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INTRODUCTION 

A wide variety of exact and approximate forms of the fundamental beam-theory equations 
for lateral-torsional buckling (L TB) of open-walled section members have been employed within 
modern steel design standards (CSA 200 I; AISC 1999 and 1989; AASI-ITO 1998; SAA 1998; 
SSRC 1998 and 1976; CEN 1993). The AISC (1999) LRFD Specification employs two 
parameters, denoted by XI and X2, in its statement of the clastic LTB resistance for doubly­
symmetric I-section members and channels. These parameters are a product ofa particular 
algebraic arrangement of the exact equations, but their physical ignificance is somewhat 
difficult to understand. Hoadley (199 I) shows that for rolled wide-flange shapes these terms can 
be approximated by simple functions of the flange thickness and section depth. I lowever, his 
approximations do not apply to general built-up I-shapes and channels. The AISC (1989) 
Allowable Stress Design Specification employs a traditional double-formula approximation for 
the clastic L TB strength. The double-fornlula approach is obtained by neglecting the 
contributions from the SI. Venant torsional rigidity Gl for deep narrow-flange sections, and by 
neglecting the contributions from the warping rigidity ECw for stocky shallow sections with 
relatively wide flanges. Generally, the member strength is taken as the larger value obtained 
from these two simplifications. Several approximations arc invoked in the development of these 
equations that also make them inappropriate for genera l built-up I-section members and 
channels. The AASHTO (1998) LRFD Specifications utilize another fornl of the exact doubly­
symmetric open-walled section beam-theory equations, specialized to I-section members. 
Although the AASHTO equations arc exact only for doubly-symmetric I-shapes, they arc 
employed as an approximation for the elastic L TB strength of singly-symmetric noncomposite 1-
shapes with compact, noncompact or longitudinally-stiffened webs. Various other simplified 
expressions suggested in earlier developments can be found in (de Vries 1946), (Clarke and Hill 
1960) and (SSRC 1976). 

This paper presents a recommended simplified form of the fundamental beam-theory LTB 
equations for doubly-symmetric members, speciali zed to the clastic L TB resistance of 1- and 
channel-section members. This recommended form is exact for doubly-symmetric I-section 
members and has the advantage of improved accuracy relative to the corresponding AASHTO 
( 1998) equations when applied to singly-symmetric I-shapes, including composite I-section 
members in negative bending. Also, it avoids significantly conservative errors that occur within 
the double-forn1Ula approach for a wide range of rolled wide-flange shapes. Furthennore, the 
physical significance of each of the terms within the simplified equations is easy to understand. 
These equations arc utilized as the base clastic LTB expressions within the AASHTO (2004) and 
AISC (2005) Specifications. 
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CO TEXT 

The L TB provisions in AASHTO (1998 and 2004) and AISC (1999 and 2005) arc based on 
the logic of identifying the two anchor points shown in Fig. I for the base case of unifoml major­
axis bending. Anchor point I is located at the length Lb = Lp corresponding to development of 
the maximum potential nexural resistance under unifoml major-axis bending (labeled as the 
compression nange stress F",ox or the moment Mmox in the figure). Anchor point 2 is located at 
the smallest length Lb = L, for which the L TB strength is governed by elastic buckling. The 
corresponding base moment and compression nange elastic stress levels arc denoted in this paper 
by the symbols M" and Fy" where M y, = Fyr S" and Fyr is the compression nange nexural stress 
corresponding to the nominal onset of yielding within the cross-section, including compression 
nange residual stress effects. The equivalent tenns in AISC (1999) arc represented by the 
symbols F Land M,. The term L, is obtained generally as the length associated with clastic 
buckling at a compression nange major-axis bending stress of Fe, = Fyr. The anchor points in 
Fig. I subdivide the L TB problem into three regions, the "compact" or "plastic buckling" region , 
the "noncompact" or " inelastic buckling" region, and the "slender" or "clastic buckling" region. 
This is a powerful approach for quantifying the general L TB resistance in that it facilitates the 
handling of a number of complex issues. This approach is the framework for the discussion of 
the clastic L TB equations in this papcr. 

Anchor point 1 

F mao< or Mma, 1----0... 

Anchor point 2 

F" orM" +-------~-----------

compact noncom pact 

(inelastic buckling) 

nonslender slender 

(elastic buckling) 

Figure 1. Basic form of the LTB provisions in AASHTO (1998 and 2004) and AISC (1999 and 
2005) corresponding to unifornl major-axis bending (Cb = I). 

ORGANIZATION 

This paper first outlines the development of the recommended form of the equations for the 
clastic L TB resistance of I-section membcrs and channels as well as the related equations for the 
unbraced length L,.. The physical significance of the parameters within the e equations is 

2 



.::' 

.Z,) 

• .. ~ )" -) 

'Co 
~J 

• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 

explained, and the application of the equations to channel-section members is reviewed. 
Comparisons are then made to the corresponding AASHTO (1998) and AISC (1999) equations, 
to the traditional AISC double-formula expressions, and to severa l other possible alternative 
forms of the exact beam-theory solution . The main purpose of this paper is to present the 
advantages of the updated equations for doubly-symmetri c I-shapes and channel s. The 
companion paper (White and lung 2003a) addresses the application of these equations to singly­
symmetric I-section members, including composite members in negative bending. Also, a 
simplified form of the exact beam-theory equations for singly-symmetric noncomposite I-section 
members is developed and evaluated in the companion paper. 

DEVELOPMENT OF T HE RECOMMENDED FORM OF T HE ELASTIC L TB 
EQUATIONS 

Timoshenko and Gere ' s (1961) fundamental equation for the clastic L TB strength of a 
doubly-symmetric I-beam can be expressed (for a general moment gradient case) as ' 

This equation can be writlen in the recommended form by first substituting 

G= E 
2(1 + v) 

factoring the term ( ~~ r lye. outside of the radical, and perfonning some algebraic 

manipulation of the resulting second term under the radi cal to obtain 

' E fJC F =C ~v · y'- · 
(f b L2 S 

b , 

I f the relationship 

is substituted within the first occurrence ofCw under the radical in Eq. (3) , where 

(I) 

(2) 

(3) 

(4) 

I The symbols utilized in this paper are the same as those employed within AASIITO ( I998 and 2004) unless noted 
otherwise, 
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for doubly - symmetric I - shapes 

c = (5) 
for channels 

is a "conversion factor" that allows the use of the samc L TB equation for both I-shapes and 
channels, and h is the distance betwecn the centroids of the flange elements, the elastic critical 
stress equation takes on the fonn 

1+ I Jc ' L' 
1t' (1 + v) S, h ff b 

Finally, if one substitutes 

r' , 

X' = S, h 
Jc 

and 0.078 for the coefficient within the second tenn under the radical, Eq. (6) becomes 

1t' E 0.078 , 
F" = Cb , I +--,-(Lb / r,t 

(Lb / r,) X 

For a doubly-symmetric I-shape, the parameter r,2 reduces to a basic familiar fonn if it is 
recognized that 

h' l 
C ::::--' 

w - 4 

and this equation is substituted along with the definition 

I , 
=--, 

(d 12) 

and the approximation 

into Eq. (7a). The result is 
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(12) 

or 

(13) 

where D is the depth of the web between the nange plates, d is the total section depth, Ar. = br,tr" 
Aw = Dt. , A., is the area of the web in nexural compression, equal to Dt"/2 for a doubly­
symmetric I-shape, and Afille, is the area of each of the four web-nange fillets. If d, hand Dare 
assumed to be approximately equal and the innuence of the web-nange fillet areas is neglected', 

or if one considers that the product of the tenns D' < I and ( I + 6 Afill<l) > I is approximately 
hd A" 

equal to one for all rolled I-shapes, Eq. (13) reduces to the radius of gyration of the compression 
nange plus one-third of the depth of the web in compression 

b r ::: rc 

,- 12( 1+~A.c) 
3 Arc 

( 14) 

This parameter is employed within the AASIITO (1998) and AISC (1999) provisions for design 
of slender-web I-girders, although Eq. (14) is not explicitly stated within these pecifications. 

Equation (8), with r, defined by Eq. (13), is for all practical purposes an exact representation 
of the fundamental elastic LTB strength. The only approximations invoked in writing Eq. (13) 
are the commonly-employed approximation associated with Eq. (9), the similar approximation of 
Eq. (II), and the assumption that the web-to-nange fillets are located at the bottom edge of the 
nange plates in the expression for I, in Eq. (12). For the complete set of ASTM A6 W shapes, 
the value of r, detennined from Eq. (13) is in all cases within plus or minus one percent of the 
exact value given by Eq. (7a). The simpler Eq. (14) gives accurate r, values that are less than one 
percent conservative relative to Eq. (7a) for beam-type W shapes with relatively narrow and 
relatively thin nanges (larger dlbr and btl2 tr). I lowever, it can be as much as 14 percent 
conservative relative to the exact Eq. (7a) for the heaviest column-type W shapes (small dib j and 
btl2tr). The largest error associated with Eq. (14) i for a WI4x808 section. The results are 
similar for welded shapes, where web-nange fillets are commonly not included in the section 
property calculations. For many plate girder type sections, the errors associated with the lise of 
Eq. (14) are negligible. The authors consider the additional complexity of including the temlS 
hid, D2/hd and Afill .. /A", in Eq. (13) to be small. Therefore, they prefer Eq. (\3) relative to Eq. 

.2 The contribution of the web-flange fillet areas is commonly neglected for welded I-sections: however. the web­
nange fillet contributions are genera lly included in sec tion property tabtes for rolled shapes. such as in At C (2oot. 
& b). 

5 



I 
,::;:> 
,::;:> 
.~ 

'-' 
'::0 

I 
'_J 

I 
I 
I 
I 
I 

I 
I 

I 
I 
I 
I 
I 
I 
I 

I 
I 

I 

(14). The advantage ofEq, (14) is its familiarity and physical significance relative to the AISC 
(1999) and AASHTO (1998) slender-web member provisions. Equation (7a) is a fundamental 
and exact expression for the r/ of doubly-symmetric I-shapes and channels. When Eq. (8) is 
employed for calculation of the elastic L TB resistance of rolled shapes, r, can be tabulated based 
on Eq. (7a) to simplify the calculations. 

For doubly-symmetric I-section members, Eq. (8) is a particularly useful and understandable 
form for the elastic L TB resistance, expressed in tenns ofthc compression flangc major-axi s 
bending stress, All of the variables in this equation are well known in terms of their physical 
significance, and are readily available or easily calculated during the design process. Equation 
(8) shows that the fundamental clastic LTB strength is simply a function of the elastic modulus 

E, the slenderness ~, the parameter X ' = S, h and the moment gradicnt modificr Cb. As 
r, Jc 

stated above, the parameter C within the term X' is a "conversion factor." This tenn captures the 
unique attribute of channels associated with their elastic L TB resistance, aside from their lack of 
symmetry, namely the difference in Cw relative to that of an I-shape. The use of Eq. (8) for both 
1- and channel-section member is based on the work by Hill (1954), Hill shows that the beam­
theory elastic L TB equations for doubly-symmetric I-shapcs are applicable for channelmcmbers, 
given the proper calculation of Cw for a channel. It is important however to recognize that the 
bracing system for such a member must be designed to resist a significant moment associated 
with the tendency of the channel to twist about its shear center (SSRC 1976). 

The parameter X2
, equal to S, h for a doubly-symmetric I-section, has a particularly 

J 
important physical significance, This term is the ratio of the bending and torsional efficiencies 

of the cross-section, If the approximation d ~ h is used, this ratio simplifies to 21 , for these 
J 

shapes. A shallow I-section (small S, and h) with wide stocky flanges (large J), will have a 
relatively small value for this term, whereas X2 is typically large for a deep I-section with 
relatively narrow flanges, In the context of Eq. (8), the design of rolled I-section members can 
be facilitated by providing tabulated values of this parameter. It should be noted that this tenn is 
always greater than one. 

When the second term under the radical in Eq, (8) becomes negligible relative to one, this 
equation reduces to the form 

(15) 

Equation (15) is utilized in AASIITO (1998) and AISC (1999) for slender-web members. The 
use of this fom1 for these member types is motivated by its simplicity, the tendency of the 
second-term under the radical in Eq, (8) to be negligible for these types of members, and the fact 
that flange raking and the associated web distortion are more likely as the web slenderness 
becomes large (White and Jung 2003b). 
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If Eq. (8) is used for the elastic L TB strength, this expression can be equated to FlT for the 
case of uniform major-axis bending (Cb - I) and solved for the root of the resulting quadratic 
equation for L', (i .e., the equation is quartic in L, but quadratic in L~ ) to obtain 

( 16) 

For slender-web I-sections, where J is taken equal to zero, the comparable result based on Eq. 
(15) i simply 

L,p 0) = llr, ~ E 
FYT 

( 17) 

The Engineer should note that although Eq. (16) is a relatively long equation involving 

embedded square root operations, the variables in this expression are few in number ( ~, X and 
F'T 

r,) and are easily calculated or are readily available within the design process. Also, L, is 
proportional to r,. Thi is convenient , if the compact bracing limit Lp (the length associated with 
anchor point I in Fig. \) is also written in terms of r" since in this case, a\\ the L TS strength 
equations are expressed in terms of a single nondimensional parameter Lt/ r, . It is shown 
subsequently that r, is a more fundamental L TB parameter than the commonly used radius of 
gyration of the full cross-section ry• Furthermore, as discussed below, the consistent usage ofr, 
within the L TB strength expressions eliminates several significant discontinuities that occur in 
the AI C (1999) representations of the nexural resistance and leads to a more accurate 
characterization of the bending strength. 

ALTERNATI VEFORl\1BA EDO A EQUIVALE TRADIU OF GYRATIO. r~ 

There are many different ways in whi h Eq. (I) can be algebraica\\y configured. Another 
interesting form suggested by Salmon and Johnson (\ 996) is obtained by rearranging Eq. (3) as 

ll ' E ~ I 1 
F" = C. -,- --., c. + , JL. 

Lj, S, \I h -(I + v) 
(\ 8) 

and then equating this expression to the fomlUla for the elastic buckling stress of an equivalent 
column, i.e., 

( 19) 

If the resulting expression is solved for r,' , the result is 
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r: = F, C + I JL' = F, ~C + 0.039JL' 
E S, W 21t ' (I+v) b s, W b 

(20) 

Based on this equivalent radius of gyration, the elastic L TB strength always takes the form of Eq. 
(19), i.e., Euler's column buckling equation modified by Cb. At first blush, this appears to be a 
dramatic simplification. I lowever, this development is somewhat deceiving since the expression 
for r[ also contains the length Lb. The physical beam L TB behavior does not in general map all 
that well to the column elastic buckling equation. The authors prefer the forn1 given by Eq. (8), 
where the radical containing the contribution of the St. Venant torsional stiffness is included 
directly within the expression for the L TB resistance. 

Equations (19) and (20) are useful for gaining a better understanding of several attributes of 
the elastic L TB equations however. For instance, a common practice is to neglect the 
contribution from St. Venant torsion to the elastic L TB resistance in certain cases, or in other 
words, to assume JLb' = 0 in determining the elastic L TB strength. As noted above, this 
assumption is invoked commonly for slender-web I-girders, partly since nange raking and the 
associated web distortion are more likely as the web slenderness becomes large] Also, this 
assumption is invoked typically in the development (or motivation) of equations for the length Lp 
corresponding to anchor point I in Fig. I, since the term 0.039 JLb' in Eq. (20) tends to be 
negligible relative to Cw for the short unsupported lengths associated with Lb = Lp. By taking 
JLb' = 0 in Eq. (20), the result is 

COMPARI SO TO T HE AASHTO (1998) EQUATIONS FOR 
NO COM POSITE I-SECTIO S WIT H COMPACT, 0 COM PACT AND 

LO G ITU DI ALLY-STIFFENED W EBS 

(21 ) 

The AASHTO (1998) equations corresponding to Eq. (8) also are derived directly from Eq. 
(I) by substituting Eqs. (2) and (9) as well as the approximation of Eq. (II). The result, after 
some algebraic manipUlation, is 

F = C 1tE ~ 
" b L S 

b " 

(22) '( h)' J -C 3.14E~ 1t - + - b 

Lb (I +v) I " Lb S" 
9.87(~)' + 0.769-

J 

Lb I" 

This expression (multiplied inappropriately by the hybrid girder factor Rh and expressed as the 
buckling moment Mer = RhFcrSxc) is specified in AASHTO (1998) to quantify the elastic LTB 
strength of noncomposite bridge I-beams and girders with compact, noncom pact and 
longitudinally-sti ffened webs . 

Although Eq. (22) is strictly valid only for doubly-symmetric I-shapes, it is applied also for 
singly-symmetric nons lender-web I-girders in the AASHTO ( 1998) Specifications. The 

1 The influence of web distortion on the L TB strengths is considered for general doubly- and singly-symmetric 1-
section members in (White and Jung 2003b). 
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commentary of these Specifications states that Eq. (22) gives predictions within approximately 
10 percent of the LTB equation for singly-symmetric I-section members provided in AISC 
( 1999). 

Equation (22) performs reasonably well for a large number of practical singly-symmetric 1-
shapes. Ilowever, it exhibits significant errors relative to the beam-theory based L TB strengths 
in certain cases (White and Jung 2003a). This is in part due to the fact that changes in the size of 
the tension flange and web influence the L TB strength only through the tcnns S" , hand J in this 
equation. Equation (8) also may be applied as an approximation for the elastic L TB strength of 
singly-symmetric I-section members. White and Jung (2003a) show that this equation, with c = 
I, and r, calculated using Eq. (13) with Awe = Detw, generally gives a more accurate 
approximation of the exact open-walled section beam-theory solution than Eq. (22) for singly­
symmetric I-section members. 

Equation (8) also has another advantage relative to Eq. (22) by virtue of the fact that as either 
J or Lb approaches zero, r

F 
' 0 = r, per Eq. (21). Therefore, Eq. (15) can be employed in the 

P Lio '" ) 

development of expressions for the length Lp shown in Fig. I. Conversely, Eq. (22) is written 
most directly in tenns of the compression flange radius of gyration rye as 

(23) 

In the limit that Lb approaches zero, this equation becomes 

(24) 

Equation (8) is more fundamental in that the use of 

(25) 

gives the fundamental L TB form of Eqs. (15) and (19) for a doubly-symmetric I-shape in the 

limit that 0.078{ ~: r becomes small relative to S,h ~ 21, (see the last term under the radical in 

Eq. (8)). The reader should note that rye is the radius of gyration of the compression flange 
alone, equal to bfe, ,J 12 for a rectangular flange plate. This should be contrasted with the 
definition ofr, given by Eq. (14). 

AASIITO (1998) does not specify an equation for the term L, in the context of its use of Eq. 
(22). Rather the AASHTO (1998) Specifications use the elastic L TB strength for all moment 
levels less than the yield moment My multipled by the hybrid girder factor Rh. The AASI-ITO 
(2004) provisions provide a more accurate representation of the L TB resistance by adopting the 
form shown in Fig. I. 
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COMPARISO TO THE AI C (1999) EQUATIO S FOR DOUBLY-SYMMETRIC 
1- AND CHANNEL-SECTION MEMBERS 

Two fonns of the exact beam-theory equations for elastic L TB of doubly-symmetric open­
walled sections are specified in AIS (1999), Eq. (I) multiplied by S" and 

M = cbs,x,.fi 
" Lb/ r, 

where 

X =~~EGJA 
's 2 , 

and 

x, = 4 Cw (~)2 
- I GJ , 

1+ X;X, 
2(Lb I r,)' 

(26) 

(27) 

(28) 

The primary reason for Eq. (26) is the use of LJ ry as a nondimensional slenderness parameter in 
writing the elastic L TB trength. The original fonn given by Eq. (I) is simpler. The authors 
recommend Eq. (8) as a simple L TB strength expression based on the slende rness LJ r, . 

AISC ( 1999) gives a single expression for L" which is derived from Eq. (26) in a fashion 
similar to the development of Eq. (16) from Eq. (8): 

(29) 

As noted in the Introduction, the physical significance of the parameters X, and X2 is difficult to 
understand. The recommended alternative to this equation, Eq. (16), involves the three 

E 
parameters -, X and r,. As discussed previously, the physical significance of each of these 

F" 
parameters is easy to understand. Furthennore, the values for X2 and r, can be tabulated for 
standard I-shapes, similar to the tabulation of X, and X, in AISC (2001a and b). 

In the limit that J or Lb approaches zero, Eq. (I) can be expressed directly as 

, ~ 
F = C leE v·,. ... w 

cr b L:! S 
b , 

By substituting Eq. (9), this equation may be written as 

10 
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, I 
7t-E 2-

2 h _ C 7t ' E Ah 
M" = Cb --:,'-=- - b 2 

Lj, S, (Lb / r, ) 2S, 
(31 ) 

Similar to the development in the previous section, Eq, (8) is more fundamental in that the use of 

&s 
r=r . = r -' 

I F(JI :;' ,-,() )' Ah (32) 

gives the basic LTB form ofEqs, (IS) and (19) for a doubly-symmetric I-shape in the limit that 

0.078{ ~,h )' becomes small relative to S, h " 21, in Eq. (8). The reader should note that ry is the 

radius of gyration of the full doubly-symmetric cross-section. This term may be expressed as 

b ,< for a rectangular flange plate. It is interesting to compare this expression to the 

12( 1+ A,,) 
A,< 

form given by Eq. (14) for r,. 

One way in which the equations for Lp (the length corresponding to anchor point I in Fig. I) 
are often motivated is to replace the elastic modulus by the strain-hardening modulus Es within 
Eq. (31) (Galambos 1968; McGuire 1968; Salmon and Johnson 1996). This is based on the 
assumption that substantial plastic bending defonnations are developed throughout the cross­
section prior to L TB. If Eqs. (24) or (31) are utilized within this context, an assumed value must 

. A h Ah 
be mtroduced for the extraneous parameters -"- or -. Conversely, if Eq. (15) is employed 

S" 2S, 
as the base equation, Lp can be expressed directly as (using Cb = I) 

~
' E 

Lp =r, -­
mF, 

(33) 

where m is a multiple of the yield strength corresponding to the compression flange state within 
the heavily plastified cross-section. If the approximations Es = 0.03E and m = 1.12 are 
introduced, this expression becomes 

Jf,-Lp = 0.5Ir, -
F, 

(34) 

As discussed with the developments in (Galambos 1968) and (McGuire 1968), the unbraced 
length does not need to be restricted this severely for members to be able to develop substantial 
plasticity prior to the nominal strength being influenced by L TB. Futhennore, it should be 
emphasized that the above derivations are primarily for motivational purposes. The true physical 
aspects of the LTB response of heavily plastified members are significantly more complex than 
implied by the above idealizations. White and Jung (2004) show that the equation 
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(35) 

gives the best fit to the data for anchor point I from 277 experimental L TB tests of rolled and 
welded I-section members in uniform bending. 

An important advantage of the use ofr, in the Lp equation is that it eliminates several 
discontinuities that occur within the AISC (1999) provisions. AISC (1999) Appendix F uses the 
radius of gyration of the compression /lange alone, rye, in writing the Lp limit for singly­
symmetric I-section members. This results in an abrupt increase in Lp if a doubly-symmetric 
section is made slightly singly-symmetric. Appendix F of AISC (1999) uses ry within its Lp 
equation for doubly-symmetric I-shapes. Furthermore, Appendix G specifies r, for all types of 
slender-web I-sections. This results in a discontinuity in Lp as the web tran itions from a 
noncom pact to a slender element. Ifr, is employed for singly-symmetric I-section members that 
have the same web and compression /lange, but have larger tension /langes of various sizes, the 
Lp limit tends to decrease with increasing monosymmetry. This characteristic follows 
experimentally observed trends (White and Jung 2004; White and Kim 2004), which indicate 
that more restrictive limits are needed on the length Lp corresponding to Anchor Point I (Fig. I), 
for these types of members to have a simi lar level of reliability compared to other types of 1-
section members. In addition, the fact that r, is associated solely with the compression portion of 
the I-section allows composite I-section members in negative bending to be handled in a 
simplified fashion using the same equations as for singly-symmetric I-section members . White 
and Jung (2003a) address this issue in more detail. Lastly, the use of r, in Eq. (35) is consistent 
with the use of the ratio MmoxlM« in the definition of un braced length limits comparable to Lp in 
the Canadian (CSA 200 I), Australian (SAA 1998), Eurocode (CEN 1993) and British (BSI 
1990) Standards. 

COMPARJ ON TO THE TRADITIONAL DOUBLE-FORMULA APPROACH FOR 
DOUBLY-SYMMETRIC I-SECTIO MEMBERS 

As discussed in (SSRC 1976), Eq. (I) also may be written in the fomls 

F = C. ll~EI , GJ 
ct Sxc Lb 

1+ EC w ( ...::..)' 

GJ Lb 
(36) 

and 

(37) 

For shallow (small dlbr) and/or stocky cross-section members, the elastic L TB resistance is 
dominated by the St. Venant torsional stiffness and the value of the radical in Eq. (36) 
approaches unity. In this case, this equation, written in terms of moment, can be simplified to 
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(38) 

Similarly, for deep (large d1br) thin-walled I-girders, the elastic L TB resi stance is dominated by 
the stiffness associated with the nonunifonn or warping torsion, and the radical in Eq. (37) 
approaches unity. In this case, Eq. (37), written in temlS of moment, can be simplified to 

(39) 

The traditional AISC ASD double-fonnula equations for the elastic L TB resistance of doubly­
symmetric I-section members are obtained by substituting the basic expressions for Iy, J and lye 
and introducing the additional approximations of: ( I) d ::= 2br and (2) tw::= 2tr/3. Equations (38) 
and (39) are retained here since they allow evaluation of the fundamental approximations of 
Cw/Lb2 = 0 and JLb2 = 0 in writing these equations. In the traditional ASD double-fonnula 
method, the elastic L TB resistance is taken as the larger of the values from these two 
approximations. 

Figure 2 shows the nature of the above approximation in terms of the resulting predicted 
Me,/My at Lb = L~,,"CI)' where My is the yield moment FySxe, and L~mct) is based on Eq. (16) 
using Fy = 50 ksi (345 MPa) and F)" = 0.7Fy, as specified for doubly-symmetric non hybrid 
shapes in AASHTO (2004) and AISC (2005). The exact value of Me,/My is 0. 7 for a ll the 
members considered in this plot. The data points within Fig. 2 correspond to the complete set of 
ASTM A6 rolled wide-flange shapes listed in the AISC (200Ib) Shapes Database. Figure 3 
shows the related approximations for the ratio of the approximate to the exact values ofL" 
L".ppmxYL"",ct), obtained using Eqs. (38) and (39) (by setting Fe< to 0.7 Fy and solving for the 
corresponding length). The following observations can be made from these plots: 

• The fundamental errors in the double-formula based strengths are highly correlated with the 
parameter X2 of the recommended elastic L TB equations (8) and (16). 

• The conservative approximation of L, associated with Eq. (38) is generally less than 10 
percent for X2::: 350 

• The conservative approximation of L, associated with Eq. (39) is generally less than 10 
percent for X2 ~ 1500 

• For values of X2 between 350 and 1500, the conservative errors in L, associated with the 
double-fomlUla approach are in general larger than 10 percent. The largest error is 2 1 
percent (i.e ., L~.ppmx) = 0.79L~cxact) at X2 = 640, which is the value of this term where the L, 
values predicted based on Eqs. (38) and (39) are the same. 

• Although the approximation of Eq. (38) is quite good for column-type wide-flange sections 
(i.e., dlbr ::= I) with the stockiest plate components, in general the use of this equation results 
in a signi ficant but needless conservative approximation of the true Me< or L, values. 
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• Although the approximation by the use of Eq. (39) in the calculation of L, is less than 10 
percent conservative for X' ~ 1500, the conservative error is still six percent at X' - 2500. 
Therefore, assuming that the reduction in the L TB resistance due to potential web distortion 
is not an issue, it can be concluded that Eq. (39) results in a significant and needless 
conservative error in the elastic L TB resistances. Also, the Engineer should note that for 
un braced lengths larger than Lb = L" the conservative error associated with the use of Eq. 
(39) is larger. 

Figures 4 and 5 show the variation in Mc/My from Eqs. (38) and (39) at Lb = Lnc",.) versus 
the cross-section aspect ratio dibr for the complete set of all ASTM A6 W shapes. The 
signi ficance of the parameter d/br is that cross-sections that have a larger dibr tend to work more 
efficiently for problems involving nexure only, while cross-sections with dib, close to 1.0 tend to 
work better as columns. Figure 4 shows that even for column-type W sections (i.e., dibr ~ I), 
where Eq. (38) would tend to govern in the double-formula approach, the conservative error in 
using Eq. (38) can be greater than 10 percent. The more conservative predictions for a given dibr 
in Fig. 4 tend to occur for sections that have thinner nange and web plates. FurthernlOre, Fig. 5 
shows that even for beam-type W sections with dibr> 3, the use of Eq. (39) alone can result in 
conservative errors that are larger than 50 percent. The more conservative predictions in this 
case tend to occur for sections that have highly stocky nanges. Also, it should be noted that the 
conservative error associated with the application of Eq. (15) to these types of rolled wide-nange 
sections is similar to that shown in Fig. 5. 

The use of the single elastic LTB expression given by Eq. (8) is in general significantly more 
accurate, and in addition the usc of this equation is more straightforward compared to calculating 
the resistances from the two separate double-formula equations and then taking the larger of the 
two values. Also, it is relatively easy to understand the physical significance of the terms in Eqs. 
(8) and (16). Furthennore, these equations reduce naturally to the fonns generally employed for 
slender-web members, i.e., Eqs. (15) and (17), simply by taking J = O. Equations (15) and (17) 
should be used for slender-web members, where the innuence of the St. Venant torsional 
stiffness is typically small and web distortion effects are of a potential concern. Lastly, Eqs. (8) 
and (16) can be applied for all types of I-sections and channels, including composite I-section 
members in negative bending. This is not the case for the AASHTO (1998) lye-based equation or 
the AISC (1989) double-formula equations. 

Appendix A evaluates when the simple Eq. (17) can be employed for L, with small (less than 
10 percent) conservative error in terms of the cross-section dimensional parameters. As noted 
above, the conservative error associated with the use of J = 0 is generally larger for Lb> L,. 
Therefore, Eq. (8) should be used in general for calculating the elastic L TB strength of members 
with compact or noncompact webs. 

SUMMARY 

The elastic L TB strength of doubly-symmetric I-section members and channels can be 
expressed in the exact but simple and easily understood form given by Eq. (8): 

F =C rr'E 
" b( Lb/ r,) ' 
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This equation shows that the elastic L TB resistance of these types of members depends on the 
moment gradient factor Cb, the elastic modulus E, the slenderness parameter Li/r" and the ratio 

of the torsional and bending efficiencies of the cross-section X' = S, h . This last ternl reduces 
Jc 

2l x 
approximately to -J- for a doubly-symmetric I-shape. All of these variables are well known in 

ternlS of their physical significance, and are readily available or are easily calculated during the 
design process. The use ofEq. (8) in the design of rolled I-shapes and channels can be facilitated 
by tabulating the values of r, and X', where r, may be calculated exactly for doubly-symmetric 1-
shapes and channels from Eq. (7a) and c is a conversion factor for channels given by Eq. (5). As 
discussed by White and lung (2003a), Eq. (8) can also be used as an accurate approximation for 
the elastic L TB strength of a wide range of singly-symmetric I-section members, including 
composite members in negative bending, but with r, given by Eq. (13). Equation (8) also has the 
advantage that it reduces to the elastic L TB equation for slender-web I-section members in AISC 
(1999) and AASHTO (1998) simply by substituting 1 = 0, i.e., 

F = C 1t ' E 
" b (Lb I r, )' 

The un braced length corresponding to the transition from inelastic to elastic L TB 
corresponding to Eq. (8), L,., is given by Eq. (16): 

L.= 1.95r, ~ 1+ 1+6.71FY'J' X4 
X F,. '\ E 

( 15) 

( 16) 

This equation is similar in fonn to the corresponding exact equation in AISC (1999) (Eq. (29», 
but is based on the more fundamental parameters discussed above. The comparable equation for 
slender-web members reduces to the particularly simple form given by Eq. (17): 

( 17) 

The above recommended equations are compared to various other exact and approximate 
forms for the elastic L TB strength of doubly-symmetric I-section members and channels. The 
paper shows that the radius of gyration r" given exactly by Eq. (7a) for doubly-symmetric 1-
shapes and channels and closely approximated by Eq. (13) for I-section members, is more 

fundamental to the L TB problem than ry or rye. In the limit that 0.078{ ~,b J ' becomes negligible 

relative to Sxh ;: 21x in the last term of Eq. (8), the elastic L TB strength reduces to the fonn of 
Euler's column buckling equation, but with the radius of gyration taken as r, . Conversely, 
additional ternlS remain within the elastic L TB strength formulas at this limit when ry or rye are 
used. 
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The paper also shows that, although the traditional double-formula approach gives reasonable 
results at the extreme limits of shallow stocky colunm-type I-sections and deep narrow-flange 
beam-type I-sections. the two separate equations used in this approach give quite conservative 
answers for a large percentage of rolled I-shapes. The errors associated with the double-formula 
approach are strongly correlated with the bending to torsional efficiency ratio X2 

Detailed assessment of the cross-section dimensional parameters for which the simplest 
approximate equation for L, (Eq. (17)) is less than I 0 percent conservative are evaluated in 
Appendix A. In general, the t. Venant torsional stiffness J should be included for accurate 
calculation of the elastic LTB resistance in compact- and noncom pact-web members for lengths 
larger than L,. This is because the conservative errors associated with the use of J - 0 are larger 
for increasing values of the unbraced length Lb. 

The companion paper (White and Jung 2003a) considers an ad hoc extension of the 
recommended elastic L TB equations, similar in concept to the development and use of 
comparable elastic L TB equations for singly-symmetric I-shapes in AASIITO (1998). This ad 
hoc extension is useful since only one set of equations is then needed to handle all types of 1-
section members and channels, including lateral buckling of the bottom flange of composite 1-
section members in negative bending. The recommended equations give improved accuracy 
relative to the AASIITO (1998) equations for general I-shapes. The companion paper also 
develops and evaluates a simplified fonn of the exact beam-theory equations for singly­
symmetric I-section members. onsiderations pertaining to the calculation of the St. Venant 
torsional tiffness J for general I-shapes as well as reductions in the elastic L TB resistance due to 
web distortion arc addressed by White and Jung (2003b). 
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APPENDIX A - CO SERVA TlVE ERROR ASSOCIATED WITH THE USE OF J = 0 IN 
CALCULATI G Lr FOR COMPACT- AND NO COMPACT-WEB I-SECTIONS 

The parameter Lr is the unsupported length at the transition between the elastic and inelasti c 
L TB strength eurves in AASHTO (1998) and AISC (1999). As noted in the paper, the equations 
for Lr are derived in general by equating the base elastic L TB strength Fer to the compression 
flange stress corresponding to the onset of significant cross-section inelasticity, Fyr. Equation 
(16) is derived in this fashion based on the recommended general form for the elastic L TB 
resistance (Eq. (8», and Eq. (17) is obtained in this fashion from Eq. (15) for slender-web 
members, where J is taken equal to zero. Since Eq. (16) involves embedded square root 
operations, yet Eq. (17) is extraordinarily simple, it is interesting to investigate to what extent the 
inclusion ofa finite J in Eq. (16) increases the value of Lrrelative to that computed from Eq. 
(17). In this appendix, the percent difference between the L,. value determined by Eq. (16) 
compared to that determined by Eq. (17) is derived analytically. 

One can observe that the ratio of the strengths predicted by Eqs. (8) and (15) depends solely 

on the tern, 0~;8 (L. I r, ) ' inside the radical of Eq. (8). With some algebraic manipulation, the 

ratio X2 can be expressed in terms of the nondimensional parameters Dlbrc, breltr" Dltw, and tn/tr, 
for a general I-shape as 

(h / d)[(d 1 - Dl )b 'e + Dl t. J (h I d)[ {(d / D) l -I) + t. I b 'e J 
= X' = S" h 

J 2(b 'e t re' + b . t . 1 + Dt w1 ) 2 [(t re I D)l + (b . I b re )(t . I D)l + (D / b rcl(t w I D) ' J 

(40) 

It should be noted that the final approximation in this equation is obtained by assuming 
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If Eq. (40) is substituted into Eq. (16) for X2, and then Eq. (16) is divided by Eq. (17), the result 
is a basic equation for the ratio of the L, values computed with and without the inclusion of J. 
Figure 6 shows a plot of the 10 percent conservative "error" curves in L, associated with the use 
ofEq. (17) instead ofEq. (16). That is, each of the curves in Fig. 6 gives the values of btltr and 
D/tw associated with 10 percent conservative error in L, for a given value of Dlbr. For each of 
the values of Dlbr, any points (D/tw, btltr) that fall above and to the right of the corresponding 
curve have conservative errors smaller than 10 percent. This figure is based on Fy = 50 ksi (345 
MPa) and F)" = 0.7Fy, which is the specified value of Fy, for doubly-symmetric nonhybrid shapes 
in AASHTO (2004) and AISC (2005). 
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Figure 6. Curves for 10 percent conservative error in L, associated with the use of J = 0, 
plotted as a function of D/br, btltr and D/tw based on Eqs. (16) and (17), 

F)" = 0.7Fy, Fy = 50 ksi (345 MPa). 

One can observe from Fig. 6 that for D/br ::: 3, D/tw ::: 50 and btltr ::: 11 (btl2tr= 5.5), the 
influence of J on the value ofL, is essentially always less than 10 percent. This is significant 
since many welded beam and girder type cross-sections will satisfy these limits. Even when 

280 

Dlbr = 2.5, which is likely to be smaller than the value of Dlbr for many welded I-girders, the 
error in L, associated with neglecting J is less than 10 percent essentially if btltr ::: 13 and D/tw::: 
50. For Dlbr::: 3.5, the error in L, associated with the assumption of J = 0 is less than 10 percent 
ifbtltr::: 10 (or btl2tr::: 5) and D/t .. ::: 50. Therefore, practically speaking, the error in L,. 
associated with the use of J = 0 is less than 10 percent for 1110St bridge-girder type proportions. 
For larger Fy (and Fy,) values than those on which Fig. 6 is based, the horizontal portion of the 10 
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percent error curves tends to shift downward, and the vertical portion of the curves for large O/br 
(e.g., Olbr= 6) tends to shift slightly to the right. 

For rolled beam type wide-flange sections, it can be stated that the conservative error in Lr 
caused by using J = 0 will typically be greater than 10 percent, although not much greater for 
many light beam-type wide-flange sections. This can be inferred from Fig. 6, although it is not 
illustrated directly by the plot. Figure 5 shows however that for some beam-type wide-flange 
sections (e.g., sections with heavy flanges), the conservative error associated with the use of Eqs. 
(15) and (17) is substantial. Furthermore, Fig. 6 shows that for typical column type rolled or 
welded I-shapes, which tend to have O/br close to one and O/tw less than 50, the conservative 
error in Lr associated with the use of J = 0 is always larger than 10 percent. For many column­
type cross-sections, thi s error is in fact significantly larger than 10 percent. This attribute is 
illustrated by the conservative nature of the curve for Lr(,ppro./Lr(mct) based on Eq. (39) for small 

values ofX2 = S,h in Fig. 3. It is also illustrated by the small values for Mj My at Lb = Lr(cxoct) 
J 

and d/br ;: I in Fig. 5. Figure 6 shows that for doubly-symmetric I sections with O/t" less than 
about 40, the increase in L, due to the St. Venant torsional rigidity is always greater than 10 
percent. 

Based on Fig. 6, it can be argued that it is often reasonable to neglect J in calculating Lr for 
welded I-girders. However, the error associated with the assumption of J = 0 becomes much 
larger for unsupported lengths larger than Lr. That is, for long unsupported lengths typica l of 
conditions which may exist during construction, the additional strength gained by the inclusion 
of J in Eq. (8) compared to that predicted by Eq. (15) based on J = 0 can be substantial. 
Therefore, it is recommended that in general Eqs. (8) and (16) should be utili zed in calculating 
the strength of compact- and noncompact-web I-section members. Use of Eq. (8) for Fer and Eq. 
(17) for Lr would lead to a di scontinuity in the clastic and inelastic LTB strength curves at the 
transition point, i.e., anchor point 2 in Fig. I. 

APPENDIX B - NOTATION 

A Total cross-sectional area, inl (mm2
) 

Arc Area of compression flange, inl (mm2
) 

Afil lel Area of each of the two web-ta-compression flange fillets, generally taken equal to zero for welded 1-
shapes, inl (nun:!) 

Aw Area of web, Dt ..... inl (111m2) 
AVoc Area of web in fl exural compression, Dctw. inl (mm2

) 

Cb Moment-gradient factor for lateral-torsional buckling 
C .• , Warping constant, intI (mmb

) 

D Depth of the web; clear distance between the flange plates, in (mm) 
Dc Depth of the web in compression; distance from the cross-section centroid to the inside face of the 

compression flange, in (mm) 
E Modutus of elasticity of steel, 29 000 ksi (200000 MPa) 
E, Strain-ha rdening modulus of steel. ksi (M Pa) 
Fcr Elastic critical stress, ksi (MPa) 
Fma.( Maximum potential flexural resistance in temlS of the compression flange stress, ksi (MPa) 
Fn Nominal flexural resistance in ternlS of the compression flange stress, ksi (MPa) 
F, Specified minimum yietd stress, ksi (MPa) 
F)'f Compression flange flexural stress corresponding to the nominal onset of yielding at the extreme fibers in 

compression or tension. including compression flange residual stress effects 
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Shear modulus of elasticity of steel. II 200 ksi (77 220MPa) 
Moment of inertia about the major axis of bending, in" (nlln") 
Moment of inertia about the minor-axis of bending, in" (mm4) 
Moment of inertia of the compression flange about the plane of the web, in" (mm4) 
St. Venant torsional constant, in" (0101

4
) 

Laterally unbraced length; length between points braced against lateral displacement of the compression 
flange. or between points braced to prevent twist of the cross-section, in (mm) 
Limiting laterally unbraced length to achieve the maximum potential flexural resistance of the section. 
unifornl moment case (Cb = 1.0), in (mOl) 
Limiting laterally unbraced length to ach ieve the onset of yielding in unifoml bending (C, = 1.0) at the 
extreme fibers in compression or tension, with consideration of compression flange residual stress effects. 
in (mOl) 

Elastic buckling moment. kip-in (N-mm) 
Nominal flexural resistance, kip-in (N-mm) 
Maximum potential flexural resistance, kip-in (N-mm) 
Yield moment, FyS, = FyS,c = FyS,!, doubly-symmetric sections and channels bent about major axis; 
smaller of Myc and M ) h singly-symmetric sections bent abollt major axis, kip-in (N-mm) 
Yield moment capacity considering compression flange residual stress effects, FyrSxc. kip-in (N-mm)(?) 
Ilybrid girder h,ctor 
Elastic section modulus, doubly-symmetric sections and channels bent about major axis. inl (mm3

) 

Elastic section modulus corresponding to the extreme compression fiber, inl (mm3
) 

Ratio of the bending to the torsional efficiency of the cross-section. specified by Eq. (7b) 
Beam buckling factor detined by AISC LRFD Specification (A ISC 1999) Equation FI-8 
Beam buckling factor defined by AISC LRFD Specification (AISC 1999) Equation F 1-9 
Flange width. doubly-symmetric I-shapes and channels. in (mm) 
Width of a rectangular compression flange. in (mill) 
Width of a rectangular tension flange. in (mm) 
Section factor associated with the elastic lateral-torsional buckling resistance of channels 
Total depth between the extreme fibers of the flange elements perpendicular to the major axis of bending, 
in (mOl) 
Distance between the centroids of the flange elements perpendicular to the major axis of bending. in (mm) 
A multiple of the yield strength corresponding to the compression fl ange state within a heavily plastified 
cross-section 
Equivalent column radius of gyration corresponding to elastic lateral-torsional buckling strength, in (mm) 
Radius of gyrat ion for lateral-torsional buckling defined by Eq. (7a) for doubly-symmetric I-shapes and 
channels and by Eq. ( 13) for doubly- or singly-symmetric I-shapes with rectangular flanges, in (mm) 
Radius of gyration about y axis. in (111m) 
Radius of gyration of the compression flange taken about the y axis, in (mm) 
Flange thickness, doubly-symmetric I-shapes and channels, in (mm) 
Compression flange thickness, in (111m) 
Tension flange thickness, in (mm) 
Web thickness, in (mm) 
Poisson's ratio of steel, 0.3 
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