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ABSTRACT 

 

The buckling behavior of beams with reverse curvature bending can be 

complex since both flanges are subjected to compression at different 

locations along the unbraced length. Design engineers frequently raise 

questions regarding the inflection point behaving as a braced point in 

continuous construction.  The problem is further complicated when the 

top flange is braced by closely-spaced joists or composite construction 

while the bottom flange is unbraced. Although the moment is zero at the 

inflection point, the location can not generally be treated as a braced 

point because the section can still twist at this location. A variety of 

commonly encountered design problems are discussed and simple 

solutions are provided in the form of Cb factors applied to the uniform 

moment solution. The problems that are considered include beams with 

reverse curvature bending with no intermediate bracing, as well as 

members with continuous bracing on the top flange.  For members with 

bracing on one flange, solutions are presented for lateral bracing, 

torsional bracing and composite construction.   
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INTRODUCTION 

 

Two of the primary factors that affect the lateral-torsional buckling 

capacity of a beam are the unbraced length and the distribution of 

bending moment along the member. Effects of moment gradient are 

usually accounted for by adjusting the buckling solution derived for 

uniform moment loading. However, when addressing the unbraced 

length, engineers are often unsure what constitutes a braced point.  This 

is particularly true for beams with inflection points due to reverse 

curvature bending. Since the moment is zero at the inflection point, 

questions frequently arise regarding this point behaving as a braced 

point (AISC-1993, 1995, CISC, 2003). In many of these situations the 

top flange of the girder may be laterally braced by a flooring system or 

joists, while the bottom flange is unbraced.  

As the name implies, the lateral-torsional buckling mode of beams 

involves both lateral translation and twist of the cross section. Bracing 

that restrains one point on the cross section from lateral movement does 

not ensure adequate bracing. However, preventing twist of the cross 

section ensures that the point is braced (Yura, 1993). This paper 

focuses on the buckling behavior of beams with inflection points. 

Background information is presented in the next section followed by 

finite element results on beams with reverse curvature bending.  Several 

bracing scenarios with reverse curvature bending are considered, 

ranging from cases with no intermediate bracing to situations with 

lateral bracing on one flange only.  Expressions for Cb factors that 

reflect the beneficial effects of the bracing are presented and discussed.   

 

BACKGROUND 

 

Most design specifications employ lateral-torsional buckling solutions 

that were developed for constant bending moment and account for 

variable moment with Cb factors applied to the uniform moment 
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solution. For doubly-symmetric sections with uniform moment loading 

(Cb = 1.0), the elastic buckling moment (Timoshenko and Gere, 1961) 

is 
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b b

E
M C EI GJ I C

L L

  
  

 

2

                   (1)   

                                       

where Lb = unbraced length, E = modulus of elasticity, G = shear 

modulus,  J = torsional constant, Iy = weak axis moment of inertia and 

Cw =  warping constant. The first term under the radical in Eq.1 relates 

to the St. Venant torsional stiffness, while the second term within the 

radical reflects the warping stiffness of the beam. In the derivation of 

Eq.1, only the boundary conditions that twist was prevented at the ends 

of the unbraced length and no warping restraint at the ends were used. 

No lateral displacement boundary condition was necessary. Thus, 

locations along the length of the member where twist is prevented are 

defined as brace points, For beams with moment gradient, Kirby and 

Nethercot (1979) presented a general expression for Cb that is 

applicable to a variety of moment diagram shapes within the unbraced 

length. Their equation was adjusted slightly and is presented in the 

American Institute of Steel Construction Specification (AISC, 2005) in 

the following form: 
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where, within the unbraced beam segment, Mmax = maximum moment, 

MA , MC = moments at the quarter points and MB =moment at the center. 

The absolute values of all moments are used with Eq. 2. 

The unbraced length to be used with Eq.1 for beams with inflection 

points can be misinterpreted, especially if the definition of Lb in design 

specifications refers to the unbraced length of the compression flange. 

Since the inflection point defines the switch from compression to 

tension in the flange, can the inflection point be used to define Lb?  The 

inflection point generally does not act as a braced point since the  
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beam can still twist at this location as shown in Fig.1, which depicts the 

buckled shape of a beam with equal and opposite end moments with 

twist prevented at the ends. The asymmetric loading causes an 

inflection point at midspan. The figure shows a plan view of the 

buckled shape of the top and bottom flanges along the length of the 

beam. Although the lateral displacement at midheight of the cross 

section is zero at the inflection point, the top and bottom flanges have 

equal and opposite lateral displacements resulting in a pure twist of the 

cross section.   

Fig. 1. Twist at the Inflection Point 

 

A common misconception when dealing with reverse curvature bending 

is that a flange in tension does not displace laterally and therefore the 

inflection point can be assumed to act as a braced point. The tensile 

regions of the flanges do remain relatively straight during buckling, but 

Fig.1 shows that they displace laterally and allow the section to twist. 

Therefore, the inflection point does not behave as a braced point since 

the cross section can still twist at this location. A 
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single lateral brace attached to just one of the flanges at the inflection 

point also does not prevent twist and only increases Mcr approximately 

10% (Yura, 1993). Bracing both flanges at the inflection point more 

than doubles the value of Mcr. 

 

A design approach that is consistent with current design provisions is to 

define the unbraced length as the spacing between points of zero twist, 

and to account for effects of the inflection points with Cb factors 

applied to a uniform moment buckling solution.  The remainder of this 

paper will therefore focus on Cb expressions for frequently encountered 

details that affect a beams buckling capacity.  Finite element solutions 

(FEA) are presented in the paper for a variety of loading conditions.  

The cross section that was used in the majority of the analyses was a 

W16x26 section with a span-to depth ratio, L/d, of 15 and 30.   

 

UNBRACED BEAMS  

 

Lateral-torsional buckling strength can be determined by using the Cb 

expression give by Eq. 2 provided that the unbraced length is defined 

between points of zero twist. The buckling moment is compared to the 

maximum applied moment within the unbraced length under 

consideration. Eq. 2 is valid for both single- and reverse-curvature 

bending of doubly-symmetric sections and is applicable for any shape 

moment diagram between points of zero twist.  

 

The accuracy of Eq. 2 with FEA solutions are presented in Fig. 2 for a 

W16x26 beam with a distributed load applied at the centroid. The beam 

was subjected to similar concentrated in-plane moments at the two ends 

to simulate continuity. Although no intermediate bracing was provided 

along the length of the beam, twist was prevented at the ends of the 

beam. Since the beams were free to warp at the supports, the results will 

be conservative for continuous construction. The Cb is graphed on the 

vertical axis versus the ratio of the midspan moment, MCL, to the end 

moment, MEND.  Eq. 2 has good agreement with the FEA results over 

the wide range of moment distributions that were
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 considered. The expression is conservative when the midspan moment 

is small relative to the end moment, which is a complicated region of 

behavior.  The two different FEA curves in this region show that there 

is a relatively large variability in the Cb value depending on the 

span/depth ratio, L/d.  Similar results were obtained when one end 

moment was zero.  Eq. 2 has also been shown to be accurate for beams 

with concentrated loads and linear moment diagrams (Yura, 1987). In 

general, Eq. 2 provides good estimates of Cb for both single and reverse 

curvature bending.  

 
Nakamura and Wakabayashi (1981) derived a general expression for Cb 

from basic principles for beams with uniformly distributed load and 

retraining end moments. Their Cb formulation is more complex because 

it includes load height effects and lateral bracing. The Nakamura-

Wakabayashi solution and the FEA results compare very favorably for 

the loading case in Fig. 2. 

 

The FEA results in Fig. 2 show that for a negative MCL/MEND ratio 

(positive midspan moment), Cb increases substantially as the midspan 

moment gets smaller. The moment at midspan is a dominating buckling 

factor. This observation leads to a simple approach for estimating the 

Fig. 2.  Unbraced Gravity Loaded Beam with Restrained Ends 
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buckling load for unbraced gravity-loaded beams with restrained ends; 

use Cb = 1.14 with the midspan moment, even if the midspan moment is 

smaller than the end moment.  The accuracy of this simple method is 

demonstrated in Fig. 3 for beams with uniform load and restrained at 

one or both ends. The limiting ratios of MEND/MCL = 0 and -2 

correspond to pinned ends and fixed end(s), respectively. Cb derived 

from the FEA results for the two cases are shown by the two solid lines. 

Cb = 1.14 is shown dashed. For the propped cantilever the comparison 

between FEA and Cb = 1.14 is almost exact over the entire practical 

range of end restraint. For the propped cantilever the midspan moment 

is smaller than the maximum positive moment so it would be 

conservative to use the maximum moment near midspan. For both ends 

restrained, the simple approach is slightly conservative (< 7%).  

Fig. 3.  Simplified Method for Unbraced Gravity-Loaded Beams 
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span reduces the buckling load 30% (Nethercot and Rocky, 1972). 

When there are inflection points between the brace points, the load 

height effect is greater: 45% for a propped cantilever (one inflection 

point) and 60% for a fixed-end beam (two inflection points). For longer 

beams, the load height effect is less significant than for shorter spans. 

Top flange loading was not considered previously because the loading 

system typically also provides bracing at the location where the load is 

applied. In this section, however, the top flange is braced continuously 

so gravity loading will also be applied at the top flange. The Cb factors 

generated are applied to Eq. 1 unless otherwise noted. The Cb factor 

accounts for the effects of moment gradient, top flange loading and top 

flange bracing. Lb will be the unbraced length of the bottom flange.  

 

There are three general types of bracing that improve the buckling 

strength of I-shaped beams: lateral bracing, torsional bracing and 

diaphragm bracing. Lateral bracing prevents lateral movement at the 

point on the cross section where the brace is attached. When applied to 

only one flange in a beam with inflection points, lateral bracing will not 

prevent lateral-torsional buckling, but the buckling capacity will be 

improved. Torsional bracing prevents twist of the cross section at the 

point of attachment, but lateral movement can occur. However, because 

the web of an I-shaped beam is relatively thin, cross-section distortion 

must be considered in evaluating the effectiveness of the brace. 

Stiffeners can be used at the brace point to eliminate the web distortion. 

Diaphragm bracing, such as a deck form attached directly to the beam 

flange, increase the lateral buckling capacity by providing warping 

restraint to the flange that tends to keep the flange straight. Attachment 

details must be considered when evaluating the effectiveness of deck 

forms.  

 

A more detailed discussion of the three bracing types, along with 

minimum strength and stiffness requirements for design, can be found 

elsewhere (Yura, 1993, Helwig and Yura, 2008). For the solutions 

contained herein, lateral bracing will be assumed sufficiently stiff to 

prevent any lateral movement of the top flange. For torsional bracing 

it is assumed that the top flange has zero twist. Functionally, lateral and 



 9 

diaphragm bracing both resist lateral bending of the flange so only 

lateral and torsional bracing will be considered.   During erection and 

construction, one or more of the three components may be available to 

stabilize the beam. For example, joists or purlins alone framing between 

adjacent beams can provide a small amount of torsional restraint (Essa 

and Kennedy, 1995). When decking is attached to the joists, lateral 

displacement of the top flange will also be prevented at the joist 

locations. Usually the torsional restraint is ignored in this case. In 

composite construction both lateral movement and twist of the top 

flange are prevented. In the following subsections, Cb expressions 

suitable for design are developed from finite element buckling analyses 

that can account for cross-section distortion. Loading conditions that 

produce one or two inflection points within the unbraced bottom flange 

are discussed. 

  

(a)                                                    (b) 

 

Fig. 4.  Restrained Beams with Top Flange Lateral Bracing 
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slenderness ratios for rolled shapes. This was done to maximize the 

potential distortion so the conservative results would be applicable to 

all W-shapes. Based on the FEA results, the following Cb expression 

was developed for design: 

   (3) 

 

where M0 = moment causing the largest bottom flange compressive 

stress at the end of the unbraced length, M1 = other end moment and 

MCL = moment at the middle of the unbraced length.  The (*) in Eq. 3 

indicates that M1 should be taken as zero in the last term if it does not 

cause compression in the bottom flange.  The sign convention for Eq.3 

is denoted in Fig.4a with negative moments causing compression in the 

bottom flange. The Cb from Eq. 3 is used with Eq. 1 to determine the 

critical moment to be compared to M0. Yielding must also be checked 

with the largest moment.  
 

Fig. 4b depicts a potential load case and distribution of moment for a 
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pinned, M1=0 in Eq. 3, while M0=MEND.  The values of MCL in this case 

would simply be the moment at the middle of the span under 

consideration. The applicability of Eq. 3 will be demonstrated for three 

general cases: straight line moment diagrams, and gravity loaded beams 

with one and two inflection points. 

 

A graph of Eq. 3 is compared to FEA solutions for straight line moment 

diagrams with various ratios of M1/M0 in Fig. 5.  The straight line 

moments depicted on the horizontal axis could be the result of loading 

cases that cause the moments shown for Span B in Fig. 4b or from beam 

moments caused by lateral frame loads.  The graph of Eq. 3 has a 

change in slope for negative ratios of M1/M0, because M1 is taken 
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as zero in the last term of Eq. 3 when it does not cause compression in 

the bottom flange.  Fig. 5 shows that the Cb values become large when 

the length of the bottom flange subjected to compression becomes 

relatively small: however, the unbraced length is always taken as the 

spacing between points of zero twist.  In general, Eq. 3 has good 

agreement with the results from the FEA analysis for for both L/d 

values. For L/d =30, yielding at M1 will control the design when Cb is 

approximately 6, which corresponds to M1/M0 = -2. If Eq. 2 is used to 

estimate the lateral buckling strength, the results will be satisfactory 

when the entire bottom flange is in compression (M1/M0 > 0). With 

loading causing an inflection point, Fig. 5 shows that the use of Eq. 2 

will produce very conservative designs. 

 

Fig. 5.  Top Flange Laterally Braced - Linear Moment Diagram 

 

A restrained beam with one end pinned and uniform gravity load on the 
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along the horizontal axis depict the distribution of moment along the 

beam length. Although there is a slight amount of reverse curvature for 

the case of MCL/MEND = 0, results to the right of the ordinate generally 

represent the behavior of single curvature bending causing compression 

in the unbraced flange while results to the right of the ordinate represent 

reverse curvature bending. The Cb factors from both Eqs. 2 and 3 are 

shown along with FEA results for L/d of 15 and 30. For the case of 

single curvature bending (MCL/MEND > 0), there is very little difference 

among Eq. 2, Eq. 3 and the FEA results.  This demonstrates that tension 

flange bracing has very little impact on the buckling solution.  However 

for cases with reverse curvature, Eq. 2 significantly underestimates the 

buckling capacity. Top flange loading is the principal factor for the 

separation between the FEA results for L/d = 15 and 30. Eq. 3 is in 

good agreement with L/d =15 results and is conservative for the longer 

span.  Most practical continuous beams will be in the L/d range of 

25~30 and although Eq. 3 is conservative, the slope of the line follows 

the general trend of the FEA curves for the full range of moments 

considered.

   

Fig. 6.  Top Flange Laterally Braced – One End Restrained 
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given in Fig. 7. For 0 < MCL/MEND < 1, the bottom flange is entirely in 

compression and the exact Cb values that range between 1.0 and 2.3 are 

affected by the L/d ratio.  Within this range of MCL/MEND, Eq. 3 is 

accurate for L/d=30 but is unconservative for L/d=15.  However, cases 

within this range of MCL/MEND are not too common. Most typical cases 

are those in the range of -1.0 < MCL/MEND < -0.5 as indicated by the 

label “practical range” on the graph. In these cases the bottom flange 

compression region is confined near the ends of the beam. Cb values 

greater than 3.0 are encountered for MCL/MEND < -0.5. A comparison of 

Figs. 6 and 7 shows that lateral buckling is more critical for the case 

with two inflection points (smaller Cb for the same MCL/MEND ). The 

buckled shapes always show that the maximum lateral displacement 

occurs at midspan where the bottom flange is in tension so a single 

bottom flange lateral brace at midspan can substantially increase the 

lateral buckling capacity.  It will be shown later that a small amount of 

torsional restraint typically available in lateral bracing systems 

mitigates the unconservatism shown in Fig. 7. 

Fig. 7.  Top Flange Laterally Braced – Both Ends Restrained 

Torsional Bracing.   A torsional bracing system resists twisting of the 

beam. Lateral displacement at the brace point can still occur. Properly 

designed cross frames or diaphragms framing between adjacent beams 
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act as torsional braces because they prevent beam twisting at those 

locations. When the torsional brace is attached to either flange or just a 

portion of the web depth, web cross-sectional distortion can occur that 

diminishes the effectiveness of the torsional brace. Yura (1993) has 

presented the following expression for the buckling strength of a 

torsionally braced beam that accounts for the distortion, MT, based on 

the solution developed by Taylor and Ojalvo (1966): 
  

2

2 2 bb T y

T bu cr

T

C E I
M C M

C


                           (4) 

Cbu and Cbb are the two limiting Cb factors corresponding to an unbraced 

beam (Eq. 2) and an effectively braced beam (buckling between discrete 

braces); Mcr is given by Eq 1; CT is a top flange loading modification 

factor: CT = 1.2 for top flange loading and CT = 1.0 for centroid loading; 

and T  is the equivalent effective continuous torsional brace (in-

k/radian/in. length) given by, 

sec

1 1 1

T b  
       and   

3

sec 3.3
12

wE t
 

h
                       (5)           

where b  = stiffness of the attached  continuous brace, sec = cross-

section web stiffness per unit length of the beam, tw = thickness of web 

and h = distance between flange centroids. sec accounts for cross- section 

distortion. T  is less than the smallest of b and sec. Web stiffeners can 

be used to increase sec (Yura, 1993). If the effective brace stiffness is 

very small, Eq. (4) converges to Eq. 1. If the unbraced length is long, Eq 4 

will be dominated by the bracing term. Note that there is no beam length 

variable in the bracing term. The bracing stiffness requirement in AISC 

(2005) is based on Eq. 4 with the first term under the radical neglected 

and MT set to the required design strength. When the torsional stiffness of 

the brace itself is substantial, T =sec from Eq.5. Loaded pallets in 

contact with the top flange of unstiffened support beams would represent 

such a case. Eq. 4 was developed for single curvature loading 

conditions. Studies undertaken on restrained beams indicated that some 
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minor adjustments and clarifications were necessary for design. When 

the bracing system is continuous, Cbb is undefined. In such cases, setting 

Cbb = Cbu in Eq. 4 gave good results. It was also determined that 

correlations with FEA were improved for reverse-curvature, top flange 

loading cases if the CT term was placed outside the radical in Eq. 4. With 

these substitutions, MT is given as: 

2

T cr T y

bu

T

M M E I
C

C
                             (6) 

Fig. 8.  Bracing Types on Top Flange 
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when Cb values are below the dashed line. Torsional bracing becomes 

less effective than lateral bracing for beams with two inflection points 

for MCL/MEND < -1.0, when the unbraced length of the compression 

flange at one end Lc is very small (Lc/d < 2 ). If both lateral movement 

and twist are prevented at the top flange (curve with solid markers) that 

is typical in composite construction, yielding will occur before buckling 

when there are inflection points (MCL/MEND < 0). Lateral buckling in 

composite construction is discussed in more detail in the next section.  

 

Fig. 9.  Typical Joist bracing system 

 

Joist Systems.  Closely spaced joists that support the roof diaphragm 

provide equivalent continuous top flange lateral bracing. However, Essa 

and Kennedy (1995) showed the joists also supply a small amount of 

torsional restraint. They recommend a minimum rotational restraint of 

270 in-k/rad. Using only 0.25 of this value (70 in-k/radian)  
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combined with zero lateral displacement at the joist locations, the 20 ft 

beam (L/d = 15) restrained at both ends was 

reanalyzed. Five joists at 4 ft spacing were used with deformations 

controlled only at those five locations. The results are shown in Fig. 9 

by the line with open markers. Recall that for this case with lateral only 

that Eq. 3 gave some unconservative results as shown in Fig. 7. Those 

results are reproduced in Fig. 9. The small torsional restraint has a 

significant effect and Eq. 3 is now shown to be conservative.  

Fig. 10.  Composite Beams – Effect of Length and Web Slenderness 

 

COMPOSITE BEAMS 

 

When lateral displacement and twist of the top flange are prevented, the 

classic lateral-torsional buckling strength equation (Eq. 1) is no longer 

valid. The buckled shape is dominated by distortion of the web so is often 

called distortional buckling instead of lateral-torsional buckling. Solutions 

presented by Johnson (1985), Williams et al(1993) and Linder, J. (1998) 

have shown that web slenderness , h/tw, is the dominate factor affecting 

lateral buckling, not unbraced length. This behavior is illustrated in Fig 10 

by the FEA results for a W40×149 that has the highest h/tw (59.3) of all W 
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shapes. Mcr for three different span lengths, 30, 50 and 100 ft, are shown 

in the upper portions of the figure. For uniform compression along the 

entire length of the unbraced bottom flange (MCL/MEND = 1.0), Mcr is 

similar for all three lengths. There is some separation among the three 

curves for moment diagrams with inflection points, i.e. negative 

MCL/MEN. The solutions for the 30 and 50 ft lengths have been 

terminated at MCL/MEN = -1.0 because of web shear buckling from the 

very high applied loads. The largest Mcr was achieved with the 100 ft 

beam.  The plastic moment limit for 65 ksi steel is shown by the dashed 

line so yielding will control rather than buckling except when there is 

compression along the entire length of the bottom flange. Lateral 

buckling can control if the web thickness of the 100 ft long W40×149 is 

reduced by 50 percent (h/tw = 120) as shown by the curve with (x) 

markers.  

 

Most previous solutions for composite construction cited earlier were in 

a graphical or tabular form and not easily suited for standard design. A 

conservative lateral buckling solution for beams with twist and lateral 

movement prevented at the top flange, MTB, is given by,  

3
sec

13900
y y w

TB bT bT

T

EI I t
M C C

C h


                        (7) 

0.7

1.7 2 4.0CL
bT

END

M
C

M


  

                                     

(8)

 
Eq. 7 was obtained from Eq. 4 by ignoring the Mcr term, setting T  = 

sec. and replacing Cbb with CbT. The top flange loading factor is CT = 
1.2. CbT was developed by comparing the critical moment from FEA 

with the square root term in Eq. 7 as shown in Fig. 11. Eq. 8 is a lower 

bound to all the cases, which include beams with one end restrained, 

both ends restrained and a slender web. For rolled W shapes Eq. 7 can 

be used to determine the lateral buckling capacity for the rare case 

when the bottom flange is entirely in compression. For the common 

situation when there are inflection points, yielding always control so 
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lateral buckling does not have to be checked. For unstiffened plate 

girders with h/tw > 60, lateral buckling should be checked. 

.  

Fig.11.  CbT for Composite Beams 

SUMMARY 

 

Treating the inflection point as a braced point is not recommended 

since this assumption is unconservative for many commonly 

encountered problems.  The unbraced length that should be utilized in 

design should be the spacing between points with zero twist.  A number 

of expressions for the moment gradient factor, Cb, have been presented 

to account for beams with inflection points and bracing on only one 

flange. For beams braced on the top flange, torsional bracing is more 

effective than lateral bracing. Lateral buckling will not occur in 

composite rolled beams with inflection points. For composite slender 

webs girders, a conservative solution is provided  
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