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INTRODUCTION

Analysis and design of unbraced moment frames is a
fairly regular activity in structural engineering prac-

tice yet it can be a complex structural engineering problem.
Numerous analysis methodologies are available and the
many commercial software packages used in practice pro-
vide a variety of approaches to the problem. Some of the
questions that arise during frame design include:

a) Is a first-order or second-order analysis more appro-
priate for a particular design?

b) Should an elastic or inelastic analysis be carried out?
c) What moment magnifiers should be used when axial

load and moment act together?
d) Should effective length factors or some other

approach be used to evaluate column capacity?
Frame analysis may be approached by a variety of meth-

ods. Linear elastic analysis is perhaps the most common,
although the least complete.  A second-order inelastic
analysis, while perhaps the most comprehensive, is also the
most complex. And there are many approaches between
these. Whichever analysis method is chosen, the design
approach must be compatible.

Stability of a column, although often expressed as a func-
tion of the individual column, is actually a function of all of
the members in the story. Thus, column design is a system
problem, not an individual member problem. When
unbraced moment frames support pin-ended columns, addi-
tional problems arise. These pin-ended columns do not par-
ticipate in the lateral resistance of the structure, but instead,
rely on the unbraced frame for their lateral stability. Thus,
the frame must be designed to accommodate the loads that
are applied as well as the influence of these leaning
columns. 

Numerous approaches have been presented in the litera-
ture to address the design of frames both with and without
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leaning columns. Although a direct buckling analysis may
be performed, the most common approaches still appear to
be those that utilize some form of simplification. 

This paper will briefly review a wide range of analytical
approaches including elastic buckling analysis, as well as
first- and second-order elastic and inelastic analytical meth-
ods. Once these analytical approaches have been presented,
the design process will be addressed, including the use of
effective length factors. Effective length calculations will be
reviewed with particular attention to the approaches pre-
sented by Yura, Lim, and McNamara, LeMessurier, and the
equations found in the AISC LRFD Commentary. The
results from these approaches will be compared to those of
an elastic stability analysis for simple frames that have been
found in the literature. 

This paper is an expansion of an earlier paper by
Geschwindner (1994). It is hoped that it will help the engi-
neer develop an understanding of these aspects of structural
behavior in order to better understand new approaches that
are currently being investigated and will likely impact
future specifications.

ANALYSIS

The state of the art of structural analysis encompasses a
wide range of possible approaches for the determination of
system response to structural loading. Each new approach
adds or subtracts some aspect of frame or member behavior
in an attempt to properly model the true behavior of the
structure. It will be helpful to categorize these analysis
approaches and discuss their characteristics. Figure 1 shows
a comparison between the load-displacement curves of sev-
eral analysis approaches. These approaches are well docu-
mented by McGuire, Gallagher, and Ziemian (2000) as well
as in the individual references cited.

First-Order Elastic Analysis (West, 1989) 

The first and most common approach to structural analysis
is the first-order elastic analysis, which is also called simply
elastic analysis. In this case, deformations are assumed to
be small so that the equations of equilibrium may be writ-
ten with reference to the undeformed configuration of the
structure. Additionally, superposition is valid and any
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effects are included it is said that the P-∆ effects, also
referred to as the story sway or frame effects are included.
The load-displacement history obtained through this analy-
sis may approach the critical buckling load obtained from
the eigenvalue solution as shown in Figure 1. This analysis
usually requires an iterative solution so it is a bit more com-
plex than the first-order elastic analysis. Because of the
problems inherent with iterative solutions, many
researchers have proposed one-step approximations to the
second-order elastic analysis. It should also be noted that
not all commercial computer analysis software includes
both the member effects and the frame effects.

First-Order Plastic-Mechanism Analysis (Disque, 1971) 

As the load is increased on a structure, it is assumed that
defined locations within the structure will reach their plas-
tic capacity. When that happens, the particular location con-
tinues to resist that plastic moment but undergoes
unrestrained deformation. These sections are called plastic
hinges. Once a sufficient number of plastic hinges have
formed so that the structure will collapse, it is said that a
mechanism has formed and no additional load can be placed
on the structure. Thus, a plastic-mechanism analysis can
predict the collapse load of the structure. This limit can be
seen in Figure 1. 

First-Order Elastic-Plastic Analysis (Chen, Goto, and
Liew, 1996) 

If the determination of the collapse mechanism tracks the
development of individual hinges, more information, such

inelastic behavior of the material is ignored. Thus, the
resulting load-displacement curve shown in Figure 1 is lin-
ear. This is the approach used in the development of the
common analysis tools of the profession, such as slope-
deflection, moment distribution and the stiffness method
that is found in most commercial computer software. 

Elastic Buckling Analysis (Galambos, 1968) 

An elastic buckling analysis will result in the determination
of a single critical buckling load for a system. The critical
buckling load may be determined through an eigenvalue
solution or through a number of iterative schemes based on
equilibrium equations written with reference to the
deformed configuration. This analysis can provide the crit-
ical buckling load of a single column and is the basis for the
effective length factor. It can be seen in Figure 1 that the
results of this analysis do not provide a load-displacement
curve but rather the single value of load at which the struc-
ture buckles. 

Second-Order Elastic Analysis (Galambos, 1968) 

When the equations of equilibrium are written with refer-
ence to the deformed configuration of the structure and the
deflections corresponding to a given set of loads are deter-
mined, the resulting analysis is a second-order elastic analy-
sis. This is the analysis generally referred to as a P-delta
analysis. Two components of these second-order effects
should be included in the analysis. When the influence of
member curvature is included, it is said that the P-δ effects
or member effects are included and when the sidesway
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as deflections and member forces, is obtained from this
analysis than from the mechanism analysis. It is clear that if
zero length hinges are assumed and the geometry is main-
tained, the limit of the elastic-plastic analysis will be the
mechanism analysis as seen in Figure 1.

Second-Order Inelastic Analysis (Chen and Toma,
1994) 

This analytical approach combines the same principles of
second-order analysis discussed previously with the plastic
hinge analysis. This category of analysis is more complex
than any of the other methods of analysis discussed thus far.
It does, however, yield a more complete and accurate pic-
ture of the behavior of the structure, depending on the com-
pleteness of the model that is used. This type of analysis is
often referred to as “advanced analysis.” The load-displace-
ment curve for a second-order inelastic analysis is shown in
Figure 1.

In summary, it can be seen that as more realistic and
hence more complex behavior is taken into account in the
analysis, the predicted critical load level is reduced or the
calculated lateral displacement for a given load is increased.
Thus, designers need to be aware of the assumptions uti-
lized in any analytical approach that they employ. This is
particularly important when using commercially available
software.  

DESIGN

The approach taken for member design must be consistent
with the approach chosen for analysis. Currently, three
design approaches are acceptable for steel structures under
US building codes as they incorporate AISC specifications
(AISC, 1999; AISC, 1989). The most up-to-date tool for
steel design is the load and resistance factor design specifi-
cation (LRFD). However, the plastic design (PD) approach

is also permitted and the allowable stress design specifica-
tion (ASD) is still used. 

The LRFD Specification stipulates, in Section C1, that
“Second order effects shall be considered in the design of
frames.” The comparable statement in the ASD Specifica-
tion states, in Section A5.3, “Selection of the method of
analysis is the prerogative of the responsible engineer,” and
in Section C1 that “frames…shall be designed to provide
the needed deformation capacity and to assure overall frame
stability.” Since the typical analysis method is first-order,
satisfying deformation capacity requirements and assuring
stability are left to the engineer.

Thus, regardless of the specification used, the engineer is
required to address stability and second-order effects. When
using the AISC Specifications, stability is usually addressed
through an estimate of column buckling capacity while sec-
ond-order effects may be addressed through a first-order
analysis coupled with a code-provided correction for sec-
ond-order effects or through direct use of a second-order
analysis. 

Difference between Second-Order Elastic Analysis and
Elastic Buckling Analysis

The frame shown in Figure 2 will be used to demonstrate
the difference between the results of a first-order elastic
analysis, a second-order elastic analysis, and an elastic
buckling analysis. All three of these analyses were carried
out using GTSTRUDL (1999) including axial, flexural, and
shearing deformations. The equivalent shear area used in
these calculations is the area of the web as defined by AISC.
The frame is composed of three W8×24 members with
gravity load, P, applied as shown and a single lateral load of
0.01P. For this simplified problem, the column supports are
treated as pins.

The results of the three analyses are shown in Figure 3.
The first-order elastic analysis yields a straight-line load-
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displacement relationship as shown. An elastic buckling
analysis yields a critical load of Pcr = 232 kips with the
frame buckling in a sidesway mode. The intersection of the
first-order analysis with Pcr = 232 kips is a displacement of
0.571 in.

The results of the second-order elastic analysis are also
shown in Figure 3. This analysis was carried out at eight
different load levels. It can be seen that as the magnitude of
the load P is increased, the lateral displacement increases at
a progressively greater rate. This reflects the influence of
the additional moments induced as the structure deflects. As
the load approaches 232 kips, the slope of the load-dis-
placement curve approaches zero and the displacement
tends toward infinity, confirming that a second-order elastic
analysis can be used to approximate the results of an elastic
buckling analysis.

IMPACT OF SECOND-ORDER 
EFFECTS ON A SINGLE COLUMN

Two different second-order effects will impact the design of
a single column. The first, illustrated in Figure 4a for a col-
umn in which the ends are prevented from displacing later-
ally with respect to each other, is the result of the bending
deflection along the length of the column.  If the moment
equation is written with reference to the displaced configu-
ration, it can be seen that the moments along the column
will be increased by an amount Pδ. As already discussed,
this increase in moment due to chord deflection is referred
to as the Pδ or member effect.

The column in Figure 4b is part of a structure that is per-
mitted to sway laterally an amount ∆ under the action of the
lateral load, H. As a result, the moment required on the end
of the column to maintain equilibrium in the displaced con-
figuration is given as HL + P∆. This additional moment,
P∆, is referred to as the frame effect, since the lateral dis-
placement of the column ends is a function of the properties
of all of the members of the frame participating in the sway
resistance.

The deflections, δ and ∆, shown in Figure 4 are second-
order deflections, resulting from the applied loads plus the
deflections resulting from the additional second-order
moments. These displacements are not the displacements
resulting from a first-order elastic analysis but from a sec-
ond-order elastic analysis. Although second-order deflec-
tions are more complicated to determine than first-order
deflections, they appear to be straightforward for the indi-
vidual column of Figure 4. However, when columns are
combined to form frames, the interaction of all of the mem-
bers of the frame significantly increases the complexity of
the problem. The addition of gravity only columns that do
not participate in the lateral frame resistance brings further
complexity to the problem.

For engineers using commercial software packages to
carry out a second-order elastic analysis, it is important to
fully understand the assumptions made in the development
of that software. For instance, most commercial applica-
tions include only the P∆ or frame effects and do not
include the Pδ or member effects. In addition, as with the
results presented in this paper, GTSTRUDL includes axial,
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flexural, and shearing deformations in the analysis when
member properties are selected from the property table and
material is specified as steel. This may or may not be impor-
tant depending on the particular situation.

PREDICTING THE CRITICAL ELASTIC 
BUCKLING LOAD

When an analysis tool is available to determine the critical
elastic buckling load of a frame, there is no need to predict
that load through some other means. Thus, it might be said
that if all structural analysis were carried out using an elas-
tic buckling analysis, there would be no need to spend time
discussing the correct approach for determining an elastic
K-factor to use in design. It seems that ever since the K-fac-
tor was introduced into the 1961 AISC Specification, it has
generated extensive discussion and misunderstanding (Hig-
gins, 1964). To understand the debate over the K-factor, one
must understand what the K-factor is intended to accom-
plish. The critical buckling load of a column, determined by
one of the elastic buckling analysis programs is taken as Pcr.
It will be helpful to remember that the critical buckling load
of the perfect column, as derived by Euler, is given as 

Since the column in a steel frame is not likely to have
perfectly pinned ends, but rather some end restraint and the
possibility of sidesway, its critical buckling capacity can be
said to be somewhat different than the Euler column, thus

If that modification factor is defined as it is
seen that

Thus, the K-factor is simply a mathematical adjustment
to the perfect column equation to try to predict the capacity
of an actual column. Every method or equation that is pro-
posed for the determination of the K-factor or effective
length factor is simply trying to accurately predict the actual
column capacity as a function of the perfect column.

Perhaps the most commonly used approach for the deter-
mination of K-factors is the nomograph found in the com-
mentary to both the LRFD and ASD Specifications (AISC,
1999; AISC 1989).  The equation upon which the sidesway
permitted nomograph is based is given in Equation 4
(Galambos, 1968).

and

The A and B subscripts refer to the ends of the column
under consideration. 

The many assumptions used in the development of the
nomograph are detailed in the Commentary to the Specifi-
cation (AISC, 1999). One of these important assumptions is
that “all columns in a story buckle simultaneously.”
Although this assumption was essential in the derivation of
this useful equation, it is also one that is regularly violated
in practical structures. This assumption is critical since it
eliminates the possibility that any column in an unbraced
frame might contribute to the lateral sway resistance of any
other column. A reasoned analysis of the behavior of
columns in actual structures would indicate that columns
loaded below their capacity should be able to help restrain
weaker columns. Thus, other approaches to determining the
K-factor should be considered.   

BUCKLING ANALYSIS VS. NOMOGRAPH

First, a comparison of results from a first-order elastic buck-
ling analysis and the nomograph equation, Equation 4, will
be presented. To make this comparison through the use of
effective length factors, Equation 3 can be rearranged as
follows:

The frame from Figure 2 will again be considered, this
time without the lateral load. An elastic buckling analysis
using GTSTRUDL yields a critical buckling load, Pcr =  232 kips.
For this critical load, Equation 5 yields Kexact = 2.66. Since
the GTSTRUDL analysis includes flexural, axial, and
shearing deformations while the nomograph solution
includes only flexural deformations, a more accurate com-
parison would be expected if axial and shearing deforma-
tions were excluded from the elastic buckling analysis. In
this case, Pcr = 237 kips and  Kexact = 2.63.  The nomograph
equation also gives K = 2.63.  Since the structure of Figure 2
and the elastic buckling analysis without axial and shearing
deformations satisfy the assumptions of Equation 4, it is not
surprising to find that the effective length factors are the
same. The total buckling load for this frame is 474 kips, the
sum of the two column buckling loads.
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Quite a different situation results, however, if the load is
removed from one of the columns. The frame buckling load
considering only flexural deformations is found to be Pcr =
472 kips, which, using Equation 5, yields Kexact = 1.87. The
nomograph effective length factor is unchanged from the
previous case since it is unable to account for load patterns.
Comparing Kexact with that predicted by the nomograph
shows that the frame could actually carry a much higher
individual column load at buckling when only one column
is loaded than would be predicted by use of the nomograph.
Since the unloaded column becomes a restraining member
rather than a buckling member, the loaded column capacity
is increased. The total frame buckling load is 472 kips,
approximately the same as when both columns were loaded.

Another interesting example is the two-story frame
shown in Figure 5. The frame is modeled in GTSTRUDL
with nodes at member intersections and at the mid-height of
each column. Again, all members are W8×24. The elastic
buckling analysis results for three different analyses are
presented in Table 1. First are the results when only flexural
deformations are considered. Second are the results when
axial and flexural deformations are included and third are
the results when axial, flexure and shearing deformations
are included.

Case 1 is the sidesway-prevented frame with load P at
each beam column intersection as shown in Figure 5a.
Again, since the nomograph equation is based on flexural
deformations only, the results from Table 1 for this analysis
will be discussed. With Pcr = 1145 kips, Equation 5 yields
an effective length factor for the upper story columns Kupper = 1.20.
Recognizing that the lower story columns carry 2Pcr, Equa-
tion 5 yields Klower = 0.85.  From the nomograph, Kupper =
0.85 and Klower = 0.95. The nomograph K-factors are

Flexural 
Deformations 

Axial and Flexural 
Deformations 

Axial, Flexural and 
Shearing 

Deformations Case Loads Lateral 
Restraint 

Pcr 
(kips) 

Kupper Klower 
Pcr 

(kips) 
Kupper Klower 

Pcr 
(kips) 

Kupper Klower 

1 Top & 
Bottom 

Yes 1145 1.20 0.85 1145 1.20 0.85 1038 1.26 0.89 

2 Top & 
Bottom No 111 3.85 2.72 125 3.63 2.57 122 3.67 2.60 

3 
 

Top 
 

No 209 2.81 2.81 237 2.64 2.64 232 2.66 2.66 

4 
 

Bottom 
 

No 233 - 2.66 260 - 2.52 255 - 2.54 

 

Table 1. Results of Elastic Buckling Analysis for Frame of Figure 5
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lower than the worst case of K=1.0 for a braced frame as
expected.  However, the elastic buckling analysis yields a
K-factor for the upper column greater than 1.0. This indi-
cates that the upper column actually needs less restraint
than would be provided by pinned ends. Thus, this column
is not a buckling column but rather, like the unloaded col-
umn in the previous example, it is helping to restrain the
lower columns. Since buckling is a system phenomenon and
the relative load magnitudes and columns sizes cannot be
changed, design using the nomograph would show that the
system capacity is controlled by the lower story and the
upper column would be the same size.

Case 2 is a sidesway-permitted frame, as shown in Figure 5b.
For this case, the elastic buckling capacity reduces to Pcr = 111
kips or approximately 10 percent of that which could be
carried by the sidesway-prevented frame.  The effective
length factors based on this critical buckling load are Kupper = 3.85
and Klower = 2.72. From the nomograph equation, the
columns would have Kupper = 1.79 and Klower = 3.18. As for
the sidesway-prevented case, the nomograph and the elastic
buckling analysis give quite different results.

If the loading arrangement is changed to include only
loads on the top story in the sidesway-permitted frame,
Case 3, the elastic buckling load is Pcr = 209 kips and Kupper

= Klower = 2.81 since both columns carry the same load. As
discussed earlier, the nomograph cannot account for load
placement, so those K-factors remain unchanged. If the load
is applied only to the lower story columns, Case 4, the elas-
tic buckling load is Pcr = 233 kips and Klower = 2.66. Since
the upper columns carry no load, they actually provide
restraint to the lower columns and there is no need for a K-
factor. Again, the nomograph K-factors remain unchanged.

Although the results from the other two analyses are
close to those obtained when only flexure is included, they
are clearly different. It is interesting to note the extent to
which the inclusion of these deformations influence the
results. It should also be clear from these examples that care
must be exercised, as with any analysis approach, when
using an elastic buckling analysis for the determination of
K-factors.

From these four cases it can be seen that the determina-
tion of the system buckling capacity is not only a function
of geometry and member properties but also a function of
load arrangement, something the nomograph cannot accom-
modate. It should also be noted that any member that is
loaded to less than its buckling capacity provides restraint
to the other members framing into the same joint.

For any reasonable steel material strength, the columns in
this frame will behave inelastically due to the existence of
residual stresses. An inelastic buckling analysis should be
carried out to account for this behavior. When using the
nomograph approach, the AISC Specification provides a
stiffness reduction factor to account for inelastic behavior.
To obtain the correct design values for this frame, an inelas-
tic buckling analysis should be performed.

INFLUENCE OF LEANING COLUMNS

Returning to the second-order analysis, the impact of lean-
ing columns can be evaluated through the use of two simple
sidesway-permitted frames.

Without leaning columns: The symmetric frame shown in
Figure 6a is subjected to a symmetrically placed gravity
load. A first-order analysis yields the forces shown. Note
that there are no column moments or lateral deflections.
Thus, there will be no axial force and moment interaction of
the type shown in Figure 4 and a second-order analysis will
yield the same results as the first-order analysis. When a lat-
eral load is added as shown in Figure 6b, forces and
moments as shown result from a first-order analysis and the
structure sways laterally. In this case, all moment is due to
the lateral load. These moments would be increased if a sec-
ond-order analysis were performed. 

With Leaning Columns: When a leaning column is added
to the frame of Figure 6a, the resulting structure is as shown
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Figure 6. Symmetric portal frame.



in Figure 7a. A first-order analysis will yield the same mem-
ber forces for the unbraced frame as had been determined
for that portion of the structure in Figure 6a. Thus, it
appears that the leaning column has no impact on the orig-
inal structure. If the structure is subjected to a second-order
analysis, there will be no change in the results. 

If a leaning column is added to the frame of Figure 6b, as
shown in Figure 7b, and both the gravity and lateral loads
shown are applied, a first-order analysis will again repeat
the results from the frame of Figure 6b. If a second-order
analysis is performed, however, the results will be different
from those previously determined, since there are bending
deflections and there will be load-displacement interaction.
These new results will account for the amplification of
moment due to sidesway of the structure and both loads P
and Q.

When there are no first-order deflections, as for the
frames in Figures 6a and 7a, a second-order analysis will
produce the same results as the first-order analysis. For
frames that do exhibit first-order deflections, a second-
order analysis performed at a given load level will yield cor-
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responding second-order forces and moments. Thus, for
systems with no first-order deflections, some fictitious lat-
eral force or displacement must be introduced to permit the
determination of second-order effects. It can also be seen
that a second-order analysis performed for the applied loads
will not provide the information needed to determine the
critical buckling load of the system. 

OTHER APPROACHES FOR DETERMINING
EFFECTIVE LENGTH

If the buckling load for a frame member is to be determined
through an approach other than a complete elastic buckling
analysis, a model that will reasonably predict the capacity
of the frame, including leaning columns and the variety of
possible loading arrangements, is needed. Numerous
approaches intended to account for the effect of leaning
columns and the sharing of lateral resistance have been pre-
sented in the literature and were reviewed by Geschwindner
(1994). These approaches offer a wide range of mathemati-
cal complexity and practical usefulness. Four approaches
that have been presented in the literature for including the
leaning column in the determination of column capacity
will be discussed along with some simplified equations that
are included in the Commentary of the LRFD Specification
(AISC, 1999). As always, the designer is called upon to
decide on the appropriate approach to use in a particular
design situation.

Modified Nomograph Equation (Geschwindner, 1994):
The derivation of Equation 4 is available in numerous ref-
erences, including (Galambos, 1968). Following the same
procedures and assumptions, with the addition of the lean-
ing column, as shown in Figure 8, a new equation may be
developed. 

Viewing the structure in its displaced equilibrium config-
uration, the restraining column and the leaning column are
separated as shown in Figure 8b and 8c respectively. The
load Q on the leaning column CD must be balanced by the
horizontal force, Q∆/L, at D, for equilibrium of the leaning
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column. This force must then be applied as a load at B on
the restraining column AB. 

Equations of equilibrium at the joints of column AB and
the sway equilibrium equation can be written for the struc-
ture in the displaced configuration. Member end moment
equations are then written using the slope deflection
method, incorporating the stability functions (Chen and
Lui, 1991) necessary to account for the influence of axial
load on column AB. Combining these equations and setting
the determinate of the coefficients equal to zero will yield
the following buckling condition equation.

If the leaning column load is zero, Q = 0, Equation 6
reduces to Equation 4. Since neither of these equations can
be solved explicitly, an iterative approach may be used or,
in the case of the frame without leaning columns, the nomo-
graph already discussed may be used.

The Yura Approach (Yura, 1971): This is perhaps the eas-
iest approach to develop since it relies on a straightforward
interpretation of the physical problem. For the unbraced
frame shown in Figure 9, equilibrium will be established for
the structure in the undeflected configuration and again in
the deflected configuration. The first-order, undeflected
equilibrium configuration forces are shown in Figure 9a. If
the frame is permitted to displace an amount ∆ through
bending, equilibrium in this displaced configuration will be
as shown in Figure 9b. In order for column CD to be in

equilibrium, a lateral force, Q∆/L as shown at D is required.
This force must be equilibrated by an equal and opposite
force shown at B. Thus, when column AB sways, it requires
a moment of (P∆ + Q∆) at its base for equilibrium. It is
observed that this is the same moment that would result if
the individual column AB were supporting an axial load of
(P + Q) without the leaning column. The assumption that
the buckling load is (P + Q) is only slightly conservative for
the individual column AB, since the buckled shape due to
an axial load and the deflected shape due to a lateral load
differ only slightly. In order to ensure sufficient lateral
restraint for column CD, column AB must be designed to
carry a fictitious load (P + Q) in the plane of the frame. Out
of the plane of the frame, the column would be designed to
carry the load P unless the frame is also unbraced in that
direction.

In order to compare this approach to others presented in
the literature, it is helpful to convert it to an effective length
approach. If column AB is to be designed to carry the load
P but have the capacity (P + Q), a modified effective length
factor will be required. Ko is defined as the effective length
factor that would be determined from the nomograph or
Equation 4, which does not account for the leaning column.
In this case Ko = 2. Kn is defined as the effective length fac-
tor that will account for the leaning column. Thus, based on
the sway buckling load being (P + Q)

If the column is to be designed to carry the actual applied
load, P, with the leaning column accounted for through Kn,
then

Solving Equations 7 and 8 for their corresponding K's
and taking the ratio Kn

2/Ko
2 yields

which may be solved for Kn as

If column AB from Figure 9a were designed to carry the
load P using the effective length factor Kn, it would provide
sufficient lateral restraint to permit column CD to be
designed to carry the load Q using K = 1.0.
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For frames with more than one leaning column and more
than one restraining column, ΣP and ΣQ will replace P and
Q. It should also be noted that this approach maintains the
assumption that all restraining columns in a story buckle in
a sidesway mode simultaneously.

Lim & McNamara Approach (Lim and McNamara,
1972): Another approach that will account for the leaning
column was proposed by Lim and McNamara for columns
of unbraced tube buildings. Their development is also based
on the assumption that all columns in the restraining frame
buckle in a sidesway mode simultaneously; however, they
developed the sway buckling equation through the use of
stability functions and an eigenvalue solution.

The resulting effective length factor, accounting for lean-
ing columns is given in their paper as

where 
Kn and Ko are as defined earlier 
n = ΣQ/ΣP
Fo = eigenvalue solution for a frame without leaning

columns 
Fn = eigenvalue solution for a frame with leaning

columns. 
The authors suggest that for normal column end condi-

tions, Fo/Fn = 1.0 should provide a K-factor that is conser-
vative by at most two percent. Substituting for n and using
Fo/Fn = 1.0, the Lim and McNamara approach gives the
same K-factor as the modified Yura approach where

Thus, for this story-buckling approach, a single multi-
plier for each story will be sufficient to modify the individ-
ual nomograph K-factors to account for leaning columns.

LeMessurier Approach (LeMessurier, 1977): In his land-
mark paper, LeMessurier presented a more complex, yet
still very practical approach for frames with and without
leaning columns. The basic equations were developed for a
single cantilever column and then extended to the general
frame. Where the previous approach determined a constant
value for a story by which the nomograph value of Ko was
modified, this approach determines a constant value for a
story which then multiplies the individual column moment
of inertia divided by the column load, Ii /Pi, for each col-
umn, i. Thus, the contribution of each column to the lateral
resistance is accounted for individually along with the mag-
nitude of the load on that column. The effective length fac-
tor for each column that participates in resisting sidesway

buckling, Equation 46c from the original paper, expressed
in the notation of this paper, is given by

where

Ki = effective length of column i, accounting for
leaning columns

CL = 0 for leaning columns
Pi = load on restraining column, i
Ii = moment of inertia for column, i
ΣP = total load on the restraining columns in a

story
ΣQ = total load on the leaning columns in a story
Σ(CLP) =  sum of (CLP) for each column in the story
Σ(βI) = sum of (βI) for each column participating in

lateral sway resistance
Commentary Equations (AISC, 1999): Although use of

Equation 13 is not particularly complex, the third edition of
the Commentary to the 1999 LRFD Specification presents
two modified LeMessurier equations that may be of value to
the practicing engineer. One is based on the story-buckling
model while the other is based on a story-stiffness model.

For the story-buckling model, it is assumed that there is
no reduction in column stiffness due to the presence of axial
load. This is accomplished by taking CL = 0 for all columns,
which leads to β = π2/Ko

2. Substitution of these values into
Equation 13 yields:

which reduces to

Equation 17 can be recast into the form of LRFD Com-
mentary Equation C-C2-6 as
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where

For a structure in which only one column is providing lat-
eral stability, the summations in Equation 16 are unneces-
sary and the equation reduces to

which is the same as the equation that resulted from the
modified Yura and Lim and McNamara approaches, Equa-
tions 10 and 12 respectively.

For the story-stiffness model, the stiffness reduction due
to axial load is included as though all columns were can-
tilevers with a buckled shape in the form of a half sine
curve, thus CL = 0.216. Since the leaning columns have no
lateral stiffness of their own, CL = 0 for all leaning columns.
The equation given in this paper as Equation 13 is just one
form of the effective length factor equations given by
LeMessurier. Another form is also available through the
same derivation (LeMessurier, 1977). This equation uses
the ratio of lateral displacement to lateral load as a measure
of buckling stiffness. Equation 46d from the original paper,
in the notation of this paper, is given as

where ΣH is the total lateral load supported by the level
under consideration, ∆oh is the corresponding lateral dis-
placement of the level and ΣPT = ΣP + ΣQ is the total load
on the given story. In order to account for CL = 0 on the
leaning columns and CL = 0.216 on all others, the load on
the leaning columns must be subtracted from the total load
on the story so that (ΣPT + ΣCLPT) = (ΣPT + 0.216 (ΣPT -
ΣQ)). Making this substitution and factoring out ΣPT yields

This equation was somewhat simplified in the Commen-
tary to the 1993 LRFD Specification (AISC, 1993) as

Geschwindner presented a comparison between Equa-
tions 21 and 22 (Geschwindner, 1994). 

If the leaning columns are not excluded and the stiffness
reduction due to axial load is applied to all columns, CL =
0.216 would be applied to the total load on the story and the
separation taken to arrive at Equation 21 would not be nec-
essary.  Thus, Equation 20 becomes  

This equation, recast in the form of the 1999 LRFD Com-
mentary Equation C-C2-5 is

where 

and

These simplifications may not be necessary since, in the
original form, the equations presented by LeMessurier are
not much more complex and will yield more accurate
results.

EXAMPLES

The following examples will show how these approaches
may be used to evaluate columns in unbraced frames.  

Example 1

The frame shown in Figure 10, introduced by Geschwind-
ner (1995), will be used to compare the simplified methods
for determining effective length factors with an elastic
buckling analysis. The frame is supported in such a way that
in-plane behavior will be critical. The columns AB and CD
as well as the beam BC are W12×136. The other members
are of such a size that their individual characteristics will
not control. The results of a GTSTRUDL buckling analysis
and three simplified equations are presented in Table 2.
Comparisons will be made for the analysis including flex-
ural deformations only. For equal loads on columns AB and
CD and no loads on the other columns, Pcr = 1302 kips.
Using Equation 5 this is equivalent to K = 2.18. 

When equal loads are also applied to columns EF, GH,
and JK, GTSTRUDL yields Pcr = 568 kips or K = 3.29. The
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loading on the structure shows two equal loads on the
restraining columns and three equal loads on the leaning
columns. This gives P = 2 and Q = 3. From the modified
nomograph equation, Equation 6, K = 3.29 and Pcr = 569
kips. Since the assumptions made in the derivation of Equa-
tion 6 are satisfied with this model, it is expected that Equa-
tion 6 and the buckling analysis will yield the same results.
The modified Yura equation, Equation 12, yields K = 3.43
and Pcr = 524 and the LeMessurier equation, Equation 13,
using G = 100,000 to represent the pin end, yields K  = 3.30
and Pcr = 566 kips.

No matter what approach is taken to account for the lean-
ing columns, it is clear that leaning columns have a signifi-
cant impact on the stability of the structure. It is also
evident, from earlier discussion, that a second-order elastic
analysis for this frame will yield the same forces for mem-
bers AB, CD, and BC, whether there are loads on the lean-
ing columns or not. This is true since, through a first order
analysis; there will be no lateral displacement of the frame.
Thus, more than a second-order elastic analysis for the
given loads is needed to complete design of the structure.

Example 2 

Factored loads, including a lateral load, are now applied to
the frame of Example 1, as shown in Figure 11. First- and

second-order elastic analyses are performed and, along with
the results from Example 1, a check on column CD, with Fy

= 50 ksi, is performed.
Using the results from the first-order elastic analysis, for

column CD, Pu = 240 kips and Mu = 200 kip-ft. From
Example 1, the LeMessurier analysis including the leaning
columns yields, K = 3.30. Using the LRFD Specification
(AISC, 1999), the column behaves elastically and its capac-
ity is φPn = 421 kips. Thus, Pu /φ Pn = 240/421 = 0.57 > 0.2
so LRFD Equation H1-1a must be satisfied.

Since the column moment is from a first order analysis,
it must be amplified. This will be accomplished using the
first suggested equation for B2, Equation C1-4. 

The non-sway analysis generates no moments so the sec-
ond-order moment becomes, Mu = B2 (200). The results of
the first-order analysis give a lateral deflection due to the 20
kip load of 1.74 in. Using these values, B2 = 1.57 so that Mu =
1.57(200) = 314 kip-ft. The interaction equation becomes

Since this is less than 1.0, the column will be adequate.
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Case Leaning 
Columns 

Flexure Flexure, 
Axial 

Flexure, 
Axial, Shear 

Eq. 6 Eq. 12 Eq.13 

  Pcr 
(kips) 

K Pcr 
(kips) 

K Pcr 
(kips) 

K Pcr 
(kips) 

K Pcr 
(kips) 

K Pcr 
(kips) 

K 

1 no 1302 2.18 1299 2.18 1237 2.23       
2 yes 568 3.29 559 3.32 529 3.41 569 3.29 524 3.43 566 3.30 

 

Table 2. Elastic Buckling Analysis Results for Frame of Example 1
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Fig. 10. Frame for Example 1 with leaning columns.
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Fig. 11. Example 2 frame with gravity and lateral 
load and reactions from a first order analysis.
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If the results of a second-order analysis are used, Pu =
261.9 kips and Mu = 308.2 kip-ft. Again, the effect of the
leaning columns will be included from the LeMessurier
analysis so that, Pu/φPn = 261.9/421 = 0.62 > 0.2 and LRFD
Equation H1-1a is used again. Since the column moment
results from a second-order analysis, there is no need to
amplify it prior to using the interaction equation, thus

Again, the column is seen to be adequate. It is interesting
to note that there is an increase in the column axial load due
to the second order effects that is not included in the sim-
plified code approach to second-order analysis. This
increase is the direct result of the leaning columns gaining
stability from the frame and, in effect, adding a lateral load
to the system. In addition, the second-order moments
obtained from the two approaches are quite similar. It also
must be recognized that even though a second-order analy-
sis was used, the influence of the leaning columns on the
axial capacity of the restraining column must still be
accounted for. This was accomplished using the LeMes-
surier equation, Equation 13.

Example 3 

An interesting structure was presented by Baker (1997) to
demonstrate the problems associated with determining
effective length when the assumptions of the nomograph are
violated. The frame shown in Figure 12 represents one of
two frames that provide lateral resistance for a fairly large
footprint building. This frame carries a gravity load of ΣP =
625 kips and provides lateral stability to columns carrying
an additional gravity load of ΣQ = 1875 kips. This is one-
half of the total load for the building. Column bases are

modeled as rotational springs with stiffnesses of 

The AISC Commentary recommended value of GB = 10 for
the pinned bases was used throughout the analysis. Lateral
deflection of the frame due to ΣH =12 kips, is  ∆oh = 0.362
in. taken as the average deflection at the top of the 5
columns. This analysis includes axial, flexural and shearing
deformations. The total gravity load is ΣPT = (ΣP + ΣQ) =
2500 kips and Fy = 50 ksi.

The results presented by Baker were in the form of col-
umn capacities, Pe.  However, a review of his equations
shows that his solution actually uses Equation 22. Table 3
shows the K-factors for each of the five columns in this
frame as determined through the nomograph equation, the
modified nomograph equation, six simplified equations,
and an elastic buckling analysis. It can be seen from Table 3
that the use of the nomograph, Equation 4, does not predict
effective length values that would subsequently produce
accurate elastic buckling values for the columns of this
frame. This is due to the fact that the structure significantly
violates the assumptions used to develop the nomograph. If
this structure had been designed with those values, the
columns would have had an expected capacity significantly
larger than their true capacity. 

The modified nomograph equation, Equation 6, also pro-
vides K-factors that would be poor predictors of column
buckling capacity for this frame. Although this equation is
able to account for the leaning columns, it is not able to
account for the distribution of load or individual column
contribution to lateral resistance.

Since the lateral displacement used in Equations 17, 20,
22, and 23 was calculated as a function of axial, flexural
and shearing deformations, it is appropriate to determine
the elastic buckling capacity using these same displace-
ments. The results from GTSTRUDL converted to effective
length, are given in Table 3. The LeMessurier equations,
Equations 13 and 20, provide results that are close to this
elastic buckling analysis. The values determined from
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Column 
Mark 

Ii Pui Eq. 4 Eq. 6 Eq. 13 Eq. 20 Eq. 17 Eq. 21 Eq. 22 Eq. 23 Elastic 
Buckling 

i in4 kips Ko Effective length, Ki 
1 425 150 1.81 3.49 3.21 3.29 3.35 3.33 3.30 3.57 3.30 
2 350 50 1.73 3.30 5.04 5.17 5.27 5.23 5.19 5.61 5.19 
3 475 275 1.74 3.33 2.50 2.57 2.62 2.60 2.58 2.79 2.58 
4 350 25 1.72 3.27 7.13 7.31 7.45 7.39 7.34 7.94 7.33 
5 350 125 1.78 3.43 3.19 3.27 3.33 3.30 3.28 3.55 3.28 

2 story constant i
i

i

I
K

P
= ×  3.63 i

i
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Table 3. Summary of Effective Length Calculations for Example 3

261.9 8 308.2
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Equations 17 and 21 are fairly consistent although some-
what above the elastic buckling values while the results
from Equation 23 are significantly higher than the elastic
buckling values and will yield a more conservative solution.
For this specific example, Equation 22 yields the same
results as the elastic buckling analysis.

CONCLUSIONS

This paper presented a brief discussion of the full range of
approaches that might be used to carry out a structural
analysis. The elastic buckling load of a frame can be deter-
mined through an eigenvalue analysis that predicts system
buckling behavior. This buckling load is the load that the K-
factor is attempting to predict for individual columns.
Although the K-factor has been a controversial topic from
its initial introduction into the AISC Specification, it
remains a useful tool to predict column capacity.  Perhaps
the most troubling aspect associated with the use of the K-
factor has been overlooking the assumptions included in the
development of the most common predictor equations.
Unbraced moment frames that do not meet the restrictive
assumptions, which permit use of the nomograph pose
interesting problems for the structural engineer. Such fac-
tors as leaning columns, columns supporting less than their
full capacity, and inelastic behavior all must be considered
in any design.

Four approaches from the literature for determining K-
factors were presented, along with several simplified equa-
tions derived from those procedures. It was shown that an
iterative solution of Equation 6 produced a more accurate
value of Kn than that from the nomograph, Equation 4,
when leaning columns were present. Using Equation 6, the

leaning column loads are accounted for; however, the other
limitations of the nomograph solution are still present and,
as shown in Example 3, the modified nomograph equation
will not be a good predictor of K-factors for these systems.

The equations proposed by LeMessurier, Equations 13
and 20, are generally recognized as the most accurate of
those presented, even though in Example 3, Equation 23
yields the same results as the elastic buckling analysis.
There are two approaches to the use of the LeMessurier
equations. One requires the determination of Ko, which may
be accomplished through the nomograph, as is normally
done, or by an iterative solution of Equation 4. The other
approach uses the lateral stiffness of the frame, as measured
by its lateral deflection due to a lateral load. Either of these
approaches will provide a practical method of determining
column capacity. Based on Example 3, Equations 13 and 20
provide K-factors that closely approximate the elastic buck-
ling analysis results. It is not unrealistic to use the LeMes-
surier equations for effective length factors in normal
engineering practice.

The commentary to the LRFD Specification provides
simplified equations, based on the LeMessurier equations.
The examples presented here allow for a comparison of
results between several of these equations. It appears that
there is some wide variation in results, depending on the
choice of the simplified equation. The assumptions used to
develop these simplified equations are presented so the
engineer will be in a better position to decide which expres-
sions should be used in a particular situation.

Although the LeMessurier approach is not overly com-
plicated to use, designers wishing to use a simpler approach
may find that the Lim and McNamara equation for Kn pro-
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Fig. 12. Example 3 Frame from Baker (1997).



vides a sufficiently accurate way to account for leaning
columns, particularly in preliminary stages of design. How-
ever, the LeMessurier equation based on the lateral deflec-
tion of the frame provides a straightforward and accurate
approach for use in design as suggested by Baker. Once the
elastic-buckling load of the frame has been determined and
the appropriate amount attributed to the individual columns,
design by any approved method may proceed.
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