ARCHITECTURAL AWARDS OF EXCELLENCE 1970
The Architectural Awards of Excellence were established by the American Institute of Steel Construction in 1960 to recognize and honor outstanding architectural design in structural steel and to encourage further exploration of the many aesthetic possibilities that are inherent in steel construction. This year a distinguished jury named twelve buildings for Architectural Awards of Excellence.

In the opinion of the AJSC Committee on Awards, each building represents design of the highest standards, and all Awards in each class are equal in stature. The Award-winning architects are listed on the following pages with pictures of the buildings for which they received commendation.

The jury was particularly looking for the utilization of structural steel for its maximum architectural potential, and the jurors chose these buildings as outstanding examples of aesthetic leadership and direction. The architects used standard framing methods in many cases, but they used them superlatively. The successful use of steel requires a stringent attention to detail and orderliness in design. That this quality is not a restriction is demonstrated by the Award winners.

The Institute is most gratified by the enthusiastic response to the Architectural Awards of Excellence program.
JURY OF AWARDS

ROBERT P. BURNS, JR., AIA
Head, Department of Architecture, School of Design
North Carolina State University at Raleigh, Raleigh, North Carolina

FRANCIS D. LETHBRIDGE, FAIA
Vice President of AIA
Keyes, Lethbridge & Condon, Washington, D.C.

GYO OBATA, FAIA
Hellmuth, Obata & Kassabaum, Inc., St. Louis, Missouri

MARJORIE PHILLIPS
Chairman, Washington State Arts Commission, Seattle, Washington

LOUIS W. RIGGS, F.ASCE
President, Tudor Engineering Company, San Francisco, California
1970
ARCHITECTURAL AWARDS OF EXCELLENCE

PIETRO BELLUSCHI AND JUNG/BRANNEN ASSOCIATES INC.
Wellesley Office Park Building Number Four

PIETRO BELLUSCHI AND GRUZEN & PARTNERS, ASSOCIATED ARCHITECTS
Temple B'nai Jeshurun

BROWN/McCURDY/NERRIE
GRT Corporate Headquarters Building

CARSON, LUNDIN & SHAW
Manufacturers Hanover Trust Company Operations Building

MUCHOW ASSOCIATES
HALLER & LARSON
JAMES REAM AND ASSOCIATES ARCHITECTS
(A JOINT VENTURE)
Curriigan Exhibition Hall

WILLIAM L. PEREIRA ASSOCIATES, PLANERS, ARCHITECTS, ENGINEERS
New England Center for Continuing Education

KEVIN ROCHE JOHN DINKELOO AND ASSOCIATES
Knights of Columbus Headquarters

SASAKI, DAWSON, DeMAY ASSOCIATES. INC.
Hazel Hotchkiss Wightman Tennis Center

WURSTER, BERNARDI AND EMMONS, INC.
SKIDMORE, OWINGS & MERRILL
PIETRO BELLUSCHI (CONSULTING ARCHITECT)
Bank of America World Headquarters

SELIISON/EGGEN, AIA, ARCHITECTS, PLANERS, DESIGNERS
Fire Station No. 30

SMITH BARKER HANSSSEN
Frank C. Bishop Library, The York School

HUGH STUBBINS AND ASSOCIATES
Jadwin Physical Laboratory, Princeton University

WALKER, MC GOUGH, FOLTZ
Farm Credit Banks of Spokane

HARRY WEESE & ASSOCIATES
Performing Arts Center
JURORS' COMMENTS

This prototype approach to commercial office space is handled with unusual care and interest. It is clean and attractive, well detailed, and refreshingly free of stylistic mannerisms. It suggests a direct, unpretentious mass-production technique for steel construction.
ARCHITECTS Pietro Belluschi and Jung/Brannen Associates Inc.,
Boston, Massachusetts

WELLESLEY OFFICE PARK BUILDING NUMBER FOUR, Wellesley, Massachusetts

Structural Engineer Paul Weidlinger, Cambridge, Massachusetts
General Contractor Beacon Construction Company, Boston, Massachusetts
Steel Fabricator Premier Metals, Inc., Newington, Connecticut
Owners Wellesley Office Park Associates, Boston, Massachusetts (A Joint Venture)

Beacon Construction Company
State Mutual Life Assurance Company of America

ARCHITECTURAL DESCRIPTION Maximum flexibility in planning and future ease of convertibility was necessary for this all rental office building. The solution comprises maximum allowable uninterrupted area per floor.

Exterior perimeter walls are designed to incorporate structure and mechanical equipment in large prefabricated weathering steel panels for speed and economy. These panels contain an integral gutter to avoid staining of adjacent surface during the weathering process. Interior surfaces are painted.
ARCHITECTS Pietro Belluschi, Boston, Massachusetts and Gruzen & Partners, Associated Architects, New York, New York

TEMPLE B’NAI JESHERUN, Short Hills, New Jersey

General Contractor Blitman Construction Corporation, New York, New York
Steel Fabricator Wander Iron Works, Bronx, New York
Owner Congregation B’nai Jeshurun, Short Hills, New Jersey

ARCHITECTURAL DESCRIPTION This 3-level L-shaped synagogue houses a Main Sanctuary Chapel, Social Hall, Religious School, Library, Offices and supporting facilities.

A diamond plan was chosen to create an environment for worship which would be intimate for 1,000 congregants, as well as for 2,600 at certain principal festivals.

The superstructure is structural steel, clad inside and out with a smooth-face, purple-brown brick. The roof over the Main Sanctuary will be supported by 4-foot deep laminated wood beams on the two 100-foot long steel trusses. A continuous skylight cuts diagonally across the Sanctuary between the 11-foot deep steel trusses. The other roofs are long span web joists.
JURORS’ COMMENTS

An extremely thoughtful, sensitive architectural design, executed with great skill. It is a well planned structure. The sanctuary and classrooms relate well to each other. The sloping steel roof of the sanctuary provides an interesting space, and the profile of the building is crisp and attractive.
ARCHITECT Brown/McCurdy/Nerrie, San Francisco, California

GRT CORPORATE HEADQUARTERS BUILDING, Sunnyvale, California

Structural Engineer Hirsch & Gray, San Francisco, California
General Contractor Johnson & Mape Construction Company, Menlo Park, California
Steel Fabricator Pittsburgh-Des Moines Steel Company, Pittsburgh, Pennsylvania
Owner Jack L. Melchor, Los Altos Hills, California

ARCHITECTURAL DESCRIPTION Designed to provide flexibility and expansion capability to match the company’s rapid growth and evolution, this building is a series of adaptable office wings, arranged in parallel between an executive wing in front and a service wing in the rear, and separated by landscaped courts.

The structural system is a shop-welded, field-bolted, steel rigid-frame system on spread footings with steel bar joists and deck. The exterior skin of the building consists of conventional industrial metal siding panels rolled of weathering steel. The structural steel frame, where exposed, is also of weathering steel. The window wall is made up of weathering steel structural sections, neoprene gaskets, and bronze glass.
JURORS' COMMENTS

A sophisticated, controlled design that is beautifully handled. The interior is lean and crisp and its lightness contrasts nicely with the weathering steel on the exterior. The exposed framing is dramatically expressed.
ARCHITECT Carson, Lundin & Shaw, New York, New York
MANUFACTURERS HANOVER TRUST COMPANY OPERATIONS BUILDING, New York, New York

Structural Engineer Edwards & Hjorth, New York, New York
General Contractor George A. Fuller Company, New York, New York
Steel Fabricator Bethlehem Steel Corporation, Bethlehem, Pennsylvania
Owner Manufacturers Hanover Trust Company, New York, New York

ARCHITECTURAL DESCRIPTION The frugal fenestration and the massive brick exterior of this building best express the needs of its main tenants — computers and business machines.

This 22-story banking operations center will function round the clock, seven days a week. Extensive facilities are provided for delivery, circulation, and pickup of the tons of paper that pass through the building daily. A structural steel frame allowed for minimum loss of floor space, electric flexibility through the use of metal deck, and lowest possible floor to floor height.

JURORS' COMMENTS
A strong straightforward, simply executed design—clearly organized and well planned. This is a handsome building that makes effective use of masonry.
JURORS' COMMENTS

This building is distinguished by its tremendous space frame that gives the entire structure a sense of dramatic power. The interior expression is particularly impressive.
ARCHITECTS Muchow Associates, Denver, Colorado
Haller & Larson, Denver, Colorado
James Ream and Associates Architects, San Francisco, California
(A Joint Venture)

CURRIGAN EXHIBITION HALL, Denver, Colorado

Structural Engineer Ketchum, Konkel, Barrett, Nichol and Austin, Denver, Colorado
General Contractor F. R. Orr Construction Co. Inc., Denver, Colorado
Steel Fabricator Burkhardt Steel Company, Denver, Colorado
Owners City and County of Denver, Colorado

ARCHITECTURAL DESCRIPTION The roof of this exhibition hall is a steel space frame composed of modular pyramidal units forming a 100,000 square foot exhibition area completely free of columns. The space can be divided into two separate rooms of 50,000 square feet each by doors made in 38 electrically operated panels. The weathering steel curtain walls are suspended from the space frame.
ARCHITECT William L. Pereira Associates, Planners, Architects, Engineers, Los Angeles, California

NEW ENGLAND CENTER FOR CONTINUING EDUCATION, Durham, New Hampshire

Structural Engineer LeMessurier Associates, Inc., Cambridge, Massachusetts
General Contractor Davison Construction Co., Manchester, New Hampshire
Steel Fabricator Augusta Iron Works, Div. of Cives Corp., Augusta, Maine
Owner University of New Hampshire, Durham, New Hampshire

ARCHITECTURAL DESCRIPTION The design objective of this education center was to preserve and dramatize the natural setting of pine forest, hills and outcroppings of native rock. Planned for conferences, the center presently includes an Administrative Building, a residential tower with room for 80 guests, and a Learning Center with seminar rooms, an auditorium, audio-visual facilities and dining areas for conference and faculty. Eventually, there will be accommodations for 240 participants.

The center is completely steel-framed, with painted exterior columns setting off exterior surfaces of glazed brick and dark, reflective glass. A triangular module (in 30-foot increments) was adopted because of the flexibility it provided in orienting the buildings around the stands of trees.

JURORS' COMMENTS
This attractive building takes maximum advantage of a lovely and natural setting. The interior spaces are beautifully and carefully developed. The designer has created an appealing total environment for education.
ARCHITECT Kevin Roche John Dinkeloo and Associates, Hamden, Connecticut

KNIGHTS OF COLUMBUS HEADQUARTERS, New Haven, Connecticut

Structural Engineer Pfisterer, Tor & Associates, New Haven, Connecticut
General Contractor Koppers Company, Inc., Pittsburgh, Pennsylvania
Steel Fabricator The Belmont Iron Works, Eddystone, Pennsylvania
Owner Knights of Columbus, New Haven, Connecticut

ARCHITECTURAL DESCRIPTION The 23 floors of this building are supported on the elevator core and four large cylindrical concrete towers which form the corners, and contain fire stairs, lavatories, and mechanical shafts. The main 80-foot long horizontal weathering steel girders are between the towers and support the completely exposed steel floor structure. The glass wall is held back five feet from these main girders and the space between is filled with sunshade.

JURORS’ COMMENTS
This building is executed in a positive, vigorous idiom. It is very strong visually, but does not overpower its surroundings. The exposed steel framing contrasted with the corner brick shafts defines the structure with great clarity.
ARCHITECT Sasaki, Dawson, DeMay Associates, Inc., Watertown, Massachusetts

HAZEL HOTCHKISS WIGHTMAN TENNIS CENTER, Weston, Massachusetts

Structural Engineer LeMessurier Associates, Inc., Cambridge, Massachusetts
General Contractor Charles A. Logue Building Co., Needham, Massachusetts
Steel Fabricator Inland-Ryerson Construction Products Company, Chicago, Illinois
Owner Hazel Hotchkiss Wightman Tennis Center, Inc., Weston, Massachusetts

ARCHITECTURAL DESCRIPTION The lounge area of this club overlooks the sports facilities in four directions — indoor tennis courts, squash courts, swimming pool, and outdoor tennis courts, respectively. This design was achieved by modifying a pre-engineered, light-weight steel building. To break up the vast surfaces of roof, the building was divided into three staggered sections, with a pair of tennis courts each in two sections, and the remaining indoor facilities in the third. The building can thus be expanded merely by adding two-court sections.

JURORS' COMMENTS
This is a very fine building, attractive and clean. The architectural effects—very strong and effective—are achieved by an imaginative manipulation of volume and space. There is a great range of contrast in scale and the building is ingeniously planned to emphasize those contrasts.
ARCHITECTS Wurster, Bernardi and Emmons, Inc., San Francisco, California
 Skidmore, Owings & Merrill, San Francisco, California
 Pietro Belluschi (Consulting Architect), Boston, Massachusetts

BANK OF AMERICA WORLD HEADQUARTERS, San Francisco, California

Structural Engineer H. J. Brunnier Associates, San Francisco, California
General Contractor Dinwiddie-Fuller-Cahill, San Francisco, California
 (A Joint Venture)
Steel Fabricator Kaiser Steel Corporation, Oakland, California
Owner Bank of America National Trust and Savings Association,
 San Francisco, California

ARCHITECTURAL DESCRIPTION An example of the latest in the art of
earthquake design, which is ever changing through extensive technical
research and development, is seen in this 52-story office tower — the tallest
in the West.

This steel frame welded structure is 779 feet high with carnelian-polished
granite walls and bronze-colored solar glass windows. The architectural
emphasis is on the bay windows — long a San Francisco tradition. This type
of construction impacts the scale of the building and helps provide a strong
vertical sense when stacked upward to the sky and also multiplies the view
to its occupants.

The fascia framing contains 1,300 tons of steel which is cantilevered 8 feet-6
inches from the center line of the main columns and supports the facing.
The severe lateral requirements in this seismic zone led to the choice of a
100 percent moment resisting frame with 3 bays (124 feet) in width.

JURORS' COMMENTS
This handsome building radiates a feeling of tremendous quality and
meticulous detail. The facade is beautifully designed to catch the light and
emphasize the formal elements of the structure.
ARCHITECT Seligson/Eggen, AIA, Architects, Planners, Designers, Kansas City, Missouri
FIRE STATION NO. 30, Kansas City, Missouri
Structural Engineer Pfuhl & Stevson, Consulting Engineers, Kansas City, Missouri
General Contractor Clell Watson Construction Company, Inc., North Kansas City, Missouri
Steel Fabricator Lasley Company, Inc., Kansas City, Missouri
Owner City of Kansas City, Missouri

ARCHITECTURAL DESCRIPTION The diverse nature of the neighborhood allowed for the fresh approach shown in the design of this fire station. The apparatus room is literally a steel-framed transparent glass box, designed to put fire equipment on display, and permanently featuring two fire-fighting trucks. Designed with complete living quarters for ten firemen and two officers per shift, the station is a one-story structure with all the floors at ground level to allow rapid, but safe response and movement by men and equipment.

The exterior materials of steel, glass and brick masonry were chosen for economy, quality, low maintenance, and to achieve beauty through straightforward expression. Welded steel members produced narrow sight lines and a sculptural quality to the structure.

JURORS' COMMENTS This is an especially lively and refreshing design. The frank exposure of the fire trucks and other equipment in the large, transparent, airy space is in interesting contrast to the more solid elements in which the living quarters and service elements are housed. If a building can be said to reflect a sophisticated, witty approach, this structure with its exuberant super-graphics surely has it.
ARCHITECT Smith Barker Hanssen, San Francisco, California

FRANK C. BISHOP LIBRARY, THE YORK SCHOOL, Monterey, California

Structural Engineer Hirsch & Gray, San Francisco, California
General Contractor Small’s Construction Co., Salinas, California
Steel Fabricator Schrader Iron Works, Inc., San Francisco, California
Owner The York School, Monterey, California

ARCHITECTURAL DESCRIPTION This school library’s entire structure is a space truss that provides for both a column free interior space and flexibility in the location of openings. The 27-foot front cantilever and broad overhangs at the other sides made it possible to open up the library to the surrounding hills and ocean.

All wall and roof truss units are formed of 2½-inch steel angles and tees and were shop welded, which reduced on-site construction problems. The exterior of the truss, sheathed in wood shakes, makes it compatible with the other buildings on the campus.
A pleasant and appealing library. The steel space frame creates an interesting, distinctive study space and is a logical structural solution. This is a very charming building.
ARCHITECT Hugh Stubbins and Associates, Cambridge, Massachusetts
JADWIN PHYSICAL LABORATORY, PRINCETON UNIVERSITY, Princeton, New Jersey
Structural Engineer LeMessurier Associates, Inc., Cambridge, Massachusetts
General Contractor Irwin and Leighton, Inc., Philadelphia, Pennsylvania
Steel Fabricator Elizabeth Iron Works, Elizabeth, New Jersey
Owner Princeton University, Princeton, New Jersey

ARCHITECTURAL DESCRIPTION Conceptually, this Physics Building wraps the theoreticians (think) offices around the open court, and places the experimentalists (do) laboratories in a flexible research block. Ring corridors with frequent alcoves and chalkboards encourage contact and communication among the “thinkers” and “doers.” Framing is structural steel because of the importance of predicting deflections of the large cantilevers. Additionally, steel permits the flexibility necessary for addition or rearrangement of equipment and utilities, and permits ductwork to go through the structural system, saving ceiling depth.

JURORS' COMMENTS
A quiet dignified building with a pleasant scale. It provides a very interesting interior court space and is strongly oriented to the uses of the people who work there. It fits into the campus remarkably well.
ARCHITECT Walker, McGough, Foltz, Spokane, Washington
FARM CREDIT BANKS OF SPOKANE, Spokane, Washington
Structural Engineer Lyerla & Peden, Engineers, Spokane, Washington
General Contractor Selkirk Company, Spokane, Washington
Owner Farm Credit Banks of Spokane, Spokane, Washington

ARCHITECTURAL DESCRIPTION Three specialized banks, serving differing segments of the agricultural industry, occupy separate floors in the upper part of this building. Joint service activities are located on the lower levels.

A composite design of structural steel and concrete was selected to permit the long spans necessary for total flexibility of interior partitioning and minimum deflections. The framing system utilizes clear spans bridging between the corner elements with only three interior supporting columns in the building. Largest of these clear span girders is at the roof and is 105 feet long and 7 feet-2 inches deep.

JURORS' COMMENTS
This is a very handsome three-dimensional handling of volume on a city site. The treatment of the courts and the light, open feeling of the interior are particularly well handled. The building is well detailed.
JURORS' COMMENTS

This is a highly successful design of a very complex building. It has a lively, spirited expression that avoids the formality of many structures of this type. Both the siting and the interior spaces are treated with a maturity and vigor rarely seen in public architecture.
ARCHITECT Harry Weese & Associates, Chicago, Illinois

PERFORMING ARTS CENTER, Milwaukee, Wisconsin

Structural Engineer The Engineers Collaborative, Chicago, Illinois
General Contractor Klug & Smith Company, Inc., Milwaukee, Wisconsin
Steel Fabricator Lakeside Bridge and Steel Co., Milwaukee, Wisconsin
Owner Milwaukee County War Memorial Center, Inc., Milwaukee, Wisconsin

ARCHITECTURAL DESCRIPTION This performing arts center houses a 500-seat repertory theater, and a 500-seat recital-rehearsal hall. The theaters have separate entrances and identifications, but are linked by common facilities and pneumatic tubes to a central box office.

The main room is structured from four pylons and a suspended chandelier. The flyable orchestra shell is 40 feet x 56 feet, and puts the orchestra in the audience space rather than in an alcove. The balcony reaches all the way to the stage along the side walls. A flying dress circle and floating bridge boxes add to the spatial configurations. Framing is structural steel.
PHOTO CREDITS

Front Cover: Wellesley Office Park Building Number Four/Gorchev & Gorchev
Inside Front Cover: New England Center for Continuing Education/Ballklehem Steel Corporation
Inside Back Cover: Bank of America World Headquarters/ Marshall L. Schultz
Back Cover: Currigan Exhibition Hall/Harr, Hedrich-Blessing

Wellesley Office Park Building Number Four/Gorchev & Gorchev
Temple B'nai Jeshurun/Gil Amiaga
GRT Corporate Headquarters Building/Jeremiah O. Bragstad
Manufacturers Hanover Trust Operations Building/Houston Shields
Currigan Exhibition Hall/Harr, Hedrich-Blessing
New England Center for Continuing Education/Ezra Stoller
Knights of Columbus Headquarters/Charner Alexander
Hazel Hetchkiss Wightman Tennis Center/Hetchins Photography, Inc.
Bank of America World Headquarters/Roger Sturtevant
Fire Station No. 30/Paul S. Kivett
Frank C. Bishop Library/Gerald Ratto
Jadwin Physical Laboratory/Ezra Stoller
Farm Credit Banks of Spokane/Morley. Baer
Performing Arts Center/Balthazar Korab