W-, S-, C-, and MC-Shapes

		Fy	Fu
W-, C-, and MC-Shapes	ASTM A992/A992M	50 ksi	65 ksi
S-Shapes	ASTM A572/A572M Grade 50	50 ksi	65 ksi

Basic - Design Values

This reference is based upon simplifying assumptions and arbitrarily selected limitations. Direct use of the 2022 AISC *Specification* (ANSI/AISC 360-22) may be less constrained and less conservative.

Condition			ASD	LRFD	Related Info	
Tension		$0.6F_yA_g \le 0.5F_uA_e$	$0.9F_yA_g \le 0.75F_uA_e$	For A _e , see AISC Specification Equation D3-1.		
Bending		$L_b \leq L_p$	0.66 <i>F</i> _y <i>S</i> _x	0.99 <i>F_yS_x</i>	, 300r _y	
	Major Axis	$L_p < L_b \le L_r$	Use linear interpolation	Use linear interpolation between L_p and L_r .		
		$L_b = L_r$	0.42 <i>F</i> _y <i>S</i> _x	0.63 <i>F</i> _y <i>S</i> _x	L_r and strength when $L_r > L_r$ are given in	
	Minc	or Axis	0.9 <i>F_yS_y</i>	$1.35F_yS_y$	the AISC Manual.	
Shear (in major axis)			0.4 <i>F</i> _y A _w	$0.6F_yA_w$	See Note 1.2.	
	$L_c/r \le 800/\sqrt{F_y}$		0.6F _y A _g (0.658) ^p	0.9 <i>F_yA_g</i> (0.658) ^{<i>P</i>}	$E\left(1/r\right)^2$	
Compression	$L_c/r > 800/\sqrt{F_y}$		$\frac{150,000A_{g}}{(L_{c}/r)^{2}}$	$\frac{226,000A_{g}}{\left(L_{c}/r\right)^{2}}$	$P = \frac{1}{286,000}$ See Note 1.3.	

Notes

- 1.1 Multiply equations given for strong axis with $L_b \leq L_p$, or weak axis, by values in parentheses for W21×48 (0.99), W14×90 (0.97), W12×65 (0.98), W10×12 (0.99), W8×10 (0.99), W6×15 (0.94), and W6×8.5 (0.98).
- 1.2 Multiply equations given by 0.9 for W44×230, W40×149, W36×135, W33×118, W30×90, W24×55, W16×26, and W12×14 and all C- and MC-shapes. In weak axis, equations can be adapted by using A_w = 1.8b_ft_f.
- 1.3 Not applicable to slender shapes. For slender shapes, use A_e from AISC Specification Section E7 in place of A_g. For C- and MC- shapes, see AISC Specification Section E4.

2 Basic Design Values

This reference is based upon simplifying assumptions and arbitrarily selected limitations. Direct use of the 2022 AISC *Specification* (ANSI/AISC 360-22) may be less constrained and less conservative.

Connected Parts

SignalGroup 120 (ASTM F3125/F3125M Grades A325 and F1852) $F_{ub} = 120$ ksiGroup 144 (ASTM F3148) $F_{ub} = 144$ ksiGroup 150 (ASTM F3125/F3125M Grades A490 and F2280) $F_{ub} = 150$ ksiGroup 200 (ASTM F3043 and F3111) $F_{ub} = 200$ ksi

Welds $F_{EXX} =$ 70 ksi

 F_{ub} represents F_u of bolt material on this card.

Cor	dition			ASD	LRFD	Related Info
Tension		0.38 <i>F_{ub}A_b</i>	$0.56F_{ub}A_b$			
Shear (N bolts, per shear plane)		0.23 <i>F</i> _{ub} A _b	0.34 <i>F</i> _{ub} A _b	Multiply by 1.25 for X bolts.		
Solt	Slip Resistance (Class A, STD holes)		$0.12F_{ub}A_b$	0.18 <i>F</i> _{ub} A _b	Per slip plane. See Note 2.1.	
۵ Bearing		$1.2d_b tF_u$	$1.8d_b tF_u$	Soo Noto 2.2		
	Tearout		$0.6l_c tF_u$	$0.9l_c tF_u$	See Note 2.2.	
	Shear (all welds except CJP)		except CJP)	$0.3F_{EXX}A_{we} \leq 0.3F_uA_{BM}$	$0.45F_{EXX}A_{we} \leq 0.45F_uA_{BM}$	See Note 2.3.
ds	PJP Tension Groove Compression Welds (joint not finished to bear)		n	$0.32F_{EXX}A_w \leq 0.5F_uA_{BM}$	$0.48F_{EXX}A_w \le 0.75F_uA_{BM}$	See AISC Specification
Wel			ession ot finished to bear)	$0.48F_{EXX}A_{w} \leq 0.6F_{y}A_{BM} \qquad 0.72F_{EXX}A_{w} \leq 0.9F_{y}A_{BM}$		Section J2.1a.
	CJP Gro	ove We	ds	Strength equal	—	
arts	Tension			$0.6F_yA_g \le 0.5F_uA_e$	$0.9F_yA_g \le 0.75F_uA_e$	For A _e , see AISC <i>Specification</i> Equation D3-1.
рё Н Р	င် ပွ Shear		$0.4F_yA_g \le 0.3F_uA_n$	$0.6F_yA_g \le 0.45F_uA_n$		
Block Shear		$0.3F_uA_{nv} + 0.5U_{bs}F_uA_{nt}$	$0.45F_uA_{nv} + 0.75U_{bs}F_uA_{nt}$	See Note 2.4.		
- uu	Block Shear	ssion	$L_c/r \le 25$	$0.6F_yA_g$	$0.9F_yA_g$	
Ŭ	compres	551011	$L_c/r > 25$	Same as for		

Notes

2.1 For Class B multiply by 1.67. Multiply by values in parentheses for SSL perpendicular to load direction (1.0), OVS or SSL parallel to load direction (0.85), and LSL holes (0.70). Multiply by 0.85 if multiple fillers are used within grip.

2.2 For LSL holes perpendicular to load direction, multiply by 0.83.

2.3 For fillet welds, multiply by 1.5 for transverse loading (90-degree load angle) if strain compatibility of the various weld elements is considered. For other load angles, see AISC Specification Section J2.

2.4 For calculation purposes, $F_u A_{nv}$ cannot exceed $F_y A_{gv}$. $U_{bs} = 1.0$ for a uniform tension stress; 0.5 for non-uniform tension stress.

Analysis and Design

Simplified Method (see Note 4.1)

- **Step 1** Perform first-order elastic analysis. Use 0.002 times the total story gravity load as lateral load in gravity-only combinations.
- Step 2 Establish the design story drift limit and determine the lateral load that produces that drift.

Step 3 Determine the ratio of the total story gravity load, P_{story} , to the lateral load, H, determined in Step 2 and divide by R_M . [$\alpha = 1.0$ (LRFD); $\alpha = 1.6$ (ASD)].

Step 4 Multiply first-order results by B_2 (i.e., the tabular value). K = 1, except for moment frames when the tabular value is greater than 1.1. Ensure the target drift limit in Step 2 is not exceeded.

Basic **3** Design Values

This reference is based upon simplifying assumptions and arbitrarily selected limitations. Direct use of the 2022 AISC *Specification* (ANSI/AISC 360-22) may be less constrained and less conservative.

Дн						<u>αP_{story}</u> RмH			80 100 120 B2 > 1.50 1.36 1.50 1.25 1.33 1.43 1.19 1.25 1.32		
	5	10	20	25	30	40	50	60	80	100	120
L/100	1.05	1.11	1.25	1.33	1.43						
L/200	1.03	1.05	1.11	1.14	1.18	1.25	1.33	1.43		B ₂ > 1.30	
L/300	1.02	1.03	1.07	1.09	1.11	1.15	1.20	1.25	1.36	1.50	
L/400	1.01	1.03	1.05	1.07	1.08	1.11	1.14	1.18	1.25	1.33	1.43
L/500	1.01	1.02	1.04	1.05	1.06	1.09	1.11	1.14	1.19	1.25	1.32
Note Interpolati	ion betweer	values in th	ne table may	/ produce a	n incorrect r	esult.					
Elastic Metho	ods				Effective Le	ngth	Forces and	L	imitations	Spec	cification

	Effective Length	Moments	Limitations	References
First-Order Analysis Method —second-order effects cap- tured from effects of additional lateral load	K = 1 for all frames (see Note 4.2)	From analysis	$\Delta_{2nd}/\Delta_{1st} \le 1.5;$ axial load limited	Appendix 7, Section 7.3
Effective Length Method —second-order analysis with 0.2% of total gravity load as lateral load in gravity-only combinations (see Note 4.3)	K = 1, except for moment frames with $\Delta_{2nd}/\Delta_{1st} > 1.1$	From analysis (see Note 4.3)	$\Delta_{2nd}/\Delta_{1st} \leq 1.5$	Appendix 7, Section 7.2
Direct Analysis Method —second-order analysis with no- tional lateral load and reduced <i>EI</i> and <i>AE</i> (see Note 4.3)	K = 1 for all frames	From analysis (see Note 4.3)	None	Chapter C

Notes

 $\Delta_{2nd}/\Delta_{1st}$ is the ratio of the second-order drift to first-order drift, which is also represented by B_2 .

4.1 Derived from the effective length method, using B_1 - B_2 approximation with B_1 taken equal to B_2 . B_1 must not exceed B_2 and B_2 must not exceed 1.5. See AISC *Manual* Part 2 for discussion of limitations and additional details.

4.2 An additional amplification for member curvature effects is required for beam-columns.

4.3 The B_1 - B_2 approximation (Appendix 8) can be used to accomplish a second-order analysis.

4 Basic Design Values

This reference is based upon simplifying assumptions and arbitrarily selected limitations. Direct use of the 2022 AISC *Specification* (ANSI/AISC 360-22) may be less constrained and less conservative.

HSS	Mem	bers

		Ro	und	Recta	Rectangular		
ЦСС	ASTM A500/A500M Grade C	$F_y = 50$ ksi	$F_u = 62$ ksi	$F_y = 50$ ksi	$F_u = 62$ ksi		
122	ASTM A1085/A1085M Grade A	$F_y = 50$ ksi	$F_u = 65$ ksi	$F_y = 50$ ksi	<i>F</i> _u = 65 ksi		
Pipe	ASTM A53 Grade B	$F_y = 35$ ksi	$F_u = 60$ ksi	-	-		

Condition		ASD	LRFD	Related Info		
Tension		$0.6F_yA_g \le 0.5F_uA_e$	$0.9F_{y}A_{g} \leq 0.75F_{u}A_{e}$	For A _e , see AISC <i>Specification</i> Equation D3-1.		
Bonding	Rectangular HSS	0.66F _y S	0.99F _y S	See Note 3.1.		
bending	Round HSS and Pipe	0.78 <i>F_yS</i>	1.17 <i>F_yS</i>	See Note 3.2.		
Shear	Rectangular HSS	0.36 <i>F</i> _y <i>A</i> _w	$0.54F_yA_w$	See Note 3.3.		
Round HSS and Pipe		0.18 <i>F_yA_g</i>	$0.27F_yA_g$	See Note 3.4.		
	$L_c/r \le 800/\sqrt{F_y}$	0.6 <i>F_yA_g</i> (0.658) ^{<i>P</i>}	0.9 <i>F_yA_g</i> (0.658) ^{<i>P</i>}	$E_{1}(l_{2}/r)^{2}$		
Compression	$L_c/r > 800/\sqrt{F_y}$	$rac{150,000A_{g}}{\left(L_{c}/r ight)^{2}}$	$\frac{226,000A_g}{\left(L_c/r\right)^2}$	$P = \frac{r_y (L_c/T)}{286,000}$ See Note 3.5.		

Table 3.1. Size Limits for Rectangular HSS, in.*											
Nom. Wall Thickness, in.		1	7⁄8	3⁄4	5⁄8	1⁄2	3⁄8	5⁄16	1⁄4	3⁄16	1⁄8
Bending	Flange	24	24	20	16	12	10	8	6	5	3
	Web	34	34	34	34	24	20	16	14	10	7
Shear		34	34	34	34	24	20	18	14	10	7
Compression		34	24	24	20	16	12	10	8	6	4
*Table only covers up to 88-in. periphery											

Notes

- 3.1 Not applicable if size limit from Table 3.1 at left is exceeded (see Section F7).
- 3.2 Not applicable if $D/t > 2,030/F_y$ (see Section F8).
- 3.3 Not applicable if size limit from Table 3.1 at left is exceeded (see Section G4).
- 3.4 Equations provided for shear yielding. See AISC *Specification* Section G5 for shear buckling provisions.
- 3.5 For rectangular HSS, if size limit from Table 3.1 at left is exceeded use A_e from AISC Specification Section E7 in place of A_g . For round HSS and Pipe where $D/t > 3,190/F_y$, use A_e from AISC Specification Section E7 in place of A_g .

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

ANSI/AISC 360-22 is available free at **aisc.org/specifications**.