $f_{b LLne} = (M_{LL} S_{xse}) = (48 \text{ k-in.} / 81.17 \text{ in.}^3) = 0.591 \text{ ksi}$

flexural stress on net section of new material from live load plus impact : $f_{b DWnn} = (M_{LL} / S_{xsn}) = (48 \text{ k-in.} / 188.59 \text{ in.}^3) = 0.255 \text{ ksi}$

Member L20-U21 (Compression) Strengthening (continued):

Determine Equivalent Allowable Stresses from Factored Resistances and Section Properties: Allowable Axial Compression Stress for Existing Material for Locked-in DC Loading: $F_{a ge} = \phi_c P_n / A_{ge} = 0.95 (479.9 \text{ kip} / 19.8 \text{ in}^2) = 24.24 \text{ ksi}$ (existing member)

Allowable Axial Compression Stress for Existing Material for Shared DW and LL Loading:

$$\left(\frac{\text{KL}}{\text{r}}\right)_{\text{m}} = \sqrt{\left(\frac{0.75 \cdot 568.8 \,\text{in}}{4.99 \,\text{in}}\right)_{\text{o}}^{2}} + \left(\frac{12 \,\text{in}}{0.904 \,\text{in}}\right)^{2}} = 86.48 \quad \text{LRFD Eqn. C6.9.4.3.1-1}$$

$$Q = 1.0$$

$$P_{\text{o}} = Q F_{\text{ye}} A_{\text{ge}} \quad P_{\text{o}} = 1.0 \; (33 \; \text{ksi})(25.8 \; \text{in.}^{2}) \quad P_{\text{o}} = 851.4 \; \text{kip}$$

$$P_{\text{e}} = \frac{\pi^{2} \text{E}}{\left(\frac{\text{KL}}{\text{r}}\right)^{2}} A_{\text{g}} \quad P_{\text{e}} = \frac{\pi^{2} 29,000 \, \text{ksi}}{(86.48 \,\text{in.})^{2}} 25.8 \,\text{in.}^{2} = 987.4 \,\text{kip}$$

$$\frac{P_{\text{e}}}{P_{\text{o}}} = \frac{987.4 \,\text{kip}}{851.4 \,\text{kip}} = 1.16 > 0.44 \quad \text{then } P_{\text{n}} = \left[0.658^{\left(\frac{987.4 \; \text{kip}}{851.4 \; \text{kip}}\right)}\right] 851.4 \,\text{kip} = 523.9 \,\text{kip}$$

$$F_{\text{a gse}} = \phi_{\text{c}} P_{\text{n}}/A_{\text{gs}} = 0.95 \; (523.9 \; \text{kip} / 25.8 \; \text{in}^{2}) = 19.29 \; \text{ksi}$$

Allowable Flexural Stress for Existing Material for DC, DW and LL Loading:

Since the new strengthening plates are installed, centered on the channel webs, they provide very little contribution to the flexural resistance. Therefore, conservatively use the previously calculated moment resistance for the existing member without strengthening.

$$\phi_f M_n = 1.0(2,586 \text{ k} \cdot \text{in.}) = 2,586 \text{ k} \cdot \text{in.}$$

 $F_{b ne} = \phi_f M_n / S_{xe} = (2,586 \text{ kip-in.} / 79.10 \text{ in}^3) = 32.69 \text{ ksi}$

. . .

Member L20-U21 (Compression) Strengthening (continued):

Calculate Demand to Capacity (D/C) Ratios:

Existing Material:

axial compression on gross area, $\frac{f_{au \cdot ge}}{F_{a \cdot ge}} =$

$$\frac{1.25f_{a\cdot DCge}}{F_{a\cdot ge}} + \frac{1.5f_{a\cdot DWge} + 1.75f_{a\cdot LLge}}{F_{a\cdot gse}} = 1.25\frac{7.42\,\text{ksi}}{24.24\,\text{ksi}} + \frac{1.5(0.39\,\text{ksi}) + 1.75(3.96\,\text{ksi})}{19.29\,\text{ksi}} = 0.77 \le 1.0\,\text{OK}$$

flexure on net section, $\frac{f_{bu \cdot ne}}{F_{b \cdot ne}} =$

$$\frac{1.25f_{b\cdot DCge}}{F_{b\cdot ge}} + \frac{1.5f_{b\cdot DWge} + 1.75f_{b\cdot LLge}}{F_{b\cdot nse}} = 1.25\frac{1.67\,\text{ksi}}{32.69\,\text{ksi}} + \frac{1.5(0.15\,\text{ksi}) + 1.75(0.59\,\text{ksi})}{32.69\,\text{ksi}} = 0.10 \quad \leq 1.0 \text{ OK}$$

New Material:

axial compression on gross area:

$$\frac{1.25f_{a\cdot DCgn}}{F_{a\cdot gsn}} + \frac{1.5f_{a\cdot DWgn} + 1.75f_{a\cdot LLgn}}{F_{a\cdot gsn}} = 1.25\frac{0.0\,\text{ksi}}{19.29\,\text{ksi}} + \frac{1.5(0.06\,\text{ksi}) + 1.75(1.20\,\text{ksi})}{19.29\,\text{ksi}} = 0.12 \quad \leq 1.0 \text{ OK}$$

flexure on net section:

$$\frac{1.25f_{b\text{-DCnn}}}{F_{b\text{-nsn}}} + \frac{1.5f_{b\text{-DWnn}} + 1.75f_{b\text{-LLnn}}}{F_{b\text{-nsn}}} = 1.25\frac{0.0\,\text{ksi}}{32.69\,\text{ksi}} + \frac{1.5(0.06\,\text{ksi}) + 1.75(0.25\,\text{ksi})}{32.69\,\text{ksi}} = 0.02 \le 1.0\,\text{OK}$$

By Inspection, the controlling live load rating will be controlled by the existing member.

From above: if:
$$\frac{f_{au\cdot ge}}{F_{a\cdot ge}} = 0.77 \ge 0.2$$
, then use LRFD Eqn. 6.8.2.3-2
 $\frac{f_{au\cdot ge}}{F_{a\cdot ge}} + \frac{8.0}{9.0} \left(\frac{f_{bu\cdot ne}}{F_{b\cdot ne}}\right) = 0.77 + \frac{8}{9} (0.10) = 0.859 \le 1.0$ OK (Existing Member not Overstressed)

Member L20-U21 (Compression) Strengthening (continued):

Calculate the Controlling Live Load Rating of the Strengthened Member:

$$RF = \frac{1 - \gamma_{DC} \left[\frac{f_{a \cdot DCge}}{F_{a \cdot ge}} + \frac{8}{9} \delta_b \frac{f_{b \cdot DCne}}{F_{b \cdot ne}} \right] - \gamma_{DW} \left[\frac{f_{a \cdot DWge}}{F_{a \cdot ge}} + \frac{8}{9} \delta_b \frac{f_{b \cdot DWne}}{F_{b \cdot ne}} \right]}{\gamma_{LL} \left[\frac{f_{a \cdot LLge}}{F_{a \cdot ge}} + \frac{8}{9} \delta_b \frac{f_{b \cdot LLne}}{F_{b \cdot ne}} \right]}$$
$$\delta_b = \frac{C_m}{1 - \frac{P_u}{P_e}} = \frac{1.0}{1 - \frac{\gamma_{DC}P_{DC} + \gamma_{DW}P_{DW} + (RF)\gamma_LP_{LL+1}}{P_e}}$$

First Iteration:

Set $\delta_b = 1.92$ use P_e for strengthened condition.

$$RF = \frac{1 - 1.25 \left[\frac{7.42 \text{ ksi}}{24.24 \text{ ksi}} + \frac{8}{9} (1.92) \frac{1.67 \text{ ksi}}{32.69 \text{ ksi}} \right] - 1.5 \left[\frac{0.39 \text{ ksi}}{19.29 \text{ ksi}} + \frac{8}{9} (1.92) \frac{0.15 \text{ ksi}}{32.69 \text{ ksi}} \right]}{1.75 \left[\frac{3.96 \text{ ksi}}{19.29 \text{ ksi}} + \frac{8}{9} (1.92) \frac{0.59 \text{ ksi}}{32.69 \text{ ksi}} \right]} = 1.13$$

$$\delta_{b} = \frac{C_{m}}{1 - \frac{P_{u}}{P_{e}}} = \frac{1.0}{1 - \frac{1.25(147 \text{ kip}) + 1.5(13 \text{ kip}) + (1.13)(1.75)(133 \text{ kip})}{987.4 \text{ kip}}} = 1.89$$

After Four Iterations:

RF = 1.13 (HL-93 at STR-I) and $\delta_b = 1.90$

Therefore, strengthening of compression Member L20-U21 is sufficient.

The next step is to design and check the connection of the strengthening material into the gusset plates.

Design Connections of Strengthening Material:

Calculate the Factored Resistance of New Bolts:

New ASTM A325, High Strength Bolts:

$D_b =$	0.875 in.	diameter of bolt
$A_b =$	0.601 in. ²	cross-sectional area of bolt
F _{ub} =	120 ksi	tensile strength of bolt
$L_c =$	1.25 in.	minimum clear distance from bolt hole to edge of connected material
$t_b =$	0.4 in.	minimum thickness of connected material (L20-U21 channel web)
$N_s =$	1 plane	number of slip plane in connection
$K_h =$	1.0	hole size factor (LRFD Table 6.13.2.8-2)
$K_s =$	0.5	coefficient of friction on faying surface (Class B surface condition)
$P_t =$	39 kip	minimum bolt pretension (LRFD Table 6.13.2.8-1)
$\phi_s =$	0.80	resistance factor for bolts in shear
$\phi_{bb} =$	0.80	resistance factor for bolts bearing on connected material

Shear Resistance where Threads are Excluded from the Shear Plane: LRFD Eq. 6.13.2.7-1

 $R_n = 0.48 A_b F_{ub} N_s = 0.48 (0.601 in.^2)(120 ksi)(1 shear plane) = 34.62 kip/bolt$ $R_r = \phi_s R_n = 0.80 (34.62 kip/bolt) = 27.69 kip/bolt$

Bolt Bearing on Connected Material:

LRFD Eq. 6.13.2.9-2

$$\begin{split} R_n &= 1.2 \ L_c \ t \ F_{une} = \ 1.2 \ (1.25 \ in.)(0.4 \ in.)(60 \ ksi) = 36.0 \ kip/bolt \\ R_r &= \phi_s \ R_n = 0.80 \ (\ 36.0 \ kip/bolt) = 28.8 \ kip/bolt \end{split}$$

Slip Resistance of Service II Load Case Checks: LRFD Eq. 6.13.2.8-1

 $R_r = R_n = K_h K_s N_s P_t = 1.0 (0.33)(1 \text{ shear plane})(39 \text{ kip}) = 19.5 \text{ kip/bolt}$

Design Connections of Strengthening Material (continued):

Determine Bolt Spacing and Edge Distance Requirements:

Minimum Edge Distance:

From LRFD Table 6.13.2.6.6-1, the minimum required edge distance is 1.5 in.,

Minimum Bolt Spacing:

 $s_{min} = 3.0 \text{ Db} = 3.0 (0.875 \text{ in.}) = 2.625 \text{ in.}$, use 3.0 in. where possible LRFD 6.13.2.6

Maximum Bolt Spacing for Sealing:

Member U19-L20: $t_{min} = 0.625$ in. (thickness of new strengthening plates) g = 2.5 in. (gage of existing rivets)

 $s_{max} \le 4.0 + 4.0 t_{min}$ - (0.75 g) \le 7.0, for staggered line of fasteners adjacent to free edge

 $s_{max} = 4.0 + 4.0 (0.625 \text{ in.}) - 0.75 (2.5 \text{ in.}) = 4.625 \text{ in. pitch}$ LRFD Eq. 6.13.2.6.2-2

Member L20-U21: $t_{min} = 0.40$ in. (thickness of existing channel web)

 $s_{max} \le 4.0 + 4.0 t_{min} \le 7.0$, for single line of fasteners adjacent to free edge

$$s_{max} = 4.0 + 4.0 (0.625 \text{ in.}) = 5.6 \text{ in.}, \text{ say } 5.625 \text{ in.}$$
 LRFD Eq. 6.13.2.6.2-1

Maximum Bolt Spacing for Stiching:

Member U19-L20 (Tension): LRFD Eq. 6.13.2.6.3-1

 $s_{max} \le 15 t_{min} - (0.375 g) \le 12 t_{min}$, 12 t_{min} Controls, 12 (0.625 in.) = 7.5 in. pitch

Member L20-U21 Compression:

$$s_{max} = 12 t_{min} = 12 (0.40 in.) = 4.8 in., say 4.75 in. (typical)$$
 LRFD 6.13.2.6.3

 $s_{max} = 4.0 \text{ Db} = 4.0 (0.875 \text{ in.}) = 3.5 \text{ in. for end } 1.5 \text{ w} = 9 \text{ in.}$ LRFD 6.13.2.6.4

Design Connections of Strengthening Material (continued):

Calculate the Factored Resistance of Existing Rivets:

Existing ASTM A141 Rivets:

$D_r =$	0.875 in.	diameter of bolt
$A_r =$	0.601 in. ²	cross-sectional area of bolt
$\phi F_r =$	21 ksi	factored shear strength of rivet
$N_s =$	1 plane	number of shear planes in connection
$\phi_s =$	0.80	resistance factor for rivets in shear
$\phi_{bb} =$	0.80	resistance factor for bolts bearing on connected material

From: Guide Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges

Shear Resistance of Rivets: LRFR Eq. 6.5 and Table 6-14 $\phi_s R_n = \phi F_r N_s A_r = (21 \text{ ksi})(1 \text{ shear plane})(0.601 \text{ in.}^2) = 12.62 \text{ kip/rivet}$

Determine the Number of Bolts Required to Develop the Strength of the New Strengthening Material:

Member L20-U21 with New ½ in. x 6 in. Strengthening Plates (Compression):

 $A_{gn} = (0.5 \text{ in.})(6 \text{ in.}) = 3 \text{ in.}^2$ $P_r = \phi_c A_{gn} F_{vn} = 0.9 (3 \text{ in.}^2)(50 \text{ ksi}) = 135 \text{ kip} \text{ (nominal yield resistance)}$

Strength I :

Number of Bolts Required = $P_r / R_r = (135 \text{ kip}) / (27.69 \text{ kip/bolt}) = 4.88$, say 6 bolts

Service II: $P_u = 1.00 P_{DC} + 1.00 P_{DW} + 1.3 P_{LL}$, where $P_{DC} = 0$ since existing member carries all of P_{DC} . $P_u = 1.00 (f_{a DWgn})(A_{gn}) + 1.3 (f_{a LLgn})(A_{gn}) = [1.0(0.12 \text{ ksi})+1.3(1.2 \text{ ksi})] 3 \text{ in.}^2 = 5.04 \text{ kips}$ Number of Bolts Required $= P_u / R_r = (5.04 \text{ kip}) / (19.5 \text{ kip/bolt}) = 0.25$, say 1 bolt Therefore, STP, Leastrole, Le

Therefore, STR-I controls. Use six bolts.

Design Connections of Strengthening Material (continued):

Member U19-L20 with New 5/8 in. x 12 in. Strengthening Plates (Tension):

$$\begin{split} A_{gn} &= (0.625 \text{ in.})(12 \text{ in.}) = 7.5 \text{ in.}^2 \text{ (gross area)} \\ W_{nn} &= 12 \text{ in.} - 1 \text{ in./hole} (4 \text{ holes}) + 2 \text{ staggers} (2 \text{ in.}^2/4 \cdot 2.5 \text{ in.}) = 8.8 \text{ in.} \text{ (net width)} \\ A_{nn} &= (0.625 \text{ in.})(8.8 \text{ in.}) = 5.5 \text{ in.}^2 \text{ (net area)} \\ \text{Limit State: yielding on gross area:} \\ P_r &= \phi_y F_{yn} A_{gn} \quad P_r = 0.95 \text{ x 50 ksi x 7.5 in.}^2 \quad P_r = 356.25 \text{ kip} \\ \text{Limit State: fracture on net area:} \\ \text{LRFD Eq. 6.8.2.1-2} \end{split}$$

 $P_r = \phi_u F_{un} A_{nn} U$ $P_r = 0.80 \cdot 65 \text{ ksi} \cdot 5.5 \text{ in.}^2 \cdot 1.0$ $P_r = 286.0 \text{ kip}$

 $P_r = 286.0 \text{ kip}$ minimum of LRFD Eqs. 6.8.2.1-1 and 6.8.2.1-2 Strength I : Number of Bolts Required = $P_r / R_r = (286 \text{ kip}) / (27.69 \text{ kip/bolt}) = 10.3$, say 10 Bolts

Service II: $P_u = 1.00 (f_{a DWgn})(A_{gn}) + 1.3 (f_{a LLgn})(A_{gn}) = [1.0(0.12 \text{ ksi}) + 1.3(3.05 \text{ ksi})] 7.5 \text{ in.}^2 = 30.64 \text{ kips}$

Number of Bolts Required = $P_u / R_r = (30.64 \text{ kip}) / (19.5 \text{ kip/bolt}) = 1.6$, say 2 bolts

Therefore, STR-I controls. Use ten bolts.

Check the Existing Member Connections:

Member U19-L20:

10 existing rivets out of 22 rivets/ per sided will need to be removed to connect the new strengthening plates. Determine the live load resistance the member has during this rivet removal.

 $R_r = (2 \text{ sides})(12 \text{ rivets/side})(12.62 \text{ kip/rivet}) = 302 \text{ kips}$

 $\frac{P_u}{R_r} = \frac{1.25(130 \text{ kip}) + 1.75(266 \text{ kip})}{302 \text{ kip}} = \frac{628 \text{ kip}}{302 \text{ kip}} = 2.08 > 1.0 \text{ NG}$

Design Connections of Strengthening Material (continued):

By removing 20 existing rivets, the connection resistance is less than one half of the factored load. Check connection if the existing rivets are replaced with new high strength bolts, one at a time.

 $R_r = (2 \text{ sides})(12 \text{ rivets/side})(27.69 \text{ kip/bolt}) = 665 \text{ kips} > P_u \text{ OK}$

Member L20-U21:

Check existing riveted connection first.

 $R_r = (2 \text{ sides})(12 \text{ rivets/side})(12.62 \text{ kip/rivet}) = 302 \text{ kip} < P_u = 436 \text{ kip}$

The existing connection is not sufficient to resist the factored loading.

Similar to member U19-L20, consider replacing the existing rivets in the connection with new high strength bolts, one at a time. The new strengthening plates will also have four additional bolts per plates.

 $R_r = (2 \text{ sides})(16 \text{ bolts/side})(27.69 \text{ kip/bolt}) = 886 \text{ kip} > P_u = 436 \text{ kip}$

 $R_r = 886 \text{ kip} > P_o = 851.4 \text{ kips}$

The connection is sufficient to develop the strengthened member capacity.

Additional Comments:

Both connection will require splice plates to splice the strengthening plates into the gusset plate connection. The number of bolts on either side of the splice will be the same number of bolts calculated to develop the full capacity of the strengthening plates.

The follow sketch is a summary of the strengthening and connection design.

Strengthening Design Sketch:

35

Summary

There are many factors that must be considered when designing steel truss member strengthening. A summary of the major considerations are as follows:

The existing member will carry all of the dead load forces in the member at the time of strengthening. These are considered locked-in stresses. The only forces the new strengthening material will resist are it's proportional share of the live loads and the changes in dead loads after strengthening. These are referred to as the shared stresses. This fact means that the new strengthening will have a limit to its effectiveness, particularly when there are high dead load to live loads stresses in the member. There are few methods of increasing the effectiveness of the strengthening. One method involves jacking out a portion of the existing member dead loads during the strengthening. Another method involves optimizing the timing of the strengthening when the existing dead load forces are minimized. This is most appropriate during re-decking work on the bridge.

When designing the truss member strengthening, both the existing member material and the new strengthening material must be checked for all limit states. Typically the existing member material will control due to the locked-in dead load stresses and the fact that the existing material will often be composed of lower strength material than the new strengthening material. However, if there are high live load to dead load stresses, or there are high flexural stresses and the new material is installed on the outer extremes of the member, the new material can easily control over the existing material. This is why both the new and existing material must be checked.

The connections for the new strengthening materials must be designed to develop the full capacity of the material. This will often involve the removal of existing fasteners. The existing member connection capacity needs to be checked for the removal of these fasteners. If the existing connection capacity is insufficient, new higher strength fasteners can be used to replace the existing fasteners, typically one at a time. Another method is to restrict live load during the new material connection work.

Finally, the cost of this type of strengthening is overwhelmingly based on the installation costs and not the cost of the material. It may turn out that a thicker strengthening plate will cost less due to an increase in allowable bolt spacing for stitching and sealing, resulting in fewer new fasteners to install.

References Page

- AISC, 1997, Torsional Analysis of Structural Steel Members, Steel Design Guide Series, AISC, Chicago, IL.
- AASHTO (2014). AASHTO LRFD Bridge Design Specifications, Customary U.S. Units, 7th Ed., AASHTO, Washington, D.C.
- AASHTO (2003). Guide Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges, First Edition, with 2005 Interim Revisions, AASHTO, Washington, D.C.

{inside back cover blank}

FHWA-HIF-18-042