Design awards/competitions:
American Institute of Steel Construction
1983 Architectural Awards of Excellence

1. The Louisville Galleria, Louisville, Kentucky; Skidmore, Owings & Merrill, Architects and Engineers. The Louisville Galleria is the centerpiece and unifying element of a mixed-use project that incorporates two new 26-story office towers, an existing department store, a 750-car garage, and the restoration of the historic Kaufman-Straus Building, an early 20th-century structure that was renovated to house office and retail space. Conceived as an all-weather enclosure for the complex's central circulation spine, the seven-story steel-and-glass Galleria slopes sharply from the top of the Kaufman-Straus Building across a landscaped atrium and terminates at the second-floor level of the department store. The jury called the scheme "a very urban design solution" and praised the project for rejuvenating a downtown shopping street while creating a year-round space between structures that already existed.

General contractor: PCL Construction, Ltd.
Steel fabricator: Haven-Busch Company
Steel erector: Ambrosius Erecting Corporation
Owner: Oxford Properties, Inc.

2. Gene Coulon Memorial Beach Park, Renton, Washington; Jones & Jones, Architects and Landscape Architects; KPFF, Structural Engineers. The mile-long lakefront shoreline of Renton, Washington had seen a number of industrial uses over the last century—barge loading, sawmills, log dumping, wartime ship fitting, and surplus ship storage—before the city fathers obtained voter approval of an $8-million bond issue to revitalize the 57-acre site as a public park. For a combination of open and closed pavilion structures architects Jones & Jones developed a striking scheme that takes into consideration turn-of-the-century waterfront building styles while incorporating the classic elements of a city park. Liking parts of the ensemble to traditional Scandinavian architecture, the jury noted that "the total use of steel is just what you would want for a pavilion. It fits its surroundings and [recalls] Victorian buildings in the Northwest." The material, moreover, most likely will prove to be an excellent foil against a persistent problem afflicting all public parks—vandalism.

General contractor: Frank Coluccio Construction Co.
Steel fabricator: Seidelhuber Iron & Bronze Works, Inc.
Steel erector: Smith Brothers Construction
Owner: City of Renton
A bus maintenance facility in Memphis, a series of park pavilions near Seattle, and an office tower in Houston are among the 13 winning designs in the 1983 Architectural Awards program of the American Institute of Steel Construction. Chosen from 166 entries, the projects illustrated below and on the following pages are characterized by variety, both of building type and of structural solution, and by their reaffirmation of the AISC program's stated purpose: "To recognize and honor outstanding architectural designs in steel and to encourage further exploration of the many esthetic possibilities inherent in steel construction." This year's awards jury consisted of Gunnar Birkerts, FAIA, partner in Gunnar Birkerts & Associates; Wayne R. Bishop, AIA, vice president of design at Ellerbe Associates; Stanley D. Lindsey, Ph.D., president of Stanley D. Lindsey & Associates Ltd.; George M. Notter, Jr., FAIA, president of Anderson Notter Feingold Inc.; and George Sczikiporeit, AIA, chairman of the Department of Architecture at the Illinois Institute of Technology.

5, 6. United States Pavilion, Knoxville, Tennessee; FABRAP Architects; O'Kon and Company, Structural Engineers. The United States Pavilion at Expo '82 in Knoxville was the winning design in a national competition held by the Department of Commerce. As the largest pavilion at the fair, the permanent structure occupied a pivotal position in the over-all master plan; beyond that, however, the building was intended to be a gracious host structure and a good neighbor to the more modestly scaled national pavilions located nearby. In order to satisfy requirements of both size and respectfulness, FABRAP Architects designed a 450-foot-long, wedge-shaped building whose apparent bulk is diminished by the use of a transparent structural steel framework either left exposed or clad in lightweight metal and glass. The architects visually reduced the volume further by cutting away a portion of the wedge to create an open-air amphitheater. In addition to noting that the utilization of prefabricated metal enabled the structure to be completed in time for the Expo opening, the AISC jury remarked that "the animation of the steel makes it feel like a fair building."

7. Allied Bank Plaza, Houston, Texas; Skidmore, Owings & Merrill, Architects and Engineers. Both in plan and elevation this 71-story, 1.5-million-square-foot office tower was designed to stand out among the ever-growing forest of skyscrapers in downtown Houston. The structure's unusual plan consists of two quarter-circles offset 15 feet from one another along their common edge—a design solution that exemplifies the freedom that architects have enjoyed over the past decade in the design of tall commercial buildings. The Allied tower is sheathed in a mullioned curtain wall of dark green reflective glass which, in combination with the structure's curved sides, presents an image that the architects call "soft and sheer," in contrast to the angular masonry architecture prevalent in other Houston buildings. SOM employed a structural system of bundled steel tubes for its cost-effectiveness and design flexibility. The awards jury praised the appropriateness of all-steel construction for such a tall, slender tower.

8, 9. Village Market at the National Tennis Center, New York City; David Kenneth Specter & Associates and The Schnadelbach Partnership, Architects; Jensen-Lewis Company, Structural Engineers. The Village Market is an outdoor restaurant facility used just two weeks a year in late summer during the United States Open Tennis Tournament in New York. Located on a tree-studded site adjoining the tennis stadium, the market stands at the crossing of two major pedestrian routes and consists of 16 identical steel and striped canvas shelters that resemble pinwheels. The shelters cover nine food stands, along with movable tables and chairs arranged informally throughout the area. Strings of tiny white lights outline the painted steel framework, while a single bowl fixture in each module throws up light through the canvas to create a glowing surface of yellow and white when viewed at night from the stadium above. The jury praised the concept for its simplicity and noted how the scheme "provides a wonderful scale to an otherwise large open space."

General contractor, steel fabricator & erector: Jensen-Lewis Co., Inc. Owner: USTA National Tennis Center Inc.

10, 11. Prudential Insurance Company of America, Western Home Office, Westlake Village, California; Albert C. Martin and Associates, Architects and Engineers. This 400,000-square-foot office building near Los Angeles was designed as a regional headquarters for a major insurance company. The architects sought to integrate the three-story facility into a plateau-like 64-acre site by setting the V-shaped structure into a hollow excavated from a low hill—a decision that the AISC jury praised. As a response to solar conditions in the area, the architects created a facade of smooth granite panels that extend six feet out over continuous tinted windows to form fixed sunshades. Where the two main office wings intersect, a full-height atrium with a highly polished reflective ceiling and cantilevered open stairway provides lighting for interior spaces and a focal point for circulation.

General contractor: Robert E. McKee, Inc. Steel fabricator & erector: Central Industrial Engineering Co., Inc. Owner: Prudential Insurance Co. of America
The large main library space is relatively column-free and was designed to allow numerous layout options. The visual potential of exposed structural steel and open ductwork on the interior is fully exploited. The jury's verdict: the library is "an excellent sculptural form. It has a personality."

Construction manager:
Turner Construction Co.
Steel fabricator & erector:
Washington Iron Works, Inc.
Owner:
City of Thousand Oaks

14, 15. IBM Information Products Division, Charlotte, North Carolina; Thompson, Ventulett, Stainback & Associates, Architects; Ross H. Bryan, Inc., Structural Engineers. IBM's 800,000-square-foot manufacturing and research complex in Charlotte comprises a laboratory/administration building, two manufacturing buildings, a cafeteria, a warehouse, and a central utility plant—all situated on a rolling 1,360-acre wooded site. Relying on what might be considered a computer aesthetic, the architects used crisp geometric forms sleekly finished with gray enamel-coated steel panels "to reflect the refined image of the manufacturer and his products." The repetition of this facade material visually ties together the building ensemble, while two steel-framed spines—one for pedestrian usage, the other for movement of materials in and out of the manufacturing plant—provide efficient circulation. The AISC jury lauded the facility for its meticulous detailing and for the appropriate relationship between architectural form and client concerns.

Construction manager:
Blount International, Ltd.
Steel fabricator:
Owen Steel Company of North Carolina, Inc.
Steel erectors:
Diamond Erectors, Inc. and C.P. Buckner Steel Erection, Inc.
Owner:
IBM Real Estate & Construction Division
Particularly impressive is a ten-story atrium rising from a "sky lobby" on the twelfth floor that functions as a transfer point between the two buildings. A glass shaft housing elevators extends into the recess of the skylighted roof and provides access to the perimeter offices.

General contractors: Newbery Construction Co. and Paschen Contractors, Inc. (joint venture)
Steel fabricator: F.M. Weaver, Inc.
Steel erector: Midwest Steel Erection Co., Inc.
Owner: Chicago Board of Trade

Memphis area, a double roof system was designed to form a space of approximately nine inches for air circulation. This scheme allows solar gain to be exhausted by the natural convection of air through the cavity. The sloping roof takes in air at the lower soffit and as the temperature increases, it rises into the louvers of the exhaust turrets. In winter the louvers are closed and heat is recycled back into the building.

General contractor: Frank J. Rooney, Inc.
Steel fabricator: BMW Steel Supply Corporation
Steel erector: S&E Construction Company, Inc.
Owner: Memphis Area Transit Authority
Skylighted roofs have been used with increasing frequency by architects in a variety of building types, including industrial structures. The ZGF Partnership incorporated a two-story, peak-roofed gallery into this 500,000-square-foot facility devoted to the testing, assembly, and marketing of oscilloscopes and related products. The standardized bent-steel exterior gives little indication of the grand interior spine which, although simply framed in lightweight painted steel, exhibits a dignity rarely associated with manufacturing facilities.

18. Tektronix, Inc., Clark County, Washington; Zimmer Gunsul Frasca Partnership, Architects; KFF, Structural Engineers. One associated primarily with shopping arcades, skylighted malls have been used with increasing frequency by architects in a variety of building types, including industrial structures. The ZGF Partnership incorporated a two-story, peak-roofed gallery into this 500,000-square-foot facility devoted to the testing, assembly, and marketing of oscilloscopes and related products. The standardised bent-steel exterior gives little indication of the grand interior spine which, although simply framed in lightweight painted steel, exhibits a dignity rarely associated with manufacturing facilities.

General contractor:
Hoffman Construction Company
Steel fabricator:
Steel Fabricators, Inc.
Steel erector:
International Steel Erectors Co.
Owner:
Tektronix, Inc.

19. Scholl Corporate Headquarters, Memphis, Tennessee; Casmer Nathan & Partners, Architects; Pickering Wooten Smith Weiss, Structural Engineers. When Schering-Plough Corporation needed 20,000 square feet of office space for the divisional headquarters of its Scholl subsidiary, it decided to renovate part of a company-owned warehouse located in an industrial area of Memphis. To make the best use of the 18-foot-high space, the designers inserted a mezzanine that is structurally isolated from the building's existing framing system. White-painted steel framing members and pipe rails create a businesslike atmosphere in the open-plan office areas and in a circular staff lounge.

General contractor:
Rick Srenner Company, Inc.
Steel fabricator:
Grinnell Fabricating & Erection, Inc.
Steel erector:
Mid-South Erectors
Owner:
Schering-Plough Corporation

20. White Marsh Mall, Baltimore County, Maryland; RTKL Associates, Architects and Engineers (Record, April 1982, pages 130-133). The Rouse Company commissioned RTKL Associates to design White Marsh Mall, a regional shopping center that encompasses 370,000 square feet of leasable retail space, a "specialty food court" for 22 shops with common seating, and five major department stores. The mall is meant to serve as the town center for a new residential community under development in an unincorporated area near Baltimore. Although a traditional straight-line design was selected for the two-story center, the architects placed the food court slightly off the primary axis to create, in effect, a village crossroads. Such design elements as trees, brick paving, park benches, a town clock, and decorative columnar lighting reinforce the image of a main street. Exposed structural steel used in the fabrication of the skylighted roof evokes the steel trusses and corrugated metal decks of Baltimore's old waterfront buildings. The AISC jury cited the roofing system in particular as the element that "animates an otherwise conventional way of treating a shopping center."

General contractor:
H.C.B. Contractors
Steel fabricator:
Montague-Bettis Company, Inc.
Steel erector:
R.E. Linder Steel Erection Co., Inc.
Owner:
The Rouse Company
The 1983 AISC Architectural Awards of Excellence Jury

(Left to Right)
George M. Notter, Jr., FAIA
President and Director of Design
Anderson Notter Finegold Inc.
Washington, D.C.

Stanley D. Lindsey, Ph.D.
President
Stanley D. Lindsey and Associates Ltd.
Nashville, Tennessee

Gunnar Birkerts, FAIA
Gunnar Birkerts & Associates
Birmingham, Michigan

Gunnar Birkerts, FAIA
Gunnar Birkerts & Associates
Birmingham, Michigan

George Schipporeit, AIA
Chairman
Department of Architecture
Illinois Institute of Technology
Chicago, Illinois

Wayne R. Bishop, AIA
Vice President of Design
Ellerbe Associates
Minneapolis, Minnesota

On winning.

This brochure is a salute to the winners of our 1983 Architectural Awards of Excellence competition.

The architects who took top honors in this competition have demonstrated a unique ability to meet creative challenges with creative designs. At the same time, they have vividly demonstrated the design possibilities inherent in the flexibility of structural steel.

On your next project, if you’d like to design around a frame that’s versatile, economical and easily changed to meet future needs, consider structural steel.

The flexibility of structural steel is many things to many people. But it’s one thing to all.

A winner.
Architectural Awards of Excellence 1985
The 1985 AISC Architectural Awards of Excellence Jury

On Winning.

This brochure is a salute to the winners of our 1985 Architectural Awards of Excellence competition.

The architects who took top honors in this competition have demonstrated a unique ability to meet creative challenges with creative designs. At the same time, they have vividly demonstrated the design possibilities inherent in the flexibility of structural steel.

On your next project, if you’d like to design around a frame that’s versatile, economical and easily changed to meet future needs, consider structural steel.

The flexibility of structural steel is many things to many people. But it’s one thing to all.

A winner.
Design awards/competitions:
American Institute of Steel Construction
1985 Architectural Awards of Excellence

1, 2. John A. Sibley Horticultural Center, Pine Mountain, Georgia; Craig, Gaulden and Davis, Architects; Horst Berger Partners, Structural Engineers. The challenge was to design an indoor/outdoor horticultural education center and greenhouse that would accommodate elaborate technical equipment needed to create six separate temperature/humidity environments—all without intruding on a picturesque setting in Georgia’s Callaway Gardens. Toward that end the architects selected a structural frame of weathering steel whose permanent brown patina would be a sympathetic backdrop for interior and exterior floral displays. One-foot-square clear glass block walls and a roof membrane of silicone-coated fiberglass on white steel arches permit natural illumination to enter the facility. (The roof is said to yield a visible light transluency of 45 per cent.) The jurors observed that the latticework steel columns seemed especially appropriate for a botanical building, and they called the structure “clean, straightforward, and elegant... the perfect match of architectural elements and natural open space.”

3. Hokestra House, Homewood, Illinois; David Hovey, Architect; Rittweger & Tokay, Structural Engineers (RECORD, mid-April 1985, pages 78-81). A 2,400-square-foot residence in a Chicago suburb was conceived as a prototype for a low-budget factory-made house that can be erected on a building site in just one day. The three-bedroom house comprises 11 welded-steel boxes—each measuring 10 feet wide by 24 feet long by nine feet high—that step down a steep hillside and rest on slim red-painted columns. “An incredibly simple but elegant solution to a factory-built modular house,” observed the jury.

4. Adult Training Center, Maple Heights, Ohio; William A. Blunden, Robert A. Barclay Associates, Architects; Chaos & Associates, Structural Engineers. Simplicity, suitability, durability, and economy were the primary considerations for a new 45,000-square-foot vocational training center near Cleveland. Designed for 230 physically and mentally handicapped adults and a staff of 33, the facility is clad in split-face concrete block and aluminum storefront curtain walls. The exposed steel-framed interior was left largely open in order to facilitate natural ventilation, daylighting through clerestory windows, and visual supervision. The jury praised the building for its appropriate siting, clear circulation, and good detailing—qualities that seemed especially impressive given the project’s modest budget.
5. Huntington Center, Columbus, Ohio; Skidmore, Owings & Merrill, Architects and Structural Engineers. Located next to the Ohio State Capitol, a 37-story office and retail complex consists of two slender end towers connected by a transparent glass-sheathed central section whose setbacks offer views of the city from 16 corner offices per floor. The structural steel system selected for the project, a small-scale version of the "superframe" concept that has been developed for ultra-tall high-rise buildings, involved placing tubular frame components in the exterior corners of the building and connecting them with vertically spaced, multi-floor truss-type elements. At the Huntington Center the visual potential of this system is revealed in four sets of diagonal trusses located on the first, 12th, 20th, and 28th floors. These trusses define four distinct 80- to 120-foot-high atrium zones designed to reduce the apparent scale of the one-million-square-foot complex. The jury liked the exterior articulation of the atriums—"they give a focal point for people working in the building that they can identify with"—and it praised the structure for its sympathetic relationship to the axis of the adjacent State Capitol.

6. LTV Center, Dallas, Texas; Skidmore, Owings & Merrill, Architects and Structural Engineers. The jury called this 1.7-million-square-foot mixed-use tower "a building that absolutely changes the skyline [and] gives the city a new personality. As a modern version of the old skyscraper, it treats the crown, middle, and base in different manners. It is not just an extruded form that's sawed off at the top." The building's location in the pedestrian-oriented downtown Dallas Arts District influenced the architects' decision to place shops, restaurants, and exhibition space in a two-story street-level pavilion. The architects have likened the structure's symmetrical cruciform plan and pyramidal glass top to a 686-foot-tall campanile symbolizing the cultural significance of the immediate area. The building shaft is sheathed in granite-and-glass curtain walls that are articulated by two-sided angular bays. Although aesthetics and concern for flexible tenant layouts dictated the utilization of a structural steel framing system, cost considerations also played a role: according to the architects, total steel weight was about 21.5 pounds per square foot, or less than one-half the weight used for buildings of this height 20 years ago.
tenant layouts. The semicircular arch of the barrel-vaulted galleria is also made up of welded steel beams. The jury observed that "the problem of developing new office space next to the original grand banking floor was beautifully handled by the introduction of the atrium as a long connecting unit between the old and new facilities. Moreover, the fenestration and skin of the building fit well with the San Francisco environment." The jurors added that the arched main entrance to the galleria would probably become an instant pedestrian landmark within the city. "Very elegant, very successful," they concluded.

Aviaries, a moat, and glassed-in viewing chambers. A two-level concrete walkway accommodates public access, while three stairways and a ramp provide vertical circulation. Trees penetrating the roof are meant to emphasize the link between men and monkeys. The jurors admired the way the facility's arched metal elements emerge from a masonry base: "It's a great reflection of the trees that surround it." They added that the center's glazed forms and open-mesh enclosures "give the structure a distinct personality that seems appropriate to its function."
II. Transco Tower, Houston, Texas; John Burgee Architects with Philip Johnson, in association with Morris/Aubry Architects; CBM Engineers, Structural Engineers. "A building of great class and quality," observed the jury. "Or of the tall buildings we saw, this one was certainly in the first rank." Located in Houston's Galleria area, Transco Tower is, at 901 feet, the tallest building outside of a central business district in the United States. Its setback profile and faceted aluminum-and-glass curtain wall are meant to evoke the character of early-20th-century American skyscrapers.

12. CIGNA South Office Building, Bloomfield, Connecticut; The Architects Collaborative, Architects; LeMessurier Associates, Structural Engineers (RECORD, March 1985, pages 136-143). The client's need for extensive blocks of column-free office space and the possibility of future modifications dictated the use of structural steel for a 500,000-square-foot corporate expansion project outside Hartford. The granite-sheathed building centers on a four-story, 33,000-square-foot atrium that permits natural illumination of nearly every work station. "The building sits gracefully in the countryside," noted the jury, and "it seems to be a comfortable workplace."

13. Seeley G. Mudd Chemistry Building, Poughkeepsie, New York; Perry, Dean, Rogers & Partners, Architects; Zaldastani Associates, Structural Engineers. Situated near the center of an existing college campus, this three-level academic and research building forms the fourth leg of a science quadrangle. The architects took advantage of the structure's south-facing site by specifying solar collectors on the roof and by designing the main facade as a trombe wall that works with the building's mechanical system. The over-all massing is in keeping with the scale of existing college buildings, and brick walls, granite trim, and a copper roof are intended as abstract references to 19th-century academic architecture. "Excellent detailing," noted the jury.

14. New Bogardus Building, New York City; Beyer Blinder Belle, Architects; Stanley H. Goldstein, Structural Engineer (RECORD, January 1984, pages 102-103). Designed as the focal point of the restored South Street Seaport area in lower Manhattan, this four-story commercial building is essentially an updated steel version of a structure designed in 1849 by James Bogardus. Since the exterior facades form a steel bearing-wall structure, there are no interior columns to break up two floors of restaurant space and two floors of offices. The jurors praised the architects for closely replicating the cast-iron structures of the 1850s, and they called the structure "a good companion to the older loft buildings that it adjoins—perfect infill."
CREDITS
The Architectural Awards of Excellence competition, sponsored biennially by AISC, attracted 145 national entries in 1985. All firms recognized and honored by AISC for their contributions to the design and construction of the eleven winning structural steel framed buildings are listed:

1.2. John A. Sibley Horticultural Center — Pine Mountain, GA
Architect: Craig, Gaulden and Davis, Architects, Inc., Greenville, SC
Landscape Architect: Robert E. Marvin and Associates
Structural Engineer: Horst Berger Partners, New York, NY
General Contractor: West Point Construction Company, West Point, GA
Steel Fabricator: Qualico Steel Co., Inc., Webb, AL
Steel Erector: Model City Erection Co., Amison, AL
Owner: Ida Cason Callaway Foundation, Callaway Gardens, Pine Mountain, GA

3. Residence of Douglas and Barbara Hoeftstra — Homewood, IL
Architect: David Hovey, Chicago, IL
Structural Engineer: Rittweger & Taday, Park Ridge, IL
General Contractor: Optima Inc. (David Hovey), Chicago, IL
Steel Fabricator: Smesco Industries, Inc., Willow Springs, IL
Steel Erector: Advance Structural Steel, East Hazel Crest, IL
Owner: Douglas and Barbara Hoeftstra

4. Adult Training Center — Maple Heights, OH
Architect: William A. Blunden - Robert A. Barclay-Associates-Architects, Cleveland, OH
Structural Engineer: Chacos & Associates, Inc., Highland Heights, OH
General Contractor: Jance & Company, Inc., Mentor, OH
Steel Fabricator and Erector: GLC Enterprises, Mentor, OH
Owner: Cuyahoga County Board of Mental Retardation and Developmental Disabilities, Cleveland, OH

5. Huntington Center — Columbus, OH
Architect and Structural Engineer: Skidmore, Owings & Merrill, Chicago, IL
General Contractor: Dugan & Meyers Construction, Cincinnati, OH
Steel Fabricator: Southern Ohio Fabricators, Inc., Cincinnati, OH
Steel Erector: John F. Beasley Construction Co., Columbus, OH
Owner: Gerald D. Hines Interests, Miami, FL

6. LTV Center — Dallas, TX
Architect and Structural Engineer: Skidmore, Owings & Merrill, Houston, TX
General Contractor: Avery Mays Construction Company, Dallas, TX
Steel Fabricator: Flint Steel Corporation, Tulsa, OK
Steel Erector: American Bridge Division, U.S. Steel Corporation, Pittsburgh, PA
Owner: Trammell Crow Company, Dallas, TX

7.8. Crocker Center — San Francisco, CA
Architect and Structural Engineer: Skidmore, Owings & Merrill, San Francisco, CA
General Contractor: Dinwiddie Construction Company, San Francisco, CA
Steel Fabricator and Erector: The Herrick Corporation, Hayward, CA
Owner: Crocker Properties, Inc., San Francisco, CA

9.10. Primate Discovery Center —
San Francisco, CA
Architect: Marquis Associates, San Francisco, CA (Cathy Simon, AIA, Design Principal)
Structural Engineer: Rutherfurd & Chelcere, San Francisco, CA
General Contractor: Engstrom & Nourse, Mountain View, CA
Steel Fabricators and Erectors: West Bay Steel, Menlo Park, CA and C.E. Toland and Son, Oakland, CA
Owner: San Francisco Zoological Society, San Francisco, CA

11. Transco Tower — Houston, TX
Architect: John Burgee Architects with Philip Johnson, New York, NY and Morrison Architects, Houston, TX
Structural Engineer: CBM Engineers, Inc., Houston, TX
General Contractor: J.A. Jones Construction Company, Dallas, TX
Steel Fabricator: Moster Steel Company, Houston, TX
Steel Erector: Peterson Brothers Steel Erection Company, Houston, TX
Owner: Gerald D. Hines Interests, Houston, TX

12. CIGNA South Office Building — Bloomfield, CT
Architect: The Architects Collaborative, Inc., Cambridge, MA
Structural Engineer: LeMessurier Associates/SCI, Cambridge, MA
Construction Manager: Turner Construction Company, Boston, MA
Steel Fabricator and Erector: The Berlin Steel Construction Company, Berlin, CT
Owner: CIGNA Corporation, Hartford, CT

13. Seeley G. Mudd Chemistry Building, Vassar College — Poughkeepsie, NY
Architect: Perry-Dean-Rogers & Partners: Architects, Boston, MA
Structural Engineer: Zaldastani Associates, Inc., Boston, MA
General Contractor: W.J. Barney Corporation, New York, NY
Steel Fabricator: Poughkeepsie Iron & Metal Company, Poughkeepsie, NY
Steel Erector: Orange Steel Erectors, Inc., Salisbury Mills, NY
Owner: Vassar College, Poughkeepsie, NY

14. New Bogardus Building — New York, NY
Architect: Beyer Blinder Belle, New York, NY
Structural Engineer: Stanley H. Goldstein, PC., New York, NY
General Contractor: Gramercy Contractors, Inc., New York, NY
Construction Manager for Canopy: Tishman Construction Corporation of New York, New York
Steel Fabricator: Harris Structural Steel Co. Inc., South Plainfield, NJ
Steel Erector: Meadowlands Iron Works, Secaucus, NJ
Owner: South Street Seaport Corporation, New York, NY

This page by AISC not in original Architectural Record article.