This reference is based upon simplifying assumptions and arbitrarily selected limitations. Direct use of the 2022 AISC Specification (ANSI/AISC 36022) may be less constrained and less conservative.

W-, S-, C- and MC Shapes

W-Shapes

S-, C- and MC-Shapes

ASTM A992	$F_{y}=50 \mathrm{ksi}$	$F_{u}=65 \mathrm{ksi}$
ASTM A36	$F_{y}=36 \mathrm{ksi}$	$F_{u}=58 \mathrm{ksi}$

Condition			ASD	LRFD	Related Info
Tension			$0.6 F_{y} A_{g} \leq 0.5 F_{u} A_{e}$	$0.9 F_{y} A_{g} \leq 0.75 F_{u} A_{e}$	For A_{e}, see AISC Specification Equation D3-1.
Bending	Strong Axis	$L_{b} \leq L_{p}$	$0.66 F_{y} S_{x}$	$0.99 F_{y} S_{x}$	$L_{p}=\frac{300 r_{y}}{\sqrt{F_{y}}}$ See Note 1.1. L_{r} and strength when $L_{b}>L_{r}$ are given in the AISC Manual.
		$L_{p}<L_{b} \leq L_{r}$	Use linear interpolation between L_{p} and L_{r}.		
		$L_{b}=L_{r}$	$0.42 F_{y} S_{x}$	$0.63 F_{y} S_{x}$	
	Weak Axis		$0.9 F_{y} S_{y}$	$1.35 F_{y} S_{y}$	
Shear (in strong axis)			$0.4 F_{y} A_{w}$	$0.6 F_{y} A_{w}$	See Note 1.2.
Compression	$L_{c} / r \leq 800 / \sqrt{F_{y}}$		$0.6 F_{y} A_{g}(0.658)^{P}$	$0.9 F_{y} A_{g}(0.658)^{P}$	$P=\frac{F_{y}\left(L_{c} / r\right)^{2}}{286,000}$ See Note 1.3.
	$L_{c} / r>800 / \sqrt{F_{y}}$		$\frac{150,000 A_{g}}{\left(L_{c} / r\right)^{2}}$	$\frac{226,000 A_{g}}{\left(L_{c} / r\right)^{2}}$	

Notes

1.1 Multiply equations given for strong axis with $L_{b} \leq L_{p}$, or weak axis, by values in parentheses for $\mathrm{W} 21 \times 48(0.99), W 14 \times 90(0.97), \mathrm{W} 12 \times 65(0.98)$, W10 $\times 12(0.99), W 8 \times 10(0.99), W 6 \times 15(0.95)$ and $W 6 \times 8.5(0.98)$.
1.2 Multiply equations given by 0.9 for $W 44 \times 230, W 40 \times 149, W 36 \times 135, W 33 \times 118, W 30 \times 90, W 24 \times 55, W 16 \times 26$ and $W 12 \times 14$ and all C- and MCshapes. In weak axis, equations can be adapted by using $A_{w}=1.8 \mathrm{~b}_{\mathrm{f}} \mathrm{t}$.
1.3 Not applicable to slender shapes. For slender shapes, use A_{e} from AISC Specification Section E7 in place of A_{g}. For C- and MC-shapes, see AISC Specification Section E4.

Connected Parts

Bolts	Group A (ASTM F3125 Grades A325 and F1852) Group B (ASTM F3125 Grades A490 and F2280)	$F_{u}=120 \mathrm{ksi}$
Group C (ASTM F3043 and F3111)	$F_{u}=150 \mathrm{ksi}$	
Welds	$F_{\text {EXX }}=70 \mathrm{ksi}$	$F_{u}=200 \mathrm{ksi}$

Design Values
 This reference is based upon simplifying assump-

 tions and arbitrarily selected limitations. Direct use of the 2022 AISC Specification (ANSI/AISC 36022) may be less constrained and less conservative.| Condition | | | | ASD | LRFD | Related Info |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { n } \\ & \text { 毋 } \end{aligned}$ | Tension | | | $0.38 F_{u} A_{b}$ | $0.56 F_{u} A_{b}$ | - |
| | Shear (N bolts, per shear plane) | | | $0.23 F_{u} A_{b}$ | $0.34 F_{u} A_{b}$ | Multiply by 1.25 for X bolts. |
| | Slip Resistance (Class A, STD holes) | | | $0.12 F_{u} A_{b}$ | $0.18 F_{u} A_{b}$ | Per slip plane. See Note 2.1. |
| | Bearing | | | $1.2 \mathrm{~d}_{\mathrm{b}} \mathrm{t} F_{u}$ | $1.8 \mathrm{~d}_{\mathrm{b}} \mathrm{tF} F_{u}$ | See Note 22 |
| | Tearout | | | $0.61{ }_{c}+F_{u}$ | $0.91{ }_{1}+F_{u}$ | See Note 2.2. |
| $\frac{n}{0}$ | Shear (all welds except CJP) | | | $0.3 F_{E X X} A_{w e} \leq 0.3 F_{u} A_{B M}$ | $0.45 F_{E X X} A_{w e} \leq 0.45 F_{u} A_{B M}$ | See Note 2.3. |
| | PJP Groove Welds | Tens | | $0.32 F_{E X X} A_{w} \leq 0.5 F_{u} A_{B M}$ | $0.48 F_{E X X} A_{w} \leq 0.75 F_{u} A_{B M}$ | See AISC Specification Section J2.1a. |
| | | Compression
 (joint not finished to bear) | | $0.48 F_{E X X} A_{w} \leq 0.6 F_{y} A_{B M}$ | $0.72 F_{E X X} A_{w} \leq 0.9 F_{y} A_{B M}$ | |
| | CJP Groove Welds | | | Strength equal to base metal. | | - |
| $\frac{\square}{0}$ | Tension | | | $0.6 F_{y} A_{g} \leq 0.5 F_{u} A_{e}$ | $0.9 F_{y} A_{g} \leq 0.75 F_{u} A_{e}$ | For A_{e}, see AISC Specification Equation D3-1. |
| - | Shear | | | $0.4 F_{y} A_{g} \leq 0.3 F_{u} A_{n}$ | $0.6 F_{y} A_{g} \leq 0.45 F_{u} A_{n}$ | - |
| U | Block Shear | | | $0.3 F_{u} A_{n v}+0.5 U_{b s} F_{u} A_{n t}$ | $0.45 F_{u} A_{n v}+0.75 U_{b s} F_{u} A_{n t}$ | See Note 2.4. |
| ${ }_{0}$ | Compression | | $L_{c} / r \leq 25$ | $0.6 F_{y} \mathrm{~A}$ | $0.9 F_{y} A$ | - |
| \cup | | | $L_{c} / r>25$ | Same as for W -shapes with $A_{g}=A$. | | |

Notes

2.1 For Class B multiply by 1.67. Multiply by values in parentheses for SSL perpendicular to load direction (1.0), OVS or SSL parallel to load direction (0.85), and LSL holes (0.70). Multiply by 0.85 if multiple fillers are used within grip.
2.2 For LSL holes perpendicular to load direction, multiply by 0.83 .
2.3 For fillet welds, multiply by 1.5 for transverse loading (90 -degree load angle). For other load angles, see AISC Specification Section J2.
2.4 For calculation purposes, $F_{u} A_{n v}$ cannot exceed $F_{y} A_{g v}$. $U_{b s}=1.0$ for a uniform tension stress; 0.5 for non-uniform tension stress.
3 Basic HSS Members

This reference is based upon simplifying assumptions and arbitrarily selected limitations. Direct use of the 2022 AISC Specification (ANSI/AISC 36022) may be less constrained and less conservative.

HSS
Pipe

ASTM A500 Grade C
ASTM A1085 Grade A
ASTM A53 Grade B

Round	
$F_{y}=46 \mathrm{ksi}$	$F_{u}=62 \mathrm{ksi}$
$F_{y}=50 \mathrm{ksi}$	$F_{u}=65 \mathrm{ksi}$
$F_{y}=35 \mathrm{ksi}$	$F_{u}=60 \mathrm{ksi}$

Rectangular

$F_{y}=50 \mathrm{ksi} \quad F_{u}=62 \mathrm{ksi}$
$F_{y}=50 \mathrm{ksi} \quad F_{u}=65 \mathrm{ksi}$

Condition		ASD	LRFD	Related Info
Tension		$0.6 F_{y} A_{g} \leq 0.5 F_{u} A_{e}$	$0.9 F_{y} A_{g} \leq 0.75 F_{u} A_{e}$	For A_{e}, see AISC Specification Equation D3-1.
Bending	Rectangular HSS	$0.66 F_{y} S$	$0.99 F_{y} S$	See Note 3.1.
	Round HSS and Pipe	$0.78 F_{y} S$	$1.17 F_{y} S$	See Note 3.2.
Shear	Rectangular HSS	$0.36 F_{y} A_{w}$	$0.54 F_{y} A_{w}$	See Note 3.3.
	Round HSS and Pipe	$0.18 F_{y} A_{g}$	$0.27 F_{y} A_{g}$	See Note 3.4.
Compression	$L_{c} / r \leq 800 / \sqrt{F_{y}}$	$0.6 F_{y} A_{g}(0.658)^{P}$	$0.9 F_{y} \mathrm{~A}_{g}(0.658)^{P}$	$P=\frac{F_{y}\left(L_{c} / r\right)^{2}}{286,000}$ See Note 3.5.
	$L_{c} / r>800 / \sqrt{F_{y}}$	$\frac{150,000 A_{g}}{\left(L_{c} / r\right)^{2}}$	$\frac{226,000 A_{g}}{\left(L_{c} / r\right)^{2}}$	

Table 3.1. Size Limits for Rectangular HSS, in.*

Nominal Wall Thickness, in.	$7 / 8$	$3 / 4$	$5 / 8$	$1 / 2$	$3 / 8$	$5 / 16$	$1 / 4$	$3 / 16$	$1 / 8$	
Bending	Flange	22	20	16	12	10	8	6	5	3
	Web	24	24	24	24	20	18	14	10	7
Shear	24	24	24	24	20	18	14	10	7	
Compression									24	24
20										16
12									10	8
6	4									

Notes

3.1 Not applicable if size limit from Table 3.1 at left is exceeded (see Section F7).
3.2 Not applicable if $D / t>2,030 / F_{y}$ (see Section $F 8$).
3.3 Not applicable if size limit from Table 3.1 at left is exceeded (see Section G4).
3.4 Equations provided for shear yielding. See AISC Specification Section G5 for shear buckling provisions.
3.5 For rectangular HSS, if size limit from Table 3.1 at left is exceeded use A_{e} from AISC Specification Section E7 in place of A_{g}. For round HSS and Pipe where $D / t>3,190 / F_{y}$, use A_{e} from AISC Specification Section E7 in place of A_{g}.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION ANSI/AISC 360-22 is available free at aisc.org/specifications.

Analysis and Design

Simplified Method (see Note 4.1)

Step 1 Perform first-order elastic analysis. Use 0.002 times the total story gravity load as lateral load in gravity-only combinations.
Step 2 Establish the design story drift limit and determine the lateral load that produces that drift.
Step 3 Determine the ratio of the total story gravity load to the lateral load determined in Step 2. For ASD, multiply by 1.6 .
Step 4 Multiply first-order results by the tabular value. $K=1$, except for moment frames when the tabular value is greater than 1.1.

Design Story Drift Limit	Load Ratio from Step 3 (times 1.6 for ASD, 1.0 for LRFD)										
	0	5	10	20	30	40	50	60	80	100	120
H/100	1	1.1	1.1	1.3	1.5/1.4			When ratio exceeds 1.5, simplified method			
H/200	1	1	1.1	1.1	1.2	1.3	1.4/1.3	1.5/1.4		requires a stiffer	
H/300	1	1	1	1.1	1.1	1.2	1.2	1.3	1.5/1.4		struct
H/400	1	1	1	1.1	1.1	1.1	1.2	1.2	1.3	1.4/1.3	1.5
H/500	1	1	1	1	1.1	1.1	1.1	1.2	1.2	1.3	1.4

Notes Where two values are provided, the value in bold is the value associated with $R_{M}=0.85$.
Interpolation between values in the table may produce an incorrect result.

Elastic Methods	Effective Length	Forces and Moments	Limitations	References
First-Order Analysis Method-second-order effects captured from effects of additional lateral load	$\begin{gathered} K=1 \text { for all frames } \\ \text { (see Note 4.2) } \end{gathered}$	From analysis	$\Delta_{2 \text { nd }} / \Delta_{1 \text { st }} \leq 1.5$; axial load limited	Specification Appendix 7.3
Effective Length Method-second-order analysis with 0.2% of total gravity load as lateral load in gravity-only combinations (see Note 4.3)	$K=1$, except for moment frames with $\Delta_{2 \text { nd }} / \Delta_{1 \text { st }}>1.1$	From analysis (see Note 4.3)	$\Delta_{2 n d} / \Delta_{1 s t} \leq 1.5$	Specification Appendix 7.2
Direct Analysis Method-second-order analysis with notional lateral load and reduced EI and $A E$ (see Note 4.3)	$K=1$ for all frames	From analysis (see Note 4.3)	None	Specification Chapter C

Notes

$\Delta_{2 \text { nd }} / \Delta_{1 s t}$ is the ratio of the second-order drift to first-order drift, which is also represented by B_{2}.
4.1 Derived from the effective length method, using $B_{1}-B_{2}$ approximation with B_{1} taken equal to B_{2}.
4.2 An additional amplification for member curvature effects is required for columns in moment frames.
4.3 The $B_{1}-B_{2}$ approximation (Appendix 8) can be used to accomplish a second-order analysis within the limitation that $B_{2} \leq 1.5$. Also, B_{1} and B_{2}
4.3 The $B_{1}-B_{2}$ approximation (Appendix 8) can be used to accomplish a second-ord
can be taken equal to the multiplier tabulated for the simplified method above.

Design Values

This reference is based upon simplifying assumptions and arbitrarily selected limitations. Direct use of the 2022 AISC Specification (ANSI/AISC 36022) may be less constrained and less conservative.

Load Ratio from Step 3 (times 1.6 for ASD, 1.0 for LRFD)

