Steel Box Girder Bridges—Design Guides & Methods

CONRAD P. HEINS

During the past decade, there has been extensive use of steel box girders for straight and curved highway and transit structures. ^{13,14} To meet the need for use of such structural elements, design criteria had to be established. Therefore, the purpose of this paper is to present information relative to the design criteria in addition to information on preliminary plate sizes, design aids, and computer-aided design of steel box girder bridges.

INTRODUCTION

Box girders have become a prominent element in the construction of major river crossings, highway interchanges, and transit systems. These types of structural elements are particularly attractive because of their high torsional stiffness, which is required when the bridge is curved.

With the advent of these bridges, appropriate design specifications^{1,2,3} design guides^{5,6,7} computer solutions^{8,9} are required. Here is a summation of this information:

DESIGN SPECIFICATIONS

There are at present a set of standard specifications,¹ which pertain to straight box girders for highway bridges. Guide specifications² are also being used for curved box structures, but to date have not been incorporated into the standard code.¹ Further research has also been conducted, which has resulted in a tentative strength or load factor design code for curved bridges.³ All three of these codes^{1,2,3} have been

Conrad P. Heins was Professor, Institute for Physical Science and Technology and Civil Engineering Department, University of Maryland, College Park, Maryland. This paper is the 1982 T. R. Higgins Lectureship Award winner.

IN MEMORIAM

CONRAD P. HEINS September 13, 1937 December 24, 1982

studied and the appropriate criteria for the design of each element of a box (i.e., top flange, bottom flange, web) categorized according to working stress method or strength method as given in Tables 1 and 2. The working stress criteria has recently been incorporated into a design oriented computer program.⁹

In addition to these basic specifications, 1,2,3 a new code⁴ has been proposed for consideration, but has yet to be adopted.

DESIGN GUIDES

Flange Areas—In the design of any complex structure in which the section changes and the forces are not readily computed, it is useful to have data or empirical equations to select plate geometry, which can then be incorporated in a computer program⁹ to automate the bridge design. Such information has been developed^{5,6,7} and has resulted in the following:

i) Single-span bridge

$$A_T = 10d \left(1 - \frac{84}{L} \right)$$
$$A_B = 13d \left(1 - \frac{92}{L} \right)$$

ii) Two-span bridge

$$A_{B}^{+} = \frac{1}{k} (0.00153L^{2} - 0.223L + 13)$$

$$A_{B}^{-} = 1.17 A_{B}^{+} \frac{F_{y}^{-}}{F_{y}^{+}}$$

$$A_{T}^{+} = 0.64 A_{B}^{+}$$

$$A_{T}^{-} = 1.60 A_{B}^{+} \frac{F_{y}^{-}}{F_{y}^{+}}$$

Table 1. Working Stress Design Requirements

T	1 able 1. Working Stress De	
Compression Flange (positive moment)	Straight $\frac{b}{t} \le \frac{3250}{\sqrt{f_b}} \le 24$	Curved $\frac{b}{t} \leq \frac{4400}{\sqrt{F_y}}$ and $F_b = 0.55 F_y \left[1 - \frac{\left(\frac{l}{r'}\right)^2 F_y}{4\pi^2 E} \right] \rho_B \rho_w$ where $\rho_B = \frac{1}{2\pi^2 E} \text{and} \rho_w = \rho_{w1} \text{ or } \rho_{w2}, \text{ where;}$
		$\rho_B = \frac{1}{1 + \left(\frac{l}{R}\right)\left(\frac{l}{b}\right)} \text{ and } \rho_w = \rho_{w1} \text{ or } \rho_{w2}, \text{ where;}$ $\rho_{w1} = \frac{1}{1 - \left(\frac{f_w}{f_b}\right)\left[1 - \frac{(l/b)}{75}\right]}$ or $\rho_{w2} = \frac{0.95 + \frac{l/b}{[30 + 8000(0.1 - l/R)^2]}}{1 + 0.6\left(\frac{f_w}{f_b}\right)}$ if $\frac{f_w}{f_b}$ (+) use smaller ρ_{w1} or ρ_{w2}
Compression Flange (negative moment)	$\frac{b}{t} \le \frac{6140}{\sqrt{F_y}}$ $f_b \le 0.55 F_y$ $\frac{6140}{\sqrt{F_y}} \le \frac{b}{t} \le 60 \text{ or } \frac{13,300}{\sqrt{F_y}}$ $f_b \le 0.55 F_y - 0.224 F_y \left[1 - \sin \frac{\pi}{2} \left(\frac{13,300 - b/t \sqrt{F_y}}{7160} \right) \right]$ $\frac{13,300}{\sqrt{F_y}} < \frac{b}{t} \le 60$ $f_b \le 57.6 \times 10^6 \left(\frac{t}{b} \right)^2$	$\frac{b}{t} \leq \frac{6140}{\sqrt{F_y}} \cdot X$ $F_b = 0.55 F_y \sqrt{1 - 9.2 \left[\frac{f_v}{F_y} \right]^2}$ where $X = 1 + \frac{4}{3} \left(\frac{f_v}{\sqrt{F_y}} - 0.15 \right) \geq 1$ $\frac{6140}{\sqrt{F_y}} < \frac{b}{t} \leq \frac{13,300}{\sqrt{F_y}} \text{ or } 60$ $F_b = \left[0.326F_y + 0.224F_y \left\{ \sin \frac{\pi}{2} \left(\frac{13,300 - b\sqrt{F_y}/t}{13,300 - 6140X} \right) \right\} \right] \Delta$ where $\Delta = \sqrt{1 - 9.0 \left(\frac{f_v}{F_y} \right)^2}$ if $\frac{b}{t} \geq \frac{13,300}{\sqrt{F_y}}$ $F_b \text{ is smaller of the following:}$ $F_b = 57.6 \left(\frac{t}{b} \right)^2 \cdot 10^6 \Delta$ $F_b = 57.6 \left(\frac{t}{b} \right)^2 \times 10^6 - \frac{f_v^2}{113.4 \left(\frac{t}{b} \right)^2} \times 10^6$

Table 1. (continued)

Item	Straight	Curved
Compression Flange (negative moment) With Stiffener	$\frac{w}{t} \leq \frac{3070 \sqrt{K}}{\sqrt{F_y}}$ $f_b \leq 0.55F_y$ $\frac{3070 \sqrt{K}}{\sqrt{F_y}} < \frac{w}{t} \leq 60 \text{ or } \frac{6650 \sqrt{K}}{\sqrt{F_y}}$ $f_b \leq 0.55F_y - 0.224F_y \left[1 - \sin \frac{\pi}{2} \frac{6650 \sqrt{K} - \frac{w}{t} \sqrt{F_y}}{3580 \sqrt{K}} \right]$ $\frac{6650 \sqrt{K}}{\sqrt{F_y}} < \frac{w}{t} \leq 60$ $f_b \leq 14.4 \times 10^6 K \left(\frac{t}{w}\right)^2$ Stiffener requirement with longitudinal Stiffener $I_s \geq \phi t^3 w$ where $\phi = \begin{cases} 0.07K^3 n^4 \text{ for } n > 1 \\ 0.125K^3 \text{ for } n = 1 \end{cases}$	$\frac{w}{t} \le \frac{3070\sqrt{K}}{\sqrt{F_y}} \cdot X_1$ $F_b = 0.55F_y \sqrt{1 - 912 \left(\frac{f_v}{F_y}\right)^2}$ where $X_1 = 1 \ (n > 1)$ $X_1 = 0.93 + \left(1.6 - \frac{K}{K_s}\right) \left(\frac{f_v}{F_y}\right) \ge 1 \ (n = 1)$ $2 \le K \le 4$ $K_s = \frac{5.34 + 2.84(I_s/wt^3)^{1/3}}{(n+1)^2} \le 5.34$
Compression Flange (negative moment) With Stiffener	$\{0.123 \text{A}^{\circ} \text{ for } n = 1$	$\frac{3070\sqrt{K}}{\sqrt{F_y}}X_1 < \frac{w}{t} \le \frac{6650\sqrt{K}}{\sqrt{F_y}}X_2 \text{ or } 60$ $F_b = \begin{bmatrix} 0.326F_y + 0.224F_y & \sin\frac{\pi}{2} \frac{6650\sqrt{K}X_2 - \frac{w\sqrt{F_y}}{t}}{t} \\ \sin\frac{\pi}{2} \frac{6650\sqrt{K}X_2 - 3070\sqrt{K}X_1}{t} \end{bmatrix} \Delta$ Where $\Delta = \sqrt{1 - 9.0 \left(\frac{f_v}{F_y}\right)^2}$ $X_2 = 1 - 2.13 \left(\frac{f_v}{F_y}\right)$ $+ 0.1 \left(\left(\frac{K}{K_v}\right) - 5.34\right)^2 \left(\frac{f_v}{F_y}\right)$ $\frac{6650\sqrt{K}X_2}{\sqrt{F_y}} < \frac{w}{t} \le 60$ $F_b \text{ is smaller value of}$ $F_b = 14.4K \left(\frac{t}{w}\right)^2 \times 10^6 - \frac{f_v^2 K}{14.4(K_s)^2 \left(\frac{t}{w}\right)^2} \times 10^6$

Table 1. (continued)

Item	Straight	Curved
With Longitudinal and Transverse Stiffener	Use same formula, but use K_1 instead of K $K_1 = \frac{\left[1 + \left(\frac{a}{b}\right)^2\right]^2 + 87.3}{(n+1)^2 \left(\frac{a}{b}\right)^2 1 + 0.1(n+1) }$ $I_s \ge 8t^3 w$ $I_t \ge 0.10(n+1)^3 w^3 \frac{f_s}{E} \frac{A_f}{a}$ where $a: \text{ spacing of transverse stiffener}$ $f_s: \text{ maximum longitudinal bending stress}$ $A_f: \text{ Area of flange including longitudinal stiffener}$	
Web Without Stiffener T d With Transverse Stiffener	$\frac{d}{t} \le 150$ $f_{v} \le \frac{5.625 \times 10^{7}}{(d/t)^{2}} \le \frac{F_{y}}{3}$ $\frac{d}{t} \le \frac{23,000}{\sqrt{F_{b}}} \le 170$ $d_{0} \le 1.5d$ $f_{v} \le \frac{F_{y}}{3} \left[C + \frac{0.87(1 - C)}{\sqrt{1 + (d_{0}/d)^{2}}} \right]$ $C = \frac{2.2 \times 10^{8} 1 + (d/d_{0})^{2} }{F_{y}(d/t)^{2}} \le 1.0$ $d_{0} = \text{stiffener spacing}$	Same If $d_0/R \le 0.02$ use straight girder criteria If $d_0/R \ge 0.02$ $\frac{d}{t} \le \frac{23,000}{F_b} \left\{ 1.19 - 10 \left(\frac{d_0}{R} \right) + 34 \left(\frac{d_0}{R} \right)^2 \right\} \le 170$ $d_0 \le 1.5d$ $f_v = \frac{F_y}{3} \left[C + \frac{0.87(1 - C)}{\sqrt{1 + (d_0/d)^2}} \right]$ $C = \frac{2.2 \times 10^8 1 + (d/d_0)^2 }{F_y(d/t)^2} \le 1.0$
Web With Transverse Stiffener	Stiffener Criteria $I \ge \frac{d_0 t^3}{10.92} J$ $J = 25 \left(\frac{d_0}{d}\right)^2 - 20 \ge 5.0$	Stiffener Criteria $I \ge d_0 t^3 J$ $J = \left[25 \left(\frac{d_0}{d} \right)^2 - 20 \right] X \ge 5.0$ $X = 1.0 \text{ for } \frac{d_0}{d} \le 0.78$ $X = 1.0 + \left(\frac{\left(\frac{d_0}{d} - 0.78 \right)}{1775} \right) Z^4; 0.78 \le \frac{d_0}{d} \le 1.0$ $Z = 0.95 \frac{d^2}{Rt}$ $\frac{b}{t} \le \frac{2600}{\sqrt{F_y}}$

Table 2. Strength Design Requirements

Item	Straight Des	Curved
Compression Flange (positive moment)	$\frac{b}{t} \le \frac{3200}{\sqrt{F_y}}$ $f_b = F_y$ $\text{if } \frac{3200}{\sqrt{F_y}} \le \frac{b}{t} \le \frac{4400}{\sqrt{F_y}}$ $f_b = F_y(1 - 3\lambda^2)$ $\lambda = \frac{1}{\pi} \frac{l}{b} \sqrt{\frac{F_y}{E}}$	$\frac{b}{t} \le \frac{3200}{\sqrt{F_y}}$ $f_b = F_{bs} \bar{\rho}_B \bar{\rho}_w$ where $\bar{\rho}_B = \frac{1}{1 + \frac{l}{b} \left(1 + \frac{l}{6b}\right) \left(\frac{l}{R} - 0.01\right)^2}$ $\bar{\rho}_w = 0.95 + 18 \left[0.1 - \frac{l}{R}\right]^2 + \frac{\frac{f_w}{f_b} \left(0.3 - 0.1 \frac{l}{R} \frac{l}{b}\right)}{\bar{\rho}_B F_y / F_{bs}}$ $F_{bs} = Fy(1 - 3\lambda^2)$ $\lambda = \frac{1}{\pi} \left(\frac{l}{b}\right) \sqrt{\frac{F_y}{E}}$ if $\frac{3200}{\sqrt{F_y}} \le \frac{l}{t} \le \frac{4400}{\sqrt{F_y}}$ $f_b \le F_{by}$ where $F_{by} = F_{bs} \rho_B \rho_w$ $\rho_B = \frac{1}{1 + \frac{l}{R} \frac{l}{b}}$ and $\rho_w = \rho_{w1}$ or ρ_{w2} , where; $\rho_{w1} = \frac{1}{1 - \frac{f_w}{f_b} \left(1 - \frac{l}{75b}\right)}$ $\rho_{w2} = \frac{0.95 + \frac{l/b}{30 + 8000(0.1 - l/R)^2}}{1 + 0.6(f_w / f_b)}$ if $\frac{f_w}{f_b} (+) \text{ use smaller } \rho_{w1} \text{ or } \rho_{w2}$ $\frac{f_w}{f_b} (-) \text{ use } \rho_{w1}$
Compression Flange (negative moment) Without Stiffener	$\frac{b}{t} \le \frac{6140}{\sqrt{F_y}} \text{ then } F_{cr} = F_y$ $\frac{6140}{\sqrt{F_y}} < \frac{b}{t} \le \frac{13,300}{\sqrt{F_y}}$ $\text{then } F_{cr} = 0.592 F_y \left(1 + 0.687 \sin \frac{\pi}{2} c \right)$ $\frac{13,300 - \frac{b}{t} \sqrt{F_y}}{7160}$ $\frac{b}{t} > \frac{13,300}{\overline{F_y}}$ $\text{then } F_{cr} = 105 \times 10^6 (t/b)^2$	$f_{v} \leq 0.75 \frac{F_{y}}{\sqrt{3}} \text{ and } \frac{b}{t} \leq \frac{R_{1}}{\sqrt{F_{y}}}$ then $F_{b} = F_{y} \cdot \Delta$ $\frac{R_{1}}{\sqrt{F_{y}}} < \frac{b}{t} \leq \frac{R_{2}}{\sqrt{F_{y}}} \text{ or } 60$ then $F_{b} = 26.21 \times 10^{6} K \left(\frac{t}{b}\right)^{2} - \frac{f_{v}^{2} K}{26.21 \times 10^{6} K_{s} \left(\frac{t}{b}\right)^{2}}$ also if $0.75 \frac{F_{y}}{\sqrt{3}} < f_{v} \leq \frac{F_{y}}{\sqrt{3}}$ $\frac{b}{t} \leq \frac{R_{1}}{\sqrt{F_{y}}}$ $F_{b} = F_{y} \Delta$

Table 2. (continued)

Item	Straight	Curved
		where $R_{1} = \frac{3070\sqrt{K}}{\sqrt{\frac{1}{2}\sqrt{\left(\Delta + \Delta^{2} + 4\left(\frac{f_{\nu}}{F_{y}}\right)^{2}\left(\frac{K}{K_{s}}\right)^{2}\right)}}}$ $R_{2} = \frac{6650\sqrt{K}}{\sqrt{\frac{1}{1.2}\left[\Delta - 0.4 + \sqrt{(\Delta - 0.4)^{2} + 4\left(\frac{f_{\nu}}{F_{y}}\right)^{2}\left(\frac{K}{K_{s}}\right)^{2}\right]}}}$ $\Delta = \sqrt{1 - 3\left(\frac{f_{\nu}}{F_{y}}\right)^{2}}$ $K = 4$ $K_{s} = 5.34$
Compression Flange (negative moment) With Stiffener	$\frac{w}{t} \leq \frac{3070\sqrt{K}}{\sqrt{F_y}}$ $F_{cr} = F_y$ $\frac{3070\sqrt{K}}{\sqrt{F_y}} < \frac{w}{t} \leq \frac{6650\sqrt{K}}{\sqrt{F_y}}$ $F_{cr} = 0.592 F_y \left(1 + 0.687 \sin \frac{C\pi}{2} \right)$ where $C = \frac{6650\sqrt{K} - \frac{w}{t}\sqrt{F_y}}{3580\sqrt{K}}$ $\frac{w}{t} > \frac{6650\sqrt{K}}{\sqrt{F_y}}$ $F_{cr} = 26.2 \times 10^6 K (t/w)^2$	$f_{\nu} \leq 0.75 \frac{F_{y}}{\sqrt{3}} \text{ and } \frac{w}{t} \leq \frac{R_{1}}{\sqrt{F_{y}}}$ then $F_{b} = F_{y}\Delta$ $\frac{R_{1}}{\sqrt{F_{y}}} \leq \frac{w}{t} \leq \frac{R_{2}}{\sqrt{F_{y}}} \text{ or } 60$ then $F_{b} = F_{y} \left\{ \Delta - 0.4 \left\{ 1 - \sin \frac{\pi}{2} \left(\frac{R_{2} - \frac{w\sqrt{F_{y}}}{t}}{R_{2} - R_{1}} \right) \right\} \right\}$ $R_{2} \leq w \leq 60$ $F_{b} = 26.21 \times 10^{6} K \left(\frac{t}{w} \right)^{2} \frac{-f_{\nu}^{2} K}{26.1 \times 10^{6} K_{s}} \left(\frac{t}{w} \right)^{2}$ also if $0.75 \frac{F_{y}}{\sqrt{3}} \leq f_{\nu} \leq \frac{F_{y}}{\sqrt{3}}$ and $\frac{w}{t} \leq \frac{R_{1}}{\sqrt{F_{y}}}$ $F_{b} = F_{y} \Delta$ $R_{1}, R_{2} \text{ and } \Delta \text{ are given under compression flange without stiffener section and}$ $2 \leq K \leq 4$ $K_{s} = \frac{5.34 + 2.84 (I_{s}/wt^{3})^{1/3}}{(n+1)^{2}} \leq 5.34$
Compression Flange (negative moment) With Stiffener	Stiffener Criteria $I_s \ge \phi t^3 w$ where $\phi = \begin{bmatrix} 0.07K^3n^4 \text{ for } n = 2,3,4,5 \\ 0.125K^3 \text{ for } n = 1 \end{bmatrix}$ and $\frac{b'}{t'} \le \frac{2,600}{\sqrt{F_y}}$ where b' : depth of stiffener t' : plate thickness of stiffener	Stiffener Criteria $I_s \ge \phi t^3 w$ where: $\phi = 0.07 K^3 n^4 \text{ for } n > 1$ $\phi = 0.125 K^3 n = 1$ $\frac{b}{t} \le \frac{2,600}{\sqrt{F_y}}$

Table 2. (continued)

Item	Straight	Curved
Web Without Stiffener	$\frac{d}{t} \le 150$ $V_u \le 1.015 \times 10^8 t^3 / d \qquad \text{or}$	$\frac{d}{t} \le 150$
t d	$V_u \le 0.58 F_y dt$ $\frac{d}{t} \le \frac{36,500}{\sqrt{F_y}}$	$V_u \le \frac{3.5Et^3}{d} \qquad \text{or}$ $V_u \le 0.58 F_y dt$
With Transverse Stiffener	$d_0 \le 1.5 d$ $V \le V_p \left[C + \frac{0.87(1 - C)}{\sqrt{1 + (d_0/d)^2}} \right]$	$\frac{d}{t} \le 150$ $d_0 \le 1.5d$ $V \le 0.58 F_{\gamma} dt C$
	where: $V_{p} = 0.58 F_{y} dt$ $C = 18,000 \left(\frac{d}{t}\right) \sqrt{\frac{1 + (d/d_{0})^{2}}{F_{y}}} - 0.3 \le 1.0$	where: $C = \left\{ 18,000 \ (t/d) \ \sqrt{\frac{1 + (d/d_0)^2}{F_y}} \right\} - 0.3 \le 1.0$
Web With Transverse and Longitudinal Stiffener	$\frac{d}{t} \leq \frac{73,000}{\sqrt{F_y}}$ $d_0 \leq 1.5d$ and longitudinal stiffener is $d/5$ for compression flange. Shear requirements in accordance with transversely stiffened web criteria.	$\frac{36,500}{\sqrt{F_y}} \left[1 - 8.6 \left(\frac{d_0}{R} \right) + 34 \left(\frac{d_0}{R} \right)^2 \right]$ $\leq \frac{d}{t} \leq \frac{73,000}{\sqrt{F_y}} \left[1 - 2.9 \sqrt{\frac{d_0}{R}} + 2.2 \left(\frac{d_0}{R} \right) \right]$ $d_0 \leq 1.5d$ and longitudinal stiffener is $d/5$ for compression flange shear requirements in accordance with transversely stiffened web criteria.
Transverse Stiffener Criteria	$b/t \le \frac{2600}{\sqrt{F_y}}$ $b = \text{projected width of stiffener and the gross area}$ is $A \ge [0.15Bdt(1-C)(V/V_u)-18t^2]Y$ where: $B = 1.0 \text{ for stiffener pairs}$ $B = 1.8 \text{ for single angles}$ $B = 2.4 \text{ for single plates}$ $C = 18,000 (t/d) \sqrt{\frac{1-(d/d_0)^2}{F_y}} - 0.3 \le 1$ and $V_u = \text{as given previously}$ $Y = \text{ratio of web plate to stiffener plate yield strengths}$ $I \ge d_0 t^3 J$ $J = 2.5(d/d_0)^2 - 2 \ge 0.5$	Same as straight except $J = [2.5(d/d_0)^2 - 2] \ X \le 0.5$ $X = 1.0 \text{ when } (d_0/d) \le 0.78 \text{ and}$ $X = 1 + \left\{ \frac{d_0/d - 0.78}{1775} \right\} Z^4 \text{ when } 0.78 < \frac{d_0}{d} \le 1.0$ $\text{where } Z = \frac{0.95d_0^2}{Rt}$
Longitudinal Stiffener Criteria	$\frac{b'}{t'} \le \frac{2600}{\sqrt{F_y}}$ $I = dt^3 \left[2.4 \left(\frac{d_0}{d} \right)^2 - 0.13 \right]$ $\tau \ge \frac{d_1 \sqrt{F_y}}{23,000}.$ $S_t \ge \frac{1}{3} \left(\frac{d}{d_0} \right) S_s$ $S_t = \text{Section modulers of transverse stiffener}$ $S_s = \text{Section modulers of longitudinal stiffener}$	Same criteria as straight

Three-span bridge

$$A_{T}^{+} = \frac{n}{6.4k} (L_{1} - 73)$$

$$A_{B}^{+} = \frac{n}{5k} (L_{1} - 52)$$
Exterior section
$$A_{T}^{-} = \frac{n}{2.6k} (L_{1} - 100)$$

$$A_{B}^{-} = \frac{1}{kn} (0.964L_{2} - 1.65L_{2}^{2})$$
Support
$$\times 10^{-3} - 70)$$

$$A_{T}^{+} = 0.95A_{T}^{-} - 0.011(A_{T}^{-})^{2}$$

$$- 5.4/k$$

$$A_{B}^{+} = \frac{n}{10k} (L_{2} - 48)$$
Interior section
$$A_{B}^{+} = \frac{n}{10k} (L_{2} - 48)$$
where: $k = \frac{N_{B}F_{y}d}{w_{R} \times 600}$

$$F_y$$
 = yield point of material at specified section (ksi)

 L, L_1, L_2 = span length (ft)

 w_R = roadway width (ft)

 N_B = number of boxes

 d = girder depth (inches)

 $n = L_2/L_1, L_1$ = exterior span, L_2 = interior span

 A_T^+, A_T^- = total top flange area (in.2) in positive or negative moment region

 A_B^+, A_B^- = total bottom flange area (in.2) in positive or negative moment region

Box Girder Geometry—To select the final cross-sectional dimensions of a box girder bridge, along its length, many designs are required. To facilitate such designs, a study⁶ was conducted to optimize the cross sections of single, twoand three-span straight box girder bridges. The specific geometry associated with these bridges are:

1. Parametric details

Span length single-span: L = 50 ft, 100 ft, 150 fttwo-span: L1 = 50 ft, 100 ft, 150 ft L2 = N.L1, N = 1.0, 1.2, 1.4, 1.6three-span: L1 = 50 ft, 100 ft, 150 ft L2 = N.L1, N = 1.0, 1.2, 1.4, 1.6where L2 equals end span for two span or L2 equals center span for three span symmetrical bridge. Web depth: $d/L \leq \frac{1}{25}$ Top flange: $b/t \le 23$. (positive moment region) Bottom flange width: 80 in., 100 in., 120 in.

Bottom flange stiffener: ST 7.5 \times 25. (negative moment region)

Concrete slab 8.5 in.

Steel type A36, $F_{\nu} = 36 \text{ ksi}$ N = 9, 3N = 27, f'c = 4 ksi Unit weight: steel 490 pcf, concrete 150 pcf General parameters parapit: 300 lbs./ft wearing surface: 15 lbs./ft² miscellaneous concrete: 112 lbs./ft miscellaneous steel: 12%

2. Procedure

The determination of the correct plate geometry the various bridges, involved the following pro

Fix span length LSelect web depth d = 12L/25Select bottom flange width W = 80 in. Select web thickness

Select top flange width $b \leq 23t$ Determine dead-load moments

Determine location of cross sectional change using data given in Tables 3 and 4 and Fig. 1 Revise sections and computed dead-load, live-l forces and stress.

Revise per specifications.

Set bottom flange width W = 100 in., repeat.

3. Results

The procedure outlined above was followed for design of 81 bridges. The results of these designs single, two span and three span bridges are tabula in Tables 5, 6, and 7.

Bracing Requirements—The required cross diaphra bracing area, ¹⁰ as shown in Figs. 2 and 3, can be de mined from the following;

$$A_b \ge 750 \frac{Sb}{d^2} \frac{t^3}{(d+b)}$$
 (in.2)

where

s = Diaphragm spacing (in.)

b =Width of box (in.), at bottom flange

d = Depth of box (in.)

 $t = \frac{A}{2(d+b)}$ = weighted section thickness (in

 $A = \text{Total cross sectional plate area (in.}^2)$ as diaphragm location

 A_b = Required area of cross diaphragm brace

The bracing spacing requirement is given by the lowing:

$$s \le 12L \left(\frac{R}{200L - 7500}\right)^{1/2} \le 300 \text{ in.}$$

where

L = Span length (ft)R = Radius of girder (ft)

Top lateral bracing is utilized in stiffening the box du shipment and erection. Such bracing can also provide

Table 3

	No. cross		Web		Flange		m Flange		om Stiffe	ner	
Span	sect.	Depth	Thickness	Width	Thickness	Width	Thickness	A	lx	no.	At/Ab
**	1	24.0	0.375	7.0	0.375	80.0	0.375	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0.175
50′-80″	2	24.0	0.375	11.75	0.5875	80.0	0.375				0.460
	3	24.0	0.375	7.0	0.375	80.0	0.375				0.175
	1	24.0	0.375	8.25	0.375	100.0	0.340				0.165
50-100	2	24.0	0.375	13.75	0.625	100.0	0.340				0.510
	3	24.0	0.375	8.25	0.375	100.0	0.340				0.165
	1	24.0	0.375	8.75	0.4375	120.0	0.310				0.170
50-120	2	24.0	0.375	13.75	0.750	120.0	0.310				0.555
	3	24.0	0.375	8.75	0.4375	120.0	0.310				0.170
	1	48.0	0.500	10.50	0.5625	80.0	0.500				0.393
100-80	2	48.0	0.500	18.75	1.000	80.0	0.750				0.625
	3	48.0	0.500	10.50	0.5625	80.0	0.500				0.393
	1	48.0	0.500	11.75	0.750	100.0	0.375				0.470
100-100	2	48.0	0.500	17.75	1.250	100.0	0.6875				0.648
	3	48.0	0.500	11.75	0.750	100.0	0.375				0.470
	1	48.0	0.500	15.50	0.750	120.0	0.375				0.517
100-120	2	48.0	0.500	20.75	1.250	120.0	0.625				0.692
	3	48.0	0.500	15.50	0.750	120.0	0.375				0.517

^{**} $L - b_w$.

eral stiffness to create a pseudo closed box and thus minimize the warping stresses. The required area for such bracing, as shown in Fig. 4, is given by;

$$A_{bl} \ge 0.036 \text{ (in.}^2\text{)}$$

where

 A_{bl} = Required area of lateral bracing (in.²)

Natural Frequency—The designer is often required to evaluate the vertical natural frequency f, especially if the structure is subjected to train loadings. Such evaluation, for curved structures, has been determined¹¹ and has resulted in the following equations:

$$f = \frac{\pi}{2k^2L^2} \left[\left(EI_x + \frac{EI_w}{R^2} - \frac{GK_TL^2}{R^2} \right) / M \right]^{1/2} \text{ (cps)}$$

Table 4. Location of Section Changes for Negative Moment

_	Negative Region Moment										
Length (ft)	No. of Cros. sect.	X_1	X_2	X_3	X_4						
L < 49	3	0.109 <i>L</i>	0.239 <i>L</i>								
$49 \le L < 82$	4	0.081L	0.172 <i>L</i>	0.282 <i>L</i>							
82 ≤ <i>L</i> < 115	5	0.065 <i>L</i>	0.136 <i>L</i>	0.215 <i>L</i>	0.310 <i>L</i>						

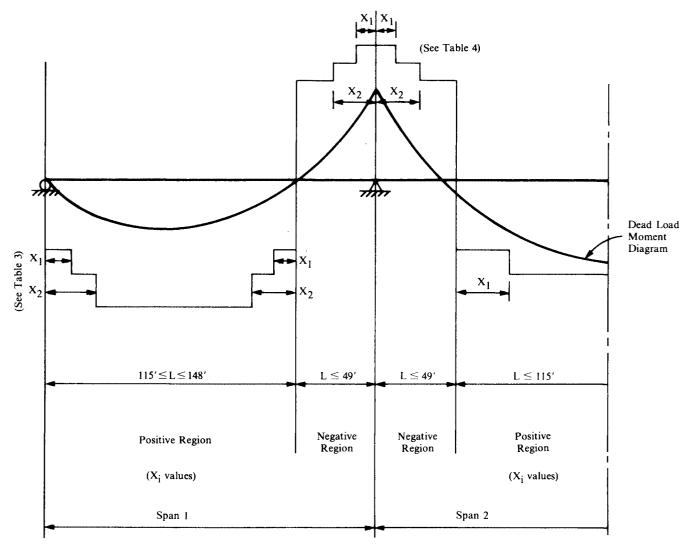


Fig. 1. Example of location of section changes

where:

 EI_x = bending stiffness (kip-in.²)

 EI_w = warping stiffness (kip-in.⁴) GK_T = torsional stiffness (kip-in.²)

R = radius (in.)

 $M = mass (w/g) (kip-sec^2/in.)$

L = exterior span length (in.)

 $k = Bn^2 + Cn + D$ (for simple spans, k = 1)

and B, C, D are constants defined as:

	В	C	D
Two span	0.242	-0.80	1.55
Three span	0.367	-1.24	1.87

and $n = L_{\text{interior}}/L_{\text{exterior}} 1.0 \le n \le 1.7$.

As approximations for the torsional properties, the following expressions may be used;

$$K_T = \frac{2t'(b'd')^2}{(d+b)}$$

$$L_W = \frac{t'b'^2d'^3}{24} \frac{(1-b'/d')^2}{(1+b'/d')^2}$$

where

b' = average width of box

d' = average depth of box

t' = average plate thickness

Ultimate Strength—The ultimate strength determination of a curved box girder requires consideration of the interaction between the bending moment and torque. A com-

Table 5. Single-Span Section Dimensions

	No.				ne-span secti						
Span (ft)	cross sect.	Depth	Web Thickness	Top Width	Flange Thickness	Botto Width	m Flange Thickness	Bot [*]	tom Stiffe	ner no.	A_T/A_B
	1	24.0	0.375	7.0	0.375	80.0	0.375		12	110.	0.175
50	<u> </u>										·····
50	2	24.0	0.375	11.75	0.5875	80.0	0.375		ļ		0.460
	3	24.0	0.375	7.0	0.375	80.0	0.375	-			0.175
	1	24.0	0.375	8.25	0.375	100.0	0.340	· · · · · · · · · · · · · · · · · · ·			0.165
50	2	24.0	0.375	13.75	0.625	100.0	0.340				0.510
	3	24.0	0.375	8.25	0.375	100.0	0.340				0.165
	1	24.0	0.375	8.75	0.4375	120.0	0.310				0.170
50	2	24.0	0.375	13.75	0.750	120.0	0.310				0.555
	3	24.0	0.375	8.75	0.4375	120.0	0.310				0.170
	1	48.0	0.500	10.50	0.5625	80.0	0.500				0.393
100	2	48.0	0.500	18.75	1.000	80.0	0.750				0.625
	3	48.0	0.500	10.50	0.5625	80.0	0.500				0.393
	1	48.0	0.500	11.75	0.750	100.0	0.375	,			0.470
100	2	48.0	0.500	17.75	1.250	100.0	0.6875				0.648
	3	48.0	0.500	11.75	0.750	100.0	0.375				0.470
	1	48.0	0.500	15.50	0.750	120.0	0.375				0.517
100	2	48.0	0.500	20.75	1.250	120.0	0.625				0.692
	3	48.0	0.500	15.50	0.750	120.0	0.375				0.517
	1	72.0	0.750	7.00	0.375	80.0	0.375				0.175
150	2	72.0	0.750	26.25	1.250	80.0	1.1875				0.69
	3	72.0	0.750	7.00	0.375	80.0	0.375				0.175
	1	72.0	0.750	7.00	0.375	100.0	0.375				0.14
150	2	72.0	0.750	28.75	1.3125	100.0	1.0625				0.71
	3	72.0	0.750	7.00	0.375	100.0	0.375				0.14
	1	72.0	0.750	7.00	0.375	120.0	0.375				0.117
150	2	72.0	0.750	30.50	1.4375	120.0	1.000				0.731
	3	72.0	0.750	7.00	0.375	120.0	0.375				0.117

Table 6. Two-Span Section Dimensions

SPANS	No.	Web		Tr.	Flores	D	m Flance	D	tom Stiffer		
SPANS (ft)	cross sect.	Depth	Thickness	Width	Flange Thickness	Width	m Flange Thickness	A	Iom Suite	ner no.	A_T/A_B
**	1	24.0	0.375	7.50	0.375	80.0	0.375				0.187
50 - 50	2	24.0	0.375	20.25	1.000	80.0	0.500	7.35	40.6	2	1.013
	3	24.0	0.375	7.50	0.375	80.0	0.375				0.187
	1	24.0	0.375	8.375	0.4375	100.0	0.375				0.195
50-50	2	24.0	0.375	21.25	1.125	100.0	0.5625	7.35	40.6	2	0.850
	3	24.0	0.375	8.375	0.4375	100.0	0.375				0.195
	1	24.0	0.375	9.375	0.4375	120.0	0.375				0.182
50~50	2	24.0	0.375	25.50	1.125	120.0	0.5625	7.35	40.6	3	0.850
	3	24.0	0.375	9.375	0.4375	120.0	0.375				0.182
	1	24.0	0.375	6.500	0.375	80.0	0.375				0.163
50~60	2	24.0	0.375	24.00	1.250	80.0	0.6875	7.35	40.6	2	1.090
	3	24.0	0.375	9.750	0.625	80.0	0.375				0.406
	1	24.0	0.375	7.250	0.375	100.0	0.375				0.145
50-60	2	24.0	0.375	29.00	1.250	100.0	0.6875	7.35	40.6	2	1.054
	3	24.0	0.375	11.00	0.625	100.0	0.375				0.366
	1	24.0	0.375	7.750	0.375	120.0	0.375				0.129
50~ 60	2	24.0	0.375	31.00	1.4375	120.0	0.6875	7.35	40.6	2	1.080
	3	24.0	0.375	12.75	0.625	120.0	0.375				0.354
	1	24.0	0.4375	6.00	0.375	80.0	0.375				0.15
50-70	2	24.0	0.4375	31.00	1.4375	80.0	0.9375	7.35	40.6	3	1.188
v#s1_1	3	24.0	0.4375	14.25	0.6875	80.0	0.500				0.49
	1	24.0	0.4375	6.00	0.375	100.0	0.375				0.12
50-70	2	24.0	0.4375	36.50	1.375	100.0	0.9375	7.35	40.6	3	1.07
	3	24.0	0.4375	16.00	0.8125	100.0	0.500				0.52
	1	24.0	0.4375	6.00	0.375	120.0	0.375				0.10
50-70	2	24.0	0.4375	41.00	1.625	120.0	1.000	7.35	40.6	3	1.11
	3	24.0	0.4375	18.00	0.875	120.0	0.4375				0.60
	1	24.0	0.500	6.00	0.375	80.0	0.375				0.15
50-80	2	24.0	0.500	31.00	1.500	80.0	1.000	7.35	40.6	3	1.162
	3	24.0	0.500	15.75	0.875	80.0	0.625				0.55

Table 6. Two-Span Section Dimensions

SPANS	No.	,	Web	Ton	Flange	Botto	om Flange	Bot	tom Stiffe	ner	
(ft)	sect.	Depth	Thickness	Width	Thickness	Width	Thickness	A	Ix	no.	A_T/A_B
	1	24.0	0.500	6.00	0.375	100.0	0.375				0.12
50-80	2	24.0	0.500	35.50	1.625	100.0	1.000	7.35	40.6	3	1.153
	3	24.0	0.500	18.75	0.875	100.0	0.5625		-		0.583
	1	24.0	0.500	6.00	0.375	120.0	0.375				0.100
50-80	2	24.0	0.500	42.00	1.8125	120.0	1.125	7.35	40.6	4	1.127
	3	24.0	0.500	19.75	1.000	120.0	0.5625				0.585
	1	48.0	0.5625	8.00	0.4375	80.0	0.375				0.233
100-100	2	48.0	0.5625	30.50	1.3750	80.0	0.9375	7.35	40.6	2	1.118
	3	48.0	0.5625	8.00	0.4375	80.0	0.375		-		0.233
	1	48.0	0.5625	9.50	0.4375	100.0	0.375				0.222
100-100	2	48.0	0.5625	35.50	1.4375	100.0	0.875	7.35	40.6	2	1.166
	3	48.0	0.5625	9.50	0.4375	100.0	0.375				0.222
	1	48.0	0.5625	10.25	0.500	120.0	0.375				0.227
100-100	2	48.0	0.5625	37.25	1.625	120.0	0.9375	7.35	40.6	2	1.076
	3	48.0	0.5625	10.25	1.625	120.0	0.375				0.227
	1	48.0	0.5625	6.25	0.375	80.0	0.375				0.156
100-120	2	48.0	0.5625	40.5	1.5625	80.0	1.500	7.35	40.6	2	1.054
	3	48.0	0.5625	15.50	0.750	80.0	0.625				0.465
	1	48.0	0.5625	6.50	0.375	100.0	0.375				0.13
100-120	2	48.0	0.5625	42.50	1.875	100.0	1.500	7.35	40.6	2	1.063
	3	48.0	0.5625	16.00	0.8125	100.0	0.500				0.52
	1	48.0	0.5625	7.00	0.375	120.0	0.375				0.116
100-120	2	48.0	0.5625	48.0	2.0625	120.0	1.5625	7.35	40.6	2	1.056
	3	48.0	0.5625	18.25	0.875	120.0	0.500				0.532
	1	48.0	0.625	6.75	0.375	80.0	0.375				0.168
100-140	2	48.0	0.625	39.25	1.875	80.0	1.750	7.35	40.6	2	1.051
	3	48.0	0.625	24.00	1.125	80.0	1.0625				0.635
	1	48.0	0.625	6.75	0.375	100.0	0.375				0.135
100-140	2	48.0	0.625	51.00	2.000	100.0	1.9375	7.35	40.6	2	1.053
	3	48.0	0.625	26.50	1.250	100.0	0.9375				0.706

Table 6. Two-Span Section Dimensions

SPANS	No.		Web		o Flange		m Flange	Bot	tom Stiffe	ner	
(ft)	sect.	Depth	Thickness	Width	Thickness	Width	Thickness	A	Ix	no.	A_T/A_B
	1	48.0	0.625	6.75	0.375	120.0	0.375				0.113
100-140	2	48.0	0.625	57.00	2.437	120.0	2.1875	7.35	40.6	2	1.058
	3	48.0	0.625	28.50	1.375	120.0	0.875				0.75
	1	48.0	0.6875	6.75	0.375	80.0	0.375				0.168
100-160	2	48.0	0.6875	40.5	1.9375	80.0	1.8125	7.35	40.6	2	1.083
	3	48.0	0.6875	27.00	1.375	80.0	1.3125				0.707
	1	48.0	0.6875	6.75	0.375	100.0	0.375				0.135
100-160	2	48.0	0.6875	48.00	2.0625	100.0	1.875	7.35	40.6	2	1.056
·······	3	48.0	0.6875	28.50	1.500	100.0	1.1875				0.72
	1	48.0	0.6875	6.75	0.375	120.0	0.375				0.1125
100-160	2	48.0	0.6875	51.0	2.4375	120.0	2.000	7.35	40.6	2	1.036
	3	48.0	0.6875	32.25	1.5625	120.0	1.0625				0.79
150-150	1	72.0	0.75	7.25	0.4375	80.0	0.4375				0.181
	2	72.0	0.75	39.0	1.6875	80.0	1.4375	7.35	40.6	2	1.144
	3	72.0	0.75	7.25	0.4375	80.0	0.4375				0.181
	1	72.0	0.75	9.00	0.500	100.0	0.375				0.240
150-150	2	72.0	0.75	41.00	1.875	100.0	1.4375	7.35	40.6	2	1.069
	3	72.0	0.75	9.00	0.500	100.0	0.375				0.240
	1	72.0	0.75	9.50	0.625	120.0	0.375				0.264
150150	2	72.0	0.75	46.0	2.000	120.0	1.4375	7.35	40.6	2	1.066
	3	72.0	0.75	9.50	0.625	120.0	0.375				0.264
	1	86.0	0.8125	6.00	0.375	80.0	0.375				0.150
150180	2	86.0	0.8125	40.00	1.75	80.0	1.625	7.35	40.6	2	1.076
	3	86.0	0.8125	13.0	0.625	80.0	0.5625				0.361
	1	86.0	0.8125	6.00	0.375	100.0	0.375				0.12
150-180	2	86.0	0.8125	45.0	1.9375	100.0	1.5625	7.35	40.6	2	1.116
	3	86.0	0.8125	14.0	0.75	100.0	0.500				0.42
	1	86.0	0.8125	6.0	0.375	120.0	0.375				0.100
150-180	2	86.0	0.8125	49.0	2.125	120.0	1.625	7.35	40.6	2	1.068
	3	86.0	0.8125	16.0	0.8125	120.0	0.4375				0.495

Table 6. Two-Span Section Dimensions

SPANS	No.		Web	Tor	Flange	Botto	m Flange	Bot	tom Stiffe	ner	
(ft)	sect.	Depth	Thickness	Width	Thickness	Width	Thickness	A	lx	no.	A_T/A_B
	1	100.0	0.9375	6.00	0.375	80.0	0.375				0.150
150-210	2	100.0	0.9375	40.25	2.000	80.0	1.875	7.35	40.6	2	1.073
	3	100.0	0.9375	19.00	0.875	80.0	0.75				0.554
	1	100.0	0.9375	6.00	0.375	100.0	0.375				0.12
150-210	2	100.0	0.9375	49.00	2.0625	100.0	1.9375	7.35	40.6	2	1.043
	3	100.0	0.9375	20.5	0.9375	100.0	0.6875				0.560
	1	100.0	0.9375	6.00	0.375	120.0	0.375				0.100
150-210	2	100.0	0.9375	54.00	2.3125	120.0	2.0625	7.35	40.6	2	1.009
	3	100.0	0.9375	22.00	1.0625	120.0	0.625				0.623
	1	115.0	1.0625	6.00	0.375	80.0	0.375				0.15
150-240	2	115.0	1.0625	45.00	1.9375	80.0	2.0625	7.35	40.6	2	1.046
	3	115.0	1.0625	26.00	1.1250	80.0	1.0625				0.688
	1	115.0	1.0625	6.00	0.375	100.0	0.375				0.12
150-240	2	115.0	1.0625	50.00	2.4375	100.0	2.3125	7.35	40.6	2	1.054
	3	115.0	1.0625	28.0	1.25	100.0	0.9375				0.7466
	1	115.0	1.0625	6.00	0.375	120.0	0.375				0.100
150-240	2	115.0	1.0625	58.00	2.75	120.0	2.625	7.35	40.6	2	1.012
	3	115.0	1.0625	30.0	1.375	120.0	0.9375				0.733

** *L*1-*L*2.

prehensive laboratory study,12 in which composite and noncomposite negative and positive sections were tested, has resulted in the following interaction equation:

$$\left(\frac{M}{M_p}\right)^{3/2} + \left(\frac{T}{T_p}\right)^{3/2} \le 1.0$$

where:

 M_p = plastic bending strength \hat{M} = design bending moment T_p = plastic torsional strength T = design torsional moment

Subsequent examination of typical box girders and their moment capacities, as controlled by the current AASHTO specifications¹ and as given in Table 2, has also permitted development of a series of design charts¹⁷ which permit rapid evaluation of these moments.

Computerized Design—The general response of single or continuous curved box girder bridges can be predicted by the solution of a series of coupled differential equations, when written in difference form as given in Fig. 5.

These equations have been subsequently incorporated into a computer program, which automates the design/ analysis of prismatic or nonprismatic straight or curved box girders as governed by the AASHTO criteria. 1,2

The box girder may be either composite or noncomposite construction and can have integral transverse diaphragms spaced along the box and contain top lateral bracing. The

Table 7. Three-Span Box Dimensions

Table 7. Three-Span Box Dimensions											
SPANS	No. cross	,	Web	Ton	Top Flange		n Flange	Rot	tom Stiffener		
(ft)	sect.	Depth	Thickness	Width	Thickness	Width	Thickness	A	Ix	no.	A_T/A_B
**	1	24.0	0.375	8.25	0.4375	80.0	0.375				0.241
50-50-50	2	24.0	0.375	19.00	0.8125	80.0	0.4375	. 7.35	40.6	4	0.882
	3	24.0	0.375	6.00	0.375	80.0	0.375				0.15
	1	24.0	0.375	9.75	0.4375	100.0	0.375				0.227
50-50-50	2	24.0	0.375	20.25	0.875	100.0	0.4375	7.35	40.6	3	0.81
	3	24.0	0.375	6.00	0.375	100.0	0.375				0.12
İ	1	24.0	0.375	10.25	0.500	120.0	0.375				0.227
50-50-50	2	24.0	0.375	22.25	0.9375	120.0	0.500	7.35	40.6	3	0.695
	3	24.0	0.375	6.00	0.375	120.0	0.375				0.100
ı	1	24.0	0.375	7.00	0.375	80.0	0.375				0.175
50-60-50	2	24.0	0.375	22.25	1.000	80.0	0.375	7.35	40.6	3	1.483
	3	24.0	0.375	6.75	0.375	80.0	0.375				0.1687
	1	24.0	0.375	7.75	0.375	100.0	0.375				0.155
50-60-50	2	24.0	0.375	24.00	1.0625	100.0	0.4375	7.35	40.6	3	1.165
	3	24.0	0.375	7.25	0.375	100.0	0.375				0.145
	1	24.0	0.375	7.75	0.375	120.0	0.375				0.129
50-60-50	2	24.0	0.375	24.50	1.0625	120.0	0.500	7.35	40.6	3	0.8677
	3	24.0	0.375	7.00	0.375	120.0	0.375				0.1167
!	1	24.0	0.375	7.00	0.375	80.0	0.375				0.175
507050	2	24.0	0.375	24.0	1.125	80.0	0.5625	7.35	40.6	2	1.200
	3	24.0	0.375	8.50	0.375	80.0	0.375				0.212
	1	24.0	0.375	8.00	0.375	100.0	0.375				0.16
50-70-50	2	24.0	0.375	26.25	1.1875	100.0	0.5625	7.35	40.6	2	1.108
	3	24.0	0.375	9.00	0.4375	100.0	0.375				0.21
	1	24.0	0.375	8.50	0.4375	120.0	0.375				0.165
50-70-50	2	24.0	0.375	28.5	1.3125	120.0	0.6875	7.35	40.6	2	0.906
	3	24.0	0.375	10.00	0.500	120.0	0.375				0.222
	1	24.0	0.4375	6.00	0.375	80.0	0.375				0.15
50-80-50	2	24.0	0.4375	28.00	1.3125	80.0	0.8125	7.35	40.6	2	1.13
	3	24.0	0.4375	9.50	0.4375	80.0	0.375				0.277

Table 7. Three-Span Box Dimensions

SPANS	No.	Web		Тор	Flange	Botto	m Flange	Bott	om Stiffe	ner	
(ft)	sect.	Depth	Thickness	Width	Thickness	Width	Thickness	A	Ix	no.	A_T/A_B
	1	24.0	0.4375	6.00	0.375	100.0	0.375				0.12
50-80-50	2	24.0	0.4375	31.00	1.375	100.0	0.750	7.35	40.6	2	1.136
	3	24.0	0.4375	11.50	0.500	100.0	0.375				0.306
	1	24.0	0.4375	6.00	0.375	120.0	0.375				0.100
50-80-50	2	24.0	0.4375	33.00	1.500	120.0	0.750	7.35	40.6	2	1.10
	3	24.0	0.4375	11.50	0.5625	120.0	0.375				0.287
	1	48.0	0.5625	12.75	0.5625	80.0	0.4375				0.410
100-100-100	2	48.0	0.5625	25.50	1.125	80.0	0.5625	7.35	40.6	2	1.275
	3	48.0	0.5625	6.00	0.375	80.0	0.375	* 			0.15
	1	48.0	0.5625	14.00	0.625	100.0	0.4375				0.40
100 100-100	2	48.0	0.5625	28.50	1.1875	100.0	0.5625	7.35	40.6	2	1.203
	3	48.0	0.5625	6.00	0.375	100.0	0.375				0.12
100-100 · 100	1	48.0	0.5625	15.50	0.6875	120.0	0.375				0.4376
	2	48.0	0.5625	31.00	1.3125	120.0	0.6875	7.35	40.6	2	0.986
	3	48.0	0.5625	6.00	0.375	120.0	0.375				0.100
	1	48.0	0.5625	8.00	0.4375	80.0	0.375				0.238
100-120-100	2	48.0	0.5625	30.00	1.4375	80.0	0.9375	7.35	40.6	2	1.15
	3	48.0	0.5625	7.00	0.375	80.0	0.375				0.175
	1	48.0	0.5625	9.50	0.4375	100.0	0.375				0.222
100 · 120-100	2	48.0	0.5625	33.50	1.500	100.0	0.875	7.35	40.6	2	1.148
	3	48.0	0.5625	7.50	0.375	100.0	0.375				0.15
	1	48.0	0.5625	10.25	0.500	120.0	0.375				0.228
100-120-100	2	48.0	0.5625	37.00	1.625	120.0	0.875	7.35	40.6	2	1.145
	3	48.0	0.5625	8.50	0.375	120.0	0.375				0.142
	1	48.0	0.5625	7.50	0.4375	80.0	0.375				0.219
100-140-100	2	48.0	0.5625	34.0	1.6250	80.0	1.250	7.35	40.6	2	1.105
	3	48.0	0.5625	11.00	0.5625	80.0	0.4375				0.353
	1	48.0	0.5625	8.75	0.4375	100.0	0.375				0.204
100-140-100	2	48.0	0.5625	40.00	1.6875	100.0	1.250	7.35	40.6	2	1.08
	3	48.0	0.5625	12.50	0.625	100.0	0.4375				0.357

Table 7. Three-Span Box Dimensions

SPANS	No.		Web		ree-Span Box		m Flange	Rest	tom Stiffe	ner	A_T/A_B
(ft)	cross sect.	Depth	Thickness	Width	Thickness	Width	Thickness	A	Ix	no.	
	1	48.0	0.5625	9.50	0.4375	120.0	0.375				0.185
100-140-100	2	48.0	0.5625	44.50	1.875	120.0	1.3125	7.35	40.6	2	1.059
	3	48.0	0.5625	15.00	0.6875	120.0	0.375				0.458
	1	48.0	0.625	6.00	0.375	80.0	0.375				0.15
100-160100	2	48.0	0.625	39.00	1.750	80.0	1.5625	7.35	40.6	2	1.092
	3	48.0	0.625	18.00	0.8125	80.0	0.750				0.332
	1	48.0	0.625	6.00	0.375	100.0	0.375				0.12
100-160-100	2	48.0	0.625	43.00	1.875	100.0	1.500	7.35	40.6	2	1.075
	3	48.0	0.625	18.00	0.875	100.0	0.625				0.504
	1	48.0	0.625	6.00	0.375	120.0	0.375				0.100
100-160-100	2	48.0	0.625	46.00	2.0625	120.0	1.500	7.35	40.6	2	1.054
	3	48.0	0.625	20.00	0.875	120.0	0.5625				0.519
150150-150	1	72.0	0.750	17.25	0.750	80.0	0.6875				0.47
	2	72.0	0.750	31.50	1.375	80.0	0.9375	7.35	40.6	2	1.154
	3	72.0	0.750	6.00	0.375	80.0	0.375				0.15
	1	72.0	0.750	18.75	0.8125	100.0	0.5625				0.542
150-150-150	2	72.0	0.750	34.50	1.500	100.0	0.875	7.35	40.6	2	1.183
	3	72.0	0.750	6.00	0.375	100.0	0.375				0.12
	1	72.0	0.750	20.00	0.9375	120.0	0.5625				0.555
150-150-150	2	72.0	0.750	37.50	1.625	120.0	0.875	7.35	40.6	2	1.161
	3	72.0	0.750	6.00	0.375	120.0	0.375				0.100
	1	72.0	0.750	10.00	0.4375	80.0	0.4375	·····			0.25
150 180 150	2	72.0	0.750	37.50	1.750	80.0	1.500	7.35	40.6	2	1.093
	3	72.0	0.750	7.00	0.375	80.0	0.375				0.15
	1	72.0	0.750	11.00	0.5625	100.0	0.375				0.33
150 180 150	2	72.0	0.750	43.00	1.8125	100.0	1.4375	7.35	40.6	2	1.084
	3	72.0	0.750	7.75	0.375	100.0	0.375				0.155
	1	72.0	0.750	14.00	0.625	120.0	0.375				0.388
150 -180 -150	2	72.0	0.750	46.00	2.00	120.0	1.4375	7.35	40.6	2	1.066
	3	72.0	0.750	8.50	0.375	120.0	0.375				0.142

Table 7. Three-Span Box Dimensions

SPANS	No.		Web	Тор	Flange		m Flange		tom Stiffe		
(ft)	sect.	Depth	Thickness	Width	Thickness	Width	Thickness	A	Ix	no.	A_T/A_B
	1	72.0	0.750	8.50	0.375	80.0	0.4375				0.182
150-210-150	2	72.0	0.750	45.00	2.000	80.0	2.125	7.35	40.6	. 2	1.059
	3	72.0	0.750	17.00	0.750	80.0	0.6875				0.464
	1	72.0	0.750	9.50	0.4375	100.0	0.375				0.222
150-210-150	2	72.0	0.750	51.50	2.1875	100.0	2.125	7.35	40.6	2	1.06
	3	72.0	0.750	18.00	0.8750	100.0	0.625				0.504
	1	72.0	0.750	9.00	0.4375	120.0	0.375				0.175
150-210-150	2	72.0	0.750	58.00	2.500	120.0	2.250	7.35	40.6	2	1.086
	3	72.0	0.750	21.50	0.9375	120.0	0.5625				0.597
	1	72.0	0.8125	7.00	0.375	80.0	0.375				0.175
150240150	2	72.0	0.8125	52.00	2.250	80.0	2.750	7.35	40.6	2	1.063
	3	72.0	0.8125	23.50	1.125	80.0	1.0625				0.622
	1	72.0	0.8125	7.00	0.375	100.0	0.375				0.140
150-240-150	2	72.0	0.8125	57.50	2.500	100.0	2.6875	7.35	40.6	2	1.069
	3	72.0	0.8125	24.50	1.125	100.0	0.875				0.63
	1	72.0	0.8125	7.00	0.375	120.0	0.375				0.117
150-240-150	2	72.0	0.8125	62.00	2.750	120.0	2.625	7.35	40.6	2	1.082
	3	72.0	0.8125	26.0	1.125	120.0	0.750				0.65

^{**} *L*1-*L*2-*L*3.

basic configuration of a typical box and the type of cross diaphragms is shown in Figs. 2, 3 and 4.

The computer output contains influence line ordinates, stresses on top and bottom flanges at locations along the span due to dead load, superimposed dead load, and live load plus impact. The stress resultants include the effects of bending, warping and distortion, utilizing the automatically computed section properties.

Stress envelopes are given for fatigue design. Specifications (AASHTO) are used to establish allowable stresses, web and flange stiffening requirements and shear connector spacing, as given in Tables 1 and 2.

Resulting girder deflections and rotations, due to sequential concrete placements, can also be determined for

specified length of pours. Composite/noncomposite actions may be assured after the concrete hardens.

The entire output sequence is as follows:

Basic Data

Job description

Girder geometry

Structural details

Concrete properties

Loading properties

Section details: span length, plate sizes, section properties, stiffener and bracing de-

tails, dead loads

Pouring sequence geometry

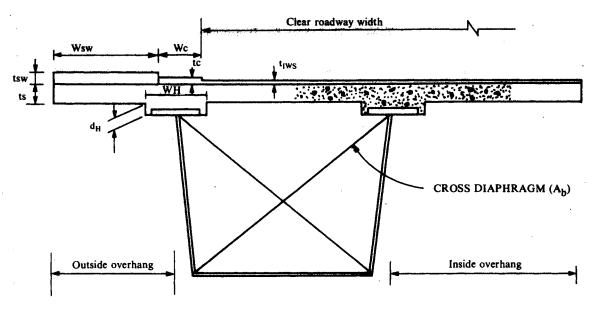


Fig. 2. Structural details

Stresses

Dead-load normal stress Superimposed dead-load normal stress Live-load normal stress (positive and negative moment)

Forces

Moment envelope Deflection envelope Shear envelope Vertical reaction envelope Torsion reaction envelope Torsion envelope
Bimoment envelope
Normal stress envelope
Stress range envelope
d/t, b/t requirements, web stress
Theoretical web stiffener requirement
Total stresses
Shear connector spacing requirements
Fatigue criteria
Pouring sequence deflections
Natural frequency

Pouring sequence rotations

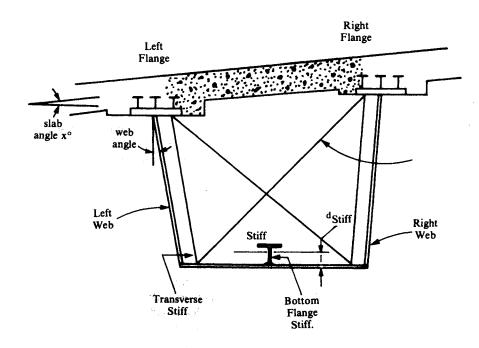
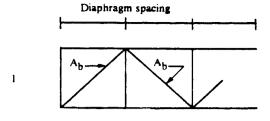
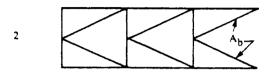
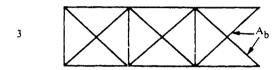
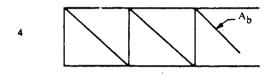






Fig. 3. Cross section

Ab = Bracing member area.

Fig. 4. Bracing types (top lateral)

Field-Test Comparison to Theoretical Results—The static and dynamic response of a full scale bridge structure, when subjected to a known truck loading, was examined during the Fall 1973.¹⁶ The bridge consisted of twin steel boxes (4.5 ft × 8.8 ft) in composite action with a 9½-in. concrete slab. That part of the bridge under test was a three-span continuous with span lengths 100 ft, 130 ft, and 120 ft and centerline radius of 1,317 ft. The bridge was designed as a two-lane structure. The deformations and strains throughout the structure were measured during the application of the test vehicle. The resulting static load data were then examined and the results compared to the data obtained by the previously described analytical technique.^{8,9}

In summary, the resulting induced stresses, at various locations along the structure, are described in Table 8. The sections are located as follows:

Section A 0.4 (exterior span) Section B $1.0L_1$ (first interior support) Section C $0.5L_2$ (midspan of interior span)

Examination of the data given in Table 8 indicates reasonable correlation between theory and experiment and the importance of the top lateral bracing during the dead-load response.

The resulting girder deflections at Section A and Section C are given in Table 9. The data shown in this table show comparisons between theory and tests, indicating reasonable correlation especially for live load effects. The discrepancy in the dead-load results is due to the sequential placement of the concrete and time dependent composite actions.

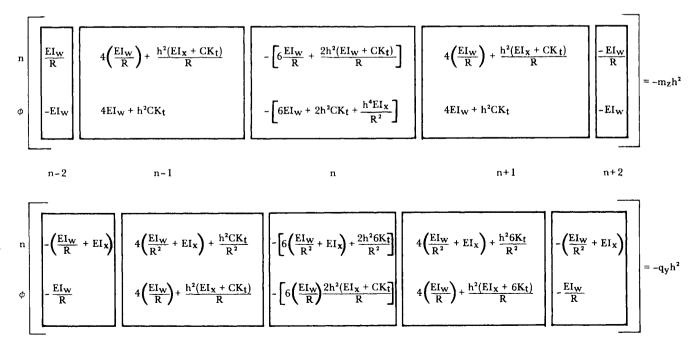


Fig. 5. Curved girder finite difference equation

Table 8. Prototype Bridge Test-Stresses

			Theory	(ksi)
Cross		Test	With	Without
Sections	Loading	(ksi)	bracing	bracing
	DL	7.70	6.25	9.02
A	LL + I	2.32	2.65	2.65
	Total	10.02	8.90	11.67
	DL	-5.14	-4.96	-6.66
В	LL + I	76	-1.05	<u>-1.05</u>
	Total	-5.90	-6.01	-7.71
	DL	6.12	3,26	4.27
C	LL + I	1.83	2.07	2.07
	Total	$\frac{7.05}{7.95}$	5.33	$\frac{2.67}{6.34}$

Table 9. Prototype Bridge Test-Vertical Deflections

			The	ory
Cross	Loading	Test	With	Without
Section		(in.)	bracing	bracing
A	DL	1.19	0.88	0.93
	LL + I	0.20	0.23	0.23
	Total	1.39	1.11	1.16
С	DL LL + I Total	0.50 0.26 0.76	$0.51 \\ 0.27 \\ \overline{0.78}$	0.47 0.27 0.74

In general, results indicate the curved girder finite difference theory provides an excellent technique for box girder design.

CONCLUSIONS

This paper presents the results of various research which has permitted a better understanding of steel box girder bridges and the development of design criteria. Through use of these design data, more efficient and rapid design of such structures can be achieved, and a better service to the public provided.

REFERENCES

- 1. Standard Specifications for Highway Bridges 12th Edition, AASHTO, Washington, D.C., 1977.
- 2. Guide Specifications for Horizontally Curved Highway Bridges AASHTO, Washington, D.C., 1980.
- 3. Galambos, T. V. Tentative Load Factor Design Criteria for Curved Steel Bridges Rept. No. 50, Washington Univ., St. Louis, Mo., May 1978.
- 4. Wolchuck, R., and R. Mayrbaurl Proposed Design Specifications for Steel Box Girder Bridges FHWA Rept. TS-80-205, Jan. 1980.
- 5. Heins, C. P. Box Girder Bridge Design AISC Engineering Journal, Vol. 15, No. 4, Dec. 1978.
- Heins, C. P., and L. J. Hua Proportioning Box Girder Bridges ASCE St. Div. Journal, Vol. 106, No. ST11, Nov. 1980.
- 7. Heins, C. P., and D. H. Hall Designers Guide to Steel Box Girder Bridges Bethlehem Steel Corp., Bethlehem, Pa., 1981.
- 8. Heins, C. P., and J. C. Olenick Curved Box Beam Bridges Analysis Computers and Structures Journal, Vol. 6, pp. 65-73, Pergamon Press, London, 1976.
- 9. Heins, C. P., and F. H. Sheu Computer Analysis of Steel Box Girder Bridges Civil Engineering Dept. Report, Univ. of Maryland, June 1981.
- Heins, C. P., and J. C. Olenick Diaphragms for Curved Box Beam Bridges ASCE St. Div. Journal, Vol. 101, No. ST10, October 1975.
- 11. Heins, C. P., and A. Sahin Natural Frequency of Curved Box Girder Bridges ASCE St. Div. Journal, Vol. 105, No. ST12, Dec. 1979.
- 12. Heins, C. P., and R. Humphrey Bending and Torsion Interaction of Box Girders ASCE St. Div. Journal, Vol. 105, No. ST5, May 1979.
- Heins, C. P., et al. Curved Steel Box Girder Bridges: A Survey ASCE St. Div. Journal, Vol. 104, No. ST11, Nov. 1078
- Heins, C. P., et al. Curved Steel Box Girder Bridges: State of Art ASCE St. Div. Journal, Vol. 104, No. ST11, Nov. 1078
- Heins, C. P., and W. H. Lee Curved Box Girder Field Test ASCE St. Div. Journal, Vol. 107, No. ST2, Feb. 1081
- Yoo, C. H., J. Buchanan, C. P. Heins, and W. L. Armstrong Loading Response of a Continuous Box Girder Bridge Proceedings ASCE Specialty Conference on Metal Bridges, St. Louis, Mo., Nov. 1974.
- 17. Heins, C. P., and J. Y. Shyu Moment Capacity of Box Girders Institute for Physical Science and Technology Report, University of Maryland, June 1981.