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Summary

This paper reports ongoing research
on the behavior of welded tee-

joints, the behavior of welded moment-
resisting frame connections, and the
properties of A992 shapes. In the con-
nection research, the effects are exam-
ined of various column-stiffening
details (such as continuity plates and
web doubler plates) on the limit states
of weld fracture, local web yielding,
local flange bending, and panel zone
shear. New alternatives for detailing
column stiffeners in moment-resisting
frame connections are presented. The
connection research has three compo-
nents: finite element analyses, nine
pull-plate experiments, and five cycli-
cally loaded cruciform girder-to-column
connection experiments. Unstiffened col-
umn sections are tested as well as col-
umn sections with a variety of column
stiffening details. The results show that
AISC provisions for column stiffening
are reasonable and slightly conserva-
tive for both non-seismic and seismic
design. Based on the pull-plate and
finite element results, the use of half-
thickness continuity plates fillet welded
to the column web and flanges was
shown to be sufficient in comparison to
full-thickness continuity plates with
CJP welds. With respect to research
on A992 shapes, mill test reports were
collected for all of 1998 wide-flange
shape production sold in the United
States. Histograms of the reported
yield strength, ultimate strength, yield-
to-tensile ratio, and Charpy toughness
are shown for A992 steel.

Robert J. Dexter
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EVALUATION OF THE DESIGN REQUIREMENTS FOR COLUMN STIFFENERS AND DOUBLERS
AND THE VARIATION IN MATERIAL PROPERTIES

Robert J. Dexter, Jerome F. Hajjar, Sara D. Prochnow, Mark D. Graeser, Theodore V. Galambos, and
Sean C. Cotton

INTRODUCTION

The stiffening details (continuity plates and web doubler plates) in welded moment-resisting-frame
connections have a significant effect on the stress and strain distribution in the connection and consequently on
connection performance. Potential performance limit states include brittle fracture of the welds, low-cycle
fatigue at the access hole detail, at the toes of the beam flange welds, or at the web welds, excessive panel zone
shear deformation (PZ); and excessive local deformation of the column from local web yielding (LWY) and
local flange bending (LFB).

Roeder (1997) observed that girder-to-column joints with modest continuity plates and/or doubler
plates performed better in cyclic loading tests than joints without such reinforcement. Ricles (2000) has shown
better resistance to low-cycle fatigue failure at the weld access hole with stiffer panel zones. It has been
observed from finite element analyses of these joints that there is a decrease in stress concentration at the middle
of the girder flange-to-column flange welds when continuity plates are used (Roeder, 1997; El-Tawil et al.,
1998). A decrease in stress concentration and triaxiality of the stresses would be expected to decrease the
potential for brittle fracture. Also, the limit states of local web yielding (LWY), local flange bending (LFB), and
panel zone (PZ) shear yielding are mitigated by the use of column stiffening.

Brittle fracture of the girder-flange to-column flange welds occurred in some steel moment-frame
connections during the 1994 Northridge earthquake and in subsequent laboratory tests (Fisher et al., 1997;
FEMA, 2000b). There was no Charpy requirement for the weld metal for these girder flange welds and the
E70T-4 weld metal that was commonly used had very low Charpy toughness (Fisher et al., 1997).
Subsequently, there has been a tendency to be overly conservative in the design and detailing of these
connections. In some situations, continuity plates and web doubler plates have been specified when they are
unnecessary and, when they are necessary, thicker continuity plates and web doubler plates have been specified
than would be required. The specified type of welds have often been complete joint penetration (CJP) welds to
join the continuity plates or web doubler plates to the column, even though the use of more economical fillet
welds may have sufficed.

Among possible connection details recommended by the SAC Joint Venture research program
(FEMA, 2000b) for moment-resisting-frame connections is a modified form of the welded connection used prior
to 1994. The modified welded connection is referred to as the welded unreinforced flange - welded web
connection (WUF-W). Unlike the pre-1994 connection, the WUF-W connection has a Charpy requirement for
the weld metal (20 ft-lbs at 0 degrees F and 40 ft-lbs at 70 degrees F), a complete joint penetration (CJP) welded
web, a special access hole detail, and specific details for continuity plates and web doubler plates. Design
equations are recommended for the sizing of continuity plates and web doubler plates, but CJP welds are
required between the continuity plates and the web doubler plate and the column flanges.

The WUF-W connection has performed well in many full-scale beam-column connection tests (Ricles
et al., 2000). However, there are still many questions about the column stiffening details.
• Modest stiffening has been shown to be beneficial in some cases, but it is not clear if more conservative

stiffening provides any additional benefit or in fact may be detrimental to performance. For example, as
continuity plates are made thicker and attached with highly restrained CJP welds, they are causing cracking
during fabrication (AISC k-line Advisory, 1997).

• It is possible that the continuity plates helped reduce the potential for brittle fracture when low-toughness
flange welds were used in certain connections. However, given a sufficient level of toughness, these
connections may perform well without continuity plates.

• It is not clear that if a specific type of column stiffening is beneficial in reducing the potential for one limit
state, e.g. brittle fracture, that it would also be beneficial for other limit states, e.g. low-cycle fatigue. These
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failure modes are caused by different micromechanical phenomena - brittle fracture is governed by a
critical stress criterion and low-cycle fatigue or ductile tearing is governed by a critical strain criterion
(Dexter, 1992; Dexter and Griesbach, 1993; Dexter and Roy, 1993; Roy and Dexter, 1993).

• Over-specified continuity plates and doubler plates are making the fabrication more complex and expensive
(Carter, 1999). There may be more efficient column stiffening details that are equally effective.

This paper includes background of the LWY, LFB, and PZ yielding limit states. Also included is a
brief description of the finite element analysis models (FEM) that were used to further understand the behavior
of the tested specimens and justification of corroboration with the experimental tests. The results of the pull-
plate specimens are compared in regards to defined failure modes and yield mechanisms relating to the limit
states of LWY and LFB. Finally, the results of the first cruciform test are summarized. Testing of the remaining
cruciform specimens is ongoing.

This paper also presents results from a companion study of the properties of A992 shapes, including
tensile properties and toughness. The variability in these material properties is discussed and the impact of this
variation on the resistance factors in the LRFD Specification is also described.

BACKGROUND

The design criteria for the PZ, LWY, and LFB limit states are provided in Section Kl of Chapter K of
the American Institute of Steel Construction (AISC) Load and Resistance Factor Design (LRFD) Specification
for Structural Steel Buildings (AISC, 1999b). There are additional more stringent provisions in the
requirements for Special Moment Frames (SMF) in the AISC Seismic Provisions for Structural Steel Buildings
(1992). However, the 1997 AISC Seismic Provisions (AISC, 1997) removed all design procedures related to
continuity plates, requiring instead that they be proportioned to match those provided in the tests used to qualify
the connection. The PZ yielding limit state is applicable to the shear forces delivered into the column web by the
girder flanges in a moment connection, and determines the need for doubler plates. This limit state is also
included in the AISC Seismic Provisions (1997).

As part of the SAC Joint Venture research program, guidelines and an advisory were published
(FEMA, 1997a; FEMA, 1997b) that pertained to these column reinforcements in seismic zones. These interim
guidelines called for continuity plates at least as thick as the girder flange that must be joined to the column
flange in a way that fully develops the strength of the continuity plate, i.e., this encouraged the use of complete
joint penetration (CJP) welds. However, the final SAC documents (FEMA, 2000b) have reestablished design
equations for the thickness of continuity plates and doubler plates in seismic zones.

The present provisions for LWY, LFB, and PZ are largely based on limit load or buckling analyses that
were developed in conjunction with girder-to-column joint subassembly test data (Parkes, 1952; Wood, 1955;
Sherbourne and Jensen, 1957; Graham et al., 1960; Krawinkler et al., 1971; Bertero et al., 1973). The criteria
for panel zone shear strength have been refined by numerous tests and analyses of girder-to-column
subassemblies for seismic moment frames, e.g., Krawinkler (1978) and Popov et al. (1986).

Recent research has revealed that excessively thick and CJP-welded continuity plates are unnecessary. El-
Tawil et al. (1998) performed parametric finite element analyses of girder-to-column joints. They found that
continuity plates are increasingly effective as the thickness increases to about 60% of the girder flange. However,
continuity plates more than 60% of the girder flange thickness brought diminishing returns. Yee et al. (1998)
performed finite element analyses comparing fillet welded and CJP welded continuity plates. Based on principal
stresses extracted at the weld terminations, it was concluded that fillet welded continuity plates may be less
susceptible to cracking during fabrication than if CJP welds are used.

The Recommended Seismic Design Criteria for New Moment-Resisting Steel Frame Structures (FEMA,
2000b) uses the LFB equation and a seismic girder demand to calculate the need for continuity plates. The
guidelines state that unless proven with tested connections, continuity plates with CJP welds to the column flanges
(the web joint may be fillet welded) are required if the thickness of the column flange is less than either of the two
following equations:
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There is some consensus that continuity plates may be fillet-welded and may not always be required in
non-seismic connections. However, there is strong consensus that continuity plates are required for connections
in seismic zones, although there are differing opinions on the required width and thickness of the plate and on
the type of weld that should be used to connect the stiffener to the column flange (Dexter et al., 1999).

FINITE-ELEMENT ANALYSES

As a part of this research, finite element analyses were conducted to study the connection behavior (Ye
et al., 2000). The analyses include models of all the specimens tested in this research, as well as parametric
studies. The model geometry, material properties, boundary conditions, and loading history reflect the
experimental configurations.

The analysis program used was ABAQUS, version 5.8-1 (HKS, 1994). The analyses were conducted
using a combination of 3D solid finite elements and beam elements to model the behavior of these connections,
including the performance of the continuity plates, doubler plates, and weld details. For the full-scale beam-to-
column joint assemblies, continuum 3D solid elements were used to model the connection region and a short
length of the beam outside the connection region. The solid elements were 8-node brick elements (element
C3D8I). At an appropriate length away from the joint region, where the longitudinal stress and strain gradients
through the girder depth were linear and no significant local buckling was expected, a 3-node quadratic beam
element (element B32) was used for the remaining girder and column lengths. This quadratic beam element
used Timoshenko beam theory and included transverse shear deformation. Multi-point constraints (MPC) were
used to enforce compatibility between the different types of elements. Mesh refinement was evaluated in all
models to achieve converged results. Figure 1 shows the connection region of a typical mesh simulating one of
the cruciform specimens.

Figure 1 Typical finite element model for simulating cruciform connection experiments

For the analyses corroborating the experiments, the stress-strain properties for the analyses were
obtained from the coupon tests of the specimens, as shown later. The analyses included geometric nonlinearity
as well as material nonlinearity. Residual stresses, thermal effects, and fracture were not modeled.

Results included detailed modeling of all of the pull-plate specimens and preliminary modeling of all of
the cruciform specimens. These analyses, along with observations from past experimental results, were used to
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identify specific criteria to be used to determine whether failure was occurring in the specimens due to local
flange bending, local web yielding, or excessive panel zone yielding.

Figure 2 shows typical results from the pull-plate analyses. The finite element mesh, which is quarter
symmetric, reveals the interaction between local flange bending and local web yielding in an unstiffened
W14x132 column. Similar analyses were run on unstiffened W14x120, W14x145, and W14x159 column
sections.

Figure 2 Deformed shape of pull-plate specimen showing local flange bending and
local web yielding in a W14x132 (A992) column

PULL-PLATE TESTING

Figure 3 shows the basic schematic drawings of the pull-plate specimens. The pull-plate specimens
consisted of three-foot-long sections of A992 columns between pull plates that represent the flanges of the girders in
the actual connections.

Figure 3 Typical pull-plate specimen with a half-thickness fillet welded continuity plate
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The CJP welds joining the pull plates to the column sections were made using the self-shielded FCAW
process and E70T-6 filler metal. The E70T-6 wire had a diameter of 0.068 in. The minimum toughness
requirement for notch-tough weld metal is 40 ft-lbs at 70°F and 20 ft-lbs at 0°F (FEMA, 2000c). The weld metal
that was used in this research program had a measured ultimate strength of 77 ksi and toughness measurements of
63.7 ft-lbs at 70°F and 19.0 ft-lbs at 0°F. Thus, the weld metal met the minimum ultimate strength requirement but
did not quite meet the lower shelf minimum toughness requirement.

Continuity plates and web doubler plates were fillet welded using the 100% carbon dioxide gas-shielded
FCAW process and E70T-1 filler metal with a 0.0625 in. diameter. In one case, CJP welds were used to join the
continuity plate to the column flanges and in another case CJP welds were used to join the web doubler plate to the
column flanges. These CJP welds were also made with the gas-shielded FCAW process and E70T-1 filler metal.

The design of the pull-plates for all specimens was based on the size of a girder flange from a W27x94
section. The variations of the specimens were the type and size of stiffeners and the column size. Three
different column sections were tested, W14x132, W14x145, and W14x159. The stiffener details varied between
half thickness and full thickness (relative to the pull-plate thickness) continuity plates and a doubler plate box
detail. The nine specimens could be grouped into three categories - specimens used to evaluate LFB, specimens
focused on the interaction of LWY and LFB, and specimens aimed at investigating the effects of stiffening
details on the connections. The nine pull-plate specimens were as follows:
1. Specimen 1 -LFB: W14x 132 without continuity plates, with doubler plates, examined LFB
2. Specimen 2-LFB: W14x145 without continuity plates, with doubler plates, examined LFB
3. Specimen 1-LWY: W14x132 without any stiffeners, examined LWY and LFB
4. Specimen 2-LWY: W14x145 without any stiffeners, examined LWY and LFB
5. Specimen 3-UNST: W14x159, without any stiffeners, examined LWY and LFB
6. Specimen 1-FCP: W14x132, with full-thickness continuity plates and CJP welds
7. Specimen 1-HCP: W14x132, with half-thickness continuity plates and fillet welds
8. Specimen 1B-HCP: repeat of 1-HCP to verify results
9. Specimen 1-DP: W14x132, with doubler plate box detail

Specimens 1 and 2 had beveled doubler plates fillet welded to the column flange to avoid welding in the
column k-line. The doubler plates stiffened the web of the two specimens in order to isolate local flange bending as
the governing limit state. Specimens 3 through 5 were unstiffened connections that looked at the interaction
between local web yielding and local flange bending. Specimens 6 through 8 tested connections either with full-
thickness continuity plates and CJP welds, replicating details often seen in present practice, or half-thickness
continuity plates with fillet welds. Specimen 9 included no continuity plate, but rather two doubler plates placed
out towards the column flange tips, as shown in Figure 4. These plates thus act both as continuity and doubler
plates. This detail, first investigated by Bertero et al. (1973), is included in AISC (1997) and provides an
economical alternative to connections that require two-sided doubler plates plus four continuity plates.

Figure 4 Box detail with doubler plates welded to column flange away from web with CJP welds

A high strain rate of 0.004 sec-1 was used, which approximates the strain rate from seismic loading at
about a 2 second period of vibration. The high strain rate increases the yield strength of the materials and increases
the probability for brittle fracture, thereby testing the specimens under the most severe conditions. There were three
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basic instrumentation plans, one for each of the three categories of specimens. All nine specimens had high-
elongation strain gages on the pull-plates and LVDTs that measured the overall specimen elongation and the
separation of the column flange tips. The data acquisition system collected 56 channels of data at 100 Hz.

These specimens were primarily intended to examine the LWY and LFB limit states for non-seismic
construction. It is recognized that this specimen is not a good simulation of the actual conditions in the moment-
resisting-frame connection since there is tension on both sides of the specimen and no shear. However, the
condition in the pull-plate tests is expected to represent a worst case for the evaluation of LFB and LWY; therefore
the specimen is appropriate for that purpose. There is also no shear or bending in the pull plate as there is in the
girder flange in the connection; however this is not expected to influence LWY and LFB. Nevertheless, these
effects could increase the potential for brittle fracture. Therefore, the fact that fracture did not occur in these
experiments does not necessarily mean that it would not occur in the connection. That is why it is also essential to
test these details in the cruciform tests, as discussed later.

PULL-PLATE TEST RESULTS AND ANALYSIS

Figure 5 shows FEM results for the three unstiffened column sections. Using similar failure criterion of
Graham et al. (1960), which based LWY failure on yielding of the 5k+N region of the column k-line, the
W14x132 specimen would fail by LWY. Figure 4 shows that the strain in the W14x132 (1-LWY) k-line is
greater than yield for the entire 5k+N region, while the W14x145 (2-LWY) and W14x159 (3-UNST) are not.
Therefore, if it is assumed that the W14x132 (1-LWY) fails and the W14x145 (2-LWY) does not, then another
failure guideline could be a strain greater than 3% directly below the pull-plate.

Figure 6 shows the experimental strain distribution in the k-line of the column web for all seven
specimens that were gaged to evaluate LWY. As shown in Figure 5, none of the specimens had strain levels
exceeding 3% directly under the pull-plate and only the unstiffened W14x145 specimen (2-LWY) had strain
values greater than yield for the entire 5k+N region. Initially these results seemed implausible, since a
W14x145 nominally has a thicker web than a W14x132 section. However, measurements showed that the
specific W14x145 section used in the test actually had a thinner web than the specific W14x132 section, which
justifies the difference in the strain distribution between these specimens. There is no tolerance on web thickness
in ASTM A6; the tolerance is only on the weight per foot (ASTM, 1998). The strain distribution also shows a
much steeper gradient for the W14x132 (1-LWY) than the other two unstiffened sections. This gradient is likely

Distance from the centerline of column length, in.
Figure 5 FEM strain distribution in the pull-plate specimens along the column k-line at 450 kips
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due to its thinner column flange. The thicker column flanges of the W14x145 and W14x159 act to distribute the
load more evenly into the column web.

Location from centerline of column length, in.

Figure 6 Strain distributions in the pull-plate tests along the column k-line at 450 kips

Figure 7 shows the separation of the flanges near the tips of the flanges along the column length for all
nine specimens. By comparing the specimens without continuity plates but with web-doubler plates (1-LFB and
2-LFB) to those with no stiffeners at all (1-LWY and 2-LWY), it can be seen that a significant portion of the
flange separation is due to web deformation. In the case of the W14x145 (2-LWY and 2-LFB), which has a
stiffer flange and, as it turns out, a thinner web, half of the flange separation is due to web deformation.

Figure 7 Column flange separation in the pull-plate tests at 450 kips

The results of the stiffened specimens (1-HCP, 1B-HCP, 1-FCP, and 1-DP) showed that, at least for
monotonically loaded connections, a half-thickness continuity plate was adequate to avoid web yielding and
flange bending. Figures 6 and 7 show a significant difference between the unstiffened and stiffened specimens
and that the half-thickness continuity plates (1-HCP and 1B-HCP) are well below the LWY and LFB failure
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criterion. Neither of the specimens fully yielded across the width of the continuity plates, and therefore both
were still capable of resisting load and had not failed. The half-thickness continuity plates fillet welds also did
not fracture. The CJP welds of the full-thickness continuity plates did not cause any problems during fabrication
or testing.

CRUCIFORM TESTING

Five full-scale cruciform experiments will be conducted as part of this project. Table 1 details the
specimens to be tested. All material is A992. Figure 8 shows a typical stress-strain curve for the beam section
used in all the tests and the W14x283 column. The girder was chosen to develop a relatively large flange force
so as to test all stiffening details to their limit states.

Table 1 Cruciform test matrix

Figure 9 shows the experimental test setup. Reverse cyclic loading is applied to the girder flange tips,
with the top and bottom of the columns pinned against translation. The SAC loading history protocol is being
followed for all specimens (SAC, 1997). Due to actuator stroke limitations, if a specimen has not failed
following the 4.0% drift level (two cycles), additional 4.0% cycles are conducted to failure or significant
strength deterioration.

PARAMETER

Girder

Column

Doubler Plate

DP Thickness
Continuity Pl.
CP Thickness

1

W24x94

W14x283

None

NA
None
NA

2

W24x94

W14x193

Detail 2

0.625 in.
None
NA

SPECIMEN
3
W24x94

W14x176

Detail 2

2 @ 0.5 in.
Fillet welded
0.5 in.

4
W24x94

W14x176

Detail 3

2 @ 0.75 in.
None (box)
NA

5

W24x94

W14x145

Detail 1

2 @ 0.625 in.
None
NA
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(a) W24x94

(b) W14x283
Figure 8 Typical stress-strain curves for girder and column sections tested
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Figure 9 Experimental test setup for cruciform specimens

Specimens 1 through 4 satisfy the SCWB criterion (AISC, 1997) if there is a low column axial
compression. All specimens with the exception of the box doubler detail were designed to have approximately
the same ratio of calculated panel zone strength to girder plastic moment strength [by comparing the actuator
force to initiate each of these limit states according to AISC (1997) and FEMA (1997a)]. However, it is
anticipated that the behavior of the panel zones will differ between the specimens, permitting investigation of the
relative ductilities between the stiffening details. The final strengths of most panel zones in these tests are
somewhat weaker than the required design strengths according to these seismic provisions, so as to test
thoroughly the continuity plate and doubler plate details in these specimens. The exception is Specimen 4,
which meets the panel zone strength requirements of AISC (1997) and FEMA (2000b).

The connection detail being tested for all specimens is similar to the welded flange-welded web detail
(WUF-W) tested for SAC at Lehigh University (Ricles et al., 2000; FEMA, 2000b). The CJP welds joining the
girder flanges to the columns are made using the self-shielded FCAW process and E70T-6 filler metal with a
minimum Charpy V-Notch (CVN) energy of 20 ft-lb at 0° F. The E70T-6 wire used has a diameter of 5/64 in.

The CJP welds joining the girder webs to the columns are made using the self-shielded FCAW process
and E71T-8 filler metal, which also meets minimum CVN requirements. This electrode is used for all
reinforcing fillet welds as well. Figure 10 shows the weld details of a typical girder-to-column connection.
Continuity plates and web doubler plates were fillet welded using the 100% carbon dioxide gas-shielded FCAW
process and E70T-1 filler metal with a 1/16 in. diameter. For the box doubler detail of Specimen 4, CJP welds
were used to join the web doubler plate to the column flanges. These CJP welds were also made with the gas-
shielded FCAW process and E70T-1 filler metal.
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Figure 10 Typical moment connection weld details

The five cruciform specimens investigate three different doubler plate details, shown in Figure 11.
Detail 1 is based on Fig. C-9.3(b) of the 1997 AISC Seismic Provisions, while Detail 3 is based on Fig.
C-9.3(c); both details were tested in the pull-plate investigation. The intent of this stiffening detail is to
eliminate the need for continuity plates by stiffening the column flanges. By offsetting the plates from the
column web, the doublers are intended to act both at transverse stiffeners and web doubler plates. Doubler plate
Detail 2 is a result of problems that arose during fabrication. The fillet radii of all column sections were
measured and found to be significantly larger than the values implied by the k dimensions in the LRFD Manual
(AISC, 1999b), causing interference between the fillet and doubler plate bevels. A recent AISC Advisory
addressed this issue (AISC Dimension Advisory, 2001). Detail 2 avoids the fit-up problems associated with the
larger radii by using a square-edged plate that rests on the top edge of the fillet. A gap between the column web
and doubler of approximately 7/8 in. typically results. Fillet welding similar to Detail 1 is used to connect the
doubler plate to the column flanges. The continuity plates of Specimen 3 were designed similar to the half-
thickness, fillet-welded continuity plates tested in the pull-plate experiments.

The first specimen was designed as an unreinforced column with thick flanges. This column was
selected to have a substantial contribution from the flanges to the panel zone behavior, permitting evaluation of
the post-yield strength contribution of thick column flanges. The column meets the seismic LFB requirements
contained in AISC (1992) and FEMA (2000b). It is intended to show that the use of completely unstiffened
columns in seismic zones is justified if the column is of sufficient size.
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Figure 11 Doubler plate details

The second specimen has a smaller column that includes a doubler plate but no continuity plates. The
doubler plate is welded as per Figure 1 lb. This specimen will be used to investigate the cyclic response of a
column section just on the cusp of the seismic limit state for LFB (with no factor), and will be used to
investigate the doubler plate effectiveness when attached to the column with fillet welds.

The third specimen tests a weaker column that includes fillet-welded continuity plates that are half the
thickness of the girder flange, and doubler plates welded as per the detail in Figure 1 lb. The cyclic response of
both the continuity plate and doubler plate details, and the effectiveness of the panel zone stiffening, will be
investigated in this test.

The fourth specimen features the box detail of Figure 11c, and no continuity plates. For this specimen,
the thickness of the two doubler plates has been increased from that provided in the third specimen in
anticipation of the lower effectiveness of this detail, as discussed in Bertero et al. (1973). It is intended to verify
the pull-plate results on this detail for seismic applications.

The fifth specimen just fails the non-seismic LFB limit state of AISC (1999b) (with no factor). This
limit state will be investigated in this experiment. For better comparison to the pull-plate results of Specimen 2-
LFB, the doublers were welded as per Figure 11a.

All specimens were heavily instrumented with strain gages to characterize the stress and strain
distributions at critical locations, allowing comparison of the effects of the various stiffening details. LVDTs
were used to measure the relative contributions of the girders and panel zone to total connection rotation, and to
measure column flange separation for the LFB limit state.

CRUCIFORM RESULTS AND ANALYSIS
The testing is ongoing and only the results from Specimen 1 are available at this time. As stated

previously, the connection detail being tested for all specimens is the WUF-W connection similar to the detail
tested for SAC at Lehigh (Ricles et al., 2000). E70T-6 wire was used for all beam flange welds, while E71T-8
wire was used for the web welds and all reinforcing fillet welds. A different E70T-6 wire was used for the beam
flange welds than was used in the pull plate experiments. The wire diameter was 5/64 in. as opposed to the
0.068 in. diameter that was used previously. One difference between these connections and those tested by
Ricles et al. (2000) is the weld metal for the critical beam flange welds. E70TG-K2 weld wire was used for the
Lehigh specimens and most other SAC tests. As far as has been ascertained to date, E70T-6 weld metal was
used only in reduced beam section (RBS) connections (FEMA, 2000d).

Specimen 1 was an unstiffened W14x283 column with W24x94 girders. High girder flange forces and
significant panel zone yielding, with some kinking of the column flanges, were developed in this specimen (as

(a) Detail 1 (b) Detail 2 (c) Detail 3
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was intended for all the cruciform tests) so as to test the column detailing extensively.
Figure 12 shows the moment vs. interstory drift behavior of the West and East girders of Specimen 1.

Strength deterioration following a low-cycle fatigue fracture of the East beam is evident in Figure 12b, during
which time the West beam picked up additional load (Figure 12a). Figure 13 illustrates typical plastic rotation
components from this test. From this figure, it is clear that panel zone deformation dominated the behavior of
Specimen 1 (as expected), accounting for approximately 75% of the total plastic deformation of the connections.

This specimen performed very well, achieving three to four cycles at 4% interstory drift before any
cracks were seen to initiate either through observation or in the instrument data. Low-cycle fatigue cracks
initiated at the top and bottom of the welds of the girder web to the column flange, using the shear tab as a
backup bar. These cracks initiated at the top and bottom of the shear tab either at the toe of the shear tab fillet
welds or possibly at the toe of the vertical CJP welds. Low-cycle fatigue cracks later initiated at the toe of both
the bottom and top girder flange CJP welds, in the center of the girder flange width. The cracks progressed
slowly, with one bottom flange weld finally severing the bottom flange from the column.

Twenty cycles at 4.0% interstory drift were executed prior to the end of the test, providing valuable
constant-amplitude low-cycle fatigue data. A maximum column flange separation of 0.07 in. was measured,
suggesting that completely unstiffened columns in seismic zones may be used if the column is of sufficient size.
This is, in general, in keeping with final SAC recommendations (FEMA, 2000b) and with other recent research
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Figure 13 Specimen 1 plastic rotation components

(a) West girder plastic rotation (b) Panel zone plastic deformation

Figure 12 Specimen 1 moment vs. interstory drift

(a) West girder (b) East girder
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nationwide.

PROPERTIES OF A992 SHAPES

Our LRFD resistance factors and other important design equations were derived from the database of
material properties from the 1960's. However, the A992 shapes of today are much different than the
predominantly A36 shapes of the 1960's. Near-net-shape continuous casting has reduced the amount of rolling
deformation in the production of these shapes. The modern steel is made primarily from scrap rather than iron
ore. Rotary straightening is used over a broader range of section sizes today. All of these factors contribute to
subtle differences in the properties. The microstructure is finer and the carbon content is lower, and this
generally leads to more consistent properties and improved fracture toughness. On the other hand, the yield-to-
tensile strength ratio (Y/T) has increased, raising some concerns about ductility.

The other obvious difference is the new specification, A992."Steel for Structural Shapes for Use in
Building Framing". Relative to the A36 and A572 specifications, this specification tightened previous chemistry
limits, limits residual elements, and requires reporting of Tin. For the first time, this specification places
specific limits on carbon equivalent (CE), on the yield point (65 ksi), and the maximum Y/T ratio (0.85).

The Structural Shape Producers Council (SSPC) sponsored compilation of a data base of all the mill
test reports that were produced in 1998 by its members for sale in the United States. This information will be
used in an ongoing AlSC-sponsored research project to determine whether resistance factors in the AISC LRFD
specification, based on data collected in the 1960's for A36 steel, are appropriate.

To incorporate the SSPC data base into the reliability calibration process, it is necessary to determine
the relationships between information reported on the mill test certificate and various properties of the steel,
including:
• the relationship between the mill test yield strength, which is determined using a relatively rapid rate of

loading, and the lower static yield strength, that defines the strength of a steel structural member loaded at a
slow rate of loading (see Figure 8).

• the relationship between the steel strength at the location on the shape where the coupon is removed for
testing, and the strength at other locations on the cross section..

These objectives will be achieved through a joint testing program at the University of Western Ontario, under
the direction of Prof. Michael Bartlett, and the University of Minnesota. The testing program involves five
tensile coupons from each of 30 shapes provided by American mills that are members of AISC. The shapes
selected were wide flange sections and were chosen to represent a wide range of thicknesses and weights. The
full stress-strain curve in terms of engineering stress and strain and true stress and strain will be obtained as
shown in Figure 8. Many different parameters will be obtained from the stress strain curves for comparison,
including different definitions of yield strength, power law fit the stress strain curve, etc.

This research parallels a project currently under way at University of Western Ontario, sponsored by the
Steel Structures Education Foundation of the Canadian Institute of Steel Construction and the National Research
Council of Canada, to review the resistance factor for steel in Canadian Standard CSA S16.1 "Limit States Design
of Steel Structures".

The statistical distributions of the SSPC data were characterized by plotting a histogram of the
occurrence in a range of intervals (bins). Figure 14 shows the histogram for the yield strength for A992 steel,
for example. The height of the bar is the frequency of occurrence as shown by the left axis. The actual value of
the frequency is also given to three significant figures at the top of each bar. Presumably, various probability
density functions may be fit using these values. The line in each plot represents the cumulative probability of
occurrence, as shown on the right axis. The cumulative probability is the summation of all occurrences less than
that value.
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Fy Histogram for A992 Steel

Figure 14 Histogram of the yield strength of A992 wide-flange shapes

Standard deviation and mean were calculated for the data set shown on each plot. The mean is shown
in the box on each plot, along with the coefficient of variation, i.e. the standard deviation divided by the mean,
expressed in percent. Also given are the minimum and maximum values and the number of samples. It can be
seen that the yield strength of the 20,003 samples of A992 steel ranged from 50 to 65, with a mean of 55.8 ksi.

Figure 15 shows the histogram for the ultimate strength data and Figure 16 shows the histogram for the
Y/T ratio. The properties are generally as expected based on the specifications. The A992 has slightly smaller
mean and ranges than the other Grade 50 steels, as expected because of the specification. A36 steel has more
extreme values than A992 on the minimum and the maximum for yield strength and Y/T, as expected. However,
the mean yield strength of the A36 steel is less than the A992 steel as expected, and the tensile strengths were
much lower than the grade 50 steels.

Figure 17 shows the histogram of the CVN data for A992 steel at 40 degrees F. The data show that the
steel shapes have very good toughness with a mean value over 120 ft-lbs.

Fu Histogram for A992 Steel

Figure 15 Histogram of the ultimate tensile strength of A992 wide-flange shapes
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Fy/Fu Histogram for A992 Steel

Figure 16 Histogram of the yield-to-tensile strength ratio for A992 wide-flange shapes

CVN Histogram for A992 Steel at 40F

Figure 17 Histogram of the Charpy toughness of A992 wide-flange shapes

CONCLUSIONS

A combined experimental/computational research program is being conducted to reassess the design
criteria and investigate new alternatives for transverse stiffeners and doubler plates. Experimental components
of this research include nine pull-plate tests to investigate the limit states of local web yielding and local flange
bending, as well as investigating new alternatives for the detailing of continuity plates, particularly for non-
seismic design; and cyclic cruciform joint tests to investigate panel zone shear behavior, test new doubler plate
detailing alternatives, and verify continuity plate details, particularly for seismic detailing.

The preliminary conclusions from these tests include:
1. The AISC provisions for LWY and LFB are reasonable and slightly conservative in calculating the

need for column stiffening.
2. None of the E70T-6 CJP welds fractured in the pull-plate tests or in the unstiffened cruciform test,

despite plastic deformation, even when the flange tip separation was over ¼ in, indicating that
continuity plates may have little influence on the potential for brittle weld fracture provided the weld is
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specified with minimum CVN requirements and backing bars are removed.
3. Based on the results of the pull-plate tests and finite element analyses, the use of half-thickness

continuity plates fillet welded to both the column web and flanges is sufficient in comparison to the
traditional full-thickness continuity plates with CJP welds.

4. The new stiffener details, i.e. the box detail and beveled doubler plates fillet welded to the column
flanges, performed satisfactorily in the pull-plate tests and provided sufficient stiffness to avoid LWY
and LFB.

A database of all the material test reports for 1998 was assembled. The data were sorted by grades and
shape group and histograms were plotted of the data. Summary statistics including the mean, median, extreme
values, standard deviation, and coefficient of variation were evaluated. The conclusions from this study are:

1. The tensile properties of A992 steel are not substantially different than the tensile properties of the grade
50 steels in previous surveys. The mean yield strength of 55.8 ksi, is 5.8 ksi greater than the minimum
specified yield strength. The mean tensile strength is 73.3 ksi, which is 8.3 ksi more than the minimum
specified tensile strength. The mean ratio of yield-to-tensile strength is 0.76.

2. The CVN properties of A992 steel were very good and are not substantially different than the CVN that
were reported by AISC in 1995 for Grade 50 steels. Only 0.25% of the values at 32 F are less than 15
ft-lbs, and only 25% of the values at 32 F are less than 40 ft-lbs.
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