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Critical Slenderness of Compression Members
With Effective Lengths About Nonprincipal Axes

by
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Introduction

For most compression members, the principal axes are oriented such that the designer can
evaluate the effective length of the member about each of the principal axes, For an axially
loaded member it is a simple matter of comparing the larger of k.l/r. and k,L/r, to determine the
axial capacity of the member. When column moments exist, the stress ratios can be evaluated
about both the x and y-axes using the appropriate combined stress equations to determine the
critical condition.

However compression members such as single angle struts are typically positioned in struc-
tures such that their x and/or y-axes are oriented parallel to the framing. Thus effective lengths
can readily be evaluated (or estimated) only about these x and y-axes which are non—principal
axes. The minimum radius of gyration is at an angle to the framing and the effective length val-
ues.

This does not present a problem if the effective length about the x and y-axes are the same,
because this effective length can be used with the z-axis radius of gyration 1o obtain the largest
slendemess. However, if the effective length factors k. and k, differ, there is no accepted means
of determining the critical slenderness ratio. As a result, the designer typically ignores the end
restraint and conservatively uses the actual length and the z-axis radius of gyration 1o determine
a design slendemess ratio.

To take advantage of end restraint in compression members such as angles, a procedure is
developed to evaluate an effective minimum radius of gyration based on the x and y-axis effec-
tive length factors. The procedure is general and thus is applicable not only 10 angles, but to any
compression member which is oriented such that the effective length factors can not be directly
evaluated about the principal axes.

Development
The Euler load can be written as
wE _*E(1/3)
e 4 (n
¢y L

which shows that I/k? can be considered as an effective moment of inertia for a column with a
buckling length of L. It is presumed at this point that the critical load can be satisfactorily deter-
mined from the Euler equation rather than from the flexural-torsional buckling expression.

This effective moment of inertia can be evaluated from the basic integral expressions for the
moments of inertia by replacing the actual distance from the neutral axis by this distance divided
by the appropriate effective length factor. Thus
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This is akin to considering the cross—section as having orthotropic properties.

The lateral stiffness of a compression member, with initial deformations corresponding to the
buckled shape, can be shown to correspond to that indicated by Equation (1). This represents
further proof that the lateral bending stiffness should be used for buckling as well.
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The equation of the curve is e cos ns/kL which means that a differential load AP introduces a
moment AP e cosns/kL. By integration it can be determined that the lateral deflection 8 is
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The lateral stiffness is proportional to I/k*. Thus use of I/k* as an effective moment of inertia for

stability purposes appears to be appropriate.

The equation for the minimum principal moment of inertia of a cross section given I, I, and

Lyis
I, +1 =LY
tnia = 5L~ '(_TLJ o, 6)

Thus if the x and y properties are represented by the effective values given in Equations (2) then
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A plot of Eq. (4) is illustrated in Fig. 1,

rat, the corresponding effective minimum radius of gyration can be obtained from the square
root of the above expression divided by the area A.
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This means that the effective slenderness is L/rar where L is the unbraced length. When L,=0
such that x and y are principal axes, rur is the minimum of r/k, or ry/k, as would be expected, The

author in an earlier presentation proposed consideration of an effective radius of gyration (with-
out proof) that was similar to Equation 5%,

Should evaluation of the flexural-torsional buckling load be appropriate, the rer above can be
used in computing the value of Fu in the flexural-torsional expression (Eq. C4-2in Ref. 2). The
value of rey would replace r/K.. A maximum effective radius of gyration, obtained by using a
plus sign for the inner square root term in Eq. 5, would replace ro/K« in the expression for Few.
The coordinates of the shear center z. and w, with respect to the centroid would be replaced by
coordinates consistent with the orientation of the effective radii of gyration.

Trahair™ in 1969 did examine single angles restrained about arbitrary axes. His work was
based on a theoretical development using the differential equilibrium equations for major and
minor axis bending and for torsion, and incorporating elastic end restraining moments. The
equations consider the flexural-torsional behavior of struts, but the solution is difficult to obtain
and thus the procedure does not lend itself to design usage.

Evaluation of I,

Iy in Eqs. 4 and 5 can be determined from basic principals. However, it is often possible 1o
evaluate L., from other section properties. Having L, the minimum principal moment of inertia,

one can determine
I, +1 £ ] X
:,,=J(=2 r_.,) -(-2:] ©)

which reduces 10 L, = -1, when L=1,. For angles I, would be evaluated as Ar,’. Using the tabu-
lated tan @ given for unequal leg angles, L, can be evaluated as

Ly =(1x~1y) tan o/ (1- 1an’cr) )

Alternatively for angles, a good value if L,,/A=r,,’ can be determined from
(b=t/2)d-1/2) ? ®)
2Ab+d-1)
where b and d are the leg lengths and t is the thickness of the angle. For equal leg angles one can
simply consider 1,,=0.61.
Effective Length Factors for Angle Web Members

For single angles used as web members of a truss, most chords, typically provide significant
restraint in the plane of the truss and substantially less restraint about the axis of the chord. The

Ly /A=
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effective length in the plane of the truss could range from 1.0100.65. The out-of-plane effective
length is more likely to range from 1 100.9. Toillustrate the influence of these variations of effec-
tive length, the ro/ra ratios for several angles are evaluated. The ri/rer ratio represents the resul-
wnt effective length factor for the angle.

In Fig. 2, the plot illustrates the effect of angles L3x3x1/4, LAx3x1/4 and L5x3x1/4 having
the three inch leg welded or bolted (with more than one bolt) to the chord by showing k, varying
from 1.0 down to 0.5. Plots are shown for k.=1 and 0.9. The plot shows that with a larger leg
projecting from the chord, a significant reduction in resultant effective length factor occurs from
restraint about the y-axis. This effective length factor approaches the value of ky as the project-
ing leg is lengthened as would be expected. Also, as the projected leg becomes larger, the value
of k. has a decreasing influence on the resultant effective length factor.

In Fig. 3, the plot illustrates the effect of the longer leg of the angle attached to the chord. As
one would expect, the resultant effective length factor is not aliered as much when the significant
restraint is about the stronger axis. The resultant effective length factors in this case are influ-
enced more by the value of k,.

Although the resultant effective length factor plots in Figures 2 and 3 are for a specific sct of
angles, they can be used for other angles as well. Since the ratio of 1/, is approximately the same
for other thicknesses of the angle sizes in the plots, the effective length factors for other thick-
nesses can be obtained by simply using the plot for the appropriate leg lengths. If the ratio of
angle leg lengths is proportional to one of those plotied, the plotted curve can also be used to
obtain the effective length factor desired. For example, the 8x6 angle effective length factor can
be obtained using the plot for the L4x3x1/4. The resultant effective length factor for any angle
can be estimated with good accuracy by interpolation using either the ratio of leg lengths or ratio
of r/ry.

Hustrative Examples

For the general situation with compression struts having effective lengths about nonprincipal
axes where Figures 2 and 3 could not be used, one would have to obtain the desired slenderness
properties directly from Eq. (4) or Eq. (5). The following two examples illustrate the general use
of the expressions developed.

Example 1, Determine the allowable axial capacity of an LAx3x5/16 leg of 9’ length. The wp is

framed into channels which are attached to adjacent structure for bracing, while the bottom con-
sists of a base plate anchored 1o a concrete foundation.

Determine effective length factors from alignment charts.

3.38/9

e AL U = .
75(13.1/10) 0.38 5¢ Goe = 10 (Connected to foundations)

About x-axis — Gy =
. ks = 0.785 from alignment chart for braced frames.

1.65/9

———— . =
.75(32.6/4) e D= 10

About y-axis — Gq, =

s ky =070
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Using Eq. 7 - Ly = (3.38 — 1.65) 0.554/(1-.554%) = 1.383
Ly / (Aksky) = 1.383/(2.09 x 785 x .70) = 1.204

FromEq. 5 Ter = J%[(Lm)‘ + (1.257)3]-—‘(-:-[(“13)’ -(u:rn’]’ +(1.204) =0.897
The slenderness ratio is 9(12)/.897 = 120; F, = 10.28 ksi.
The allowable axial capacity is 10.28(2.09) = 21.48 kips.

*1. and I, of the L4x3x5/16, used in computation of G, are larger than the effective mo-
ment of inertia for the respective axes and thus a somewhat conservative G is obtained.
See Example 2 where computation using a reduced moment of inertia is illustrated.
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Example 2

Determine the axial capacity of a 8’ long truss web member in compression. The top and bottom
chords are both WT6x25 sections with panels 8" in length. The member is a double L3x3x1/4 in
which the angles are positioned so as to form a Z-shape as shown.

i . '
1 g «—v——t- -5

4

).1_3::3:‘4

b4

=817 in*

Determine effective length factor in plane of truss. First find a reduced stiffness for the double
angle in this plane from

1 _cos?37.6 _ sin°37.6
La S0 TS a2 L, =16
k¢ A T il

since bending is not about a principal axis.
Therefore for both top and bottom

1.61/8

CRTR T et

G=

ignoring the minor benefit of the diagonal.
From the alignment charts find k. = 0.522,

Conservatively consider k, = 1.0
1 3 1 5.532
—32- m————u 6.84 _.1!. = =2.766
2ky  2(.522) 2ky A1

y

dy B4
keky  (52200)

Effective Iy, = 6.84 + 2.766—/(6.84 — 2.766)” + (—6.55)°

=9.606-7.715 = 1.891 in*



fegy = V/1.891/2.88 = 0.810 in.

whereas r, = /1.091/2.88 = 0.6155 in.

which means ke = .6155/0.810 = 0.76
Effective slenderness = 964/0.810 = 118.5

F. = 10.5 ksi for A36 steel.
Allowable capacity P = 2.88(10.5) = 30.24 kips
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FIGURE 1-Plot of the Effective Moment of Inertia
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FIGURE 3 - Resultant Effective Length Factor with Primary Restraint About x—axis of Angle
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