Architectural Awards of Excellence 1985
On Winning.

This brochure is a salute to the winners of our 1985 Architectural Awards of Excellence competition.

The architects who took top honors in this competition have demonstrated a unique ability to meet creative challenges with creative designs. At the same time, they have vividly demonstrated the design possibilities inherent in the flexibility of structural steel.

On your next project, if you'd like to design around a frame that's versatile, economical and easily changed to meet future needs, consider structural steel.

The flexibility of structural steel is many things to many people. But it's one thing to all.

A winner.
Design awards/competitions:
American Institute of Steel Construction
1985 Architectural Awards of Excellence

1. Z. Johr A.
Sibley Horticultural Center.
Boise, Idaho.
Craig, Gaudin & Davis,
Architects; Z纤est Bangar Partners,
Structural Engineers. The challenge
was to design an indoor/outdoor
horticultural-education center and
greenhouse that would
accommodate elaborate technical
equipment needed to create six
separate temperature/humidity
environments—all without
intruding on a picturesque setting
in Georgia's Callaway Gardens.
Toward that end the architects
selected a structural frame of
weathering steel whose permanent
brown patina would be a
sympathetic backdrop for interior
and exterior floral displays. One-
foot-square clear glass block walls
and a roof membrane of silicone-
coated fiberglass on white steel
arches permit natural illumination
to enter the facility. (The roof is said
to yield a visible light transmissivity
cf 45 per cent.) The jurors observed
that the lattice-work steel columns
seemed especially appropriate for a
botanical building; and they called
the structure "clean, straightforward, and elegant... the
perfect match of architectural
elements and natural open space.

3. Hokestra. House, Homewood,
Illinois; David Hovey, Architect;
Rittweger & Tokay, Structural
Engineers (RECORD, mid-April 1985,
pages 78-81). A 2,400-square-foot
residence in a Chicago suburb was
conceived as a prototype for a low-
budget factory-made house that can
be erected on a building site in just
one day. The three-bedroom house
comprises 11 welded-steel boxes—
each measuring 10 feet wide by 24
feet long by nine feet high—that
step down a steep hillside and rest
on slim rec-painted columns. "An
incredibly simple but elegant
solution to a factory-built modular
house," observed the jury.

4. Adult Training Center, Maple
Heights, Ohio; William A. Blunden,
Robert A. Barelay Associates,
Architects; Chance & Associates,
Structural Engineers. Simplicity,
suitability, durability, and economy
were the primary considerations for
a new 45,000-square-foot vocational
training center near Cleveland.
Designed for 230 physically and
mentally handicapped adults and a
staff of 35, the facility is clad in
split-face concrete block and
aluminum storefront curtain walls.
The exposed steel-framed interior
was left largely open in order to
facilitate natural ventilation,
daylighting through clerestory
windows, and visual supervision.
The jury praised the building for its
appropriate siting, clear circulation
and good detailing—qualities that
seemed especially impressive given
the project's modest budget.
5. Huntington Center, Columbus, Ohio; Skidmore, Owings & Merrill, Architects and Structural Engineers. Located next to the Ohio State Capitol, a 37-story office and retail complex consists of two slender end towers connected by a transparent glass-sheathed central section whose setbacks offer views of the city from 16 corner offices per floor. The structural steel system selected for the project, a small-scale version of the 'superframe' concept that has been developed for ultra-tall high-rise buildings, involved placing tubular frame components in the exterior corners of the building and connecting them with vertically spaced, multi-floor truss-type elements. At the Huntington Center the visual potential of this system is revealed in four sets of diagonal trusses located on the first, 12th, 20th, and 28th floors. These trusses define four distinct 80- to 120-foot-high atrium zones designed to reduce the apparent scale of the one-million-square-foot complex. The jury liked the exterior articulation of the atriums—"they give a focal point for people working in the building that they can identify with"—and it praised the structure for its sympathetic relationship to the axis of the adjacent State Capitol.

6. LTV Center, Dallas, Texas; Skidmore, Owings & Merrill, Architects and Structural Engineers. The jury called this 1.7-million-square-foot mixed-use tower "a building that absolutely changes the skyline [and] gives the city a new personality. As a modern version of the old skyscraper, it treats the crown, middle, and base in different manners. It is not just an extruded form that's sawed off at the top." The building's location in the pedestrian-oriented downtown Dallas Arts District influenced the architects' decision to place shops, restaurants, and exhibition space in a two-story street-level pavilion. The architects have likened the structure's symmetrical cruciform plan and pyramidal glass top to a 686-foot-tall campanile symbolizing the cultural significance of the immediate area. The building shaft is sheathed in granite-and-glass curtain walls that are articulated by two-sided angular bays. Although aesthetics and concern for flexible tenant layouts dictated the utilization of a structural steel framing system, cost considerations also played a role: according to the architects, total steel weight was about 21.5 pounds per square foot, or less than one-half the weight used for buildings of this height 20 years ago.
A major commercial development project in San Francisco's downtown financial district incorporates a new 38-story office tower and three-story, block-through retail arcade, and the restoration of Crocker Bank's original early-20th-century headquarters. Clad in polished and flame-finished granite, the office building has a steel structural system composed of welded d'ecile space-framed tube, selected for its energy absorbency in the even of an earthquake. The floor system consists of a composite metal deck slab supported on steel beams and girders connecting the building core and exterior frame. The result is column-free lease space for flexible tenant layouts. The semicircular arch of the barrel-vaulted galleria is also made up of welded steel beams. The jury observed that "the problem of developing new office space next to the original grand banking floor was beautifully handled by the introduction of the atrium as a long connecting unit between the old and new facilities. Moreover, the fenestration and skin of the building fit in well with the San Francisco environment." The jurors added that the arched main entrance to the galleria would probably become an instant pedestrian landmark within the city. "Very elegant, very successful," they concluded.

In addition to multi-level public viewing areas and an interpretive education center, the structure encompasses several distinctive landscaped animal habitats. The architects designed a variety of enclosure sizes and types, including 50-foot-high vaulted mesh cages, 20- to 40-foot-high berm cages, two avaries, a moat, and glassed-in viewing chambers. A two-level concrete walkway accommodates public access, while three stairways and a ramp provide vertical circulation. Trees penetrating the roof are meant to emphasize the link between men and monkeys. The jurors admired the way the facility's arched metal elements emerge from a masonry base: "It's a great reflection of the trees that surround it." They added that the center's glazed forms and open-mesh enclosures "give the structure a distinct personality that seems appropriate to its function."
11. Transco Tower, Houston, Texas; John Burgee Architects with Philip Johnson, in association with Morris/Aubry Architects; CB~ Engineers, Structural Engineers. "A building of great class and quality," observed the jury. "Of the tall buildings we saw, this one was certainly in the first rank." Located in Houston’s Galleria area, Transco Tower is, at 901 feet, the tallest building outside of a central business district in the United States. Its setback profile and faceted aluminum-and-glass curtain wall are meant to evoke the character of early-20th-century American skyscrapers.

12. CIGNA South Office Building, Bloomfield, Connecticut; The Architects Collaborative, Architects; LeMessurier Associates, Structural Engineers (RECORD, March 1986, pages 136-143). The client’s need for extensive blocks of column-free office space and the possibility of future modifications dictated the use of structural steel for a 500,000-square-foot corporate expansion project outside Hartford. The granite-sheathed building centers on a four-story, 33,000-square-foot atrium that permits natural illumination of nearly every work station. "The building sits gracefully in the countryside," noted the jury, and "it seems to be a comfortable workplace."

13. Seeley G. Mudd Chemistry Building, Vassar College, Poughkeepsie, New York; Perry, Dean, Rogers & Partners, Architects; Zaldastani Associates, Structural Engineers. Situated near the center of an existing college campus, this three-level academic and research building forms the fourth leg of a science quadrangle. The architects took advantage of the structure’s south-facing site by specifying solar collectors on the roof and by designing the main facade as a trombe wall that works with the building’s mechanical system. The overall massing is in keeping with the scale of existing college buildings, and brick walls, granite trim, and a copper roof are intended as abstract references to 19th-century academic architecture. "Excellent detailing," noted the jury.

14. New Bogardus Building, New York City; Beyer Blinder Belle, Architects; Stanley H. Goldstein, Structural Engineer (RECORD, January 1984, pages 102-103). Designed as the focal point of the restored South Street Seaport area in lower Manhattan, this four-story commercial building is essentially an updated steel version of a structure designed in 1849 by James Bogardus. Since the exterior facades form a steel bearing-wall structure, there are no interior columns to break up two floors of restaurant space and two floors of offices. The jurors praised the architects for closely replicating the cast-iron structures of the 1850s, and they called the structure "a good companion to the older loft buildings that it adjoins—perfect infill."
CREDITS
The Architectural Awards of Excellence competition, sponsored biennially by AISC, attracted 145 national entries in 1985. All firms recognized and honored by AISC for their contributions to the design and construction of the eleven winning structural steel framed buildings are listed:

1.2. John A. Sibley Horticultural Center — Pine Mountain, GA
Architect: Craig, Gaulden and Davis, Architects, Inc., Greenville, SC
Landscaping Architect: Robert E. Marvin and Associates
Structural Engineer: Horst Berger Partners, New York, NY
General Contractor: West Point Construction Company, West Point, GA
Steel Fabricator: Qualico Steel Co., Inc., Webb, AL
Steel Erector: Model City Erection Co., Anniston, AL
Owner: Ida Cason Callaway Foundation, Callaway Gardens, Pine Mountain, GA

3. Residence of Douglas and Barbara Hoekstra — Homewood, IL
Architect: David Hovey, Chicago, IL
Structural Engineer: Rittweger & Tokay, Inc., Park Ridge, IL
General Contractor: Optima Inc. (David Hovey), Chicago, IL
Steel Fabricator: Smesco Industries, Inc., Willow Springs, IL
Steel Erector: Advance Structural Steel, East Hazel Crest, IL
Owner: Douglas and Barbara Hoekstra

4. Adult Training Center — Maple Heights, OH
Architect: William A. Blundon - Robert A. Barclay Associates-Architects, Cleveland, OH
Structural Engineer: Chacos & Associates, Inc., Highland Heights, OH
General Contractor: Jance & Company, Inc., Mentor, OH
Steel Fabricator and Erector: CLC Enterprises, Mentor, OH
Owner: Cuyahoga County Board of Mental Retardation and Developmental Disabilities, Cleveland, OH

5. Huntington Center — Columbus, OH
Architect and Structural Engineer: Skidmore, Owings & Merril, Chicago, IL
General Contractor: Dugan & Meyers Construction, Cincinnati, OH
Steel Fabricator: Southern Ohio Fabricators, Inc., Cincinnati, OH
Steel Erector: John F. Beasley Construction Co., Columbus, OH
Owner: Gerald D. Hines Interests, Miami, FL

6. LTV Center — Dallas, TX
Architect and Structural Engineer: Skidmore, Owings & Merrill, Houston, TX
General Contractor: Avery Mays Construction Company, Dallas, TX
Steel Fabricator: Flint Steel Corporation, Tulsa, OK
Steel Erector: American Bridge Division, U.S. Steel Corporation, Pittsburgh, PA
Owner: Trammell Crow Company, Dallas, TX

7.8. Crocker Center — San Francisco, CA
Architect and Structural Engineer: Skidmore, Owings & Merrill, San Francisco, CA
General Contractor: Davis & Widde Construction Company, San Francisco, CA
Steel Fabricator and Erector: The Herrick Corporation, Hayward, CA
Owner: Crocker Properties, Inc., San Francisco, CA

9.10. Primate Discovery Center — San Francisco, CA
Architect: Marquis Associates, San Francisco, CA
General Contractor: Ensign & Nourse, Mountain View, CA
Steel Fabricators and Erectors: West Bay Steel, Menlo Park, CA and C.E. Toland and Son, Oakland, CA
Owner: San Francisco Zoological Society, San Francisco, CA

11. Transco Tower — Houston, TX
Architect: John Burgee Architects with Philip Johnson, New York, NY and Morris/Aubry Architects, Houston, TX
Structural Engineer: CBM Engineers, Inc., Houston, TX
General Contractor: J.A. Jones Construction Company, Dallas, TX
Steel Fabricator: Moyer Steel Company, Houston, TX
Steel Erector: Peterson Brothers Steel Erection Company, Houston, TX
Owner: Gerald D. Hines Interests, Houston, TX

12. CIGNA South Office Building — Bloomfield, CT
Architect: The Architects Collaborative, Inc., Cambridge, MA
Structural Engineer: LeMessurier Associates SCI, Cambridge, MA
Construction Manager: Turner Construction Company, Boston, MA
Steel Fabricator and Erector: The Berlin Steel Construction Company, Berlin, CT
Owner: CIGNA Corporation, Hartford, CT

13. Seeley G. Mudd Chemistry Building, Vassar College — Poughkeepsie, NY
Architect: Perry-Dean-Rogers & Partners Architects, Boston, MA
Structural Engineer: Zaldastani Associates, Inc., Boston, MA
General Contractor: W.J. Barney Corporation, New York, NY
Steel Fabricator: Poughkeepsie Iron & Metal Company, Poughkeepsie, NY
Steel Erector: Orange Steel Erectors, Inc., Salisbury Mills, NY
Owner: Vassar College, Poughkeepsie, NY

14. New Bogardus Building — New York, NY
Architect: Beyer Blinder Belle, New York, NY
Structural Engineer: Stanley H. Goldstein, PC, New York, NY
General Contractor: Gramercy Contractors, Inc., New York, NY
Steel Fabricator: Harris Structural Steel Co., Inc., South Plainfield, NJ
Steel Erector: Meadowlands Iron Works, Secaucus, NJ
Owner: South Street Seaport Corporation, New York, NY

This page by AISC not in original Architectural Record article