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INTRODUCTION

Assessment of frame stability remains one of the more challenging
aspects in the design of steel buildings. The issue is complicated by
the interdependence of member and frame response, which requires
that system stability effects be incorporated within member-based
specification design equations. In addition, permitting geometrically
and materially nonlinear structural response at the nominal limit state
of the structure is fundamental to achieving economical design. As
such, most specifications worldwide couple some form of nonlinear
analysis with design provisions to account for significant behavioral
effects (Galambos et al. 1998). In the U.S., the AISC LRFD
Specification (AISC 1999) requires, as a minimum, that second-order
elastic analysis (or first-order analysis coupled with moment
amplification) be used to compute required element strengths.
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Two basic approaches commonly used for assessing member and frame
stability within the context of using second-order elastic analysis are
critical load and direct analysis approaches (ASCE 1997; White and
Clarke 1997; Galambos 1998). Critical load approaches, such as used
in AISC (1999), involve calculation of the member elastic or inelastic
critical loads (or, alternately, effective lengths) as input to a column
curve to determine the nominal column compressive strength. This
strength is then combined in the beam-column interaction check. Direct
analysis approaches, used in various forms in several other countries,
establish beam-column strength by applying member or frame
imperfections, equivalent notional lateral loads, or modified member
stiffnesses in the analysis. Two direct analysis procedures, so-called
notional load and modified stiffness methods, are investigated herein.

In 2000, an AISC-SSRC Task Committee was formed to develop
improved specification provisions for member and frame stability.
This paper presents initial findings of this effort. The paper begins with
a summary of behavior effects and second-order analysis techniques
that must considered when assessing member stability. Critical load
(i.e., effective length), notional load, and modified stiffness procedures
are then presented within the context of the AISC Specification. This is
followed by a summary of benchmark problems used to verify the
accuracy of the proposed procedures. Three examples are then
presented to illustrate application of the methods to practical problems.

BEHAVIORAL EFFECTS

There are potentially many parameters and behavioral effects that
influence stability of steel-framed structures, and the extent to which
these factors are modeled in analysis will affect the criteria that one
applies in design of the frame, its members and connections. Without
repeating more complete presentations given elsewhere (Birnstiel and
Iffland, 1980; McGuire, 1992; White and Chen, 1993; ASCE, 1997;
Galambos, 1998), it is important to review three basic aspects of
behavior: geometric nonlinearities, inelastic spread-of-plasticity, and
member limit states. These ultimately govern frame deformations
under applied loads and the resulting internal load effects.
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Geometric Nonlinearities and Imperfections: Modern stability
design provisions are based on the premise that the member forces are
calculated by second-order elastic analyses, where equilibrium is
satisfied on the deformed structure. Where stability concerns are
significant, consideration must be given to initial geometric
imperfections in the structure due to fabrication and erection tolerances.
For the purpose of calibrating the stability requirements described later,
initial geometric imperfections are conservatively assumed as equal to
the maximum fabrication and erection tolerances permitted by AISC
(2000). For columns and frames, this implies a member out-of-
straightness equal to £L/1000, where L is the member length (between
brace or framing points) and a frame out-of-plumb equal to H/500,
where H is the story height. The out-of-plumb is also limited by the
absolute bounds as specified in AISC (2000).

Inelastic Spread of Plasticity: The proposed analysis/design
approaches are calibrated against inelastic distributed-plasticity
analyses that account for spread of plasticity through the member cross-
section and along the member length. Thermal residual stresses in W-
shape members are assumed to have maximum values of 0.3Fy and are
distributed according to the so-called Lehigh pattern - linearly varying
across the flanges and uniform tension in the web (Galambos, 1998).

Member Limit States: Member strength may be controlled by one or
more of the following limit states: cross section yielding, local
buckling, flexural buckling, and torsional-flexural buckling. For the
types of frame analyses envisioned for design, it is assumed that the
analysis does not model local flange/web buckling or torsional-flexural
buckling. Therefore, these limits must be considered in separate
member design checks. For inelastic analyses, the member yield limit
is incorporated directly in the analysis; and for elastic analyses, this
limit can be checked by an interaction equation that approximates the
P-M yield surface. Whether or not the analysis captures in-plane
flexural buckling depends on the extent to which the maximum
moments are affected by distributed plasticity and member straightness.
Uncertainty regarding whether the analysis captures this effect suggests
the need to apply a member check for in-plane flexural buckling.
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SECOND-ORDER ELASTIC ANALYSIS

The stability design provisions discussed in this paper are intended for
use with second-order elastic analysis. This implies that that analysis
provides equilibrium on the deformed structural configuration, with the
material stiffness held constant during the analysis. As described later,
this may include cases where the elastic stiffness is adjusted to account
for (in an approximate way) inelastic effects. In practice, there are
alternative approaches one can employ for conducting second-order
analyses, some of which are more rigorous than others. For the
purpose of this discussion, second-order elastic analyses will be
categorized as “rigorous” or “approximate”. The difference between
these two depends on the extent to which P-& effects are modeled and
whether the problem is “linearized” to expedite the solution.

Rigorous second-order analyses are those which accurately model all
significant second-order effects. Rigorous analyses include solution of
the governing differential equation, either through stability functions or
computer frame analysis programs that model these effects (McGuire
1992; Galambos 1998). Many (but not all) modern commercial
computer programs are capable of rigorous analyses, though users
should verify this. In some cases, modification of first-order analysis
results through second-order amplifiers [e.g., B, and B, factors as per
AISC (1999)] may constitute a rigorous analysis, but this depends on
the magnitude of second-order effects and other aspects of the problem.

Approximate second-order analyses are any methods that do not meet
the requirements of rigorous analyses. A common type of approximate
analyses are those which only capture P-A (due to member end
translations, e.g., interstory drift) but fail to capture P-Jeffects (due to
curvature of the member relative to its chord). This can arise both in
computer analysis programs and when applying B, and B; amplifiers.

The cantilever column shown in Fig. | represents a simple test case to
determine the accuracy of a second-order analysis. A rigorous analysis
will capture the curved second-order moment diagram, which has two
effects on response. First, where the member is very flexible, relative
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Fig. | — Second-order effects in cantilever column

to its boundary conditions, the curved geometry can lead to a condition
where the maximum moment occurs along the member length, as
opposed to at the member ends. Second, the increase in moments and
corresponding curvatures will increase the member end deflection, A.
The latter point can be explained by the fact that the critical buckling
load inferred by the linear moment diagram (which is representative of
a story stiffness approach for calculating the B2 factor) is 22% larger
than the actual buckling load. Examples of the differences one may
encounter are noted in the illustrative examples presented later, and
further discussed by LeMessurier (1977) and Galambos (1998).

CRITICAL LOAD APPROACH

The critical load, or effective length, approach for assessing member
axial compressive strength has been used in various forms in the AISC
Specification since 1961. The approach is based on the critical elastic
(or inelastic) buckling load, P.=x EI/(KL)’, accounting for the restraint
offered to the member by the surrounding frame. The critical load is
then related to the axial compressive strength, P, through an empirical
column curve that accounts for member geometric imperfections,
yielding, and residual stresses. This column strength is then combined
with the moment capacity and second-order forces in an interaction
equation.
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Given P,, the beam-column strength is computed in AISC (1999)
through the following interaction equation:

¢rpn 9 ¢bM'u ¢th_|.-
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where P, and M, are the axial load and moment determined from
second-order analyses, and @.P, and @M, are the design axial
compressive and flexural strengths, respectively. Figure 2a shows a
plot of this interaction equation, with the anchor point on the vertical
axis being represented by P,; to clarify that an effective length factor
is used to calculate P,. Also shown is the same interaction equation
where the first term is based on the squash load, P,. The load-
deformation response of a typical member, obtained from second-order
spread-of-plasticity analysis (SSRC 1993) and labeled “actual
response,” indicates the maximum axial force, P,, that the member can
attain prior to instability. The results of a second-order elastic analysis,
as would be done in design practice, are then shown. The moment is
amplified in this analysis such that the load-deformation curve
intersects the member interaction diagram where the axial strength is
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Fig. 2 - Interaction strength for a) critical load approach and b) notional
load and modified stiffness approaches
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limited to P,. Accurate assessment of P, and thus of the member
critical load or effective length, is key to achieving an accurate solution.

Many approaches have been proposed for computing the member
critical load (ASCE, 1997). These may be classified as subassemblage
[most typically through the use of the nomographs in AISC (1999)],
story-based, or system critical load calculations. Story-based critical
loads have the advantage of accounting for the destabilizing effects of
weak or leaning columns in a story, relative to strong columns in the
story One such story-based approach, based on the work of
LeMessurier (1977), is expressed as:
2
P =0gs g 2L X E @)
] Anﬁ L
where A, is the first-order sidesway deflection due to the lateral shear
H, P, is required column strength, and the summations are taken across
a given story in a building. The 0.85 coefficient accounts for the
approximations in column moments, such as shown in Fig. |.

NOTIONAL LOAD AND MODIFIED STIFFNESS METHODS

Calculation of member critical loads (effective lengths) is non-trivial,
particularly where the assumptions of the AISC nomographs often
break down. The use of direct second-order analysis provides an
attractive alternative for many structural framing systems. In these
approaches, geometric imperfections (primarily initial out-of-
plumbness) and inelastic effects (including residual stresses) are
accounted for through modifications to the second-order elastic
analyses. In checking the member interaction equations (Eq. 1a and b),
the nominal axial compressive strength, P, is then based on the actual
member length, termed P,,. Use of the column strength P,,;, rather than
the squash load P, is a practical measure to ensure that braced modes
of flexural buckling are captured by the interaction equation.

For both the notional load and modified stiffness approaches, geometric

imperfections equal to the maximum out-of-plumbness (H/500) are |
accounted for through application of an equivalent notional lateral load ‘

R P A R R LA N O s



Deierlein, Hajjar, Yura, White, Baker

equal to 0.002 times the summation across each floor of the gravity
load applied on that floor. Alternatively, this imperfection could be

directly incorporated in the analysis model. Where equivalent loads are
applied, they must be included with each load combination and applied
in the direction of lateral load, or for load combinations with no lateral
load, in the direction of sway of the frame under gravity loads.

The notional load approach accounts for inelastic effects through
application of an additional notional load of 0.003 times the summation
of gravity loads. This value was determined by calibration to more
exact solutions in a series of benchmark problems (ASCE, 1997).
Combining this factors with the one for geometric imperfections, the
notional load method consists of applying notional loads at each floor
equal to 0.005 times the factored gravity load applied at that story.

The modified stiffness approach accounts for inelastic effects through a
reduced flexural rigidity, EI', calculated for each column in the lateral
resistance system as follows:

El' = tEl forM,<1.2M, (3a)
EI' = 0.8TEl for M,> 1.2 M, (3b)

where the stiffness reduction factor T = 1.0 for P,/P, < 0.5P, and T =
4[P/P(1-P/P,)] otherwise. The distinction between yield and nominal
moment, M, and M,, accounts for the influence of shape factor and
residual stresses on progressive yielding and inelastic softening.

Figure 2b shows schematically how the direct second-order analysis
approaches capture interaction strength. The interaction diagram based
on using P,; (K=1) is closer to the cross section member strength, and
the notional loads and modified stiffnesses both cause additional
amplification of moments and deflections. The notional loads and
stiffness modifications are calibrated with the interaction equation, such
that the resulting axial strength P, is close to the true strength. One
result of this is that these methods are more sensitive to the accuracy of
the second-order analysis than the critical load method, whereas the
critical load method is more sensitive to accurate determination of the
critical buckling load (or effective buckling lengths).
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These analysis/design approaches are most beneficial if coupled with
separate interaction equations for assessing in-plane and out-of-plane
strength for beam-columns that are loaded about the strong axis.
Considerable research has been conducted on appropriate interaction
equations (e.g., see White and Chen, 1993), several of which are under
consideration presently for inclusion in the AISC Specification.

VALIDATION STUDIES

Shown in Fig. 3 are a set of test structures that were analyzed to
evaluate the accuracy of the three analysis/design approaches. The
three structures represent the range of conditions in practice, including
symmetric and unsymmetric framing, leaning columns, and individual
member behavior. For each structure, multiple conditions were
analyzed to investigate the effects of strong versus weak axis bending,
geometric imperfections, residual stresses, boundary conditions, and
slenderness. Over fifty cases were considered with each analyzed for
up to nine different ratios of axial loads to bending moments. Each
case was evaluated using the three analysis/design methods described
previously and compared to results from detailed second-order spread
of plasticity analyses. In total, over 1800 separate analyses were run.

Referring to Fig. 4, the typical analysis results consisted of P-M
interaction plots of the limiting strengths from the proposed
analysis/design approach compared to the “actual” strength determined
from a spread-of-plasticity analysis.  These spread-of-plasticity
analyses captured second-order distributed plasticity effects, including
the initial geometric imperfections and residual stresses, as outlined
previously.

Differences (errors) between the analysis methods were measured in
terms of the radial distance from the interaction plots (Fig. 4). A
summary of the overall error statistics is presented in Table 1. Included
are results for the three analysis/design methods described previously.
Data are presented for cases where the second-order elastic analyses
were either “rigorous” (2"-order) or “approximate™ (P-A).
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Fig. 3 — Test structures used for validation study

The analyses and error statistics clearly indicated that none of the three
methods are exact, each with its own shortcomings and limitations. The
average errors range between 8% unconservative and 9% conservative,
and the extreme errors were up to 17% unconservative for rigorous 2"-
order analyses and 25% unconservative for approximate (P-A4)
analyses. Differences between the rigorous and approximate analyses
within each method demonstrate that the modified stiffness and
notional load methods are more sensitive to the second-order analysis
accuracy. This follows from the basic approach in the methods (Fig. 2)
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Fig. 4 - Comparison of P-M strength interaction results between spread-
of-plasticity solutions and proposed design approaches

and implies that one needs to be more careful with the second-order
analysis with the notional load and modified stiffness methods. Finally,
while some of the extreme errors are large, one should remember that
(1) statistics for the critical load method are nothing new and simply
reflect current design provisions, (2) the imperfections and other
assumptions applied in the benchmark analyses are conservative, and
(3) many of the problematic cases are ones with very large second-
order amplification factors that are not common in design practice.

Table 1- Error Statistics Summary from Validation Studies
: Critical Load | Modified Stiff. Notional Load
Bending

Error 27

Axis ~ P-A |2"-order| P-A |2"-order| P-A
order

Weak | Avg. | 7(9) | 8(8) | 5(5) [7(4) | 4(6) | 6(6)
Extreme| 17 (20) |17 (20)] 10(20) |16 (20)] 13 (20) |19(20)
Strong | Avg. 1(9) | 1(8) 5(3) 8(3) 2(7 3(6)
Extreme| 8(20) [10(20)] 13(15) |25(15)] 8(16) [I13(15)
Note — Error values shown are percent differences between the proposed
methods  and  results of  detailed spread-of-plasticity  solutions.
Unconservative errors are shown first, followed by conservative errors in
parentheses ( ).
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ILLUSTRATIVE EXAMPLES

Three examples are presented to illustrate application of the alternative
stability checks. The strategy in each example is to perform a second-
order analyses and design checks for critical members using the three
approaches described earlier. For comparison purposes, results from
detailed second-order spread of plasticity analyses (by Maleck and
White 2001), are also presented to represent the actual response.
Results summarized herein are based on a more comprehensive study
by Maleck and White (2001).

Low-Rise Industrial: The first example, see Fig. 5, is a framing bent
from a large floor plan single story industrial building, such as an
automobile plant. With heavy material handling equipment and piping
hung from the roof and relatively small wind exposure, these structures
are dominated by gravity loads with large second-order effects
(Springfield, 1991). Loading shown in Fig. 5 represents an eleven bay
configuration with ten leaning columns (only two of which are shown)
and two lateral-load resisting columns. The concentrated load P has a
tributary area of 35 ft x 35 ft, and the wind load W = 6.3 kips.

The member sizes satisfy a conventional AISC (1999) LRFD strength
design and meet an //400 drift limit for the service load combination.

4P
| Frame spacing = 35'-0" |

F, = 50 ksi
E = 29,000 ksi

18'-0"

W10 x 49

3 @ 35-0" = 105'-0"

DL = 80 psf Load Combinations:
LL = 40 psf 1.2D + 1.6L
Wind = 20 psf 1.2D + 0.5L + 1.3W

1.0D + 0.5L +0.7W (service)
Fig. 5 -~ Example |: Single-story industrial building
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Using the story stiffness equation (C1-4) of the AISC (1999) under the
1.2D+1.6L load combination, B,= 2.31, This is about 4% less than the
more exact value of B,= 2.41 obtained from a critical buckling analysis
and the AISC story buckling equation (C1-5). For the gravity plus
wind loading case B,= 1.74 from a critical load analysis.

Axial column forces and maximum moments under the factored load
combinations are summarized in Table 2a. The critical load results are
from a second-order analysis of the “ideal” structure (no geometric
imperfections) under the factored loads (without any notional loads).
The modified stiffness analysis incorporates initial geometric
imperfections through an equivalent notional load of 0.2% times the
factored gravity loads (1.2D + 1.6L for the first combination and 1.2D
+ 0.5L for the second combination). Since the columns are bent in
major axis bending and the axial load P/P, < 0.5, no stiffness
adjustments are required. In the notional load analyses, notional loads
equal to 0.5% of the factored gravity loads are applied.

Table 2a — Example 1: Member Load Effects

Analysis/Design Method
Load Case ’:.‘;"“b:' Spread of | Critical | Modified | Notional

Plasticity Load Stiffness Load

1.2D+1.6L | P (kip) 215 216 215 215

[ Moy (k-in) 930 430 960 1770

M (k-in) 8660 8400 8670 8940

1.2D+0.5L+1.3W | P (kip) 154 155 154 155
M (k-in) 1310 1060 1340 1760

Mo (k-in) 6490 6410 6500 66350

Referring to Table 2a, the critical load, modified stiffness, and notional
load analyses all predict the maximum beam moments and axial
column forces within about 3% of those from the spread-of-plasticity
analysis. On the other hand, there are significant differences in the
column moments. The modified stiffness predicts the column moments
within about 3% of the spread-of-plasticity solution, but the column
moments are 50% smaller for the critical load analysis and 90% larger
for the notional load method. These differences are further reflected in
the calculated displacements. Shown in Fig. 6 is a comparison of the

T ™ g
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Fig. 6 — Example 1: load versus deflection under
strength wind load combination

load versus drift response for the wind load combination. Here the
critical load (LRFD) analysis under predicts the lateral deflections,
compared to the spread-of-plasticity (Advanced Analysis) solution; and
the modified stiffness and notional load methods overestimate the drift,
with the modified stiffness coming closest to actual displacements.

Using the member forces from Table 2a, the columns are checked using
the interaction formula for in-plane or out-of-plane (torsional flexural)
failure. The resulting interaction ratios are summarized in Table 2b.
For the critical load method, the in-plane checks are based on a column
strength of @P,, x; = 236 Kips, obtained with an effective length factor
of K = 2.3 using Eq. C-C2-6 of AISC (1999). In-plane checks for the
modified stiffness and notional load methods are based on ¢P,,; = 511
kips, and out-of-plane checks are all based on ¢P,,; = 361 kips. The
column moment capacity is @M, = 2718 k-in.

Referring to Table 2b, due to the large difference in P, used in the first
term of the interaction equation, the critical load method is governed by
the in-plane strength whereas the other two methods are governed by
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the out of plane check. The notional load method is most conservative
(giving the largest values), followed by the critical load and modified
stiffness methods. The in-plane checks can be compared to inelastic
limit load ratios of @4, 5.4 =1.17 and @4, ;1. 0.5.., 5w =1.20 obtained
from the spread-of-plasticity analyses. The inverse of these limits (0.85
and 0.84 for gravity and gravity+wind, respectively) provide a gage as
to the conservatism in the methods. Compared to these values (0.85
and 0.84) the in-plane checks for both the critical and notional load
methods are conservative, whereas the modified stiffness method is
unconservative (e.g., 0.74 < 0.85). Since the member forces vary
nonlinearly with load (due to second order effects), the degree of
unconservatism of the modified stiffness method cannot be determined
directly from this comparison. However, by scaling up the load until
the in-plane check is equal to 1.0, further analysis would show that the
modified stiffness method implies a limit load of OA,p.;a=1.29,
which is about 10% larger (unconservative) than the in-plane limit from
the spread-of-plasticity solution. This is not ideal, but is within the
bounds identified in the verification problems described earlier.

Table 2b - Example 1: Column Interaction Checks
Load Case Check Analysis/Design Method

Critical Modified Notional
Load Stiffness Load
[ 20+1 6L in-plane 1 .06 074 .00
out-of-pl 0.74 0.91 1.17
1.2D+05L+1.3W | in-plane 1.00 0.74 0 88
out-of-pl 0.78 0.86 1.00

Grain Storage Bin: The second example is the support rack for a grain
storage bin with the dimensions and loading shown in Fig. 7. In this
case, it is assumed that the columns are braced out-of-plane and that the
cross beams and bracing are pin-connected to the columns. Using an
elastic critical load analysis, the amplification factors are B, = 2.75
and B, = 2.20 for the gravity and wind load combinations, respectively.
The spread-of-plasticity analyses predict inelastic limit load ratios of
/1; 4(,‘11.2| and /1; J{;J}w'll.l—’.
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—

o 4
H 120" H
Fig. 7- Example 2: Grain bin support frame

Maximum column forces and moments are summarize in Table 3a. As
in the previous example, the column forces are fairly consistent for all
four analyses, whereas the column moments vary quite dramatically.
This is particularly true for the gravity load case where the moments in
the critical load case (with the ideal geometry) are essentially zero.
Like the previous example, no adjustment of member properties is
required in the modified stiffness approach since the columns are in
strong axis bending and the axial load ratio P/P, <0.5.

The interaction checks (Table 3b) are based on the following in-plane
column strengths: critical load method @P,x; ., = 232 kips (K = 2.4),
OP 1 b = 243 Kips (K = 2.9); and modified stiffness and notional load
methods, @, ., = 355 Kips, @Pu s = 366 kips. Effective length
factors for the former are based on an elastic critical load analysis
under gravity loads. The results in Table 3b show that critical load
method is most conservative, followed by the notional load and
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modified stiffness method. Based on the spread-of-plasticity analysis
results, interaction values larger than 0.92 (for /.4G) and 0.95 (for
1.2G+1.3W) are conservative. Here again, the critical load and
notional load methods are conservative, and the modified stiffness
method is unconservative. By scaling up the loads, one could show
that the modified stiffness method predicts a limit load that is about 7%
unconservative, relative to the spread-of-plasticity limit point, under
gravity load.

Table 3a — Example 2: Member Load Effects

Meniber Analysis/Design Method
Load Case Check Spread of | Critical Modified | Notional
Plasticity Load Stiffness Load
P o (Kips) 233 237 234 252
14GL P b (Kips) 255 252 256 261
M, (k-in) 161 2 130 322
. Pagp (Kips) 203 204 205 221
1.2GL+1.3W Py (Kips) 224 225 227 231
M, (k-in) 380 289 377 509

Table 3b - Example 2: Column Interaction Checks

Load Case Member Analysis/Design Method
Check Critical Modified Notional
Load Stiffness Load
1 4GL Top Col. 102 0.74 092
Bot. Col. 1.04 0.78 (.92
1.2GL+1.3W Top Col. 1.07 0.82 0.95
Bot. Col. 111 0.87 0.96

Multi-story Frame: The final example is the multi-story frame shown
in Fig. 8, where one load case is investigated (/.0G + 1.0W, assuming
that the specified loads are already factored), and member forces and
interaction checks are presented for the three columns in the first story.
Unlike the previous examples, this frame is fairly stiff with a 8, = 1.10
for the first story. The second-order spread-of-plasticity analysis
predicts an inelastic limit load of 1.03 for this frame, which combined
with the low B, indicates that it is dominated more by yielding than
second-order effects. Due to the high axial forces, several columns are
subject to the t—factor adjustment (Eq. 3a) in the modified stiffness
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Fig. 8 - Example 3: Multistory frame

method. The first floor column forces, summarized in Table 4a, reveal
that differences between the three methods are much smaller than in the
previous examples. Results of the beam-column interaction checks
(Table 4b) show that all three cases are conservative, with the notional
load method being the most conservative.

CONCLUDING REMARKS

Two new stability assessment methods, modified stiffness and notional
load, are proposed as a practical alternative to the critical load
approach, which has in some form been a part of the AISC
Specifications since 1961 and revised to include second-order analysis
in the first edition of the LRFD Specification in 1986. A key practical
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Table 4a — Example 3: Column Load Effects

Location & Analysis/l)rs!gu Method
Effect Sprd.of | Critical | Modified | Notional

(1.0GL+1.0W) Plasticity Load StifTness Load
Py (kKN) 683 672 666 665
Peiz (KN) 1720 1770 1770 1770
P.is (kN) 921 884 891 891
My, (KN-mm10) 6.7 5.1 57 53
M;; (kN-mm107) 11.5 12.8 129 133
M (kN-mm107) 9.9 8.7 9.4 9.0

Table 4b - Example 3: Column Interaction Checks

Load Case Location Analysis/Design Method
Critical Modified Notional
Load Stiffness Load
Cll 0.70 0.72 0.70
LOGL+1.0W Cl2 1.27 1.27 1.81
C13 1.04 1.07 1.04
Wi Avg. 1.10 1.10 1.38

benefit of the proposed methods is that they eliminate reliance on, and
the need to calculate, critical loads and effective length factors.
Beyond this, the two methods provide a more accurate and transparent
assessment of the actual behavior. They more accurately model second
order moments that affect not just column design, but also adjacent
members and connections.

Between the two new methods, the notional load is probably the most
straightforward to apply, but with the tradeoff that it tends to me more
conservative due to calibration of the load factor to account indirectly
for inelastic effects. The modified stiffness method can require more
work to adjust member stiffness coefficients, but these adjustments
more closely reflect the underlying mechanics. The modified stiffness
approach also bears some commonalities with the approached of ACI-
318 (1999) for slender concrete columns. Perhaps, though, the most
important attribute of both approaches is that by placing the emphasis
more on more realistic system analysis, they provide a consistent
framework that will facilitate further developments, such as the
practical use of second-order inelastic analysis methods, in the future.
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