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DIRECT ANALYSIS APPROACH FOR THE 
ASSE MENT OF FRAME STABILITY: 

VERIFICATION TUDIES 

Andrea E. Malec'; & Donald W. White1 

INTRODUCTION 

In (Maleck and White 2003a and b), the authors have outlined an 
alternative approach for analysis and design of steel framing systems, 
lenned the Modified Elastic Approach. This method accounts for key 
factors that affect system strength, specifically nominal residual stress 
and geometric imperfection etTects, directly within a second-order 
elastic analysis. In as such, a more rational analysis-design procedure 
is obtained that eliminates the need for etTective length factors or 
buckling solutions. 

Various fonns of the Modified Elastic melhod have been discussed in 
the recent literature, e.g., (Maleck and White 2001 and Deierlein et al. 
1002). (Maleck and White 2oo3b) presents a summary of benchmark 
validation studies from (Maleck 2001). (Maleck and White 2003a) 
gives an overview of the Modified Elastic approach, and presents an 
example design solution for a representative stability critical industrial­
Iype frame. This frame was originally studied in (Maleck 2001), and 
example calculations have been discussed previously by Maleck and 
While (200 I) and by Deierlein el al. (2002). However. in Ihese 
references, resistance factors were applied only to the beam-column 
strength tenns p. and M,. Subsequent studies have shown that in 
general, resistance (~) factors must be applied to the nominal stiffnesses 
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in addition to the nominal strengths. The benchmark validation studies 
in (Maleck 2001) and (Maleck and White 2oo3b). which are presented 
in terms of nominal resistances. are unalTected by this issue. This is 
beeause. if both the stilTness and strength terms are factored by an 
appropriate uniform ~ prior to conducting the analysis and design 
calcu lations, the results are identical to those obtained if the nominal 
strengths and stifTnesses arc used in the calculations but the beam­
column interaction curves are subsequently factored along both axes by 
the above ~ value. 

In addition. the analysis-design solutions illustrated in (Maleck and 
White 200 I) and (Deierlein et al. 2002) used a nominal rigidity of the 
members of tEl, where T is a inelastic stiffness reduction factor 
associated with the column strength. The original developments in 
(Maleck 2001) were based on nominal rigidities of 0.9tEI for strong­
axis bending and O.StEI for weak-axis bending of I-shapes. with t 
taken as the inelastic stilTness reduction factor associated with the 
AISC-LRFD column curve (AISC 1999). Subsequent studies have 
shown that these or similar minor reductions in the nominal section 
rigidities. combined with the use of the ~ factor on the stilTness. are 
essential to the accuracy of the method for structures that fail by elastic 
or near elastic lateral sidesway buckling. Maleck and Wh ite (2003a) 
gives an overall synthesis of the Modified Elastic procedure and 
presents the results for the example frame using the base nominal 
0.9tEI and O.StEI values from (Maleck 2001). 

Recently. it has been suggested in discussions within AISC TCIO that 
the use of the CRC t equation is desirable. and that a uniform factored 
stilTness of O.StEI might be employed both for strong- and weak-axis 
bending within the Modified Elastic procedure. Also. it has been 
suggested that this procedure be referred to as the Direct Allalysis 
method. This paper summarizes the key concepts associated with this 
approach, and presents the results of fundamental benchmark 
validation studies for this procedure. 
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THE OIRECf ANALYSIS APPROACH 

OHrview. A general overview of the direct analysis approach is 
presented here; for detailed discussions of the development of the 
approach, the reader is referred to (Maleck & White 2003a) and 
(Deierlein el. al 2002). The Direct Analysis approach is based on a 
simple principle: if the parameters that afTect member nnd system 
strength can be directly modeled (in a practical manner) within an 
elastic analysis. the overall simplicity and rationality of the elastic 
analysis-design calculations is improved. Based on SSRC Technical 
Memorandum No. 5 (SSRC 1998), these parameters include (but are 
not limited to) residual stresses, initial geometric imperfections and 
boundary conditions. In the Direct Analysis approach, the efTects that 
are not easily captured by simple modifications to elastic frame 
analysis are addressed within the member resistance equations. The 
modifications that can be easily made to an elastic analysis to better 
estimate the strength limit stales behavior within the structural system 
(e.g ., to more closely predict the internal forces obtained from a 
rigorous distributed plasticity or plastic zone analysis) include: 

I. Uniform reduction of the section flexural rigidity (EI,), based on 
the level of axial force within the beam·coJumn members. 

2. Specification of a nominal out-of-plumbncss, or lack-of-
verticality, of the structural framing. 

By proper specification of nominal values for (I) the inelastic stifTness 
reduction based on the behavior associated with the column strength 
curve. and (2) column out-of-plumbness or a lack-of-verticality of the 
structure based on erection tolerances such as specified in (AISC 
2000), a simpler, more transparent and morc accurate analysis·design 
approach is achieved. 

Based on a wide range of studies. including the verification studies 
presented in this paper, the following basic rules are suggested for 
application of the Direct Analysis approach to tiered-type structural 
framing: 
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I) The nominal slifTnesses of all Ihe components wilhin Ihe 
struclural syslem are faclored by a uniform value of 0.8. This 
factor is applied to all the member rigidities, regardless of 
orientation, and also to connection stifTncsses, column base 
reslrainl slifTnesses, elc. (if a finite flexibility of these 
components is considered in the design), There are two 
contributors to the 0.8 factor on the stiffness. The first 
contributor is a nominal reduction of 0.9. This reduction 
factor accounts for the influence of distributed plasticity 
efTects on the nominal stifTnesses as the strength limit stale 
associated with the most critical component in the structural 
system is approached . The second contributor is a resistance 
factor of + c 0.9. The product of these to factors is rounded 
from 0.81 to 0.8. 

2) For members in which the applied load p. exceeds O.SP" an 
additional reduction factor 

r=[P, 1 P,(I- P, I P, }] 

is applied, and therefore efTeclive member rigidities of 

EI, = 0.8tEI 

(I) 

(2) 

are required for these types of members. In many types of 
frames, Ihe O.SP, limit is not exceeded by Ihe required 
strengths by any of the design load combinations. In cases 
where this limit is exceeded, il is usually violated by only a 
few columns within the structure. Furthennore, the value of 
P II remains reasonably constant with design iterations in most 
frames, and therefore an accurate bUI conservative value for t 

can be selected rather easily. 

3) A nominal frame nonverticality of WSOO is included in the 
analysis by applying a notional load at each story level equal 
to 

N, - 0.002Y" (3) 
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where Y, is the factored design gravity load acting on the i~ 
story. Alternatively, the frame nonverticality may be directly 
modeled by alteration of the perfect frame geometry. 

If these minor modifications are performed in the context of a second­
order elastic analysis, the beam-column member strength checks can be 
performed using the (AISC 1999) beam-column interaction equations 
but with the P, term based on the actual member length. In short, the 
need to calculate effective length iac/ors is eliminated, and thus the 
member strength checks are greatly simplified. 

While out-of-straightness can have an important influence on the 
maximum strength of members in which the strength limit involves a 
non-sway failure mode, the modeling of member out-of-straightness 
within an analysis of the overall structural system is more cumbersome 
than the modeling of a uniform frame nonverticality. In lieu of direct 
modeling, the efTect of out-of-straightness on the strength is accounted 
for in the axial strength term of the interaction equation. 

One should note that the notional loads described by Eq. 3 are included 
to model a physical attribute of the structure. They are not meant to be 
a minimum horizontal load that can be neglected in the presence of a 
larger applied lateral load; consequently they are additive to applied 
lateral loads. For frames that have significant sidesway flexibility or 
are subjected 10 large vertical loads. the influence of potential nominal 
out-of-plumb imperfections on the internal second-order moments 
within the structural system can be significant, even in the presence of 
an applied lateral load (Maleck and White 2003a). 

It should also be noted that the above reduction in the stifTness is 
intended for use in the assessment of the strength only. Serviceability 
limits should be checked using nominal stifTness values. 

Special Considerations. For frames that are loaded near their vertical 
load capacity and in which the structural system would tend to fail in 
elastic sidesway buckling, the Direct Analysis approach behaves in a 
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fashion that represents the true stability behavior more faithfully than 
traditional buckling solution Or effective length based approaches. In 
these type of structures. the strength of the system is reached due to 
sIgnificant amplification of the sidesway deflections and the associated 
internal moments as the limit of the structural resistance is approached. 
This can be problematic if the Engmeer does not anticipate this 
characteristic of the behavior. In traditional buckling solution or 
effective length approaches, the internal forces and component 
resistance ratios (i.e., the ratio of the required strengths to the design 
resistances) tend to increase in only a mildly nonlinear fashion (due to 
second-order elastic effects) as the design loads increase or if say some 
of the components are reduced in size. However. when the Direct 
Analysis Approach is applied to structures in which there are truly 
large second-order amplifications of the lateral displacements based on 
the reduced (or the actual inelastic) stiffnesses as the limit of resistance 
is approached, the component resistance ratios can change in a highly 
nonlinear fashion. For example, the engineer may find that the 
interaction equation value for a beam·column member is 0.4, but if the 
structure is checked for a slightly larger load, the interaction equation 
value could rapidly increase beyond a value of 1.0 with only a small 
increase in the required strength. These problems are significant only 
for structures in which the sidesway amplification is excessive at the 
required strength level. Therefore, they are likely to be important only 
for certain special types of structures_ 

In general, the second-order analysis used in the direct analysis 
approach must be rigorous; that is, the analysis should include both Pod 
and P-O effects. Approximate Pod analysis methods are permitted only 
if the applied axial loads on all columns satisfy the following limit: 

(4) 

where 

(5) 

and p.L is determined in the plane of bending. Equation 4 is a 
conservative limit for which the influence of P-o moments on the 
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s,deSll'OY displacemenls can be neglected In lieu of a direct second­
order analysis. first-order analysis resulls may be modified by B I and 
B2 amplification factors determined using the reduced stifTness. 
However, the B2 amplification factor in (AISC 1999) is in efTect a P-d 
analysis solution. If Eq . 4 is not satisfied, the form of this equation 
given by LeMessurier (1977) including the CL term may be used to 
account for the P-O effects on the sidesway deflections and internal 
momenls. The B I amplification factor must be included in general 
even when the axiallonds satisfy Eq. 4. 

VERIFICATION ST DIES 

Background. In (Maleck 2001), four small sensitive benchmark frame 
configurations and two braced beam-column configurations were 
studied to assess the accuracy of the proposed "Modified Elastic" 
analysis-design approach. The complete set of ITames is similar to that 
originally studied by Kanchanalai (1977) with the exception that the 
efTects of initial geometric imperfections were included in the (Maleck 
200 I) studies. Parameters considered in this study included 
slenderness, member orientation (strong or weak-axis), beam-column 
end restraint (G), and leaning column load (a). The results of these 
studies are summarized in (Maleck and White 2003b). 

In these studies, interaction curves were developed based on analysis 
results from the "Modified Elastic" approach and the current LRFD 
method for the studied frames . Both first-order (P versus M I) and 
second-order (P versus M2) interaction curves were considered in these 
studies. where 

• M 1 is the maximum primary bending moment in the member 
due to the applied loading. and 

• M2 is the maximum internal second-order bendmg moment 

The P versu~ M I interaction curves represented the maximum loadings 
that can be applied to the benchmark structures; therefore. the P versus 
M I interaction curves are referred to as both "applied loading" as well 
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as "first-order" strength curves. These curves were compared to 
interaction curves established by rigorous spread-or-plasticity analyses 

As previously stated, these benchmark studies focused only on nominal 
strengths. If only P, and M, are factored, IVltholit jactorlng the 
st!IJness, then in the limit of structures that fail by elastic sidesway 
buckling, factoring of P, and M, has a negligible innuence on the 
calculated design resistance. The reason for this behavior is as follows. 
In the limit of elastic sidesway buckling. the strength of the structure is 
effectively controlled entirely by its elastic st!IJness. As the elastic 
stability limit is approached, the internal moments tend to increase 
dramatically such that large changes in internal moments are obtained 
with only a small change 111 the externally applied loadings. As a 
result. if the stiflhess is not reduced (e.g., by O.S) the design load 
capacity in these types of structures is essentially predicted as the 
nominal elastic sidesway buckling load, regardless of the fact that the 
factored strengths f,P, (based on the actual unsupported length) and 
",M, are used. 

Design or Current Study. From the reasonably comprehensive set of 
nominal strength studies performed in (Maleck 200 I), a subset of ten 
strong-axis frame configurations and seven weak-axis frame 
configurations are selected for additional study using factored strength 
and stiffness values and the CRe tau equation (when required). The 
subset of frames taken from (Maleck 200 I) that is used in this study are 
shown in Fig. I. The chosen frames represent cases that exhibit the 
largest unconservative and conservative errors in the initial nominal 
study for either the direct analysis or current LRFD approach, or both. 
Certain frames are also included because they exhibited significant 
distributed plasticity efTects (SP_S60_GO, SP _SSO_GO) or failed by 
elastic sides way buckling (UP _ S40 _ G I (12, SP _SO G3). 
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figu r. I. Benchmark Frames and Beam·Column (Maleck 200 I). 

For Ihe plaslic zone Solulions. the Lehigh (Galambos and Keuer 1959) 
residual stress pattern is used. and nominal geometric imperfections 
equal 10 the fabricalion and ereclion lolerances in Ihe AISC Code of 
Slandard Praclice (AISC 2000) are explicilly modeled. These 
imperfections are: 

60' tl500 

and 

00 - ti l 000 

where 
60 overall frame nonverticalily 

(6) 

(7) 
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llo - maximum amplitude of a half sine wave member out-of­
straightness 

I member length 

When these parameters are used in a rigorous distributed plasticity 
analysis. the resulting beam-column strength solutions closcly match 
the current AISC LRFD beam-column strength procedures (AISC 
1999) for the base case of W8x3 I members in strong-axis bending 
(Maleck 2001. White and Clarke 1997. ASCE 1997). This should be 
expected since the AISC LRFD bearn-column strength equations were 
calibrated in part to the results from rigorous plastic zone solutions of 
this type (ASCE 1997. Maleck and White 2oo3b). The analysis models 
typically used for these distributed plasticity solutions have been based 
on Euler-Bcrnoulli beam kinematics and in-plane response only. 

LeMossurier's (1977) approach is used for the second-order elastic 
design-analysis procedure in all of the sidesway-uninhibited 
benchmarks considered wIthin this study. LeMessurier's method 
accounts for both P-Iarge delta and P-small delta efTects and is. for all 
practical purposes, exact for the sidesway problems studied in this 
work. The "exact" closed-form analytical solutions are used to 
determine the second-order elastic internal moments within the 
sidesway-inhibited problem considered (beam-column BCS_. see Fig. 
I). For the approximate (P-~) sidesway inhibited solutions, a B I 
amplification factor is used in lieu of the "exact" closed-form solution. 
For the direct analysis approach. the above solutions are based on the 
efTective stifTness EI. (see Eq. 3). The approximate first-order 
solutions are also detennined using LeMessurier's approach; in these 
solutions the amplification term associated with P-O efTects is simply 
omi"ed. 

Result and Dis<ussion. A comparison of results for the studied 
frames IS presented in Tables I (strong-axis) and Table 2 (weak-.xis). 
The focus in this report is the error in the applied load curves (P vs. 
M I); for a general discussion of the error associated with second-order 
curves (P vs. M2), the reader is referred to (Maleck and White 2oo3b). 



Direct Analysis Approach f or the Assessment ... 433 

Results of the factored solutions are presented for both the proposed 
Direct Analysis approach and the current LRFD (1999) approach. For 
both methods, errors from rigorous second-order analyses (P-li) and 
approximate second-order analyses (P-t.) are presented. The error .s 
defined as 

(8) 

where r" is the distance to the plastic zone strength along a radiallme 
from the origin of the interaction curve plots. normalized in tcrm of 
MIM, and PIP" and r is the corresponding distance along the same 
radial line to the predicted design strength. Negative errors are 
unconservativc. 

In general, it can be seen from Tables I and 2 that the Direct Analysis 
approach produces results with reasonable levels of unconservative 
error in the applied load interaction curves, and improved accuracy of 
these curves relative to that of the LRFD solutions, even for the cases 
of maximum unconservative error. The error for the Direct Analysis 
approach using a rigorous second·order analysis range from 6% to 
+ 13 for strong axis bending and - 13 to +15 for weak-axis bending. 
The corresponding LRFD errors range from - 8 to + 17 for strong-a.,is 
and - 17 to + 17 for strong axis bending. The large unconservative 
errors in the methods for the uBCS" problems in weak-axis bending 
relate to the well known fact that the single AISC column curve 
equation tends to give capacities that are somewhat liberal relative to 
theoretical strengths for weak-axis buckling of I-shaped members 
(Salmon and Johnson \996). The maximum and mmimum errors are 
strongly dependent on the type of column end re traint, or more 
specifically on the moment gradient within the members. The 
conservative errors tend to be highest for the symmetric restrained-base 
(SR.J frames, and these errors tend to be concentrated within the high 
axial load regions for this case. Conversely. the highest uncollservative 
errors are found in the braced, single curvature (BSC.) cases. 
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Table I. Error in strong-axis benchmark cases for rigorous (P-O) and 
approximate (P-6) second-order analyses 

DIREC ANALYSIS LR 

P-.I P-.< P-.I P- A 

- c' - c- . . 
DHlgn.t1on C C C C C C 

UP_S40_G1_cU 0 a 0 • 0 15 0 ,. 
SP _52O_GO -2 3 · 2 3 -I 3 -1 3 

SP _S<O_GO .. 3 -, 3 0 2 0 2 

SP _S60_GO ·3 0 -1' 0 •• • -. 3 

SP _SIO_GO ·1 • -12 0 0 10 0 a 

sp_SaO_G3 0 • 0 • 0 la 0 17 

SR_S40_Gl 0 • 0 • 0 13 0 13 

SR_SI O_GO 0 " 0 12 0 3 0 3 

BCS_SIO .. • ., • .. 2 -11 2 

Bes suo -2 10 .. a .. • ·10 1 

..... g. II -2 • I -. • II -2 
, I ·3 , 

Ta ble 2. Error in weak-axis benchmark cases for rigorous (P-o) and 
approximate (P-6) second-order analyses 

o.RECT ANALYSIS LRFD 

P-.I P-A P-.I P-.< 

c- • • . . 
O"~nltlon C C C C C C £ 

UP _W40_G1_0.2 -2 3 -3 1 0 I. 0 I. 
SP_W60_GO -11 0 -23 0 -17 0 ." 0 

SP_WIO_Gl 0 , -2 3 0 ,. 0 13 

SR_W40_Gl 0 I. 0 I. 0 17 0 " 
SR_WlG_GO 0 a 0 • .. 3 .. 3 

De S_WIO •• 0 •• 0 · 10 0 ·13 0 

BeS Wi 2D -13 0 ." 0 -13 0 .,. 0 

....... II .• • ., • II ., 1 ., , 
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Applied load interaction curves are presented for the case of 
SP _ SSO _GO in Fig. 2. This frame is representative of high error 
associated with use of an approximate (P-L\) second-order analysis in 
lieu of a rigorous (P-O) second-order analysis. In the absence of 
applied moment, the maximum factored strength predicted by the 
plastic zone analysis is PIPy = 0.248; the conservative maximum 
factored strength predicted by the Direct Analysis approach is PIP, = 
0.236; and the unconservative prediction using an approximate second­
order analysis is PIP, = 0.27S . The maximum applied axial load 
predicted by the plastic zone analysis exceeds the limit of PJP.L < 0. 15 
(see Eq . 4) by approximately 25%, and the critical load predicted by 
the Direct Analysis method exceeds this limit by approximately 21%. 
There is an 18% difference in the resulting predictions of the critical 
applied load between the rigorous and approximate second-order 
analyses. 

As can be seen in Fig. 2a, the Direct Analysis approach provides an 
accurate estimate of the allowable applied loads when a rigorous 
second-order analysis is used , Conservative error is present when the 
axial load dominates interaction check ; however. up to the limit of Pu < 
0. 15P. L, there is little to no error. For the SP _SSO_GO frame shown, 
the maximum unconservative error is - 12% when an approximate 
analysis is performed; this value is - S% at the limit where the axial 
capacity predicted by the approximate analysis is equal to the 
recommended limit of 0.15P.L. Similarly, for the SP_S60_GO the 
unconservative error at P = O.l5P.L is - S%; this frame has the highest 
increase in error when the P-O amplification effects are neglected (with 
a maximum unconservative error of - 14% at the predicted axial 
capacity in the absence of applied moment.) The unconservative error 
associated with the approximate analysis for these critical cases at the 
proposed applied axial force limit is somewhat high, but no larger the 
maximum unconservative error predicted by the current LRFD 
approach when a rigorous second-order analysis is used (see Table I). 
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Figur.2. Frame SP _SSO_GO factored applied load curves. 
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The LRFD results, presented in Fig. 2b, do not exhibit the sensitivity to 
the second-order analysis method (P-~ vs. P-6) seen in the Direct 
Analysis results (see Fig. 20). As can been seen in Table I, the 
maximum error in the current LRFD approach is, in general, not 
particularly sensitive to the accuracy of the second-order analysis 
method used. 

Figure 3 shows the applied load curves for SP W60_GO predicted by 
the Direct Analysis approach. This frame exhibits the highest 
unconservative error of the sway frames in weak·axis bending, and the 
highe t increase in error when P-S effects are not directly included in 
the analysis (see Table 2). At the limit that Pcr O.15PeL for the 
approximate second-order analysis, the error is - 17%; this is equivalent 
to the maximum unconservative error predicted by the LRFD approach 
using a rigorous analysis . 
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! 
.2 

. 1'-

• • 02 o. 

-o-d MeNd. RIgorous ........ 
- -Direct Melhod. P-o.tt • 

An!Iy!!. 

o. 01 

Figur.3. Frame SP_W60_GO factored applied load curves, Direct 
Analysis. 
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Results for the Direct Analysis method for frame SR_S80_GO are 
shown in Fig. 4. The conservative error is typically highest in cases 
where the member is subjected to reverse curvature bending. It can 
also be seen from the plot that there is low sensitivity to the accuracy of 
the second-order analysis; as would be expected since there is liule P-8 
amplification of the moments in the case of reverse· curvature bending. 
The above results suggest that the use of an appropriate equivalent 
uniform rigidity (EI.) accounting for the effect of moment gradient 
within the beam-column could produce improved accuracy over the 
simpler approach selected in this research. However, making EI. a 
function of the moment gradient would make its value more sensitive 
to changes in the structure during design iterations and for different 
design load combinations and add complexity to what is meant to be a 
simple analytical procedure. 

00 

07 

" 
" 
" 
o ~----__________ --____________ ~~ __ 

o 02 .. .. 00 

MIllo 

Figure 4. Frame SR_S80_GO factored applied load curves, Direct 
Analysis. 

CONCLUSIONS 

This paper summarizes the results of factored benchmark studies 
designed to study the validity and accuracy of a variation on the 
Modified Elastic method proposed by (Maleck and White 2002a), 
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termed the Direct Analysis approach The Direct Analysis approach is 
generally more accurate than the current AISC·LRFD (1999) method 
in predicting allowable applied forces for stability critical benchmark 
cases. Since the Direct Analysis method eliminates the need to 
calculate column buckling loads or efTective length factors, it is simpler 
to use than the current AISC·LRFD approach for many types of 
problems. However, care must be taken when using approximate (p./!.) 
second-order analysis algorithms in conjunction with the Direct 
Analysis approach, as unconservative errors as high as ·14% for 
strong-axis bending and -23% for weak-axis bending are achieved for 
small. stability·critical benchmark frames. A limit on the applied axial 
load of P u < 0. 15 PeL for every column is suggested when an 
approximate second-order analysis is used. A rigorous analysis that 
includes P-O efTects is preferred for improved accuracy and reduced 
unconservativc error. 
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