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1. Introduction

The steel angle is a common and almost
traditional member in building construc-
tion. Its popularity stems from its relative
lightness and compactness and the ease
with which it can be connected to other
members. In view of its long and wide-
spread use it is surprising to find that litile
is known of many major aspects of its per-
formance as a structural member. In these
areas design guidance is only available to
a limited extent and consists mainly of
empirical extrapolations of solutions for
other sections! and continued misconcep-
tions about non-principal axis loading and
shear centre eccentricities.

The behaviour of angles as compression
members has been studied relatively exten-
sively (e.g. 2 3 4) as a result of their wide-
spread use in such structures as transmis-
sion towers. These towers are usually pre-
cisely analysed® for actual failure under
well defined load factors and an accurate
knowledge of member load capacity has
been essential. Even here, however, the
underiying research has frequently been
highly empirical with strut load capacities
given for each member size under practical
field conditions$.

The case which presents the designer
with his current major information gap oc-
curs when the angle is used as a laterally
unsupported beam. For example, the S.A.A.
Steel Structures Code AS CA17 states in
Rule 5.4.3:

‘The Standards Association of Australia

is not prepared at this stage to make

recommendations for angles which are
not supported laterally.’

The British Code permits its. standard
beam rules to be used for angles, but the
technique developed can not be rationally
defendedS. 9 and does not lead to consistent
design solutions. The U.S. steel design
specification!? does not specifically cover
the case.

The logical question to ask at this stage
is why the problem of the laterally unsup-
ported angle used as a beam has remained
without a practical solution for so long. The
answer s, basically, that although the
angle is a very simple secticn to the lay-



man and the producer, it is a difficult one
for the stress analyst. The principal axes
of the cross-section do not coincide with
common loading directions and any rou-
tine loading will therefore cause biaxial
bending deflections which are not In the
same plane as the applied loads. To further
complicate the problem, the shear centre
is not at the centroid and is not on the line
of most major applied loads. Thus most
loads will cause the cross-section to twist
and to deflect out of its loading plane.
Finally, common end connections are usually
eccentric because of the lack of symmetry
of the cross-section.

2. Current investigations

The purpose of the current investigation is
to develop rational but simple formulas for
the design of laterally unsupported angles
in bending. This should help fill the present,
previously quoted, void in the S.A.A. Steel
Structures Code, CA1, and thus permit the
more widespread use of angles in building
construction.

The loading case to be considered will
be a uniform moment along the entire
laterally unsupported span. This will pro-
duce the most critical lateral buckling situa-
tionl! and will therefore give resuits which
will be safe for any other bending moment
distribution. The same uniform moment basis
is used for the other lateral buckling rules
of CA112. 13, The lengths under considera-
tion are assumed to be completely unsup-
ported and the solutions may therefore be
applied to both fully unsupported beams or
restrained beams between restraint points.

Later work will include an experimental
examination of various aspects of the prob-
lem. However, this article will be confined
to a theoretical derivation of design rules.

Solutions are only presented for equal
angles (leg lengths equal). Similar solutions
can be obtained for unequal angles, but the
complete asymmetry of these latter sec-
tions produces algebraically involved re-
sults which tend to obscure the basic un-
derlying principles.

The range of equal angles produced by
BHP are given in 14, The sections are ap-
proximated by the dual rectangle idealisa-
tion shown in Fig.1. This linearised sec-

tion ignores fillets and toe radii, but can be
made to reproduce actual member proper-
ties very precisely by adjusting the idealised
leg length, B, to produce an exact similitude
for some chosen geometrical property (such
as area). The assumption, therefore, is not
critical and is necessary in order to obtain
a solvable set of equations.
3. Notation and sign convention
The notation to be used is:

B = Width of angle leg.

A,C,D — Constants of integration.
E = Young's Modulus.
F = Design stress.
Fo = Critical buckling stress.
F» = Maximum permissible bending
stress.
Fy = Yield stress.
G = Modulus of rigidity (shear or tor-
sion modulus)
Iz = Second moment of areas about
UU axis.
lv = Second moment of area about
VV axis.
le = Warping moment of area.
Ky = St Venant torsional constant.
K = Torsional component of the nor-
mal stress (see eq.5.4).
L = Length of span.
M = Component moment of the
applied moment.
M., = Critical buckling moment,
M. = Applied moment about Y axis +

moment due to the dead weight
of the beam.
S = Shear centre.
U Denotes the major principal axis.
Vv Denotes the minor principal axis,
w Denotes the polar axis.
X Denotes axes through the cen-
troid, parallel to an angle leg.

Z = Section modulus.

Z, = Section modulus about same
axis as Ma.

Z = Section modulus through the V
axis.

¢ == Centroid location.

t = Thickness of angle leg.

u = U—U axis co-ordinate.

v = V—V axis co-ordinate.

U, = Shear centre co-ordinate.

v, = Shear centre co-ordinate.

v c centroid
v | s shear cenire
Y i
%
X ] - X
o=
, [
u B \\
I v
i
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w = Distance measured along the
length of the beam.
o = Actual section stress.
o, = Stress calculated using conven-
tional beam formula:
Ty — M,
Zy
oo = Critical buckling stress.
¢ = Angle of twist.
¢, — Initial angle of twist due to
imperfections.
« = Coefficient in solution of differ-

ential equations.

Differentiation with respect to w.
This notation is coupled with the sign

convention shown in Fig.2.

4. Loading cases

The behaviour of the beam is dependent
on the axis about which the moment is
applied, Fig.2. Four loading conditions are
illustrated in Fig.3. These conditions can
be used vectorially to represent all pos-
sible cross-section loadings. Taken in-
dividually they are:

Case I: Moment applied about an axis
through the shear centre parallel to one
leg.

Case 1l: Moment applied about the UU
axis (strong axis).

Case lll: Moment applied about the VV
axis (weak axis).

Case IV: Moment applied about an axis
midway between the UU axis and the YY
axis.

Each of these cases will
dividualiy studied.

now be in-

5. Case |

The problem to be solved is illustrated in
Fig.3(a) and Fig.4. Galambos!® has shown
that for this case the following equations

apply*:

Bending in the V Direction:

(3.81) Elwv" +Mo=—M —(5.1)
Bending in the U Direction:

(3.82) Elyu" +Me =M —(5.2)

Torsional Equilibrium:

(3.83) El¢" — (GKz + K) ¢' + Mu' -+ Mv'
=o0 —(5.3)
where the symbols are as defined in Sec-
tion 3 and the primes indicate differentia-
tion with respect to w, the distance along
the beam.

The equations are derived from the fol-
lowing set of assumptions:

(a) The material is elastic.

(b) The member is straight and prismatic.

(c) The cross-section is thin walled and
open.

(d) Deflections are small.

All the constants are readily calculable
(see Sect.4) with the exception of I, and
K. It has been shown in 18 that warping
is insignificant for angle sections, there-
fore, I, = 0. K can be determined from the
following constitutive equations given by
Galambos:

(3.85) K= M(By—Bv) —(5.4)

(3.13) Bo=-L § v(v* + ultds —2v, —(5.5)
o o

(3.85) By = Il § u(u® + v?)tds — 2u, —(5.6)
AN

*The left hand equation numbers correspond to
those in Galambos'.
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For the idealised section (Fig.1)

B
v= ==([uU + —
(' ?.\/2>
and ds = =+ v/2du = +/2dv

Integration of equations {6.5) and (5.6)
yields
Bo=o0 and B =/2B

whereupon: |
K=— v 2BM —(5.7)!
for equal angle sections. |

The angle of twist ¢ may now be deter-._ 7

mined by substituting this solution into eq.

(5.3) to give:

— (GKz—/2BM)g’ + Mu' 4 Mv' =0 (5.8)
Differentiating this and substituting values

of u", v'' from (5.1), (5.2) gives:

Mg+ g = —Aq —(5.9)
A = GK»— V' 2MB —(510)
M2/ 1 1
N | = b o
=G +1) &1
M*/ 1 1
Nyt s T .
: E (Iv [u) ]
The general solution is:—
¢=ACOS&W+DSianW—%
—(5.13)
where a« = (—;5) 2
1
with boundary conditions:
¢ w=00 = pw=1 — O
one obtains
_3 1
Puex =g (1 " cosal/2 ) —(5.14)

6. Case l. Critical buckling

For Case I the critical buckling condition
occurs when:

alL=m
as at this value

¢ =—oo (see eq. 5.14).

Since
A\

ol = (T) L

the critical moment is given by:
7-65ML

= fr —(6.1)
BIEL (1— =)
or
[M_x] ™ B
“LEEler T 15 7 Lt
B \* 10 ¢ B?
[((F) +75=) —i] —62
where

(Ma)er = V2M., = the critical applied
moment and the dimensionless parameters
M. Lt
o 5
buckling curve (Fig.5a). This curve allows
an estimation of the critical applied moment
for a given length and section. The horizon-
M,
Et?
duce a stress of 3F; (where F; is the mat-
erial yield stress), for yield stresses of 52

are used to draw the critical

tal lines represent the values of = to Pro-

and 36 ksi and tE ratios of 6 and 16.

It has been shown 13. 19 that failure stress-
es will be unaffected by elastic buckling if
the buckling stress is at least three times
the material yield stress.

Thus, it can be established that F» may

be taken as 0-66 Fy for the following cases:

Case B/t Range for F, =0-66 Fy
Fy = 52 ksi 6 0 < L/t < 680
11 0 < L/t < 570
16 0 < L/t <330
Fy = 36 ksi 6 0 < L/t <980
11 0 < L/t < 850
16 0 << L/t < 690

The critical stress corresponding to the
critical moment in eq.6.2 can be obtained
by:

oo M)ee 9 (Mi)er
o > 75 B
- . Et
oo = 0-4247° -,
B2y? 10 \¢  B°
[((Lt) +1-37r=) _E] =(6.5)

This siress corresponds to F. in Rule
5.4.3 of AS CA1 and the safe bending
stress Fn. for the beam can be calculated
using egs.(4) and (5) of those rules as the
purpose of these equations is to permit
such conversions to be made (12 13), The
result of converting o.: in eqg.(6.3) into Fu.
is shown in Fig.5b, which may thus be used
directly for design.

7. Case . Stress solution
The actual maximum section stress is ob-
tained from the stress equation, which
gives the stress at any point in the section
as:

M. v

274 o=—f_—
lo

M, =M1 + ¢),"M, = M(1 —¢)

It has been shown that the effect of
warping is insignificant and since:

M, u
T”—«i— Ewagp" —(7.1)
v

where

(2.62) Iwz_f w:tds=o —(7.2)
then w,—o0
Equation (7.1) becomes:

e MO +olv_ MA—olu _ ;g

[U |v
Substituting values for |, 1+ gives:

o= :%((V -+ 4U)¢ + V—4u):(7.4)

This equation shows that the stress in
the section is a linear function of the
amount of twisting to which it has been
subjected. The twist resulting from applied
loads is given in eq.(5.14). Further twist-
ing will result from initial eccentricities
present in the unloaded angle. There are
no specification limits for torsional eccen-
tricity; however Masseyl? has measured the
torsional eccentricity in steel | beams and
suggests an average value of initial twist
as:

¢ = 0436 X 107'L radians —(7.5)

Values measured for two angle lengths
are given in Fig.7 together with Massey's
general estimate. The method of measure-
ment is shown in Fig.8. The twist due to
the weight stress is avoided by measuring
the total twist (¢.r¢v) of the angle in two
positions ninety degrees apart. The mea-
sured values are in agreement with Mas-
sey’s equation.
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Note

Elui'---(1.1)
—Elv! -~ (1.2)

Axes are drawn with W or W, as the outward

drawn normal from the surface under
consideration.

Fig.2. Sign convention

{c) Case lll

Fig.3. Loading for cases | to IV
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If ¢. is considered, the stress equation
(7.4) becomes:

__3M
ga=2((v +4U0)p +v—au)
—(7.6)
and if amplification effects near the buck-
ling load are neglected

)
—id g e
RIS =g i cos al/2

L

- 0-436 3 10~* (T) —(7.7)

where t in the ¢. part of the expression has
been put equal to 1 to produce the maxi-

mum value of ¢. for values of (%)

It can be seen from Section 5 that
L oa B
=1k, 2,2
¢ = =y
where o, :% does not include the stress

due to twist. 'Fhus, it is possible to produce
curves of ¢, against L/t with contours of
omax, the maximum section stress, as shown
in Fig.6. Contours of . (stress including
initial twist) are also shown. Although the
initial twist does cause a stress increase
over gma. for the range examined, the mag-
nitude of this increase is small and only
apparent in the graph for large values of
M and {-‘tl).

If the maximum section stress is cal-
culated for Case | using conventional beam
formulas and, if the applied moment is not
resolved into components in the U and V
axes, the calculated stress may be up to
50% less than the actual stress produced
in the member. In terms of the symbols
used above, ¢, may be up to 50% less
than omax.

It is clear from the graph that twisting
may be ignored if:

on <(38— o5 . +) ksl —(7.8)

The expression is empirically determin-
ed from the form of the contours in Fig.6.

The two points ‘a’ and ‘b’ on Fig. 6 are
obtained from the buckling solution given
in Fig.5a, as the points where buckling
does not influence the results. It is seen
that the two approaches lead to similar
results as 'a’ and 'b’ lie close to eq.(6.11).
The buckling approach relies on the F,. —
Fu conversion of eq.(4) and (5) of CA1,
whereas the maximum stress approach is
based on limiting the true peak stress to
permissible values. The two solutions will
therefore lead to similar but not identical
results and the selection of a method will
depend on the formulation of the problem.

8. Case Il
Galambos!? has shown that, for singly sym-
metric sections subject to the loading shown
in Fig.3(b), the equations for lateral tor-
sional buckling are:
(3.49) Elu"™+Mg" ==o0 —(8.1)
(3.50) El ¢'"— (GKr + M3} + Mu =0
—(8.2)
Since B. = o0 (Sect5) and warping is
insignificant then

Aap'T 4 Ny = 0 —(8.3)
where
A = GKr —(8.4)
_ M
M=, —(8.5)
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The general solution is:
¢'' = A sin aw -+ D cos aw

—(8.6)

A ) 2
«=(32) —67
Applying the end conditions of zero tor-

sional restraining moment:
[ ¢“ (W=l = p

where

gives
Bi=0
and
sinal =0
The lowest critical moment occurs when:
ab =m
i.e.
(lh-) ! . L T
A
or
Bt 2 —(8.8)
6v1-3 L

This result can also be obtained using
the St. Venant buckling solution,

M. > E( EI_\GKT)' —(8.9)
Substituting M., =0 . 2Zv in eq.(8.1)
gives:
o TEE —(8.10)
2/2:6 L

which is the critical elastic buckling stress
for the member. Using the ‘elastic critical
stress to design stress’ conversion of the
SAA Steel Structures Code CA1, Rule 5.4.3,
eqgs.(4) and (5), together with eq.(8.10),
allows Fig.9 to be drawn. This figure shows
both the critical buckling stress curve of
eq.(8.10) and the curves of the design
bending stress for yield stresses of 52 and
36 ksi derived as indicated above.

It is apparent that when L/t < 200 for
F, =— 52 and L/t < 300 for F, = 36 ksi, Fo
may be taken as 66 Fy. This follows from
the F, > 3 F, criterion used earlier.

Fig. 10 has been included to permit rapid
estimation of F, when the I;—ratio and the
yield stress are known. The maximum
stress in a section may be determined
directly from the applied moment and the
section modulus.

9. Case HI
The loading for Case Ill is shown in Fig.
3c. Since the moment is applied about the
weak axis there is no possibility of buck-
ling to a more stable configuration and the
beam will continue to bend about this axis
only. Therefore conventional beam for-
mulas may be used. The maximum stress is
given by:

_Mv

JITI!IX P—

7. —(9.1)
10. Loads not through the shear centre

Loads not through the shear centre will

cause twisting of the angle section. Such

loads will include the weight of the sec-

tion acting through the centroid. These

loads will cause an angle of twist given by:

o

8GKr

For weight twisting, the value of T is:

—(10.1)

T= WEEE in Ib/in.

where w= |b/in. length. The increased
stresses due to additional twisting can e
calculated from a generalised form of eq.
(7.1).
—_— (M -t oMV _ (My — ¢M.)u
lu v
—(10.2)
A more exact and comprehensive solution
to this problem can be found in Ref.20.

11. Case IV

The loading for Case IV is shown in Fig.
3d. In this case the moment can be re-
solved into moments about the U and V
axes (principal axes) and the theory or
Cases | and 1l applies.

More generally, if the applied moment
acts in any position between the X or Y
and U axes, the component moments My,
Mu, resolved in the U, V directions, will
produce stresses oy and oy, The design is
satisfactory if:

FN F.\[
where Fx and Fu are the maximum permis-
sible stresses associated with the axis
under consideration.

%1 —(11.1)

12. Conclusions
It has been shown that for laterally un-
restrained angle beams the following re-
lationships apply:

Case I:
The stress at any point in the section is:
a:%—%( (V + 4U)p; + V—4U )
The maximum section stress is:
oo IMEB—91)
W 4 J2B%

where the angle of twist 6. = ¢ + ¢..

If the maximum stress is calculated with-
out resolving the applied load into U and V
components, the result may be up to 50%
less than the actual maximum stress. Twist-
ing may be ignored if:

P A L) i
Gy <(38 80 -t ksi.

An alternative method of beam design
for Case | is to consider the critical buck-
ling moment given by:

[gﬂt—;]cr :_11% : %[((%)2

-+ 0-785)! —_— %]

and then use Ref.7, Rule 5.4.3, to convert
this into a design stress.

The values of L/t for which the safe
bending stress, Fi. may be taken as 0-66F,,
are shown in Szction 6.

Case lI:
The angle of twist ¢ has no direct effect in
this case and the safe bending stress can
be calculated using 7, Rule 5.4.3, where the
critical buckling stress F,, is obtained from:
__"E  t
*Tovze L

This may be ignored if %f< 200 for F, =

52 and L{« 300 for Fy, =236 ksi, and a

design stress of 0-66 Fy; may be used.



Case llI: 13. Summary
No secondary effects will occur and con- The design criteria for angle beams can

ventional beam formulas may be used. be summarised as follows:
ChkE IV Case I Use Simple Principal Axis | Additional Effects if Column 2
P : ; Loading if: Not Satisfied
The design is satisfactory if: - g
- P | (i) Stress Solution: - 2-12M 3
_\+,£/<1 1 L mak == TEh (3 — 1)
Fx Fu . g, X 38 — Wt {Fig.6)
where Fx and Fy are the appropriate maxi- ) : . . )
mum permissible stresses. (ii) Critical Buckling Solution: | Use F,— F\,. conversion of
See Table below. Ref.7.
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