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PREFACE 

Summarized herein is background infonnation and illustrative examples for new frame stability design 
provisions proposed by AISC TC 10 for the 2005 AISC Standard. In the latest AlSC ballot (July 2003), 
most of the new provisions appear in a new Appendix 6, entitled "Direct Analysis Method for Moment 
Frames", which provides an alternative to the frame stability provisions in Section B6 of the Standard. 
The frame stability provisions of Section B6 are essentially identical to those in the 1999 (3"' edition) of 
the LRFD Specification for Structural Steel Buildings, except for the addition of a minimum moment 
requirement. The background and fundamental features of the standard (Section B6) and alternative 
(Appendix 6) provisions are described herein. Several illustrative example problems are presented to 
demonstrate and contrast the two stability design approaches. 
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INTRODUCT ION 

The proposed new provisions for frame stability represent the culmination of work by task committees in 
AlSC and SSRC over the past four years, which incorporate concepts of second·order analysis and design 
whose origins date back over twenty years. Concerted work on this began late in 1999, with the fonnation 
of a joint AISC·SSRC Ad·hoc Committee whose charge was to develop improved specification provisions 
for member and frame stability. The committee's goals were to develop design methods for stability that 
made more effective use of modem computer analysis methods, while reducing the over· reliance on 
effective buckling length procedures in the current AlSC Specifications. This ad·hoc committee was 
combined with AI SC TC lOin 200 I , and the combined group developed provisions, which are proposed 
for adoption in the 2005 AISC Standard. The new provisions were first balloted in March 2003 and have 
since been revised to address comments raised by the AISC Specification Committee. This report reflects 
the latest version of the proposed provisions for frame stability. 

The July 2003 AlSC ballot outlines proposed provisions for the 2005 Standard, which will pernllt two 
alternative methods to design for stability effects in moment frames . For discussion purposes, the two 
approaches will be referred to as the "Effective Lellgth " and "Direct Allalysis" methods. Both approaches 
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require evaluation of second-order effects and member force interaction equations. The methods differ in 
their specific requirements for calculating second-order effects and the axial strength tcrm, p., in the 
member interaction equation. Requirements for the Effective Length method are contained in the proposed 
Section B6 of the 2005 Standard. This method is essentially the same method as the approach used in 
Chapter C of the 1999 AISC-LRFD Specification. Requirements for the Direct Analysis method are 
specified in a newly proposed Appendix 6 to the 2005 Standard. 

This report begins with a brief review of key behavioral effects and second-order analysis considerations, 
which are re levant to stability design. Next, the two proposed approaches to framc stability are 
summarized and contrasted through a design example of simplc cantilever column. This IS followed by 
highlights of validation studies to evaluate the accuracy of the two proposed methods. The report 
concludes with three design examples to illustrate practical application of the methods. 

BEHAVIORAL EFFECTS 

There are potentially many parameters and behavioral effects that influence stability of steel-framed 
structures. The extent to which these factors are modeled in analysis will affect the criteria that one 
applies in design of the (rame, its members and connecllons. Without repeating more complete 
presentations given elsewhere (Birnstiel and Imand, 1980; McGuire, 1992; White and Chen. 1993 ; ASCE, 
1997; Deierlein & White 1998), it is helpful to review three basic aspects of behavior: geometric 
nonlinearities, inelastic spread-of-plasticity, and member limit states. These ultimately govern frame 
deformations under applied loads and the resulting internal load effects. 

Geometric Nonlinearities and Imperfections: Modern stability design provIsions are based on the 
premise that the member forces are calculated by second-order elastic analyses, where equilibrium is 
satisfied on the defonned structure. When stability effects are significant, consideration must be given to 
initial geometric imperfections in the structure due to fabrication and erection tolerances. For the purpose 
of calibrating the stability requirements described later, initial geometric imperfection are conservatively 
assumed as equal to the maximum fabrication and erection tolerances pennitted by the AI Code oj 
Stalldard Practice (2000). For columns and frames, this implies a member out-of-straightness equal to 
UIOOO, where L is the member length between brace or framing points, and a frame out-of-plumb equal to 
H/500, where H is the story height. The out-of-plumb is also limited by the absolute bounds as speCified 
in the Code oj St{/l/{/ard Practice. 

Inelastic Spread of Plasticity: The proposed analysis/design approaches are calibrated against inelastic 
distributed-plasticity analyses that account for spread of plasticity through the member cross-section and 
along the member length. Thermal residual stresses in W-shape members are assumed to have maximum 
values of 0.3Fy and are distributed according to the so-called Lehigh pattern - linearly varying across the 
flanges and unifornl tension in the web (Deierlein & White 1998). 

Member Limit States: Member strength may be controlled by one or more of the following limit states: 
cross section yielding, local bUCkling, flexural buckling, and torsional-flexural buckling. For structural 
analyses envisioned for routine frame design, it is assumed that the analysis does not model local 
flange/web buckling or torsional-flexural buckling. Therefore, these limits must be considered in separate 
member design checks. For inelastic analyses, the member yield limit is incorporated directly in the 
analysis; and for elastic analyses, this limit can be checked by an interaction equation that approximates 
the P-M yield surface. Whether or not the analysis captures in-plane flexural buckling depends on the 
extent to which the maximum moments are affected by distributed plasticity and member str3lghtness. 
Concerns as to whether the analysis captures this effect suggest the need to apply a member check for lO

plane flexural buckling, even when an accurate second-order analysis is used. As will be addressed later, 
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a key consideration for the in-plane flexural buckling check relates to the assumed buckling length used in 
calculating the design compression strength, ¢P". 

SECOND-ORDER ELASTIC ANALYSIS 

The AISC stability design provisions are developed for use with second-order elastic analysis. In practice, 
there are alternative approaches one can employ for conducting second-order analyses, some of which are 
more rigorous than others. For the purpose of this discussion, second-order clastic analyses will be 
categorized as "rigorous" or "approximate". The difference between these two depends on the extent to 
which P-O effects are modeled and whether the problem is "linearized" to expedite the solution. 

Rigorous second-order analyses are those that accurately model all significant second-order effects. 
Rigorous analyses include solution of the governing differential equation, either through stability 
functions or computer frame analysis programs that model these effects (McGuire 1992; Deierlein & 
White 1998). Many (but not all) modern commercial computer programs are capable of rigorous analyses, 
though users should verify this. Methods that modify first-order analysis results through second-order 
amplifiers (e.g. , B, and B: factors) are in some cases accurate enough to constitute a rigorous analysis, but 
this depends on the magnitude of second-order effects and other characteristics of the problem. 

Approximate second-order analyses are any methods that do not meet the requirements of rigorous 
analyses. A common type of approximate analyses are those which only capture P-tJ due to member end 
translations (e.g., interstory drift) but fail to capture P-oeffects due to curvature of the member relative to 
its chord. Where P-O effects are significant, errors arise in approximate methods that do not accurately 
account for the effect of P-o moments on amplification of both local member moments and the calculated 
global (tJ)displacements. These errors can arise both with second-order computer analysis programs and 
with the B, and B, amplifiers. White and Maleck (2002) propose the following criteria to rule out cases 
where P-O effects can be safely ignored: 

P, < 0.15 P,L = 0.15(,(£IIL') (I) 

where P, is the required column strength and P<L is the elastic buckling load in the plane of bending. The 
alternative to this equation is to verify the accuracy of the second-order analysis by comparisons to known 
solutions for conditions similar to those in the structure. Examples of the errors one may encounter are 
discussed by LeMessurier (1977) and Deierlein & White (1998). 

BEAM-COLUM INTERACTION EQUATIONS 
(SECTION HI OF THE 200S STANDARD) 

80th the Effective Length (Section 86) and Direct Analysis (Appendix 6) stability procedures utilize the 
beam-column interaction equations of Chapter H, albeit with differences in how the required strengths (P, 
and M,) and the nominal compressive strength (p") are calculated. For reference in the later discussion, the 
interaction equations for members under combined axial compression and bending are briefly reviewed. 
For bi-symmetric beam-columns under combined axial compression and uniaxial bending, the 2005 
Standard introduces a new interaction equation for checking out-of-plane (lateral-torsional) II1stability, 
which is separate from the check for in-plane (flexural buckling) instability. These separate equations are 
introduced since they provide more accurate predictions of in-plane and out-of-plane limit states, which 
tests and theory show are independent phenomena. The separate equations reduce the conservatism in the 
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current (I999 A1SC-LRFD) provisions, which combine the two limit state checks into one equation, by 
combining the most severe combinations of in-plane or out-of-plane limits for P ./;p" and M,/,pM". 

Shown here for illustration are the interaction equations in LRFD fornlat for bi-symmetric beam-columns 
subjected to axial compression and uniaxial bending. For members subjected to compression and minor 
axis bending. only the in-plane check applies; whereas for columns under compression and major axis 
bending, both checks apply. 

The limit state of in-plane flexural buckling is checked using the following equations, which have the 
same format as those in the 1999 A1SC-LRFD Specification: 

p 
for -"- ;, 0.2 

,p, p" 
(2a) 

(2b) 

where p" and M. are the required strengths, calculated from second-order analysis under the design loads; 
and p" and M" are Ole nominal compression and bending strengths, calculated in the plane of the frame. 
For the Effective Length method, p" is detemlined using the effective buckling length KL in the plane of 
bending, whereas in the proposed Direct Analysis method, p" is calculated using K= / (KL=L) in the plane 
of bending. For compact member sections, M" for the in-plane check is equal to M". 

The out-of-plane lateral-torsional limit state is checked by the following equation: 

(3) 

Here the required strengths p. and M" are the same as for Eq. 2a and 2b, and p" and M" are calculated 
using the unbraced length in the out-of-plane direction. These out-of-plane nominal strengths would 
typically be evaluated on the same basis for the Effective Length and Direct Analysis methods. 

EFFECTIVE LE GT H METHOD 
(SECTION 86 OF 2005 STANDARD) 

The Effective Length (or critical load) approach for assessing member axial compressive strength has 
been used in various forms in the A1SC Specification since 1961. The provisions proposed for Section 86 
of the 2005 Standard are essentially the same as those from the 3'd edition (1999) of the AISC-LRFD 
Specification, with the exception of a new minimum moment requirement. The approach is based on 
calculating effective column buckling lengths, KL, which have their basis in elastic (or inelastic) stability 
theory. The effective buckling length KL, or aiternatively the equivalent elastic column buckling load, P, 
= 1iEII(KL/, is used to calculate an axial compressive strength, p", through an empirical column curve 
that accounts for member geometric imperfections, yielding, and residual stresses. This column strength 
is then combined with the design moment strength, ,pM", and second-order member forces, p. and M., in 
the beam-column interaction equations. 

Differences between the Effective Length and Direct Analysis approaches lie mainly in the in-plane 
check. Figure la shows a plot of the in-plane interaction equation for the Effective Length approach, 
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where the anchor point on the vertical axis, p.KL , is determined using an effective buckling length factor. 
Also shown in this plot is the same interaction equation with the first term is based on the squash load. P,. 
The load-deformation response of a typical member, obtained from second-order spread-of-plasticity 
analysis and labeled "actual response," indicates the maximum axial force, p., that the member can 
sustain prior to the onset of instability. The load-deflection response of a second-order elastic analysIs, as 
would be done in design practice, is also shown. The "actual response" curve reveals larger moments than 
the second-order elastic curve due to the combined effects of partial yielding and geometric imperfections, 
which are not included in the second-order elastic analysis. The intersection of the second-order elastic 
curve with the p.KL interaction curve represents the design strength. The plots in Fig. 2a show how the 
effective length procedure has been calibrated to give a resultant axial strength, P" consistent with the 
actual response. For slender columns, accurate assessment of the effective length (and p.KL ) is critical to 
achieving an accurate solution. 

While the effective length approach is calibrated to accurately predict the resultant member strength, one 
consequence of the procedure is that it under-estimates the actual internal moments under the factored 
loads (see Fig. I a). This is inconsequential for the beam-column (since the p. KL reduces the effective 
strength in the correct proportion), but the reduced moment can affect design of the beams and 
connections, which provide rotational restraint to the column. This is of greatest concern when the 
calculated moments are small and axial loads are large, where P-Ll moments induced by column out-of
plumb can be significant. As a safeguard for these cases, the Effective Length procedure in Section B6 
includes a new minimum required moment strength for beams and connections, which restrain the column 
ends. This requirement is specified through the following equation (Eq. B6-3 in the July 2003 Ballot), 

'fM. > O.OI'f.P.L (4) 

where EMu is the minimum required strength, Pu is the required strength (axial compression force) in the 
columns being restrained, and L is the column length. 

P 
P, 

p .. 

Pu 

Pi 
P -'"R jWl 
P, 

0 .. ': jWl 
elastic 2nd..order p. 

elastic 2nd-order (D.A.) 
actual response actual response 

(a) 
Mp M 

(b) 
Mp M 

Fig. I - Comparison of beam-column interaction checks for (a) the 
effective length approach and (b) direct analysis approach 

DIRECT ANALYSIS METHOD 
(APPENDIX 6 TO 2005 STANDARD) 

The Direct Analysis approach has been developed with the goal to more accurately model frame stability 
effects in analysis, and thereby. eliminate the need for calculating effective buckling length factors for 
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columns. As summarized below, the new provIsions in Appendix 6 of the 2005 Standard Involve 
reducing the nominal elastic stiffness and applying a notional load to the frame. Some aspects of the 
proposed provisions are similar to so-called "notional load·' methods found in steel standards in olher 
countries, e.g., Canadian and Australian Standards and the Eurocode, however, many aspects of the 
proposed provisions are unique 10 the AISC Standard and address known shoncomings of conventional 
notional load approaches in other standards. 

Like the Effective Length procedure, the Direct Analysis melhod begins with a basic requirement to 
calculale internal member forces using a second-order elaslic analysis. As will be shown later in the 
examples, the Direct Analysis method places a greater reliance on the second-order analysis (primarily in 
the accurate calculation of second-order moments, M.), and for this reason, the method stipulales 
requirements to ensure accuracy of the second order analysis . Analysis rigor is most important where 
second-order amplifications are large, one measure of which is given by the ratio of member aXial 
compression forces to their elastic buckling strengths (see Eq. I). Two additional requirements for Direct 
Analysis are as follows: 

• A notional load of N, = 0.002 Y, is to be applied in combInalion with other factored loads. where 
N, is the notional lateral load applied at floor i and Y, IS the gravity load (from strength load 
combinations) acting at floor i . The notional load is applied to represent the destabilizing effect of 
a geometric imperfections and olher effects (yielding. non-ideal boundary and loading condItIons, 
elc.). The notional load magnitude of 0.002 corresponds to a frame out-of-plumb equal to HlSOO 
(where H is the story height). 

• The nominal elastic flexural stiffness assumed in the second-order elastic analysis is equal 10 

0.8tEI , where t is calculated as follows: 

For members where p. S O.SPy: r = I 
For members where p. > O.SP, : r = 4[P/ P, (J -P/ P,)} 

Alternatively, where p. > 0.5P, for any members in the frame. r = I provided that an additional 
notional load of N, = 0.001 Y, is applied to the frame. 

There are two reasons for imposing the reduced stiffness for analysis. For frames with slender members, 
where the limit state is governed by elastic stability, the 0.8 factor on stiffness results in a system deSign 
strength equal to 0.8 times the elastic stability limit. This is roughly equivalent to the margin of safety 
implied by design of slender columns by the effective length procedure where the design strength ;p. 
0.9(0.877)P, = 0.79P. where P, is the elastic critical load, 0.9 is the specified resistance factor, and 0.877 
is a reduction factor in the column curve equation. For frames with inlermediate or stocky columns, the 
0.8t factor reduces the stiffness to account for inelastic softening prior to the members reaching their 
design strength. The t is similar to the inelastic stiffness reduction factor implied in the column curve 10 

account for loss of stiffness under high compression loads (P. > 0.5P,). and the 0.8 factor accounts for 
additional softening under combined axial compression and bending. It is a fonuitous coincidence that the 
reductions coefficients for the slender and stocky columns are close enough, such that the single reductIOn 
faclor ofO.8t works over the full range of slenderness. 

The reduced stiffness and notional load requirements only penain 10 analysis of the strength lImit stale. 
and they do not apply to analysis of other serviceability conditions for excessive deflections, vibration , 
etc. For ease of application in design practice, the reduction on EI can be applied by modifying E In Ihe 
analysis; however, in doing so, one should consider whether the possible side-effects of reducing EA. 
Moreover, for computer programs that do semi-automated design, one should be sure that the reduced E IS 
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only applied for the second-order analysis, The elastic modulus should not be reduced in design 
equations, which involve E to evaluate the design strength (e.g., M, for laterally unbraced beams). 

As shown in Fig. Ib, the net effect of modifying the analysis in the manner just described is to amplify the 
second-order moments to be closer to the actual internal moments in the member. It is for this reason that 
the beam-column interaction for in-plane flexural buckling is checked using an ax.ial strength P, 
calculated from the column curve using the actual unbraced member length L, i.e., with K ~ I . In fact, 
arguments have been made to use p.~ p). in the interaction equation. but this would require recalibration 
of the analysis adjustments, including additional adjustments to account for member out-of-straightness 
(sweep). After considering alternative strategies, TC 10 decided to use the proposed method (with p. 
based on L) as a pragmatic and conservative approach for practical design. 

CANTILEVER EXAMPLE 

To illustrate an application of the two stability design methods, consider the design of the cantilever beam
column shown in Fig. 2. The cantilever is subjected to the vertical and proportional horizontal load 
shown, such that the design is controlled by the combined p . and M. at the base of the column. 
Maximum strengths are calculated for three different column lengths, with slenderness ratios of Ur ~ 20, 
40 and 60 (equivalent to KUr ~ 40, 80, and (20). Bending is about the major axis, and the column has 
full out-of-plane (lateral) restraint. The design checks are based on the in-plane interaction check (Eq. 2a
b). ate that the checks were made using a resistance factor of 'A~0. 85 

in compression (consistent with the 1999 AJSC-LRFD Specification), 
so the results would be slightly different if made with the revised value 
of IA~0. 9 as proposed for Chapter E of the 2005 Standard. 

Shown Fig. 3a-c are plots of the axial load versus moment at the column 
base for the three column lengths, deternlined according to the Direct 
Analysis (DA) and Effective Length (EL) methods. Notice that the 
internal moments Mil increase much faster with PII for the Direct 
Analysis method, due to the reduced stiffness (0.8tEI) and added 
notional loads. Most of the stiffness adjustment is due to the 0.8 factor, 
since t only affects the column with Ur ~ 20 (Fig. 4a,) where the 
maximum load p. > 0.5P, ~ 440 kips. Overlaid on these force-point 
traces are the beam-column strength interaction diagrams, where the Pn 

anchor point for the Effective Length method P,,KL is based on KL~2L 

oJ 

0 
It) 

.: 
Cl 
r:i 
<0 
)( 

0 ..... 
~ 

and for the Direct Analysis method P,L is based on L. Fig. 2 - Canti lever Example 

The calculated strengths, as determined by the two methods, are sununarized in Table I in tenns of the 
max.imum vertical load p. (shown in bold). Net strengths for the two methods are within 10%, even 
though the interim results are quite different. For example, as shown in Figs. 3a-c and summarized in 
Table 1, the maximum internal moments at the strength limit point are much larger for the Direct Analysis 
method; whereas the P ,/¢P" ratios, which indicated the relative significance of the axial load and moment 
terms in the governing interaction equation, are consistently larger for the Effective Length method. 
Moreover, the P ,/¢>P, ratios for the Effective Length procedure do not change much with increasingly 
slenderness, because this procedure relies to a much greater degree on capturing stability effects in the P, 
term. Conversely, in the Direct Analysis procedure the P '/¢P, contribution decreases and the moment 
term dominates the solution for cases with increasing slenderness. 
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Fig. 3 - Comparison of P-M interaction curves for cantilever column example 
(a) short Ur = 20, (b) medium Ur = 40, (c) long Ur = 60 
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Ur P.(kips) M.(k-ill) MI M, P/ (I', P.(kips) M,lk-iII) MI M, P / (1', 
20 562 580 1.17 0.85 578 777 1.27 0.80 
40 345 988 1.63 0.74 371 1680 2.16 0.56 
60 193 1007 1.98 0.74 213 2376 3.53 0.37 

This comparison highlighlS Ihe pros and cons of each method. Compared to Direct Analysis procedure, 
the Effective Length method has the advantage of being less sensitive to the accuracy of the second-order 
analysis. On the other hand, the method requires calculation of effective column buckling lengths (KL), 
which can be difficult for complicated structures. Direct Analysis eliminates the need to calculate 
effective buckling lengths and provides more accurate measures of the true second-order moments. This 
latter point is important for the design of members and connections, which restrain the beam-column. For 
example, in the cantilever column example, the base moments from the Direct Analysis procedure take 
into account initial out-or-plumb and inelastic second-order effects, which are not captured in the 
Effective Length procedure. Referring to the second-order moments reported in Table I, the difference in 
moments between the two methods can be quite large. Subject to the assumed geometric imperfections 
(out-of-plumb) and residual stresses, validation studies have shown that the momenlS calculated by the 
Direct Analysis procedure are generally conservative and closer to the true values. Observations of the 
type described here about the underestimation of design moments the Effective Length method, led to the 
new minimum moment requirement (Eq. 4) for the Effective Length method. One should recognize, 
however, that this minimum does not address cases such as shown in this cantilever example, where the 
calculated moments in the Effective Length procedure are above the minimum of O.O/PL, but still less 
than the actual values, which are calculated more accurately by the Direct Analysis procedure. 

VA LIDATION STUDIES 

Over the course of developing the proposed stability provisions, hundreds of validation analyses have 
been investigated by members of the SSRC-AISC Ad Hoc Committee. Some of the early investigations 
(e.g., Maleck 200 I, Maleck and White 2003) he lped guide development of the provisions, and two recent 
papers by Maleck and White (2002) and Martinez-Garcia (2002) provide selected case studies to validate 
the final version of the proposed design methods. These two studies investigated twenty-five frame 
configurations under multiple load cases, representing several hundred analyses with about 150 
comparison points between the two design approaches and refined nonlinear analyses. These studies focus 
on the limit state of combined axial load and bending in the beam-colunms and do not specifically address 
design checks in restraining beams and connections. 

Examples of the frame configurations considered in the benchmark srudies by Maleck and White (2002) 
are shown in Fig. 4. These two-colunm portal frames and individual colunm structures provide rigorous 
test cases of non-redundant systems of varying slenderness, levels of axial compression, and leaning 
column effects. Other multi-story and multi-bay frames investigated by Martinez-Garcia (2002) embody 
attributes of realistic structures that pose particular challenges in evaluating stability, three of which are 
presented in the next session of JIIustrative Examples. The problems investigated for the benchmark 
studies are ones where second-order effects are large and where errors between the stability design 
methods and more exact methods are accentuated. In this sense, these benchmark studies represent 
extreme cases, which tend to exaggerate the differences one would typically encounter in design practice. 
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Fig. 4 - Test structures used for validation study (Maleck 2001) 

Detailed analysis solutions based on second-order spread-of-plasticity analyses are used as benchmarks 
against which the proposed design methods were validated. These benchmark solutions incorporate the 
effects of gradual yielding, initial geometric imperfections, and residual stresses, as outlined previously in 
the section of this report on Behavioral Effects. Thus, they represent the state-of-art in simulating inelastic 
stability of beam-columns and frames . Material properties (E and Fy) in the spread-of-plasticity analyses 
were reduced using a resistance factor of 0.9, such that the maximum strength calculated in these analyses 
corresponds to the structural "design strength" - as opposed to a "nominal strength". 

Overall, the two studies (Maleck and White 2002 and Martinez-Garcia 2002) confirm that both the 
Effective Length and Direct Analysis methods are sufficiently accurate (relative to current methods) for 
design and that the errors (relative to the spread-of-plasticity solutions) are comparable for the two 
methods. Maleck and White report that on average the two approaches give strengths within 2% to 7% of 
those obtained by refined analyses. The maximum discrepancies they observed for the Direct Analysis 
approach, relative to the refined analyses, range from - 6% (unconservative) to + 13% (conservative) for 
members subjected to strong-axis bending and - 13% to + 15% for members subjected to weak-axis 
bending. For the Effective Length approach, the maximum discrepancies range from - 8% to + 18% for 
strong-axis bending and - 17% to + 17% for weak-axis bending. These errors are based on design checks 
made with rigorous second-order elastic analyses. Maleck and White caution that the Direct Analysis 
design checks based on approximate P-6 analyses can be up to -23% (unconservative) for members 
subjected to weak axis bending. This is an example of why the Direct Analysis provisions specifY the 
need for a rigrous analysis when second-order effects are large . Maleck and White further note that for 
frames where Pu < 0.15 (71' ElfL' ), the maximum unconservative errors associated with approximate P-
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analyses for the Direct Analysis approach are limited to the maximum errors present in existing Effective 
Length procedures. 

ILLUSTRATIVE EXAMPLES 

Three example problems are presented next to illustrate practical application of the proposed stability 
design methods. The first two examples are [rames with heavy gravity loads and large second-order 
amplification factors. The third example is a stiffer six-story frame, which is more representative of 
multi-story building frames. Each example includes a comparison of results from the Effective Length 
and Direct Analysis approaches and more rigorous spread-of-plasticity solutions. The spread-of-plasticity 
solutions have been independently reported by Maleck (2001) and Martinez-Garcia (2002), and the design 
solutions have been prepared by multiple members of A1SC TC 10 and the A1SC-SS RC Ad Hoc 
Committee. All design checks are based on the LRFD approach and load combinations. Resistance 
factors used in the design checks are ¢.=0.9 for bending and ¢,=0.85 for compression, the latter of which 
is slightly smaller than the proposed change to ¢,=0.9 in Chapter E of the 2005 Standard. 

Low-Rise Industrial Example 

The first example, see Figure 5, is a framing bent from a large floor plan single story industrial building, 
such as an automobile plant. With heavy material handling equipment hung from the roof and a small 
wind exposure, such structures are dominated by gravity loads wilh large second-order effects 
(Springfield, 199 1). Loading shown in Figure 5 represents an eleven bay configuration with ten leaning 
columns (only two of which are shown) and two lateral-load resisting columns. The concentrated load P 
has a tributary roof area of 35 ft x 35 ft , and the wind load W = 5.12 kips. 

The member sizes satisfy a drift limit of Hl400 for the service load wind of 0.7W, and the design strength 
of the frame exceeds the minimum requirement of the LRFD strength load combinations. Based on 
refined spread-of-plasticiry analyses, the frame has a design strength ratio 17% larger than the required 
strength for gravity (¢A.UQ. /.6L= 1.I 7, where ~=0.9) and 20% larger than required under gravity plus wind 
(¢A/m .o.5L /.6,.,= 1.20). Using the equation B5-5 (from the July 2002 ballot of Chapter B for the 2005 
Standard), the second-order amplification factor under design gravity loads is B,= 2.41. Under the design 
gravity plus wind loading combination, B,= 1.74. 

4P 4P 
Frame spadng = 35'·0" 

W-) 
W27 x 84 W27 x 84 

Fy = 50 ksi '" 9 ..,. 
x E = 29,000 ksi 00 
0 ~ 
~ 

~ 

J 
\. , 

l 3 @ 35'-0" = 105'-0" 

DL 80 psI Load Combinations: 
'1 

LL 40 psI 1.2DL + 1.6LL 
Wind 16.25 psI 1.2DL + 0.5LL + 1.6WL 

Figure 5 - Single-Story Industrial Building 
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Axial column forces and maximum moments under the factored load combinations are summarized in 
Table 2. The Effective Length results are from a second-order analysis of a model based on the ideal 
geometry of the frame under the factored load combinations (no geometric imperfections or notional loads 
are introduced). The Direct Analysis results incorporate initial geometric imperfections through the 
notional load of 0.2% times the factored gravity loads (1.20 + 1.6L for the first combination and 1.20 + 
0.5L for the second combination); and stiffness degradation is incorporated by reducing the flexural 
stiffness of all framing members by to 0.8EI. Since the axial load ratio PIP, <0.5, no additional t-factor 
stiffness adjustments are required. The "spread of plasticity" results are from a second-order inelastic 
analysis, which models gradual yielding through the member cross sections and along their length due to 
the combined effects of thermal residual stresses and the applied loads. 

Table 2: Member Effects Under Factored Load Combinations 
~ L R' I d . I E I or ow- Ise n ustna -xample 

~ l em bcr 
Analysis/Design l\ lelhod 

Load Case 
Check SI)read of Effec ti ve Direct 

Plasticitv Len~ lh Allah'sis 
p,. (kip) 215 216 218 

1.2D+1.6L M"" (k-in) 930 407 1220 
Mbm (k-in) 8660 8410 8690 

P"" (kip) 154 158 160 
1.2D+0.5L+1.6W M" (k-in) 1310 1040 1550 

Mbm (k-in) 6490 6360 6630 

Referring to Table 2, the Effective Length and Direct Analysis methods both predict the maximum beam 
moments and axial column forces within about 4% of those from the spread-of-plasticity analysis. On the 
other hand, there are significant differences in the column moments, particularly for the gravity load case 
(1.2D + 1.6L). The Direct Analysis method predicts the column moments on average about 25% higher 
than the spread-of-plasticity solution, and the Effective Length method predicts column moments on 
average about 40% smaller than the spread-of-plasticity solution. These differences are also reflected in 
the calculated displacements. This small moments calculated according to the Effective Length method 
illustrate the need for the newly proposed minimum connection moment requirement (Eq. 4, 'f.M. > 
0.0I''i.P"L). Without this minimum requirement, the comlection would be under-designed for the second
order moment induced by the combined effects of gravity load and column out-of-plumb. 

Using the member forces from Table 2, the columns are checked using the interaction formula for in-plane 
or out-of-plane (torsional flexural) failure, and the resulting interaction ratios are summarized in Table 3. 
For the Effective Length method, the in-plane checks are based on a column strength of ¢P ~,.Kt = 236 kips, 
obtained with an effective length factor of K = 2.3 using Eq. C-C2-6 of A1SC (1999). In-plane checks for 
the modified stiffness and notional load methods are based on ¢p ... t = 511 kips, and out-of-plane checks 

Table 3: Interaction Values for Low-Rise Industrial Example 

Analysis/ Design 1\ l ethod 

Load Case 
Member 
Check Effeclive Direcl 

Length Analvsis 

1.2D+1.6L 
In-plane 1.05 0.83 

Out-of-plane 0.62 0.81 

1.2D+0.5L+I.3W 
In-plane 1.0 I 0.82 

Out-of-pJanc 0.58 0.77 
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are all based on ;p .. L ~ 361 kips. The column design moment is ;Mp ~ 2718 k-in. In-plane interaction is 
checked using Eqs. 2a & 2b, and the out-of-plane check is made using Eq. 3. 

Referring to Table 3, both the Effective Length and Direct Analysis checks are governed by the in-plane 
strength (shown shaded). The Effective Length method is more conservative, as evidenced by a larger 
interaction value as compared to the direct analysis method. The in-plane checks can be compared to 
inelastic limit load ratios of ;),."0 161.~ 1.I7 and ;),."D.0.J/.>1.61V ~ 1.20 , obtained from the spread-of
plasticity analyses. The inverse of these limits (0.85 and 0.84 for gravity and gravity+wind, respectively) 
help to gauge the conservatism in the methods, where larger interaction checks would be conservative and 
smaller checks unconservative. Compared to these values (0.85 and 0.84) the in-plane checks for the 
Effective Length method about 15% conservative, whereas the Direct Analysis results appear slightly 
unconservative (e.g., 0.83 < 0.85 and 0.82 < 0.84). However, since the member forces vary nonlinearly 
with load (due to second order effects), this simple comparison is approximate and a more accurate 
comparison would be obtained by scaling up the loads in the Direct Analysis to the point that the in-plane 
interaction check is equal to 1.0. Scaling the loads in this way results in a limit load of~AI.2"' 1.6L~ 1.I0 for 
the Direct Analysis which is about 6% smaller (conservative) as compared to the in-plane limit from the 
spread-of-plasticity solution. Thus, this case demonstrates that the Direct Analysis is conservative (safe) 
and provides the potential for a more efficient design as compared to the Effective Length method. 

Exa mple Co nnection Design for Effective Length Method: 
For the gravity load case, the minimum beam-column 
connection strength provision of the Effective Length 
procedure (Eq. 4) provides for a minimum required connection 
strength of 1:M, > 2330 k-in . This is calculated using the 
vertical load in one lateral load resisting column and one of the 
leaning columns (a total of EP, ~ 1078 kips). Comparing this 
to the more exact required column moment from the spread-of
plasticity solution (M, ~ 930 k-in) indicates that the minimum 
required by the Effective Length method is quite conservative 
in this case. The required strength using the Direct Analysis 
method would be 1220 k-in. To help gauge the impact of these 
provisions, a connection designed for the Effective Length 
method moment of 2330 k-in is shown in Fig. 6. This 
connection would require eight - I inch diameter bolts, which 
is not excessive for the connected members. 

Grain Storage Bin 

_. 

Figure 6: Example Connection Design 
(8-1" dia. bolts) 

The second example is the support rack for a grain storage bin with the dimensions and loading shown in 
Figure 7. This is a case where calculation of the column effective lengths is not obvious, and where the 
Direct Analysis method offers a clear benefit. Colunms are assumed to be braced out-of-plane and the 
cross-beams and bracing are pin-connected to the colunms. For the diagonal bracing, one-inch diameter 
round bars are assumed. Using an elastic critical load analysis, the second-order amplification factors are 
B, ~ 2.75 and B, ~ 2.20 for the gravity and wind load combinations, respectively. The spread-of-plasticity 
analyses predict inelastic limit load ratios of ;),.I4G~ 1.13 and ;),.I1G- 16W ~ 1.07. 

As in the previous example, results for the Effective Length method are calculated for the ideal geometry 
and stiffness; whereas the Direct Analysis method is based on a reduced stiffness (0.8EI) and with 
notional loads applied in combination with the design loads. Like the previous example, no additional t 

adjustment of stiffness properties is required for Direct Analysis s ince the axial load ratio PIP, < 0.5. 

Page 13 oj 17 



'.0 
--J 

w 

M 
X 
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WI2x26 
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H 
12'-0" H 

~slgn Loading: 

~ 
IV - \.75 kops (10 psQ 
G - 360 kips 

Load Comb inations: 

1;> 
1.4G 

~ 
1.2G + 1.6W 

Materials: 

1;> Fy - SOksi 

'" E - 29.000 ksi 

Figure 7 - Grain Bin Support Frame 

Maximum column forces and moments (required strengths) are summarized in Table 4 and the interaction 
checks are summarized in Table 5. As in the previous examples, there is not much difference in axial 
loads between the methods, but there are large variations in the calculated moments. This is particularly 
prevalent for the gravity load case, where the calculated column moments for the Effective Length method 
are essentially zero, and the moments for the Direct Analysis method are about 36% larger than those in 
the spread-of-plasticity analysis. Under the lateral load case, the differences are less, with moments for 
the Effective Length method about 24% less (unconservative) than the spread-of-plasticity results and 
those for Direct Analysis about 38% larger (conservative). 

a e em er eets T bl 4 M b Ef~ ~ G or ram S torage III xample 

Member AnalYsis/ Desig n Method 
Load Case 

C heck Spread of Effec tive Direct 
Plastici ty L.n~th Analysis 

P,.,,,,,Jkip) 233 247 249 
lAG P,.""dk-in) 255 252 257 

M (k-in) 161 2 220 
P , (kip) 203 217 220 

1.2G+\.6W P. " k-in) 224 225 230 
M, (k-in) 380 288 526 

T bl a e 5: Interactton Va ues or ram ~ G . S torage B' E 10 ~ xampJe 

Member 
Analysis/Design Method 

Load Case 
Check Effec ti ve Direcl 

Length Anal\'sis 

\.4GL 
Top Column 1.07 0.84 
Bot. Column 1.04 0.85 

1.2GL+1.6W 
Top Column 1.12 0.96 
Bol. Column 1.11 0.99 
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The interaction checks, shown in Table 5, are based on the following in-plane column strengths: critical 
load method ;p.KL .. op = 232 kips (K = 2.4), ;P.K~ .... = 243 kips (K = 2.9); and the direct analysis method, 
;p.L .• "" = 355 kips, ;P.~.bo' = 366 kips. The K factors for the Effective Length procedure are based on an 
elastic critical load analysis of the structure under gravity loads. The results in Table 5 show that strength 
interaction checks based on the Effective Length method are roughly 20% more conservative than the 
Direct Analysis method. Using the spread-of-plasticity analysis as a benchmark of the actual behavior, 
interaction values larger than 0.89 (for lAG) and 0.93 (for 1.2G+I.6W) are conservative. The Effective 
Length interaction values (1.07 and 1.12) exceed these and are about 20% conservative. The Direct 
Analysis method is slightly conservative for the gravity plus wind case (0.99 > 0.89) and appears slightly 
unconservative for the gravity load case (0.85 < 0.93). However, as mentioned in the industrial frame 
example these linear comparisons are only approximations. When the gravity loads are scaled in the 
direct analysis to provide an interaction value of 1.0 for the bottom column, the limit load ratio was ;)., ' Ii 
= 0.99, which exceeds the value of ;)."G= 1.07 from the spread-of-plasticity solution. This indicates that 
the Direct Analysis is, in fact, 9% lower (conservative) as compared to the spread of plasticity solution. 

Multi-story Frame Example 

The final example is the multi-story frame shown in Figure 8. One load case is investigated (J .OG + 
I .OW, where the specified loads are already factored), and member forces and interaction checks are 
presented for the three columns in the first story. Unlike the previous examples , this frame is fairly stiff 
with B1 = 1.10 for the first story. The second-order spread-of-plasticity analysis predicts an inelastic 
design strength ratio of ;)., ' Ii = 1.06 for this frame , which combined with the low B 1 indicates that it is 
dominated more by yielding than second-order effects. The center columns of the first two stories have 
high axial forces and are subject to the t - factor adjustment in the Direct Analysis method. As discussed 
earlier, when PIP, > 0.5 for any column, the t - factor adjustments can be used or an additional notional 
load of 0.001 Y, can be used. In this example, both approaches are presented and compared. 

ell 

IPf2"O 

~ 
w 
x IPOOO 

1ii 
ffi 
x 

JPEJOO 

~ 
N 

ffi 
x 

IPf330 

~ 
ffi 
x IPOW 

~ 
m 
w x IPf400 

(il 
:;: CI2 w 
x 

2 0 6.Om - 12m 

CJ3 

l.IwIl 
Gravity: "9.1 kN/m (11oor) 

31.7 kN/m (root) 
Wind: 20 ..... kN (store 1 • 5) 

10.23 kN (root) 

F, _ 235 N/ mml' 
E • 205 kN/mml 

Figure 8 - Multistory frame 
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The first floor column forces, summarized in Table 6, reveal that differences between the three methods 
are much smaller than in the previous examples. This follows from the fact that the second-order 
amplification is smaller in this example, which is more typical of most multi-story frames than the prior 
examples. 

T bl 6 M b Ef~ a e em er eelS or F u t,story rame E xample 

Location and 
Ana l"sis/Desie" Method 

[(ferr Spread of EffeClivt 
Direct Direct 

Analysis "ilh Analysis with t (t.OG+ t.OW) Plasticity Length Notional Load Reduction 
P,,, (kN) 683 672 659 662 
P " (kN) 1720 1770 t770 1770 
P,,, (kN) 92t 884 897 894 

M ,(kN-ml 67 48 58 59 
M,,(kN-m) t t5 11 8 143 135 
M u (kN·rn) 99 87 96 96 

Results of the beam-column interaction checks (Table 7) show that the Effective Length method is slightly 
less conservative than the Direct Analysis method, which is in contrast to the previous two examples 
where the opposite was true. Based on the AlSC (1999) alignment charts, the effective buckling length 
factors for the first story columns are K = 1.35, assuming the AlSC suggested value of G = 1.0 for the 
foundation support . Accordingly, the in-plane interaction checks for the Effective Length procedure are 
based on design compression strengths of $P,KL" = $P,KL IJ = 1580 kN and $P,KL" - 2140 kN . The in
plane Direct Analysis checks (with K = J) are based design strengths of ~P'L " - ~P'L IJ - 1680 kN and 
,P,L 12 = 2230 kN. All out-of-plane checks are based on K = I, with ~P'L" = ~P'L IJ = 1460 kN and $P'L 
12 = 2010 kN; and moment strengths of ~Mp', = ~MplJ = 175 kN-m and ~Mp" - 275 kN-m are used 
throughout. As summarized in Table 7, the resulting interaction checks were all close, with the Direct 
Analysis solutions about 2% to 3% conservative, relative to the Effective Length method . With reciprocal 
of the inelastic limit load factor equal to 0.94, the average interaction values ranging from 0.94 to 0.99 
indicate that all of the stability design methods are conservative in this ca e. 

Ta bl e 7: Interachon VI a ues ~ MI ' F or u ttstory ' rame E xampte 

Location 
Anahsis/Design Method 

(t.OGL+t.OW) Eerective Direct Analysis Direct Anll)sis 
Length with Notional Load with t Reduction 

Ctl m·olane 0.67 0.69 0.69 
CII - oUI-of-pt'ne 0.54 0.56 0.57 
Ct2 In-plane I.2t 1.25 1.23 
Ct2 OUI-or£~ane 1.06 t.t5 1.12 
cn - In-ptane 1.00 1.02 1.02 
Cl3 out-of-olanc 0.85 0.92 0.9t 

A VCT3SlC in-olanc 0.96 0.99 0.98 

Page 16 of 17 



REFERENCES 

A1SC (1999), Load alld Resistallce Factor Specificatioll for Structural Steel Buildillgs, Arner. Insl. of 
Steel Constr., Chicago, IL. 

ASCE (1997), "Effective Length and Notional Load Approaches for Assessing Frame Stability", ASCE, 
New York, NY. 

A1SC (2000), Code ofStalldard Practicefor Steel Bllildillgs alld Bridges, American Institute of Steel 
Construction, Chicago, IL. 

Bimstiel, C., Imaod, 1. S. B. (1980), "Factors Influencing Frame Stability," JI. of the Struct. Div .. ASCE, 
I 06(ST2), 491-504. 

Deieriein, G.G., White, D. W. (1988), "Chapter 16 - Frame Stability," Gllide to Stability Desigll Criteria 
for Metal Structures, Ed. T.V. Galambos, Fifth ed., Wiley, 1998. 

Deierlein, Hajjar, Yura, White, Baker, "Proposed new provisions for frame stability using second-order 
analysis", Proceedillgs 0fSSRC 2002 Allllllal Meetillg, Seattle, WA 

LeMessurier, W. 1., (1977), "A Practical Method of Second-Order Analysis - Part 2 Rigid Frames," Ellgr. 
JI ., A1SC, 14(2), 49-67. 

Maleck, A. E. & White, D. W. (2002), "Direct Analysis Approach for the Assessment of Frame Stability: 
Verification Studies," SSRC Annual Technical Meeting, Baltimore, MD, SSRC, 17 pgs. 

Maleck, A. E. & White, D. W. (2003), "Alternative Approaches for Elastic Analysis and Design of Steel 
Frames: Part I Overview, PartH Verification Studies, " JI. ofStruct. Ellgrg., ASCE, submitted for 
review. 

Martinez-Garcia, J.M. (2002), "Benchmark Studies to Evaluate New Provisions for Frame Stability Using 
Second-Order Analysis," M.S. Tllesis, supervised by R.D. Ziemian, Bucknel1 University, 241 pgs. 

McGuire, W. (1992), "Computer-aided analysis," COllst.1 Steel Desigll- Allillti. Gllide, Dowling, et al. 
(eds.), Elsevier, NY 915-932. 

Springfield, J. (1991), "Limits on Second-Order Elastic Analysis," Proc. SSRC Annu. Tech. Sess., SSRC, 
Bethlehem, PA, 89-99. 

White, D. W., Chen. W.-F. (eds.) (1993), Plastic Hillge Based Methodsfor Adv. Allalysis alld Desigll of 
Steel Frames, SSRC. 

Page 170JI7 


