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Foreword

The successful development in Europe of steel deck bridge construction, commonly known as *“‘ortho-
tropic plate” construction, and the increasing awareness of American engineers of its advantages in the de-
sign of long span highway bridges, has created a need for a comprehensive presentation of the theory and
practice of this modern system. Until now such information could only be found scattered in various
foreign publications. To meet the American need, the American Institute of Steel Construction retained
Roman Wolchuk, consulting engineer, to prepare the manuscript for this Manual.

The development of a technical publication of such scope must of necessity be largely the work of a
single individual. For his skillful handling of the assignment the Institute gratefully acknowledges its
indebtedness to Mr. Wolchuk.

The “Design Manual for Orthotronic Steel Plate Deck Bridges” is an attempt to summarize experiences
with this new type of steel bridge and to provide bridge engineers with criteria and methods for the design
of such structures.

The material contained in this Manual is presented in three parts:

Chapters 1 through 6 present a general review of bridges with steel decks, describe their structural be-
havior, outline general theory and present a practical method for the desien of steel bridge decks.

Chapters 7 and 8 discuss the construction of steel decks and wearing surfaces.

Chapters 9, 10 and 17 and Appendices I and II give design criteria and outline in detail practical design
procedure which is illustrated by numerical examples. Appencix I contains charts for the cesign of steel
bridge decks in accordance with AASHO specifications: Appendix II gives formulas for checking the
elastic stability of the steel decks.

The method of designing steel plate bridge decks given in Chapter 3, 4 and 5, was developed by Prof.
Dr.-Ing. Walter Pelikan and Dr.-Ing. Maria Esslinger and published in Forschungsheft No. 7, Maschinenfabrik
Augsburg-Nuernberg, 1957. Permission of M.A.N. in Gustavsburg, Germany, to use the material is much
appreciated.

In the adaptation of this material for the purposes of the Manual, the design procedure has occasionally
been expanded and implemented by Mr. Wolchuk by adding new formulas to cover more fully the practical
needs of the design of steel decks. Thus the following formulas and procedures have been added: compu-
tation of the effects of the deck flexibility in the design of the open ribs, shortcut formulas facilitating the
numerical computations of the closed ribs, computations of the shears in the elastic floor beams, compu-
tation of the effects of the heavier floor beams in a rather common case of the deck supported by floor
beams of non-uniform rigidity, etc.

A design may be made either by means of the formulas given in Chapters 3, 4, 5 and 6 of the Manual
for the general case of the deck loading, or, by means of charts, for the standard loading of the AASHO
specifications. While computation by the general formulas may require a rather large amount of numerical
work, especially in the design of a deck with closed ribs, the design by means of the charts is relatively simplc
and should present no difficulties in general application.

The recommendations contained in this Manual regarding the design and the details of steel bridge
decks are, of necessity, tentative. It may be expected that further rules and recommendations for more
advantageous utilization of steel deck bridge construction in this country will evolve from actual practice.

The American Institute of Steel Construction wishes to express its appreciation to all those whose
review of the manuscript and whose extensive comments and valuable information have enhanced the use-
fL}!ness of the Manual. In particular, it wishes to thank Prof. Dr.-Ing. W. Pelikan, Prof. Dr.-Ing. K.
Kloeppel, Dr.-Ing. M. Esslinger and Prof. J. G. Pouwkamp for their study of the manuscript and Mr.
R. M. Mayrbaurl for his assistance to Mr. Wolchuk in its preparation and editing.

November, 1962 American INsTITUTE oF STEEL CoxsTRUCTION, INnc.
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effective width of plate acting with the di-
rectly loaded open rib in a case of un-
equal loads on ribs

effective spacing of unequally loaded open
ribs

effective width of plate acting with one
closed rib, computed under an assump-
tion of equal loading of all ribs

effective width of plate acting with the di-
rectly loaded closed rib in a case of un-
equal loads on ribs

substitute span length of the orthotropic
plate in the x-direction, used in the com-
putation of the bending moments in the
closed ribs

length along the rib of a uniformly dis-
tributed wheel load

distance in the x-direction from the support
to the center line of a load

width of deck plate between two closed
ribs

effective distance between the unequally
loaded closed ribs

width in the direction perpendicular to ribs
of a uniformly distributed wheel load

depth of open ribs; depth of closed ribs as
defined in Figure 3.9

length of side wall of a closed rib

bottom width of a trapezoidal closed rib

floor beam span

radius of curvature of the rib plate at the
bottom of closed ribs

spacing of floor beams

effective width of plate acting with one floor
beam

= (.75 = effective span of longitudinal
ribs, used in computation of a,

= (.81s = effective span of longitudinal
ribs, used in computation of H

Lengths

¥ effective spacing of unequally loaded floor
beams

tp g thickness of deck plate or rib plate, re-
spectively

u developed width of one rib plate, see
Figure 3.9

vertical deflection

x ordinate in the transverse direction of
bridge

y ordinate in the longitudinal direction of

bridge; distance along the rib to the
nearest support with a smaller number m

z vertical ordinate; one-half of the wheel
spacing in an axle

Section Properties, Rigidities

A area enclosed by one closed rib
C torsional rigidity coefficient, as defined in
Figure 2.2
D = P - fexural rigidity of th
P 20 — )¢ exural rigidity of the
deck plate
D,,D, flexural rigidity of the orthotropic plate in

the x- or y-direction, respectively

H torsional rigidity; effective torsional rigid-
ity of the orthotropic plate representing
the actual steel deck

Ip, In moment of inertia of a floor beam, or a rib,
respectively, computed with the appro-
priate effective width of the deck plate

K section property characterizing torsional
resistance, defined by equation (3.14)

k spring constant (k/in.)

A section modulus

v coefficient characterizing the relative flex-
ural rigidity of the ribs and the floor
beams

v/ coeflicient characterizing the relative flex-
ural rigidity of the deck plate and the
open ribs

u reduction coefficient, used in determination

of the effective torsional rigidity, H
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Forces, Moments

Fn
F,

Fy

M

M., My

Mg, Mg

AMy . AM,

ZA{R,ZMF

A'My

M,, M,

X

O™ Ny

[

reaction at support m of a continuous beam
on rigid supports

reaction at support m of a continuous
beam on elastic supports

reaction at support m = 0 of a continuous
beam on rigid supports; load on floor
beam m = 0 due to one lane loaded,
computed under an assumption of rigid
floor beams

bending moment (k-in. or k-ft); bending
moment in the orthotropic plate per unit
width (k-in./in.)

bending moment at midspan or at support,
respectively, of a continuous beam (k-in.
or k-ft}; bending moment at midspan or
at support, respectively, of a continuous
orthotropic  plate per unit width
(k-in./in.)

bending moment acting on one rib, or one
floor beam, respectively

bending moment correction in a rib or a
floor beam, respectively, due to floor
beam flexibility

bending moment correction in a rib or a
floor beam, respectively, due to the ef-
fect of a heavy floor beam in a system
with non-uniform floor beams

bending moment correction in an open rib
due to deck plate rigidity

the nth component moment in the ortho-
tropic plate acting around a line per-
pendicular to the y-axis due to the nth
component load, Q,,, per unit width

bending moment in the orthotropic plate
acting around a line perpendicular to
the x- or y-axes, respectively, per unit
width

twisting moment in the orthotropic plate

load; wheelload

uniformly distributed load (k/in.?)

= P/2¢ = load on deck per unit length in
the x-direction of bridge (k/in.)

maximum value (amplitude} of the ath
component load of the Fourier series
representing the actual deck load, Qs

(k/in.)

Forces, Momenis

.onmx . . .
Qz = (), sin - = loading intensity at the

location x of the nth component of the
Fourier series (k/in.)

R load on one open rib
Ve shear in a rigid flcor beam
AVg shear correction in a floor beam due to

floor beam flexibility

Ve shear in a flexible floor beam

Mo s Ns influence ordinate for bending moment at
midspan or at support, respectively, of a
continuous beam on rigid supports

nth component influence ordinate for
bending moment at midspan or at sup-
port, respectively, of a continuous ortho-
tropic plate, used in conjunction with the
nth component load, Q,,

influence ordinate at support m for the
bending moment at midspan or at sup-
port, respectively, of a continuous beam
on elastic supports

Jo influence ordinate for reaction Fy at sup-
port m = 0 of a continuous beam on rigid
supports

influence ordinate at support m for reac-
tion Fy at support m = 0 of a continuous
beam on elastic supports

Nen s Nsn

7-76‘"1 ’ ﬁSm B
77(] 3 7_]S

750m ] 750

General Designations

c,c’ integration constants
E = 29 X 10*k/in.? = modulus of elasticity
of steel in tension or compression
G ———E——112X103k/"5’- d
“axy b /in.? = mod-
ulus of elasticity of steel in shear
f axial stress
v shearing stress
m designation of support
n 1,2,3,4,5...
ar | [2H )
« = -— % — = parameter used in compu-
b D,
tation of moments in orthotropic plate
K, Ky carry-over factor
v = 0.3 = Poisson’s ratio for steel

Additional symbols used are explained in the text.







CHAPTER 1

General Description, Structural Behavior, Economy
of Steel Plate Deck Bridges

1.1 GENERAL DESCRIPTION; APPLICATIONS

1.1.1 Imtroduction

The two essential conditions for economy in steel
bridge design are: (a) an efficient utilization of steel,
and (b) a maximum reduction of the dead weight
of the structure.

(a) The design efficiency, which may be expressed
as a strength to weight ratio of a structural member,
has been considerably enhanced during recent years
by the application of the high strength structural
steels and by the use of welding. Advances in struc-
tural theory have further contributed to a more rational
utilization of steel, leading to the increased application
of statically indeterminate structures, having generally
a better overload capacity than statically determinate
structures, and to a two-dimensional approach to the
design of structures supporting moving loads, permitting
an advantageous load distribution. An example is
the design of a bridge deck as a grid consisting of in-
tersecting and mutually supporting floor beams and
stringers.

Further improvements of efficiency in steel design
can be achieved by a judicious re-evaluation of the
safety factors currently used, on the basis of a more
precise evaluation of the ultimate behavior of the
various types of structures, and by a preferred use of
the structural elements having inherently large carrying
capacity reserves. This points toward an increased use
of the steel plate as a load-carrying element having con-
siderably larger reserves of safety than one-dimensional
beam members.

(b)  The overall dead weight saring, which is always
desirable, becomes especially important in the design
of long span bridges where, in some conventional girder
bridges, the dead weight may account for up to 809 of
the total design moment. :

Thus it is obvious that, if bridges of long spans.are
to be built economically, the dead weight of the super-
structure must be kept to a minimum.

This may be achieved, in addition to the weight
saving obtained by an efficient design of steel, by avoid-

ing heavy bridge decks, which contribute to the weight
but not to the overall strength of the bridge.

The two most notable developments resulting from
the requirements of design efficiency and maximum
possible saving in dead weight are composite construc-
tion and steel plate deck construction.

In composite construction bridges, well suited for short
and medium-range spans, the concrete deck participates
in the stresses of the main girders to which it is bonded

Longitudinal ribsA

Main girder-a le~ Main girder

t.— Floor beams

FTTTTTTTTT I

D =

Fig. 1.1. Scheme of a bridge with a steel plate deck

by means of shear connectors. Composite design, the
discussion of which is beyond the scope of this Manual,
is being used for both simple and continuous girder
bridges.

Steel plate deck  construction, which is economically
advantageous for bridges of longer spans, eliminates the
concrete deck altogether and replaces it by a steel deck
plate, stiffened in two mutually perpendicular direc-
tons by a system of longitudinal and transverse ribs
welded toit.  The steel deck is considered as an integral

1



2 ORTHOTROPIC STEEL DECK BRIDGES

Types of ribs

(aj Deck with open ribs

Types of ribs

(b) Deck with closed ribs

Fig. 1.2. Two basic types of steel plate bridge decks

part of the main carrying members of the bridge and
acts as their flange.

Since the behavior of a cross-stiffened steel plate deck
may be likened to that of a plate having dissimilar elastic
properties in the two mutually perpendicular directions,
known as an orthogonal-anisofrepic plate, or, in an

—
Truss -~

2" asphalt wearing surface

abbreviated form, ‘“‘orthotropic plate”, the steel plate
deck bridges of this type are often referred to as ortho-
tropic steel plate deck bridges. .

A general scheme of a bridge with an orthotropic
steel plate deck is shown in Figure 1.1.

Two basic types of longitudinal ribs are used: open
ribs (flat bars, bulb sections, angles, inverted T-sections)
spaced approximately 1 ft o.c., and closed ribs of a trape-
zoidal or rounded cross section (Fig. 1.2). The charac-
teristic difference between the open and the closed
ribs is in their resistance to torsion; the torsional ri-
gidity of the closed ribs is considerable, while that of the
open ribs is very small.

The floor beams, which utilize the deck plate as their
top flange, may be spaced from 4 to 15 ft and more, de-
pending on design conditions, material vs. fabrication
costs and other factors.

The deck is surfaced, in most cases, with a 114 to
214-in. thick layer of asphalt concrete.

Due to its outstanding structural properties and light
weight, the steel plate deck system, which has only re-
cently come into existence, has gained a quick accept-
ance, becoming one of the most important elements of
modern steel bridge construction.

1.1.2 Evolution of Steel Plate Deck Construction

In the 1930’s, a steel plate deck bridge system, known
as the “battledeck floor”, was introduced by the Ameri-
can Institute of Steel Construction in an attempt to
reduce the dead weight of highway bridges. In this
system, which was used mostly on movable bridges and
for replacement of floors in old bridge structures, steel
deck plate 3% to 34 in. thick was welded to the longi-
tudinal I-beam stringers spaced 10 to 33 in. o.c., sup-
ported by or framed into transverse floor beams (Fig.
1.3). The function of the deck plate was to transmit
the local wheel loads transversely to the stringers and to
participate in the stresses of the individual stringers as a
part of their top flanges, with an assigned effective
width. However, the deck plate did not participate
in the floor beam stresses, nor did it contribute to the

e—Truss

T
f

Fig. 1.3. Typical “battledeck
floor”’ bridge cross section

/
H Rolled beams/

Floor beams 16' to 25" o.c.
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Fig. 1.4. Autobahn overpass at Jungingen, Germany (1934)
(spans 26-37-37-26 ft)

rigidity and strength of the main carrying members of
the bridge. For these reasons the battledeck foor con-
struction failed to show the hoped for economy.

However, an important insight into the structural be-
havior of steel plate bridge decks was gained through the
tests conducted on battledeck floors, showing that the
strength of a flat steel plate loaded by a wheel is much
greater than predicted by ordinary flexural theory. This
has been recognized in the semi-empirical formulas
proposed by AISC for the design of battledeck bridge
floors, recommending a 409 increase of the allowable
stress in the steel plate [2].}

At the same time, German engineers experimented
with lightweight steel bridge decks of cellular construc-
tion [43]. These decks consisted of a thin steel plate

t Numbers in brackets refer to the list of references, page 185.

stiffened in both directions by a relatively shallow grid-
work of welded ribs spaced 1 to 2 ft o.c., the entire sys-
tem acting as a plate (Fig. 1.4).

The great amount of welding in this type of structure,
which had to be done manually, later caused the de-
signers to increase the spacing of the stiffeners, creating
larger panels of the floor plate. While the strength of
the steel plate was still ample, the deck was subject to
large local deflections which, in turn, caused cracking
in the 2-in. asphaltic wearing surface.

The chief distinction of the system was its shallow
depth, giving a slender appearance to the bridges and
reducing the amount of earthwork in the bridge ap-
proaches (Fig. 1.5). However, as in this country, it
was soon realized that true economy may be achieved
with the steel deck system only if the spans are sufficiently
long and if the deck fully participates in the stresses of
the main carrying members of the bridge.

Practical realization of these principles came only after
World War II, when an economic stimulus was pro-
vided by the necessity of rebuilding the long span
bridges in Germany, with steel being in short supply.

The first bridge using the steel plate deck as the top
flange of the main girders was the 184-246-184 ft span
Kurpfalz Bridge over the Neckar River in Mannheim,
opened to traffic in 1950 (Fig. 1.6). This bridge, with
a depth of structure at midspan of only 5 ft, to provide
the required clearance for navigation, has an average
steel weight of 80 lbs per sq ft, as compared with 120
Ibs per sq ft of the destroyed bridge, built in 1940 [75].

A further milestone in the development was the com-

Fig. 1.5. Autobahn overpass at Jungingen
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Fig. 1.6. Kurpfalz Bridge in Mannheim, Germany (1950)
(spans 184-246-184 ft)

-5, 7

pletion in 1951 of the Cologne-Muelheim Bridge over
the Rhine (Figs. 1.21, 1.22), demonstrating the economic
superiority of the steel plate deck system applied to
suspension bridge design (74, 80]. Other important

DECK BRIDGES

33 ¢
patay 27 e e 4.9
I 2" asphalt - Lo ’?
E ( /ﬁ deck plate J =
\ 3 I} ¥ LRI T ‘ ; ] !
SR B
Ribs 5" to 7" deep @
! } :
e 24.6" b5 ']

Fig. 1.7. Eddershcim Bridge, Germany (1953)
(spans 164-180-246-180-164-131 ft)

The year 1956 brought the completion of the 246-856-

bridge structures, several of them breaking the previ- 246 ft span Save River Bridge in Belgrade, Yugoslavia,

ously established span length records, followed in quick
succession.
At the same time significant advances in the theory

which is now the longest plate girder span in the world
(Figs. 1.8, 1.9). The design of the steel plate deck of
this bridge was based, for the first time (if only to a mod-

of steel plate deck bridges have brought better and erate degree), on ultimate strength considerations,
simpler design methods, and experimental research, rather than on the conventional ‘““allowable stress’
indicating a high ultimate strength of the steel plate criteria [42].

decks, has provided a new insight into the problems of the
structural behavior of this system. These developments

By 1960, at least 40 orthotropic steel plate bridges had
been built in Germany, and several more in other

are still in progress, countries.
In 1954, the first bridges employing closed, torsionally In the spring of 1960, construction was started on
stiff longitudinal ribs were built (Figs. 1.12, 1.23), foundations for the tied stiffened arch Port Mann Bridge
9.8 39.3

Precast

concrete \ /

2" asphalt wearing surface

EO",%"tol" deck plate

> 9.8'—’1

— T T T T T T T T T P T T T TR T T Ty -
e VAR AN A0 SIS

I
Floor beams @ 5.2

1

9
12 web

| 121 Ribs 42"x 4 t0 101" x 1
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e 14.8"

== bl

f . - ' K .
T Cross frames @ 30.8° | 258" x 8" x 7
s r 5Rs47 iy 2n
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10RS47 4" x 2" | 397

Section at pier

Section at midspan

Fig. 1.8. Save River Bridge in Belgrade, Yugoslavia (1956) (spans 246-856-246 ft)
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in Vancouver, Canada, with a main arch span of 1200 ft,
using a steel plate as a part of the stffening system
(Figs. 1.24, 1.25). This is the first bridge emploving
orthotropic steel plate deck construction this side of the
Atlantic [62].

There are many indications that the steel plate deck
system will soon find its due application in American
bridge construction practice.

1.1.3 Applications

As arule, steel plate decks are used in conjunction with
plate girders. However, there are no objections to the
use of the steel decks in conjunction with bridge trusses,
and this construction has been used in several cases.

The following typical examples illustrate the use of
the steel plate decks with the various structural bridge
systems.  Some of the construction details of the bridges
listed below are discussed in Chapter 7. More com-
prehensive information on the design and construction
of these structures may be found in the references
given.

1.1.3.1 Girder Bridges

1.1.3.1.1 Single-Web Girders

(a) Eddersheim Bridge, Germany, 1953 (Fig. 1.7) [71].

This is a 6-span continuous bridge with span lengths
of 164-180-246-180-164-131 ft. The deck plate thick-

Fig. 1.9. View of Save
River Bridge in Belgrade

ness is 9{¢ in. The flat bar ribs, spaced 13 in. o.c,
vary in size transversely across the bridge. The webs
and the lower flanges of the 10.2-ft deep girders are
riveted.

(b) Save River Bridge, Belgrade, Yugoslavia, 1936
(Figs. 1.8, 1.9) [42, 76].

In contrast with the ahove bridge of moderate span
lengths, this is one of the most spectacular plate girder
bridges built in recent years, having span lengths of
246-856-246 ft.

The deck plate thickness varies from 3¢ to 1 in., de-
pending on the required cross-sectional area of the deck
to act as the wop flange of the girders. The rib sizes vary
in the longitudinal and the transverse direction of the
bridge. The light intermediate floor beams are 20 in.
deep at the middle of the bridge cross section and are
spaced approximately 5 ft-2in. o.c. Heavier floor beams
31 in. deep at the cross frames are spaced 30.8 ft o.c.

The webs of the main girders, in spite of their maxi-
mum depth of 31 ft - 6 in. at the supports, are only
91 in. thick, and are stiffened by up to 7 rows of longi-
tudinal stiffeners. The webs and the lower flanges of
the main girders are of riveted construction, with a
maximum cross-sectional area of one flange of approxi-
mately 390 sq in.

The material for the steel deck and the main struc-
tural members was the German St 52 steel, approxi-
mately corresponding in its vield point and ultimate
strength to American low-alloy structural steels.
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Section near support

Fig. 1.10. Duesseldorf-Neuss Bridge, Germany (1951).

1.1.3.1.2 Box-Girders

(a) Duesseldorf-Neuss Bridge, Germany, 1951 (Figs.

1.10, 1.11) [68, 78).

The cross section of this 3-span continuous structure,
with span lengths of 338-676-338 ft, consists of two box-
girders 24.6 ft wide, carrying 4 automobile traffic
lanes, 2 street car tracks and 2 sidewalks. The center
span is unusually slender, with a depth of structure at
midspan of only 11 ft, resulting in a depth-to-span ratio
of 1/62.

Section at midspan

(spans 338-676-338 ft)

The deck plate thickness, governed primarily by the
required cross section area of the deck acting as the top
flange of the girders, varies from %14 to 1345 in. The
longitudinal ribs, spaced 17 in. o.c., consist of split rolled
sections running continuously through slots in the trans-
verse floor beams spaced 6.3 ft o.c.

The deck plate panels were shop-welded in units 38 ft X
26 ft, and transported to the erection site by platform
trucks.

All field splices of the deck plate, the ribs and the main
girders are riveted.

Fig. 1.11. View of Duessel-
dorf-Neuss Bridge
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(by  Weser Bridge Porta, Germany, 1954 (Figs. 1.12,
1.13) [60].

The spans of this bridge are 209-255-348 ft. The
cross section is a torsionally stiff box-girder with a 19.4 ft
width and an 11.5 ft uniform depth. The top flange,
serving as a deck, and the bottom flange, as well as the

.2' t 3 t 10.2°
“10 ! 26.3 i 02—>1

é 1" asphalt wearing s;urfacei 1"to &' deck plate i

sidewatk

PO UV OOV O

12“4»”*12"\(':

N
[~ floor beams @ 7.7t

L |

+" ribs 10"to12"deep

P~ "to 14 plate

19.4'

Fig. 1.12. Weser Bridge Porta, Germany (1954)
(spans 209-255-348 ft)

vertical webs, are stiffened longitudinally by means of
U-shaped ribs 14 in. thick. The deck plate thickness is
14 in. in the shorter spans, and varies up to 3j in. in
the 348 ft span.

All field splices of this bridge are welded.

(c¢) Saint-Christophe Bridge, Lorient, France, 1960
(Fig. 1.14) [57].

This three-span continuous girder bridge with 207-
305-207 ft spans has two box-girders 16.4 ft wide and
varying in depth from 8.2 to 12.1 ft.

The steel deck plate has a 234-in. reinforced concrete
wearing surface, rather than the usual asphalt surfacing.
The concrete, bonded to the steel deck by means of

Fig. 1.13. View of
Weser Bridge Porta

welded shear connectors, participates in the steel deck
stresses. Thus the wearing surface contributes to the
strength of the main girders and of the deck plate, making
a 3.3-ft rib spacing possible.

1.1.3.2 Cable-Stiffened Girder Bridges

Cable-stiffened bridges occupy a middle position be-
tween unstiffened girder bridges and suspension bridges.

Bridges of this system, including various possible
types, may be advantageously used for spans exceeding
the capacity of unstiffened girders. One of the ad-
vantages of this system, compared with a suspension
bridge, is its greater rigidity.

(a) Duesseldorf-North Bridge, Germany, 1957 (Figs.
1.15, 1.16) [59, 73].

This is a continuous girder bridge stiffened by a
parallel-cable system, sometimes referred to as a “harp”
system or a “bridle-chord” system. The span lengths
are 354-853-354 ft. The bridge cross section consists
of two box-girders 10.7 ft deep and 5.3 ft wide, and a
steel plate deck 21 in. thick, acting in conjunction with
the girders. The longitudinal ribs, spaced 16 in. o.c.,
are made of 8 X 4 X 7{4-in. angles running continuously
through rectangular cutouts in the floor beams spaced
6.1 ft apart.

The field splices are riveted.

(b)  Severin Bridge, Cologne, Germany, 1959 (Figs.
1.17, 1.18, 1.19, 1.20) [63, 69].

The Severin Bridge consists of six continuous spans
with lengths of 161-292-157-990-494-172 ft. The two
largest spans are stiffened by a system of 12 cables in-
tersecting at the top of an A-shaped tower. This cable
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arrangement, in addition to providing a very good tor-
sional rigidity to the bridge, has the advantage of avoid-
ing an unpleasant intersection of cables when viewed
from any point. The asymmetry of the bridge, with a
single tower located near the right bank of the Rhine,
as required by the local navigation conditions, also pro-
vides a logical counterbalance to the city picture on the
left bank, and avoids any obstruction of the view of the
revered Cologne Cathedral situated nearby.

The cross section of the bridge consists of two box-
girders 10.5 ft wide, with a depth varying from approxi-
mately 10 ft at the end abutments to 15 ft at the middle
of the bridge, acting together with the steel deck plate,

which is 62.3 ft wide and 34 in. thick. The deck plate
is stiffened by flat bar longitudinal ribs spaced 12 in. o.c.
and transverse floor beams with a maximum depth of
about 3 ft, spaced approximately 6.6 ft o.c. Inorder to
stiffen the deck system near the center of the bridge cross
section and to relieve the bending moments in the floor
beams, an additional longitudinal rib, with a cross section
similar to that of the floor beams, has been arranged at the
bridge center line.

Cross diaphragms of considerable rigidity connecting
the two main girders are spaced from 130 to 230 ft o.c.

Field splices of the deck plate and the ribs are welded;
floor beam and main girder splices are riveted.

A 1 O O 100 SO0 D N Y 0 T T T T T T T L T T T T T ——— D s Y S 0 0 S s 0 s v e e
1L == = 7
} 354 853 354 !
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Fig. 1.15,

Section at midspan

Duesseldorf-North Bridge, Germany (1957)
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Fig. 1.16. View of Duesseldorf-North Bridge
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Fig. 1.17. Severin Bridge, Cologne, Germany (1959)
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Fig. 1.18. General view of Severin Bridge, Cologne

Fig. 1.19. View of Tower of Severin Bridge

1.1.3.3 Suspension Bridges

The stability of a suspension bridge depends generally
on two major factors: the dead weight of the super-
structure and the rigidity of the stiffening girders or
trusses.

By the use of a steel plate deck, the dead weight is
likely to be reduced, even as compared with an open
grating or other conventional lightweight flooring

A T W

Fig. 1.20. Underside view of Severin Bridge

systems. However, the effect of the dead weight reduc-
tion on the stability may be more than offset by the
increase of the flexural and torsional rigidity of the
bridge stiffening system, due to the participation of the
deck plate in sharing the stiffening system stresses.

Until now, the use of orthotropic steel plate decks

with suspension bridges has been confined to structures
having plate girders as stiffening members. However,
the use of a steel plate deck is entirely feasible in con-
junction with the stiffening trusses of suspension bridges
and has been proposed in several long-span bridge proj-
ects. .
If ““air slots” are required in the deck near the stiffen-
ing trusses for increased aerodynamic stability, they may
be provided by introducing a horizontal truss hetween
the top chord of the stiffening truss and the steel plate
deck.

Application of the steel plate deck to suspension
bridges is illustrated by the following examples:
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Fig. 1.21. Cologne-Muelheim Suspension Bridge, Germany (1951) (spans 279-1033-279 ft)

(a) Cologne-Muelheim Bridge, Germany, 1951 (Figs. The webs and the bottom flanges of the 10.8 ft deep
1.21, 1.22) [74, 80]. main girders made of low-alloy steel are of riveted con-

This structure was built to replace a self-anchored struction.
suspension bridge destroyed during the war. The span All field splices are riveted.
lengths are 279-1033-279 ft. A comparison of the principal features and the

The L4-in. thick deck plate is made of carbon struc- weights of the old and the new bridges is given in Sec-
tural steel, except near the pylons where a 34-in. low- Lo 1'3'1'1" 4
alloy steel plate has been used. The longitudinal stiffen- (b)  Duisburg-Homberg Bridge, Germany, 1954 (Fig.
ers spaced 12 in. o.c. are 7 X 5{¢-in. bulb shapes. The 1.23) [65, 81].
62 ft long floor beams spaced 5.9 ft o.c., are 2.4 ft deep The structural system of this bridge resembles that of
at the center. a self-anchored suspension bridge, except that in the

Fig. 1.22. View of Cologne-Muelheim Bridge
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Fig. 1.23.

center span the main cables are discontinuous and are
anchored in the stiffening girders,

In this structure torsionally stiff trapezoidal closed
ribs were used for the first time.

These ribs, stiffening the 9{g-in. thick deck plate, have
a span of 6.9 ft between the floor beams, are 10 in. deep
and 5{¢ in. thick and are spaced approximately 2 ft o.c.

The box-shaped main girders with a constant depth
of 13.5 ft are welded in the center span and riveted in
the side spans of the bridge.

The field splices of the girders and the deck plate are
riveted.  The ribs are high-strength bolted. For
handling the bolts, special hand holes have been pro-
vided in the bottoms of the ribs at splices (see Fig. 7.12).

1.1.3.4 Arch Bridges

In a stiffened-arch system, the steel plate deck, acting
in conjunction with the stiffening girders, will con-
tribute significantly to their flexural rigidity and thus
increase their participation in carrying the loads. For
a given stiffness desired, the deck contribution to the
rigidity of the bridge cross section may permit making
the stiffening girders shallower than they would have to

Duisburg-Homberg Bridge, Germany (1954)

be without the deck participation. Thus a slender
appearance may be obtained without sacrificing rigidity.
In a stiffened tied arch bridge the deck, in addition
to being a part of the stiffening girders, will also par-
ticipate in the tensile stresses of the girders acting as ties.
An example of such a structure is the Port Mann
Bridge, Vancouver, Canada (Figs. 1.24, 1.25) [22, 62].
The span lengths of this three-span tied arch bridge
are 360-1200-360 ft. The box-shaped arch ribs with a
maximum depth of only 4.5 ft give the structure a very
slender appearance. -
The two main girders, together with the steel plate
deck floor functioning as their upper flange, act as a tie
of the arch system and provide the necessary stiffness.

The deck consists of a 7{g-in. thick plate stiffened hy
closed ribs 11 in. deep and 31 in. thick, spaced 2 ft
0.C., spanning the distance of approximately 6 ft-3 in.
between the floor beams. The ribs and their splices
are similar to those used in the Duisburg-Homberg
Bridge (see Section 1.1.3.3h), except that the bottoms of
the ribs are rounded.

The floor beams are 3 ft-6 in. deep at the center line
of the bridge.
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Fig. 1.24. Port Mann Bridge in Vancouver, B. C., Canada (under construction)

Fig. 1.25. Rendering of Port Mann Bridge in Vancouver
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The main girders are box sections 3 ft-2 in. wide
and 12 ft deep.

The deck plate, deck stiffeners, arch ribs and the por-
tions of the girders in tension are designed in low-alloy
steel. The floor beams, the girder portions in compres-
sion and the remaining parts are of carbon steel. Be-
cause of the wide main girder spacing of 68 ft- 4 in.,
the use of low-alloy steel for the floor beams would
have resulted in floor beam deflections that were con-
sidered too large.

The steel deck is shop-welded. The girders and the
arches are of riveted construction; the field splices of all
bridge members are high-strength holted.

1.1.3.5 Truss Bridges

As an example of a truss bridge using a steel plate deck
the Fulda River Bridge in Bergshausen, Germany, is
shown in Figure 1.26 [72].

In this 7-span continuous truss bridge the deck plate
and the longitudinal ribs participate in the upper chord
stresses.

The detail of the ribs of this bridge is shown in Figure
7.3e.

Another example of a truss bridge with steel deck is
shown in Figure 7.5.

1.1.3.6 Movable Bridges

In the design of movable bridges of all types, dead
weight saving is one of the most important considera-
tions.

The steel plate deck system, with a light-weight wear-
ing surface (see Chapter 8) may provide a lighter unit
weight of the bridge than any of the conventional sys-
tems, including the open grating floor. The additional
advantages are: a solid riding surface, a considerable
rigidity of the bridge and a shallow depth of structure.

An example of a bascule bridge with a steel plate deck
is the Bascule Bridge in Krakeroy, Norway, 1957 (Fig. 1.27)
(66].

The span length of this modified Scherzer type double-
leaf bascule bridge is 2 X 79 = 158 ft.

The steel deck plate is stiffened by longitudinal flat
bar ribs spaced 12 in. o.c. and transverse floor beams
spaced approximately 4.9 ft o.c. The depth of struc-
ture at the midspan is only 2.4 ft.

The 114-in. thick asphalt wearing surface is secured

[ - -l
| "AVAVAVAVAVAVAVAYAVAVAY, W
259" ——mie—— 298" - 351 469 - 351" 208" 259" —>
Elevation
5.7" 29.5" t 5.7
(2%"asphalt wearing surface
Y YITY Y Y YY Y Y[HY Y
12" 12"

~
S‘.'

19.7°

Cross section

Fig. 1.26. Fulda River Bridge, Bergshausen, Germany (1961)
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Fig. 1.27. Bascule Bridge in Krakeroy, Norway (1957)

against sliding in the open position of the bridge by
expanded metal reinforcement welded to the deck.

The total average dead weight of the bridge (not in-
cluding the two counterweights) is approximately 62 lbs
per sq ft.

1.1.3.7 Railroad Bridges

A steel plate deck participating in the main girder
stresses may be used to retain the ballast of a railroad
bridge. This is exemplified by the Railroad Bridge over
the Autobahn in Wuppertal, Germany, 1959 (Fig. 1.28)
[83].

The principal requirement specified for this structure
by the railroad was speed of erection, needed to limit
detouring operations to the shortest possible period of time.
Another condition was to provide a structure with a
slender appearance, desired for aesthetic reasons.

Both requirements were satisfied by a steel plate
deck bridge, completely prefabricated in the shop, con-
sisting of two flexurally and torsionally stiff box sections
7.3 ft deep and approximately 125 ft long, to span the
120-ft opening. Torsional rigidity was important be-
cause of the skew of the structure.

The upper flanges of the box-girders consist of a
3%-in. thick deck plate stiffened by three triangular

e

22"

17"~>!

", outside ribs
", center rib

e e

Rib detail
Fig. 1.28. Railroad Bridge in Wuppertal,
Germany (1959) 120-ft span

Ribs continuous

through diaphra '
rough diaphragms L— _J . Diaphragms @ 11.9'
7.5 w F
Manhole

~

stiffening ribs 17 in. deep, spaced 2.9 ft o.c. The
middle rib is open at the top and serves also as the
drainage trough of the roadbed. The ribs are continu-
ous through the cross diaphragms spaced approximately
11.9 ft o.c.

The deck, the lower flanges and the lower portions
of the main girder webs are made of carbon steel;
the upper portions of the main girders consist of low-
alloy steel.

The structure is all-welded.

1.2 STRUCTURAL BEHAVIOR OF STEEL
PLATE DECK BRIDGES

1.2.1 Comparison with Conventional Bridges

In contrast with the conventionally designed bridge,
where the individual structural elements (decks, stringers,
floor beams, main girders, etc.) are assumed to perform
separate, clearly defined functions, the steel plate deck
bridge is a complex structural system in which the com-
ponent members are closely inter-related.

The basic difference between the two design ap-
proaches isillustrated in Figure 1.29, giving a comparison
between the old and the new design of a highway bridge
near Hedemuenden, Germany [45].

The old design (Fig. 1.29a) shows the usual piling up
of the structural members. The concrete deck carries
the wheel loads to the longitudinal stringers which, in
turn, react on the transverse floor beams, delivering their
load to the two bridge trusses. The floor system does
not contribute to the strength or rigidity of the trusses,
nor is it counted upon to secure the transverse stability
of the bridge, which is provided by the upper and the
lower wind bracing.

In the new design (Fig. 1.29b) the deck slab, the
stringers and the floor beams have bheen integrated
into one structural element—the stiffened steel plate
deck with relatively closely spaced longitudinal and trans-
verse stiffening ribs using the steel plate deck asa common
top flange. The sharp distinction between the floor sys-
tem and the main carrying members has disappeared,
with the deck, including the longitudinal ribs, becoming
a part of the main girders as their upper flange. The
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Fig. 1.29. Comparison of the old and the new design of the Autobahn Bridge near Hedemuenden, Germany
(spans 210-263-314-314-263 ft)

steel plate deck also provides the bridge with ample
transverse rigidity, thus obviating the need for a separate
lateral system required in the original design.

The closely spaced grid structure of the stiffened steel
plate deck, with the ribs continuous and rigidly con-
nected to each other at intersections, is highly statically
‘ndeterminate and has a good load distributing capacity
for concentrated wheel loads governing the deck design.

The safety of such a system against failure due to a
concentrated load is considerably greater than that of a
conventional bridge floor, since a local overload on a
steel plate deck causes an elastic and, eventually, plastic
stress redistribution to the adjoining elements rather
than an immediate failure of the member. Should the
local load be further increased beyond the critical limits,
the eventual failure would be, necessarily, a local one,
affecting only one out of the many ribs in the deck,
without destroyving the overall usefulness of the deck.
A comparison may be made with a steel rope, where a
failure of one wire does not significantly reduce the
carrying capacity of the rope.

Additional safety reserves of steel plate decks are due
to the membrane behavior of the deck plating at higher
loads. This is discussed in Section 1.2.4.

1.2.2 Component Structural Systems of Steel Plate
Deck Bridges

Stress in any member of a loaded steel plate bridge
deck, and especially in the deck plate, is due to the com-

bined effects of the various functions performed by the
deck in the bridge structure. Although these functions
and the resulting stresses are inter-related, it is necessary,
for clarity and design convenience, to treat separately
the following structural component systems:

System I. The main bridge system, with the steel
plate deck and the longitudinal ribs acting as a part of
the main carrying members of the bridge.

System II.  The stiffened steel plate deck consisting
of the longitudinal ribs, transverse floor beams and the
deck plate as their common upper flange, acting as a
bridge floor.

System I1I. The deck plate, acting locally as a con-
tinuous member directly supporting the concentrated
wheel loads placed between the ribs and transmitting the
reactions to the ribs.

It is seen that the function of the steel deck plate,
participating in all three structural systems, is especially
significant.

1.2.3 System I—The Deck as Part of the Main
Carrying Members

In the usual case of a girder bridge, the steel deck
plate, together with the longitudinal stiffeners rigidly
connected to it, functions as the top flange of the main
girders. This requires an adequate shear connection
between the deck plate and the webs of the girders.

The determination of the effective width of the deck
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Fig. 1.30. Test measurements of stresses in the
deck plate acting as the flange of the main
girders of the Save River Bridge at the supports
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plate acting with a girder web is based on theoretical
investigations by Chwalla [7] and others. Generally, the
effective width depends on the girder span and the type
of loading and is independent of the plate thickness.
For a uniform loading of the girder, it amounts to
about one-third of the girder span and is approximately
the same in the midspan and over the supports of a
continuous girder.

For design purposes, it may be assumed that the entire
cross-sectional area of the steel deck participates as the
top flange of the main girders, provided the girder spac-
ing is smaller than one-third of the girder span.

The full participation of the deck in the main girder
stresses has been confirmed by stress measurements on
existing steel plate deck bridges. An example showing
the stress distribution across the entire width of the deck
at the support of the Save River Bridge in Belgrade is
given in Figure 1.30a. Figure 1.30b shows that, in the
case of an unsymmetrical loading of the bridge girders,
the stress in the deck varies linearly between the girders.

In the vertical direction, the stress in the deck varies
with the distance from the neutral axis of the bridge
cross section. Thus, the stress in the bottoms of the
stiffening ribs is somewhat lower than in the deck plate
(Fig. 1.37).

The cross-sectional area of the deck plate and its
longitudinal stiffeners is, as a rule, considerably larger
than the bottom flange area of the girders. This results
In an wnsymmetrical girder cross section, with the neutral

axis shifted toward the deck, and the stresses in the deck
lower than in the bottom flanges (Fig. 1.37). Such un-
symmetrical distribution of the main girder stresses
(System 1) is very advantageous in the design, since it
provides the necessary stress reserves for the local bending
in the deck {System IT).

The bending moments, shears and stresses of System 1
are computed by the usual methods.

The live load distribution to the individual main girders
depends on the type of bridge cross section and the
transverse connections between the girders. In the case
of two single-web main girders, the steel plate deck
may be assumed to transmit the loads to the girders as a
simple beam. With box-shaped girders, proper con-
sideration should be given to the torsional rigidity of the
bridge cross section. If more than two main girders are
present, the load distributing action of the transverse
diaphragms or cross frames should be taken into account.

Participation of the deck in the main girder stresses will
cause tension in the deck in the areas of the negative
moments of the main girders and compression in the areas
of the positive moments.

The factor of safety against overall buckling of the deck
in compressive stress areas is usually high because of the
ample longitudinal and transverse stiffening of the deck
plate by the ribs and floor beams and the generally low
intensity of the System I compressive stresses in the
deck. Therefore, in the usual cases, an investigation
of the elastic stability of the deck is not needed.
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However, the safety against local buckling of the flat
bar ribs may have to be investigated, especially if such
ribs are made deep and slender to increase their effec-
tiveness as flexural members in System II. It should
be noted that a ratio of depth to thickness of open ribs be-
tween 20 and 30 to 1 is not uncommon in existing bridges.

Formulas for the computation of the safety factor
against local buckling are given in Appendix II.

Box-shaped longitudinal stiffening ribs of usual pro-
portions may be considered safe against local buckling.

1.2.4 System II—The Deck as the Bridge Floor

1.2.4.1 Structural Behavior under Design Loads

The floor system, consisting of the longitudinal ribs
and the transverse floor beams, both using the steel deck
plate as their common top flange, may be treated as an
independent structural member of the bridge by assum-
ing all horizontal shear connections between the deck
and the main girders to be severed. According to this
assumption, the floor system rests on the main girders;
however, no longitudinal forces can be transmitted from
the girders into the deck, which is subject only to the
local effects of the external loads applied to the deck.

A concentrated load applied to the steel deck between
the ribs is first transmitted to the nearest longitudinal
ribs through the deck plate acting in bending and tension.
As has been noted above, these local plate stresses are
treated separately in System III.

The longitudinal ribs, acting as continuous members,

AN \ \\\ AN
NN

Longitudinal ribs

Floor beams

(a) Deck defiections under concentrated loads, P

Fig. 1.31.

react on the floor beams, which carry their load to the
main girders.

The transverse floor beams deflect proportionately to
the loads they carry and thus provide elastic supports
for the longitudinal ribs. This is illustrated in Figure
1.31a. It is seen that, due to the floor beam flexibility
and the continuity of the steel deck plate forming the
common top flange of all stiffeners, the ribs cannot act
independently of each other, and the ribs over which
there is no load also must deflect and become stressed.

Figure 1.31b shows schematically the deflection line
and the corresponding bending moment diagram of a
longitudinal rib directly loaded by a wheel. It is seen
that the rib behaves in a manner similar to a continuous
beam on elastic supports. However, near the main
girders the effect of the floor beam flexibility is small and
the ribs act more nearly as continuous members on rigid
supports (Fig. 1.31c).

The floor beams framed into single-web girders may be
regarded as simply supported. However, with box-
shaped girders, the end restraint of the floor beams must
be considered. If there are more than two main girders,
the floor beams are usually treated as continuous
beams on unyielding supports. This presumes that the
bridge cross section preserves its geometric shape under
all loading conditions, which must be secured by strong
diaphragms connecting the main girders.

In accordance with present design practice, the
ribs and the floor beams carrying locally applied loads
(System II) are assumed to act as purely flexural struc-
tural members (i.e., free from axial forces), conforming

|

!
(b) Deflections and bending moments in rib
near center line of bridge (Section A-A)

Maln girder

(c) Detlections and bending moments in rib
rear main girder (Section B-B)

Deflections of a steel plate deck and bending moments in longitudinal ribs (System II)
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Fig. 1.32. Load test on a half scale model of Save River Bridge deck plating
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to the usual first-order theory of bending, disregarding
the effects of the deflections on the stresses.

Within the range of the usual working loads and geo-
metric proportions of the steel plate bridge decks this
assumption, underlying all theoretical methods available
today for the design of such decks, is confirmed by the
test measurements of the stresses in ribs, which are gen-
erally found to be in reasonable agreement with the
computed values [42]. However, analytical methods
based on the first-order flexural theory fail to describe
correctly the steel plate deck behavior under large loads
and deflections and cannot be used for evaluation of its
actual carrying capacity. This is discussed in Section
1.2.4.2.

1.2.4.2 Structural Behavior under Higher Loads

(a) General

Tests on steel plate bridge decks have shown that, if
a load on the deck is increased beyond the usual wheel
load limits, or if the ratio of the deflection to the span of
a rib is relatively large, internal axial stresses begin to
appear in the.loaded ribs, in addition to the purely
flexural stresses. An additional tension, due to a mem-
brane action of the deck plate, occurs in the directly
loaded rib, and has to be balanced by an equally large
compression in the adjoining ribs.

As the loads and the corresponding deflections in-
crease, a complete redistribution of the stresses takes
place in the system, and the membrane stresses almost
entirely replace the flexural stresses which are pre-
dominant under working loads.

Thus, with sufficiently large deflections, the steel
plate deck behaves in a manner radically different from
that predicted by the usual flexural theory which disre-
gards the effect of the deformations of a system on its
stresses.  Most importantly, its strength has been found
to be many times greater than predicted by the ordinary
flexural theory.

This is illustrated by the tests on steel plate decks
described below.

(b)  Tests on the Model of the Save River Bridge Deck
Plating with Open Ribs

Tests for the purpose of determining the deflections
and the ultimate strength of a steel plate deck with
open ribs under a concentrated wheel load were con-
ducted at the Technological University in Darmstadt
(Germany), to provide the design criteria for the deck of
the Save River Bridge in Belgrade [30].

The 5-span continuous test panel, made of structural
carbon steel, was a half-scale model of the deck plating
intended for this bridge. The model dimensions and the
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i = 3%

(6) Deformation at P=56 tons

Fig. 1.33. Load test on model of Save River Bridge deck
plating (Fig. 1.32)

arrangement of one of the two tests made are shown in
Figure 1.32a.

The computation based on ordinary flexural theory
indicated that the following conditions should occur at
the bottom fiber of the rib directly under the load, P:

Allowable stress

of 1.4 t/cm? (19.8 ksi)T at P = 2.06¢t
Yield stress at P = 3.521t
Ultimate strength atP = 5421

However, the behavior and ultimate strength observed
in the test were strikingly different from the predicted
values. Under repeated loading, a purely elastic be-
havior was observed up to a load P = 4.1 t, at
which the first permanent deflection of 0.01 mm was
measured, indicating yield stress in the rib. Beyond this
point, unlike an ordinary flexural member, there was no
unrestrained increase of deflection followed by collapse,
but the deflections increased, at a somewhat faster rate,
still in linear proportion to the load.  Deflections were re-
corded up to the load P= 30.5t, as shown in Figure 1.32b.

t t = metric tons.

The first crack in the bottom fiber of the rib occurred
at a load P = 48 t; the crack spread through the entire
depth of the rib at P = 56 t. However, the capacity of
the test panel was not yet exhausted, since the remaining
ribs were still intact. The underside view of the panel
at a load of 48 t is shown in Figure 1.33a, the view of the
deck after test is shown in Figure 1.33b.

With P = 56 t considered the ultimate load, we obtain
a ratio of the actual to computed ultimate load of
56/5.42 = 10.3.

The excess load carrying capacity of the deck plating
was partially utilized in the final design of the bridge as
discussed in Section 9.3.2.

(¢c) Tests on a Deck Plating Panel with Closed Ribs

Tests on deck plating panels with closed (torsionally
rigid) longitudinal stiffening ribs were made at the
Technological University in Stuttgart [42, 44].

The dimensions of the test panel with trapezoidal
ribs, which may be regarded as a half scale model of an
actual bridge panel, are shown in Figure 1.34a. Since
one of the purposes of the tests was to determine the
effect of the torsional rigidity of the ribs, which becomes
more pronounced with longer rib spans, a relatively
long span of the ribs was chosen, with a low rib depth-
to-span ratio of 1/44. The material was structural car-
bon steel.

The characteristic values for a concentrated wheel
load, P, were computed in accordance with the first-
order flexural theory as follows:

Allowable stress of 1.4 t/cm?
(19.8 ksi) at the bottom

of the loaded rib at P = 1.45¢
Yield stress in rib at P = 2.561t
Ultimate strength at P = 38t

The stress and deflection measurements made on the
panel loaded by the theoretical allowable load of 1.45 t
were in good to fair agreement with the results obtained
by the formulas given in Chapter 5 of this Manual, with
the exception of points directly under the load, where,
because of an unusually small depth-to-span ratio, the
flexural stresses in the loaded rib were found to have a
superimposed tensile stress of the order of 2.5 ksi,
indicating a partial membrane condition. This is also
evidenced by the shape of the deflection line of the
loaded rib No. I (Fig. 1.34a), which is an almost straight
line, rather than a parabolic curve characterizing
deflected structural members acting in pure bending.

It should be noted that, in this rather exceptional
case, a measurable membrane condition occurred well
within the elastic range, before reaching the plastic
limit at any point, and with the deflection under load
of only 1§00 of the rib span.
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19.18a

(8) Side view of the central portion of the test panel cut out
after test

(¢) Cross section through the central portion of the test panel
after test

Fig. 1.35. Load test on a steel deck panel with closed ribs (Fig. 1.34)

As the load was further increased, an almost linear
relationship between the load and the deflection was ob-
served up to the value of P = 5 metric tons, beyond the
theoretically computed ultimate load. At this loading
a permanent set of 1.3 mm (4990 of the rib span) was
measured (Fig. 1.34b).

The deflections under loads greater than 5 tons were
no longer proportional to the loads, but grew at a slower
rate relative to the loads (Fig. 1.34¢), unlike in the test on
the Save River Bridge plating (Fig. 1.32). Such behavior
may be explained by a particularly effective membrane
action in this case, made possible by the large deflections
of the slender plating panel and the presence of suffi-
ciently rigid closed ribs and the edge beams BC and DE,
capable of developing the compressive and flexural
reactions necessary to balance the tensile membrane
stresses in the loaded portion of the panel. It should
be noted that no horizontal external reactions could de-

velop at the rigid supports BD and CE of the panel.

In an attempt to cause failure of the panel, the load
was increased up to 160 metric tons, at which point the
full capacity of the test equipment was reached (Fig.
1.35). However, even at this load, no crack in the rib
or in the welds could be observed. Thus the ultimate
load in this case was greater than 42 times the com-
puted critical load of 3.8 metric tons.

The importance of sufficient compressive strength of
the plating adjoining the directly loaded rib was dem-
onstrated in a test with a deck plating panel made of a
3-mm thick plate and closed rectangular stiffening ribs
of the same wall thickness [44]. The capacity of the
panel was found limited by the buckling strength of the
deck plate which failed before any considerable mem-
brane action could develop. Still, even in this case, the
actual ultimate load was greater than the computed
value.
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(d) Conclusions

In all static load tests on steel plate deck panels the
actual ultimate capacity of the longitudinal ribs was
found to be considerably greater than the computed
values.

The tests have also shown that the limit of a purely
elastic behavior of a loaded rib is higher than predicted
by ordinary flexural theory. This could be an indica-
tion of a non-linear relationship between the stresses in
ribs and the loads in the elastic range above the working
load level, with stresses increasing at a slower rate than
the loads (Fig. 1.36). Thus the actual safety against

a A Floor beams Longitudinal rib
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Fig. 1.36. Schematic load-stress diagram of a longitudinal rib
of a steel plate deck

reaching the vield point stress may be higher than that
computed on the basis of a straight line load-stress
relationship. It should also be noted that, unlike in a
tensile member or a beam, reaching plasticity at one
location of the steel plate deck does not seem to be a
characteristic point at which the structural behavior is
changed in anv significant way.

No load tests have been made on floor beams of
steel plate decks: however, a similar excess of carrying
capacity of the floor beams may be expected.

The observed structural behavior and the surprisingly
high load carrying capacity of the steel plate deck under
a static concentrated load are explained by a favorable
combination of the membrane action of the steel plate and
the plastic sirength reserves of the highly statically in-
determinate system of the deck. However, a more pre-
cise understanding of the extremely complex structural

mechanism of a steel plate deck under large loads is
still lacking, and some aspects of its structural behavior
have not vet been sufficiently clarified.

It should be noted that practical utilization of the
high static strength of the steel plate deck mav be limited
by two factors: undesirable deck deformations and the
fatigue strength, defined as the ability of the deck to
withstand a very large number of pulsating stress
cycles caused by moving vehicle loads.

While the design limitations based on undesirable de-
flections or deformations of the members may be defined
with relative ease, the question of the theoretical fatigue
strength of the deck plate and the ribs and its practical
significance in the deck design has not yet been ade-
quately explored.

Dynamic load tests made at the Technological Uni-
versity in Darmstadt [31] on a flat deck plate acting
between the ribs (System III) have shown that the fatigue
strength of the deck plate subject to a pulsating load is
high and reaches the order of the yield point of the
material (see Chapter 6). No reports on dynamic tests
on the longitudinal ribs of a steel plate deck have as yet
been published; however, it appears that the fatigue
strength of the ribs ought to be less critical than that of
the flat plate, since the System II stresses subject to pul-
sation under passing wheel loads, to be superimposed
on the System I stresses in the ribs, are usually lower than
the System III stresses in the flat deck plate, and the
likelihood of developing the full design values of the
System I live load stresses is small.

The observed discrepancies between the predicted
and the actual behavior of steel plate decks make it
obvious that the design methods based on the assumed
linear proportionality of the loads, deflections and
stresses and using the traditional “allowable stress”
concept, while useful for computation of the stresses
under working loads, are not appropriate for determina-
tion of the deformations of a steel plate deck under
higher loads and its actual safety. Since an accurate
computation of stresses under working loads is of little
value in the design if a proper evaluation of the actual
safety of the structure against failure or undesirable
deformations is lacking, any undue analytical refine-
ments of the design methods based on the ordinary
flexural theory should be considered unwarranted.

The ultimate behavior of a steel plate deck under the
effect of wheel loads could be adequately described only
by a second order theory, taking into account both the
effects of the deflections on the stresses and the plasticity
of steel. While a rigorous analytical solution of this
problem, if it could be achieved at all, would be much
too complex for engineering purposes, simplified design
methods based on the observed behavior under static
as well as dynamic loading are certainly desirable for
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a more realistic design of steel plate bridge decks.
Research work along these lines is in progress.

Until such improved methods are developed, the pres-
ently available first-order flexural theory will serve for
design purpose.

Discussion of the theory and the design method of the
steel plate deck as an independent element (System II)
is the subject of the Chapters 2 to 5 of this Manual.

The shortcomings of the first order design theory may
be partly compensated by an appropriate choice of
stresses to be used in the design, as discussed in Chapter 9.

1.2.5 System III-~The Deck Plate Acting between
Longitudinal Ribs
A wheel load placed on the steel deck plate between the
stiffening ribs is transmitted to the ribs by the deck plate

ORTHOTROPIC STEEL DECK BRIDGES

acting as a continuous isotropic plate {System III).

In addition to the stresses due to transmitting the
directly applied load to the ribs, additional flexural
stresses occur in the deck plate due to the shear transfer
in the transverse direction of the bridge in a system
with torsionally stiff ribs.

The above local stresses in the deck plate are not in-
cluded in the System II stresses discussed in Section
1.2.4,

If a concentrated load on a flat steel plate supported
on ribs is increased, the flexural stresses in the plate are
gradually replaced by membrane stresses and a load-
carrying capacity much higher than that computed by
the first-order theory is observed, as in System I1.

In view of the proved high strength of a flat steel
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plate under concentrated loads, the local System III
stresses are, as a rule, disregarded in the design.
This is discussed in more detail in Chapter 6.

1.2.6 Stress Superposition

The maximum stress in any member of a steel plate
deck under working loads is obtained by an appropriate
superposition of the stress components due to the mem-

ber’s participation in the basic structural systems dis-
cussed in the foregoing sections.

It should be noted that such superposition is based on
an assumption that the linear relationship between the
loads and the stresses is not affected by the interaction
of the individual systems. For a discussion of this as-
sumption see Section 9.3.4.

In a deck girder bridge, the System I action of the
deck will cause compression in the areas of positive

WEIGHT,
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“Note: Weights of suspension bridges include towers and cables.

Fig. 1.38. Steel weight and total dead weight of the old and the new designs of three bridges
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morments and tension in the areas of negative moments
of the main girders.

To the axial stresses of System I, the flexural stresses
of System II in the longitudinal direction of the bridge
have to be added. Due to the asymmetrical rib cross
sections, these stresses will reach their maximum values
at the lower fibers of the directly loaded longitudinal

ribs, with maximum tension occurring directly under a

wheel load located at the midspan of the rib between the
floor beams, and maximum compression at the inter-
section with the floor beam.

The contribution of the local System III stresses in
the deck plate, acting primarily in the transverse direc-
tion of the bridge, to the longitudinal stresses of Systems
I and II is generally disregarded in the stress super-
position.

An example of a stress superposition in the bridge
deck is given in Figure 1.37. Points 4 and B indicate
the locations where the maximum stresses in Systems I
and Il are of the same signs, producing local stress
peaks.

The stress components of Systems I and II to be added
have to be caused by the same loading. It should be
noted that the loads and their positions producing
maximum stresses at a certain location are not neces-
sarily the same in both systems.

It is important to note that, for any loading on the
bridge, the critical peak stresses obtained through super-
position occur only in a few isolated points, surrounded
by material subject to a substantially lower stress in-
tensity.

It is obvious that the values of stresses obtained
through superposition of the stress components of struc-
tural systems having basically different characteristics
and inherent safety factors should not be interpreted in
the same manner as the stresses in a homogeneous

system, if these values are to be used to evaluate the safety
of the structure. This is discussed in Chapter 9.

1.3 ECONOMIC CONSIDERATIONS

1.3.1 Factors Contributing to the Economy of
Steel Plate Deck Construction

1.3.1.1 Steel Weight Saving

The weight per sq ft of structural steel in orthotropic
steel plate deck bridges with spans exceeding about
150 to 200 ft is, as a rule, less than that of similar steel
bridges of conventional design. The steel weight saving
becomes remarkable as the bridge spans increase.

This is illustrated in Figure 1.38, giving a weight com-
parison of three structures: (a) the Cologne-Muelheim
Bridge (Fig. 1.21), (b) the Duesseldorf-Neuss Bridge
(Fig. 1.10) and (c) the Save River Bridge (Fig. 1.8).
In the above cases the old, conventionally designed
bridges, destroyed during the war, have been replaced
by the new structures using steel plate decks.

It is seen that the respective steel weight savings are:
(a) 55%, (b) 259, (c) 449,.

In case (a), the original self-anchored suspension
bridge design has been changed to the more efficient
earth-anchored system; however, the major part of the
steel saving is due to a lighter deck construction and the
deck participation in the stiffening system stresses [43].

The steel weight saving in case (b) is remarkable, since
in this case a deep truss has been replaced by an un-
usually shallow girder structure.

It should be noted that the total dead weight savings
in the above structures are: (a) 5297, (b) 629, (c) 609.

The steel weights and the dead weights per square
foot of bridge deck of the representative steel plate deck
bridges in the various span ranges are given in Table
1.3.1.1.

TABLE 1.3.1.1
STEEL WEIGHT AND DEAD WEIGHT OF REPRESENTATIVE EXISTING STEEL PLATE DECK BRIDGES
Weight of Steel Total Dead Weight
Structure Year Spans (Ibs per sq ft (lbs persq ft
(ft) of deck) of deck)
(a) Plate Girder Bridges
1. Weser Bridge, Porta, Germany 1954 209-256-348 55 100
2. St. Alban Bridge, Basle, Switzerland 1955 189-443-189 73 100
3. Duesseldorf-Neuss Bridge, Germany 1951 338-676-338 104 126
4. Save Bridge, Belgrade, Yugoslavia 1956 246-856-246 105 138
(b) Cable-Stiffened Girder Bridges
5. Duesseldorf-North Bridge, Germany 1957 354-853-354 75 133
6. Severin Bridge, Cologne, Germany 1959 161-292-157-990-494-172 86 110
(¢) Suspension Bridges
7. Duisburg-Homberg Bridge, Germany 1954 421-936-421 98 130
8. Cologne-Muelheim Bridge, Germany 1951 279-1033-279 90 135

Note: The weights for the cable-stiffened and suspension bridges include the towers and the cables.
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An analysis of the weight data of the steel plate deck
bridges given in Table 1.3.1.1 indicates considerable
steel weight and dead weight savings, as compared with
the conventional bridges of similar tvpes, designed under
the same specifications.

A discussion of the steel weights of bridges designed in
accordance with the AASHO specifications is given in
Section 1.3.2.

The savings in cost are smaller than the savings in
weight, since the cost per pound of erected steel is higher
for steel plate deck bridges, which require more fabrica-
tion work, than for conventional girder bridges.  Also,
the ratio of the more expensive low-alloy structural steel
to carbon structural steel is generally higher in a steel
plate deck bridge.

European experiences indicate that, on the average,
15% to 209, more man-hours per ton of fabricated and
erected steel are needed for a steel plate deck bridge than
for a girder bridge of conventional construction.

Assuming that labor costs constitute approximately
one-half to two-thirds of the unit price of erected steel,
the additional man-hour requirement ought to result
in a cost differential between conventional and steel deck
bridge construction of roughly 109, to 159,. Thus, a
steel weight saving exceeding this percentage indicates
a likely cost saving in the steel superstructure.

These estimates are in agreement with the results of
recent economic studies conducted by the AISC with
participation by several steel fabricating firms (see
Section 1.3.2).

An incidental verification of these figures is provided
by the recent Port Mann Bridge construction (see Section
1.1.3.4), where the differential between the bid price
for the steel plate deck bridge and the estimated unit
price for an alternative conventional design was 1097,

It should be noted that in European bridge construc-
tion the ratio of material to labor cost is much higher
than in this country, and, in most cases, the material
saving alone decides the choice of the design.

1.3.1.2 Erection Efficiency

Another cost saving factor is increased efhciency in
the erection of steel plate deck bridges.

Main girder sections are generally lighter, which is an
important factor in the cantilever method of erection.

Concrete construction is confined to one operation—
the erection of the substructure in the first phase of the
construction job. In this respect the construction sched-
ule of a steel plate deck bridge differs from that of a
conventional bridge requiring that concreting equip-
ment be brought to the construction site twice—for
foundation work and for pouring of the deck after com-
pletion of the steel framework.

Elimination of one concrete operation tends to shorten
the erection period, which may be further cut by shop-
prefabrication of large bridge units (see Section 1.1.3.7).

1.3.1.3 Cost Differential between a Concrete Deck
and a Wearing Surface on Steel Plate Deck

In addition to the direct savings in the cost of struc-
tural steel, further benefit is gained by replacement of a
reinforced concrete deck by a less expensive wearing
surface.

The cost of the usual 7 o-in. reinforced concrete deck
slab is approximately $2 per sq ft, and more if light-
weight concrete is used. In many cases an additional
wearing surface is required, which further increases the
cost.

The cost of a 2-in. bituminous wearing surface, as dis-
cussed in Chapter 8, may be expected to be less than
50¢ per sq ft, including the preparation of the steel
surface. The cost of the more expensive thin wearing
surfaces ought not to exceed $1 per sq ft.

1.3.1.4 Savings Due to Reduction of the
Depth of Structure

Steel plate deck bridges are often characterized by a
slenderness impossible to achieve economically by con-
ventional designs. This is illustrated by several ex-
amples given in Section 1.1.3 of this Chapter.

The depth-of-structure reduction, in addition to
enhancing the aesthetic appearance of the structure,
reduces the cost of the approaches to high-level bridges
and allows flatter approach grades.

1.3.1.5 Substructure Savings

The dead weight reduction of the superstructure,
which may be of the order of one-half to two-thirds of
the weight of conventional bridge superstructures (see
Section 1.3.1.1), may have a considerable effect on the
substructure design.

Substructure cost saving may result either from reduc-
ing the footing dimensions, or the number of piles, cor-
responding to the decreased load, or from reducing the
number of supports and locating them at more con-
venient locations, longer superstructure spans being
economically feasible with steel plate deck design.

Substructure savings may be considerable where
foundation conditions are difficult and require deep
pile driving.

Comparative substructure cost estimates based on the
actual foundation conditions of several existing long-
span girder bridges of conventional design indicate
that foundation cost savings of the order of 5% to 159
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would be possible if lightweight steel plate deck construc-
tion were used.

1.3.2 AISC Cost Studies -

In order to evaluate the economic merits of steel plate
deck design application in this country, the American
Institute of Steel Construction has conducted a series of
design and cost studies.

In the first phase of these studies, the typical design
details of steel plate decks were reviewed by a number of
structural steel fabricators and suggestions were made
for the most advantageous adaptation of these details
to the American fabrication and erection practice.

100 ( +
S0 & LS

T

FAY 2 a

[ 7
A [

L=0.7L, =equivalent simple span

~4
Q

3
|

oW
(=]

&

Steel weight, p.s.f,

0 50 100 150 200 250 300

Simple span or equivalent simple span, L, feet

Notes:

(1) The weights shown are for bridges with two main
girders.

(2) Loading: AASHO. H20—S16.

(3) Matenial: Deck plate. longitudinal nbs, main
girders — low alloy structural steel.
Floor beams. bracing, etc. — structural
carbon steel.
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As one of the tentative findings, it appeared that the
closed-rib type of deck would not be more expensive
than the open-rib type, especially if the floor beam spac-
ing were increased beyond the limits customary in Euro-
pean construction.

Approximate weights of steel per sq ft of steel plate
deck girder bridges (two main girders), designed in
accordance with the AASHO specifications, as de-
termined in the course of the studies, are given in Figure
1.39. Weight data on the deck stiffeners alone (longi-
tudinal ribs and floor beams) are given in Figure 7.2.

A general comparison of steel deck hridges with con-
ventional girder bridges using concrete decks is not
feasible, because the steel weight of the existing struc-

tures varies widely, depending on such factors as the
type of design (riveted or welded), width of bridge, type
of steel, unit weight of the concrete deck and wearing
surface, degree of utilization of composite action, etc.

However, it may be noted that the steel weight of
simple span rolled-beam composite action stringer
bridges in spans of 50 to 100 ft ranges between 20 and 55
Ibs per sq ft, while the unit steel weight of the existing
three-span continuous riveted girder bridges with center
spans of 200 to 400 ft ranges generally between 55 and
95 lbs per sq ft, depending on the design and the span.

The simple span length at which both concrete and
steel plate deck designs require approximately equal
weights of steel seems to be in the neighborhood of
150 ft.

Following the preliminary investigations, a three-
span continuous four-lane bridge with span lengths of
275-375-275 ft was selected for a complete study.
Several bridges of a similar description with concrete
decks have been constructed in the past decade providing
a ready basis for cost comparisons.

Two alternate designs have been prepared—one with a
steel plate deck (Alternate A) and one with a concrete
deck (Alternate B).

The basic features of the deck of Alternate A were
essentially those of Numerical Example No. 2, given in
Chapter 7 of this Manual, except that the closed deck
ribs were 3{¢ in. rather than { in. thick, to satisfy the
minimum thickness requirements of the present AASHO
specifications, which governed all design details of both
Alternates A and B.

Alternate B was a conventional scheme designed in
accordance with the best current practice of welded
bridge construction, with two welded main girders,
floor beams and stringers, and a 634-in. thick reinforced
concrete deck, without additional wearing surface.

The use of composite design for Alternate B did not
appear to offer economic advantages over the scheme
chosen.

The result of a cost comparison of the two alternates,
taking into consideration the fabrication and erection
costs of both schemes, is given in Table 1.3.2. .

This cost comparison, based on conservative cal-
culations, indicates a cost saving in Alternate A of
the order of 109,. This does not include the cost
savings in the substructure due to a substantially
lighter superstructure of the steel plate deck alternate.

It should be noted that the reduction of the rib
thickness to 14 in. which is entirely adequate from the
design point of view, would have reduced the steel
weight of Alternate A from 57 to 55 lbs per sq ft, thus
raising the overall cost saving to approximately 15%.
Furthermore, the girder webs, proportioned in ac-
cordance with the current AASHO limitations of
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TABLE 1.3.2
COST COMPARISON: 275-375-275 FT SPAN CONTINUOUS GIRDER, FOUR-LANE BRIDGE
Item : Quantity Unit Price Cost
Alternate A (Steel Plate Deck Bridge, conforming to 1957 AASHO Code)
Structural low-alloy steel
Deck 1,592,000 lbs $ 0.34 $ 541,300
Other 1,665,000 1bs 0.28 466,200
Structural carbon steel 336,000 lbs 0.26 87,400
Reinforcing steel 49,200 1bs 0.13 6,400
Lightweight concrete (mall, curbs) 292 cu yd 90.00 26,300
Asphalt wearing surface 660 tons 20.00 13,200
$1,140,800
Total weight of steel 57 lbs per sq ft
Total dead weight 91 lbs per sq ft
Alternate B (Welded Girder Bridge with Concrete Deck)
Structural low-alloy steel 2,641,000 lbs $0.28 $ 739,500
Structural carbon steel 1,498,000 lbs 0.26 389,500
Reinforcing steel 295,000 lbs 0.13 38,400
Concrete (standard) 1,490 cu yd 60.00 89,400
$1,256,800
Total weight of steel 66 1bs per sq ft
Total dead weight 166 lbs persq ft

the web slenderness, could be made considerably thinner
in Alternate A, due to smaller shears in this design,
thus further decreasing its cost.

Additional weight savings could be obtained by
application of the suggested special design provisions
based on the specific structural characteristics of or-
thotropic steel plate decks, as discussed in Chapter
9 of this Manual.

Cost comparisons of Alternate A and existing riveted
girder bridges of identical or similar proportions,
made by several steel fabricating firms, indicated super-
structure cost savings due to the steel plate deck design
of the order of 259, and more.

Based on the above investigations, it appears that
for deck girder highway bridges, steel plate deck
construction may be economically advantageous for

simple spans above the 150 to 180 ft span range or con-
tinuous spans above 200 to 250 ft center span length.
In this range a comparison with composite design
may be advisable to determine the relative economy.

However, special conditions, requiring a light
weight, low structural depth and erection efhiciency
may indicate the use of steel plate deck design even
for shorter spans.

With increasing span lengths, the cost saving due to
steel plate deck construction increases considerably.
This is confirmed by the example of the Port Mann
Bridge in Vancouver, Canada (see Section 1.1.3.4),
where the cost saving obtained by the use of steel
plate deck design has been estimated to be of the order
of one million dollars.




CHAPTER 2

Theoretical Background of the Deck Design

2.1 INTRODUCTION

This chapter deals only with the analysis of the
bridge deck as an independent structural element
(System II). The stresses in the deck as a part of
the main carrying members of the bridge (System I)
are not considered.

The steel plate bridge deck, consisting of a flat deck
plate and the mutually perpendicular longitudinal
ribs and transverse floor beams using the deck plate
as their common top flange, is a highly statically in-
determinate structural system. For design purposes
it may be treated either as a grid or as an orthogonal-
anisotropic (“‘orthotropic”) plate, both approaches
being permissible idealizations of the actual system.

In the treatment of a steel plate deck as a grid the
deck plate is assumed slit between the longitudinal
ribs, which are treated as individual beams between
the panel points of the grid system, with the deck
plate strips acting as upper flanges of the ribs. If
the rib spacing is smaller than or equal to the effec-
tive width of the deck plate, the entire deck plate area
is utilized; however, the effect of the deck plate rigidity
in the direction perpendicular to the ribs is disregarded
and must be considered separately [13, 25].

In the design approach treating the deck as a plate
it is assumed that the rigidities of both the floor beams
and the longitudinal ribs, or of the longitudinal ribs
only, are uniformly distributed throughout the deck
in the directions perpendicular to the respective mem-
bers. Thus, the actual discontinuous structure of
the steel plate deck is represented by an idealized sub-
stitute orthotropic plate, reflecting the characteristic
properties of the actual system.

Of the two possible approaches, the orthotropic plate
concept is essentially simpler and possesses important
practical advantages.

This approach underlies the design method pre-
sented in this Manual.

The deck with closed ribs is analyzed as a continuous
orthotropic plate.

In the design of decks with open ribs a simplification
of the orthotropic plate equation leads to a treatment
(.)f the open ribs as continuous beams. This is discussed
in Chapters 3 and 4.
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For a clearer understanding of the design method
presented in this Manual, its theoretical background
is briefly outlined in this chapter.

Sections 2.2 and 2.3 contain basic information on
the general theory of orthotropic plates.

In Section 2.4 of this chapter application of the
orthotropic plate theory to the analysis of steel plate
decks is discussed and a brief review of the design
methods based on the orthotropic plate theory is given.

2.2 PROPERTIES OF AN IDEAL
ORTHOTROPIC PLATE

2.2.1 Basic Assumptions

An orthogonal-anisotropic plate is defined as a
plate which has different elastic properties in two
mutually perpendicular directions in the plane of
the plate, designated x and y (Fig. 2.1). Since the
plate thickness is constant and the plate material is
continuous, as required by the general conditions
outlined below, the different elastic properties in the
two principal directions must be due to different moduli
of elasticity, E, = FE,, and different Poisson’s ratios,
v, # »,, of the material, as is evident from the rigidity
formulas, equation (2.1). Thus, the orthotropic plate
theory assumes an anisotropic material of the plate.

A good example of such material is a wooden plank,
having markedly different moduli of elasticity in the
direction of the grain and transversely to it.

Except for the added condition of anisotropy, com-
putation of deformations and stresses of an orthotropic
plate by means of the ordinary theory of elastic plates
is based on the same assumptions as are used in analysis
of an isotropic plate.

These assumptions are:

1. The material of the plate is homogeneous, i.e.,
the physical properties of the material are identical
at each point of the plate. Further, the material
is continuous between the outer surfaces of the plate.
This precludes the existence of voids, slits or other
geometric irregularities within the plate.

2. The plate thickness, t, is uniform and small, com-
pared with other dimensions of the plate. Thus,
the stresses normal to the middle plane of symmetry
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Loaded area, pix,y)# 0

Unloaded area,
plx.vj=0

w(x, yj = deflected middle
surface of the plate

Section A-A

Fig. 2.1. Basic designations

of the plate (x, ¥), and the effects of the shearing stresses
on the plate deformations may be disregarded.

3. The deformations of a loaded plate are purely
elastic and are in accordance with Hooke’s law. The
straight lines normal to the middle surface of the plate
remain straight and normal to the deformed middle
surface of the loaded plate (Bernoulli’s hypothesis).

4. The deflections of the loaded plate are small com-
pared with the plate thickness. This assumption
precludes the occurrence of the membrane stresses in
the plate.

2.2.2 Rigidity Coeficients

The elastic properties of an orthotropic plate are
defined by three rigidity coeflicients:

D, = the flexural rigidity of the plate in the x-
direction

the flexural rigidity of the plate in the y-
direction

H = the eflective torsional rigidity

]

D,

The rigidities D, and D, , expressed in units of
k-in.?/in., characterize the resistance to flexure of a
plate strip having a unit width and a thickness ¢, in
the x- or y-direction, respectively, and are defined by
the formulas

E.# E, 8

D= D)= — 21
12(1 — wvup) Y1201 — v @1

The effective torsional rigidity, H, characterizing the
resistance of a plate element to twisting, is defined by
the formula

2H = 4C + v,D, + v,D, (2.2)

The value of 2C, known as the torsional rigidity co-
efficient, is defined as the reciprocal value of the angle
of twist of a plate element with the side lengths dx =
dy = 1 due to the action of twisting moments AM,, =
M, =1 (Fig. 2.2)

20 = = (2.3)

While the determination of the flexural rigidities D,
and D, presents no difficulties, the determination of the
value of 2C of an orthotropic plate by either theoretical
or experimental methods is not easily possible.

3y
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Fig. 2.2. Plate element subject to twisting

For an ideal orthotropic plate an approximate value
of the torsional rigidity coefficient, 2C, determined by
Huber [28], is

2C = (1 — \/vw,) \V/D,D, (2.4)

Considering that, in accordance with Betti’s law of
reciprocity,

R4 (2.5)

an approximate expression for the effective torsional
rigidity of an orthotropic plate is obtained from equa-
tions (2.2) and (2.4)

H = \/D,D, (2.6)

This value was recommended by Huber for com-
putation of reinforced concrete plates with different
reinforcement ratios in two perpendicular directions.

It must be emphasized that equations (2.4) and
(2.6) are applicable only to special cases and cannot
be used in the computations of stiffened steel plate
decks treated as orthotropic plates.
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Fig. 2.3. Comparison of deflections and bending moments in a
square isotropic and a square orthotropic plate

2.2.3 Comparison with an Isotropic Plate

It should be noted that the more commonly used
isotropic plate may be regarded as a special case of
an orthotropic plate. With E, = E, and », = »,,
equation (2.1) becomes

Es
D,=Dy, =D = — " 2.7
v 12(1 — »?) @.7)
which is the familiar expression for plate rigidity.

The torsional ridigity coefficient of an isotropic plate

is computed by the formula
£

20:1ﬂ1+@ 28)

By substituting equations (2.7) and (2.8) into equation
(2.2) the expression for H is cbtained:

2H = Ee

= e = 2]}
6(1 — »2) ’

or H =D (2.9
It is seen that for an isotropic plate the effective
torsional rigidity, H, is equal to the flexural rigidity.

A comparison of the structural behavior of an iso-
tropic plate (e.g., a steel plate or a concrete slab of

constant thickness) with that of an orthotropic plate
is given in Figure 2.3,

Figure 2.3a shows a square isotropic plate sup-
ported on four sides and loaded with a load, P, distributed
over a small area in the center of the plate. Because
of the symmetry, the load is carried equally in both -
directions of the plate and the deflections and the
bending moments, M, and M, , acting in the x- and
y-directions of the plate, are identical.

Figure 2.3b shows the deflections and the bending
moment diagrams of a square orthotropic plate having
the same dimensions and support conditions as the
isotropic plate in Figure 2.3a, however with the flexural
rigidity in the y-direction, D, , greater than the rigidity
in the x-direction, D, .

It is seen that, under the same load P, the deflection
lines along the sections X’-X" and ¥’-Y" are dissimilar,
except for the common ordinate under the load. The
load is carried predominantly in the direction of the
greater rigidity, y, which is evidenced by the larger
values of the bending moments M, acting in the stiffer
direction than the moments M, in the weaker direc-
tion of the plate, as shown in sections X’-X’ and ¥’-¥".

It is also seen that the maximum values of the bend-
ing moments M, of the orthotropic plate are greater
than the corresponding values of the moments of the
isotropic plate and that in the orthotropic plate the
bending moments do not extend over the entire span
length, /; , but are confined to a plate strip near the
load (see section X'-X’).

Thus, a square orthotropic plate, which is stiffer in
the y- than in the x-direction, may be compared with
an elongated isotropic plate, having the span /, greater
than the span /,. A load applied in the center f
such a plate will be carried mainly in the y-direction,
and, if the ratio /.//, is large, the effects of the load
will not extend to the edges x = 0 and x = /,, similarly
as in the case of the orthotropic plate, Figure 2.3b.

If, in an extreme case, the rigidity values D, and H
of an orthotropic plate are very small compared with
the rigidity D, , the bending moments M, in the plate
due to an applied load may be assumed to act only
within the plate strip corresponding to the width of
the load. In such a case the plate may be visualized
as a series of beams lying side by side, as represented
in Figure 2.7b.

2.3 DIFFERENTIAL EQUATION OF AN ORTHO-
TROPIC PLATE AND ITS SOLUTIONS

The problem of an anisotropic plate was first studied
by F. Gehring (1860) and F. Boussinesq (1879). A
comprehensive treatment of an orthotropic plate,
including a systematic solution of its differential equa-
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tion was first presented by M. T. Huber (1914) [27,
28]

The differential equation giving the relationship
between the deflection and the loading of an ortho-
tropic plate, often referred to as Huber's equation, is

Otw o' Q%

T dxt + 2 dx?0y? + D, @ = plx, y) (2.10)

D

where w is the deflection of the middle surface of the
plate at any point (x, y) (Fig. 2.1).

D., D, and H are the rigidity coeflicients defined by
equations (2.1) and (2.2), and p(x, y) is the loading in-
tensity at any point, expressed as a function of the
co-ordinates x and y.

Equation (2.10) is a non-homogeneous differential
equation, since the function p(x, y) does not contain
the deflection, w.

A function w(x, y) satisfying equation (2.10) is known
as a solution of the differential equation.

Over the areas of the plate where no direct vertical
load is applied (see Fig. 2.1) the load function, p(x, y),
is equal to zero, and the deflection, w, of the unloaded
portion of the plate is expressed by the equation

4. 4. 4.
aw+2H O'w D O'w

“ow T M ap T =0 @I

D

This equation is called /omogeneous, because the
unknown function w is contained in each of its terms.

Generally, the homogeneous equation (2.11) repre-
sents a plate loaded by bending moments and line
loads applied only along the edges of the plate.

The methods used in solving equations (2.10) and
(2.11) of an orthotropic plate are essentially the same
as used for the similar equations of an isotropic plate,
except that, in this case, the integration constants
and the arguments of the functions used in the solution
must include the characteristic rigidities of the ortho-
tropic plate, D, , D, and H.

Equations (2.10) and (2.11) may be satisfied by
many functions. However, only that solution, w,
is of value for engineering purposes which also satisfies
the boundary conditions of the given plate. These are
the required specific values of the deflections, w, slopes,
Ow/dx, Ox/dy, and curvatures, O%w/Ox% Okv/dy’
0w /0x Jy, corresponding to the geometric conditions
and the values of the shears, the bending moments
and the twisting moments along the edges of the plate.
These boundary conditions provide the equations
necessary for the determination of the integration
constants of the differential equations.

A general solution of the non-homogeneous differen-
tial equation (2.10) is obtained by adding a general
solution of the corresponding homogeneous equation

(2.11) (containing the arbitrary constants) and a
particular  solution of the non-homogeneous equation
(2.10) (any specific function, containing no arbitrary
constants, satisfving equation (2.10))

w o= w, + w, (2.12)

Geometrically, equation (2.12) represents a super-
position of two deflection surfaces, w, being the deflec-
tion surface of a plate under the given loading px, ¥),
possibly satisfying some, but not all, boundary condi-
tions of the actual plate, and w, |, representing the
deflection of the plate with no load over its surface
(p(x, y) = 0), under the effects of such deflections,
rotations, line loads or bending moments applied
along the edges as are necessary to compensate for
the departures of the particular solution, w,, from
the required shape of the actual plate. Thus, by
adding the two surfaces, w, and w,, a deflection sur-
face of the actual loaded plate is obtained which satis-
fies all boundary conditions.

While a particular solution, w, , may always be easily
found, the determination of a general solution, w,,
of the homogeneous equation (2.11) which, combined
with w, , satisfies both equation (2.10) and the boundary
conditions at the edges of the plate, is most difficult
and often impossible. Generally, such solution of
the homogeneous equation (2.11) can be only given
as an mnfinite series.

For the technically important case of a plate simply
supported along the edges x = 0 and x = / and subject
to any boundary conditions along the edges y = con-
stant (e.g., free edge, simple support, elastically re-
strained edge, etc.), a solution of the homogeneous
equation can be given by a simple series (involving
only one summation). This solution, first applied
by Levy to the computation of an isotropic plate, may
be represented in the general form

hd . onwx
wy, = 3. Y,sin —
n=1 l

(2.13)
where ¥, is a function of the variable y only and con-
tains four integration constants, corresponding to
the fourth order of the differential equation.

If Levy’s solution is applied to equation (2.11) of
an orthotropic plate, the function Y, also contains
the rigidity coefficients D,, D, and H. Depending
on the relationship between the rigidity coefficients,
three different expressions for ¥, are obtained for
the three basic cases: H greater than, equal to or less
than V/D,D,. These expressions involve trigonometric
and hyperbolic functions of the variable y and of the
rigidity coefhicients,
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For example, for the case of H < \/D,D,, the ex-
pression for ¥, is [42]:

Y, = C,, sinh agy sin By + Cs, cosh a,y cos B,y
+ Cs, sinh a,y cos 8.y + Ci, cosh @,y sin B,y
(2.14)

where

nrw 1 ——
o = \/ﬁ (DD, + H)

(2.15)

nw

) 1

Ciny Con, Cis and Cy, are the constants to be deter-
mined by the boundary conditions of the plate under
consideration,.

By inserting expression (2.14) into equation (2.13)
the solution of the homogeneous equation (2.11) is
obtained for the special case H < / D, D, considered, as
can be verified by substituting the expression so ob-
tained into equation (2.11).

For a loaded plate, simply supported along the
edges, x = 0 and x = /, the particular solution, w, ,
of equation (2.10) may be given by the equation of
the deflection line of a simply supported plate strip
with the span / (Fig. 2.1). However, since the par-
ticular and the homogeneous solutions have to be
added in accordance with equation (2.12), in order
to obtain the general solution and to determine the
constants, the particular solution, involving the load-
ing, p, must also be represented by a series. Thus,
in this case, the particular solution may be expressed
(23]

1

m' 1 A
D, .= (5) P

(2.16)

wy =

where

D, = the plate rigidity in the x-direction
{ = the span in the r-direction
p(x) = the loading, represented by a Fourier series
(see Section 3.5).

It should be noted that in equation (2.16) the load,
f, is a function of x only, this being one of the condi-
tions for application of Levy’s solution. This is equiva-
lent to the requirement of a load extending in the y-
direction over the entire length of the plate.

If the loading is discontinuous in the y-direction, the
above solution may be applied by cutting the plate into
loaded and unloaded portions and treating them
separately.  The continuity of the plate is then re-
stored by application of the appropriate houndary
conditions along the cut edges [20, 35].

In the case of a line load extending in the x-direction
of the plate, it is possible to obtain the deflection sur-
face, w, of the plate by using the homogeneous equa-
tion (2.11) only. This is done by cutting the plate
along the line load and thus having the load acting
on the free edge of the plate. This treatment may
also be further extended to a load having a certain
width in the y-direction [20].

When the deflection surface, w, of the orthotropic
plate and the values of the constants have been deter-
mined, the bending and the torsional moments, shears
and reactions of the plate may be determined at any
point from the expressions for slopes and curvatures
of the deflection surface. The formulas for moments,
shears, etc. of an orthotropic plate are similar to those
used for an isotropic plate, except that all three rigidity
values, D, , D, and H occur in these expressions, rather
than the single plate rigidity coefficient of an iso-
tropic plate. These formulas may be found in refer-
ence [20].

For example, the expressions for moments in an
orthotropic plate are:

4w Ok
Mz = ‘-Dr by ary
( e 0y2>
O%w 0%
‘M,, = “Dy <—? T ax?') (217)
O%w
sz = Myz = -2
¢ OxQy

The bending moments in an orthotropic plate may
also be determined indirectly, through evaluation of
the influence surfaces obtained by application of unit
deformations or loads to the plate.

It should be noted that the formulas for moments,
equation (2.17), obtained by differentiating the series
(2.13) and (2.16), or the formulas for influence sur-
faces, are also expressed as infinite series.

From the above discussion of the differential equa-
tion of the orthotropic plate it is seen that its direct
application to the engineering problems presents
mathematical difficulties even in the simplest cases.
Also tedious and time consuming is the computation
of the many constants from long expressions involving
hyperbolic functions, and the numerical evaluation
of the slowly converging series.

Application of the orthotropic plate theory to the
analysis of steel plate bridge decks has been facilitated
by systematic presentation of the formulas for the
values needed in design, tables of integration con-
stants, influence ordinates, and other data, presented

by several authors. In these publications attempts
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have also been made to simplify the rigorous theory
and to adapt it to the specific geometric properties
of the steel plate decks. These problems are dis-
cussed in Section 2.4,

2.4 DESIGN ANALYSIS OF STEEL PLATE DECKS
BASED ON THE ORTHOTROPIC PLATE
THEORY

2.4.1 Applicability of the Orthotropic Plate Theory
to Steel Plate Decks

2.4.1.1 General

Systems consisting of a flat plate stiffened by ribs
in one or two perpendicular directions may be treated
as orthotropic plates under the general condition
that the spacing of the stiffening ribs is sufficiently
smaller than their span to insure full participation
of the flat plate in the flexural action of the ribs, In
stiffened steel plate bridge decks this condition is usu-
ally fulfilled.

Thus, the highly complex structural system of the
actual deck can be represented by an essentially simpler
substitute plate system, much more convenient for
design analysis.

Generally, a steel plate deck consisting of the deck
plate, longitudinal ribs and transverse floor beams
may be idealized as a plate in two ways:

Approach A. The ridigities of both longitudinal ribs
and transverse floor beams are assumed to be con-
tinuously distributed throughout the deck. Thus an
orthotropic plate strip supported on the main girders
is obtained (Fig. 2.5). This approach, justifiable
in a case of closely spaced floor beams, has been used
in earlier designs.

Approach B. The rigidity of the longitudinal ribs
only is assumed to be uniformly distributed, while
the floor beams are retained as individual members,
In this manner the deck is treated as a continuous ortho-
tropic plate, supported on the main girders and the
floor beams (Fig. 2.9).

In both cases the bending moments are computed
for the substitute orthotropic plate, and from these
values the bending moments and stresses in the in-
dividual members of the actual deck system are ob-
tained.

2.4.1.2 Properties of Steel Plate Decks at Variance
with the Assumptions of the Orthotropic
Plate Theory

In application of the orthotropic plate theory to
the design of steel plate decks, proper consideration
must be given to the fact that a steel plate deck differs

in several respects from an ideal orthotropic plate,
described in  Section 2.2.1. The most important
properties of the actual system at variance with the
assumptions of the gencral orthotropic plate theory
are the discontinuity and the asymmelry of the steel plate
decks.

A stiffened steel plate deck is discontinuous in the sense
of the requirements of plate theory since its material
does not fill the space between the two outer paraliel
planes enclosing the deck plate structure in a con-
tinuous manner, as seen in Figure 2.4a. Thus, un-
like in the case of an ideal orthotropic plate, the differ-
ent rigidities in the two perpendicular directions result
from different geometric properties rather than from
different moduli of elasticity of the material which,
in this case (steel), is isotropic rather than anisotropic.

LA -
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{a) Actual discontinuous steel plate decks

(b)ldealized system — plate with slits

Fig. 2.4. Actual steel decks and their idealized representation
as an orthotropic plate

Because of the location of the stiffening ribs on one
side of the deck plate only, the system is also asym-
metrical about the middle surface of the flat deck plate
(x, y). Due to the eccentric arrangement of the stiff-
eners, the neutral surfaces of the deck for bending in
the x- and y-directions do not coincide, unlike the case
of an ideal homogeneous plate of a constant thickness,
as stipulated by the theory. This is of consequence
in rigorous determination of the stresses, especially
in the deck plate.

The non-coincidence of the neutral surfaces in the
two  perpendicular directions also has an effect on
the effective torsional rigidity, H, of the stiffened steel
plate deck, which is difficult to determine.

Poisson’s ratio, v, for an idealized plate representing
the actual steel plate deck may be assumed to be negli-
gible.

v Xy, 0 (2.18)

This may be visualized by contemplating bending
of the actual deck (Fig. 2.4a) or its idealized model,
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which may be thought of as a plate with closely spaced
deep slits in it (Fig. 2.4b}, rather than a homogeneous
orthotropic plate. It may be seen that bending of
the system in the direction of the ribs, y, does not cause
any appreciable stresses in the direction normal to
the ribs, since the actual or the idealized ribs separated
by the slits may freely expand or contract in the trans-
verse direction. It may also be seen that if the system
is bent in the transverse direction, x, the effect on
the stresses in the y-direction is likewise negligible
because of the geometric conditions.

The assumption expressed by equation (2.18)
simplifies the expressions for the moments and stresses
in the deck, as can be seen from equations (2.17).

It should be noted, however, that this assumption
is used only in the computation of the bending moments
in the idealized orthotropic plate (System II) and does
not apply in the determination of the rigidity values
of the ribs (Section 3.3), or in the computation of
the local stresses in the deck plate acting as a con-
tinuous isotropic plate (Chapter 6). In these cases the
usual value of Poisson’s constant for steel, v, = v, = 0.3,
is used.

2.4.1.3 Effects of Discontinuity in Computation
of Stresses

The discontinuity of the steel plate deck system
is of consequence in determination of the bending
moments and stresses in the individual members from
the moments computed for the substitute orthotropic
plate if the spacing of the members, the rigidity of
which is assumed to be continuously distributed, is of
the same order or larger than the dimensions of the
applied loads. This is usually the case in bridge deck
design using concentrated wheel loads.

In design treating the deck as an orthotropic plate
strip (approach A, as defined in Section 2.4.1.1), only
the floor beam moments can be obtained from the
orthotropic plate computation. Additional steps are
needed to evaluate the moments and stresses in the
longitudinal ribs under wheel loads placed between
the panel points of the deck, as shown in Figures 1.31
and 2.6. This is discussed in Section 2.4.2.

In the design method treating the deck as a con-
tinuous orthotropic plate (approach B, see Section 2.4.1.1),
the effects of the actual discontinuity of the system
on the computation of stresses are as follows:

In the open rib system, with both the transverse rigidity,
D, , and the torsional rigidity, H, much smaller than
the longitudinal rigidity, D, , the effective width ob-
tained in the idealized orthotropic plate representing
the rigidity values of the actual system is hardly larger
than the width of the applied load itself. Thus, for

the loading width nearly equal to the rib spacing,
the effective width in the idealized system may be
smaller than the width over which the effect of the
load extends in the actual deck as a result of the action
of the deck plate as a continuous member between the
ribs (see Fig. 2.7). In such a case the moment in
the directly loaded rib obtained from an orthotropic
plate computation would be larger than the actual
bending moment in the rib, as may be seen by com-
parison of Figures 2.7a and 2.7c.}

It should be noted that, in some loading cases, condi-
tions may be reversed and a moment smaller than
the correct value may be obtained from the substitute
system. Thus, a deck with open ribs may not always
be adepuately represented by an idealized orthotropic
plate.

In a deck with closed ribs, having a better load dis-
tributing capacity in the transverse direction than
the open rib system, the load distribution obtained
from a computation of an equivalent orthotropic plate
is generally in good agreement with the actual condi-
tions, as determined experimentally. The inaccuracy
in the computation of the bending moments and the
stresses in the ribs stems here from the fact that the
total rib moment is usually obtained by multiplying the
moment per unit width, A/, , computed in the substitute
orthotropic plate system at the center of the loaded
rib by the width, a 4 ¢, of the rib. The total rib
moment thus obtained is larger than the actual average
moment over the width of the rib, as is shown in Figure
2.8b. With a constant width of loading, this dis-
crepancy tends to decrease as the relative transverse
rigidity of the system is increased. The correct average
value of the rib moment could be obtained by integra-
tion of the moment curve under the rib; however,
in the interest of simplification this is usually not done.
It should also be noted that the discrepancy between
the correct and the somewhat too high stress value
computed in this manner for the bottom of the rib
will be partly compensated by the additional effects
of the System III stresses in the rib bottom (see Section
6.2.1.3c).

2.4.2 Evolution of the Design Methods Based on the
Orthotropic Plate Theory

Huber’s equation (2.10) was first applied to the
problem of computing stresses in a steel plate deck
by Cornelius in conjunction with the design of the
Cologne-Muelheim Bridge [9].

The deck, consisting of the deck plate, bulb bar
longitudinal ribs and floor beams was treated as an

t A numerical example for such a case is given on pg. 148 of
reference {42].
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orthotroprc plate strip simply supported on the tweo main
girders with the rigidities of the ribs and the floor
beams assumed to be distributed continuously. For
the torsional rigidity of the substitute system the value
of H = 0.3+/D,D, was used, determined empirically
to make the deflections measured on a test model
agree with the results obtained from Huber's equation.
However the propriety of such a procedure and the
correctness of the value obtained has been questioned.

In his subsequent publication [10] Cornelius gave
general expressions for the integration constants and
for the various coefficients occurring in the formulas
for the deflections, moments, shears, etc. of an ortho-
tropic plate, using », = », = 0 and H < /DD, ,
the latter assumption corresponding to the properties
of steel plate decks with open ribs.
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Numerical evaluation of the expressions for the
bending moments for the various specific cases has
been presented by several authors [25, 26, 41, 48].

A simpler, but less accurate method, based on the
application of orthotropic plate theory to open grids
has been given by Guyon and Massonet [21, 37].
Numerical tables, facilitating its application, may
be found in [38]. However, like other methods men-
tioned above, this method is useful only if the loads
are applied at the floor beams, and not between them.

In order to obtain the stresses in the longitudinal

ribs under loads between the floor beams (which can-
not be determined from the deck computation as an
orthotropic plate strip with floor beam rigidity as-
sumed to be uniformly distributed, see Section 2.4.1.1),
the original approach (Fig. 2.5) was refined by Cornelius
and Mader [36]. The rigidity of the floor beams
was assumed to be continuously distributed only in
areas outside of the loaded panel and the panel under
load was treated as a secondary orthotropic plate,
clastically supported by the two adjoining floor beams
and continuous with the primary orthotropic plate
of the rest of the deck (Fig. 2.6).
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Fig. 2.6. Bridge deck treated as an orthotropic plate strip,
with consideration of the discontinuity in the loaded panel

This approach was used in the design of the deck
of the Save River Bridge (see Section 1.1.3.1) and
several other structures with open ribs. The dis-
advantage of this method of design was in its com-
plexity, requiring considerable mathematical skills,
and a great amount of numerical work.

Bridge decks with torsionally rigid closed ribs were
designed in a similar manner. In these designs the
reduction of the torsional rigidity, H , due to deck plate
bending has been recognized, and the first formulas
for the reduced deck rigidity have been proposed
[81].
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Influence surfaces for orthotropic plates have also been
developed and may be found in references [23, 26,
33, 53]

The moments in a steel plate deck can be ob-
tained by utilizing the influence surfaces in two ways:

(a) The longitudinal and transverse bending
moments in a steel deck consisting of the deck plate,
longitudinal ribs and transverse floor beams are deterj
mined by means of influence surfaces for moments
in an orthotropic plate strip. The local bending
moments in the longitudinal ribs acting as continuous
beams in rigid supports have then to be superimposed
on the overall moments to obtain final moments in
the ribs [23].

(b) The longitudinal bending moments are deter-
mined by means of an influence surface for an ortho-
tropic plate panel, consisting of the deck plate and the
longitudinal ribs only, and supported on the main
girders and the floor beams. The effects of the deck
continuity and the floor beam elasticity and the final
bending moments in the floor beams are then com-
puted in the second step.

It is seen that in both cases the influence surfaces
provide only a part of the needed answer, with the
remaining part left to be computed by other methods.
Practical usefulness of this approach is further limited
by the fact that the available influence surfaces, deter-
mined by the characteristic plate rigidity values D,
D, and H, necessarily cover only certain of the many
possible combinations of these values.

A simplified, yet sufficiently accurate method for
the design of steel plate bridge decks has been de-
veloped by Pelikan and Esslinger [42]. This method
is based on an abbreviated rather than full form of
Huber’s equation, obtained by elimination of the
parameters of little importance in the design. The
deck plate with longitudinal ribs is treated as a con-
tinuous orthotropic plate supported on rigid main
girders and elastic floor beams (Fig. 2.9). The design
computation is made in two steps: in the first step
the floor beams are considered rigid and the moments
in the deck are computed in accordance with this
assumption. In the second step the effects of the
actual elastic flexibility of the floor beams are determined.

The design procedure may be further simplified
by charts, prepared for a specified loading.

The outline of the Pelikan-Esslinger design method,
selected for use in this Manual, and its application to
the bridge design in accordance with the AASHO
specifications, is presented in Chapters 3, 4, 5, 10
and 11.

The design charts based on the AASHO loads are
given in Appendix 1.

2.4.3 Attempts at a Rigorous Treatment of Steel
Plate Decks

Some of the more rigorous analytical studies based
on the actal geometric properties of steel plate
decks, at variance with the assumptions of the ortho-
tropic plate theory (see Section 2.4.1), shall be briefly
mentioned here.

The effects of the asymmetry of the deck plate stiffeners,
placed on one side of the deck plate only and causing
deformations and stresses in the deck plate, have been
studied by several authors.

Trenks has shown that the elastic behavior of a steel
plate deck with open ribs may be rigorously described
by three simultaneous differential equations, express-
ing the three deformation components of the deck
plate, which may be transformed into one differential
equation of the eighth order [55].

The problem of a plate eccentrically stiffened by flat
bar ribs has also been treated by Giencke [14, 15].

Schumann has analyzed the stresses in the deck
with open ribs with consideration of the discontinuity
of the rib arrangement [50}.

The deck plate with closed stiffening ribs has been
studied by Pflueger [46] and Giencke [16], who have
attempted to determine rigorously the effective tor-
sional rigidity of this system.

The effect of shear deformation of the ribs on bending
moments has been investigated by Girkmann and
Beer [19] and Giencke [18].

The computation procedures presented in the above

studies are far too complicated to be considered for
practical engineering purposes. The stresses in the
stiffening ribs obtained through these methods are
generally somewhat lower than those obtained from
Huber's equation; however, the results obtained by
the individual authors are often at variance with each
other and a precise experimental verification of the
computed stresses is still lacking.

It should be kept in mind that the refined analytical
investigations of the steel plate decks mentioned above
are all based on the structural theory of first order and
may be considered “rigorous” only as long as the
basic premise of this theory is satisfied, requiring that
the deflections of the system be small and have no
secondary effects on the stresses.

However, as has been shown in Chapter 1, these
assumptions are satisfied only in steel plate decks of
usual proportions under the working loads, while
under higher loads the structural behavior of the decks
departs entirely from the pattern predicted by the
first order theory.



CHAPTER 3

Outline of the Design Method, Rigidity Coefficients, Loading

3.1 INTRODUCTION

The procedure for the design of steel plate bridge
decks presented in this Manual is based on the method
developed by Pelikan and Esslinger [42].

A general description of the design procedure and
a discussion of the simplifying assumptions used is
given in Section 3.2. More basic information on
the theory underlying this method has been presented
in Chapter 2.

The bending moments and stresses in a steel plate
bridge deck depend on its dimensions and charac-
teristic rigidity values and on the loads applied. It is
appropriate to discuss these factors first.

The characteristic rigidity coefficients are discussed
and formulas for their computation are given in Section
3.3.

Section 3.4 contains a discussion of the wheel and
axle loads to be used in the design.

In order to evaluate the formulas for bending
moments, presented in Chapters 4 and 5, it is necessary
to represent the actual truck wheels acting on the
deck by substitute loads obtained through a Fourier
analysis of loading. The formulas needed for these
computations are given in Section 3.5.

3.2 OUTLINE OF THE METHOD

3.2.1 General Description of the Design Procedure

The design method presented in Chapters 3, 4, 5
and 10 of this Manual deals with the bridge deck as an
independent structure (System II), transmitting the
loads to the main carrying members of the bridge
(girders or trusses).

The stresses in the deck due to its action as a flange
of the main members (System I) are not considered.
These stresses are computed separately by the usual
methods and superimposed on the System II stresses,
as discussed in Section 1,2.6.

The bridge deck, consisting of a flat deck plate and
longitudinal stiffening ribs, is treated as a continuous
orthotropic plate supported on infinitely rigid main
girders and on uniformly spaced elastic floor beams
(Fig. 3.1).

The bending moments in the deck with closed (tor-
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sionally stiff) ribs (Fig. 1.2b) are determined by ortho-
tropic plate formulas.

Simplifying assumptions applicable to the deck with
open (torsionally soft) ribs (Fig. 1.2a) lead, in effect,
to the computation of the bending moments in the
open ribs by continuous beam formulas. For the open-
rib decks of usual proportions this approach is both
much simpler and more appropriate than computa-
tion by orthotropic plate formulas.

The design of steel plate decks with open or closed
ribs is made in two computation steps.

In the first step the maximum values of the bending
moments in the longitudinal ribs and in the floor beams
are computed under the assumption that the floor
beams are infinitely rigid.

In the second step the effects of the elastic flexibility of
the floor beams are determined and the values of the
bending moments obtained in the first step are adjusted.

The reader is reminded again that the design method
presented in this Manual, like all other methods cur-
rently available, is based on the flexural theory of
first order, assuming a purely elastic behavior of the
steel plate deck in accordance with Hooke’s law, small
deflections and no membrane stresses in the system.
These assumptions are generally valid for steel plate
bridge decks of the usual types under working loads;
however, they are too conservative for decks subject to
very large concentrated loads. Therefore the formulas
presented, valid for computation of stresses under the
design conditions, cannot be used to evaluate the
behavior of the deck under large loads or the actual
safety of the structure, which is, generally, much higher
than predicted by the ordinary first order theory.

3.2.2 Simplifying Assumptions Used in the Design

3.2.2.1 General

The bending moments in a steel plate deck treated
as an orthotropic plate theoretically depend on the
following factors:

a. Loading
b. Floor beam spacing, s
¢. Main girder spacing, /
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d. The magnitudes and the ratio of the three charac-
teristic rigidities of the substitute orthotropic plate
used to represent the actual system: the flexural
rigidities in the x- and y-directions, D, and D, , and
the effective torsional rigidity, . (See Chapter 2.)

As a practical matter, some of the above factors
are of little importance and may be eliminated from
the computations.

The main girder spacing, /, has no effect on the
bending moments in the longitudinal ribs under
concentrated wheel loads in Step 1 of the computation
(floor beams assumed rigid), since the effective width
of the deck loaded by a wheel is small compared with
the main girder spacing. Therefore, in the design

[

of closed ribs, the actual deck width, /, may be replaced
in the computations by a shorter substitute width, b
(see Fig. 4.20). This simplifies the numerical work
considerably, as will be shown in Chapter 4.

In Step 1 of the design of open ribs the length ! does
not enter the computations at all.

However, in determination of the effects of floor
beam elasticity (Step 2 of the computation) the true
span length of the floor beams, /, must be used in both
cases.

The effect of the rigidity factor D, on the bending
moments in the deck with closed ribs is small in struc-
tures of usual proportions, as is the effect of the rigidity
factors D, and H on the bending moments in the deck

with open ribs,
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magnitudes of the three rigidity coefficients, D, , D,
and H, of a steel bridge deck consisting of a flat deck
plate and longitudinal ribs.

In this case the characteristic rigidities have the
following meaning:

D, is the transverse rigidity of the system, equal to
the rigidity of the flat deck plate, Dp.

D, is the longitudinal rigidity, obtained by dividing
the rigidity of one rib, acting in conjunction with
the deck plate, by the rib spacing.

H is the effective torsional rigidity of the system which
is determined, practically, by the torsional rigidity
of the ribs alone.

In steel plate bridge decks of usual design the longi-
tudinal rib rigidity, D, , is always considerably larger
than the deck plate rigidity, D, = Dp , and the ratio
D, /D, usually ranges between 500 and 2000,

The torsional rigidity, H, of the decks with open
(torsionally soft) ribs is generally of the same order
as the deck plate rigidity, D,. Thus, for this type of
bridge deck, the ratio D,/H is also large.

Therefore, in the design of the deck on rigid supports
(Step 1 of the computation) the following simplifying
assumptions may be made:

For decks with closed ribs: D, = 0
For decks with open ribs: D, = 0, H =0

The validity of the above assumptions is discussed in
Sections 3.2.2.2 and 3.2.2.3.

In Step 2 of the computation procedure (effects of
floor beam elasticity) the transverse and the torsional
rigidity of the deck, D, and H, may be disregarded
in both types of decks. This is discussed in Chapter 5.

3.2.2.2 Decks with Closed Ribs

With the assumption D, = 0, the differential equa-

tion of the orthotropic plate (2.10) is reduced to:
4w 4w
bf,,byz + D, (%7 = p(x, ») (3.1)

The solution of the abbreviated equation (3.1) and
the resulting formulas for the bending moments are
considerably simpler than those of the full original
equation (2.10), and the amount of computation work
required in the design is reduced to tolerable limits.

It should be noted that although the transverse
rigidity, D, equal to the rigidity of the deck plate, Dp,
does not enter equation (3.1) directly, its effect is not
entirely disregarded, since the rigidity of the deck
plate is a factor in determination of the effective tor-
sional rigidity, H, as will be shown in Section 3.3.3.1.

Comparison of the bending moments in a deck with

2H

closed ribs computed by formulas derived from the
full differential equation (2.10) with the values ob-
tained from the abbreviated equation (3.1) indicates
that the error due to the assumption D, = 0 is small
[42].

In steel plate decks of usual proportions, with a
deck plate 3§ in. to Ly in. thick, and a span of closed
ribs of 10-15 ft, the error mav range from less than
19% to 39%. In cases of rib spans up to 20-25 ft,
or with a greater plate thickness, the error may be of
the order of 49, to 59%.

In all cases the moments computed with the assump-
tion D, = 0 are greater than those determined from
the full equation. Thus the results obtained by the
simplified method are always on the safe side.

3.2.2.3 Decks with Open Ribs

The assumptions D, = 0 and H = 0 reflect the fact
that a steel bridge deck with open ribs of usual propor-
tions, i.e., with a relatively thin deck plate and com-
paratively short rib spans, has very small load dis-
tributing capacity in the transverse direction.

With D, = 0 and H = 0, equation (2.10) becomes:

4.
D,5% = pl, » 62)
Y

Equation (3.2) defines an idealized structural system
representing the actual steel plate deck with open ribs.
This idealized system may be visualized as a series of
infinitely narrow plate strips placed side by side and
running continuously in the y-direction (Fig. 2.7b).
It is seen that in such a system the effective width is
equal to the width of loading applied, 2g.

If it is further assumed that the loading, p, varies
in the y-direction only, and is constant in the x-direction,
p = p(y), differential equation (3.2) represents the
deflection line of a beam. The bending moment
expressions derived from this equation are the familiar
continuous beam formulas.

Comparative computations of bending moments
per unit width made with the plate formulas based
on the full equation (2.10) and with the beam formulas
corresponding to equation (3.2) have shown that, for
the usual span lengths and sizes of the members, the
results obtained by the two methods differ by less
than 39,. This justifies the use of beam formulas
for the design of steel plate decks with open ribs.

As has been pointed out in Section 2.4.1.3, if the load
dimension is of the same order as the rib spacing, the
load per rib, Mp , in an open rib system cannot be
obtained directly from the value of moment per unit
width at the center of the rib. The correct value
must be computed from the value of the total moment
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multiplied by the factor Rq/P , which reflects the load
distributing action in the transverse direction of the
deck plate acting as a continuous plate over the ribs
(Fig. 2.7¢c). Therefore, the computation by the beam
formulas, giving directly the magnitude of the total
moment, is more appropriate than the computation
by the plate formulas, giving only the maximum moment
ordinate under the load (Fig. 2.7a).

Thus it is seen that the use of the beam formulas
rather than the plate formulas in the design of decks
with open ribs is not only much simpler, it is also more
correct.

As has been stated above, such simplified computa-
tion of the deck with open ribs is appropriate with
decks having a small load distribution capacity in
the transverse direction.

If the deck plate is unusually thick, or if the span
of the open ribs exceeds 6 ft, the effect of the rigidity
of the deck plate, Dp , may become more pronounced.
In such cases a correction, based on the relative deck
plate and rib rigidity, may be applied to the original
simplified computation. This is discussed in Chapter 4.

However, for economic reasons, open flat bar ribs
with spans exceeding 6 ft and thick deck plates will be
used only in exceptional cases. Therefore a need
for the more refined design computation of the open
ribs will seldom arise.

3.3 RIGIDITY COEFFICIENTS

3.3.1 Introduction

In the computation of bending moments in a deck
with closed ribs, treated as an orthotropic plate on
rigid supports (Step 1 of the computation), the follow-
ing rigidity coefhicients of the substitute orthotropic
plate are needed:

D, , flexural rigidity in the y-direction
H , effective torsional rigidity -

The transverse flexural rigidity, D,, does not enter
into the moment computations. However, it is used in
the determination of the effective torsional rigidity, H.

The bending moments in a deck with open ribs on
rigid supports, computed by the beam formulas, are
independent of the rigidity of the deck. Therefore
no rigidity coefficients need be computed for this
systern.

The rigidity coeflicient D, denotes the flexural
rigidity per unit width of the deck of the longitudinal
ribs acting together with the deck plate.

In order to determine the rigidity of the individual
ribs and the section moduli of the ribs, needed for
the computation of the stresses, the effective width
of the deck plate acting with one rib must be known.

The effective width of the deck plate acting with
one longitudinal rib may be smaller, equal to, or larger
than the spacing of the ribs. The effective width de-
pends on the loading and the ratio of the rib spacing
to its effective span and is independent of the deck
plate thickness. Thus, depending on the conditions,
the rigidity and the section modulus of a rib may vary.
This is discussed and the necessary formulas given
in Section 3.3.2.

The effective torsional rigidity, H , of a deck with
closed ribs depends on the dimensions, the spacing
and the span of the ribs and the thickness of the ribs
and the deck plate.

A discussion and formulas for determination of the
effective torsional rigidity, H , are given in Section
3.3.3.

3.3.2 Flexural Rigidity

3.3.2.1 Effective Width of Deck Plate

(a) General

In order to define the effective width of the deck
plate acting with a rib, let us consider an elementary
case of an infinitely wide plate strip of a span s; stiffened
by one longitudinal rib and subjected to flexure (Fig.
3.2). The plate strip is axially loaded by shearing
forces, V', introduced into the plate along the junction

with the rib.
n—ao—b]

Plate [—> A
l

¢P
Section A-A

Rib I—»A

r T t

Fig. 3.2

The rib and the plate acting together have the same
unit elongation or contraction at each point along the
junction.t Based on this condition, the effective width
of plate, gy, acting with one rib is defined as the width
of a plate strip that will have the same contraction
when uniformly compressed by the forces V' as the
actual plate at the junction with the rib.

Generally, the effective width, a¢ , depends on the
span of the rib, 5; , and the load distribution.

If the plate is stiffened by one rib only (Fig. 3.3a),
the effective width of plate acting with the rib is ap-
proximately equal to one-third of its span, 5, , and is

t The assumption of equal elongation is not equivalent to that
of equal axial stress in the rib and the plate at the junction, since
the effect of the lateral contraction in the plate has to be con-
sidered.
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independent of loading. Additional ribs spaced far
apart do not affect the effective width of the rib under
consideration, which remains the same as in the previous
case (Fig. 3.3b).

If ribs are closely spaced and only one rib is loaded,
the system is essentially similar to that in the first case
and the effective width may still be assumed to be
approximately one-third of the span (Fig. 3.3¢), as
before. If, however, the closely spaced ribs are all
uniformly loaded, the effective widths are of the order
of the actual spacing of the ribs (Fig. 3.3d).
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If the ribs are closely spaced and the loading of
the adjoining ribs differs considerably, as is the case
in a bridge deck, the exact computation of the effective
width becomes rather involved. However, for prac-
tical purposes it is sufficient to use the approximate
formulas presented in Sections 3.3.2.1b, ¢ and d.

The use of the approximate formulas for the deter-
mination of the effective width is permissible, since
the effect of small variations of the effective width,
ay , on the magnitude of the bending moments ob-
tained from the orthotropic plate computation and the
stresses in the hottom fiber of the ribs is insignificant.

Similar considerations are valid for the effective
width, sy, of the deck plating acting as the upper flange
of a floor heam.

(b) Effective span

The effective span of the rib, sy, used in the computa-
tions of the effective width of plate, is defined as the
average length of the positive moment area of the
rib (Fig. 3.4).

In Step 1 of the design procedure (ribs continuous
over rigid floor beams) the average value of

= 0.7s (3.3)

may be used.

For computation of the effects of the floor beam
flexibility, the effective span of the ribs is always large,
so that an approximation may be used:

517 = o (3.4)

The effective span of floor beams supported on two
single-web main girders may be assumed to be equal to
the main girder spacing, /.
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The effective span of floor beams framed into tor-
sionally rigid box-girders or continuous over more
than two main girders must be determined in each
case (see Section 5.5).

(c) Effective width of plate in the case of equal loading of

all ribs

In the case of a plate stiffened by uniformly spaced
ribs, the effective width of plate, 4y , as defined in Section
3.3.2.1a, is easiest to determine in the case of equal
sinusoidal line loads applied to all ribs, as shown in
Figure 3.5 [42].

The effective width ratios obtained from this case
are given in Table 3.3.2.1.

For practical purposes, it may be assumed that
the effective width is essentially the same for other types
of loads equally applied to all ribs.

It is seen that the ratio of the effective width to
span, ag/s1, increases with the ratio of the rib spacing
to span, a/s; .

The same considerations apply to the ratios of the
effective width of the deck plate, 54 , acting with one
floor beam, to the floor beam span, [ .

The fact that, with all ribs equally loaded, the effec-
tive width may be greater than the actual rib spacing
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TABLE 3.3.2.1

EFFECTIVE WIDTH OF PLATE RATIOS FOR ALL RIBS
EQUALLY LOADED

a/sy as/a f ao/st
0.0 1.099 | 0.000
0.2 1.005 ‘ 0.201
0.4 0.808 ‘ 0.323
0.6 0.620 i 0.372
0.8 0.480 0.384
1.0 0.383 | 0.383
© 0.000 ! 0.363
a = rib spacing, a9 = effective width of plate acting with
one rib, s, = effective rib span.

(as is the case if the rib spacing is smaller than one-fifth
of their span), is explained by the effect of transverse
contraction in the plate due to a bi-axial stress condi-
tion.

The effective width ratios given in Table 3.3.2.1
are also represented graphically in Chart 1 (Appendix).
In this chart the effective spacing of the ribs and the
floor beams, a*, * and s*, is used rather than the actual
spacing, ¢ , ¢ and s, as explained in Section 3.3.2.1d.

(d) Effective width of plate in the case of unequal loading

of ribs

The loads on the individual ribs due to a wheel load
on the deck are not equal. The rib directly under the
wheel receives a load Ry , the adjoining rib is loaded
with R, , etc. (Fig. 3.6a). Thus, the effective width
ratios given in Table 3.3.2.1, computed under an as-
sumption of equal loading of all ribs, do not apply
in this case.

However, these ratios are approximately correct
if an effective spacing, a* , rather than the actual spacing,
a , is used. The idealized effective spacing is deter-
mined from the condition that the effective distances
of the ribs be proportional to the actual loads (or
moments) in the individual ribs. Hence, the effec-
tive spacings, a;*, a1*, a.* ..., of ribs No. 0, 1,2 ...
etc., are determined by the following formulas:

" 2R, 2M,
a = a = a
* R+ R M, + M,
R,y R,
. _ 3.5
“ (RO+RI+R1+R2)” (3-5)
M, M, )
= -+ s etc.
.<M0+M1 M, + M)

It is seen that the effective spacing of ribs, ¢*, can be
computed only if the final values of loads or moments
in the ribs are known.

With the values of a* determined, the corresponding
effective widths of plate, @', may be obtained from

Table 3.3.2.1 or Chart 1, similarly as for the case of
equal loading on all ribs.

3.3.2.2 Section Properties of Ribs and Floor Beams

(a) General

The section properties of the ribs and the floor beams
depend on the effective width of the deck plate, dis-
cussed above. The assumptions and procedures used
in the computations of the section properties needed
in the design are summarized below.

The following designations are used:

Under an assumption of equal loading on all ribs
or floor beams,
ay = effective width of plate acting with
one open rib
so = effective width of plate acting with
one floor beam
I = moment of inertia of ribs or floor beams
§ = section modulus of ribs or floor beams

Under an assumption of unequal loading on the ribs
or floor beams,

ay’ = effective width of plate acting with
one open rib
5o’ = effective width of plate acting with
one floor beam
I’ = moment of inertia of ribs or floor beams

$’ = section modulus of ribs or floor beams

For all assumptions of loading,
s1 = eflective span of ribs

(b) Open ribs

In Step 1 of the computation (continuous ribs on
rigid floor beams) the stresses in the ribs are due to
the truck wheel loads, which cause unequal loads on
the individual ribs. Therefore, the effective spacing,
a* , computed by equation (3.5) must be used in deter-
mination of the effective plate width, ao’ , of the loaded
rib.

In the design of the deck with open ribs it is assumed
that the deck plate acts as a continuous plate on rigid
supports and distributes the wheel load to the in-
dividual ribs accordingly, as discussed in Section 3.2.2.3.
Thus the rib reactions Ry, Ri, Rz . .. needed in formulas
(3.5) may be obtained by means of the influence line
of a continuous beam on rigid supports (Chart 5¢).

For the various ratios of the wheel width to rib
spacing, the values of the load on the directly loaded
rib No. 0, Ro/P (Fig. 3.6a) and the effective rib spacing
ratios, a,¥/a , have been obtained in this manner and
are given in Chart 2.

For the specific case of AASHO wheel loads, the
load per rib, Ry, and the effective spacing, a,*, are
given directly in Charts 3 and 4.
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With the value of a¢* obtained from Chart 2 or 4
and with an effective rib span 5, = 0.75 , in accordance
with equation (3.3), the effective width, ao” , is deter-
mined from Chart 1. The value of a¢’ is then used
in the computation of the section properties, Ip' and
S’ of the rib.

In Step 2 of the computation (effects of floor heam
elasticity) all ribs may be considered equally loaded,
as will be explained in Chapter 5.

Wheel load, P
[l seer

yRo 4R *j B *RZ
Rib No.2 1 0 1 2
al a’{——»«—aé’——»‘-‘—a‘ aj

(a)

]/'Wheel load, P

a0+eo

rﬂ‘T&rﬂ—T¢rﬂ‘T*rﬂ“7*T‘*ﬂ

T¥J/ A

Rib No 2

(e
Fig. 3.6

Therefore, in this case, the effective rib spacing
is assumed to be equal to the actual rib spacing, a* = «.
In accordance with equation (3.4) the effective rib
span, 51 , is assumed to be infinitely large.

With these values the effective width, ay , is com-
puted similarly as for Step 1, and the section properties
I, and Sy are determined.

(c) Closed ribs

In a deck with closed ribs the top width of the rib,
a , and the width of deck plate between ribs, e , are
generally different (Fig. 3.6b). Therefore, the con-
tributions of these plate widths to the effective width
of plate acting with the rib are determined separately.

Assuming that all ribs are equally loaded, their
effective spacing equals the actual spacing, and the

effective width, @y 4+ es , may be computed by the
formula

a4+ e="a+%e (3.6)
a €

where, as before, ay.’a and es/e are coeflicients which
may be obtained from Chart 1.

The wheel loads on individual ribs on rigid supports
(Step 1 of the computation) are not equal. How-
ever, in the computation of the flexural rigidity, D, ,
of the substitute orthotropic plate, needed for deter-
mination of the bending moments in closed ribs, the
effective width, ay + e , computed by equation (3.6)
is used, since this value represents a fair average effec-
tive width of plate acting with the ribs affected by
the wheel load. In this case, the effective span, s; =
0.7s, is used, in accordance with equation (3.3).

Thus, the flexural rigidity coefficient, D, , is com-
puted by the formula:

El,

D, P (3.7)
where Iy is the moment of inertia of one rib, based on
the effective width, @y + ep , computed by equation
(3.6).

For the determination of stresses in the rib directly
under the load in Step 1 of the computation, the value
of the effective width, @y’ 4+ e’ , may be obtained with
consideration of the effective rib spacing, similarly
as in the case of open ribs. For this purpose the bend-
ing moment, M, , in the rib directly under load, as
well as the moment, M, , in the adjoining rib must
be computed.

With the values of the bending moments, M, and M,
known, the effective width of plate acting with the
directly loaded rib No. 0 (Fig. 3.6b) is computed by
the formula:

ag’ + ey = g +e—3;e* (3.8)
a e
where
2M,
¥ = e e 3.8a
;’M(} + 1‘/{1 ( )

It should be noted that a variation of the top flange
width, a,” + e’ , of a rib has only a small effect on the
bottom section modulus of a rib. Therefore, if a
more exact determination of the stresses in the deck
plate, acting as the upper flange of the ribs, is not
required, the computation of the adjusted effective
width, as’ + e’ , by equation (3.8) mayv be omitted
entirely, and the critical stresses at the bottom fiber of
the ribs may be computed with sufhicient accuracy with



OUTLINE OF DESIGN METHOD

the section moduli based on the effective width ob-
tained by equation (3.6).

For determination of moments and stresses in the
ribs in Step 2 of the computation {effects of floor beam
elasticity), the Iz and Sy values, based on the effective
width, a¢ -+ e¢ , computed by equation (3.6} should
be used, with s; = «, in accordance with equation
(3.4). Practically, however, it is sufficient to use
the values of Ip and Sy already determined in the
computation of the bending moments in Step 1.

(d) Floor beams

For computation of the dead load stresses and of
the ratio of the floor beam rigidity to rib rigidity the
values of I and Sp are used, based on the effective
width of the deck plate (Fig. 3.7¢),

(3.9)

where s is the actual floor beam spacing and so/s is a
coefficient obtained from Chart 1, using the actual
floor beam span, / , as the effective floor beam span.
This assumes that the floor beams are simply supported
at the main girders. If the floor beams are continuous
or elastically restrained at the ends, an appropriate
value of the effective span, /; , must be used.
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For computation of the live load stresses in the floor
beams the section modulus S’ should be used, based
on the effective width, s¢’, computed with consideration
of the unequal loading of the floor beams

S = 5* - (310)
5
with
2F,
= 3.10a
Fo + Fy ( )

where Fy is the load on the floor beam under considera-
tion and F) is the load on the adjoining floor beam.
However, for practical purposes, it is sufficient in
most cases to use the value Sp , computed under the
assumption of all floor beams equally loaded.

(e) Summary

The section properties of the ribs and floor beams
are computed with an appropriate value of the effec-
tive width of the deck plate, depending on the loading
case.

For convenience, the assumptions and the formulas
used in the computations are summarized in Table
3.3.2.2.

TABLE 3.3.2.2
FLEXURAL RIGIDITY COMPUTATIONS—SUMMARY OF ASSUMPTIONS AND FORMULAS
Line Computatio Effective Effective Effective Width of Plate Values R "
No. pu n Span Spacing (From Chart 1) Needed crmarxs
1 Stresses—ribs on . 2R, 2
. a* = ———a
2 rigid supports s1 = 0.7s 0 Ry, + R, ao’ = ag* ;i Ie', Sk’
~ (from Chart 2)
=
& 2 | Stresses—effects of
o floor beam elas- 1= a* = a a0 = 11a Ir, Sk
ticity
3 | Moments—ribs on a* = a aq €0 Elg
rigid supports s1 = 0.7s o = ¢ “"'{"30:“; +6; IR’Dy=a+e
5 4 Stresses—ribs on a* = a 4o ag g €0
. _ dg ey = a — e
= rigid supports | sy = 0.7s . 2M, a e* Ir', Sk’ Values in line 3 may,
0 € = € .
8 My + M, be used instead
9] f1i 4 and 5
5 | Stresses—effects of ot = a a0 + eo = 1.1(a + ) of lines 4 an
floor beam elas- 51 = © . Ig . Sk
ticity e = I
6 | Relative rigidity | [ | -
2 stresses—dead | /_gee Note s*o=g 5o = 5 & ! Ir, Sr ]i
5 load ‘ § : ‘
&1 |
g 7 | Stresses—live load . 2F, [ " ’ | Values in line 6 may,
R l—see Note = o5 so/ = g¥ 2 ! Ix', S’ | be used instead
Fo + Fy o* N
l ; | ofline 7

Note: Floor beams are assumed to be simply supported at main girders.

beams is to be used.

If this is not the case, the appropriate effective span, /; , of floor




48 ORTHOTROPIC STEEL DECK BRIDGES

3.3.3 Torsional Rigidity

3.3.3.1 Theoretical Background

(a) Introduction

The torsional rigidity of a deck with open (torsion-
ally soft) ribs is small and is disregarded, as explained
in Section 3.2.2.1.

The torsional rigidity of a deck with closed (torsion-
ally sdff) ribs may be considerable. Its value enters
the design computations through the effective torsional
rigidity, H , of a substitute orthotropic plate represent-
ing the actual system.

The general expression for the effective torsional
rigidity of an orthotropic plate is given by equation
(2.2). Considering that the Poisson’s ratio of ortho-
tropic plates representing steel plate bridge decks of
the usual types may be assumed to be zero, v, = », = 0,
as discussed in Section 2.4.1.2, equation (2.2) reduces
to

H=2C (3.11)

The meaning of the torsional rigidity coefficient,
2C, has been explained in Section 2.2.1. It should
be noted that in an ideal orthotropic plate the value
of 2C, represented by the twisting angle, ¢ , results
from two equal contributions to the torsional rigidity
of the plate element in the two perpendicular direc-
tions (Fig. 2.2). However, in a steel plate deck with
closed ribs the torsional rigidity of the system is supplied,
practically, in one direction only by the resistance
of the ribs to the twisting moments M ,, , acting in the
planes perpendicular to the ribs, while the resistance
of the system to the twisting moments M., , acting
in the planes parallel to the ribs is negligible, as may
be visualized by contemplating a small element of
the deck, Figure 2.4a. Therefore, if the actual deck
system is to be represented by an idealized ortho-
tropic plate, the effective torsional rigidity of the ideal-
ized system must be assumed to be equal to one-half
of the torsional rigidity of the ribs per unit width.

(b) Torsional deformation of the ribs

Formulas for the effective torsional rigidity, H ,
presented in Section 3.3.3.2, are based on the assump-
tion that the deck consists of the hollow ribs and the
deck plate only, as shown in Figure 3.6b, and is net
additionally stiffened between the floor beams by
diaphragms or other members built in to improve the
eflective torsional rigidity and the transverse load
distributing capacity resulting from it (Fig. 7.4). It
should also be noted that, in accordance with the
AASHO specifications, the design loads are distributed
in the transverse direction of the bridge by placing
several trucks side-by-side, and, therefore, the addi-
tional benefits obtained from a better load distribu-
tion capacity of the deck are smaller than in the case
where a single truck load is used in the design.

The theoretical torsional rigidity of the ribs, corre-
sponding to their shape and plate thickness, does not
enter the computation of the effective torsional rigidity,
H , of the deck in full amount. It must be reduced,
due to the elastic flexibility of the deck plate between
and above the ribs.

This is explained in Figure 3.7 which shows, in an
exaggerated manner, a cross section between the floor
beams of a steel plate deck with closed ribs deflected
by a load.

If the deck plate were sufficiently rigid, the deflection
line would be smooth, as shown by the dashed line.
In this case the ribs participate in the load distributing
action of the deck to the full extent of their torsional
rigidity.

If, at the other extreme, the deck plate were ab-
solutely soft, there would be no torsional deformation
of the ribs due to load and the torsional rigidity of the
ribs would have no effect on the load distribution
and the stress flow in the deck. In an actual case,
the deck plate has a certain flexural rigidity and, con-
sequently, the ribs are forced to twist. However, the
relatively thin deck plate deforms due to shear transfer
from one rib to the next, and a wavy rather than smooth

Fig. 3.7
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deflection curve results, as shown by the solid line in
Figure 3.7. Consequently, the torsional rotation of
the ribs is smaller than it would be in a system with a
very rigid deck plate, as shown by the dashed line.
This means that in an actual deck structure the tor-
sional rigidity of the ribs, corresponding to their geo-
metric properties, is not fully utilized because of the flex-
ural deformations of the deck plate.

Hinges assumed midway
between ribs

Actual rib rotation

» \
; Rotation in an
Vertical ’/W*A_-idealized system

(b) Moments and shears in a

{a) Deformation of a rib due to
rib due to forces in {a)

shear transfer in the x direction.

Fig. 3.8

The flexural deformations and stresses in the deck
plate are also imparted to the side walls and the bottoms
of the ribs (Fig. 3.8), since the rib walls are rigidly
connected to the deck plate by welds. These flexural
stresses in the direction transverse to the ribs (System
IIT stresses, see Chapter 1) are generally disregarded
in the design, as explained in Chapter 6.

However, the flexural stresses and deformations of
the deck plate and the rib walls are of importance in
determination of the effective torsional rigidity, H ,
of the deck. Thus, the flexural rigidity of the system
in the transverse direction, D, = Dp, disregarded in
the simplified equation (3.1) of the substitute ortho-
tropic plate, enters the computations indirectly, through
the reduced effective torsional rigidity value.

(c) Computation of the effective torsional rigidity

The effective torsional rigidity of the ribs is defined
as the torsional rigidity of an ideal system (as repre-
sented by the dashed line in Figure 3.7), free from
secondary flexural deformations (the wavy line in
Figure 3.7), in which the work of deformation due to
torsion alone is equal to the work of deformation
due to torsion and secondary flexure of the actual
ribs. From this condition of equality of the energy
consumed in both systems it follows that the torsional
deformation of the ribs of the ideal system must be
greater than the torsional deformation in the actual
system, accounting only for a part of the total work
consumed. Thus, with deformation being inversely

proportional to rigidity, the torsional rigidity of the
ideal system, or the effective torsional rigidity of the
ribs, is smaller than the rigidity value obtained with-
out consideration of the secondary flexural deforma-
tions of the deck and the ribs, as has been already
indicated in Section 3.3.3.1b.

The reduction of the theoretical rigidity value,
based on the geometric properties of the rib cross
section, is expressed by a reduction factor, u , which
is smaller than one.

The reduced torsional rigidity of the ribs, computed
in the manner indicated above, is used to obtain the
effective torsional rigidity, H , of a substitute ortho-
tropic plate representing the actual deck.

tn

Y e
=
= il
L—h -—l

r—a i e\TJ a {

| |

u
A = area enclosed by a rib

R

u
A = area enclosed by a rib

fc)

Fig. 3.9. Rib dimensions

Formulas for the reduction factor, p , and the effec-
tive torsional rigidity, H , are given in Section 3.3.3.2.
The derivations of these formulas may be found in
reference [42].

The expressions for the reduction coefficient, u |,
have been derived for simply supported ribs. Since
the actual ribs are continuous over the floor beams,
a substitute simple span, s, , of the ribs has to be used
in the formulas. It is computed from the condition
that the deflection under a wheel load in the midspan
of a continuous rib is equal to the deflection of a sub-
stitute simple span of the length s, .
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For design purposes an average value

52 = 0.81s (3.12)

may be used.

The effective torsional rigidity, H , of a steel plate
deck with closed ribs generally depends on the shape
of the ribs, the plate thickness and the span and spacing
of the ribs (Fig. 3.9).

The value of H increases with the area, 4 , enclosed
by one rib, the plate thickness, ¢, and the rib span, s .
With trapezoidal ribs, the maximum value of H is
reached when the ratio of the bottom width to the
top width of the rib, j/a , is approximately 0.4.

The value of H decreases sharply with increasing rib
spacing, ¢ .

Conversely, the reduction of the effective rigidity is
the smallest when e = 0, since, in such case, the deck
flexibility has little effect on the torsional rigidity.
However, such an arrangement is not necessarily the
most economical.

It should be noted that the load distributing capacity
of the deck in the transverse direction depends on
the relative rigidity ratio, H/D, , rather than on the
magnitude of H alone.

The correctness of the formulas for the effective
torsional rigidity given in this Manual has been con-
firmed by model tests in which the measured stresses
were found to be in a reasonable agreement with the
computed values [42].

3.3.3.2 Formulas for Effective Torsional Rigidity

The effective torsional rigidity of an orthotropic
plate representing a steel plate deck stiffened by closed
ribs is expressed by the formula

e (25)
2 \a+e

effective torsional rigidity of the orthotropic
plate (k-in.%/in.)
G = modulus of elasticity of steel in shear
= 11.2 X 10k/in?
K = section property characterizing torsional resist-
ance, as defined below (in.*)
a = top width of closed rib (in.) (Fig. 3.9)
¢ = width of deck plate between two ribs (in.)
# = reduction coefhcient, depending on flexibility
of the deck plate and the span of ribs {dimen-
sionless)

(3.13)

where

H

The factor 14 in equation (3.13) is due to the con-
version of the rib rigidity into the effective torsional

rigidity of the substitute orthotropic plate, as explained
in Section 3.3.3.1a.

The rib section property, K , is computed by the
formula

44°

K= —r—— 3.14
(/i) + (altr) G
where
A = area enclosed by one closed rib (in.%)
u = developed width of one rib plate (in.)
tp = rib thickness (in.)

tp = deck plate thickness (in.)

Formulas for reduction coeflicients, u , are given below
for trapezoidal and round-bottomed ribs.
The following designations are used:

Etp® Eip?

Elp = = = flexural rigidity of the
12 =9 1092 geok plate (k-in%/in.)
te\* . .
p =1|— = ratio of the rib plate to the
te deck plate rigidity
s2 = 0.81s = effective rib span used in the
computation of the torsional
rigidity

Other designations are explained in Figure 3.9 or in
the text.

(a) Trapezoidal ribs (Fig. 3.9b)

1 GK a w\2[/e\?

= i (e G LG)
— N N[N 24 K

(e S 30

a+j p \a p \a

622

<€12 + c10a +?>] (3-15)

where

_ Qa+))(a+ eyh’ — paile — j)
(@ + DK (@ + g + 2 + B + pa®]

(3.15a)

) (29!

: 2 a a+7j/ 2a
(b) Trapezoidal ribs, uniform deck plate divisions, a = e

1 GK [a\/7\? a—j 2

=1 2N T 1 R

s @)C) L it )+

2 /7 \3 / 2
N (i) + 2 <h—><clz + ces + f&)jl (3.16)
p \a p\a 3
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(2a + ))(2ajh") — pa*(a — j)
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T @ DRE@ g )+ ]

()
g = — [ =
! 2 \a
)\(a——j) 7
tp = —| —") = ——
2 a a-+j

(c) Ribs with rounded bottoms (Fig. 3.9¢)

i

(3.16a)

1_4,.%K ("3’2)<’i)2 J4+L+M+N (317)
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(3.17a)

(d) Ribs with rounded bottoms, uniform deck plate divisions,
a=e
In this case formulas for case (¢) are used with the fol-
lowing simplifications:

AN /1
7= () () 19
Bz;j;-—{zr——(l———cosﬁ)

(e) Ribs with rounded bottoms and vertical sides,
a=7]=2r

In this case formulas for case (¢) are used with the
following simplifications:

g =, h' = h

o]

1——1+95(‘15)(’1)2(J+L+M+N) (3.19)
u El» \842/\s, '
where

4 = h+~’—'”~2

7= () GE)

_ e A+ N /=
M_Sp[24 20+ N + 1 (2>]

}l 2
N = — <612+ a6 + %)

4pa
44 2h
B =a(a+e)—;—1 (3.19a)
3 T 2h h\?
c == T+ TG )2 (0)]
D=3(1+%)
p \ 4 a

s =§-(1+>\)

2h

Cy = —
a

3.4 LOADING
3.4.1 General

3.4.1.1 Dead Load

The dead load of a steel plate bridge deck consists of
the weight of the steel construction of the deck and the
weight of the wearing surface.
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For the purposes of a preliminary computation, the
weight of the steel deck construction, consisting of a
34-in. deck plate, longitudinal ribs and floor beams,
may be assumed to range from 35 to 45 lbs per sq ft
of the roadway area.

The weight of the wearing surface may range from
approximately 25 lbs per sq ft for bituminous wearing
surfaces to about 3 to 5 Ibs per sq ft for thin lightweight
wearing surfaces (see Chapter 8).

3.4.1.2 Live Load

The live load to be used in the design consists generally
of the individual wheel, axle and truck loads, or the
alternative uniformly distributed lane loads, as given
by the AASHO specifications [1].

In the design of the bridge decks the uniformly
distributed lane load never governs, because of the
relatively short spans of the structural members of
the deck.

In Step 1 of the design of the longitudinal ribs of
a steel plate deck (ribs continuous over floor beams
considered to be rigid) the critical loading consists
of the individual wheel loads.

b,

T - | A = actual contact area of one tire
L=
3 at the top of the wearing surface.
Assumed contact area at the top
of the wearing surface, 2¢, X 2g,

l—Assumed loaded area at the top

of the steel deck plate, 2¢ x 2g
P

Fig. 3.10. Wheel load dimensions

rgc;1

In Step 2 of the design of the ribs, considering the
effects of the floor beam elasticity, full axle and truck
loads are used.

Full axle or truck loads are also used in the design
of the floor beams.

The number and position of the individual wheel
loads and the axle and truck loads causing maximum
moments in the various structural members of the
decks with open and with closed ribs are discussed
in Chapter 10.

The rear truck wheels used in the design consist
generally of two tires each (Fig. 3.10). The contact
area between the tire tread and the roadway is an
oval surface, depending on the total load, the dimen-
sions and the inflation pressure of the tire.

The directly loaded area of the steel deck plate
is larger than the contact area between the tire and
the roadway because of the load distributing action
of the wearing surface, depending on its thickness
and rigidity. For asphalt wearing surfaces a 45°
distribution is usually assumed.

For design purposes it is permissible to represent
the actual loaded area of the steel plate deck under
a wheel load by an equivalent rectangular area,
2¢ X 2g (Fig. 3.10), which is assumed to be uniformly
loaded.

000 bs
=

,000 ibs
b~ 32,000 ibs
 ——

6, ibs

GOO(L lbs

8,
32

L—14'————LVaries,l4‘ to 30'»1! ——Z'L-G'—JZ'-G—

(a) Axle loads used in the design of major bridge members

— §_§ é__
EH :
]lr 1 Q

(b) Wheel and axle loads
used in the design of |
fioors (short span
bridge members)

12,00(|) ibs
12,000 ibs

Fig. 3.11, Standard H20-S16-44 truck-trailer loading
(AASHO specifications)

3.4.2 Application of the AASHO Loads in the Design
of Steel Plate Bridge Decks

3.4.2.1 Wheel Loads

Major bridges on the Federal and State highways
are designed, as a rule, for the heaviest type of truck-
trailer loading.

This loading, designated H20-516-44 by the AASHO
specifications, consists of a standard truck with semi-
trailer, having a total weight of 20 4 16 = 36 tons,
or 72,000 lbs, represented by three axles with a variable
spacing, chosen to approximate the dimensions of
tractor-trailers now in use, as shown in Figure 3.11a.
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The 8 kip and 32 kip axle loads, convenient in the de-
sign of the bridge membeérs of longer spans, do not repre-
sent correctly the actual local loading conditions govern-
ing the design of bridge floor members of short spans,
since heavy tires, capable of supporting 32 kip single
axle loads are not practical on trucks, and lighter
tandem axles are used instead. This is reflected in
the alternative design provision of the AASHO Design
Specifications (Eighth Edition, 1961, Section 1.2.5(C),
Figures 5 and 6, Footnote), permitting the use of two
16 kip axles 4 ft apart, or one 24 kip axle, instead of a
32 kip axle, for the design of bridge floors (Fig. 3.11b).
This loading is recommended for the design of the deck
plate and the longitudinal ribs of steel plate decks.

Several State Highway Departments specify using
the 32 kip axle for the floors of bridges designed for the
H20-516-44 loading.

The Bureau of Public Roads specifies two 24 kip axles
spaced 4 ft apart for the design of floor systems of
bridges supporting interstate highways, with the total
truck load corresponding to the basic H20-516-44
loading.

However, these design provisions are expressly
motivated by the need to overcome the deficiencies
of conventional bridge floors [6]. Since steel plate
bridge decks are distinguished by a remarkable re-
serve carrying capacity for local overloads, as has
been shown in Chapter 1, the above provisions should
not apply to the design of such decks.

It should be noted that the 16 kip wheel loads, in
accordance with Figure 3.11a, are not always critical
in the design of the longitudinal ribs of a steel plate
deck.

In the design charts for the bending moments in the
ribs due to the local wheel loads (Charts 3 to 14, Appen-
dix), the effects of both types of loading, Figures 3.11a
and 3.11b, are given.

In the computations of the effects of the floor beam
flexibility on the rib moments and in the floor beam
design the full H20-S16-44 truck-trailer loading, Figure
3.11a, is used.

3.4.2.2 Loaded Area Dimensions

The average actual dimensions of the standard
truck tires (Fig. 3.10), corresponding to the 8, 12 and
16 kip wheel loads of the H20-816-44 tractor-trailer,
are given in Table 3.4.2.2, columns (2) to (6).

The assumed dimensions of the rectangular wheel
load areas, 2¢; X 2g1, at the roadway surface, approxi-
mating the actual tire pattern dimensions, are given
in columns (7) and (8). The dimensions for the 8 kip and
12 kip wheels are assumed, for the sake of simplicity, to
be the same, with the width, 2g, == 20 in., correspond-
ing to that given by the AASHO specifications for
the rear axle wheels of the standard 20-ton truck.

However, for a 16 kip wheel a 24 in. width is used,

which is in better agreement with the actual tire dimen-
sions of the standard tractor-trailer specified for the
design.

The length, 2¢, , is assumed to be 10 in. for all wheel
loads.

To account for the load distribution through the
wearing surface placed on the steel deck, an increase
of the loaded area dimensions by 2 in. in each direction
is assumed as an average value. This assumption
is conservative for the usual 2-in. thick asphalt wearing
surface or for an asphalt plank surfacing, and is some-
what too liberal for the thin epoxy wearing surfaces.

Thus the following design loaded areas, 2g X 2¢ ,
recommended for the design of steel plate decks are ob-
tained: 22 in. X 12 in. for the 8 kip and 12 kip wheels,
and 26 in. X 12 in. for the 16 kip wheels, as shown in
columns (9) and (10) of Table 3.4.2.2.

These dimensions are used in the design charts given
in the Appendix.

3.4.2.3 Impact Factors and Load Reduction
Coeflicients

Impact factors are applied to all live loads in accord-
ance with the AASHO specifications, 1961, Section
1.2.12.

For the design of the deck plate and the longitudinal

TABLE 3.4.2.2
LOADED AREA DIMENSIONS OF TRUCK WHEELS (IN.)
Nominal Dimensions Used in Design

Wheel Actual Dimensions

Loads Top of Roadway Top of Steel Plate

(kips) T L A Ky |74 24 21 2¢g 2
(1) (2) (3) (4) (5) (6) (7 (8) (9 (10)
8 7.0 8.9 62 11 .4 18.4 20 10 22 12
12 7.9 16.8 B85 . 20.7 20 10 22 12
16 10 11.0 110 16.2 26.2 24 10 26 12

Nores: Dimensions are defined in Fig. 3.10. Columns (2), (4) and (5) are average data given by manufacturers for tires corresponding
to nominal wheel loads in Column (1).  Column (3) obtained by dividing (4) by (2).
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ribs the maximum impact factor of 309, is used, be-
cause of the short spans of these members.

For the design of the floor beams the impact factor is
computed by the formula given in the AASHO speci-
fications, using the actual floor beam span.

In the design of the floor beams and in the com-
putations of the additional bending moments in the
ribs due to floor beam elasticity, maximum effects
are usually obtained with a simultaneous loading of
more than two design traffic lanes. In such cases the
load reduction coefficients are applied, as specified
for multiple lane loading by Section 1.2.9 of the AASHO
specifications.

These reduction coeflicients have been considered
in Charts 16 and 32 for floor beam design.

3.5 FOURIER ANALYSIS OF LOADING

3.5.1 Introduction

For the purposes of computation of the bending
moments in the deck with closed ribs, treated as an
orthotropic plate, and for evaluation of the effects of
floor beam flexibility on the moments in the deck with
closed or open ribs, the wheel loads acting on the

X |
Xy } 2go'
P=2gQy I
W e
.
, |

Fig. 3.12

bridge deck must be developed into Fourier series, repre-
senting the actual concentrated loads by a summation
of sinusoidal component loads extending over the
whole width of the bridge deck.

In the system shown in Figure 3.12 a load P =
Qo(xs — x;) may be represented by a series

nwx

Q: = 2. Qusin v (3.20)
S
with
2 *
Q, = —QB f sin el dx
[ Jn {
2 )
= 2Qo [cos T cos rz7rx~j} (3.20a)
nw { [

where

Q. = load per unit width at the location x,
represented by a Fourier series (k/in.)

Qo = actual load on bridge deck per unit width
= P/2g (k/in.)
! = span length = width of bridge deck (in.)

The value of Q, (Q1, Q2, Qs, .. .), in kips per inch,
represents the maximum value (the amplitude) of the
nth sinusoidal component load of the series, as illus-
trated in Figure 3.13b.
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Fig. 3.13

At any point, x, the load intensity, Q,,, of the nth
component load of the series is (see Fig. 3.13b)

nwx

Quz = Qpsin —

1 (3.21)

An example of a load represented by a Fourier series
is given in Figure 3.13. A wheel load of a width 2¢
and of an intensity Qo (Fig. 3.13a) is equivalent to a
series of sinusoidal component loads Qi;, Qsz, Qszr,
... Q,; (see Fig. 3.13b). In Figure 3.13¢ a summa-
tion of the component loads, Q,., is shown for n equal
1 through 13. With »n approaching infinity, the sum-
mation of the component loads approaches the actual
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load shown. In this example all component loads
for even values of n are equal to zero, because of the
symmetry of the loading.

In numerical computations it is convenient to use
the dimensionless Fourier coefficients Q,,/Qo, rather
than the values of Q,.. This has the advantage of
making the intermediate steps of the calculations in-
dependent of the load intensity, Qo, which is introduced
only in the final formulas for the bending moments.

3.5.2 Application of the Fourier Analysis to the
Deck Design

The Fourier analysis of loading is needed in both
Steps 1 and 2 of the design of a steel plate deck with
closed ribs and in Step 2 of the design of a deck with
open ribs,

In the design of the deck with closed ribs as an ortho-
tropic plate continuous over infinitely rigid floor beams
(Step 1 of the computation) the expressions for bend-
ing moments are given as infinite series, as explained
in Section 2.3.

In order to evaluate these expressions, the loading
must also be represented as a series consisting of sinu-
soidal component loads of the type discussed in Section
3.5.1 above.

In Step 1 of the design computations the width of
the deck affected by a wheel load is always much
smaller than the actual width, /, of the deck between
the main girders. Therefore, a substitute width, &,
smaller than /, may be used.

This has the advantage of considerably improving
the convergence of the series, as will be shown in Chap-
ters 4 and 10.

Numerical calculations are further simplified by
using symmetrical loading only. This eliminates the
Fourier coefficients for the even values of n.

Formulas for the Fourier coefficients Q,./Qs needed
for computation of bending moments in closed ribs
are given in Section 3.5.3.

In Step 2 of the computation, evaluating the effects
of floor beam flexibility, it is necessary to represent
the truck loads causing the floor beam deflection by
Fourier series, in order to obtain a substitute loading
proportional to the floor beam deflections at any point
of thé floor beam. This is discussed in Chapter 5.

It is sufficient for design purposes to use only the
first Fourier component load, Q1./Qo, since the effect
of the higher component loads, Qu, Qs , Q«, €tc,
on the floor beam deflections is negligible (see Chapter
5).

Formulas for the Fourier coefficients Q1./Qs needed
for computations of the effects of flexibility of simply
supported floor beams are given in Section 3.5.4.

3.5.3 Fourier Coefficients Q,,/Q, Used in Computa-
tion of Moments in the Orthotropic Plate on
Rigid Supports

In the computation of the bending moments in the
orthotropic plate the Fourier coefficients, Q../Qo,
may be needed for the following cases:

3.5.3.1 One Wheel in Center of the Plate
Strip Considered (Fig. 3.14)

Fig. 3.14

(a) With a substitute span length, & , instead of the
actual main girder spacing, /, as explained in Section
3.5.2, and with the values x; = (b/2) — g and x; =
(b/2) + g (Fig. 3.12), the expression for Q../Qo is ob-
tained from equations (3.20a) and (3.21), for any
point, x , of the span, b,

nz 4 . .
%—0 = sm'—l%g sm—nzj sm’—Z:—x (3.22)
n=1,3,5...

(b) For the point at the center of the applied load (at
the midspan), x = 5/2 , equation (3.22) becomes

Q,,_z 4 | nwg

= - SIn

Qo nw b
n=1,375...

(3.23)

3.5.3.2 One Axle Symmetrically Placed (Fig. 3.15)

Fig. 3.15

(a) For any point, x, the value of Q./Qo is ob-
tained in a similar manner as above,

Qur 8 nwz . nwg | nm , nwx
= — €08 — sin — sin — sin ——
2 b

o ; : (3.24)

n=1,35...
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(b) For the point under one of the wheel loads, with
x = (b/2) — z,

(3.25)

For any point, x,

w16 . . nwd
.Q_Q.O_ = ;Z—;rcos n%zsnl n—zgﬁnn";:‘ sin ,%C (3-26)
n=1,35...

3.5.4 Fourier Coefficients Q,/Q, (Coeflicients for
n = 1) Used in Computation of the Effects of
Floor Beam Flexibility

In determination of the effects of the floor beam
flexibility on the bending moments in the ribs and the
floor beams the Fourier coefficients may be needed for
the loading cases given below.

The formulas are given for any position of the truck
loads on the bridge. However, in design in accord-
ance with the AASHO specifications, the position of
the trucks within the specified design traffic lanes has
to be observed (AASHO specifications, 1961, Section
1.2.6).

3.5.4.1 One Axle in Any Position (Fig. 3.17)

d—
ZTZ
£
5 %

—x l
l 1

Fig. 3.17

(a) With the full effective floor beam span, / , the
first Fourier coeflicient is obtained for any position, 4,
of the truck on the bridge deck, for any point, x ,

Q12 8 mz . wg . md | wx

=2 = - cos - §in — sin —— sin —

Qo  r 1 ! ! !

(b} For a maximum value of the coefficient Q:./Qo

under a wheel, the truck shall be placedat d = (I + z)/2.

With this position of loading, for the point under the
wheel, x =d — z,

z 4 z . z
% = i cos 1% sm%g[l + cos 7~r[—:l
3.5.4.2 Two Axles in Any Position (Fig. 3.18)

(3.27)

(3.28)

Fig. 3.18

(a) For two truck axles in any positions, d; and ds,
for any point, x ,

d d
9———12 = § cos i sin T |:sin7‘r—1 + sin 7r_2] sinﬁ
[ ! {
(3.29)

(b) For two truck axles symmetrically placed, d1 =
d, ds = | — d,equation (3.26) may be used, with n = 1
and b =1[.

3.5.4.3 Many Axles in Any Position (Fig. 3.19)

Fig. 3.19

Similarly as above, for any x,

: 8 d ds
—Qi=——cos7rjsinﬂ—-§[sin7£——l+sinw -+
Qs ™ { { { /

.. +sin ’ffif} sin = (3.30)
l {

Based on the above formulas, design Charts 28, 29
and 32 have been developed, giving the values of
Q1./Qy at specific points for the various cases of loading.
The use of these charts is explained in Chapter 10.



CHAPTER 4

Formulas for Steel Plate Decks on Rigid Supports

4.1 INTRODUCTION

In the first step of the design procedure outlined in
this chapter, the bridge deck, consisting of the deck
plate and the longitudinal ribs, is treated as a continuous
structure supported on infinitely rigid (unyielding)
uniformly spaced floor beams (Fig. 3.1a).

Since the torsional rigidity of the single-webbed
floor beams is negligible, they are assumed to act as
“knife-edge” supports, offering no flexural restraint
to the ribs.

Formulas for the bending moments in the ribs are
based on the simplifying assumptions discussed in
Chapter 3.

4.2 DECK WITH OPEN RIBS
4.2.1 General

4.2.1.1 Differential Equation

With the assumptions D, = 0 and H = 0, applicable
to the deck with open ribs, as discussed in Chapter
3, the differential equation of the orthotropic plate
(2.10) becomes

4

S _ L (4.1)

o D,
which is the familiar equation of the deflection line of a
beam. Thus the analysis of the deck with open ribs
reduces to a linear problem and the ribs may be de-
signed by continuous beam formulas.

4.2.1.2 Carry-over Factor

In a continuous beam of a constant moment of
inertia on uniformly spaced rigid supports the magni-
tudes of bending moments, shears, deflections, etc. in

unloaded panels decrease with a constant coefficient
k (kappa), called the carry-over coefficient, as shown
in Figure 4.1.

If M, is the bending moment at the support m = 0,
then

M1 = KMQ

My = kM, = &M, (4.2)
M3 = KM2 = K3M0

etc.

The value of the coefficient « is obtained from the
familiar three-moment equation, which, for the un-
loaded beam, is

Mg+ 4M 4+ M = 0 (4.3)
or, substituting equations (4.2),
Mo+ 4k + &) = 0 (4.3a)
Hence
k= —2+4+ /3 = —0.2679 (4.4)

4.2.1.3 Influence Lines

The bending moments and reactions of the open
ribs are computed from the influence lines of a con-
tinuous beam.

The influence lines needed are obtained, in accord-
ance with the Betti-Maxwell principle of reciprocity,
as deflection lines of a continuous beam due to unit
deformations. Thus, the influence line for the bend-
ing moment at any point of the continuous beam is
defined as the deflection line of the beam due to a
unit rotation applied at that point (Fig. 4.2a and b).
Similarly, the influence line for the reaction at a support
is the deflection line due to a unit deflection at the
support where the reaction is sought (Fig. 4.2¢).

yay a A A PaY
Fig. 4.1. Bending moments m =3 {2‘ v o 0 1 |2 3
of a continuous beam on !
rigid supports due to a ! !
concentrated load 1 § 1 } S -t 8 = 8 ; 5

57
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e Y Fig. 4.2. Influence lines of a
Point § continuous beam on rigid supports
A
m=4{3 JZ M\/ﬁ 3 4
| 5 » s —.l s s § s -t S—J
(a) Moment at support, Mg
y Y v
1
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——
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m=3 2 1 o} 0 2 3
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2 2
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& o~ = pa S 1 = 7N
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{c) Reaction at support m =0, F,

Formulas for influence lines given in Sections 4.2.2
to 4.2.4 are derived from the known relationship be-
tween the curvature of a beam and the bending moment,
M. In this case, the moments A{ are caused by the
unit deformations, as shown in Figure 4.2,

4.2.1.4 Computation of the Bending Moments in
the Ribs

The bending moments in the ribs depend on the
load P, the rib span s, and the variable load position
along the rib, y. In the computation of the moments
by means of influence lines it is convenient to use the
dimensionless coeflicients y/s and /s, rather than the
numerical values of y, s and 7.

The bending moments are obtained from the general
expression

M="sp (4.5)
s
where /s is the influence line ordinate for a unit span,
expressed as a function of the ratio y/s.
The bending moments acting on one rib, My , needed
for the design of the ribs, are computed by the formula

My = Myui(R/P) (4.5a)

where M. is the moment computed by equation
(4.5) and R/P is the ratio of the load on the rib under
consideration to the total wheel load, which may be
computed by the formulas given in Section 4.2.4.2,
or obtained from Charts 2 or 3.

4.2.2 Bending Moment at the Support of Ribs

4.2.2.1 Concentrated Load at Any Point

(a) The equation of the influence line in panel
0-1 for the moment My at the support m = 0, is

(%), = (%), -
(- SR L) - 22(2)]

2 3
= — 052 + 0.8660 (l) — 0.3660 (1) (4.6)
5 5

s

(hj (¢)

Fig. 4.3. Loads used in the computation of the moment Mgand
reaction £ at support m = 0 of a continuous rib
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(b) For panels 1-2, 2-3, 3-4 ... (m)-(m+1) the
expressions for the influence line are obtained by
multiplication of equation (4.6) by the coefficient
(x)™, where m is the smaller of the two support numbers
enclosing the panel under consideration.

(7). (%), -

y : AN
[- 0.5; + 0.8660 ( ) — 0.3660 <;> ] (—0.2679)™

(4.6a)

v |~

(¢) The maximum ordinate of the influence line
occurs at the location y/s = 0.3804. At this location

M
(—ﬁ> = (3) = —0.0850  (4.6b)
sP /o3 5 /o038

The bending moments Mg due to a concentrated
load P are computed directly from the above formulas.

4.2.2.2 Distributed Load

Formulas for the bending moment Mg due to a dis-
tributed load P of a length 2¢ are needed only for the
load located in the panel 0-1. The effect of a dis-
tributed load in a more distant panel may be obtained
with sufficient accuracy by the concentrated load
formula (4.6a).

(a) The bending moment Mg due to a distributed
load located at a distance y = d from the support m = 0
(Fig. 4.3c) is obtained by evaluation of the influence
line, equation (4.6a) as

(M—S) = —05 (5‘1) + 0.8660 (1)2 — 0.3660 (£>3 +

sP s 5 s .
2

<i) <0.2887 — 0.3660 g-) “.7)

5

(b) The maximum value of the moment Mg is
obtained with the load located at 4 = 0.3804 5. For
this case

M 2
(J) = —0.0850 + 0.1494 <ﬁ) (4.7a)
sP 0,38 $

4.2.3 Bending Moment at the Midspan of Ribs

4.2.3.1 Concentrated Load at Any Point

(a) The equation of the influence line for the bending
moment M, at the midspan of the panel 0-0, for a
load in panel 0-0 (Fig. 4.4a) is

»
|
f\)].f OD
o
&1
+=, D
B )
*__j
1
@ 3
+
b

s

Fig. 4.4. Loads used in the computation of the moment A, at
the midspan of panel 0 - 0 of a continuous rib

_ 1_1___3_[1_ (1)]
T2 264+ x) Ls s
2
= 0.1830 % + 0.3170 (%) (4.8)

5
where y < —
)

(b) The maximum ordinate of the influence line is
at the midspan of the panel 0-0, y = 0.55. At this

location
M,
(_g> =<k) = 01708 (4.8a)
sP/os s Jos

(¢) The equation of the influence line in the distant
panels 0-1, 1-2, 2-3, ... (m)~(m+1), (Fig. 4.4b), is

(&c) =<1c_) _
SP/m 5 ,,,—
3 [_ (2+K)1+_1_<;V_>2_(1—x)<2}_>3:|,(m
54« 6 5 2 \s 6 s
= [— 0.1830  + 0.3170 (1)2 -
s s

0.1340 (%)3] (= 0.2679)" (4.9)
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Fig. 4.5. Loads used in the computation of the reaction Ry
of a rib

Ry
(d)

where m is the smaller of the two support numbers
enclosing the panel under consideration.

4.2.3.2 Distributed Load

The formula for the bending moment M, at the mid-
span of the panel 0-0 is needed for the case of a wheel
load located at the midspan (Fig. 4.4c). For other
positions of the load the moment M, may be obtained
with sufficient accuracy from equations (4.8) and (4.9).

For the wheel load at midspan we obtain
Mc

2
= 0.1708 — 0.2500 < + 0.1057 <3) (4.10)
5 Ry

-
4.2.4 Reactions

4.2.4.1 Floor Beam Reactions on Ribs

In the computation of the floor beam reactions, F,
on the ribs it is sufficient to represent the wheel loads,
P, as concentrated loads.

{a) The equation for the influence line of the reaction
Fy at the support m = 0, for the load in the panel 0-1
= Py =1 —
5

(Fig. 4.3b) is
8+« [y
P 7 + 2x +7'+2K<?>

Fy L3640 <1>2
2 3
=1 — 2.1962 <y> +1.1962 <y—>
K 5

(4.11)

(b) For the load in any distant panel, (m)~(m -+ 1)
(Fig. 4.3a) the equation of the influence line for Fy is

F_ o _f_ 6 \y _3 1)2
P —00_{ 7+2K|:<1+2>S 2<s +
1 ;—K<{_)a:|} -
[— 0.8038 £ + 1.3923 <Z) -
5 5

0.5885 (y )3] (—0.2679)m1

s

i

(4.12)

where m is the smaller of the two support numbers
enclosing the panel under consideration.

(c¢) Reactions Fy, F», F; ... F, at the distant floor
beams due to a load in a certain position are obtained
from equations (4.11) or (4.12) by placing the load in an
appropriate position with respect to the support where
the reaction is sought.

4.2.4.2 Rib Reactions on the Deck Plate

In distributing the local wheel load, the deck plate is
assumed to act as a continuous isotropic plate on rigid
supports (see Fig. 2.7¢).

The rib reactions, or the loads acting on the in-
dividual ribs Ry , Ry ... R, , are computed by the
formulas given below, based on the influence lines,
equations (4.11) and (4.12). The formulas are given
for a distributed load P, having a width, f, smaller
than the rib spacing, a (Fig. 4.5). If the width of the
actual wheel load, 2g, is greater than the rib spacing,
a , the rib reactions are obtained by superposition of
the effects of the loads in the individual panels.

(a) Load in panel 0-1 in any position (Fig. 4.5a)

d\2 4\
Ry = Pl:1 — 2.1962 (—) + 1.1962 (—) +
a a

(é) <_ 0.1830 + 0.2990 g)] o (413)

(b) Load in panel 0-1, at support 0 (Fig. 4.5b)
A% Iy

Ry = P[l — 0.7321 <~) 4+ 0.2990 (—’)] (4.13a)
a a

(c) Load in any panel, (m)~(m + 1), in any position
(Fig. 4.5¢)

d d\? R a\?
Ry = P[—— 0.8038 — -+ 1.3923( > — 0.5885 <v> +
a

a a

<i>2 <0,1160 — 0.1471 ﬁ)} (—0.2679)m1 (4.14)
a a
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(d) Load in any panel, (m)-(m -+ 1), at support
m (Fig. 4.5d)

Ry = P[—— 04019 . + 0.4641 <_§>2 _
0.1471 <f_)3:‘ (—0.2679)m (4.14a)

The above formulas also may be used for the reactions
Ry, Ry ... etc,, if the load, P, is appropriately placed
with respect to the support where the reaction is sought.

4.2.5 Influence Line Ordinates

The ordinates of the influence lines for the bending
moments at the support and at the midspan, and for
the reaction at the support of a continuous beam on
rigid supports, computed by the equations given in
the foregoing sections, are given in Table 4.2.5. The
influence lines are also represented graphically in
Chart 5.

4.2.6 Charts for the Design of Decks with Open Ribs
on Rigid Supports

Charts prepared with the purpose of facilitating
the design computations are given in the Appendix.

In this section the derivation of the charts applicable
to the design of the open ribs on rigid supports and
the rigid floor beams is discussed.

The use of the charts in practical design computa-
tions is explained in Chapter 10.
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Chart 7 gives the effective width ratio of the deck
plate as a function of the spacing to span ratio of the
ribs or the floor beams. The curve shown is based
on the numerical values in Table 3.3.2.1 given and
explained in Chapter 3.

Chart Za, giving the ratio of the load, Ry, on the rib
directly under the load to the total wheel load, P,
as a function of the wheel width, 2¢, and the rib spacing,
a, is based on equations (4.13) and (4.14). It is seen
that Case 1 (wheel centered over the rib) governs in
most practical cases. Assuming the wheel width
2g = 22 in., Case 2 (wheel between ribs) governs only
with a rib spacing a smaller than 8 in.

Chart 2b, giving the effective rib spacing ratio, has
been obtained with equation (3.5), given and explained
in Chapter 3. The rib reactions, Ry and R; , needed in
equation (3.5), have been computed by equations
(4.13) and (4.14).

Chart 3 gives the Ry/P ratios and the load per rib,
Ry, directly for the 8, 12 and 16 kip AASHO wheel loads,
using the widths 2g = 22 in. and 26 in., as discussed in
Section 3.4.2. The 309, impact factor is included.
The curves are based on equations (4.13) and (4.14).

Chart 4 gives the effective rib spacing, a,*, needed
for the computation of the effective width of plate for
the directly loaded rib, for the AASHO wheel loads.
The formulas used in the preparation of this chart are
the same as used for Chart 2b.

TABLE 4.2.5
INFLUENCE ORDINATES FOR A BEAM ON AN INFINITE NUMBER OF RIGID SUPPORTS
For point-designations see Chart 5, Appendix
Point J ; P05 04 | o l 0.2 | a1 | oo
S - - ;
n¢/s-Moment at Midspan | 40,1708 | +0.1239 | +0.0834 | +0.0493 J +0.0215 f 0
i f | |
Point | 0.0 0.1 ¢ 0.2 0.3 | 0.4 05 . 06 | 67 | o8 ]1 0.9 | 1.0
et e e e - ; - . ‘ | | ; ,,,,,,, ﬁ
: . ! | ;
7e/s-Moment at Midspan | 0 —0.0153 | ~0.0250 | —0.0300 ;| —0.0311 | —0.0290 | ~0.0246 | —0.0187 ’ —0.0121 | —0.00% | o
; } . | : '
ns/s~Morment at Support ‘ 0 ~0.047L | —0.0683 | ~0.0819  ~0.0889 | —0.0792 . -0.0673 | —0.0512 | —0.0331 | —0.0154 0
{ |
#-Reaction ‘ 1 #0.9792 - 409217 | -h0.8346 | +0.7252 ' 46,6005  +0.4678 | +0.3342 ] +0.2060 | +0.0931 | ©
| | ¢
Point | 1.0 1.1 1.2 O N T P s W A Y 2 P 1.9 2.0
n¢/s=Moment at Midspan ‘ 0 +0.0041 } +0.0067 | +0.0080 © -0.0083 : +0.0078  +0.0066 & +0.0050 . -+0.0033 . 4+0.0015 0
] ! ‘
7s/s-Moment at Support | 0 +0.0H2 | 400183 400220 | +0.0227  40.0212 | +0.0180  $0.0137 | +0.0089 | +0.0041 0
9-Reaction P —0.0671 . =0.1098 | —0.1317 © —0.1364 | —0.1274  —0.1082  —0.0823 | —0.0553 | -0.0247 @ 0
Point ! 2.0 21 0 22 23 L 2.4 2.5 26 27 | 2.8 2.9 3.0
U . — 1 . - i+ e e . i
| i
e/5-Moment at Midspan | 0 —0.0011 | —0,0018 ' —0.0022  —0,0022  —0.0021  ~0.0018 : —0.0013  —0.0009  —0.0004 0
ns/5~Moment at Support } 0 —0.0030 | —0.0049 ' —0,0059  —0,0061 © —0.0057  —0.0048  —0.0037 ' -—~0.0024  —0.0011 )
|
9-Reaction o 40,0180 4+0.6204  40.0353  4+0.0366  -+0,0341  40.0290  +0.0221  +0.0145  4+0.0066 0
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Chart 5 represents graphically the values of the in-
fluence ordinates for the bending moments at the
midspan and at the support, and the reaction at the
support of a continuous beam on rigid supports, given
in Table 4.2.5. The values of the moment ordinates
have been computed by equations (4.6), (4.6a), (4.8)
and (4.9). The reaction ordinates have been ob-
tained from equations (4.11) and (4.12).

Chart 6 gives the total value (over the entire effective
width of the bridge deck) of the positive moment at
the midspan of the deck between two floor beams
caused by one wheel load, or a group of wheel loads
aligned in the longitudinal direction of the bridge,
as shown. The curves have been computed by equa-
tions (4.8), (4.9) and (4.10).

The loads used are in accordance with the AASHO
design specifications, as discussed in Section 3.4.2.

The wheel loads placed at the location of the maxi-
mum positive moment (midspan, point “C’) are con-
sidered to be distributed over the length 2¢ = 12 in.
The wheel loads at other points are treated as con-
centrated loads.

The loading cases a, b and ¢ represent wheel loads in
the deck panel under consideration. In the casesa,, b,
and c¢; additional effects of the rear and the front
wheels in the more distant panels are considered. The
rear wheels are placed in such a position, within the
variable 14-ft to 30-ft distance from the center wheel, as
to produce the maximum moment at point “C.” The
effect of the front 4 kip wheel, at the fixed distance of 14 ft
from the center wheel, is included only if it produces a
positive moment at “C.” It is seen that the effect of
the wheels in the distant panels is not very large, and
does not exceed 7% of the effect of the center wheel alone.

The choice between the loading a, b or ¢ and the
loading a; , b, or ¢, is determined by comparison of the
effects of these loadings, with consideration of the floor
beam flexibility.

The 309, impact allowance has been included.

It should be noted that Chart 6, as well as Charts
7 and 8, giving the values of the fofa/ moment at the
midspan or at the support of the deck panel, are equally
valid for the deck with open as well as closed longi-
tudinal ribs. However, these charts can be directly
used for the design of the open ribs only, by multiplica-
tion of the total moment values given in these charts
by the Ry/P ratio given in Chart 2a or 3. The moment
per rib in the closed system, depending on the rigidity
ratio H/D, , cannot be obtained from these charts.

Although the spans of the open ribs are usually well
under 10 ft, the range of Charts 6, 7 and 8 has been
extended up to s = 25 ft, in the same way as the
charts for closed ribs. Thus, these charts may also be
used in the design of conventional bridge stringers.

Chart 7, giving the values of the total negative moment
in the deck at the floor beam caused by the wheel
loads shown, has been computed by equations (4.6)
and (4.6a). All wheel loads are considered to be
concentrated loads.

For other comments see the discussion of Chart 6.

Chart 8, giving the values of the negative moments at
the midspan and the positive moments at the support
of the ribs, is presented for the purpose of computing
the alternating stresses in the ribs under moving loads.

Chart 15 gives the maximum floor beam reaction,
Fy, expressed as the ratio, Fy/P, of the reaction to the
axle load of one vehicle. The floor beam is con-
sidered infinitely rigid.

Case B represents the standard H-S truck of the
AASHO specifications. The maximum reaction, Fy ,
is obtained with the closest specified axle spacing of
14 ft.. The critical locations of the truck have been
determined by means of the influence line, Chart 5.
The values for the curve are computed by equations
(4.11) and (4.12).

Chart 16 is presented to facilitate the computation
of the maximum moment in the rigid floor beam.
The maximum moment occurs under the wheel of the
truck placed in an inside lane of the bridge. In com-
puting the moment values, the trucks have been placed
in such positions in the transverse direction of the
bridge as to cause the maximum value of the moment
under the critical wheel. The position of the trucks
within the AASHQO design lanes, W, and the load
intensity reduction due to the multiple lane loading,
in accordance with the AASHO specifications, has
been taken in consideration. For bridges with 4 and
more traffic lanes, a 4-ft wide center mall has been
assurmed.

4.2.7 Design of the Open Ribs on Rigid Supports
with Consideration of the Effects of the
Deck Plate Rigidity, Dp

4.2.7.1 General

The formulas for the rib reactions on the deck
plate, Ro , R: , . R,, given in Section 4.2.4.2
and Charts 2, 3 and 4, are based on the as-
sumption that the wheel load distribution to the in-
dividual ribs depends only on the loading width and
the rib spacing and does not depend on the rigidity
of the deck plate, Dp , since both the flexural rigidity,
Dy , and the deflection of the loaded rib relative to
the adjoining ribs are small and may be disregarded
in the usual cases. Thus, the deck plate is assumed
to act as a continuous member supported on rigid
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Fig. 4.6. Longitudinal ribs acting as elastic supports of the
deck plate

(inflexible) ribs, and the rib reactions are computed
accordingly (Fig. 2.7c).

However, with longer rib spans or a thick deck plate,
the effects of the deck plate rigidity and the rib flexi-
bility on the load distribution may have to be considered.
In such cases the deck plate acts as a continuous member
on elastic supports, relieving the rib directly under the
load and distributing the load on the adjoining ribs,
as shown in Figure 4.6, and the computation in accord-
ance with the simplified procedure may be too con-
servative.

If a more accurate computation is desired, the moment
relief in a rib, A’Mj, due to the rib flexibility may be
computed by the formulas given below and subtracted
from the value of the moment computed for the rigid
rib by the formulas given in the foregoing sections of
this chapter.

4.2.7.2 Formulas for the Moment Relief, A’M

The computation of the moment relief in the rib,
A’Mp, is based on considerations similar to those
used in the computation of the moment relief, AM, ,
in the flexible floor beams, as explained in Chapter 5.
The formulas are similar except that the ribs are treated
here as the “floor beams” of Chapter 5, and the deck
plate as the “ribs,” with the appropriate values of the
spans and rigidities.

(a) The reduction of the positive moment, A"Mpe, at
the midspan of the rib, due to the elastic flexibility of
the ribs under a wheel load at the midspan (Fig. 4.6b)
is computed by the formula

512Q1y<R0 - Rm-—)
AMgpe = =) ={—= — -— ¢ 4.15
vo = Qo (W) (P~ £Ea) e
with
P
QO, = - <4‘153.)
2¢

The length s; is the equivalent simple span corre-
sponding to the actual span, s, of the continuous ribs

sy = 075 (4.16)

The load Q) in equation (4.15) is the loading per
unit length at the location y of the first component load
in the Fourier analysis of the loading in the y-direction,
comparable to the value of @y, in Figure 3.13.

Corresponding to equation (3.23) the coefficient
Q1,/Qq 1s expressed by the formula

Qv _ 4. ¢
Qo, ka 51

Ro, Ry ... R, are the rib reactions on the deck
plate, computed under the assumption of rigid ribs.

The values of &, are the influence line ordinates for
the reactions of a beam on elastic supports, which
may be obtained from Chart 19 as a function of the
relative rigidity coefficient, v’.

In this case, the value of v’ expresses the relative
rigidity ratio of the deck plate and the ribs and is given
by the formula

(4.17)

3 4
, tp S

=—r 4.18
10.921 & (+.18)

Y

where

tp = deck plate thickness

Iy = moment of inertia of one longitudinal rib,
including the effective width of plate

s2 = 0.81s = equivalent rib span computed by
equation (3.12)

(b) The reduction of the negative moment, A'Mpg , at
the support of the ribs, due to the elastic flexibility of
the ribs, may be computed by assuming, with accuracy
sufficient for design purposes, that it is proportional
to the moment reduction, A’Mpge, at the midspan,
computed by formula (4.15).

Thus, the value of A’Mgs is obtained from

M
AIMRS = A’MRC —§

M. (4.19)

where Mg and M. are the positive and the negative
moments, respectively, obtained by the simplified
procedure, as given in Sections 4.2.1 to 4.2.6.

4.2.7.3 Criteria for Determination of the Error
Due to the Simplified Computation of the
Moments in Ribs

In the design computations the following approximate
criteria, based on an average width of wheel load of
24 in., may be used.
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The moment reduction in the longitudinal rib, A’Mg |
due to the rib flexibility, will be smaller than 39, of
the moment computed by the simplified procedure
(Sections 4.2.2-4) if the relative rigidity coefficient,
v’, does not exceed the following values:

v' £ 0.006
v’ £ 0.004

(4.20)
(4.20a)

with ¢ = 12 in.

with ¢ = 16 in.

4.3 DECK WITH CLOSED RIBS
4.3.1 General

4.3.1.1 Differential Equation and Its Solution

With the assumption D, = 0, the admissibility of
which has been discussed in Section 3.2.2, differential
equation (2.10) of the orthotropic plate reduces to
equation (3.1).

In the derivation of the formulas for the influence
surfaces, used in the computation of the bending moments
in the ribs, only the homogeneous equation of the
unloaded plate is needed. The homogeneous equation
corresponding to the non-homogeneous equation (3.1) is

4. 4,
Ow 4 oy oW

D, 4 Ox2 Qy?

=0 (4.21)

The general solution of this equation can only be
given as an infinite series (see Chapter 2)

(4.22)

with

Wy =
(Cin sinh any + Cuy cosh ayy + Cay ctny + Can) sin "—1;;’-‘
(4.22a)

where

nr  [2H

Y 4.23
a » Vb, (4.23)

Cin, Con, Csyy Cyy, are the integration constants to
be determined from the boundary conditions for each
term, n , of the series.

In the following formulas the subscripts n , denoting
that the constants a and C are functions of the number
n , are generally omitted for convenience.

The derivatives with respect to y of the function w,
are

w = a(C, cosh ay + Cysinh ay + C3) sin n_'zzc
w' = a*(Cysinh ay + C; cosh ay) sin rz_;z
(4.24)
i . nmx
w = a®{C, cosh ay + C:sinh ay) sin 5
w = a*{C) sinh ay + C; cosh ay) sin rf;_x

4.3.1.2 Sinusoidal Affinity between the Loads and
the Deformations, Shears and Moments

In the analysis of the deck the actual applied load is
represented by a series of sinusoidal component loads
Qur = Qusin (nmrx/b), extending over the width, & , of
the deck, as explained in Section 3.5.

It is the property of a sinusoidal loading (force or moment)
applied across the width, b, of a plate simply supported
along the edges x = 0 and x = b, that the deflections,
rotations, shears and bending moments in the y-direction
caused by it at any location, y , in any panel of the
plate, are also sinusoidal and have the same frequency
in the x-direction as the applied loading (Fig. 4.8b).
This becomes apparent by observing that the expres-
sions for w and its derivatives with respect to y , deter-
mining the values of the rotations, moments and shears
in the y-direction, contain the function sin(nmwx/b).

The sinusoidal affinity between the loading and
the deformations is an important factor in the deter-
mination of the influence surfaces (Section 4.3.2).

4.3.1.3 Carry-over Factor

The carry-over factor, x , needed in the analysis of a
continuous orthotropic plate, is obtained from the
three-moment equation, by considerations essentially
similar to those used in determination of the carry-over
factor of a continuous beam (Section 4.2.1.3).

In order to find the expression for the carry-over
factor, x , a simply supported plate panel 0-1 is con-
sidered (Fig. 4.7a).

At the right edge of the panel a sinusoidal bending
moment, M; = M,sin (nwx/b), is applied, which is
distributed along the entire length, b, of the support
and has the maximum value, #;, at the location
x = b/2n.

The rotations at supports m = 0 and m = 1 due to
moment M, are computed from equations (4.24), with
integration constants obtained from the boundary
conditions
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with the result:
M 1 Mt
Cl = ! U C;; = ‘I —

D, o?sinh as D, os

CO=C4:O

with the value of « defined by equation (4.23).
With the above values of constants, the expressions
for the rotations due to the moment M at supportm = 1

are:
. M11< 1 1)
wy = —~ — —| = - —
D, a \sinh as  as
M11< 1)
wy, = — — —|cothas — —
D, o as

If bending moments are applied at both supports of
the plate, m = 0 and m = 1 (Fig. 4.7b), the values of
the rotations at each support are obtained as functions
of both applied moments, M, and M, , by superposition
of the above expressions.

The rotations at support m = 1 of the two adjoining
panels of the plate may be expressed as a function of
the moments M, and M, in panel 0-1, and a function
of the moments M, and M, in panel 1-2. From the
condition of equality of the rotations w';;, and w'1g in
a continuous plate, the three-moment equation of an
unloaded continuous plate is obtained as

My + 2kM; + My = 0 (4.25)
where
th as — 1 '
k= S“L*ﬂ__ (4.26)
(44
at=1- -2 (4.27)
sinh as

If a sinusoidal moment, Mg, = Mo,sin (nwx/b), is
introduced at the support m = 0, the moments at
the more distant supports, m = 1, 2, 3 ... decrease
by a carry-over factor, «, similarly as in the case of a
continuous beamn (Fig. 4.1).

M, = k,M,,
Mo, = k., M1, = k.2 My,

(4.28)

4

erc,

By substituting equations (4.28) into (4.25), the
carry-over factor is obtained as

kn = —k + Vi — 1 (4.29)

It is seen that the carry-over factor, k,, has a different
value for each term, n, of the solution of the plate
equation (4.21). Generally, the value of x decreases
rapidly with increasing n. Thus the effect of the higher

_ . nmx
M= M sin 5

m:O% s m=1

m= OA\_/M WZ
[ S 1 r< 1

()
Fig. 4.7

component loads on the bending moments in the
distant panels (see Sections 4.3.3 and 4.3.4) is not very
significant.

4.3.2 General Expressions for the Bending Moments

4.3.2.1 Bending Moments M, in a Continuous
Plate Due to Sinusoidal Loading

The method of deriving the general expressions for
the influence surfaces for the bending moments of a
continuous orthotropic plate is essentially similar to
that used in the derivation of the influence lines of a
continuous beam (Section 4.2.1.3).

The basic system used in the derivation is shown
in Figure 4.8.

First, the expression is obtained for the bending
moment, M,, at any cross section, y = constant, of the
plate, due to a sinusoidal line load extending over
the entire width, #, of the plate, located at any
position, y .

At the cross section where the bending moment is
sought, designated as line 1-1, a hinge is assumed,
transmitting shear but no moment.

A sinusoidal unit moment, 1{sin(nwx/b)], is applied
at the hinge 1-1, (Fig. 4.8a) and a sinusoidal unit
line load, 1[sin(nwx/b)] is placed at any location, y,
designated as line 2-2 (Fig. 4.8b). Both loadings
cause deflections and rotations that change sinusoidally
across the width, &, of the plate, as pointed out in
Section 4.3.1.2. In Figure 4.8 the sinusoidal loads and
deformations are illustrated for n = 1; the loads and
deformations for higher values of n may be easily visual-
ized.
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The following deformations are needed:

B, sin (nwx/b) = rotation at 1-1, with the maximum
value of dy,x at the location x = b/2n, due to the
sinusoidal unit moment at 1-1.

B3, SIN (nwx/b) = rotation at 1-1 due to the sinusoidal
unit line load at 2-2.

dqn sin (nax/b) = deflection at 2-2 due to the sinu-
soidal unit moment at 1-1.

It can be shown that

(4.30)

6217: = 01211

Any sinusoidal load, Q = Q, sin (nwxx/b), applied at
2-2 causes a sinusoidal rotation at the hinge 1-1 equal to
Q, s, sin (nxx/b). In order to eliminate this rotation,
to satisfy the condition of continuity of the actual plate
at 1-1, a moment M, = ], sin (nxx/b) must be intro-
duced at 1-1 of such a magnitude as is necessary to
cause at 1-1 a rotation equal and opposite to that
caused by the load, Q.

Thus, the moment at 1-1 is obtained from the condi-

tion

noy

Unit rotation ,1-sin 5

Fig. 4.8.

_ nwx nwx

a1 sin {— = — QuB12 sin —:— (4.31)

By substituting 8,1, = ¢, (equation 4.30), and

M,sin (nwx.'b) = M, , the following expression is ob-
tained :

5217; . nrx

sin —

alln b

M, = —Q, (4.32)

In order to find the geometric interpretation of the
ratio 8s1,/%11, in equation (4.32) a sinusoidal unit
rotation, 1(sin (rwx/b)], is applied at 1-1 (Fig. 4.8c).

Referring to Figure 4.8a, it is seen that the unit
rotation at 1-1 can be expressed as a function of the
bending moment M, sin (nrx/b), required to sustain it,

1 (sn ™) = Mugusasin "
Thus, the deflection at 2-2 may be given as

. nEx . nmx
Asy, Sin T = Mb91, sin —

il

nnx

b

. nmx
Moment M,sin ra needed
to sustain unit rotation at 1-1

nmx . nwx
% =M8,,,sin -5 =

8 nux
2in si

l9lln b

fc)

Ay, = amplitude of the deflection

hine at 2-2 =1,

-
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It is seen that the ratio 8a1,/311, represents the maxi-
mum ordinate (the amplitude}, As,, of the deflection
of the plate at Section 2-2 caused by a sinusoidal unit
rotation 1 [sin (nmwx/b)] at Section 1-1.

With the value of —As, designated as the influence
ordinate, 7,

do1n
_ = —Asy = 1y (433)
t}lln
equation (4.32) may be expressed
M, = Qusin "2, (4.34)

Thus it is shown that the bending moment in the y-
direction at any point, x, of a chosen line, y = constant,
of a continuous plate due to a sinusoidal load in any
position, y, is given by the magnitude of the load at
the same value of x multiplied by the influence ordinate,
7., which is a function of the position of the load, y,
only, and is not a function of x. Therefore the expression
for 5, may be called the influence line for the moment
in the plate. Thus, the determination of the bending
moments in the plate reduces to a one-dimensional
problem.

4.3.2.2 Bending Moments in the Deck Due to
Actual Loads

The actual deck loading, which is not sinusoidal, is
expressed through the Fourier analysis as a summation
of sinusoidal component loads, as discussed in Chapter 3,

nwx

Q: = Y Qysin - (3.20)

The total bending moment in the deck is then ex-
pressed as the sum of the moments, equation (4.34),
due to the individual component loads,

nrx

M= 3% Q,sin — 7, (4.34a)
n=1 b
or, using the designation
Q, sin nTrx = Q.

and introducing the dimensionless ratios Q,;’Q¢ and

/
Nn/ S,

M= Qs Y Qo 1 (4.35)
n=1 QO $
Equation (4.35) gives the value of the hending

moment M, per unit width of the plate at any loca-
tion, x.

The coefficient Q,,/Qs, defined by the formulas
given in Section 3.5.3, denotes the loading at the loca-
tion, x, at which the moment is computed.

The bending moment acting on one rib of the actual
steel plate deck 1s usually obtained by multiplication
of the moment per unit width, computed by equation
(4.35) at the location x, corresponding to the center
of the rib, by the width of the rib, ¢ + ¢, (Fig. 2.8)

Mg = Mla + ¢) (4.35a)

A more accurate value may be obtained by integra-
tion of the moment distribution curve, MM, over the
width of the rib. The general expression for the
moment in one rib then becomes

a+e
e 2
MR=QOSZ7"” Q"_I

n=1 § x=f_a;-e Qo

x o= f 4

de  (4.36)

where f designates the location of the center line of the
rib where the moment is sought.

b
/.r (71511 = deflection profile at =50
/ X 7
6, = 1-sin nmx
o —_ e 3 — e
f Y -+ ¥ ¥——F Y

m=| /\' 1 2

g 8

ine at which bending moments Mg are sought

Fig. 1.9

If the loading consists of a single wheel placed at
x = b/2 (Fig. 3.14) and the moment is sought in the rib
located directly under the load, f = #/2, the coefficient
Q../Qq is expressed by equation (3.22). Then equation
(4.36) becomes

= 0. 8b | nmg

Mg = Qos 3, ~ sin — Smﬁ"f_(ﬁ_'*'_")

4.36
no1 § (nm)? b 2b (4.36a)

The moment obtained by equation (4.36) is generally
smaller than that computed by equation (4.35a), as
discussed in Section 2.4.1.3. However, it should be
noted that the actual stresses in the bottoms of the ribs
may be somewhat higher than those corresponding to
the moments computed by equation (4.36), due to
the effect of the System III stresses in the rib walls
(see Chapter 6).

For design purposes the values of bending moments
in the deck are needed at the supports (moments Mg,
Fig. 49) and at the midspan between the supports
(moments M, Fig. 4.10).

The expressions for the corresponding influence
lines, ng, and 9, , are given in the following sections.
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4.3.3 Bending Moment at the Support, M

The influence line, n,, for the moment at the support
m = 0 is obtained as the profile at the [ocation
x = b/2n of the deflection surface caused by a unit ro-
tation 1 [sin (nwx/b)] at the support m = 0 (Fig. 4.9),
as explained in Section 4.3.2.1.

The moment at support 0, My, = Mq,sin (nwx/b),
necessary to produce the unit rotation, is found to bhe

nmwx K D,a% | nmx

Mo,, == Mon Sin T == (T—:——K?—):’F sm—b—

and the corresponding moment at support 1 is
Mln = K M()n

With these moments applied at the edges of the plate
panel 0~1, the four boundary conditions are obtained

y =20 w =0 M = M,,
y =3 w =0 M= M,

from which the four integration constants in equation
(4.37) of the deflection line, 54, , are computed.

The equation for 5y, , in any panel of the plate, is
the same as equation (4.22a), except for the term
sin (nwx/b).

For convenience, designations of constants in equation
(4.22a) are changed from C to C’, resulting in

Ng, = Ci' sinh oy + Co' cosh ay + Cy'ay + C,/  (4.37)

By introducing the dimensionless influence ordinate,
Ns,/$ and expressing the constants in terms more
convenient for numerical computations, equation (4.37)
may be given as

M *
Tsn _ 200 im (Clsinhay + Carcosh ay + C3 2 + c,)
$ $ s
(4.38)
where
— h
¢ = M Cy = —1
sinh as (4.39)
Cy=x—1 Ci=+1
M()* 1 K
= e 4.40
$ a* (1 — &%) (4.40)

The parameters o , a* and « are defined by equations
(4.23), (4.27) and (4.29), respectively. They are
functions of n , and have to be determined separately
for each value of n used in the computations. It should
be noted that for a symmetrical loading only the odd
valuesofn (n =1, 3, 5...) are needed (see Section 3.5.1).

The ordinate y , determining the position of the
load, is always measured from the support with the
lower number (Fig. 4.9). The parameter m denotes

the smaller of the two support numbers enclosing the
plate panel under consideration.

In computation of the moment at the support the
effect of the wheel load distribution in the longitudinal
direction (dimension 2¢, Fig. 3.10) is negligible, and
the individual wheel loads are treated as line loads
in the x-direction, represented by the sinusoidal com-
ponent loads, Q,., as discussed in Chapter 3.

The bending moment M s per unit width of the plate,
at the support, at the location x, is computed by formula
(4.35), by substituting 7, = ng, , from equation (4.38).

Computation shortcuts applicable in the numerical
determination of the moment Mg are given in Sections.
4.3.5.2 and 4.3.5.3a.

4.3.4 Bending Moment at the Midspan, M,
4.3.4.1 Influence Line

The influence line, 5, , for the moment at the mid-
span of the panel 0-0 is obtained as a profile at the
location x = b/2n of the deflection surface caused by a
unit rotation, 1 [sin (nwx/b)], applied at the midspan of
the panel 0-0 (Fig. 4.10).

x Line at which bending
/ (moments Mg are sought

7/ nmx
0, =1-8in 5

/
/
iV L Y 3
m =|0 v 0 g 1
' . b
% % Nen = deflection profile at =5y

Fig. 4.10

The moment at the support 0, My, = Mo, sin (nrx/b),
corresponding to the unit rotation of the plate at
y = 5/2, is found to be

— nmwx K nmx
Moy = Mo sin = = in -
’ S T 2a (1 < «) cosh (@s/2) T

with
a*

2
D, o®s

ay =
The boundary conditions at the edges y = 0 and
y = 5/2 of the half-panel considered are:
y = O w = 0 M == 1M07l
y = 35/2 w' = Ygsin (nrx/b) V* = 0

The magnitude F'* is the substitute shear, representing
the combined shear and the twisting moment, which
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have to be equal to zero at y = 5/2 (Kirchhoff’s bound-
ary condition).

From the above boundary conditions the four integra-
tion constants in the expression for the deflection line,
New » in the panel 0-0 , are computed.

The general form of the expression for 7., is the same
as for 1, , equation (4.37).

The formulas used in the design computations and
the values of constants for the two basic cases, (a) load
in panel 0-0 and (b) load in other panels, are given
below.

(a) Load in panel 00

For the load in panel 00 (Fig. 4.4a) the dimension-
less influence ordinate 7., /s may be represented in a
form convenient for numerical computations as

e, Simhay
s 2as cosh (as/2)
My* .
—— (C, sinh ay 4+ C:cosh ay + Ciay + Cy)
s
(4.41)
ithy < d
wi —
7572
where
C, = tanh(as/2) C; = —1
(4.42)
Ca = 0 C4 = +1
My* 1
LA . (4.43)

s a*(1 — x) 2 cosh (as/2)

The parameters a, e* and « are defined by equations
(4.23), (4.27) and (4.29), respectively, as in Section
4.3.3.

(b) Load in other panels

The formula for the influence ordinate 4,,/s in
panels 0—1, 1-2, etc. (Fig. 4.4b) is given by equation
(4.38), the same as for the influence ordinate of the
moment at the support, 5., /s , with the values of the
constants defined by equations (4.39), except for the
value of the moment M,*, which, for 9, /s, is given by
equation (4.43).

The bending moment M., at the midspan of the
plate at any location x, is computed by formula (4.35),
by substituting %, = 9., from equation (4.41), in
conjunction with equations (4.42) and (4.43), or (4.39)
and (4.43).

4.3.4.2 Bending Moment Due to a Distributed
Load

The bending moment M¢, at any location x at
the midspan of the plate, due to a distributed load

Lt s /
s
s/
‘\/l // i’
dv
)] ik y
T( ;_ﬂ Tota! whee’zf load P =2g @,
/ / C*»Z—#/w / f
Y A/
m=0 4]

Fig. 4.11

placed at the midspan (Fig. 4.11), is obtained by in-
tegration of the influence line 5, , equation (4.41),
over the length of the loading, 2¢.

The load per unit width of the deck on the elementary
strip, dy , at any point y under the distributed load,
P, is dQ=(Qo/2¢)dy , or, expressed by sinusoidal com-
ponent loads

QO d}’ Onz
S
[ Qo
The moment, dM., due to the elementary load, 4Q,
is, by equation (4.35)
_ @55 O
26 Qo

By integrating over the length 2¢, the expression for the
moment is obtained as

y=5/2
MC = Zf dMC
y

dQ = (4.44)

M, Ten gy (4.45)
k)

=(s/2)~¢
s nz y=s/2
= Q_° > Q_ Ten dy
¢ Qo Jy=/m~c s
Qnr MCn
= $ —_ 4.46
Qos 2 2 Qs (4.46)

where M,/Qs represents the dimensionless component
moment, expressed as

_ o ["(é - C)J +

Men B 1.
Qs 2as ac cosh (as/2)
(4.47)
M* [1 sinh ac ]
s ac cosh (as/2)

with the value of My*/s defined by equation (4.43).
4.3.5 Shortcut Formulas for Numerical Computations

4.3.5.1 General

In the numerical determination of the bending
moments by formulas given in Sections 4.3.1 through
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4.3.4, the accuracy to four decimal places will be gener-
ally required in the intermediate steps of the computa-
tions.

The various constants and parameters occurring in
the formulas generally involve hyperbolic sines and
cosines of the arguments w,s, a,y, a,s/2, etc
The numerical values of these functions increase very
rapidly with the increasing values of the arguments. For
example, the value of sinhx for x = 7.5 is 904.02.. .,
and for x = 50 its value reaches the order of 5 X 10%.

If hyperbolic functions occur in the denominator,
the expressions in which they occur become equal to
zero, within the computation accuracy, for sufficiently
large arguments. Thus some formulas may simplify
considerably.

If large values of two hyperbolic functions have to be
subtracted (as, for example, in formula (4.38)), a
direct computation might become quite difficult and
might lead to a considerable error, since the values of
hyperbolic functions for larger arguments are given in
the tables in intervals too large for a sufficiently accurate
interpolation. In such cases the numerical computa-
tions are simplified and much more accurate results
are obtained by application of the shortcut formulas
given below.

The term of the series, n , at which the simplified
formulas are applicable, depends on the formulas and
the values of the parameters s, & , y and H/D, and on the
desired accuracy of the computation, to be determined
by the designer.

The simplified formulas listed below are accurate to
4 or 5 significant figures for the arguments equal to or
larger than the values given with the formulas.

4.3.5.2 Constants
a* | equation (4.27):

o* = 1.0000 for as > 13.3 (4.48)

k, equation (4.26):

-1
E= for as > 5.3 (4.49)

a¥*

k= as—1 for as > 13.3 (4.49a)
&, equation (4.29):

1
K = — for as 2 16.8 (450)
2k

4.3.5.3 Moment Formulas

(a) Moment at support

In equation (4.38) the following simplification mav
be substituted:

Cy sinh ay + C; cosh av =
—eTW — T T — 2T for ay > 4 (4.51)

Equation (4.40) simplifies to
M*

N

= x for as > 17 (4.52)

(b)  Moment at midspan, concentrated load in panel 0-0

In equation (4.41) the following expressions may be
used

sinh ay e~ als/BD =
= fi /2 > 12
2as cosh{as/2) 2as oral(s/2) +y1 2
(4.53)
Cisinhay + Cycoshay = —e™ ¥ — (~al=v (4.54)
for as > 10
Equation (4.43) simplifies to
Mo*
= ( for as > 17.4 (4.55)
§

(c) Moment at midspan, concentraied load in other panels

The following simplifications apply in this case:

In equation (4.38) the expression given by equation
(4.51) may be substituted.

Equation (4.43) simplifies to equation (4.55).

(d)  Moment at midspan due to a distributed load

Equation (4.47) simplifies as follows: '

B 1_cosh[a<zi——c)] B P

2as ar cosh(as/2) T 2asac

for as > 13 and ¢/s < 0.2
or for as > 20 and ¢/s < 0.5

(4.56)

Mo* sinh ac
I o0 foras > 17.4
accosh (as/2)

(4.57)

4.3.6 Charts for the Design of the Decks with Closed
Ribs on Rigid Supports for AASHO Loads

4.3.6.1 Range of Charts

The bending moments in the closed ribs, given in
Charts 9 to 14 (Appendix I), are represented as func-
tions of two parameters: the span, 5, of the ribs, and the
rigidity ratio, H/D, , of the deck system.

The spans of the closed ribs of the existing steel plate
deck highway bridges do not exceed 8 ft. However,
comparative cost studies have shown that longer rib
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spans would be more economical in American practice.
A design example with s = 15 ft is given in Chapter 11.

Without attempting to establish the upper economic
span limit, the charts have been arbitrarily extended
to a span s = 25 ft.

The rigidity ratio, H D, , of the decks without addi-
tional stiffening diaphragms between the floor beams
may range between very small values up to about 0.15
in exceptional cases, with the usual values being of the
order of 0.04 to 0.08. The curves have been extended
up to the value of H/D, = 0.6 , with the purpose of
demonstrating the possible effect of a large torsional
rigidity of the deck (such as might be achieved by
adding transverse stiffening members connecting the
ribs between the floor beams) on the load distribution
in the deck. It is seen that if the rigidity ratio H/D,
is increased beyond the value of 0.2 , the corresponding
decrease of the bending moments is not very significant.

-3
—

4.3.6.2 Loading

Charts 9 to 14 are computed for the wheel loads of
the H20-S16-44 truck, in accordance with the AASHO,
Standard Specifications for Highway Bridges, 1961
Section 1.2.5(C), using wheel load dimensions of 22 in.
X 12 in. for the 8 kip and 12 kip wheels, and 26 in. X
12 in. for the 16 kip wheel, as discussed in Section 3.4.2 of
this manual. The values of the moments include the
effect of the 309, impact factor.

The loading type designations are the same as used in
Charts 6, 7 and 8 for the total maximum moments in
the ribs.

The bending moments given in Charts 9 to 14 are the
moments M, per unit width of the orthotropic plate at
the location x = b/2 (Fig. 4.12), due to one wheel load
at x = /2, or several wheel loads at x = /2 , arranged
in the longitudinal direction of the bridge as shown on
the charts. The effect of the second wheel, or wheels,

TABLE 4.3.6.2
MOMENT INCREASE AT x = /2 DUE TO ADDITIONAL WHEELS, IN TERMS OF EFFECT OF ONE WHEEL AT x = b/2

Upper values—effect of wheel P, located at a transverse distance of 6 ft from the wheel at x = 4/2.

Lower values—effect of wheel P, , located at a transverse distance of 4 ft from the wheel at x = 6/2.
s = rib span.
H/D, = rigidity ratio of the deck.
Increase of Bending Moment at Midspan (Percent) Increase of Bending Moment at Support (Percent)
H/D, s =5’ s = 10' s=15" | 5 = 20’ 5 = 25’ s =5 s=10" | s =15’ 5= 20" 5= 25
0 — — — — _ — — — - -
0.01 — — — — — — — —_ — _
— — —_ 1 1 — — — — —
0.02 — — — — 1 —_— —_— — _— —
— — 1 3 4 — - — 1 1
0.04 — - 1 1 2 — — — — 1
— 1 3 5 8 — — 1 2 4
0.06 — — 1 2 4 — — — 1 2
— 2 4 7 11 — 1 2 4 7
0.08 — — 2 3 6 —_ — 1 2 3
— 3 6 10 14 — 1 4 7 9
0.10 — 1 2 5 8 — — 1 2 L4
1 4 8 12 16 — 2 5 8 [ 11
0.20 — 2 6 10 14 — 1 3 5 7
2 8 14 19 23 — 4 9 13 16 |
030 | — 4 8 13 18 — 2 5 7 9
3 11 18 23 28 1 6 13 17 20
0.60 2 8 14 20 24 1 4 10 |14 17
6 17 25 31 36 2 11 2t 25 28
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of the same vehicle, located at a transverse distance of
6 ft from the wheel at the location x = /2, or the effect
of the wheels of the adjoining vehicle, which may be
placed at a distance of 4 ft, is not included.

The reason for using one wheel only lies in the fact
that this loading is sufficient for the design in most
practical cases.

6&'—>4
4 11
’rT Location of the computed
M ™/ moment
Bkt S e & ¥ TR SV AR S, _}...
|
~»+Substitute spanb :
R :
L
L.___[ = actual deck span———-[

Fig. 4.12

The effect of the wheel 6 ft away on the magnitude of
the moment is generally small in the usual range of
spans and rigidity ratios.

The effect of the wheel of the adjoining vehicle 4 ft
away is greater. However, it should be noted that
position of the wheels exactly opposite each other does
not necessarily correspond to the position causing the
maximum increase of the moment due to the floor beam
flexibility (see Chapter 5).

For the cases requiring consideration of the adjoining
wheels, approximate values of the bending moment in-
crements due to additional wheels 4 ft and 6 ft away are
given in Table 4.3.6.2.

It is seen, by inspection of Table 4.3.6.2, that the
effect of the additional wheels is considerable only for
rib spans and rigidity ratios beyond the usual conditions.

It should also be noted that the formulas for the
bending moments based on the simplifying assumption
D, = 0 (see Section 3.2.2.2) result in bending moments
larger than the actual moments if the spans are large.
Therefore, the larger effect of the additional wheel loads
in the case of long rib spans may be considered to be
partly compensated by the conservative values of the
moments obtained from the formulas, or the charts
based on them.

4.3.6.3 Computation of the Charts

Charts 9 to 14 for the design of closed ribs are based
on the equations given in Sections 4.3.1-5 of this
Chapter.

The values needed for plotting the charts have been
computed with an accuracy better than 0.5%, by means
of the IBM 704 electronic computer. The sub-
stitute span, b (Fig. 4.12), used in the computations,
has been determined to provide the desired accuracy
of the results, as discussed in Chapter 10, with the
ratio (b — 2g)/s ranging between 1.0 and 1.8. The
number 74,y , denoting the last term of the series, varied
between 45 and 79, depending on the parameters used.



CHAPTER 5

Effects of Floor Beam Flexibility

5.1 INTRODUCTION

The computation of the bending moments in a steel
plate deck given in Chapter 4 is based on the assumption
of rigid (unyielding) floor beams (Step 1 of the com-
putation).

In the actual system, a load placed on the deck will
deflect the adjoining floor beams (Fig. 3.1), and the
floor beam deflections will cause a redistribution of
the bending moments and stresses.

The determination of the effects of the elastic flexi-
bility of the floor beams (Step 2 of the computation)
is presented in this chapter.

Generally, the deflection of a directly loaded floor
beam will cause a distribution of the load to the floor
beams over which there is no load, and a relief of the
floor beam located directly under the load.

The deflection of the floor beams will also affect
the ribs, increasing the positive bending moment under
the load at the midspan of the ribs, and decreasing
the negative bending moment at the supports of the
ribs at the floor beams. The effect of the floor beam
flexibility on the bending moments in the ribs will be
greatest at the center line of the bridge deck midway
between the main girders (Section A-A, Fig. 1.31),
and will be negligible near the main girders, where
the floor beam deflections are small (Section B-B,
Fig. 1.31).

The computation of the effects of floor beam flexi-
bility is based on the theory of a continuous beam on
elastic supports, adapted to a plate supported along

the edges x = 0 and x = [ and continuous over uni-
formly spaced floor beams treated as elastic supports
(Fig. 3.1).

Influence lines of a continuous beam on elastic
supports are discussed in Section 5.2.

Application of the influence lines of a beam on elastic
supports to the problem of a plate continuous over
simply supported floor beams of uniform rigidity, and
the formulas for the bending moments in the ribs and
in the floor beams, caused by floor beam deflections,
are given in Section 5.3.

Procedures for computation of the effects of floor
beam flexibility with floor beams of non-uniform

rigidity, or floor beams continuous over more than
two main girders are discussed in Sections 5.4 and 5.5.

5.2 BENDING MOMENTS AND REACTIONS OF
A CONTINUOUS BEAM ON ELASTIC SUP-
PORTS

The characteristic property of a continuous beam
on elastic supports is that the reaction of the beam,
F, , at any support, m , is proportional to the vertical
movement, 3, , of the support,

F. = 6,km (5.1)

where £, (in kips/inch) is the elastic spring constant of
the support m , expressing the resistance of the support
to the vertical movement.

The bending moments and reactions of a loaded
continuous beam on elastic supports depend on the
dimensionless parameter v , representing the ratio of
the stiffness of the beam to the rigidity of the supports.

Influence lines for bending moments and reactions
of a continuous beam on elastic supports are defined,
similarly as in the case of a continuous beam on rigid
supports (Section 4.2.1.3), as deflection lines due to
a unit rotation (or deflection) at the point where the
bending moment (or reaction) is sought.

Typical influence lines, 7 and J , of a continuous
beam on elastic supports, with equal span lengths,
uniform beam rigidity and uniform elastic constant
at all supports, are compared with similar influence
lines, n and &, of a beam on rigid supports in Figure
5.1.

The influence ordinates of a continuous beam on
elastic supports may be computed by means of the
five-moment equation, which may be found in [39, 42, 51]
and other references.

In the computation of the effects of floor beam
flexibility the ordinates of the influence lines 75, #¢
and &y, for the bending moments at support and at
midspan and for the reaction at support, respectively
(Fig. 5.1), are needed only at the supports. These
ordinates, computed for the various values of the
relative rigidity coefficient, v, are given graphically in
Charts 17, 18 and 19.
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5.3 APPLICATION OF THE FORMULAS FOR A
BEAM ON ELASTIC SUPPORTS TO THE
ANALYSIS OF STEEL PLATE DECKS CON-
TINUOUS OVER FLOOR BEAMS OF UNI-
FORM RIGIDITY

5.3.1 Basic Concepts

The effects of floor beam flexibility on the bending
moments in the deck extend over the entire width of
the deck, /. Thus, even the ribs not directly loaded
by external loads are subjected to flexure.

Because of the distribution of the floor beam flexi-

bility effects over the entire width of the deck, the
deck may be treated as a plate, with the flexural rigidity
of the open or closed longitudinal ribs assumed to be
uniformly distributed.

The deck curvature in the transverse direction of
the bridge, caused by the floor beam deflections, is
very small compared with the deck curvature caused
by local loads, so that the stresses in the deck in the
x-direction due to floor beam flexihility may be considered
negligible, and the transverse flexural rigidity of the
deck, D, = Dp, as well as the torsional rigidity, H ,
may be disregarded.
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Fig. 5.2. Sinusoidal loading on the deck,
causing sinusoidal reactions and
deflections of the floor beams

Sinusoidai deflection
of floor beams

Thus, for the purposes of computation of the effects
of floor beam flexibility, assumptions D, = Oand H = 0
may be made, and the deck becomes, in effect, a series
of parallel plate strips placed side-by-side, as represented
graphically in Figure 2.7b, running continuously over
the floor beams, which act as common elastic supports
of the individual strips.

These strips may be treated as continuous beams on
elastic supports, discussed in Section 5.2, if the basic
condition requiring that the reactions at any support
be proportional to the deflection of the support, as
formulated by equation (5.1), is satisfied. Thus, the
computation of the plate strips as continuous beams
on eclastic supports is possible only if the loading is
distributed over the width of the deck in such a manner
that the resulting floor beam deflections at each point
of the floor beam are proportional to the plate strip
reactions at those points.

In the usual case of floor beams simply supported at
the main girders, this condition is satisfied by a sinusoidal
loading extending over the entire width of the deck,
causing sinusoidal reactions at any floor beam (see
Section 4.3.1.2), which, in turn, cause sinusoidal de-
flections of the floor beams thus loaded, as may be seen
from equations (5.3) and (5.4). Therefore, in the
computation of the effects of floor beam flexibility,
the actual load on the deck is represented by a Fourier
series consisting of sinusoidal component loads, Qi,,
Q2r, Qs ... Qur, as discussed in Section 3.5.

By inspection of the component loads, Figure 3.13,
it may be easily seen that the deflection of a simply
supported floor beam is determined almost entirely
by the first sinusoidal component load, Qi,, since the
effect of the higher component loads, causing local
deflections proportional to the fourth power of the
decreasing eflective spans, //n, is insignificant (see
equation 5.4).

Therefore it is sufhcient for design purposes to

Sinusoidal reaction Fp, = 9, @,

Actual loading, P = 28¢), Substitute load, a- @, , . on

the rib under consideration

Smnusoidal load, @, = @;sin 7

(first component load
of Fourier series for
actual loading, P)

consider only the first sinusoidal component load,
Qiz = Qi sin mx/l, as shown in Figure 5.2. In the
computation of the effects of floor beam flexibility each
plate strip of a unit width at the location x is loaded by
the corresponding loading at the same location, Q. ,
and treated as a beam on elastic supports.

Formulas for the dimensionless loading coefficients,
Q12/ Qo , are given in Section 3.5.4.

Formulas for the bending moment corrections due
to floor beam flexibility are given in Section 5.3.3.

5.3.2 Relative Rigidity Coefficient, y

In the system shown in Figure 5.2 the floor beams
act as elastic supports for the individual plate strips.
Since both the plate strip reactions and their deflections
vary sinusoidally along the floor beam, the spring con-
stant, k¥, defined in accordance with equation (5.1)
as the ratio of the reaction to the deflection of the
support

k= (5.2)

F
)
has the same value at all points along the floor beam.

For the system shown in Figure 5.2, loaded by sinu-
soidal component loads, @,., the reaction at floor
beam m = 0, (Fup),, due to the nth component load,
is, generally

(Fog)n = Bon Qu sin 7’1 (5.3)

where #, is the influence ordinate at the location of
the load, Q,. , for the sought reaction at support m = 0
of a beam on elastic supports, computed with the
proper value of the relative rigidity coefhicient, 7y, .

The floor beam deflection, 8, , caused by the sinusoidal
reaction (Fyg),, on the floor beam is also a sinusoidal
curve, given as
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1 Jon [ I \* . onmx
8 = ILTI; fff (Fog)n dxt = L. (nTr) Q, sin e

(5.4)

where Elp is the floor beam rigidity, and / is the floor
beam span.

By substituting expressions (5.3) and (5.4) into
equation (5.2), the value of the spring constant is
obtained as

n*miEl,

The relative rigidity coeflicient, v, , is defined as
the ratio of the stiffness of the deck strip to the spring
constant of the supports, £, . For a deck with open ribs
the expression for v, is

_ Elg/sa

n 5.6

v i (5.6)
and for a deck with closed ribs
Elp/s?

_ /st o) (5.6a)

Tn k.

It is seen that the relative rigidity coefficient, v , of
a deck system is not constant for all cases of loading,
but depends on the number n of the sinusoidal com-
ponent loading applied.

Using only the first component load (n = 1) and
disregarding the higher load components, as discussed
in Section 5.3.1, the relative rigidity coefficient may
be given by substituting equation (5.5) into equation
(5.6) or (5.6a) as follows:

For a deck with open ribs

I
= — 5.7
Y= ol (5.7)
and, for a deck with closed ribs
I}
¥ : (5.7a)

- (a + e)s*rtlp

If the rib sizes vary across the width of the deck,
an appropriate average value of I may be used, with
more weight given to the ribs near the midspan of the
floor beam.

In the case of floor beams of a variable depth, an
equivalent uniform moment of inertia, I , should be
used, resulting in the same deflection at the midspan
of the floor beam as is obtained with the actual variable
moment of inertia of the floor beam.

The moments of inertia, /r and I , should be deter-
mined in accordance with the formulas given in Section
3.3.2.2.

5.3.3 Bending Moment Corrections Due to Floor
Beam Flexibility

5.3.3.1 Moment Increase, AM; , in the Ribs

By inspection of the influence lines for the bending
moments in a continuous beam on elastic supports,
Figure 5.1a and b, it may be seen that the bending
moment at any point of the beam consists of two parts.

One part, which may be regarded as due to the
action of the loads, P, in a system with unyielding sup-
ports, corresponds to the influence ordinates » of a beam
on rigid supports. For a deck plate strip this moment
is computed, with consideration of the transverse load
distribution, in Step 1 of the computation by formulas
given in Chapter 4.

The other part of the moment is due to the vertical
movement of the supports and corresponds to the
differences, 3 = 4 — 7, between the influence ordinates
of the beam on elastic supports, 4, and the influence
ordinates of the beam on rigid supports, " (Fig. 5.1a and
b). Thus, the ordinates 3 represent the effect of the
support elasticity only.

It may be shown that the additional moment, AM ,
at any point, 7, of the beam, due to the vertical movement
of the supports under a load, or a group of loads, P,
may be expressed as

AM = P

3

= X Fniim - (58)

where

P = load

F,, = reaction at support m of a continuous beam on
rigid supports, due to load, P, or group of
loads placed on the beam, expressed in terms
of the load, P

fim = influence ordinate at support m , for the bend-
ing moment at point { under consideration,
of a continuous beam on elastic supports

If the dimensionless ratios, #%,/s and F,/P , are

introduced, equation (5.8) can be given as

= F
n m Nim
— LA, P 1 .8
AM = Ps T = s E . (5.8a)

It should be noted that the ratio F,,/P is independent
of the magnitude of the load, P, and represents the
influence ordinate, ¢, , for the reaction at support m
of a beam on rigid supports, or, in case of a group of
loads expressed in terms of P, the properly modified
sum of the influence ordinates at the locations of the
individual loads.

In accordance with Section 5.3.1, application of
the formulas for a beam on elastic supports for the
computation of the bridge deck supported on flexible
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floor beams requires that the actual loads, P, acting
on the deck be replaced by their first sinusoidal com-
ponent loads, Q. (Fig. 5.2). Thus in the computation
of the additional bending moment, AMg , in a rib due
to floor beam deflections, the load on the rib under
consideration at the location x is obtained as the product,
Q::(a), or Qi;(a + e), of the intensity of the first sinu-
soidal component load at the location x and the width
of the rib, as indicated in Figure 5.2.

With these loading values and the dimensionless
coeflicient, Q1,/Qo , equation (5.8a) becomes for open
ribs

r Fm 7l m
AMR = Q(}Sa QQlU E F 7-];— (59)
and for closed ribs
Fm ] m
AMy = Qus(a + ¢ % > ’% (5.9a)

where

AMp = additional moment per rib due to floor
beam deflections

Qo = P/2g = wheel load per inch of width of
the deck
Q.. = value at the rib under consideration (loca-

tion x) of the first sinusoidal component
load of the actual wheel load, P, as de-
fined by equation (3.21)

Other designations have been defined above.

The values of the influence ordinates, ,,/s and
Ham/ S, t0 be used in equation (5.9) or (5.9a) for the
computation of the additional bending moments in
the ribs at the midspan and at the supports, are given
in Charts 17 and 18.

In the usual design cases, the additional moment,
AMp, computed by equation (5.9) or (5.9a) has a
positive value, meaning a bending moment increment
at the midspan and a moment relief at the support of a
rib.

In the design computations in accordance with the
AASHO specifications several traffic lanes may be
loaded simultaneously. However, the wheel loads
and the truck positions may be different in the lane
where the moment is computed and in the adjoining
lanes. This is discussed in Chapter 10.

In such cases, the total additional bending moment
in a rib due to floor beam deflections is computed as
the sum of the effects of the loads in the critical lane
under consideration and in other lanes,

AMR = AMR(crit. lane) + ZAIMR(other lanes) (510)

The bending moment correction, AMz , computed
by equation (5.10) is added to the moment Mg , com-

puted in Step 1 of the design, to obtain the final design
moment.

In accordance with the AASHO specifications,
Section 1.2.9, the total moment in a rib, Mz 4+ AMg,
has to be multiplied by a load reduction coefficient
if it is due to more than two lanes simultaneously loaded.

5.3.3.2 Moment Relief, AM , in the Floor Beams

A load, P, placed near a floor beam on a deck sup-
ported by flexible floor beams will cause a floor beam
reaction which will be smaller than the reaction in a
system with unyielding floor beams, as may be seen by
inspection of the influence lines, Figure 5.1c.

Consequently, the bending moments in the floor
beam, which are proportional to the floor beam reac-
tion, will be smaller in a flexible system than in the
rigid system.

If the load P is represented by sinusoidal component
loads, Q., = Q, sin (nwx/l), the moment at any point

of the floor beam m = 0, found by double integration -

of the loading, may be expressed, for a rigid floor beam,
as

R
Mp= Y — -"f Qny dx*

= F [\?
=3 o, <—) sin (5.11)
nw l
and, for an elastic floor beam, as

@ 2
=3 Fy Q. (—l—> sin o~ (5.11a)
neo P nmw [
where the ratios Fy/P and Fy/P are the influence
ordinates, or, in case of a group of loads expressed in
terms of P, the sums of the influence ordinates at the
locations of the individual loads for the reaction at
support m = 0 of a continuous beam on rigid or elastic
supports, respectively. :
The difference, My — Myr = AMy, or the moment
relief in the floor beam due to its elastic flexibility, is then

il Fo Fo:’ ( [ >2 . nmrx
My = LAY 0N T (512
AMe ,,E,o [P P\ (5.12)

If only the first term of the series is considered, as
explained in Section 5.3.1, equation (5.12) becomes

Fy o 1\?
AMp = [;P_ - g] o <;r‘) Sin.’l—lir (5.12a)

With the load or group of loads, P, in any position
on the deck, the ratio Fy/P is obtained by evaluation of
the influence line for the reaction of a beam on elastic
supports (Fig. 5.1¢), and is
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= F
= 3 =3 (5.13)
m=10 P
where
F, = reaction at support m of a continuous beam on

rigid supports, as defined in Section 5.3.3.1
Jem = influence ordinate at support m , for the reaction
at support m = 0 of a beam on elastic supports

By substituting equation (5.13) into equation (5.12a),
using the definition, equation (3.21), and introducing
the dimensionless ratio, Q:,/Qs , the formula for the
moment relief, AMz, at any point x of an elastic floor
beam is obtained as

w0 (L] S E- T 0]

Formulas for the Fourier coefficients, Qi,/Q,, for
the various cases of floor beam loading, are given in
Section 3.5.4.

The values of Fo/P and F,/P, defined above, may
be obtained from Chart 5¢ or Table 4.2.5.

The influence ordinates &y, of a beam on elastic
supports are given in Chart 19.

The values of [(Fo/P) — 3. (Fpn/P) 8, for the AASHO
truck loads are given in Charts 30 and 31.

5.3.4 Shear Corrections Due to Floor Beam
Flexibility

5.3.4.1 Shearsin the Ribs

Due to the fact that in an elastic system the rib
reactions on the floor beams are generally smaller than
in the rigid system, the shears in the ribs will also be
smaller.

Based on considerations similar to those in Section
5.3.3, shear corrections, AVg , in the ribs could be
computed.

However, since in the usual cases the shearing stresses
in the ribs are low and do not govern the design, the
computation of the shears in the ribs in the rigid system
only will generally sufhce.

5.3.4.2 Shearsin the Floor Beams

Similarly as the bending moments, the shears in
elastic floor beams will be generally smaller than those
in rigid floor beams.

The expression for the shear relief, AV, in an elastic
floor beam is found in a similar manner as the moment
relief, AMz, Section 5.3.3.2.

The load, P, placed at any location on the deck and
represented by its sinusoidal component loads,
Qar = Qp sin (nwxl), causes the shear, Vp, at any

point of the rigid floor beam m = 0, which is found by
integration of the sinusoidal component reactions on
the floor beam due to loads Q,; as

= Fy nwx

- F{)
= - e nrd
d EO p Qrde= 2 P e !

(5.15)
Similarly, for the elastic floor beam

~ l F, Qnl
Ve = — 2 ;;OQMa’x Z~ cos =

n=0 n=0 P nr {

(5.15a)

The ratios Fo/P and Fy/P in the above equations are
defined in Section 5.3.3.2.

With the first component loads only, the difference,
AVe = (Ve)1 — (Ve), is

F
AVp=l:—0——:|Ql 031—r;~
™

5P (5.16)

If equation (5.13) is substituted into equation (5.16),
the value of AV, or the shear relief in the floor beam
due to its elastic flexibility under a given loading, at
any point, x, of the floor beam is obtained as

AVF—QL[

A wx

— cos — (5.17

7r =, P ] = G
where @, is the amplitude of the first sinusoidal com-
ponent of the deck loading, which may be obtained for
the various loading cases from the formulas given in

Section 3.5.4 by means of the relationship

0 = __.9_‘_”_*
sin (wx/l)

Other symbols in equation (5.17) have the same
meaning as in the similar formula for the moment relief,
equation (5.14).

The value of the shear correction at a specific point
of the floor beam, x = &, due to a concentrated load,
P, placed at the variable location, x , anywhere on the
deck, is obtained by substituting into equation (5.17)
the expression for (J; of the load P.

The value of the first component load, Q, of the
concentrated load, P, is

2P | wx

@1 = — sin —

: 1 (5.18)
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By substituting equation (5.18) into equation (5.17)
and setting the value of x in equation (5.17) equal to
the specified ordinate, 4 , the equation for the shear
relief due to a concentrated load, AV, , at the location
d of the floor beam is obtained as

2P [ F
AVpp = [ 0 Z
The final design value of shear, Vi, in the floor

m
beam is obtained by subtracting the shear relief, AV,
from the value of shear, Vp , in the rigid floor beam,

I3 (5.19)

le?:] rd | wx
P Jom coslsm[

Ve = Vi — AVy (5.20)

The shear, Vi, in a rigid floor beam due to loads P
on the deck is usually obtained by evaluation of the
influence line for shear at the point under consideration
with the values of the deck reactions, £y, on the floor
beam, as

Ve = Y Fdy (5.21)

where @y are the influence ordinates for shear in the
rigid floor beam.

In order to construct the influence line for the final
design shear, Tz, in an elastic floor beam, the acting
loads, P, are represented as functions of their reactions,
Fo, on the floor beam

79

F
= (5.22)
(Fo'P)
and equation (5.19) is rewritten as
2 F,,'P) 8oy d . m
AVpp = Fy o [1 - A~——————~—Z( FO/; ’ ]cos 1r7 smﬂ-Tt
(5.19a)

Thus, with equations (5.19a), (5.20) and (5.21),
the design shear, V», may be given as

K

The influence ordinates for shear in an elastic floor
beam, given by equation (5.23) are represented graphi-
cally in Figure 5.3.

It should be noted that in equation (5.23), Fy is the
reaction of one truck on a rigid floor beam and P denotes
the weight of one axle of the truck. In evaluating the
influence lines shown in Figure 5.3 the values of Fy/2
at the locations of the wheels, rather than the full
values of Fy at the center lines of trucks are used for
better accuracy.

VF=

Z(Fm«/P)gom 7rd . T
ZFa{z?V— —W cos—l—sm—l

(5.23)

IR S

Fy = reaction of one truck

. g F on rigid floor beam
0 ks £ L] 29 =
3 511 |3 P P = axie load
it |
1 | I
S Pornt "d"
————— v
L <
e ! —
ﬁv = infl. line for shear, rigid floor beam
infl. ordinate 'l)r» for shear, flexible floor beam
L I‘;N o
— L .
\lnfl‘ line for shear correction, ity :% 1 - _._/;,_0;” 5,,-,“[_"
5
Shear at girder P
")v = infl. Iine for shear, rigid floor beam
.f__ infl. ordinate ﬂV for shear, fiexible floor beam
T 1 F
L 7 T 5o =d  =x
. infl. line for shear lcarrection, ¢ :2{ -~ _.]’_O.ﬂ‘j T sin ot
Pomnt "d ' ' e ! ki ST I

Fig. 5.3. Influence lines for shears
in a flexible floor beam

Shear at point "d"”

(eq.(5.19a))y
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5.3.5 Charts for the Determination of the Effects of
Floor Beam Flexibility Due to AASHO Loads

In order to facilitate the computation of the effects
of floor beam flexibility, design charts are given in the
Appendix.

The derivation of the charts is discussed below.

The use of the charts in practical design computations
is explained in Chapter 10.

Charts 17, 18 and 19 give the values of the influence
ordinates for the bending moments at the midspan and
at the support, and for the reaction at the support of a
continuous beam on elastic supports, for the various
relative rigidities, v . The ordinate values have been
obtained from Tables 165.1-3 of reference [42].

Charts 20, 27 and 22 give the values of the dimensionless
coefficients, D _(F,/d,.)(P/s), used in the computation of
the bending moment correction at the midspan of the
ribs by equation (5.9) or (5.9a), for loading cases
a, a, b, b;, cand ¢, , used in the computation of the
bending moment at the midspan of the ribs in a system
with floor beams considered rigid (Charts 6, 9, 10,
11 and 12). The individual axle loads have been
placed in the same positions as used in the computation
of the Charts 6, 9, 10, 11 and 12. The chart ordinates
have been obtained by numerical evaluation of the
influence lines, Charts 5¢ and 17.

Chart 23 gives the values of Y_(F/P)(fc../s), needed
in the evaluationof equations (5.9) and (5.9a) for loadings
h and h;, as shown in sketch on Chart 23, representing
the loading in the lanes other than the critical lane.

The trucks are placed in such positions as to cause
maximum deflections of the floor beams m = 0 and
m = 0.

Charts 24, 25, 26 and 27 give coefficients »_(F/P)(7s,,/s)
needed in the computation of the bending moment
relief at the supports of the ribs by equation (5.9) or
(5.9a) for loading cases d, e, f and g, used in the com-
putation of Charts 7 and 13. The ordinates have
been obtained in a similar manner as for Charts 20-22.

Chart 28 gives the values of the first Fourier coefficients,
Q../Qy, at the location x under the critical wheel,
used in equations (5.9) and (5.9a). The values of
Q1:/Qo have been computed by equation (3.27), for
positions of the truck consistent with the AASHO
Design Specifications, Section 1.2.6. The truck load
is placed in the critical lane only.

Chart 29 gives the values of the coeflicients Q1,/Qy
at the critical rib for other than critical lanes loaded,
as shown in a sketch on the chart. Equation (3.30)
has been used to compute the chart ordinates.

Charts 30 and 31 give the values of the expression
(Fo/P) — Y (Fn/P)8m , needed in the evaluation of equa-
tion (5.14). Influence lines, Charts 5¢ and 19, have
been used to determine the chart ordinates for load-
ing cases A and B, corresponding to those in Chart 15.

Chart 32 gives the coefficients Q1:/Qo at the point
of maximum moment in the floor beam, needed in the
evaluation of equation (5.14), for the various numbers
of lanes loaded. The values needed have been com-
puted by equation (3.30).

5.4 BRIDGE DECKS WITH FLOOR BEAMS OF
NON-UNIFORM RIGIDITY

5.4.1 General

The formulas for the bending moment corrections
in the deck due to floor beam flexibility given in Section
5.3.3 are valid for bridge decks with a uniform rigidity
of all floor beams.

However, the design and construction considerations
usually require the use of heavier floor beams at certain
intervals, acting as bridge cross frames or load distrib-
uting diaphragms between multiple main girders.

The effect of the heavier floor beams on the distribu-
tion of the stresses in the deck system will depend on
the relative stiffness ratios of the structural members
of the deck and on the loading.

Generally, the reactions and the bending moments
in the heavier floor beams will be increased, compared
with the system with uniformly rigid floor beams,
while the light floor beams adjoining the heavy ones
will be relieved.

In the continuous deck the maximum negative
bending moments over the heavier floor beams will be
larger than those in a system with floor beams of uniform
rigidity. The maximum positive moments at the
midspan of the ribs may decrease or increase, depending
on the rigidity ratios of the system.

In most cases the effect of one heavy floor beam on
the stresses at the location of the next heavy floor beam
will be small. Therefore, for design purposes it may
be sufficient to consider the effect on the stress dis-
tribution of one heavy floor beam only.

Formulas for such computations are given in Section
5.4.3 and illustrated by a numerical example in Section
11.2.2.3.

If, in the general case of floor beams of varying
rigidity, a more accurate design computation should
be required, the needed results may be obtained by
application of the five-moment equation of a beam on
elastic supports in its general form, as given in [51] or
other references.
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5.4.2 Designations

The following designations are used:

P
Fop

o

AF,,

AFu

Bk

Fig. 5.4.

Continuous beam on elastic

load

reaction of elastic support 0, due to P,
in a system with all supports of uniform
rigidity

internal redundant force at the more rigid
support, 0, due to its surplus rigidity (Fig.
5.5b)

change of the reaction at support m , due
to force Xy at support 0

change of the reaction at support 0, due to
force X,

ratio of the rigidity of support 0 to the
rigidity of the other supports, equal to the
ratio Jo/I of the moment of inertia of the
heavier floor beam, m = 0, to that of the
other floor beams

spring constant of the more elastic supports
(k/in.) ‘

k + ks = spring constant of the more
rigid support, 0 (Fig. 5.4a and b)

relative deflection between the continuous
beam and the redundant support, %, , at
support 0 (Fig. 5.5a, b)

influence ordinate at support 0, for the
reaction at support m in a system with
uniform rigidity of all supports

influence ordinate at support 0 , for the
reaction at support 0 in a system with
uniform rigidity of all supports

influence ordinate at support 0 , for the
bending moment at any point ¢ , in a system
with uniform rigidity of all supports

change of the bending moment in a con-
tinuous beam at point ¢, due to force, X;,
at support

AMy, = change of the bending moment in floor
beam m , due to the surplus rigidity of floor
beam 0

AMp; = cbange of the bending moment in a rib at

point ¢, due to the surplus rigidity of floor
beam 0

5.4.3 Formulas for the Effect of One Heavier
Floor Beam

5.4.3.1 Derivation for Beam on Elastic Supports

In the system shown in Figure 5.4a the spring con-
stant, 8k, of the elastic support, 0 , is greater than the
spring constant, £ , of the remaining elastic supports,
1,2,3 .... The more rigid support, 0, is replaced
by a light support, with a spring constant £, and an
additional support, located very close to it, with a
spring constant k, (Fig. 5.4b). The additional sup-
porting force, provided by the spring &, will be treated
as an external force acting on a system with uniform
rigidity, &, of all supports.

The internal redundant force, Xo, of the support
k, is obtained by analyzing the system as a statically
indeterminate structure in the following manner:

If the connection between the redundant support,
k., and the continuous beam is assumed severed, a
load P will cause a relative deflection, §,», at support
0, between the spring 4, and the continuous beam,
as shown in Figure 5.5a.

The redundant reaction, Xy, bteween the beam and
the support £, causes a relative deflection, d,x, in the
opposite direction, between the beam and the support
k, (Fig. 5.5b). It is seen that the deflection 8,y con-
sists of two parts, one being the deflection of the end of
the spring £, from its original position due to the force
Xu, the other representing the motion in the opposite
direction of the end of the spring £ under the effect
of the reaction, Xy da , caused by the force X, at
support 0.

S

n =

j‘
Support rigidity, l\'é
=2

| |

(e} Actual system

supports with support 0 more rigid

than the others

E

b} Support O replaced by two supports
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1)

P
1 /L ap _( Imtial position of beam
s e e ] e (7/_( I S

;g\ % kigka 3

Fig. 5.5. Determination of redundant force in
additional support £,

S

F,
I

Notl = Fo0 1

(b) Effects of redundant force X

From equation (5.1) with designations given in
Section 5.4.2, the deflections, §, , are obtained as

F
X XoFoo Xs Xo oo
6 = - =
o ka+ k /:(13—1)+ k

The actual relative motion between the spring, &,
and the beam must be equal to zero, or

X 1
5ap+5ax=“€£f+70(300+§—:1)=0

hence

Xo = Fop ! 1 (524)
Joo + ——

g—1

With the redundant additional reaction, X, , known,
its effects on the reactions and the bending moments
in the system are obtained by the following formulas:

AM{O = ﬁ{oXo (525)
AFw = (1 = Jo)Xo (5.26)
Aqu = {’.moXO (5-27)

with designations as defined in Section 5.4.2.

5.4.3.2 Change of the Bending Moments in Ribs

By adaptation of equation (5.25) to a system consist-
ing of a steel plate deck continuous over elastic floor

AF
-

beams, the effect ot one heavier floor beam on the
bending moments in the longitudinal ribs is computed
in a similar manner as shown in Section 5.3.3.1.

By introducing into equation (5.25) the dimensionless
ratios, Xo/P and #,/s, and substituting the first Fourier
component load, Q,., for the load P, the formulas
for the bending moment change, AMpg, at point {
of the longitudinal ribs are obtained. These are similar
to equations (5.9) and (5.9a). For open ribs

EMRt = Q()Sa Qg P s (528)
and for closed ribs
- :X 5
AMg, = Qus(a + e) Que Xodio 5 55y

Qo P

The ratio Xy/P is defined by equation (5.24) with
(5.13), and should be computed for the same position
of the loads P as used in the computations of the bend-
ing moments in the system with rigid floor beams
(Chapter 4), and in the system with uniform rigidity of
all floor beams (Section 5.3.31). The total bending
mormnent in the rib is then obtained by superposition of
all three effects.

The minus signs in equations (5.28) and (5.28a),
as well as in equation (5.30), are due to the fact that the
redundant force Xj is acting upward (Fig. 5.5).

The influence ordinates, 7, and &g, needed in the
evaluation of equations (5.28) and (5.28a) may be
obtained from Charts 17~19.
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5.4.3.3 Change of the Bending Moments in
Floor Beams

By introducing into equation (5.26) the dimension-
less ratio Xy P, and by substituting the first sinusoidal
component load, Q,,, for the load, P, the formula
for the change of the bending moment in the heavy
floor beam, m = 0, is obtained from equation (5.14) as

< Q12 < / )2 Xy -
AMp, = — — ) =01 -4 5.29
Fo Qo 0 \7) P ( 0)  (5.29)

Similarly, from equations (5.27) and (5.14) the
formula for bending moment change in a light floor
beam, m, is obtained as

- Q1 ( l )2 Xo
AMp, = — ] = % 5.30
rm = Qo o \7) B om (5.30)
where the ratio Xo/P is defined by equation (5.24)
with (5.13).

5.5 BRIDGE DECKS WITH FLOOR BEAMS ELAS-
TICALLY RESTRAINED AT THE MAIN
GIRDERS OR CONTINUOUS OVER MORE
THAN TWO MAIN GIRDERS

The condition of proportionality of the loading to
the deflection at each point of the floor beam, necessary
in the analysis of the deck strips as beams on elastic
supports {Section 5.3.1), is satisfied by the sinusoidal
component loads, obtained through Fourier analysis,
only if the floor beams are simply supported. This
may be considered the case if there are only two single-
webbed main girders, having a negligible torsional
rigidity.

If the floor beams are framed into hridge members
of considerable torsional rigidity, such as box girders,
or in the case of continuity of the floor beams over
more than two main girders (Fig. 5.6), representation
of the actual loading by simple sinusoidal components
is no longer sufficient. In such cases, in order to
rigorously satisfy the basic condition defined above,
the loading must be expressed by functions, consisting
of ordinary and hyperbolic sines and cosines, to be

determined separately in each case, known as eigen-
functions of the system. Application of this method
of analysis, presentation of which would exceed the
scope of this Manual, is given and illustrated in Refer-
ence [42], Section 151.3.

P 3 Deflection P , 5
U curve
I Dl
[»(—-— f— pt— ) ]
| —Moment

|

L =

(bjBeams framed into
torsionally rigid box girders

[ ] mgramﬁ
e hd

(ajBeams continuous over more
than two girders

Fig. 5.6. Approximate determination of the effective spans of
continuous floor beams

However, it may be sufficient for design purposes in
most cases to use the Fourier analysis and the formulas
given in Section 5.3, with an appropriately chosen
value of the effective simple span, I, , of the floor beams.
The effective span, /1, is the length of the positive
portion of the moment diagram of the actual floor
beam, as shown in Figure 5.6.

The value of the relative rigidity coefficient, v,
is determined from equation (5.7) or (5.7a) by substitut-
ing the effective simple span, /3, determined from the
condition that the deflection at the center of the simple
span, /s, due to the loads on the bridge be the same as
the deflection at the center of the actual floor beam
(Fig. 5.6).

The results of this approximate method are valid
only for the ribs near the center of the floor beam.




CHAPTER 6

Design of the Deck Plate

6.1 DESIGN CRITERIA

The primary function of the deck plate is to directly
support the traffic loads and to transmit the reactions
to the longitudinal ribs. The deck plate acting as
a member transmitting the wheel loads to the ribs con-
stitutes a separate local structural system, defined
as System III (see Section 1.2.2), which may be treated
independently from structural Systems I and II, com-
prising the action of the deck plate as a flange of the
primary and secondary carrying members of the bridge.

In the design of the deck plate as an independent
structural member directly supporting the wheel
loads, the following requirements have to be satisfied:

(a) Carrying capacity

The deck plate shall possess an adequate load carrying
capacity to support the traffic loads. A reserve capacity
in excess of the specified design loads is desirable to permit
safe passage of occasional special heavy vehicles and to
provide for unforeseen future loading increases.

The requirement of adequate strength is amply
satisfied by steel bridge deck plates of usual propor-
tions which have a very high carrying capacity for
static concentrated loads. This is discussed in Section
6.2.2.

However, similarly as in the case of the longitudinal
ribs (System II, see Section 1.2.4.2), the behavior
of the deck plate (System III) under higher loads
strongly deviates from that predicted by the ordinary
flexural theory of first order.

Therefore, the deformations and the ultimate carrying
capacity of the deck plate cannot be judged on the
basis of the deflections and stresses under working
loads and may be determined only by direct experi-
ment. An empirical formula for an approximate
evaluation of the ultimate static load is given in Section
6.3.

(b) Fatigue strength

The deck plate shall be capable of resisting the effects
of the pulsating and alternating stresses occurring at criti-
cal points of the deck plate under the effects of the passing
wheel loads.

The fatigue strength of the steel deck plate is dis-

cussed in Section 6.2.3.
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(c) Rigidity

The local deflections of the deck plate between the
ribs, even of a considerable magnitude, are not objection-
able structurally, provided they are purely elastic.

However, an excessive flexibility of the deck plate
may adversely affect the wearing surface placed on
the deck.

For the usual asphaltic wearing surfaces a deck
plate deflection between the longitudinal ribs of the
order of 14 of the rib spacing is not considered ob-
jectionable [31]. With thinner wearing surfaces (see
Chapter 8) even larger deflections might possibly be
tolerated.

An empirical formula for the computation of the
deck plate deflection is given in Section 6.3.3.

It should be noted that the deflections of the deck
may be considerably reduced by the stiffening effect
of the wearing surface, as discussed in Section 8.2.4.1d.

In addition to the above design criteria based on
consideration of the deck plate as an independent
element, the following requirements have to be satisfied
in the determination of the deck plate thickness.

(d) Adequate cross-sectional area

The deck plate has to provide a sufficient top flange
area for the structural members of the bridge.

To be adequate as the flange of the main bridge
girders (System I), the deck plate may have to be
considerably thickened, in excess of the local require-
ments of System III, in the maximum moment areas
of the main girders.

The shearing strength of the deck plate as a part
of System I must also be checked.

In System II (see Section 1.2.2) the strength of the
deck plate acting as the top flange of the longitudinal
ribs and the floor beams is always ample, because of
the markedly unsymmetrical cross sections of these
members.

(e) Fabrication and erection requirements

With a great amount of welding necessary in the fabri-
cation of the deck panels, warpage due to welding may
become a problem if too thin a deck plate is used. Ex-
perience indicates that a 3g-in. thick deck plate is still
satisfactory in this respect.
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For erection purposes the portions of the deck plating
directly connected to the main girder webs may have to
be thickened for strength and stability.

6.2 STRUCTURAL BEHAVIOR OF THE DECK
PLATE ACTING AS AN INDEPENDENT
STRUCTURAL ELEMENT (SYSTEM III)

6.2.1 Deck Plate Subjected to Small Loads

6.2.1.1 Tests on Decks Subjected to Design Loads

6.2.1.1.1 General

Tests made on models and on actual deck plates of
steel plate deck bridges indicate that, under small
loads of the order of the standard truck wheel loads,
the deck plate behaves as an isotropic plate, in accord-
ance with the flexural theory of the first order.

The correspondence of the computed and the measured
stresses is, however, only approximate, in most cases.

This may be attributed, primarily, to the difficulties
in analyzing the actual deck plate system, as discussed
in Section 6.2.1.2.1.

. Also, in measuring the local stresses in the deck
plate (System III) it is not always possible to eliminate
the effects of the action of the deck plate as a flange
of the ribs, floor beams and the main girders (Systems
I and II).

Some of the working load tests made on steel deck
plates are briefly described below.
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6.2.1.1.2 Tests on Battledeck Floor Plates

Stress measurements on models of battledeck-type
bridge floors (Fig. 1.3) were made by the AISC [2, 34].

The results obtained indicated that the deck plate
loaded by a wheel placed between the stringers be-
haved as a continuous member with the points of
inflection at the toes of the stringer flanges, which is
equivalent to a simply supported plate with a span
equal to the clear distance between the flanges.

There were definite indications that in the more
slender deck plate panels membrane stresses developed
under the wheel load, in addition to the flexural stresses.

Based on these tests, empirical formulas were proposed
for the maximum stress at the midspan of the deck
plate under the wheel, which give results that are in
good agreement with the theoretically computed
stresses if the clear span of the plate between the toes
of the wide-flange stringers is about 15 to 24 in. (see
Section 6.3.1).

6.2.1.1.3 Tests on Decks with Open Ribs

Several tests on steel plate decks with open ribs were
conducted by Prof. Kloeppel at the Technclogical
University in Darmstadt [29, 30, 31, 76].

A typical pattern of the local stress distribution in
the deck plate under a simulated wheel load, based
on the results of the model tests [31] is shown in Figure
6.1.

It should be noted that the stresses in the deck plate
over the rib drop sharply due to the strengthening
of the plate by the weld and the rib, so that the maxi-
mum stress occurs at the toe of the weld.

Loading, PSql
-lil [IRRERRRRRNRRRENGNENE , [T X
1111 ll"!—'-—mx ¥ y
3 : : + Note: Stresses shown are
40 _".‘, P l in top fibers of the plate,
z"" | 2 measured under load
30F | A T p=214 psa
! /
20H 1 4
~ ’ l .
; 10+ : |
x i
7 oM T 0 T
g -10f ! : -10} -7
220k ! -20 Iy
© f f !
= ko * ! -
OEANL N i
of . 0
-10} ! \/ I T f
20} ! A : —20}
Section a-a Section b-b
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Fig. 6.1. Typical stress diagrams of a deck plate under a wheel load, obtained from strain measurements {31]
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In addition to the stresses in the direction normal to
the ribs, considerable stresses develop in the deck
plate in the direction of the ribs, as predicted by the
plate theory.

The local stresses in the deck plate (System III),
represented by curves in Figure 6.1b, have been ex-
tracted from the measurements of the strains which
also included the effects of the variable axial prestress
in the y-direction, simulating the System I stress in
the bridge deck, and the stressesin the plate as the flange
of the ribs and the floor beams (System I1).

Varying the longitudinal prestress from a uniform
tension of 20 ksi to a compression of 17.3 ksi had almost
no effect on the local stresses in the deck plate. This
indicates that under the working loads no appreciable
membrane conditions in the deck plate have developed
in the y-direction.

For the purposes of comparison the local stresses
in the system shown in Figure 6.1a were also determined
analytically, using the clear span in the x-direction of
100 mm, and assuming full fixity at both edges. The
maximum stresses obtained in this manner were found
to be equal to about 6/5 of the measured values [31].

It should be noted, however, that the assumptions
of a plate span shorter than the rib spacing and the
full fixity of the plate, while possibly justified in the
above case, where ribs were relatively rigid and thick
compared to the deck plate, may not be appropriate
in the analysis of the decks of usual proportions.

A full-scale test on a bridge deck plate supported by
open ribs 12 in. o.c. and subjected to concentrated
loads in the range of the design wheel loads is de-
scribed in Section 192 of reference {42]. In this case a

comparative computation made with the assumptions .

discussed in Section 6.2.1.2.2 results In stresses about
109, lower than those measured.

6.2.1.1.4 Tests on Deck with Closed Ribs

Test measurements of stresses in a deck with closed ribs
are reported in Section 193.43 of reference [42].

Under the working loads the measured stresses in the
deck plate and in the rib walls in the direction perpen-
dicular to the ribs were found to be in reasonable agree-
ment with the values computed by the method discussed
in Sections 6.2.1.2.3 and 6.2.1.3.2.

6.2.1.2 Analytical Determination of the Local
Stresses in the Deck Plate Under the
Design Loads

6.2.1.2.1 General

The magnitudes of the local stresses occurring in the
deck plate under the design loads provide no direct
measure of the actual safety of the deck plate, as dis-

cussed in Section 6.2.2, and, therefore, the local stress
analysis of the deck plate is, as a rule, omitted entirely
in the design.

However, should the values of the local stresses be
required, they mayv be obtained by methods indicated
in this Section.

Generally, in the range of the working loads, the
steel deck plate supported on the longitudinal ribs
may be treated as a continuous isotropic plate.

A rigorous analytical determination of the stresses
and deflections of the deck plate under wheel loads
would be extremely complicated, because of the follow-
ing factors:

(a) The plate supports at ribs cannot be regarded
as “knife-edge” supports, since they have a definite
width and may offer restraint against rotation.

This must be recognized, especially in the analysis
of the deck plate supported on closed ribs.

{b) The exact magnitude and distribution of the
stresses over the supports, where the deck plate is
stiffened by welds, is practically impossible to determine
analytically.

(c) Even under the design loads, small membrane
stresses may occur in the deck plate. Thus the analysis
based on the ordinary flexural theory of first order may
not be adequate, especially with thin plates.

(d) The ribs acting as supports of the deck plate are
not inflexible (see Fig. 4.6a). The elastic flexibility
of the ribs will tend to increase the plate stresses be-
tween the ribs and decrease the stresses over the ribs.

(¢) In an actual bridge deck the stresses and de-
flections of the deck plate may be considerably reduced
by composite action of the deck plate with the wearing
surface. The extent of such a composite action may
vary and can only be determined experimentally.

With a 2-in. asphalt wearing surface the stress relief
in the steel may reach the order of 759, and more
at cold temperatures (see Section 8.2.4.1d). Even at
high temperatures there may be a considerable com-
posite action of the asphalt with the steel plate under
impact loads.

An approximate method of analysis of the deck
plate supported by open ribs is given in Section 6.2.1.2.2.

Stresses and deflections of the deck plate supported
by closed ribs will be generally lower than those of
the plate on open ribs with the same spans.

A discussion of the stresses in the deck plate sup-
ported by closed ribs is given in Section 6.2.1.2.3.

6.2.1.2.2 Deck Plate Supported by Open Ribs

(a) Deck plate on rigid supports
For the purposes of an approximate computation,
the deck plate supported by open ribs is treated as an
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isotropic plate continuous in the x-direction over the
ribs acting as simple unyielding supports (Fig. 6.2).

It is assumed first that the applied wheel load, P,
is supported by a plate strip having a width of 2¢ ,
equal to the width of the load, distributed over the
area 2g X 2¢. In such a case the bending moments and
stresses would occur predominantly in the x-direction
and could be approximately computed by continuous
beam formulas given in Sections 4.2.2 and 4.2.3.

In the actual case, the plate extends in the y-direction
beyond the width of the applied load and the portions
of the plate on both sides of the load also participate
in the stresses. Thus the critical maximum moment
in the x-direction in the 1-in. wide plate strip under
the center of the applied load will be smaller in the
full plate than in the plate strip of the first case treated
as a continuous beam.

Deck plate
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Fig. 6.2. Deck plate supported on open ribs treated as a
continuous plate on rigid knife-edge supports

The ratio of the bending moment, Mp , in the
x-direction of the full plate, to the corresponding moment,
My , in the continuous beam, per inch of width, is
defined as a plate factor, ¥

_ Me

=i (6.1)

¥

The value of the plate factor, ¢ , which is always
smaller than one, 1s independent of the plate thickness
and varies with the ratio of the loading width to plate
span, 2¢/a , the load distribution in the x-direction and
the location of the bending moment computed.

Values of the plate factors, based on computations
of the bending moments in a continuous isotropic plate
on rigid supports, have been determined by Pelikan
and Esslinger [42] for the bending moments at the
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Fig. 6.3. Plate factors for moments in a continuous isotropic
plate [42]

midspan and over the supports of the deck plate and
are given in Figure 6.3. The use of these factors is
illustrated by numerical examples, Section 6.2.1.3.

In the computation of the maximum bending mo-
ments and stresses in the deck plate over the ribs the
effect of the local strengthening of the plate by the
rib and the welds may be accounted for by using the
theoretical value of the moment at the toe of the fillet
weld (Fig. 6.4a). Such procedure is justified by the
test results (see Section 6.2.1.1.3)

Deflections of the deck plate between the ribs may
be determined analytically or graphically by treating
a one-inch wide plate strip as a simple beam and apply-
ing to it the bending moments computed for the con-
tinuous plate, as illustrated by a numerical example in
Section 6.2.1.3.1. The plate rigidity, Dp, defined
by equation (2.7) should be used in the computation.
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Fig. 6.4. Computation of the bending moments in a deck plate supported by open ribs

(b) Effects of rib flexibility

The elastic flexibility of the ribs will tend to decrease
the maximum moments over the ribs and increase the
moments at the midspan of the plate. However,
these effects will be small in the usual cases.

If an analysis of the effects of the rib flexibility on
the bending moments in the plate is desired, a method
similar to that outlined in Section 4.2.7 may be used.

The limiting values of the relative rigidity coefficients,
v’, indicating the error due to disregarding the rib
elasticity, given in Section 4.2.7.3, are also valid in the
analysis of the deck plate.

6.2.1.2.3 Deck Plate Supported by Closed Ribs

The local stresses in the deck plate supported by
closed ribs may be considered to consist of two parts:

(a) Stresses due to the direct loading of the deck
pla e supported by inflexible ribs, as shown in Figure
6.5a.

(b) Stresses due to the load transfer from the directly
loaded rib to the adjoining ribs in the actual deck
system acting as an orthotropic plate, as shown in
Figures 3.7, 3.8 and 6.6a.

(a) Stresses due to direct loading

Stresses due to direct loading of the deck plate by a
distributed wheel load may be obtained by analyzing
the system shown in Figure 6.5a, consisting of a con-
tinuous isotropic plate rigidly connected to the rib walls
which act as rigid frames and provide an elastic restraint
of the plate at the points of support. The ribs, carrying
their load to the floor beams, are assumed not to deflect
under the load, which is indicated by rigid supports
under each rib in Figure 6.5a.

For the purpose of determination of the maximum
stresses, which will occur in the directly loaded rib,
the system may be simplified by replacing the rigid
connections of the plate to the adjoining ribs by knife-
edge supports and assuming a uniform spacing, ¢ ,
of these supports, as shown in Figure 6.5b. The use
of a symmetrical loading further simplifies the computa-
tions.

The structure is first treated as a 1-in. wide frame.
The final plate moments in the directly loaded rib are
obtained from the frame moments by applying appro-
priate plate factors, as discussed in Section 6.2.1.2.2.

The system shown in Figure 6.5b is, thecretically, re-
dundant to the infinite degree. However, in the present

e |
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Fig. 6.5. Computation of the bending moments in a deck plate

supported by closed ribs. Moments due to direct loading

loading case, the number of the independent redundants
reduces to four, designated as M, M,, M; and My,
since the redundant moments in the unloaded portions
of the plate may be expressed as a function of the
redundant M, and the carry-over coeflicient, « (Fig.
6.5¢). This is discussed in Section 4.2.1.3.

The four redundant moments, M,;, M,, M; and
M, , are computed by the usual methods of indeter-
minate structural analysis.

A typical bending moment diagram obtained by the
above procedure, with the moment values modified
by the appropriate plate factors, is shown in Figure
6.5d.

(b) Stresses due to transverse shear transfer

In the actual deck system the ribs are not inflexible,
as assumed in the computations under (a), above,
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Fig. 6.6 Computation of the bending moments in a deck plate
supported by closed ribs. Moments due to transverse shear
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Fig. 6.7. Computation of the bending moments in a deck

plate supported by closed ribs. Total bending moments in

deck plate in x-direction, obtained by superposition of the

effects of direct loading and transverse shear transfer (Figs.
6.5 and 6.6)

but deflect under loads, as shown in Figure 3.7. In
addition to the rib directly loaded, the adjacent ribs
also deflect and twist, thus participating in the load
carrying action. The load transfer from the directly
loaded rib to the distant ribs occurs through the trans-
verse shearing forces, }7; , transmitted by the deck
plate acting in flexure, as indicated by the wavy line
in Figure 3.7. The shearing forces in the deck plate
due to the load transfer are indicated near a rib not
directly loaded in Figure 3.8a, and, in the deck plate
at the rib directly loaded, in Figure 6.6a.

The magnitudes of the shearing forces, I, , have to
be obtained from considerations of the deck plate and
the ribs acting as an idealized orthotropic plate with
continuously distributed elastic properties, as discussed
in Chapters 2, 3 and 4.
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However, since the actual deck structure is dis-
continuous, with the smallest element having a width
a + e, the shears computed in the idealized system are
valid in the actual system only at midpoints between
the ribs, as shown in Figure 6.6a.

The general expression for the shear, V., in an
orthotropic plate is, with » = 0 (in accordance with
equation 2.18)

Q'w O*w

V= — D, — —
ox® Ox Oy?

In the simplified treatment of the deck as an ortho-
tropic plate the effect of the rigidity, D, , of the idealized
plate is assumed to be negligible in the overall con-
siderations, as discussed in Section 3.2.2. Thus the
above equation for shear simplifies to

O*w

Sroy (6.2)

V, = —2H

For the wheel load position at the midspan of the
rib the previously derived expressions for the bending
moment, M, , in the orthotropic plate may be utilized
in computing the value of V', , as follows:

With » = 0, the moment M, is given by equation

(2.17) as
Q’w
My = _'DTI SJ—’;

Substituting this into equation (6.2) results in

0 Ow
V, = —2H —
Ox Oyt
or
2H o(M,)
V, = — —= 6.3
D, ox (6.3)

Substituting the expression for M, aty = s5/2, for a
load at y = s/2, (equation 4.46) gives

2H 0 M, Q,.z)
vV, = — — xnz
A G
For the loading case shown in Figure 6.5a, the ex-

pression for the component load, Q,:/Qe, is given by
equation (3.22). Substituting this into the above

expression for }; results in

LY
D, 0x

— sin — sin — sin —

of Qs nr b 2 b

3 Mg, 4 nwg . nw mrx)
I,

The term M.,/Qs, given by equation (4.47), is not a
function of x. By differentiation of the above expression
the formula for 17, is obtained as

8 H M
_ 8 Men 1™ in T eos ™ (6.4

r, =z
b D, 4w Qs " h T2

with designations explained in Chapters 3 and 4.

For the determination of the stresses in the rib directly
loaded (Fig. 6.6a), the shear, V., is computed by
equation (6.4) at the location x = (6/2) + (a + €)/2,
with the co-ordinate x measured as shown in Figure
3.14.

With the shear, I,, obtained by equation (6.4),
the bending moments in the deck plate and in the
rib walls are computed, as shown in Figure 6.6b.

(c) Computation of the total stresses

The total local moments and stresses in the deck
plate are obtained by superposition of the effects (a)
and (b), as shown in Figure 6.7.

In computation of the stress in the deck plate over
the rib wall the value of the bending moment at the
face of the weld should be used, similarly as in the
case of open ribs (see Section 6.2.1.2.2a).

It should be noted that the local stresses in the x-
direction contribute to the stresses in the y-direction
in the deck plate and in the rib walls. The stress
increment, Af,, in the y-direction is, in accordance
with Hooke’s law in its general form,

Afy = vfz
where v = 0.3 = Poisson’s ratio for steel and f, = stress
in the x-direction.

Thus, the high axial stresses in the bottom of a closed
rib may be further increased by the effect of the local
stresses. This effect is, however, amply compensated
by the conservative assumptions used in the computa-
tion of the longitudinal stresses in the ribs, as discussed
in Section 2.4.1.3.

6.2.1.3 Numerical Examples of the Deck
Plate Analysis

6.2.1.3.1 Deck with Open Ribs

In this example the deck plate of the numerical
example given in Section 11.2, Figure 11.2, is analyzed. .
The plate thickness is 34 in., the 814 in. X 14 in. ribs
are spaced 12 in. o.c. The plate is loaded by a 12 kip
wheel load with loaded area dimensions 2g X 2¢ =
22 in. X 12 in. (see Section 3.4.2). The unit pressure,
p , including the 309, impact factor, is 59 psi.

The deck plate is treated as a continuous plate (see
Section 6.2.1.2.2).

(a) Beam moments

The moments in a 1-in. wide beam, loaded as shown
in Figure 6.4a are computed by integration of the
equations of the influence lines for continuous beams.
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Aoment at support O:
By equation (4.6)

11 . \2
My = 2f [—0.5 (——) + 0.866 <~—) -
x=0 a a
£ \3
0.366 (—) :l/)adx
a
0.5 /11\? 0.866 [11\?
2| . 222 il el T
22| - % (55) + 55 (5)

0.366 <11>‘]
4 12

i

= —890 lb-in.

Moment at support 1:
In a similar manner, using equations (4.6) and
(4.6a) the moment at support 1, M,, is computed as

M, = =317 lb-in.

Moment at support O al the toe of the weld:
The value of the shear, Vy , at support 0 , necessary
in the computation, is obtained as

Ro + (—Moa-l- M)

(59)(11)(6.5) ~ 890 — 317
= =399 1b
12 BT

V.

Il

0

The bending moment at the toe of the weld, at a
distance of 14 in. from the center line of the rib is
(59)(0.5)*
— =

My = — 890 + (399)(0.5) — — 698 1b-in.

The moment at midspan, for the loading position as
shown in Figure 6.4b, is computed by integration of
equations (4.8) and (4.8a), in a similar manner as above,
as

Mg = 4458 lb-in.

The above bending moments may also be obtained
by evaluation of the influence lines, Charts 5a and b.

(b) Plate moments and stresses

For the bending moment at support, the plate factor,
¥, is obtained from Figure 6.3b, Case 3. With the
ratio 2¢/a = 12/12 = 1.0, the plate factor is obtained

The maximum stress in the deck plate occurs at
the toe of the weld, as discussed in Section 6.2.1.2.2.

The maximum bending moment in the plate at the
toe of the weld is computed from the beam moment
by equation (6.1) as

M, = 0.87(—698) = —607 lb-in./in.

With the section modulus of the 3¢-in. plate
78 P

_ (0375

A
6

= 0.0234 in.3/in.

the maximum stress is obtained as

607
T 0.0234

Sfruax = 25,940 psi

For the bending moment at the midspan of the
plate, the plate factor is obtained from Figure 6.3a,
Case 3

lllc = 0.70

The values of the maximum moment and stress at
the midspan of the plate are

Mg = 0.70(458) = 320 lb-in./in.

320
= 0034 13,680 psi

(c) Maximum deflection

The maximum deflection of the plate is computed
approximately by applying to a simple beam with a
span a = 12 in. the computed bending moments shown
in Figure 6.4b. The plate rigidity, Dp = E#/10.92,
is used in the computation. The rigidity of the beam
at the ribs is assumed to be infinitely large (Fig. 6.4c),
to account for the plate stiffening at the supports.

The maximum deflection at the midspan is obtained
in this manner as

we = 0.024 in.

(d) Effects of rib flexibility

The value of the relative rigidity coefficient, v/,
computed in Section 11.2.1.4.2, is equal to 0.0041.
Thus the error due to disregarding the effects of the
rib flexibility on the bending moments in the deck plate
is smaller than 39.

6.2.1.3.2 Deck with Closed Ribs

The local stresses are computed for the closed rib
system of the numerical example given in Section 11.3.

The dimensions of the system are given in Figures
11.9 and 11.10.

The loading consists of one 12 kip wheel, with a unit
pressure p = 59 psi, as shown in Figure 6.5a.

The analysis is made in accordance with the outlines
given in Section 6.1.2.3.

(a) Effects of direct loading

In computation of the effects of the direct loading,
the ribs are considered rigid, as shown in Figure 6.5a.

The simplified system is shown in Figure 6.5b.

The redundant moments shown in Figure 6.5¢ are
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obtained by a statistically indeterminate analysis and
are, for a 1-in. wide frame, as follows:

M, = —701 lb-in./in. M,
M, = —85 Ib-in./in. M,

]

<423 Ib-in./in.
417 Ib-in./in.

It

The moment at the midspan of the deck plate under
the load is obtained as

Me = 4547 lb-in./in.

The plate moments are obtained by application of
the plate factors, based on the most heavily loaded
span, 2 = 13 in. Thus,

12,

From Figure 6.3, Case 3, the plate factors are:
For moment at support: vg = 0.84
For moment at midspan: Yo = 0.68

Thus, the plate moments are:
M, = —(701)(0.84)
M, = —(85)(0.84)
M, = +(23)(0.84)
M= +4(17)(0.84) = +14 lb-in./in.
Mg = 4-(547)(0.68) = 4372 lb-in./in.

—589 1b-in./in.
~71 lb-in./in.
419 1b-in./in.

I

These moments are shown in Figure 6.5d.

(b) Effects of transverse shear transfer

The shear resulting from the transverse load transfer
at the point midway between the loaded rib and the
adjacent rib (Fig. 6.6a) is computed by equation (6.4),
using the values of M, /Qs given in Table 11.3.2.1.5,

The value of

at the location

a+e¢ 154
2 2 2 h

>+
X = -
2

is computed to be —0.174.
From equation (6.4), using the parameters computed
in Section 11.3

_ (8)(0.709)(180)

= (0.051)(0.174) = —0.059 k/in.

V, =

The moments in the deck plate and in the rib walls
due to the shears of 59 lbs/in. on both sides (Fig. 6.6b),
are computed to be as follows:

M, = 4196 lb-in./in. M; = —129 Ib-in./in.
M; = 434 lb-in./in.

No plate factors are applied to these moments since
the shear, V,, computed by equation (6.4), is obtained
from considerations of the deck acting as a plate, as
discussed in Section 6.2.1.2.3.

(c) Total moments and stresses

The total moments in the deck plate and in the rib
walls are obtained by superposition of the effects (a)
and (b), above, as shown in Figure 6.7.

The maximum stress in the 34-in. deck plate occurs
at the midspan of the plate and is

s M _ 568
S (0.375)%/6
The stress in the side wall of the rib at the junction
with the deck plate is
fo 190
"~ (0.250)%/6

= %24,200 psi

+18,200 psi

and at the bottom of the rib

53

= 27 - 5090 psi
/= 25076 pst

The stress increments in the y-direction due to the
stresses in the plate in the x-direction are, with Poisson’s
ratio for steel » = 0.3 :

In the deck plate: Af, = +(0.3)(24,200) = 7250 psi
In the bottom of rib:  Af, = =*(0.3)(5090) = %1530 psi

6.2.2 Deck Plate Subjected to Large Loads

6.2.2.1 General

For the purposes of this discussion, “large loads”
are defined as those loads under which the stresses in
the deck plate computed in accordance with the ordi-
nary plate theory of the first order exceed the normally
allowed limits.

Tests on steel deck plates subject to static concen-
trated loads have established the fact that under in-
creasing loads the elastic behavior of the plate, evidenced
by the lack of permanent deformations after unloading,
extends considerably beyond the limits predicted by
the ordinary flexural theory [29, 30, 31, 34].

As the loads and the deflections increase, membrane
stresses develop in the plate, causing horizontal reactions
at the supports and internal compressive stresses in
the portions of the plate adjoining the loaded area.
At higher stages of loading, plastic hinges form over
the supports and the flexural stresses are almost entirely
replaced by membrane stresses. In spite of the plastic
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conditions at the critical locations of the plate, the
deflections are limited because of the restraining effect
of the adjoining unloaded portions of the plate. In the
final stage of loading the strain hardening phase is
observed in the plate. Thus the full tensile strength
of the material is developed before rupture occurs at
the ultimate load.

6.2.2.2 Ultimate Load Test on a Deck Plate

Results of a full scale loading test [30, 76] of a ¢-in.
thick deck plate supported on ribs spaced 12 in. o.c.
are shown in Figure 6.8.

In this test a wheel load was simulated by two loaded
areas straddling the rib (Fig. 6.8a). After the total
load reached 122 metric tons, only the area on the left
side of the center rib continued to be loaded until
the ultimate load was reached. The deck plate was
made of St 37 steel, corresponding roughly to the
American A7 carbon structural steel.

The load-deflection diagram of the test is shown
in Figure 6.8b. The behavior of the test specimen
was fully elastic, with no measurable permanent de-
flections, until the load of 32.5 metric tons was exceeded,
corresponding to 3.25 times the German standard
design wheel load. In the range between 32.5 and
75 tons the load-deflection curve is flatter, indicating
plasticity in the plate. The deflection increments
under loads larger than 75 tons are again smaller,

276
2

93

which is attributed to the strain-hardening effects in
the plate. The ultimate capacity of the plate was
reached at the load P/2 = 276/2 tons.

Thus, with the design load P of 10 tons, the safety
against rupture was 276/10 = 27.6.

If the system shown in Figure 6.8a is analyzed as a
continuous isotropic plate, as discussed in Sections
6.2.1.2.2 and 6.2.1.3.1, a theoretical ‘“‘allowable load”
of about 5.3 metric tons is obtained if the allowable
stress of 1600 kg/cm? or 22.7 ksi should not be exceeded
at the toe of the weld (see Fig. 6.1b). The load of
32.5 tons, which, according to the test, caused no
permanent deformation of the plate, would, by the
above analysis, correspond to a stress of 136 ksi, which
by far exceeds the ultimate strength of the material.

It is seen that the analysis of the deck plate in accord-
ance with the first order plate theory is entirely inappro-
priate and misleading if the loads exceed the usual limits.

It is also obvious that the stresses in the plate under
the working loads cannot be used to judge the ultimate
static strength and the actual factor of safety of the
plate.

6.2.2.3 Effects of Axial Prestress and Initial
Dishing of the Plate

Theoretical and experimental investigations con-
ducted by Kloeppel [30] indicate that in the elastic
range (see Fig. 6.8b) the stresses and deflections of a
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Fig. 6.8.

30
Deflection at point m, mm

(b) Load—deflection diagram

10 20

Ultimate load test on a steel deck plate [30, 76]
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steel plate acting in combined flexure and tension may
be considerably affected by axial prestress and initial
dishing of the plate.

The effect of a tensile prestressing force, H, on the
deflection of a loaded slender flat bar made of carbon
structural steel St 37 is shown in Figure 6.9. It is
seen that prestressing considerably reduces the de-
flections under a given vertical load.

It should be noted that in a steel plate deck a pre-
stress in the deck plate may develop as a result of the
transverse contraction of the fillet welds connecting
the deck plate and the ribs. Such residual stresses
due to weld shrinkage up to 5000 psi have been ob-
served in the deck plates [30].
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(b} Load-deflection diagram

Fig. 6.9. Effect of axial prestress on deflection of a slender
flat bar {30]

Initial dishing of the deck plate between the ribs
tends to reduce both the stresses and the deflections
of the plate.

The effects of the initial dishing of a slender flat bar,
obtained by computation, are shown in Figure 6.10.

Figure 6.10a shows that even a small initial deflection
of less than 1444 of the span may markedly decrease the
deflection under an applied load. An initial dishing
of the order of 59, of the span stiffens the system
considerably.

Pre-dishing of the plate also increases the load under
which the design stress or the vield stress in the plate
is attained, as shown in Figure 6.10b.

Unintended dishing of the deck plate may occur as
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Fig. 6.10. Effects of initial deflection of a slender flat bar on
deflection and stresses (computed values) [30]
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a result of warpage of the deck structure due to weld
shrinkage.

An intentional application of prestressing and
pre-dishing in the fabrication of steel plate decks may
offer interesting possibilities, if the design is governed
by deflections under working loads.

It shculd be noted, however, that prestressing and
initial curvature have no effect on the ultimate strength
of the plate.

6.2.3 Fatigue Strength of the Deck Plate

6.2.3.1 Fatigue Tests

Tests to determine the strength of the deck plate
under the effects of pulsating concentrated loads were
conducted at the Technological University in Darm-
stadt [31].

The arrangement of Tests 1 and 2 was the same as
used in the static tests of the deck plate, Figure 6.1a.
Thus, in addition to the local stresses (System III), the
deck plate tested was also subjected to the tensile
longitudinal prestress in the y-direction, simulating
the System I stresses, and to the System II stresses, as
the flange of the ribs and the floor beams.

Tests 3 and 4 were made on smaller deck panels,
without longitudinal prestress.

The dimensions of the test models, having a reduction
ratio of 2.5, corresponded to a 10.6- mm (7{g-in.)
deck plate supported by 1 in. thick longitudinal ribs
spaced 300 mm (11.8 in.) o.c. and floor beams spaced
1000 mm (39.4 in.) o.c. The loaded area of the model,
corresponding to a 21.6-in. X 8-in. gross contact area,
was intended to simulate the standard wheel of the
German design specification, without allowance for
the load distribution through a wearing surface.

Since the model dimensions and the loaded area
dimensions are reduced in the same proportion, the
stresses measured in the deck plate of the model are
the same as would occur in a full-scale deck under
the same unit pressure of the applied load.

The load was applied by means of a pulsator, with a
frequency of 220 load cycles per minute in Tests 1
and 2, and 1800 cycles per minute in Tests 3 and 4.

The test results, with the unit pressures under the
applied loading expressed in psi are given in Table
6.2.3.1.

A comparison of the test loads to the actual wheel
loads acting on deck plates may be expressed by the
ratio of the upper values of the unit* pressures used
in the tests and the pressure under the standard 12 kip
wheel of the AASHO specifications (59 psi, including
309, impact, see Section 6.2.1.3.1), which ranged from
3.3 to 7.8. However, it should be noted that if the
test pressures were applied to the design loaded area

TABLE 6.2.3.1
FATIGUE TESTS ON STEEL DECK PLATL

(Test arrangement as shown in Figure 6.1}

Unit Pressure
T of Applied
Ncst Pulfxating No. of Load Remarks
. Loading (psi) Cycles
From To

1 18 195 2.2 X 108 Test discontinued
with no crack
apparent

2 18 311 6.75 X 106 Test made after com-
pletion of Test 1
on the same speci-
men. Visible
crack at
6.75 X 108 cycles

3a 80 240 5 X 108 Test discontinued
with no crack
apparent

3b 80 300 5 X 108 Test continued on the
same specimen.
No crack apparent

3¢ 107 461 2.2 X 108 Test continued on the
same specimen.
Crack along longi-
tudinal rib at
2.2 X 108 cycles

4 226 338 6.88 X 10t Visible crack at
6.75 X 108 cycles.
Failure at
6.88 X 106 cycles

of the 12 kip AASHO wheel of 22in. X 12 in. (see Section
3.4.2.2), which is larger than the equivalent full-scale
loaded area of the tests of 21.6in. X 8 in., all other condi-
tions being equal, the maximum stress in the deck
plate would be about 209, higher.

Strain measurements for the purpose of computation
of the stresses in the deck plate were made in Tests
1, 2 and 4. In Test 1 a drop of the residual stresses
in the deck plate was observed under the action of the
pulsating loading.

Because of the limited number of the strain gages
used in the fatigue tests, the stresses in the deck plate
could be only approximately determined. In Test 2
the maximum principal tensile stress in the top fiber
of the plate above the toe of the weld, where the crack
occurred, was found to be greater than 45 ksi. The
vield point stress of the thin carbon steel deck plate,
obtained by tensile test of the specimen, was deter-
mined to be 47.5 ksi. Thus the fatigue strength of
the deck plate was, in this case, approximately equal
to the yield point stress.
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Fig. 6.11. Fatigue tests on steel deck plate [31]. Fatigue
rupture of deck plate in Test 3¢ (See Table 6.2.3.1)

The fatigue rupture of the deck plate in Test 3 is
shown in Figure 6.11.

6.2.3.2 Discussion of the Factors Affecting the
Fatigue Strength of the Deck Plate

The fatigue strength of the deck plate of the model
test described above was found to be very high.

This is partly explained by the fact that at the critical
section of the deck plate at the rib, where fatigue cracks
occurred, the weld is located on the compressive side
of the plate. Thus the local stress concentrations,
occurring at the toe of the weld, could not affect the
maximum tensile stress in the top fibers of the deck
plate.

Another factor contributing to the high fatigue
strength is seen in the rapid decrease of the stress in
the direction of the depth of the critical cross section
of the thin deck plate and in the relatively large elas-
ticity of the deck plate [31].

The results of the model tests may be used as an
indication of the probable fatigue behavior of full-scale
steel decks of similar geometric proportions and material
properties, under similar loading conditions.

In comparing the test model with the actual deck
designs, the high mechanical properties of the carbon
steel plate used in the test may be reasonably expected
to be matched or exceeded by low-alloy steel plate
commonly used in the design of the decks, which has an
additional advantage ofsa higher resistance to corrosion.

While no fatigue test results are available for the
decks with closed ribs, it may be assumed that the
fatigue behavior of the deck plate in this system is
essentially similar to that of the deck supported by open
ribs, since the maximum local stresses in the deck
plate under the working loads are of the same crder

if geometric conditions are similar {(see Section 6.2.1.3).

In evaluating the results of the tests it is seen that
the values of the pressures under the loads causing
fatigue failure of the plate (Table 6.2.3.1) exceed by
far the unit pressures of the standard truck wheels
used in the design of the bridge decks (see Section
3.4.2.2).

It should be noted that even under the heaviest
tires of special vehicles, the actual contact pressures
normally do not exceed 80-100 psi, because of the
limitations of the tire inflation pressures. The highest
contact pressure practically possible with the existing
equipment would occur under special earth compactor
tires and may reach the order of 130 psi, which is still
considerably below the pressures used in the tests.
Moreover, the actual pressures on the steel deck would
be lower, because of the load distributing action of the
wearing surface.

Since the stresses in the deck plate, with rib spacing
and wheel dimensions of the common order, depend
directly on the contact pressure under load, as already
mentioned in Section 6.2.3.1, the design wheel loads
appear to be far from causing conditions leading to a
fatigue failure of the deck plate of low-alloy steel with
the usual minimum thickness of 7{¢ in. or 3¢ in.

This view is further supported by the following
observations:

(a) Pulsating loads causing maximum stresses below
the critical level do not seem to affect the fatigue strength
of the plate [31].

It should be noted that a realistic judgment of the
danger of fatigue should be based not on the maximum
loads, but on the average actual loads to which any
particular panel of the deck plating may be subjected.
The actual bridge loading, which may include occa-
sional to frequent design loads and even some loads
exceeding the design limits, will probably consist pre-
dominantly of lighter loads, which will not affect the
fatigue life of the plate.

It is also unlikely that all, or even the majority, of
the wheel loads will exert the full additional impact
load of 309.

(b) The actual stresses in the steel deck plate are
likely to be smaller than the computed values, as a
result of the composite action of the plate with the
wearing surface, as discussed in Section 6.2.1.2.1e.

(c) It should be noted that if a fatigue crack in the
deck plate develops, it occurs in the direction of the
rib (Fig. 6.11), which is the longitudinal direction of
the bridge.

Thus a fatigue crack does not endanger the deck
acting as the top flange of the main girders and its
effects are purely local. Such a crack in the deck
plate may be repaired by welding.
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6.2.3.3 Conclusion

Based on the above discussion of the fatigue behavior
of the steel bridge deck plate and on the satisfactory
performance of the steel plate decks of the existing
bridges the conclusion may be reached that, under
normal loading conditions and with the wusual rib
spacings and deck plate thicknesses (see Chapter 7),
fatigue of the deck plate of low-alloy steel should not
be regarded a critical design factor.

6.3 EMPIRICAL FORMULAS FOR THE DESIGN
OF STEEL DECK PLATES

6.3.1 AISC Formulas for the Deck Plate of Battle-
deck Bridge Floors

Empirical formulas for the design of steel deck plate
subject to standard wheel loads are given in reference
{2].

The plate thickness is determined by the maximum
flexural stress at the midspan of the deck plate between
the stringers (Fig. 1.3).

For the deck plate of structural carbon steel, a 409,
increase of the allowable stress was recommended,
resulting in a design stress of 28,000 psi.

The AISC formulas are meaningful only for the
deck plate supported on wide-flange beam stringers (see
Section 6.2.1.1.2), and are not applicable to the plate sup-
ported by open or closed ribs of the type shown in
Figure 1.2.

6.3.2 Formula for the Plate Thickness Based on
Allowable Deflection

A formula for an approximate determination of the
thickness of the deck plate based on a specified deflec-
tion of the plate under a wheel load was proposed by
Kloeppel (30, 31].

In accordance with this semi-empirical formula
the maximum deflection, w,, , of the deck plate at the
midspan between the ribs, under a wheel load extending
over the full span of the plate, equals the deflection
of a fixed beam of the same span and thickness subject
to the same unit loading times a factor of 4.

Thus the deflection of the plate is expressed as

5 1 pat

w, = maximum deflection of the deck plate under
a wheel load

¢t = wheel load unit pressure

rib spacing

= {p%/12, with tp = plate thickness
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Fig. 6.12. Deck plate thickness required for a deflection
w, = (1/300) X plate span

The deck deflections computed by formula (6.5)
are in a fair agreement with the test measurements
made [30]. However, the range of the tests is probably
too limited for a complete verification.

If the deflection of the deck plate should not exceed
1490 of the spacing of the deck plate supports (i.e.,
the open ribs, or the side walls of the closed ribs), the
following condition is obtained

5 ( 12 )( pa“) a
Wy === )=} £ o=
6 \384/\Et,) — 300

tp > a V% (6.6)

With E = 29 X 105 psi, the approximate formula for
the plate thickness is obtained as

tp > 0.0065aVp (6.7)

The unit pressures, p , under the standard AASHO
wheel loads, including 309, impact, are 59 psi and 67
psi, respectively, for the 12 kip and 16 kip wheels (see
Section 3.4.2).

Deck plate thicknesses obtained by equation (6.7)
with the above wheel load pressures are shown for the
various rib spacings in Figure 6.12.

For comparison, the thickness obtained from deflec-
tions computed under an assumption of a continuous

and hence
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deck plate and with the actual wheel dimensions, as
illustrated in the numerical example, Section 6.2.1.3.1,
are also plotted.

It is seen that the values obtained from the semi-
empirical formula (6.7) are somewhat smaller than those
computed analytically, with the simplifying assumptions
discussed in Section 6.2.1.2.2.

While a rigorous determination of the deck plate
deflections presents great difficulties, it is believed that
the values of the minimum deck thickness, ¢p, based
on the deflection ratio of 2/300, may be computed
conservatively by formula (6.7a) given below, obtained
by a small modification of the numerical coeflicient
in equation (6.7)

tp > 0.007aV'p (6.7a)

It should be noted that the condition of a constant
deflection ratio of the deck corresponds, with the con-
stant unit load extending over the entire span of the
deck plate between the ribs, to an approximately
constant value of the stresses in the plate, for any deck
plate span. Thus, in a deck with open ribs, the maxi-
mum theoretical stress in the deck plate having a
thickness determined by formula (6.7a), computed
in accordance with the assumptions used in Section
6.2.1.3.1 will be of the order of 33 to 35 ksi. The
computed stresses in the actual designs will usually
be lower because the plate thickness is rounded to the
next higher standard size.

Composite action of the wearing surface with the
steel plate will tend to further decrease the actual deck
deflections and stresses, see Section 6.2.1.2.1e.

6.3.3 Formula for Ultimate Capacity of the Plate

A formula for the ultimate strength of the deck
plate, based on the behavior of a flat bar, has been
cbtained by Kloeppel [30] as follows:

Tests have shown that a flat steel bar, fixed at both
ends and loaded with a uniformly distributed load,
p , per unit length (Fig. 6.9), acts at failure as a cable,
with the load carried by axial stresses only, sustained
by the reactions at supports. The total elongation at
failure was found to be approximately equal to the
elongation at maximum load in a tensile load test of
a specimen of equal length.

For a bar of a span « and a cross section A acting as
a cable, the following relationship is true:

q=1% (6.8)
8w,
where
H = horizontal reaction at supports
p = loading, per unit length of bar

w, = maximum deflection at midspan

The total elongation, Aa , may be approximately
expressed as

2
y 2
Wy,

8
Aa = — 6.9
4= 3 a (69
The unit elongation, ¢, may then be given as
A 8 2,2 1 2,2
Qa8 pa 1 g (6.10)

a3 GAH 24 I

With the ultimate value of the horizontal reaction,
H, , expressed as a function of the known ultimate
tensile stress, f, , of the material

H, =F,A (6.11)
equation {6.10) becomes
1 [pa\?

v = = { — 6.12
) 24<nA) (612)

Hence, the ultimate load on bar is obtained as

49f, 4 -

bu = f Ve (6.13)

The value of ¢, in the above equation may be set
equal to the ultimate unit elongation at maximum
load, obtained from the tensile ultimate load test of a
specimen of the same length. For the carbon steel
bars of the above tests the value of ¢, thus obtained
was 1497,

The ultimate loading capacity of a plate with a uni-
formly distributed load extending only over a portion
of the width of the plate (Fig. 6.2) is, obviously, greater
than that of a bar loaded over its full width. For the
bridge decks and wheel loads of the average propor-

tions an empirical correction coefficient, £ = 1.25,
based on the test shown in Figure 6.7 has been proposed
by Kloeppel.

Thus, the formula for the ultimate uniform load,
pu , of a deck plate loaded over its entire span between
the longitudinal ribs, obtained from equation (6.13), is

i Ve (6.14)

where

b = ultimate loading, psi

plate thickness, in.

Jf» = ultimate tensile strength, psi

a = longitudinal rib spacing, in.

¢, = ultimate elongation of the material, corre-
sponding to the stress, f,

it

A further experimental verification of this formula
is desirable.
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6.4 SUMMARY AND CONCLUSIONS

The deck plate of a steel plate deck bridge, acting
locally in transmitting the wheel loads to the longi-
tudinal ribs, behaves under the design loads as a con-
tinuous isotropic plate.

However, under loads exceeding the usual design
loads membrane stresses occur in the plate and the stress
increments are no longer proportional to the loads.

The ultimate load of the deck plate, near which the
plate acts, practically, as a membrane, is very large
and reaches the order of 15-20 times the ultimate load
computed in accordance with the ordinary flexural
plate theory. Thus the bridge deck plate possesses
an ample local overload capacity.

Since the relationship between the loads and stresses

under higher loads is non-linear, the local stresses in
the deck plate under the design loads cannot be used
as a measure of the actual strength of the deck. There-
fore the computation of the local stresses in the deck
plate is usually not required.

The fatigue strength of the deck plate subjected to
pulsating loads has been found to be high. Therefore,
fatigue of low-alloy deck plate of usual proportions
subjected to the standard wheel loads is not considered
a critical design factor.

The minimum thickness of the deck plate may be
determined by the allowable deflection of the deck
plate under the wheel. Formula for the deck plate
thickness based on a plate deflection of 1440 of the
rib spacing is given in Section 6.3.2.




CHAPTER 7

Construction Details

7.1 CONSTRUCTION ELEMENTS
7.1.1 Open Ribs

7.1.1.1 General

In the open rib deck system flat bars, ouib sections,
angles and split I-beam sections have been used, as
shown in Figure 7.1.

The flat bars and the bulb sections (Fig. 7.1a and c¢)
are most frequently used. The deep and slender rib
sections of this type may have to be investigated for
elastic stability (see Appendix II).

As a rule, the ribs are arranged in the longitudinal
direction of the bridge and run continuously through
slots in the transverse floor beams.

Because of the high flexural stresses in the ribs,
which are superimposed on System I stresses, low-alloy
structural steel is wusually required. However, the
use of the heat-treated high-strength constructional
steels does not seem to be warranted, since it may
result in excessive deflections of the ribs.

7.1.1.2  Evaluation of the Open Rib System

The open ribs are simple to fabricate and may be
easily spliced in the field. The rib depth and thickness
may be varied as required in the various parts of the
bridge deck. All rib surfaces and the bottom of the
deck plate are accessible for inspection and main-
tenance during the lifetime cf the structure.
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The disadvantages of the open rib system are in its
small wheel load distribution capacity in the transverse
direction and in a relatively close floor beam spacing
required with the flat bar ribs of the usual depths.
The T-section ribs, which have to be spaced farther
apart, require a heavier deck plate. Thus the weight
of steel per sq ft of deck is usually considerably higher
in the open than in the closed rib system (see Fig. 7.2).

It should also be noted that the total length of welds
required in the fabrication of the deck with open ribs
is about twice as large as in the deck with closed ribs.

7.1.1.3 Optimum Spacing and Span

The rib spacing is governed by the strength and
the deflections of the deck plate and is determined
by the criteria discussed in Chapter 6.

The choice of the rib span may depend on such
diverse factors as the type of rib, type of steel, loading,
the span and rigidity of the floor beams, ratio of the
System II stresses to System I stresses in the ribs, design
stresses used, fabrication and erection methods, etc.
Therefore an analytical determination of the optimum
floor beam spacing, as attempted in [17], does not seem
to be practical. The floor beam spacing to be used
in each particular case is best decided by comparative
weight and fabrication cost estimates for the various
alternatives.

Generally, the floor beam spacing should be larger
if the span between the main girders is large, and
smaller if the floor beam span is relatively short.

.
-
-~

Floor beam web

(dy fe}

Fig.7.1. Typical open rib cross sections: (a) Save River Bridge {42, 76], see Fig. 1.8. (b) Possible arrangement, minimizing residual
welding stresses. (c) Cologne-Meulheim Bridge [74, 80], see Fig. 1.21. (d) Duesseldorf-Neuss Bridge {68, 78], see Fig. 1.10.
(e) Duesseldorf-North Bridge [59, 73], see Fig. 1.15
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Design conditions:
(1). Material: low alloy structural steel except as noted under (7).
(2). Loading application: see Section 3.4.2.
(3). Design stresses:
Max. local stress in ribs (System 11)  17.0 k.s.i.
Max, stress in low alloy floor beams. 27.0 k.s.i,
{4). Fioor beam span 50'—0".
{5). Deck plate and rib sizes as shown.
(6). Floor beams spaced more than 9'—0" o.c. are of the type
shown in Figs. 11.9 and 11.10(c).
(7). Floor beams spaced less than 9—0" o.c. are of two types:
(3). Heavy floor beams of low—alloy steel, spaced 21 to 28 ft.
o.c., Fig. 11.3(9).
(b). Intermediate ficor beams of carbon steel, Fig. 11.3(c).

Fig.7.2. Weight of deck plate stiffening of a bridge deck 50 ft
wide between girders, AASHO loading, as a function of floor
beam spacing

The spans of the open ribs of the existing steel plate
deck bridges in Europe, governed primarily by the
material economy, do not exceed 7 ft. It is likely that
the upper economical span limit for open ribs will be
higher in American practice.

If longer rib spans are used, their deflections under
the wheel loads may have to be investigated.

The relationship between the weight of the deck
stiffening members (longitudinal ribs and floor beams,
not including the deck plate) and the floor beam spacing
for the specific case of the bridge treated in the numerical
examples of Chapter 11 is shown in Figure 7.2. The
weights of the ribs and floor beams shown in this figure
are based on the following assumptions: the ribs are
flat bars; the deck plate is 3¢ in. thick; the 50-ft long
floor beams also serve as erection supports for the
deck plating, as shown in Figures 11.2 and 11.9; the
material is low-alloy steel, except for the intermediate
floor beams spaced closer than 9 ft o.c., which are of
carbon steel. The maximum local stress in the longi-
tudinal ribs under the AASHO wheel loads is equal to
17 ksi.

Figure 7.2 also includes the weights of the closed
rib system with trapezoidal ribs.

While the curves shown in Figure 7.2 are valid only
for the conditions under which they were derived,
the weight data for other structural conditions would
indicate similar trends.

It is seen that the total weight curve does not in-
crease very sharply with increasing rib spans. Thus
the floor beam spacing may depend to a considerable
degree on the economy of fabrication.

7.1.2 Closed Ribs
7.1.2.1 Types of Closed Ribs

The most often used trapezoidal rib section is shown
in Figure 7.3a. The rib width at the top, ¢, and the
deck plate span between the ribs, ¢, are determined
by the strength of the deck plate (see Chapter 6).
The trapezoidal cross section possesses considerable
torsional rigidity, resulting in a good transverse load
distributing capacity of the deck, as discussed in
Chapter 3.

The rib type with a rounded bottom (Fig. 7.3b) has
the advantage of avoiding the sharp bends which may
cause overstraining of the plate material during fabri-
cation. However the effective torsional rigidity of the
ribs with rounded bottoms is much smaller than that
of the trapezoidal ribs.

Figure 7.3c represents a compromise solution. The
torsional rigidity of this type of rib lies between types
(a) and (b).

Triangular ribs have also been used, with or without
additional inverted T-sections to increase their flexural
rigidity (see Fig. 7.3d and e).

The closed ribs of the European steel plate deck
bridges are, as a rule, cut at the floor beams and butt-
welded to the floor beam webs, as shown in Figures
7.3a and b. However, the continuity of the ribs
through the cutouts in the floor beam webs (Fig.
7.3¢) is much to be preferred, especially in the portions
of the deck subjected to tension.

The rib thickness varies from 3{g in. to 3{4 in.
Since the box rib sections are welded air-tight, no
corrosion is expected in the interior of the ribs. This
is discussed in Section 7.4.

The load distributing capacity of the deck with
closed ribs will be considerably increased bv additional
stiffening diaphragms between the ribs, as shown in Figure
7.4. However, because of the additional cost of fabrica-
tion, the economy of such a construction in American
practice is doubtful.

The ribs are arranged, as a rule, in the longitudinal
direction of the bridge. Such an arrangement has the
advantage of utilizing the cross-sectional area of the



102

i
: gy
Loa
Section A-A
(a)
_9_
. -
stress
ing hole

r———xz%“——-l-——lzé"—v

ORTHOTROPIC STEEL DECK BRIDGES

|
T .

N
2 E)
: Back-upRIx:g"
j’ g ty=24" ; *
NS =
Lg
Section B~B

(b)

floor beams

Section C-C

fc)

Fig. 7.3. Typical cross sections of closed ribs: (a) Mannheim-Ludwigshafen Bridge [77], see Fig. 7.20.
(c) Port Mann Bridge [22, 62], see Fig. 1.24.

{60], see Fig. 1.12,

(d) (e)
(b) Weser Bridge Porta

(d) Haseltal Bridge on the Frankfurt-Wuerzburg Autobahn [72].

(e) Fulda River Bridge, Bergshausen [72], see Fig. 1.26

ribs as a part of the flanges of the main bridge members,
and avoids the superposition of the large System III
stresses and System I stresses in the deck plate. How-
ever, if the System I stresses are low and the main
members are closely spaced, it may be advantageous
to span the ribs in the transverse direction of the bridge.
An example of such a structure is the combined railroad
and highway truss bridge shown in Figure 7.5.

7.1.2.2 Evaluation of the Closed Rib System

The bridge deck stiffened by closed ribs has a con-
siderably better load distributing capacity than a deck
with open ribs.

The hollow, thin-walled rib sections are efficient as
flexural members and also possess a high degree of
elastic stability.

Thus a relatively wide spacing of the floor beams
becomes possible, which results in a lower weight of
the bridge deck (Fig. 7.2) and reduces the fabrication
and erection labor. The amount of welding required
in the closed rib system is also considerably smaller
than in the open rib deck, as mentioned in Section
7.1.1.2.

The disadvantage of the deck with closed ribs is in
the more difficult fabrication of the rib profiles and
the more complicated field splices of the ribs.

The closed rib system also requires a higher degree
of precision in fabrication and erection of the deck
panels to insure proper fit at splices.

7.1.3 Floor Beams

The transverse floor beams are shaped as inverted
T-sections using the deck plate as the upper flange.

If the main girder spacing is large, it may be ad-
vantageous to use the floor beams as erection supports
for the deck plating panels, in a manner indicated
in Figures 11.2 and 11.9. In such a case the lower
part of the floor beam may consist of an I-section
fabricated separately, to which the upper part of the
floor beam web, fabricated together with the deck
plating, is welded in the field after placing the deck
panels into position.

Heavier floor beams or deep diaphragms are generally
required at certain intervals to act as wind frames
and to increase the torsional rigidity of the bridge cross
section. However, in some structures the heavy trans-
verse members have been omitted, due to special
considerations (see Figs. 1.23, 1.24).

Cutouts have to be provided in the floor beam webs
at the intersections with the continuous longitudinal
ribs. .

The usual detail at the intersection with the flat
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bar ribs is shown in Figure 7.1a. The circular cutouts
at the top and at the bottom of the slots in the floor
beam web are made to reduce the stress concentrations
in the web plate and to avoid intersections of the welds
connecting the floor beams and the longitudinal ribs
to the deck plate. With the arrangement shown, the
welds between the ribs and the deck are continuous,
while the welds connecting the ribs to the floor beams
and the floor beams to the deck form closed loops.

The shears transmitted by the ribs to the floor beams
are usually low, and it is sufficient to weld the ribs to
the floor beam webs on one side only, as shown in Figure
7.1b. This has the advantage of minimizing the
stresses in the floor beam web developing as a result
of the shrinkage of the vertical welds at the ribs. Such
stresses have occasionally caused cracks in the vertical
welds. However, the arrangement shown in Figure
7.1b impairs the continuity of the floor beam web,
which may be needed where the shearing stresses in the
floor beam web are large.

Details at intersections of other types of ribs with
the floor beams are given in Figures 7.1¢, d, e and 7.3.

/Stiﬂemng diaphragms

at midspan of ribs

The depths and sizes of the floor beams may be
governed by the erection requirements and the allow-
able deflections, especially with longer floor beam
spans. In such cases the use of structural carbon steel
for the floor beams might be indicated.

7.1.4 Main Bridge Members

Examples and a general discussion of the main bridge
members acting in conjunction with the steel plate
deck are given in Sections 1.1.3 and 1.2.3.

Single-web girders have often been riveted (see Figs.
1.6, 1.7, 1.8, 1.21), since welded fabrication and field
splicing of the heavy bottom flanges often required in
long span bridges were not considered practical until
recently. However, the development of new welding
techniques for use with heavy plates of weldable high-
strength steel now make it possible to design welded
girders with flange areas of large cross section.

A possible cross section of a heavy welded girder
bottom flange is indicated in Figures 11.2 and 11.9.

The single-web main girders of steel plate deck bridges
are, in most cases, fabricated without the top flanges

Locate stiffeners at 4 points of ribs
.

(a) Diaphragm type stiffeners
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Fig. 7.5. Combined railroad and highway bridge over the Lippe-Seiten Canal with transverse orientation of the deck ribs [61]
(simple span—190 ft)

(Fig. 1.8), or with only nominal top flanges (Fig.
1.29b), to which the deck plating is connected in the
field. However, the main girder sections may also be
fabricated together with a strip of the deck plating, of a
width governed by the transportation facilities, as shown
in Figures 11.2 and 11.9.

The girder web thickness may be kept small by
appropriate web stiffening. Using several rows of

sk S Weby

T T T
1 <y 275" ]

(b) Fabrication of stiffeners
by cutting I or L sections

{a) Horiz. stiffeners —
Severin Bridge

Fig. 7.6. Girder web stiffeners

horizontal web stiffeners is a standard practice in
European bridge construction, resulting in webs seldom
exceeding 244 in. in thickness, even with very deep
girders (see Fig. 1.8).

In welded construction it may be advantageous to
cut out the stiffeners as shown in Figure 7.6, to decrease
the amount of welding and the resulting warpage and
residual stresses in the web.

Box girders of conventional types, using the steel
deck as their upper flange, are illustrated by Figures
1.15, 1.23 and 1.24.

In many cases wide box girders have been used, with
the top and bottom flanges stiffened by longitudinal
ribs (Figs. 1.10, 1.12, 1.14, 1.17).

The advantages of this design are a large torsional
rigidity of the girder sections and additional weather
protection of the longitudinal ribs. However, if the
bottom flange is curved, strong transverse members
are needed to transmit the radial components of the
flange forces to the vertical webs.

Truss bridges with steel plate decks utilize the steel
deck as a part of the upper or the lower chord.

An example of the former type is shown in Figure
1.26.

A bridge with the deck plate forming a part of the
lower chord of a truss is shown in Figure 7.5.

7.1.5 Miscellaneous Details

Sidewalks may consist of precast or cast-in-place
concrete panels, steel plate with or without a wearing
surface, metal grating, etc., as shown in the various
bridge cross sections in Chapter 1.

Figure 7.7a shows a precast concrete sidewalk with
an edge formed to protect the exposed steel fascia
stringers against the weather.

Generally, the concrete sidewalks, curbs and malls
on steel plate deck bridges are less desirable than those
of steel. The cast-in-place concrete sidewalks may add
considerably to the dead weight of the structure. The
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Miscellaneous details: (a) Sidewalk and curb, Rhine River Bridge at Speyer [79].
(c) Sidewalk, traffic barrier and curb, Fehmarnsund Bridge [72].

(b) Sidewalk and curb, St. Alban Bridge,

(d) Sidewalk, traffic barrier and curb, Haseltal Bridge

(e) Center traflic divider, Europe Bridge [58]
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use of the lighter precast concrete panels leads to prob-
lems of maintenance of the underlying steel members.

The steel sidewalks, which may form an integral
part of the bridge superstructure, are usually preferred.
Typical details of such sidewalks are given in Figures
7.7b, ¢ and d. Details at curbs must be carefully worked
out to prevent intrusion of water to the deck plate
surface (see Section 8.2.5.2). Appropriate joint sealers
and drainage scuppers should be provided, as illus-
trated by the examples in Figure 7.7.

Median barriers and traffic guide rails may be of the
type shown in Figures 7.7¢c, d and e. The traffic
barriers shown are connected to the deck structure
by means of bolts and are removable.

Expansion joints in the deck at the ends of the bridge
structure may be essentially similar to those used on
conventional bridges.

7.2 FABRICATION

7.2.1 General Comments on Welding of Steel Plate
Decks

The stresses in the welds connecting the deck plate
with the longitudinal ribs and the floor beam webs
are usually low, so that nominal amounts of welding
are theoretically sufficient in most joints.
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(c)Deck with open ribs
notrestrained by floor beams

Fig. 7.8. Welding deformations (exaggerated)

Thus, the use of continuous fillet welds for these
joints, in accordance with the bridge specification
requirements, while justifiable by fatigue safety con-
siderations, results, practically, in considerable over-
welding. This may be aggravated by the tendency of
designers and steel fabricators to shun the minimum
weld size of 314 in. allowed by the bridge code for
thin members in favor of 13 in. and heavier weld sizes,
and by further scaling up of specified weld sizes in the
fabricating shop in order to be “safe.”

If it is considered that the total length of welds per

pound of a steel plate deck is rather high, especially
in the open rib system, and that the amount of weld
metal increases as the square of the weld size, it becomes
apparent that overwelding may lead to serious fabrica-
tion problems and may increase cost considerably.

Figures 7.8a and b show in an exaggerated manner
the deformations that tend to develop during fabrication
of a deck with open ribs due to fillet weld shrinkage.
The deformations increase as deck plate thickness
decreases and as weld size increases. The deforma-
tions in the closed rib system are shown schematically
in Figure 7.8c. It is seen that, in this case, warpage
develops primarily in the rib walls, which are usually
much thinner than the deck plate.

Warpage of the deck panels must be controlled by
appropriate fabrication measures and corrected by
flame-shrinkage or other means after fabrication.

Weld shrinkage and the resulting distortions are
associated with the residual welding stresses in the struc-
tural members. The magnitudes of these stresses,
which can never be entirely avoided, remain largely
unknown, and may be quite high if the rules of good
welding practice are not followed. From the point
of view of safety, such residual stresses may be con-
sidered as undesirable as the local stress concentra-
tions caused by intermittent or spot welding.

Generally, with other factors being equal, the welding
distortions and residual stresses depend directly on
the amount of welding involved in the fabrication.

Thus, the first rule in the fabrication of steel plate
bridge decks should be to aveid overwelding.

Another means to reduce welding distortions is the
application of the fast automatic welding techniques,
inducing less heat in the material surrounding the weld
than the less efficient manual welding. Therefore the
construction details of steel plate decks should be such
as to permit the most extensive use of automatic welding.

A proper welding sequence should be carefully deter-
mined at each joint, to minimize the residual stresses.

Welded shop or field splices of the highly stressed
ribs and floor beam flanges should be made with par-
ticular care.

Intersections of welds should be avoided where
possible, as shown in Figures 7.1 and 7.16, to avoid
bi-axial stress conditions in the welds.

7.2.2 Fabrication of the Deck Plating Panels

Welding of longitudinal ribs and floor beams to
the underside of the deck plate is usually performed in the
trough position on tilt tables, as shown in Figure 7.9.

In the fabrication of decks with open ribs the floor
beams are usually tack-welded first, then the ribs are
threaded through the cut-outs in the floor beam webs
and welded.
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Welding longitudinal ribs first, before placing the
floor beams, has the advantage of convenient execution
of the rib welds along their entire length; however, it
causes deck plate warpage as indicated in Figure 7.8b,
and makes the subsequent fitting of the floor beams
difficult. These difficultics may be avoided by welding
the ribs to the deck plate pre-bent in the direction
opposite to that shown.

It should be noted that if the open ribs are deep and

closely spaced, application of the automatic welding
proéesses may be difficult and may require special
equipment.
* In the fabrication of European bridges with flat
bar ribs a method known as Elin-Hafergut welding
has often been applied [56]. In this method coated
electrodes are laid flat end to end along the joint to
be welded and then covered by hollowed copper bars
about 2 in. X 2 in. After closing of the circuit, welding
proceeds automatically by progressive melting of the
electrode. Continuous welds can also be obtained
by this method through the cutouts in the floor beams
(Fig. 7.1a). The advantages of this method are: (a)
uniform weld quality; (b) reduced warpage and
residual stresses, since the copper bars absorb much
of the heat generated by welding; (c) welding can
proceed simultaneously on several ribs; (d) qualified
welders are not necessarily required. The disadvan-
tages are in the relatively slow speed of the method
and in the inconvenience of handling the copper bars
in lengths to fit the required length of the weld.

Closed ribs are usually fabricated by cold bending
of flat plate cut to size and beveled along the edges for
the V-groove welded connection to the deck plate
(Fig. 7.3a). The bends should not be too sharp, to
prevent ageing effects in the steel. However, a large
radius of curvature at the bottom of the rib impairs its
torsional rigidity.

Fabrication of the 3{g-in. to 3{¢-in. thick ribs on
bending presses of the required capacity does not
present unusual difficulties. However, bending heavier
plates of low-alloy steel may make the fabrication
expensive and uneconomical.

The welds connecting the rib walls to the deck plate
and the end diaphragms are made air tight, to prevent
corrosion of the inside surfaces (see Section 7.4).

The dimensions of the shop-fabricated panels of the
deck plating are governed by transportation and
erection facilities. Deck panels up to 58 ft X 18 ft
and 47 ft X 21 ft have been fabricated as one weldment
for transportation by barges. Panels 38 ft X 26 ft,
weighing up to 45 metric tons, have been transported
by highway truck platforms. For railroad transporta-
tion the width of the panels is usually limited to 10-13 ft.

The deck panels may be fabricated with their long

Welding of a deck panel of the Save River Bridgeona
tilt-table

sides parallel to the longitudinal ribs (longitudinal
orientation, see Fig. 7.20) or to the floor beams (fransverse
orientation, see Fig. 7.9). The choice depends on the
intended erection method of the panels. Generally,
longitudinal orientation, requiring fewer transverse
field splices of the deck plate and the ribs, should be
preferred.

In the fabrication of the deck panels, necessary
allowances must be made to insure fif under the field
erection conditions (see Section 7.3).

7.2.3 Thoughts on the Economy of Fabrication of
Steel Plate Decks

The economy of steel plate deck bridge construction
might be considerably enhanced by standardization
of the deck types and prefabrication of the deck plating
panels in units suitable for the various design condi-
tions. Such units, il fabricated by mass production
methods, could possibly be used also for bridges of
shorter spans, where steel plate deck construction
would normally be uneconomical (see Section 1.3).

In the fabrication of the deck plating with open ribs,
some techniques of steel grating fabrication might be
applied.

esistance spot welds

Fig. 7.10. Suggested welding of the ribs to the deck plate by
means of resistance welds [44]
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Fig. 7.11. Riveted deck splice, Duesscldorf-Neuss Bridge [68]

Fig.7.12. Bolted and riveted deck splice, Duisburg-Homberg Bridge [65, 81]
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Fig. 7.13. Bolted and riveted deck
splice, Port Mann Bridge {22, 62]
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1227x 3 "sphce plate

Longitudinal section through rib

For the closed-rib type of decks prefabricated tra-
pezoidal or U-sections, made by bending or rolling,
would be very desirable. Extending the spans of closed
ribs beyond the lengths used in existing bridges would
also contribute to economy by reducing the number of
costly intersections of the ribs with the floor beams.

A suggestion to use resistance spot welds rather than
continuous welds, with the purpose of simplifying
the fabrication and reducing the amount of welding
and of residual stresses associated with it (see Section
7.2.1) should also be mentioned [44]. The proposed
details are shown in Figure 7.10. Resistance spot-
welding machines with an arm length of about 5 ft,
capable of spot-welding two plates, each up to 34 in.
thick, with a weld diameter of up to 34 in. are now
available. Thus deck plating panels up to 10 ft wide
could be fabricated in this manner.

7.3 ERECTION
 7.3.1 Field Splice Details

7.3.1.1 Riveted and Bolted Splices

Riveted and bolted connections have often been
used in the field splices of steel plate decks. The
relative advantages of such splices, compared with
welded connections are: (a) fitting of the members
is easier, because no deformations develop in the field
as with welded splices; (b) connections can also be
made during cold weather periods, when welding
might be objectionable.

The disadvantages of riveted and bolted splices of
the deck are in the loss of net cross-sectional area of
the members at splices, additional material required
for the splice plates, complicated and not very satis-
factory details of the bolted splices of the closed ribs,
more difficult maintenance and a greater susceptibility
to corrosion of such connections.

For riveting or bolting of the splices of the closely
spaced longitudinal ribs, special tools may be required.

Protruding splice plates and rivet heads of the deck
plate splices also make a satisfactory construction of

‘ L ! g“@ h. str. bolts

% 'diaph . plate “8"x L"spl.pl,

Section A-A

the wearing surface more difficult and preclude the use
of the thin lightweight wearing surfaces (see Chapter 8).

An example of a riveted field splice of a deck with open
ribs is given in Figure 7.11, showing the deck splice
details of the Duesseldorf-Neuss Bridge (see Fig. 1.10).
In this case the %{¢-in. to 1345-in. thick deck plates,
required as the upper flanges of the main girders, were
strengthened at splices by additional shop-welded
plate strips in order to minimize the loss of cross-sectional
area.

Splices of closed ribs require handholes in the bottom
of the rib section, as shown in Figure 7.12, through
which the bolts or rivets are handled.

In the existing splices of this type the deck plate
splice is riveted, the rib walls are high-strength bolted.

The compatibility of bolting and riveting in a splice
of this type has been investigated experimentally. It
is reported that the splice is satisfactory and that the
rivets transmit their full share of the load, even under
small loads [77].

In order to compensate for the loss of rigidity and
the cross-sectional area of the rib at the handhole,
thicker rib material may be used at splices.

A splice of a similar type has been adoped for the
deck of the Port Mann Bridge (see Fig. 1.24), as shown
in Figure 7.13. The air-tightness of the rib on each
side of the splice is achieved by diaphragm plates
welded inside of the rib section.

The field connections between the deck plating and the
main girders are riveted in most existing bridges, as
indicated schematically in Figures 1.10 and 1.29b.

If the deck plating is fabricated together with the
upper portions of the main girders, the connection
between the girders and the deck is made as a longi-
tudinal girder splice (see Figs. 1.8 and 7.14).

Another splice detail at the main girder is shown
in Figure 7.15b.

7.3.1.2 Welded Splices

(a) General
Welded field splices of the deck plating require a
considerable degree of precision in the shop fabrication
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and in the erection of the steel superstructure to obtain
a satisfactory fit for welded connections.

However, unlike riveted construction, final fit of
the deck plating to be spliced in the field cannot be
assured in the shop by pre-assembling, since the trans-
verse and longitudinal shrinkage of the field welds will
tend to deform the plating out of its correct alignment.
Such welding deformations, depending on structural
details, size of welds, welding methods used and other
factors, must be anticipated and correctly allowed for.

In spite of all precautions, some field cutting of the
plating is usually necessary.

In the erection of steel plate deck bridges with large
deck plating panels intended to be spliced by combina-

11

tion of welding and riveting, it was found practcally
impossible to obtain the required fit of the deck plate,
ribs and floor beam connections by careful fabrication
and erection alone. Therefore, ficld cutting of the
deck plate and ribs and field drilling of the rivet holes
at certain splices was included in the planned erection
procedure, to compensate for the unavoidable accumu-
lation of small fabrication and erection inaccuracies
and errors in the estimates of the weld shrinkage.

Such adjustments involved a considerable amount
of field work, especially when edge preparation of the
joints was required.

Residual welding stresses in the field-welded splices
should be kept to a minimum by providing for an
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Fig. 7.16. Deck splice details, Save River Bridge [42, 76]
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Fig. 7.17. Deck splice details, Severin Bridge [63, 69], see Fig. 1.17

unrestrained motion of the deck panel being connected
in the direction perpendicular to the welds made.

The type, execution and sequence of the field welds
used in the joints have to be carefully planned.

In making the transverse splices of the deck panels
it may be advisable to leave out the longitudinal welds
connecting the ribs to the deck plate for a certain dis-
tance on both sides of the splice, and to complete these
welds after welding the transverse joints. Such pro-
cedure, in addition to minimizing the residual welding
stresses in the rib splices, allows a slight adjustment
of the rib alignment.

(b) Deck with open ribs

As an example of the welded splices of a bridge
deck with open ribs, the splice details of the Save River
Bridge (Fig. 1.8) are shown in Figure 7.16.

The transverse deck plate welds (Section B-B) were
made in several passes by an automatic welding process.

The 2-in. X 34-in. back-up plates used in the deck
splice were first made discontinuous at their intersec-
tions with the longitudinal ribs (see Section C-C).
However, cracks appearing in the weld, which were
attributed to the air gap and discontinuity, led to an
improved detail, as shown.

Intersections of the welds and the end craters have
been avoided, where possible, by semicircular cutouts
in the webs of the ribs and the floor beams, indicated
in Sections A-A and B-B. Circular holes have heen
drilled in the deck plate at the intersections of the

transverse field welds and the longitudinal shop welds
of the deck plate, as shown in the plan view.

Approximately 709, of the total length of the field
butt welds of the deck plate and the longitudinal ribs
have been X-rayed.

A transverse deck splice of a different type, used in
the Severin Bridge (Fig. 1.17) is shown in Figure 7.17.

As a result of the field sub-assembling by welding of
the smaller deck plating panels into large erection units
(see Section 7.3.2), the deformations of the transverse
edges of the panels and a longitudinal misalignment
of the deck units with respect to the main box girders
had to be anticipated. Therefore only the forward
transverse edges of the deck panels were cut to the
required length and beveled in the shop (Fig. 7.17a).
The other edge of the plate was cut and prepared in
the field, after fitting the connections between the
deck unit and the floor beams.

The longitudinal ribs were cut off short on each side
of the splice, which made it possible to weld the trans-
verse joint in the deck plate continuously from both
sides of the plate, and to check the weld quality by
X-rays. Then the 20-in. long pieces of the longitudinal
ribs were fitted in and welded. The splice was then
additionally reinforced by a 1lg-in. square bar, as
shown in Figure 7.17a.

The longitudinal deck plate field splice was welded
from the top only, as shown in Figure 7.17h.

The field splices of the floor beams were riveted, with
the holes reamed after welding the longitudinal deck
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splices. In this manner the planned cross slope of the
bridge deck could be exactly controlied.

It is claimed that, in this case, the use of welding
and riveting in one joint is not objectionable, since
any slip in the riveted part of the splice will merely
cause a slight rotation around the joint in the deck
plate without additional stresses in the weld.

A similar combination of a field welded transverse
splice of the deck plate and bolted longitudinal rib
splices is planned for the Europe Bridge, Figure 7.15b.

(c) Decks with closed ribs

The field splices of the entire cross section of the
Weser Bridge Porta (Fig. 1.12) were welded.

The U-shaped ribs and the deck plate were spliced
as shown in Figure 7.3b.

The longitudinal splices of the deck plate and of the
bottom plate of the box girder were spliced by over-
lapping, as indicated in Figure 1.12. This considerably
simplified the fitting.

Loose piece of deck plate
fitted after rib splice is

complete
A \r |

-:Shopl A Field \\"Rl’
A
C |

Back-up plate

In making the total splice, the transverse splices of
the deck and the bottom were welded first, while pre-
cautions were taken to allow for the longitudinal motion
of the parts joined due to the shrinkage of the butt
welds.  During the subsequent welding of the butt
joints of the girder webs, the deck and the bottom
were kept warm at the location of the splice so that
they could follow the contraction of the web joints
while cooling off. In this manner it was attempted
to minimize the residual welding stresses in the girder
plating.

The proposed welded field splices of the trapezoidal
ribs are shown in Figure 7.18.

In the splice shown in Figure 7.18a, a deck plate
strip 2 to 3 ft wide is left out over the rib splice, which
can be welded from above and X-rayed, if necesssary.
Then the missing strip of the deck plate is fitted in and
welded. Lastly, the welds connecting the rib side
walls to the deck are completed. The direct butt

Alternate section A-A

Section A-A

Vil
‘ Back-up plate

{a) Direct butt welded splice

See detail of deck piate %
weld in (a), above
—++—=—Field groove weld
T4 8+
B
Y S
T o&ex

g +"diaphragm plate

(\ Section B-B

(b} Unsymmetrical indirect splice

A

ﬁ—%"
e
<
Back-up plate——
vV
Back-up plate to butt tightly i
diotch diaphragm plate

against diaphragm plate
r,c or back-up plate

TOYO
.
Lc

1" diaphragm plate
Section C-C

(c) Symmetrical indirect splice

Fig. 7.18. Proposed welded field splices of closed ribs
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welding of the ribs in this splice permits full utilization
of the rib cross section [42].

A splice using an intermediate plate diaphragm to
which both ends of the rib are welded is shown in Figures
7.18b and c. Only one transverse weld of the deck
plate is required. Fitting of the splices of this type
does not require as high a degree of fabrication and
erection precision as may be needed in the case of direct
splicing of the ribs (Fig. 7.18a).

7.3.2 Erection Procedures

The erection procedure depends on the structural
system of the bridge, the site conditions, dimensions
and orientation of the shop-fabricated steel deck plating
panels, equipment used and other factors.

The erection problems of a girder bridge with the
deck panels oriented in the transverse direction are illus-
trated by the construction of the St. Alban Bridge in
Basle, Switzerland (see Fig. 7.19).

The deck plating panels delivered to the construction
site measured 16.4 ft in the longitudinal direction and
53.8 ft in the transverse direction of the bridge, and
included the open ribs, the floor beams and the upper
portions of the main girder webs, to be connected to
the lower portions in a manner similar to that shown
in Figure 7.14.

After the short side spans were constructed on tem-
porary supports, the erection of the center span pro-
ceeded by cantilever method, with the help of derricks

Longitudinal

Erectign of the St. Alban Bridge in Basle, Switzerland [67]

running directly on the completed portion of the deck.
First the lower portions of the main girders were canti-
levered in sections up to 50 ft long; then the deck
plating panels were laid across the girders.

After a deck panel was placed in position, the trans-
verse splice of the deck plate and of the longitudinal
ribs was welded. During the welding operation pre-
cautions were taken to minimize friction between the
deck panel and the main girder, in order to allow un-
restrained shrinkage of the welds.

The cantilevered sections of the main girders, having
no upper flanges, and not yet connected to the deck
plating panel being welded, deflected considerably.
In order to make the connections between the girders
and the deck plating in the planned position, the ends
of the cantilevered girder portions were raised the
necessary amount by the erection derrick and, in such
position, the longitudinal splices of the girder webs were
riveted. Thus the residual erection stresses in the
girders were largely eliminated.

Because the exact amount of shrinkage of the transverse
field welds of the deck could not be estimated with
certainty, the rivet holes for the longitudinal splice in
the upper parts of the main girder webs had to he
drilled in the field in final position before riveting.

For the same reason every third or fourth deck plating
panel was fabricated somewhat longer in the longi-
tudinal direction of the bridge and was cut off in the
field to fit.
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Fig. 7.21. A 60-ft x 18.5-ft panel F
of the deck plating of the
Mannheim-Ludwigshafen Bridge

being lifted into position

The longitudinal orientation of the deck panels, requiring
fewer transverse field splices is definitely advantageous.
Such arrangement was used in the Mannheim-Ludwigs-
hafen Bridge, Figure 7.20. Here the deck panels 18.5 ft
wide and 30 to 60 ft long were transported by river
barges and riveted into position between the canti-
levered main girder box sections. The transverse
splices of the deck plate and the welded girders were also
riveted; the splices of the closed ribs were bolted (see
Section 7.3.1.1).

Figure 7.21 shows a 60-ft X 18.5-ft panel of the deck
plating being lifted into position.

If the main girders are widely spaced, the longitudinal
arrangement of the deck panels is possible if the lower
portions of the floor beams are used as erection supports
of the deck panels, as shown schematically in Figures
11.2 and 11.9.

Another solution may be provided by sub-assembly
in the field of the longitudinal deck plating panels into
larger erection units extending over the entire width
of the deck. However, handling of such deck plating
units requires erection equipment of large lifting capacity.

Such procedure was used in the erection of the
Severin Bridge in Cologne (see Fig. 1.17), as shown in
Figure 7.22.

The 22.5-ft and 17.8-ft wide shop-fabricated panels,
47 to 54 ft long, were sub-assembled into 62.8-ft wide
units, using the completed portion of the deck as a
working pladorm. First the longitudinal deck plate
splices were welded, then the floor beam splices were

riveted, as shown in Figure 7.17b.  After sub-assembly
the unit was brought forward by a portal crane running
on the box girders and placed between the cantilevered
ends of the girders.

The rear edge of the deck plate was then cut off,
with the floor beam connections of the deck plate unit
matching, and then the transverse splice of the deck-
plating was welded as shown in Figure 7.17a.

l Deck paneis 47 to 54 ft. Jong
sub-assembled and erected
as one unit.
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Fig. 7.22. Erection scheme of the Severin Bridge, see
Fig. 1.17

The holes in the deck plate for the longitudinal
riveted splice between the deck and the hox girders
were drilled in the field.

A complete description of the complex erection
procedure of the cable-stiffened superstructure of this
bridge may be found in [82].
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Fig. 7.23. Erection of the Bridge over the Rhine at Kehl [72]

An original erection procedure was used for the
two-span highway bridge over the Rhine at Kehl,
Figure 7.23. First, one of the two box girders of the
right-bank span was erected on the shore, with the
abutment end resting on a moving platform. Then
the girder was moved forward and the front end sup-
ported on a floating platform. In such position the
girder was pulled across the river and the front end
deposited on the center pier. After the second girder
was installed in a similar manner, the deck plating
panels connecting the two girders were welded into
position.

The erection of the left-bank span proceeded from
the center pier by cantilever method.

7.3.3 Effects of the Erection Procedure on the Final
Stresses in the Bridge System

In the design of statically indeterminate bridge
structures it is customary to compute the dead load
bending moments and stresses by assuming that the
entire dead load is applied to a weightless structure,
fitting stresslessly at all external supports.

However, it must be kept in mind that the dead load
stresses are introduced into the actual structure in a
much different way, with the final moments and stresses
being the end result of the successive erection condi-
tions. The final dead load moment line is usually
made to coincide with the conventionally computed
moment line, by shop-fabricating the members in such
a manner that, if weightless, the structure would fit

stresslessly at the supports (see Fig. 7.24). However,
this moment line is only one of many possible dead
load moment lines that may be introduced into the
systern.

This is illustrated by the example of a three-span con-
tinuous girder bridge.

Figure 7.24 shows that the final dead load moment
line of such a structure, erected by the usual cantilever
method, consists of three basic components: (1) bending
moments due to a double cantilever condition prior to
closure at the midspan; (2) moments due to bringing
the ends of girder into correct elevation after closure;
and (3) moments due to the dead loads superimposed
on the continuous structure after erection.

The moments (2) are, theoretically, entirely arbitrary
and may be introduced in any desired positive or nega-
tive amount, depending on the magnitude and the
direction of the end support adjustment, as required
by the camber provided. Thus various final dead
load moment lines may be obtained in the structure,
as shown in Figure 7.24d. It should be noted that
the erection procedure is exactly the same in all three
cases shown, of which Case I represents the conven-
tional moment distribution.

For design purposes, that moment line may be
chosen which results in the most economical utilization
of the material. Such arbitrary adjustment of the dead
load moments was used in the design of several major
steel plate deck bridges [42, 67, 82]. An example of
an advantageous re-distribution of the bending moments
(which may also be referred to as “prestressing”) is
given in Figure 7.25.

Unlike conventional fabrication procedure, the cam-
ber line of a girder which is to obtain a predetermined
desired dead load moment line by adjustments at
supports, equal to the negative of the deflection line
corresponding to the desired final bending moment
line, generally does not pass through all points of sup-
port of the girder. This is illustrated in Figures 7.24¢
and 7.25d.

The accuracy of the moment adjustment depends
on the accuracy with which the actual deflection line
of the girder can be determined by computation.
However, the degree of accuracy required in deter-
mining the deflections should not be exaggerated,
since the dead load moments are subject to other un-
avoidable inaccuracies due to departures of the weights
of the structural members from the nominal weights,
local departures from the design thickness of the wearing
surface, etc. .

The magnitudes of the final dead load moments are
also affected by the accuracy with which the com-
puted camber line is actually reproduced in the field.
Erection errors, incorrect reaming of the field rivet or
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bolt holes, rivet slip or non-uniform weld shrinkage
at the field splices may result in an incorrect shape
of the girders, which, in turn, affects the bending
moment line after closure.

It should be noted that erection errors at splices
have the same effect on final moments in conventional
cases (e.g. Case I, Fig. 7.24) with no intentional
changes of the moments by adjustment of supports.

Therefore, the geometry of the bridge members
must be carefully controlled during erection in all
cases and corrective measures taken, if necessary, at
each splice.

Another factor to be considered in the determination
of the final dead load stresses and of the camber line
of the bridge members are the residual (or the locked-in)
stresses and deformations of the members resulting from
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the erection procedure. Such stresses occur, for exam-
ple, in the cantilevered main girder sections (see Fig. 7.19)
which have to carry their own weight before heing
joined with the deck plating acting as their top flange.

A similar condition occurs in the floor beams erected
in a two-step procedure (see Figs. 11.2 and 11.9 and
Sections 11.2.2.4.2 and 11.3.2.3 of the numerical ex-
amples).

Such stresses and deformations must be accounted
for in the design, fabrication and erection of the bridge
members.

7.4 PROTECTION AGAINST CORROSION

The problem of protecting a steel plate deck bridge
against corrosion is essentially the same as with other
types of steel bridges, except for the top surface of the
deck plate, which requires special treatment, and the
insides of closed hollow sections, which have a much
higher resistance to corrosion than conventional steel
bridge members.

7.4.1 Steel Deck Plate

The top surface of the deck is usually shipped without
paint, sandblasted after erection and given a coating
of corrosion protective and bonding material, prior to
placing of the wearing surface.

This is discussed in Chapter 8, Section 8.2.3.

The unpainted surface of the steel deck may be
protected until erection by coating with linseed oil or
other means.

7.4.2 Insides of Closed Ribs and Other Inaccessible
Closed Hollow Sections

The question of corrosion inside of closed sections
has been extensively investigated in Germany [99, 100,
101].

A series of investigations on bridges up to 50 years
old with hollow members has revealed no moisture and
no corrosion inside the hollow members, except in a
few cases where external damage made it possible for
water to enter.

Py - A
161' 292 157" 400' 244" 173 173’ 1163 144’ 207" 172
~200,0004 k—ft (a) Schematic girder elevation
(—158,000 k—ft
-100,000+
g
] ”
0 e N Z /\_/\/\-u\ A
100.0004 + 50,900 k—ft
(b) Dead load bending moments without adjustment
~100,000 $k~ft
-52,100 k——ftl 36,200 kot t——y
I~ AL R
0 N / - / \/\ D A
S \ @ ; ™ -
+52,100 k-t
100,000+
(c) Adjusted dead load moments
3tteet
21
l L /—\
o) . / AN e
1 ~—17 D

(cl) Camber line of the girders

Note: The camber tine shown is the sum of the cambers required
for the adjusted dead load moments, the effects of the eccentnicity
of the cable connections and the residual erection stresses. The
vertical curvature camber s not shown.

Fig. 7.25. Dead  load
moments and camber line
of the Severin Bridge in
Cologne [82], see Fig. 1.17

.



. CONSTRUCTION DETAILS 119

Many of the members investigated were painted on
the inside; the paint, even inside of members which
water had entered, was in excellent condition, except
in the portions where water had accumulated and
some rusting has occurred.

A further series of planned experiments on pipes
and some field investigations on transmission towers
fabricated from pipes, all unpainted on the inside,
showed not the slightest sign of corrosion inside of
sealed sections, even after many years in service. Where
water was able to enter through holes provided in the
planned experiments or through damage in the trans-
mission towers, corrosion took place mainly where
water had come into contact with or run down along
the steel. Other portions were practically unaffected.

These investigations indicate that there is no danger
of corrosion inside the closed ribs or closed truss mem-
bers (see Fig. 7.5), since such members can easily be
made air-tight. Moreover, the closed ribs, located
under the bridge deck, are well sheltered against direct
effects of precipitation and are not subject to danger of
accidental damage after the bridge is completed. Thus
no provisions for corrosion protection inside the closed
ribs are necessary, other than making the ribs air-tight
in the course of normal fabrication and erection.

It should also be noted that the smooth exterior
surfaces of the closed ribs have a low susceptibility to
corrosion and can be easily inspected and maintained
during the lifetime of the structure.

The above findings are reflected in the details of
recent steel plate deck bridges, where 3{4-in. thick
closed ribs are often used, unpainted inside.

Other types of hollow sections which cannot be
entered (such as truss members, columns, etc.), or
which are entered with difficulty, should in all cases
be welded air-tight or provided with rubber sealed man-
holes. In such cases no corrosion protection is neces-
sary.

Should air-tight construction be impossible, a some-
what simpler corrosion protection than on the outside
of the member should be provided before welding
the member. The zinc-powder paints are more suit-
able for this purpose than other types of paints, since
they are less affected by welding heat and, generally,
do not affect the quality of the welds, should the paint
cover the location of the welds to be made in joining the
member.

Another possibility is the use of ordinarv paints,
leaving unpainted strips at the locations of the welds.

Inside painting could also be done after welding
by spraving apparatus inserted into the members.

7.4.3 Box Girder Sections

A survey of large box girders of the type shown in
Figures 1.10 and 1.12 has led to the conclusion that
the insides of such sections are considerably less sus-
ceptible to corrosion than the outside surfaces [101].

The findings of the survey may be summarized as
follows:

1. The moisture formation as a result of condensa-
tion inside the large box sections is insignificant and
of little consequence.

2. Even large box sections which can be entered
should be constructed air-tight, if possible. Closing
of the box section does not increase the moisture con-
densation in a degree that might have an effect on
corrosion.

If closed box girder sections are made air-tight by
doors or manholes with rubber gaskets, protective
measures against inside corrosion may be omitted.

3. If, for any reason, the large box sections cannot
be made air-tight, sufficient ventilation openings must
be provided in the front and the side walls of the boxes.
Openings in the bottom plate are not suitable for
ventilation purposes and might have the adverse effect
of admitting moist air (from the river below), or cor-
rosive industrial gases into the box section.

4. If water pipes are carried inside the box section,
openings in the bottom plate, as a safeguard against a
pipe burst, cannot be avoided. In such cases it may be
advisable to provide such openings with safety covers
from below, which would open under pressure from
inside.

The water pipes should be well insulated, to prevent
moisture condensation.

5. No open drainage troughs should be located
inside the box section.

6. Inside the large accessible box sections which are
not made air-tight, a somewhat simpler corrosion pro-
tection than that on the outside is generally sufficient,
except in the vicinity of ventilation and other openings,
where a normal protection is indicated.



CHAPTER 8

Wearing Surfaces

8.1 GENERAL REQUIREMENTS

Steel plate bridge decks are generally topped with a
wearing surface to improve traction and to protect
the steel deck against the direct effects of atmospheric
conditions and traffic.

It should be noted, however, that there are several
bridges in existence having unprotected checkered or
patterned steel plate decks. Experience with these
structures and trial installations indicate that the
resistance to corrosion and wear of the unprotected
exposed steel plate decks is good; however, the surface
friction of such decks is less satisfactory, especially if
the deck is subject to icing.

While some improvement of the surface roughness
may be obtained by such means as welding protruding
studs, bars, etc. to the steel plate, the use of a proper
wearing surface must, at the present time, be regarded
as a standard solution.

The principal requirements which a wearing surface
on a steel plate deck bridge must satisfy may be sum-
marized as follows:

1. Light weight. This is an obvious requirement for
a steel plate deck bridge, aiming at a maximum dead
weight saving. For this reason alone conventional
pavements requiring a thickness of several inches must
be excluded.

2. Skid resistance. The wearing surface should have
a high surface friction coefficient, dry or wet. The
surface texture should be rough and abrasive to increase
friction and to minimize the effects of icing of the deck.

3. Stability and durability. No shoving, rippling or
other deformation should develop in the wearing surface
due to traction and braking forces of the vehicles.
The stability of the surfacing should be maintained
over the entire expected temperature range.

The wearing surface should be resistant to surface
deterioration, potholing and raveling and should not
be affected by oils, gasoline, de-icing salts and other
chemicals. For thin surfacings a high resistance to
abrasion is essential.

The required surface roughness should be little
affected by wear and ageing.
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4. Sufficient thickness is required to provide an even and
plane surface, true to the specified slopes and grades.

The steel plate deck surface will not be geometrically
perfect, even if fabricated and erected with all pre-
cautions. Therefore the minimum design thickness of
the surfacing should include an allowance for unavoid-
able departures from the correct deck elevations due
to welding distortions of the deck plate, errors in cam-
bering of members, etc.

Increased thickness of the wearing surface will be
needed on decks using variable steel plate thickness,
protruding deck splice plates, bolt and rivet heads.

5. Positive and lasting protection of the deck against corrosion.
The wearing surface may aggravate rather than relieve
the danger of steel deck corrosion if it is faulty, cracked
or insufficiently bonded to the deck, forming pockets in
which moisture may accumulate.  If, under such circum-
stances, deck corrosion sets in, it may spread undetected
under the surfacing.

Therefore the wearing surface should be impervious
to water or chemical agents, should develop no cracks
enabling the moisture to penetrate to the steel deck
and should have a good bond to the top of the steel
under all circumstances. The bond between the wear-
ing surface and the deck should be sufficiently strong
to withstand the traction and braking forces of vehicular
traffic, the shearing forces due to composite action of
the surfacing with the deck plate and should not be
loosened by local vibrations of the steel deck plate.

6. Easy maintenance and repairs. The wearing surface
should require a minimum of maintenance work. If
any damage occurs, it should be possible to make the
necessary repairs quickly, easily and inexpensively.
It should also be possible to remove and replace portions
of the wearing surface if necessary, without disrupting
traffic for a prolonged period of time.

It is seen that the wearing surface on a steel plate
deck bridge is subject to more severe requirements and
service conditions than the surfacing of a concrete deck
bridge. Therefore the choice of the proper type and
composition of the wearing surface should be a matter
of careful study in each case. Final selection of the
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surfacing will depend on local trafhic demands, climatic
conditions, relative importance of dead weight saving,
structural details of the deck, cost of the various types
of surfacing and the engineer’s preference, based on
local experiences and the performance record of the
various materials.

While the development of wearing surfaces on steel
plate decks is still in progress and no present surfacing
may be termed ideal in all respects, several types of
surfacings on existing steel deck bridges have proved
to be satisfactory.

The various possible types of wearing surfaces on
steel decks are discussed in the following sections.

8.2 BITUMINOUS-MIX WEARING SURFACES

8.2.1 General

The bituminous-mix wearing surface is, at present,
the predominant type of surfacing on steel plate deck
bridges, and has been used on all major structures of
this type.

A proportioned mixture of a properly graded mineral
aggregate and an asphalt binder is called asphalt concrete.

A mixture of asphalt and fine aggregate containing
a large proportion of small particles and dust is known
as asphalt mastic. Both types of mixes have found
application as wearing surfaces on steel plate decks.

A comprehensive discussion of the composition and
construction of bituminous pavements and the proper-
ties of materials may be found in general engineering
handbooks and reference works ([84], [105] or similar
references).

A brief review of material properties 1s given below,
inasmuch as it is necessary in the discussion of the
bituminous pavements on steel decks.

8.2.2 Materials for Bituminous Wearing Surfaces

8.2.2.1 Asphalt

Asphalt used in bituminous pavements is a black
semi-solid or solid cementitious material consisting of
approximately 999, of pure bitumen (hydrocarbon
material soluble in carbon disulfide} and 19, of mineral
matter. It is obtained through fractional distillation
of crude petroleum or by refining natural lake asphalt
(Trinidad, Bermudez). The origin of the asphalt has
an effect on its physical properties; however, by proper
blending operations, asphalts of desired characteristics
may be produced from many sources of crude.

Asphalt is a thermoplastic material since it liquefies
gradually when heated.

It is characterized by its hardness at a specified temper-
ature. The hardness of an asphalt is determined by

a standard penetration test. The penetration grade of an
asphalt, as determined by this test, is the depth, meas-
ured in tenths of a millimeter, that a standard needle
penetrates the asphalt under a load of 100 g applied
for 5 seconds at a temperature of 77°F (ASTM Test
Designation D5).

An asphalt specially prepared for use in paving is
known as asphalt cement.

For highway hot-mix bituminous pavements the
asphalt penetration grades ranging from 60 to 150
are usually suggested [84]. For wearing surfaces on
existing orthotropic steel plate deck bridges harder
penetration grades of asphalt have been used, ranging
from 20 to 50.

The relationship between temperature and consist-
ency of an asphalt may not be the same for different
sources and types of asphaltic material. Several
asphalts having the same penetration grade (100 g,
5 seconds) at 77°F may have penetration characteristics
differing from each other at another temperature. The
factor characterizing the extent to which the consistency
of an asphalt changes with temperature is called tempera-
ture susceptibility. It is usually given as a ratio of the
penetration values at two standard temperatures.

Another method of describing the consistency of an
asphalt, often used in European specifications, is given
by a test determining the softening point.

The softening point, as determined by this test, is
the temperature at which a standard sample of asphalt
mounted in a brass ring sags 1 in. under the weight of
a 34-in. steel ball (“Ring and Ball” test, ASTM D36).

The softening point value, in conjunction with the
penctration grade, may be used as a measure of the
temperature susceptibility of an asphalt.

It should be noted that the hardness and consistency
tests of the original asphalt material before its use in a
pavement do not directly reflect the final asphalt proper-
ties, which undergo significant changes after heating
the asphalt to high temperatures, especially in thin
films. Such conditions prevail during mixing and
placing of the hot-mix pavements and lead to a con-
siderable hardening of the asphalt after cooling. The
penetration value may decrease up to 509, and the
softening point temperature may be raised by 10-30°F,
depending on the type of asphalt, mixing temperature
and duration, and the conditions of placement.

Therefore the desired qualities of asphalt and asphalt-
aggregate mixtures essential to proper pavement per-
formance would be more properly defined by tests and
specifications based on properties of the finished pave-
ment and of the asphalt extracted from it, rather than
on the characteristics of the original materials.

Until such improved specifications are adopted,
proved and standardized, the selection of a proper type

-
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Fig. 8.1. Typical gradation curves of aggregates used in
bituminous mix wearing surfaces: (1) Binder and surface
courses, west end, Cologne-Muelheim Bridge (Section 8.2.4.2a).
(2) Binder course, east end, Cologne-Muelheim Bridge (Section
8.2.4.2a). (3) Surface course, east end, Cologne-Muelheim
Bridge (Section 8.2.4.2a). (4) Tentative German specifica-
tions for asphalt concrete mixes on steel decks [86]. (5) Fine-
graded mix, Composition Type Va, The Asphalt Institute.
Gradation used for surface courses [105]. (6) Dense-graded
mix, Composition Type IVa, The Asphalt Institute. Gradation
used for surface courses [105]

and grade of asphalt to be used in a wearing surface
will have to be determined by a cautious use of the
various existing specifications and by direct trial and
experimentation.

8.2.2.2 Aggregate

(a) Definitions, gradation

The term aggregate defines a properly graded
agglomeration of crushed or natural stone, gravel,
sand and fine inert mineral particles used in bituminous
or cement concrete.

Physical composition of the aggregate is characterized
by the weight proportion of the component particles
of the various sizes, known as gradation of the aggregate.
Gradation is usually given as a total weight percentage
passing each of a series of standard sieves of decreasing
mesh size, and is represented by gradation curves or
tables.

In bituminous mix construction the component
parts of an aggregate are designated as follows [105]:

coarse aggregate—retained on No. 8 sieve (square open-

ing of 0.0937 in., or approximately 344 in.)

Jfine aggregate—passing the No. 8 sieve and retained

on the No. 200 sieve (0.0029-in. opening)

muneral dust—passing the No. 200 sieve. Fine mineral
material 659, of which will pass the No. 200
sieve is designated as mineral filler

The relative amount of the mineral filler can greatly
affect such properties of a bhituminous mix as density,
strength and resistance to weathering.

On the basis of gradation, aggregates may be divided
into the following categories:

dense graded, including particles of all sizes in propor-
tions necessary to fill the voids between the particles

open graded, having an incomplete grading, with
certain sizes omitted and containing a smaller
amount of mineral filler

one-sized, consisting of particles of one size

Bituminous pavements on steel plate deck bridges
have been made, in most cases, with a dense-graded
aggregate having a maximum particle size of approxi-
mately 3¢ in. and including a high proportion of mineral
filler. One-sized aggregate 14 in. to 34 in. is frequently
used in surface treatments.

Typical gradation curves of the aggregates used in
the wearing surfaces on steel plate deck bridges are
shown in Figure 8.1.

(b) Desirable properties

The aggregate content in a bituminous mix ranges
from 889, to 969%; therefore, the aggregate charac-
teristics determine to a great extent the structural
properties of a bituminous pavement.

The desirable properties of an aggregate for use in
bituminous construction may be described as follows
[105]:

1. Appropriate gradation and size. Gradation of an
aggregate significantly affects the density, strength,
mechanical stability, workability and the asphalt con-
tent of a bituminous mix.

Aggregate in a finished mix is subject to partial break-
ing up or degradation, due to crushing or abrasion of the
particles under loads. Since degradation will increase
the total surface area of the aggregate, the amount
of bitumen binder in the mix may no longer be sufficient
to coat each particle of the aggregate. This may result
in a deterioration of the pavement properties. Open-
graded aggregates tend to be more affected by degrada-
tion than the dense ones.

Appropriate aggregate gradations for bituminous
pavements are recommended by the various specifica-
tions for bituminous mixtures.

2. Strength and  durability. This property is deter-
mined by the resistance to crushing and abrasion of
the mineral material. High strength is required to
provide a proper wear resistance of the pavement and
to prevent excessive degradation of the mix.
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3. Angular particle shape providing mechanical inter-
lock of the mix is essential to proper pavement stability,
especially if open-graded aggregate is used.  Angularity
of the fine aggregate is especially important.

4. Rough surface texture is equally important to mixture
stability. Rough texture also helps in holding the
asphalt film in place.

5. Low porosity of an aggregate is desirable to prevent
selective absorption and the resulting decomposition
of the bitumen.

6. Hydrophobic character. In order to prevent dis-
placing of the bituminous film from the aggregate by
water, the aggregate should have a greater afhinity for
bitumen than for water, or should be hydrophobic
(““water-hating”) in nature. Limestone is an example
of a hydrophobic material. Hydrophilic (“water-
loving”) minerals, like silicates, are less suitable as
aggregates for bituminous construction because the
bituminous film may be stripped from them more easily.

Adhesion of the bituminous films to aggregates may
be improved by adding anti-stripping agents to the
asphalt, which, however, mav not be permanently
effective.

8.2.3 Corrosion Protection and Bonding

8.2.3.1 Purpose, Desirable Properties

Experience has shown that placing a bituminous
concrete wearing surface directly on a steel plate deck
does not give satisfactory results. Good bond between
asphalt concrete and steel is difficult to achieve and
may be broken due to the effects of temperature stresses,
shearing stresses between the asphalt and the deck due
to composite action, and deck plate vibrations. Loosen-
ing of the bond and the consequent separation of the
wearing surface from the deck could expose the steel plate
to corrosive effects of moisture that might penetrate
to the surface of the steel if deep cracks developed in
the bituminous pavement. Breaking of the bond
would also subject the asphalt concrete to greater
local stresses under the wheel loads and precipitate
its deterioration.

Therefore appropriate sealing materials must be
applied to the steel deck, prior to placement of the
bituminous surfacing, to perform the following func-
tions:

(a) provide positive profection of the steel deck against
corrasion, which should safeguard the deck even if im-
perfections in the bituminous wearing surface develop;

(b) provide satisfactory bond between the wearing sur-
face and the steel plate deck.

Thus, the desirable properties of materials to be

used under a bituminous pavement on a steel plate
deck may be defined as follows:

1. Perfect adhesion to the steel deck, to preclude
penetration of moisture to the steel deck, and to assure
good bonding to the bituminous concrete course.

2. Impermeability to moisture and resistance to
the action of oils, gasoline, de-icing salts and other
chemicals that might penetrate through the wearing
surface.

3. Adequate shearing strength, to resist shoving
of the wearing surface.

4. Low temperature susceptibility. The protective
coating should not become brittle at cold temperatures,
nor should it be affected by high temperatures during
placing of the hot asphalt mix.

A brief review and discussion of experiences with
the various types of protective materials used or experi-
mented with on steel plate deck bridges is given below.

8.2.3.2 Protective Materials

(a) Bituminous paints and tack coats

Bituminous paints, consisting of a high penetration
bitumen and a solvent as well as various commercial
products on bituminous bases, have been used on steel
decks. Paint is applied in one or two coats immedi-
ately after cleaning the steel deck of oil, grease, rust and
mill scale. Paint should be quick-drying and heat
resistant.

Field tests with hard mastic asphalt wearing surfaces
placed on orthotropic steel plate deck panels primed
with bituminous paint have been made by the Road
Research Laboratory in England [103]. Inspection
of test panels that were subjected to heavy highway
traffic for a period of 414 years has revealed local cor-
rosion of the steel plate over the ribs where cracks have
formed in the 1-in. thick wearing surface. No cor-
rosion was found where cracks formed but did not
penetrate through to the steel plate (surfacing of 113 in.
and 2 in. thickness).

Bond between the wearing surface and the deck
was found locally loosened in these tests, and at such
locations considerable corrosion has occurred, in spite
of the bituminous priming of the steel deck.

The above test results indicate that bituminous
paints alone are not sufficient to protect the steel deck
against corrosion, and do not provide a satisfactory
bond.

German tests [72] have shown that the bond between
asphalt concrete surfacing and a bitumen-primed steel
plate decreases considerably with temperature and
becomes unsatisfactory at temperatures of 0-15°F.
Somewhat better results are obtained with special
bituminous tacking compounds.
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(b) Resinous paints

Resinous paints, modified with red lead or drying
oils, have also been tried.

A protective coating consisting of two coats of a
resinous paint mixed with 509 of red lead, a 0.02-in.
thick coat of a bituminous adhesive compound (61.79,
bitumen of a 100-200 penetration grade, 3.39, Latex-
powder and 339, solvent) and a 0.04-in. thick felt
cloth has been used on the St. Alban Bridge in Basle,
Switzerland (1955), (Fig. 8.8).

The felt cloth was placed to prevent blistering of
the overlaying bituminous-mix courses and to improve
the bond with the overlaying asphalt wearing surface.

Fig. 8.3. Rippled aluminum foil sheets being placed on a
steel plate deck. Bonding compound used for adhesion
to steel

However, this installation was not successful (see
Section 8.2.4.2.3).

(c) Asphalt mastic

This type of coating has been used on several steel
plate deck bridges built in Germany.

Asphalt mastic is a dense, impervious, voidless mix-
ture of asphalt, fine aggregate and mineral dust that
may retain its plasticity after setting in a degree de-
pending on its bitumen content. It has been applied
on the bitumen-coated steel plate in a thickness of 14 in.
to 3¢ in.

Occasionally the mastic was topped by a layer of
paper in order to prevent bleeding of the bitumen from
the mastic into the overlaying asphaltic wearing course.
Another advantage of the paper layer may be seen as
facilitating future replacement of the wearing surface.
However, a separation of the individual courses by
paper may lead to shoving of the wearing surface and
is no longer recommended.

Satisfactory performance of the mastic-type sealant
in protecting the steel deck plate against corrosion is
illustrated by several German steel plate deck bridges
built in the 1930’s. During the war the bridges were
poorly maintained and cracks up to a finger-width
have formed in the asphaltic wearing surfaces.

Despite these conditions, inspection of the steel
plate decks after the war has shown that in no case
have the cracks in the surfacing continued through
the mastic layer, and no trace of corrosion was found.

The tentative German specifications for wearing
surfaces on steel plate deck bridges [86] call for a mastic
coating %{¢ in. to 3¢ in. thick of the following com-
position:

Mineral aggregate: maximum particle size 2 mm
(passing sieve No. 8); at least 309% of the aggregate
should be smaller than 0.09 mm (passing sieve No. 140).
A high content of mineral filler is essential for obtaining
sufficient stability of the mastic.

Bitumen content: 129, to 179, max., desirable
149 to 16%. Softening point (ring and ball) of the
bitumen after extraction from mastic 105°F to 140°F ;
desirable 122°F to 140°F (corresponding, with an
average type of asphalt, to a penetration grade 77°F,
100 g, 5 seconds of 30 to 70). To achieve this consist-
ency after extraction, an asphalt with a correspondingly
higher original penetration grade must be used {see
Section 8.2.2.1).

As an alternative, a mastic laver !¢ in. to 3¢ in.
thick is specified, consisting of mineral dust and asphalt
of an original penetration grade of 200, with 20% raw
rubber added. The mix of mineral filler and asphalt
should have a softening point (ring and ball} of 180°F
to 185°F, before addition of rubber.
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A proper content of asphalt in the mastic is of great
importance to the wearing surface stability. This is
indicated by experiences with the surfacing of the
Cologne-Muelheim suspension bridge (Fig. 1.21). On
the East end of the bridge the 134-in. thick asphalt
concrete surfacing placed on a 9{g-in. thick mastic
layer containing 22% bitumen soon developed surface
ripples due to shoving of the surfacing under traffic
and had to be replaced. On the West end, the wearing
surface of an almost identical composition placed
on a mastic course with 169, bitumen has shown no
signs of shoving or rippling and is performing satis-
factorily (Fig. 8.6).

(d) Rippled metal foil

Aluminum or copper foil is being used as a sealing
membrane over steel plate decks.

The aluminum foil used is approximately 0.008 in.
thick and has wart-like ripples approximately 1{¢ in.
deep (Figs. 8.2 and 8.3). It is bonded to the bitumen-
primed deck by means of a hot bituminous adhesive
compound. Prior to placing the foil, any irregularities
of the deck surface, such as rivet heads, splice plates,
etc., must be leveled out by application of a bituminous
caulking compound. No air should be entrapped
under the foil, since it would affect the bond and cause
blisters in the asphaltic wearing surface.

Adhesion of the rippled aluminum foil to the steel
deck surface is reported to be very good (Fig. 8.2).

Tests have indicated that a good bond is maintained
even at a temperature of —5°F [91].

The metal-foil type of deck protection is considered
highly satisfactory and has been used on several impor-
tant steel plate deck bridges, among them the 856-ft
span Save River Bridge in Belgrade, Yugoslavia (Fig.
1.9) and the Severin Bridge in Cologne (Fig. 1.18).

However, it should be emphasized that the success
of an installation of this type depends entirely on careful
placement of the foil, which should be thoroughly
bonded to the deck. Any air contained in void spaces
under the foil may eventually cause a general loosening
of the bond and a deterioration of the overlaying wearing
surface [95].

(e) Zinc coating

Good protection against corrosion is provided by
spraying the properly prepared steel plate deck with
metallic zinc.

British tests with steel plate deck panels sprayed
with a 0.001-in. thick coating of metallic zinc prior to
surfacing by an asphaltic mix (see Section 8.2.3.2a)
have shown no trace of corrosion in the steel plates
after 414 vears, even where cracks in the asphaltic mix
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penetrated through to the steel plate, or where the
bond was loosened [103].

Zinc spraying topped with a bituminous adhesive
compound for bonding with the overlaying asphaltic
wearing surface has been specified on some recent
German bridges with steel plate decks.

A 0.005-in. thick zinc coating will be used on an
experimental short span steel deck bridge near Troy,
IlI. It will be topped with four different types of
sealants: coal tar epoxy, pure epoxy resin, asphalt
mastic and latex.

The disadvantage of zinc metallizing, in addition to
its cost, is in the poor adhesion of the wearing surface
materials to the zinc coated surface of the deck. There-
fore many engineers consider zinc metallizing of the
steel decks to be unwarranted, especially if used in
conjunction with additional sealants.

The possibility of using organically or inorganically
bound zinc rich protective coatings has also been
suggested.

(f) Plastic membranes

Polyisocbutylene plastic membranes bonded by means
of appropriate adhesive paints have been experimented
with; however, no firm conclusions regarding suitability
of this type of deck protection have been reached.
Protective properties of plastic membranes were found
satisfactory; however, plastics of insufficient heat
resistance may be damaged when topped by hot as-
phaltic mixes. In some cases poor adhesion of the
asphaltic wearing surface to the plastic has been ob-
served, in spite of the tack coats applied [90, 91, 92].

The use of plastic tapes, of the type used for coating
of steel pipelines [94 ], might also be considered.

(g) Latex compounds

Latex rubber compounds have been successfully
applied both as a protective coating under bituminous
wearing surfaces and as a final surfacing. This type of
surfacing has been developed in England and is known
under the commercial designation of “Semtex”.

The compound is applied cold. It has been proved
to have a very strong bond with a steel deck, thus provid-
ing a reliable protection of the deck against corrosion.

The Semtex surfacing has a rough and skid resistant
surface; it is tough and is not affected by vibrations or
temperature changes.

When used as a protective coating, a 345-in. thickness
suffices. Final wearing surfaces approximately !4 in.
thick have been used. An example of such application
is a bascule bridge of the Surrey Commercial Docks in
London (1954) [92].
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(h) Epoxy resins

Epoxy resins, discussed in more detail in Section
8.4 below, may provide a good protective coating
under bituminous wearing surfaces.

For a sealing membrane applied directlv on a sand-
blasted steel surface, epoxy resin containing no coal
tar is considered preferable to coal tar epoxy, since
the latter contains volatile elements that may cause
shrinkage of the membrane.

Grits embedded in the epoxy seal coating will produce
a good bond for the subsequent wearing course. Since
water-tightness of the seal coating is essential, the
amount and size of grit must be properly balanced
against the volume of liquid epoxy to prevent pinholing.

A reliable seal coat will probably require an adequate
quantity of epoxy resin in the first coat onto which a
moderate amount of small size grit is placed, followed
by a light final pass of the resin.

8.2.3.3 Mechanical Anchorage Devices

In addition to the protective and bonding materials
described above, mechanical anchorage devices have
been used to improve the bond of a bituminous wearing
course with the steel deck.

Tests have been made on asphalt concrete wearing
surfaces with wire mesh and expanded metal spot
welded to the deck [92]. The results indicated that
the presence of metal reinforcement is not always ad-
vantageous and may increase the tendency of a bitu-
minous surfacing to crack.

It has also been found that the contact of the asphalt
concrete course with the deck tends to be incomplete,
resulting in pockets of entrapped air causing blisters
in the surfacing.

However, this type of anchorage of the asphalt con-
crete surfacing may become necessary in special cases
such as bascule bridges (Fig. 1.27).

For stabilization of asphalt mastic wearing surfaces,
flat bar anchors spot welded to the deck are being
used. The bars are approximately 34 in. high and are
arranged in a zig-zag fashion across the deck, spaced
3 to 6in. o.c. (Figs. 7.11 and 8.7). 'This type of anchor-
age of the wearing surface has been used on two bridges
in the city of Duesseldorf (see Section 8.2.4.2.2).

Prior to placing of the mastic surfacing, the bars
are coated with a bituminous tack compound.

Some engineers contend that the spot welds between
the flat bars and the deck plate may act as local stress
raisers to impair the fatigue strength and corrosion
resistance of the deck plate. However it is doubtful
that such apprehensions are warranted.

A more definite disadvantage of the flat bar anchorage
is the considerable amount of labor involved in this
installation, resulting in higher costs.

8.2.4 Binder and Surface Courses

8.2.4.1 Composition and Properties of Bi-
tuminous-Mix Pavements on Steel Plate
Decks

(a) Composition and thickness

Bituminous-mix wearing surfaces on steel decks
usually consist of a high quality hot-mix of a low pene-
tration asphalt and a dense graded aggregate. The
asphalt content is determined- by the aggregate grada-
tion and usually ranges from 49 to 1297 (See Section
8.2.4.1b).

Occasionally asphalt-mastic mixes containing a high
proportion of mineral filler have been used in the
wearing surfaces.

Typical data on the composition of bituminous
mixes used on existing structures are given in Section
8.2.4.2.

The total thickness of the wearing surface may range
from 114 in. to 214 in. and is usually placed in two courses,
with the lower (binder) course somewhat softer than the
upper (surface) course. According to British tests
with mastic-type wearing surfaces, a thickness of over
114 in. is desirable, in order to prevent the cracks from
reaching to the steel surface [103]. This require-
ment, however, may not be too important if the deck
is properly protected (see Section 8.2.3),

Where bolt and rivet heads and the splice plates of
the steel deck have to be covered, the total thickness of
the wearing surface should be such as to provide a cover-
age of at least 1 in. over the protruding parts. Separa-
tion of the surface course from the binder course by
a layer of paper, as has been occasionally done to
facilitate future replacement of the surface course, is
not recommended.

(b) Stability and durability

Stability of the pavement is defined as its resistance
to deformation (shoving, rippling) under the action of
traffic loads. Stability is determined by the frictional
or interlocking resistance of the aggregate and by the
cohesive resistance of the asphalt cement. Cohesive
forces acting between two adjoining bitumen coated
aggregate particles are greatest if the bitumen film is
thin. An excessive amount of asphalt decreases the
cohesive forces and acts as a lubricant, thus lowering
the stability of the mix.

Resistance of the wearing surface to shoving and
rippling also depends on a good bond of the surfacing
with the underlying seal coating and an adequate shear-
ing strength and stability of the sealant itself (see Section
8.2.3).

The effects of temperature on pavement stability
are discussed under (¢), below.
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Durability is the resistance of a pavement to dis-
integration (raveling, potholing, cracking, rutting).
The durability and the density of a bituminous pave-
ment is largelv determined by its asphalt content.

Thus the asphalt content and its penetration grade
must be determined as a compromise between stability
and durability requirements.

Experiences with bituminous wearing surfaces indicate
that it is possible to achieve a proper balance, resulting
in surfacings that do not become too soft at high tem-
peratures, nor crack in the wintertime.

Generally, in the design of the mixes to be used on
steel decks the stability of the surfacing at high tempera-
tures should be regarded as more important than
durability. Ruts and washboard ripples in a surfacing
that was made too soft are difficult to eliminate once
they have developed, and may necessitate replacement
of the entire pavement (see Section 8.2.3.2c). Should
moderate winter cracking occur as a result of a too hard
grade of asphalt, it may be of a relatively small con-
sequence, since such cracks may be easily sealed
in the course of routine maintenance of the deck. It
should also be noted that, with a proper seal coating
under the wearing course, cracks do not directly expose
the deck to corrosion (see Section 8.2.3.2).

As a safeguard against cracking of asphalt wearing
surfaces, arbitrarily increased deck plate thicknesses
have been proposed for the various rib spacings, with
the purpose of limiting the deck plate deflections under
loads. However, the appropriateness of unduly in-
creasing the deck plate thickness beyond the actual
structural requirements is open to question. Cracking
may be caused primarily by factors not related to
deflections, such as the grade and quality of the asphalt,
temperature and aging effects, etc. Available experience
with steel deck bridges does not indicate any direct
correlation between deck plate thickness and pavement
cracking, as may be seen from the fact that on some
bridges with a 34-in. thick deck no cracks are apparent,
while pavement cracking has occurred on bridges having
thicker deck plates with the same rib spacing.

(c) Temperature effects

A black bituminous pavement subject to heat radia-
tion acts as a ‘‘black body” and absorbs large amounts
of heat.
pavements of over 140°F have been recorded [92].

Overheating of a thin bituminous wearing surface
on a steel deck is likely to be especially severe because
a steel plate does not have the heat ahsorbing and
dissipating capacity of a normal pavement subgrade
or a concrete slab. A typical relationship between air,
wearing surface and steel plate temperature on a hot
summer day, measured on the Save River Bridge in

On hot summer days, temperatures of asphalt

Belgrade, is shown in Figure 8.4. It is seen that the
temperature lag between the asphalt and the steel
plate is not very large [76].

On the lower end of the temperature scale, the
wearing surface on a steel deck may be subject to rapid
cooling in the winter time in cold climatic zones.

The thermoplastic properties of the asphalt are
imparted to the bituminous mixes, which gradually
soften when heated. This may drastically decrease
the stability and the load carrying capacity of the
wearing surface as the temperature is increased.

At low temperatures the asphalt becomes brittle
and its modulus of elasticity increases considerably.
Since the thermal contraction coeflicient of asphalt is
greater than that of steel, an intense and rapid cooling
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Fig. 8.4. Temperature variation in a wearing surface on a
steel plate deck. Test measurements on the Save River
Bridge

of the bituminous surfacing, combined with the flexural
stresses, may lead to cracking.

The design of a bituminous mix for a wearing surface
must take into consideration the adequacy of the pave-
ment over the entire temperature range to be expected,
which may be of the order of 150°F. A low tempera-
ture susceptibility of the asphalt used is, therefore,
highly important; however, it should not be achieved
at the expense of other desirable characteristics.

(d) Strength and elastic properties

The flexural strength and rigidity of a bituminous
pavement is largely determined by the tensile and the
shearing strength of the asphalt binder film surrounding
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the aggregate particles, depending chiefly on cohesive
forces acting in thin asphalt films and is affected by such
factors as the asphalt grade, asphalt content in the mix,
temperature, etc.

The compressive (crushing) strength of a pavement
depends primarily on the strength of the aggregate
particles, gradation of the aggregate and the lateral
support of the loaded portion of the pavement.

The loading duration and the rate of load application
are further important factors in determining the strength
of a bituminous pavement. Under a permanently
applied load, a pavement would act plastically and
deform, while it may sustain a much greater load and
act elastically if the load is applied suddenly for a short
time, as in the case of a passing wheel of a vehicle.

Due to its elastic properties under instantaneously
applied loads, a bituminous pavement bonded to the
deck may develop considerable composite action with
the underlaying steel plate deck to which it is bonded.

The extent of composite action of a hituminous
concrete wearing surface with a steel plate was in-
vestigated in connection with the design of the Cologne-
Muelheim Bridge over the Rhine [93].

The effect of the loading duration on the flexural
rigidity of a 21 g-in. thick steel plate topped with a 2-in.
thick bituminous wearing surface, as determined by
these tests, is illustrated by the following table:

TABLE 8.2.4.1

EFFECT OF LOADING DURATION ON COMPOSITE
SECTION PROPERTIES

Relative
Test Conditions Loading Duration ngldlty.Of
Compasite
Section
54 ¢-in. steel plate with 2 in.
bituminous wearing sur- Instantaneous 1509,
face, 122°F 2 sec. 1339,
4 sec. 1289,
8 sec. 1159,
Bare 3{ 4-in. steel plate | A 1009,

The composition of the bituminous wearing surface
corresponded to that described under Section 8.2.4.2a,
below.

The test temperature of 122°F was chosen to ap-
proach the actual conditions on a steel bridge deck on
a hot summer day.

The flexural modulus of elasticity of the bituminous
wearing surface under the effect of an instantaneously
applied load was determined from a series of vibration
tests made with a 2-in. wearing surface bonded to a
5{6-in. thick steel plate, as described above, and was
found to be a function of temperature. For the bitu-

minous mix used, its value ranged from approximately
28,000 psi at +120°F to 750,000 psi at —20°F, with a
value from 70,000 to 200,000 psi at a temperature of
50°F.

Based on the above test data, the contribution of
a 2-in. thick wearing surface to the flexural rigidity
of a l3-in steel plate subject to an instantaneously
applied wheel load has been determined.

The results, represented graphically in Figure 8.5,
indicate that the effect of composite action of the wearing
surface with the steel deck is considerable in the lower
and medium temperature range, and may still be
significant at higher temperatures.

Contribution of a bituminous wearing surface to
steel plate rigidity was confirmed by British tests with
1-in. and 114-in. thick mastic asphalt wearing surfaces.
The increase of the rigidity of a 14-in. thick plate was of
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Fig. 8.5. Composite action of bituminous concrete wearing
surface and steel deck plate under an instantaneously applied
load. M.A.N. tests, 1951

the order of 60% to 809, at temperatures of 30°F
to 50°F. However, no significant effects were re-
corded at the temperature of 85°F [103].

While the elastic properties of a bituminous wearing
surface will be affected by the type of mix, the asphalt
content and its penetration grade, it may be concluded
that the contribution of the wearing surface to deck
plate rigidity will be significant in most cases. The
resulting stress reduction in the steel plate is likely to
outweigh the specified 309, stress increase due to the
impact action of the wheel loads. Thus the wearing
surface contribution to the steel deck plate strength, dis-
regarded in the design, may represent an important
additional safety factor in the design of the deck plate.

Regarding the stresses in the wearing surfacing, it
should be noted that, at low temperatures, the stresses
in the asphalt are lower in the case of composite action
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of the surfacing bonded to the deck than in the case of
the surfacing resting loosely. Thus breaking of the
bond between the wearing surface and the steel mav
cause cracking and deterioration of the surfacing in the
wintertime.

(e) Skid resistance

A friction coeflicient between a given pavement
and an automobile tire is not constant and may decrease
considerably at higher vehicle speeds, depending on
the type of pavement. The friction coefficient is fur-
ther affected by the presence of water, ice, oil film or
dirt on the pavement and is subject to decrease with
time, as the wear and polishing of the pavement pro-
gresses. g

On bridges a higher surface friction coefficient of
the pavement is generally required than on open high-
way portions. -,

For safe performance, a friction coeflicient of at
least 0.5 between a wet pavement and a worn tire at a
vehicle speed of 40 mph is desirable.

The surface friction coefficient of a bitumninous
pavement is determined largely by the following factors:

(1) Aggregate properties.  For best results the aggregate
must be tough, must resist wear and degradation and
be polish-resistant.

(2) Pavement composttion and gradation. The mix should
have no excess of bitumen causing surface ‘“‘bleeding”
on hot summer days, resulting in a slippery condition.
Surface roughness is also an important factor in deter-
mining skid resistance; however, there is considerable
disagreement as to which type of pavement provides
better anti-skid characteristics: an open-graded type,
having large voids in the surface (Fig. 8.9) or a dense
graded pavement, with a harsh, close-textured surface.

The open-graded pavements, of the type described
in Section 8.2.4.2¢c are not subject to asphalt flushing
and are reported to have very good skid resistance,
which is little affected by the speed of the vehicle [89].
However, it is also contended that, in the long run,
this type of pavement is more subject to aggregate
polishing and degradation, which decreases the friction
coefficient [{105]. Furthermore, the open-type pave-
ment tends to be less durable and more pervious to
water, due to its smaller bitumen content.

Wearing surfaces on steel plate deck bridges are
subject to an increased danger of icing in the winter
time because of rapid cooling of the steel deck due to
its high thermal conductivity. Slipperiness due to
icing may be reduced by surface roughness of the
bridge pavement, since an ice film would form less
easily and might be sooner crushed by traffic on the
sharp, abrasive protruding surface particles.

The skid resistance of a pavement mayv be improved

by an appropriate surface treatment, consisting usually
of an application to the pavement surface of a fine-
grained abrasive material held in place by a bituminous
or other binder.

A comprehensive discussion of the skid resistance of
various types of pavements may be found in [105],
Chapter 20.

(f) Additives to asphalt

Certain properties of asphalt and asphalt-aggregate
mixes may be affected by the admixture of additives.

The two most commonly used types of additives to
asphalt are:

(1) Various chemicals used to improve coating and
adhesion of the asphalt film to the aggregate (“anti-
stripping’’ agents).

(2) Rubber in various forms (raw or synthetic rubber,
latex, neoprene), used to improve such properties as
temperature susceptibility, low-temperature ductility,
and the cementing qualities of the asphalt.

The additives are usually applied at a rate of approxi-
mately 19, to 59, of the asphalt weight.

While improvements of the pavement properties due
to addition of rubber materials have been reported in
many cases, there is no general agreement as to the
long-run effects and the economic value of such addi-
tives.

8.2.4.2 Typical Wearing Surfaces on Existing Steel
Deck Bridges

Data on the composition of typical bituminous
wearing surfaces on existing steel plate deck bridges
are given below.

8.2.4.2.1 Double-Course Bituminous Concrete
Surfacing on Mastic Seal Coat

On the Cologne-Muelheim Bridge (Fig. 1.21) two types
of surfacing were used, made up as follows:
Type A (West end of bridge); Figure 5.6.
1. Seal coat:
a. Bituminous heat-resistant paint approximately
344 in. thick, on sand-blasted deck.
b. 3{¢-in. thick asphalt mastic, containing 169,
bitumen (see Section 8.2.3.2c).
2. Binder and surface courses:
a. 34-in. thick hard asphalt concrete. Asphalt con-
tent 99, original asphalt penetration grade (77°F,
160 g, 5 seconds), 35-50. Aggregate gradation as
shown in Figure 8.1,
h. Paper layer, bitumen-impregnated.
c. Tg-in. thick hard asphalt concrete. Asphalt con-
tent 8.59, original penetration grade 20-30. Ag-
gregate—same as under 2a.
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Grit surface treatment
2" asphalt concrete

Bitumen—impregnated paper

1" asphalt concrete
e

75 asphalt mastic, 16% bitumen

s \ké steel plate, sandblasted

Type A (west end)
Grit surface treatment

7
6) " asphalt concrete
5) Paper layer

)

1" asphalt concrete

Paper layer
/—® £ asphalt mastic, 22% bitumen
) r-@ Biturninous paint

:!: L{- steel plate, sandblasted

Type B (east end)

Fig. 8.6. Cross sections of the wearing surface on the Cologne-
Muclheim Bridge

3. Surface treatment:
a. Bitumen coated grit, size 14 in. to 14 in. rolled
into the surface course while still hot, in the amount
of 2-3 lbs per sq ft.

Type B (East end of bridge):
1. Seal coat:

a. and +b. Same as type A, except that mastic con-
taining 229, of bitumen was used. This led to in-
stability and rippling of the wearing surface (see
Section 8.2.3.2) [92].

c. Paper layer.

2. Binder and surface courses:

a. 33-in. thick asphalt concrete. Asphalt content
119, penetration 20~30. Trinidad-Epuré natural
asphalt was added. The aggregate was somewhat
finer than in type A4, as shown in Figure 8.1.

b. Paper layer.

c. 7¢-in. thick asphalt concrete, asphalt content
8.59%,, penetration 20-30. Aggregate as shown in
Figure 8.1.

3. Surface treatment: Same as type A.

The hot asphalt concrete mix was placed bv hand
and stomped with wooden blocks. No rollers were
used to compact the mix. The total thickness of the
wearing surface is 2 in.

The wearing surface on the West end of the bridge,
with the type A composition, performs satisfactorily

under heavy trathc on the bridge and is in good condi-
tion. The tvpe B pavement, however, had t be
replaced, due to a too soft mastic layer.

The protection of the steel deck against corrosion is
apparently good, as revealed by inspection.

8.2.4.2.2 Mastic Asphalt Surfacing with Flat
Bar Anchorage

This type of surfacing is used on the Duesseldorf-Neuss
Bridge (Fig. 1.10).

The wearing surface is about 1i¢ in. thick and con-
sists of an asphalt mastic placed between the flat 1-in. X
14-in. anchorage bars welded to the deck 3 in. o.c. (see
Section 8.2.3.3).

Before pouring the mastic, the deck and the anchorage
bars were sprayed with a hot bituminous adhesive
compound.

The mastic had an asphalt content of 149, to 16%;
the softening point of the asphalt after extraction from
the mix was 140°F (corresponding to a penetration of
approximately 30-40). The mineral filler content in
the mastic was over 259,. The hot mastic was poured
flush with the 1-in. flat bars and then heated bitumen-
coated basalt aggregate, size 14 in. to 7g in., was cast
and rolled in up to the desired 114-in. total thickness.

Fig. 8.7. Cross section of the wearing surface on
the Duesseldorf-Neuss Bridge. Bituminous-mix
between flat bars

The adhesion of the bituminous mix to the steel plate
and the flat anchorage bars was found to be excellent,
even after strenuous vibration tests [91].

A similar surfacing with flat bar anchorage is used
on the Duesseldorf-North Bridge (Fig. 1.15).

This type of wearing surface, while expensive to
install, is considered ‘‘foolproof” by many engineers,
since the dense mastic course, which can be made
sufficiently soft, provides excellent protection of the
deck against corrosion, and cannot shove because of
the bar anchorage. Another advantage is that no
joints are required with this surfacing [95].

Anchored mastic pavements have, in the past, been
regarded with some suspicion bv German engineers.
However, in view of their very good performance
record on the above two structures in Duesseldorf, this
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type of surfacing may be expected to gain favor, par-
ticularly on bridges with steep grades. Such a wearing
surface is planned for the Europe Bridge in Austria (Fig.

7.15), which will have a uniform longitudinal slope of 497.

8.2.4.23 Open Graded Asphalt Concrete on
Mastic Asphalt Concrete and Resinous
Seal Coat

A bituminous wearing surface approximately 214 in.
thick, with an open-graded surface course has been
used on the St. Alban Bridge in Basle, Switzerland
(Fig. 7.19).

1. Seal coat: (see Section 8.2.3.2b)

a. 2 coats of resinous paint.

b. Bituminous adhesive compound.

¢. 0.04-in. thick felt cloth.

2. Binder and surface courses:

a. 114-in. thick mastic asphalt concrete with an as-
phalt content of 7.7%. The mix consisted of 589
mastic and 429 broken aggregate, size 1¢ in. to 15
in. The hardness of the mix in place is described
by the “hardness index” of 9 {(corresponding to a
penetration of 0.9 mm, or 0.0354 in. of a steel rod
with a 14 in. diameter loaded with 70 lbs during
one minute at a temperature of 77°F).

b. Bituminous adhesive compound, applied at a rate
of 0.5 ]b per sq vd, consisting of 509, bitumen, pene-
tration grade 80-100, and 509 solvent.

c. A 3%-in. layer of powdered asphalt (corresponding
to approximately 22 lbs per sq yd) was placed.

d. A layer of a uniform-sized 34-in. broken hard,
bitumen-coated aggregate, heated to 195°F to 215°F
was placed. The bitumen used was of a penetration
grade 280-320; itscontent was 29}, of the aggregate
weight. The aggregate was coated at a temperature
of approximately 280°F. A small quantity of pow-
dered asphalt was added to avoid lumping of the
coated aggregate during transportation. The aggre-
gate was rolled in after placing with a 6 to 8 ton roller.

e. Powdered asphalt was applied and brushed in at
arate of approximately 1.8 b per sq vd on top of the
rolled surface course.

This surfacing, installed in 1955, was performing
satisfactorily until the summer of 1962, when rippling
developed similar to that on the east portion of the
Cologne-Muelheim Bridge (see Section 8.2.4.2), which
necessitated replacement of large portions of the surfac-

ing.

8.2.4.2.4 Current German Specifications for
Bituminous Wearing Surfaces on Steel
Deck Bridges

The tentative German specifications for bituminous
wearing surfaces on steel deck bridges {86], issued in
1961, contain general recommendations and describe
five basic types of surfacings which may be used. ,

The general requirements are: the surfacing should
not shove or ripple under traflic at high temperatures,
should not crack in the winter, should have a low sus-
ceptibility to aging and fatigue, and should be well
bonded to the steel deck. The specification also
stipulates that only selected firms, possessing the neces-
sary special knowledge and experience with bituminous
surfacings on steel decks, should be entrusted with the
preparation and placing of such surfacings.

The following types of bituminous wearing surfaces
are suggested:

(a) Double course of asphalt concrete on a seal paint and
tack coat

The deck must be cleaned by sandblasting or equiva-
lent methods. The seal coat may consist of zinc powder
paint, or other coatings, not further specified. The
tack coat, placed subsequently, must be reasonably
thin and contain no materials that may adversely affect
the seal coat.

The asphalt concrete is placed in two courses—a
34-in. to 1-in. thick binder course and a 1-in. to 114-
in. thick surface course.

Powdered asphalt apphed and brushed in

“uniform sized biturminous coated
aggregate, rolled in

Bl

I

=""layer of asphalt powder placed
Bitumninous adhesive compound
11 "mastic asphalt concrete

Felt cloth

Fig. 8.8. Composition of the wearing surface

on the St. Alban Bridge, Basle,

Bituminous adhesive compound

2 coats of resinous paint

Switzerland

IR

3" to 3" steel plate, sandblasted
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Fig. 8.9. Rough surface texture of the wearing surface on
St. Alban Bridge, Basle

The asphalt content in the mix should be 79 to
9%, with the recommended aggregate gradation as
shown in Figure 8.1.

The asphalt should have a softening point (standard
ring and ball test) of 158°F max., after extraction from
the mix (see Section 8.2.2.1), corresponding approxi-
mately to a penetration grade of 10-15. However,
a softening point under 150°F (penetration 15-20) is
preferred.

The softening point of the original asphalt must be
correspondingly lower. A value of 140°F (approx.
penetration 25-40) is recommended for the harder
surface course, and 130°F (penetration 40-60) for the
binder course.

The hardness of the finished wearing surface is checked
by the penetration test for bituminous pavements,
DIN 1996, new version. In this test the penetration
of a round steel bar with a cross-sectional area of 5 cm?
(approximately 1 in. dia.) loaded with 116 lbs during
30 minutes at a temperature of 104°F is measured.
For the binder course a penetration of 4-8 mm (0.16~
0.32 in.) is recommended: for the harder surface course
this value should be 2-6 mm (0.08-0.24 in.).

Mechanical anchorage of the asphalt-concrete wear-
ing surface by means of flat steel bars spaced far apart
is considered ineffective.

Separation of the two asphalt-concrete courses by a
laver of paper is not recommended.

(b) Double course of asphalt concrete on mastic seal and
tack coat

The required composition of the mastic sealant is as
described in Section 8.2.3.2¢.

The asphalt concrete is placed in two courses, as
under (a), above.

(c) Double course of asphalt concrete on aluminum or
copper foil and tack coat

The required properties and placement of the metal
foil are as given in Section 8.2.3.2d.

The asphalt concrete specifications are the same as
under (a), above.

(d) Masiic wearing surface with special anchorage

The anchorage consists of flat bars, as described in
Section 8.2.3.3.

The required composition and placement of the mastic
surfacing is as given in Section 8.2.4.2.2.

(e) Mastic wearing surface without special anchorage

The asphalt mastic wearing surface without mechani-
cal anchorage is placed in two courses, approximately
3¢ in. thick. While the first course of mastic is still
hot 34-in. to 1-in. lightly bitumen-coated aggregate
is cast and rolled in. After pouring the second course
14-in. to l4-in. or l4-in. to 34-in. coated aggregate
is cast and rolled, until a total thickness of ahout 134 in.
is obtained. The total amount of mastic used for both
courses is approximately 8.5 lbs per sq ft; the total
weight of aggregate needed is also about 8.5 lbs per sq
ft.

Mastic surfacings without bar anchorage have been
tried in experimental installations. It is claimed
that surfacings of this type are equally satisfactory and
reliable as the mastic surfacings with bar anchorage
[95].

Specifications also include recommendations regard-
ing placing of the bituminous-mixes and construction
of the joints in the surfacing (see Section 8.2.5).

8.2.5 Construction and Maintenance

8.2.5.1 Preparation of the Steel Surface

It is essential to achieving a good bond between
the wearing surface and the steel that the steel surface
be properly cleaned of oil, grease, water, dirt, rust
and mill scale.

Oil and grease should be removed first by washing
the surface with benzene, carbon tetrachloride or other
suitable solvents.

Rust and mill scale are removed by mechanical
means including chipping, wire brushing, sandblasting
or shotblasting and flame cleaning. The degree of
cleanliness required for a proper application of protective
materials described under Section 8.2.3.2 may be best
achieved by sandblasting.
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The first coating of protective material has to be
applied immediately (within two hours) after the
deck cleaning.

Although the deck cleaning and sandblasting, followed
by protective coating, could be more economically
done in the shop after fabrication of the deck panels,
the following practical considerations make it desirable
to clean the deck in the field, after its complete erection.

(a) Straightening of warped deck plating panels by
means of heat application is often necessary during
erection. This could not be done with protective
coating applied on the deck.

(b) The edge strips of the deck plating panels have
to remain uncoated until the welded or bolted deck
field splices are completed, and must be cleaned and
sandblasted after the deck erection. Thus cleaning
and coating the deck in the shop does not eliminate
the need for the special equipment in the field.

(c) Protective coatings and final wearing surfaces
are most effectively applied in a continuous operation.
Additional cleaning and coating of the strips over the
field splices may result in gaps in the protective coating
and a wearing surface of non-uniform quality.

8.2.5.2 Placing of the Wearing Surface

Procedures and methods of placing the wearing
surface depend on the type of surfacing used.

It must be emphasized that, because of the severe
service conditions that must be satisfied by a wearing
surface on a steel deck, preparation and placing must
be performed with great care, beyond the routine
precautions and general rules of good practice for
bituminous pavement construction.

It is essential that all specification requirements
regarding the quality and penetration grade of asphalt,
gradation of the aggregate, mixing proportions and
temperatures be strictly observed.

The wearing surface should be placed only during
a warm and dry weather period. Placing the hot-mix
at outside temperatures below 50°F should be avoided,
since the mix would be subject to rapid cooling and
would develop internal temperature stresses leading
to subsequent cracking.

Rigorous supervision of all phases of the wearing
surface construction will be required, since even the
best mix may give inferior results if placed carelessly.

Certain cases of failures of bituminous wearing
surfaces on steel decks may be directly attributed to the
fact that the need for highest quality of workmanship in
the installation of such pavements was not sufficiently
appreciated. Therefore the construction of the wearing
surfaces on steel plate decks should be entrusted only
to highly reputable paving firms.

8.2.5.3 Joints

Appropriate longitudinal and transverse jomnts are
generally required in asphalt concrete wearing surfaces.
The joints are usually made 14 in. to 3g in. wide and
are filled with an appropriate joint filler material.

Joints between the working batches of the asphalt
concrete are required only in the upper course of the
wearing surface [86].

Full-depth joints have to be made at all curb, mall
and expansion joint steel plates in contact with the
asphalt concrete wearing surface. Since these plates
may become very hot because of their direct exposure
to the sunshine, the joint filler material in direct contact
with these parts should be of the lowest possible tem-
perature susceptibility.

The sealing qualities of the joint filler used at the
curbs and malls are especially important, since these
areas, where dirt, water and snow would normally
accumulate, are highly susceptible to corrosion. British
tests have indicated that mastic-type joint fillers at
the edges of the steel plate panels did not provide
an adequate protection [103]. Good results were
obtained with asphalt-rubber compounds.

In the asphalt mastic type of wearing surfaces no
filled joints are required [86].

8.2.5.4 Maintenance

The wearing surface should be carefully inspected
after each cold season. If cracks occur, they should
be sealed by appropriate sealing compounds.

It is essential that accumulation of water on the deck
be avoided. This may be achieved in the design of the
bridge by providing sufficient cross slopes of the deck
and adequate scuppers at curbs.

For the purpose of keeping the deck skid-free during
ice-forming weather conditions, abrasives (coarse sand,
cinders) or non-corrosive chemicals are to be preferred.

While a properly maintained wearing surface con-
structed in accordance with the recommendations of
the foregoing sections may be regarded a sufficient
protection of the steel deck against the corrosive effects
of the ordinary salts used for ice removal, avoidance
of their use would provide an additional safety measure.

8.2.6 Conclusions

Experience with bituminous wearing surfaces on
orthotropic steel plate deck bridges in Europe shows
that on a great majority of the structures such surfacings
are giving satisfactory service. Although there are
more than 40 existing structures of this type, only a
few cases of serious damage to the surfacing have occurred
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which required major repairs or replacement of the
surfacing. These include one case of severe winter
cracking (the Hedemuenden Bridge, Fig. 1.29), and
three cases of instability of the surfacing (the Cologne-
Muelheim Bridge (see Section 8.2.4.2), the St. Alban
Bridge (see Section 8.2.4.2.3), and the Breitscheid
Bridge—a short span experimental installation).

Fig. 8.10. Asphalt plank wearing surface on the Harlem River
Lift Bridge, New York City

There are strong reasons to expect that a bituminous
surfacing, designed in accordance with the criteria
outlined in the foregoing sections and placed with
proper care, should be successful. The cost of such a
surfacing must, understandably, be higher than that
of an ordinary bituminous wearing surface.

On the other hand, no wearing surface should be
expected to last indefinitely, and occasional repairs and
overhaul must be taken in stride. Exaggerated require-
ments or undue apprehensions regarding the perform-
ance of the surfacing may result in unnecessarily com-
plex designs which are likely to be undulv costlv.

8.3 ASPHALT PLANK WEARING SURFACES

8.3.1 General

Asphalt planks are composed of low-penetration
asphalt, fibers and mineral filler, mixed at high tem-

perature and extruded to size under high pressure.
This process results in a dense and durable internal
structure.

For bridge paving purposes the mineral-surfaced plank
is used, produced by forcing coarse trap rock aggregate
under pressure into the surface of the plank in such
a manner as to interlock the stone permanently with
the fibrous body of the plank. The skid-resistance of
the mineral-surfaced asphalt plank is comparable to
that of asphalt concrete with surface treatment (see
Section 8.2.4.1f).

The asphalt planking weighs approximately 100 Ibs
per cu ft. The standard size of the mineral-surfaced
planks is 24 in. X 12 in., with a thickness of 1, 115, 114
and 2 in.

For applications on solid smooth surfaces a thickness
of 1 in. is considered sufficient.

8.3.2 Composition and Physical Properties

Asphalt planking for paving purposes, as presently
manufactured, consists of approximately 409, to 489,
lew penetration asphalt, 359, to 459, mineral filler
and 8%, to 229, organic fiber. The hardness and
toughness requirements for asphalt planking are given
by ASTM Specification D517-50 and the similar AASHO
specification M46-38.

‘The asphalt planks for the steel plate deck Harlem
River lift bridge of the west approach to the Triborough
Bridge in New York City (1936), still in very good
condition after 26 years of service (Fig. 8.10), were
manufactured to a special specification with the follow-
ing principal requirements: Composition—asphalt up
to 509%; mineral filler 359, to 45%,; organic fiber—
not less than 129, by weight.

The softening point of the asphalt after extraction
from the plank—180°F to 225°F; standard penetration
at 77°F—5 to 25.

The fiber should be free from decomposed or de-
cayed material, mineral wool, metal, straw, leather,
wood or sawdust and should contain at least 169, of
shredded long cotton fabric, properly flocculated.

The mineral filler should possess physical charac-
teristics making it suitable for use in bituminous mixes.
At least 507 of the mineral filler should pass the No. 200
sieve.

The fardness of the finished plank was defined by
the penetration test as follows: The underside of the
6-in. X 6-in. sample shall be loaded by a 1-in. cylin-
drical steel point with an end radius of curvature of
2 in. Under a 56 Ib load applied at a temperature
of the sample of 140°F. a penetration reading at 15
seconds subtracted from that at 75 seconds after load
application should not exceed 0.07 in.
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The required toughness was defined by the following
test: a steel pin with a 149-in. point is placed against
the underside of the plank at a distance of 1 in. from
the two edges of the 6-in. X 0-in. sample at a tempera-
ture of 32°F. A 10 Ib weight is dropped on the top of
the pin from a height of 17 in. The plank should not
split or crack.

8.3.3 Laying the Planks

According to the plank manufacturers’ specifications,
the planks shall be placed on a swept, broom-clean
deck surface, and cemented in place by an appropriate
asphalt plank cement [88, 96].

The asphalt plank cement usually consists of an asphalt
cut back by volatile solvents to such consistency as is
required for uniform application.

The cement shall be applied not less than 145 in.
thick and not more than 144 in. thick (40 to 50 sq ft
per gallon). All vertical surfaces of the curbs, stop
bars, etc. which will come in contact with the wearing
surface planks shall be likewise coated.

The planks shall be laid not less than 15 minutes
and not more than 2 hours after application of the
cement, with the 24 in. dimension of the plank parallel
to the longitudinal axis of the bridge and the transverse
joints of the adjoining planks offset by 12 in. Each
plank shall be laid as close as possible to its final position
and pressed or wedged firmly in place against the
adjoining planks.

In order to assure complete lateral stability of the
plank surfacing, transverse stop bars welded to the deck
at 5-ft to 20-ft intervals are recommended. The
stop bar spacing should be exactly adjusted to the
plank dimensions, to reduce the field cutting and fitting
of the plank to a minimum.

If no tight fit is obtained at the curbs and the stop
bars, the gap shall be filled with a strip of asphalt-
impregnated laminated felt.

All planks shall be pressed, rolled or weighted after
placing to secure solid bearing in the asphalt cement
coating.

On the Harlem River Bridge, mentioned above,
the plank was laid on top of the steel deck painted in

the usual manner and broom-cleaned. The asphalt

cement prescribed for bonding of the plank consisted
of 659, to 779, bitumen and 239%, to 359, volatile sol-
vent. For a uniform application the use of an air gun
was prescribed at a pressure of not less than 60 psi.
Spraying, or spreading of the asphalt cement by means
of a brush or squeegee was not allowed. No applica-
tion of the asphalt cement at a temperature below
50°F was permitted.

8.3.4 Performance

Experiences with asphalt plank surfacing indicate
that the performance of the surfacing depends largely
on the quality of the plank, careful placing and traffic
intensity.

With the planks tightly fitted, the joints between the
planks usually fill with bitumen extruded from the
plank under the effects of traffic and heat, thus providing
additional sealing of the underlying deck.

Moderately heavy traffic is helpful in maintaining
an even riding surface. Curling up and lifting of the
corners of the planks have occasionally been reported
in pavement areas subject only to very light or in-
frequent traflic. For this reason mechanical anchorage
of the plank corners has sometimes been used.

According to the Triborough Bridge Authority,
performance of the 1}4-in. thick asphalt plank surfacing
on the Harlem River Bridge has been excellent, and
only infrequent replacements of the individual planks
have been found necessary.

However, the performance of similar planking on
another of the Triborough approach bridges with a
steel deck, the Bronx-Kill Bridge, has been less satis-
factory and the plank replacement ratio on this structure
is considerably higher. This may be due to a some-
what inferior plank composition, a less careful original
placing procedure and extremely heavy truck trafhic
on this structure.

It is reported that the plank failure, necessitating its
replacement, usually starts with a widening of a joint
between the planks, followed by progressive chipping
and crumbling of the plank edge.

Removing of the faulty plank usually reveals some
deterioration of the asphalt cement coating directly
under the damaged edges, accompanied by traces of
rusting of the steel plate along the plank edge. How-
ever, except for the narrow strip along the edge, the
bond of the plank to the deck is very strong, so that the
plank has to be removed with a chisel. The area under
the plank is reported to be sound, with no traces of
corrosion.

8.3.5 Conclusions

Asphalt planking may provide a satisfactory wearing
surface on steel plate deck, provided quality of the
planks is high, rich in bitumen and organic fiber, and
provided the planks are carefully placed.

One of the advantages of asphalt planking, as com-
pared with bituminous concrete surfacing, is dead load
saving. The 1-in. planking weighs approximately 9
Ibs per sq ft, while the weight of the 2-in. bituminous
wearing surface is approximately 23 lbs per sq ft.
Another advantage may be seen in the easier installa-
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tion, requiring no costly preparation of the steel deck
surface in the field, as is needed with bituminous mix
surfacing (Section 8.2.5.1).

However, an improvement of the presently used
cementing materials and steel deck protection methods
under the planking is desirable to assure a more reliable
protection of the deck against corrosion.

Application of a metal foil or other protective ma-
terials (Section 8.2.3.2) might provide a satsfactory
solution. '

Since the surface on which the planks have to be laid
must be perfectly even, application of the planking on
steel decks having protruding splice plates, rivet heads,
etc. is not possible.

Should the deck surface be locally dished or otherwise
depart from prescribed deck elevations, due to welding
deformations or imperfections due to fabrication and
erection of the deck, local corrections of the deck ele-
vations by adjustment of the planks would not be
practical, since a uniform thickness of the cementing
material used with the planks is required. Thus, steel
decks to be surfaced with asphalt planks would have
to be fabricated and erected to stricter geometric speci-
fications and smaller tolerances than would be required
in the case of a bituminous-mix surfacing.

8.4 EPOXY RESINS

8.4.1 General

Epoxy resin surfacings represent a new development
in the field of highway paving. Surfacings of this type
consist of specially prepared epoxy resin compounds
which act as a binder to hold in place an appropriately
graded abrasive grit, providing a tough and skid-resist-
ant surface.

On the basis of the manner of application, two types
of epoxy resin wearing surfaces may be distinguished :

(a) Spray applications. In this method the resin
binder is applied to the surface in a liquid state and
the grit is then broadcast over the surface. When the
resin sets chemically, the grit is permanently fixed in
place.

(b) Epoxy concrete. The epoxy binder, with or
without an admixture of asphalt, and the aggregate
are mixed, in a similar manner as a cement concrete or
an asphalt concrete, prior to application to the roadway.
The epoxy concrete is then placed on a prepared surface
in a desired thickness.

Both types of surfacing are discussed below.

Fig. 8.11. Application of epoxy
resin compound by spray truck
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8.4.2 Material Properties

Epoxies belong to the general family of synthetic resins
whose molecules contain the reactive epoxide group.
Through the use of a hardener, or catalvst, the reactive
groups may be made to link together, thus producing
the epoxy polymer system.

The reaction is exothermic (heat-generating), will
take place at normal temperatures, and is irreversible.
Once an epoxy plastic has set, it cannot be appreciably
softened or remolded by heat. The epoxy resin com-
pounds are designated thermosetting materials, in dis-
tinction from thermoplastic materials, such as asphalt,
which melt upon heating and solidify upon cooling.

To produce certain desirable physical characteristics,
as hardness, elasticity, etc., plasticizers and reinforcing
fillers are added.

The epoxy compounds for use in wearing surfaces
usually consist of two equal parts of an epoxy resin
modified for maximum elasticity, and a catalyst
hardener containing coal tar and an organic amine
curing agent. The epoxy resin is a clear, oily fluid;
the hardener is a black fluid, due to the coal tar content.
The color of the compound after mixing is black.

Epoxy compounds without coal tar or pine oils,
which are non-reactive fillers, are also available. They
are more expensive because of a higher content of the
pure epoxy resin. The mixture is clear and the color
of the finished surfacing depends on the aggregate used.

It is currently felt that on steel plates pure epoxy
resin, without coal tar, should be preferred, since it will
achieve a better bond and decrease shrinkage of the
epoxy film.

The epoxy compounds for paving purposes are known
under various commercial names. The compounds
are delivered in dual containers, containing the two
components.

The hardening reaction, causing a gradual increase
in viscosity, starts.immediately after mixing the two
components. The time from mixing the components
until the mixture can no longer be placed is called the
pot life of the compound.

The pot life of the epoxy compounds used in spray
applications is rather short and may range from 30 to
90 minutes at a temperature of 50°F, 15 to 45 minutes
at 70°F and 5 to 15 minutes at 90°F. The curing time
of the compound is 8 to 13 hours at 60°F, 5 to 7 hours
at 70°F and 113 to 4 hours at 95°F. Complete harden-
ing will require up to 24 hours.

The compressive strength of the epoxy compounds
after hardening is reported to be of the order of 4000~
5000 psi, with a modulus of elasticity of about 400,000
psi at lower temperatures to 100,000 psi at higher tem-
peratures.

The compressive and flexural strength of an epoxy
concrete (mix proportion: 1 part epoxy-coal tar com-
pound, 2.8 parts sand, 2.6 parts coarse basalt aggregate,
by weight) has been found to be inversely proportional
1o the test temperature, as follows {102]:

Compressive strength: (2-in. cubes) 7000 to 11,000
psi at 0°F; 5000 to 6000 psi at 70°F; 1200 psi at
140°F. There were indications of strength recovery
after cooling.

Flexural strength (4-in. X 4-in. X 15-in. beams):
2900 psi at 0°F; 2500 psi at 70°F.

The unit weight of the epoxy concrete of the above
composition was 139 Ibs per cu ft.

The epoxy compounds, when properly mixed and
hardened, are tough and resistant to the action of
water, gasoline, oils, greases, solvents and de-icing salts.
Adhesion to steel is excellent, provided the steel surface
is clean and sound.

8.4.3 Spray Applications

8.4.3.1 Existing Installations

Epoxy compound surfacings with embedded grit
have been applied on many occasions during recent
years of bituminous and concrete pavements to improve
their skid resistance in critical areas such as steep bridge
slopes, sharp curves, stopping areas, etc. One example
of such application is the downhill portion of the East-
bound roadway of the Triborough Bridge in New York
City where a single coating of an epoxy surfacing with
emery aggregate was placed on the concrete deck in
1959. The surfacing possesses a very good friction
coefficient and is in satisfactory condition after more
than 2 years of service under heavy truck and car trafhic.

Fig. 8.12. Epoxy and grit surfacing on prefabricated stiffened
steel deck panels installed on the Strawberry Mansion Bridge in
Philadelphia (1960)
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Test installations of epoxy surfacings on concrete
slabs have indicated that if hond failures occur, they
may be attributed to an unsound concrete surface, not
perfectly dry or clean, saturated with oils, etc. In
this respect applications on steel decks promise better
results, since a steel plate, unlike a concrete or bitu-
minous surface, does not absorb moisture and may be
cleaned more perfectly prior to placing the surfacing.

Applications on steel plate decks have been less
numerous. In 1958 a steel plate deck with a coal tar
epoxy compound wearing surface was installed on the
Pennypack Creek Bridge in Philadelphia. One half of
the epoxy-coated steel panels were made with ex-
panded metal reinforcement, the other half without the
reinforcement. For three vears no difference in the
performance of the two halves was apparent; sub-
sequently, however, a small failure appeared on the
portion that did not have expanded metal. This was
repaired with no interruption of service of the bridge.
The surfacing has lost some of its original roughness
and there are small pock marks where larger pieces of
grit have been knocked out of the resin matrix; however,
this action apparently has stopped and the general
condition of the wearing surface, four years after its
installation, is satisfactory. Emery aggregate passing
through No. 12 mesh and retained by No. 20 mesh was
used on this deck.

Another example of epoxy surfacing on steel is the
deck of the Strawberry Mansion Bridge in Philadelphia,
consisting of prefabricated stiffened steel plating panels
coated with an epoxy compound with embedded abra-
sive aggregate (Fig. 8.12), installed in 1960 to replace
a deteriorated concrete deck. Expanded metal rein-
forcement was used. After two years of service the
surfacing was reported to be in good condition.

In both cases the total thickness of the surfacing is
approximately %{¢ in. The surfacing was applied in
two layers in the shop and cured at a temperature of
200-250°F.

An epoxy surface treatment was applied in 1959 to
eliminate the slipperiness of the wide flange steel ex-
pansion dams on the east bound ramp from the Inter-
change No. 14A on the Newark Bay Extension of the
New Jersey Turnpike. The finger plates were coated
with an epoxy compound and, while it was still tacky,
sharp broken sand was spread on the surface. The
surface treatment has proved to be successful [87].

8.4.3.2 Application Methods

Surface preparation. The steel deck must be clean
and dry, free from rust, paint or grease. Best results
may be obtained by solvent cleaning followed by sand-

blasting (see Section 8.2.5.1). However, in the opinion
of some engineers, solvent cleaning of the steel surface
may be sufficient for a good bond of the epoxy com-
pound to the deck.

According to the manufacturers’ recommendations
[98, 102], the quantity of epoxy compound required for
a single-layer coating is 1 gallon per 30 sq ft, which
gives a thickness of epoxy matrix of approximately
Lig in.

Mixing of the two components of the epoxy compound
may be done in conventional mortar mixers, when small
areas have to be coated. The compound is then
poured on the surface and spread with a trowel, brush
or squeegee.

For applications involving large areas, a continuous
automatic mixer-sprayer is recommended (Fig. 8.11).

The grit should be broadcast over the surface at a
rate of approximately 15 lbs per sq yd, which is in excess
of the quantity needed. After the epoxy matrix has
sufficiently hardened, the excess grit (about 6 to 9
Ibs per sq yd) is swept away. The resulting overall
thickness of this type of surfacing is approximately
1£ in.

The grit should be clean, dry and sharp and contain
no dust. The size should be such that 909, of the grit
falls between the No. 12 to No. 20 mesh, with nothing
finer than the No. 30 mesh.

Since the aggregate is largely exposed, with only
the lower portions of the particles embedded in the
matrix, a durable and wear-resistant aggregate is
essential. The following aggregate materials, listed
in the order of increasing cost, and, in general, increasing
hardness, may be used: silica sand, iron ore tailings,
emery, corundum.

The grit should be broadcast immediately after
spreading the epoxy compound. The compound ap-
plied to the deck surface is workable for about 14 hour
at a temperature of 95°F, and longer at lower tempera-
tures.

Application at temperatures below 60°F is not
recommended because of the long curing time required.

Where thicker wearing surfaces are required, two
or more layers of the epoxy compound may be applied.
In such cases the lower course might be made with a
less expensive aggregate.

A final light pass of the epoxy, after the aggregate
has been cast and cemented in place, may provide a
better coating of the exposed aggregate particles and
prevent the knocking out of larger particles from the
matrix.

The use of expanded meial reinforcement appears to be
warranted, although it increases the cost of the surfacing.
The reinforcement, tack-welded to the deck, may secure
a constant thickness of the epoxv coating and prevent
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or localize a deterioration of the surfacing, should such
develop (see Section 8.4.3.1).

Shop application of the surfacing on steel plate deck
panels is advantageous from the point of view of the
quality of the wearing surface. The deck cleaning may
be performed better and less expensively in the shop,
and better quality of the surfacing may be obtained
if it is applied under controlled temperature conditions.
Application in the shop permits temperature curing,
usually at a temperature of 200-250°F, which further
increases the hardness and durability of the epoxy
surfacing.

However, as has already been mentioned in Section
8.2.5.1, the edge strips of the deck plating panels have
to be left uncoated, and must be cleaned and surfaced
in the field, after completion of the deck splices. This
would raise the problem of proper bonding of the
shop- and field-applied portions of the surfacing.
Adjustments of the steel deck geometry after erection,
to conform exactly to the required deck elevations and
grades, would hardly be possible with the surfacing
already applied.

8.4.3.3 Conclusions

A sprayed-on epoxy coating represents a very desirable
wearing surface on a steel deck from the point of view
of weight saving and skid-resistance. It has a very
good adhesion to steel and may be easily repaired
by patching the damaged areas with an epoxy mortar.

The epoxy surfacing will certainly participate in the
local flexural stresses of the steel deck plate. How-
ever, the strength and elasticity of the epoxy appear
to be sufficient to prevent cracking.

The fatigue strength of the epoxy surfacing would
still have to be determined experimentally.

A double course sprayed-on epoxy surfacing of a
steel deck is still rather expensive, compared with a
bituminous wearing surface, and may cost up to $1
per sq ft. However, the additional cost of this tvpe of
surfacing would be partly offset by the steel weight
saving due to the dead load reduction.

The thinness of the surfacing, while helpful in reducing
the dead weight of the structure, is a disadvantage from
the construction point of view. With wide steel decks,
deviations from the specified deck elevations after
erection are unavoidable and may be of the order of
+3¢ in. This may be due to imperfect cambering of
the steel members, differences in the elevations of in-
dividual floor beams due to welding distortion, fabrica-
tion and erection inaccuracies, deck plate warping,
etc. While evening out of the geometric imperfections
of the deck may be accomplished by varving the thick-
ness of a more substantial wearing surface, it would

not be possible with the thin spraved-on epoxyv surfacing
requiring a uniform thickness of application. A partial
adjustment would be possible by additional coatings
applied to the depressed deck areas; however, this may
materially increase the cost of the surfacing. There-
fore the steel deck framing and plating would have to
be f{abricated and erected with smaller geometric
tolerances than would be required for a thicker wearing
surface.

The thinness of the epoxy surfacing would also
preclude the use of bolted or riveted splices of the
deck plate.

Application of sprayed-on epoxy surfacing to large
steel deck areas, requiring well coordinated and rapid
operations of deck cleaning, immediately followed by
the epoxy spraying and grit casting, may present diffi-
cult practical problems, especially when the surfacing
is installed in the field. Lengthening of the pot life
and of the workahility period of the epoxy compounds
appears to be desirable.

As with the other types of wearing surfaces on steel
plate decks, a high quality of workmanship is one of
the most important requirements for a successful appli-
cation.

The final answer to the problem of finding the most
economical method of application of epoxy surfacings
on steel bridge decks will have to evolve from the actual
practice.

8.4.4 Epoxy Concrete

Epoxy concrete, using a mixture of epoxy and asphalt
as a binder cementing the aggregate, has been experi-
mented with as a wearing surface on concrete and
bituminous pavements and industrial floors. A hot
mix epoxy asphalt concrete with a binder content of
7% to 129, has been tried in thicknesses of approxi-
mately 1 in., with varying success. The short pot life
of the epoxy component is reported to handicap the
placing operations. The epoxy-asphalt concrete” has
the advantage of resisting jet fuel spillage and does
not soften under high heat.

A cold-mix epoxy-asphalt concrete has also been
developed [97]. The binder consists of 809, equal
parts epoxy resin and a synthetic high-penetration
bitumen and 209, hardener, wetting agents and flexi-
bilizers. The binder content in the concrete is approxi-
mately 79%. The pot life of the binder components
and the working life of the concrete are reported to be
longer than those of the hot-mix type.

The epoxy-asphalt concrete surfacing should be
placed on a prepared surface coated with an epoxy-
asphalt binder. It may be screeded and rolled to the
desired profile. The concrete is claimed to be water-
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proof, resilient, very adhesive and less expensive than
a sprayed-on epoxy surfacing. These properties make
the cold-mix epoxy-asphalt concrete appear well suited
for application on steel plate bridge decks. A Lg-in.
to 34-in. thickness is recommended by the manufac-
turers. However, experience with the cold-mix epoxy-
asphalt concrete on steel decks is still lacking, since
the only applications of this material to date have been
on concrete or bituminous pavements.

8.5 OTHER MATERIALS

Latex-rubber compounds consisting of synthetic rubber,
portland cement and fine aggregate, may be applied as
a surfacing on steel plate decks.

A latex-rubber product known under the commercial
name of “Semtex” (see Section 8.2.3.2g) has been used
successfully on the steel decks of several short span
bridges in England and Germany [92].

A similar product, commercially known as “Tivoplan”
is being used for surfacing of ships’ decks. One example
of such application is the deck surfacing of the passenger
liner United States. ‘

A latex modified portland cement mortar is being
recommended for patching of concrete pavements
[85]. This product might also be applicable to steel
decks.

A 3g-in. thick latex compound surfacing weighs
approximately 4 lbs per sq ft. The surfacing is reported
to be very durable, resilient, water-tight and adhesive
to metallic surfaces. A disadvantage of this surfacing
is seen in a relatively long curing and hardening period
(1 to 3 days), during which the surfacing is sensitive to
weather conditions [91].

The use of a rubber-latex asphalt emulsion with a fine

aggregate on a steel deck has been tried with good
results by the Department of Public Works of the State
of California.

8.6 SUMMARY AND CONCLUSIONS

Bituminous-mix surfacings, in conjunction with ap-
propriate sealants and tack coats, asphalt planks,
epoxy compound surfacings and other materials, are
available to provide a good riding surface on a steel
plate bridge deck and to protect it against corrosion.

The bituminous-mix wearing surfaces are predominant
and have been used on all major bridges with steel plate
decks. Bituminous-mix surfacings may be expected
to give satisfactory, economical service, provided
errors in the design are avoided and the surfacing
is placed with proper care. The disadvantage of a
bituminous-mix surfacing is in its relatively large dead
weight.

The development of the new synthetic surfacing ma-
terials, promising savings in dead weight and an im-
proved skid resistance, is in progress.

Ideally, such a surfacing should be 1% in. to 34 in.
thick and should be placed in one application. Sur-
facings containing epoxies appear to be most promising.

While a bridge surfacing ideal in all respects has not
yet been developed, the imperfections of the existing
types should not be exaggerated and should be viewed
in the same light as the known deficiencies of all current
paving materials and methods in general.

In conclusion it may be said that construction of
reasonably good and reliable wearing surfaces on steel
decks is entirely feasible. Thus bridge engineers need not
be deterred from using the steel plate deck bridge
system because of apprehensions regarding the surfacing.



CHAPTER 9

- Design Criteria and Specifications

9.1 MAIN STRUCTURAL MEMBERS OF THE
BRIDGE (SYSTEM I)

9.1.1 General

The basic criteria of functionality, economy and aesthetics
governing the choice of the structural system, the spans
and other principal features of steel bridges remain
essentially the same in the design of bridges with steel
plate decks.

However, the characteristic features of the steel
plate deck bridge system, discussed in Chapter 1, are
necessarily reflected in basic planning and design
decisions.

Thus, for example, in the design of continuous girder
bridges overall economy may dictate a choice of longer
spans than would be economical in conventional
design, because of the efficiency and the light weight
of the steel deck superstructures.

In the design of tied arch and suspension bridges
the vertical, lateral and torsional rigidity which may
be provided by the steel deck system is taken into con-
sideration and advantageously utilized.

Often the use of a steel deck may affect the choice
of the structural system of the bridge, as in the cases
illustrated in Figures 1.38b and c¢, where steel plate
deck girder bridges proved to be more economical and
more aesthetically appealing than the truss or suspension
bridges which they replaced.

In all cases a steel plate deck bridge should be viewed
as an integral three-dimensional space structure, and
the close interdependence of its individual members
should be kept in mind.

9.1.2 Dead Load and Live Load Stresses

The bending moments and stresses in the main system
are computed and the bridge members proportioned
by the usual methods, with loads and allowable stresses
in accordance with the bridge specifications used.

In computations of rigidities or stresses the steel
plate deck, or an appropriate portion of it, is included
as a part of System I (see Section 1.2.3). In propor-
tioning the steel deck the superposition of the System
I and System II stresses has to be considered, as dis-
cussed in Section 9.3.

In the design of continuous girder bridges it is often
advantageous to adjust the dead load moments in such a
manner as to obtain a desired distribution of the mo-
ments, as discussed in Section 7.3.3. Since the full
cross section of such bridges is usually built up in the
individual construction steps, the residual erection
bending moments and stresses have to be considered
in the design.

Steel plate deck bridges are generally characterized
by a much smaller proportion of the dead load moments
and stresses, compared with structures of conventional
types, because of a considerably smaller weight of the
steel plate deck superstructures. Thus, the design live
load moments and stresses become relatively more impor-
tant.

However, it should be noted that developing the
maximum values of the calculated live load stresses in
the main members of long span bridges under actual
service conditions is very unlikely, except under load
test conditions, as confirmed by the surveys made.
Thus, the maximum live load stresses actually attained
in main bridge members are, as a rule, well below the
level of the maximum design stresses.

9.1.3 Dynamic Effects

The vibration characteristics of bridge members
depend essentially on their mass to rigidity ratio.

While the vibration characteristics of girder bridges
with steel decks may differ somewhat from those of
comparable bridges with concrete decks, more notice-
ably so in the shorter span range, no objectionable
vibrations will occur under normal conditions and
there is no need for revision of the usual impact factors
stipulated by current bridge specifications.

The dynamic behavior of steel plate deck stifiening
members of suspension bridges has to be investigated in
cach case by the methods used in the design of such
bridges.

The local vibrations of steel plate decks are discussed
in Section 9.2.4.

9.1.4 Deflections under Live Load

The live load deflection of girder bridges is a function
of the span and of the ratio of the live load stress, f,,
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in the bottom flange to the distance, ¢, between the
hottom fiber and the neutral axis of the girder. In
steel deck bridges both values, f/, and ¢, tend to in-
crease, compared with concrete deck structures: the
former because of the larger proportion of live load stress
in the total stress, the latter because of the generally
unsymmetrical cross section of the girder, with the
neutral axis located in the upper half of the section.
Thus, for a given span, the live load deflections would
tend to be approximately the same in both cases if the
depths of the girders are equal, and may be larger in
the steel deck alternative if shallower girders are used
in this case.

Generally, the amount or ratio of the live load deflec-
tion is hardly of direct importance for satisfactory
performance of a bridge structure. It is well to note
that some newer bridge design specifications do not
contain provisions restricting the deflections under
live loads.

However, an excessive relative deflection of the
bridge girders under an unsymmetrical bridge loading,
which may lead to a reversal of the design cross slope
of the bridge deck, should be avoided.

9.1.5 Fatigue Strength

While the problem of fatigue strength of bridges with
steel decks is essentially similar to that of conventional
steel bridges, the generally larger proportion of live
load design stresses in the total stresses of the members
of steel deck bridges, resulting in a larger amplitude
between the maximum and the minimum stresses,
indicates the need for closer attention to the fatigue
problem in the design of such structures. However,
the actual maximum live load stresses in main bridge
members tend to be considerably smaller than the
calculated design values, as pointed out in Section
9.1.2. Furthermore, fatigue strength is governed by
the aberage amplitude of stress fluctuation rather than
the infrequent maximum amplitudes under peak loads.

Thus, as in conventional cases, the fatigue problem
is hardly a critical factor in the design of the main
members of steel deck bridges and should be regarded
sufficiently covered by current design provisions for
members subject to fluctuation of stress intensity.

9.2 BRIDGE DECK STRUCTURE (SYSTEM II)

9.2.1 General

The bridge deck, consisting of longitudinal ribs and
transverse floor beams, both using the deck plate as
their common flange, is treated for design purposes as
a separate structure transmitting local traffic loads to
the main bridge members, as discussed in Section 1.2.4.1.

The general criteria determining the choice of the
stiffening system and the optimum spacing of the ribs
and floor beams are discussed in Section 7.1.

The method for computation of the stresses in the
ribs and the floor beams under design loads is given in
Chapters 3, 4 and 5.

9.2.2 Static Strength

The strength of longitudinal ribs of the usual types
loaded by concentrated wheel loads is very large and
exceeds several times the values computed by ordinary
flexural theory, as discussed in detail in Section 1.2.4.2.

Therefore, the “allowable stress” criterion, assuming
a linear relationship between the loads and the stresses
in the structure, is not appropriate for the determination
of the actual safety factor of the ribs against failure.

Criteria currently used in the design of steel bridge
decks, based on a partial recognition of the high strength
of the longitudinal ribs under local loads, are discussed
in Section 9.3.

The strength of the floor beams of steel decks has not
vet been experimentally verified; however, the behavior
of the floor beams under higher loads is likely to be
essentially similar to that of the longitudinal ribs.

9.2.3 Deflections

Elastic deflections associated with the normal load
carrying and load distributing action of the longitudinal
ribs and the floor beams should he regarded as being
desirable and should not be subject to restrictions, unless
perceptible deck deformations should occur under loads.

Generally, the deflections of the longitudinal ribs
cause a favorable distribution of the local wheel loads
through a better utilization of the flexural rigidity of
the deck plate.

It should be noted that, since the flexural rigidity of
the deck plate is disregarded entirely in the simplified
computation of the deck with open ribs (Section 3.2.2.3)
and is only indirectly considered in the computation of
the deck with closed ribs (Section 3.2.2.2), the stresses
in the ribs computed by the above methods will tend
to be somewhat larger than the actual stresses if the rib
deflections are relatively large.

If the ribs are very flexible, deflections under loads
may cause a further favorable load distribution due to
membrane stresses in the deck plate which mav occur
even in the elastic stress range (see Section 1.2.4.25).

9.2.4 Dynamic Effects

Investigations of local vibrations of steel bridge decks
indicate that the structural effects of the rib and floor
beam vibrations caused by the trafhic loads, are ade-
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quately provided for by the usual impact factors speci-
fied for the design of bridge members of short spans.

The question of human perception of deck vibrations
may have to be studied if extensive pedestrian traffic is
anticipated on the bridge.

In such cases computation of the vibration charac-
teristics of the deck may be required.

A general method of computation of the vibration
frequency and amplitude of a structural member under
the effect of a moving load is given by Stuessi [52].
A method of determination of the vibration frequency
of the floor beams of steel plate bridge decks has heen
presented by Naruoka and Yonezawa [40].

The natural frequency of vibration of steel deck floor
beams supporting sidewalks generally increases with
rigidity and decreases with span and mass of the floor
beams and is, in most cases, greater than 5 cycles per
second.

Application of the above methods involves consider-
able numerical work. However, the need for an accurate
investigation of the vibration characteristics of a bridge
deck will arise only in rare cases.

Studies of human sensitivity to vibrations sustained
with a constant intensity over a period of time are
reported by Postlethwaithe [47], Dieckmann [11], and
other authors. Generally, the feeling of discomfort
associated with vibrations increases as both the ampli-
tude and the frequency increase. If the vibration
frequency is less than 5 cycles per second, the maximum
acceleration of the vibratory motion governs the percep-
tion, while with frequencies greater than 5 cycles per
second the maximum wvelocity of the vibratory motion
appears to be the factor determining human sensitivity
[11]. Based on these studies, values of vibration fre-
quencies and amplitudes are given corresponding to
various degrees of relative discomfort or impairment of
working ability. These values also may be expressed
in terms of critical accelerations or velocities of the
vibratory motion.

However, data on human sensitivity to sustained
vibration of constant characteristics cannot be directly
used to judge the relative discomfort of a person walking
on a bridge, who will be subjected to the maximum vibra-
tion effects only for a rather short period of time during
which the maximum vibration amplitudes will actually
oceur in the bridge member affected (for example, when
a heavy truck passes over a floor beam above which the
pedestrian stands). Under such conditions a much
higher tolerance is certainly to be expected. Also, as
has been pointed out in the Progress Report of the
ASCE Committee on Deflection Limitations [3], ‘it
1s not clear whether unfavorable psychological reactions
result from actual discomfort as a result of the bridge
vibration or simply from the unexpected motion of

structure which the lavman might logically expect to
be rigid. If the latter situation exists, a program of
consumer education might prove to be helpful in re-
ducing complaints of objectionable vibrations.”

Based on the above considerations, the following
values might possibly serve as guides in the evaluation
of the vibration characteristics of a deck. If the fre-
quency of vibration is less than 5 cveles per second, the
maximum tolerable acceleration may be of the order of
about 1.5 to 4 ft/sec®. For frequencies greater than 5
cycles per second the tolerable upper limit of velocity
of about 0.04 to 0.12 ft/sec could be used. The critical
values should be determined at the location of the
sidewalks.

Generally, in order to minimize the effects of deck
vibrations on pedestrians, sidewalks should be located
close to the main girders of the bridge. Placing side-
walks on the ends of long cantilevered floor beams should
be avoided.

It should be noted that bridge users seated in moving
automobiles will hardly perceive any bridge vibrations
at all, since these will be overshadowed by the vibrations
of the vehicles themselves.

9.2.5 Fatigue Strength

The ribs and floor beams of steel plate decks are
subject to variation of the stress intensity, similarly as
the stringers and floor beams of conventional bridges,
and should be treated in accordance with the usual
fatigue design provisions.

It should be noted that the maximum design stresses
in the longitudinal ribs, obtained from superposition
of the System II and Systemn I stresses may, practically,
never be reached, as discussed in Section 9.1.2, and the
actual regularly occurring maximum stresses in the ribs
will be, as a rule, considerably below the critical fatigue
stress level. Therefore suggestions have been made to
treat the theoretical peak stresses in the ribs obtained
by unlikely superpositions of the most unfavorable
loading cases in Systems I and II as static rather than
dynamic stresses [44].

9.3 SUPERPOSITION OF SYSTEM I AND
SYSTEM II STRESSES

9.3.1 General

The maximum theoretical stresses in the ribs and 1n
the deck plate in the longitudinal direction of the
bridge are obtained by superposition of the System 1
and System II stresses, as discussed in Section 1.2.6
and illustrated by numerical examples in Sections
11.2.2.4 and 11.3.2.3.
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However, it should be kept in mind that the values
of the local peak stresses in the ribs obtained by such
superposition of the System I and System II effects are
in no way directly indicative of the actual safety of the
deck structure, since the structural behavior and the
factors of safety against failure are basically different in
the two systems, as discussed in Chapter 1, with System
Il having very large inherent strength reserves in excess
of the values obtained by a linear flexural theory.

Thus the need for a rational design procedure based
on an appropriate evaluation of the actual structural
characteristics of the steel plate decks becomes apparent.

Within the conventional “allowable stress” approach
such a procedure is possible either (a) by applying a
reduction factor to the System II stresses prior to adding
them to the System I stresses and requiring that the
sum should not exceed the prescribed allowable stress
of the material, or (b) by allowing higher values of the
stresses due to combined System I and System 1I effects.

Both methods have been used, as discussed in Sections
9.3.2 and 3.

The contribution of the local System III stresses in
the deck plate and in the walls of closed ribs to the
longitudinal rib stresses is generally disregarded in
design computations. However, in special cases, these
effects may have to be considered, for example in the
evaluation of the stress measurements in the loading
tests.

The second order effects associated with superposition
of System I and System II stresses are discussed in
Section 9.3.4.

9.3.2 Reduction of System II Stresses

In the design of the Save River Bridge in Belgrade
(Fig. 1.8) the System II stresses in the longitudinal ribs
were multiplied by a factor of 1/2.35 = 0.425, and the
reduced values of the stresses were added to the System
I stresses in the deck [42].

The reduction factor of 1/2.35 was obtained from the
load test described in Section 1.2.4.2b (Fig. 1.32) as
follows [42, 44]:

For a theoretical limit case of a rib loaded by a
concentrated load and acting in flexure only (no axial
stresses due to System I action) a factor of safety against
breaking of 10 was chosen. With the value of the load
at which the first crack occurred in the rib of 48 metric
tons, the allowable load was obtained as

Poiow = 48/10 = 4.8 metric tons

At this load the permanent deflection measured on
the half-scale model was 0.25 mm, corresponding to a
permanent deflection of 0.5 mm of the full scale rib.
Lt should be noted, however, that no permanent deflec-
tion was intended under the design conditions in the

actual deck, since the actual stress in the rib consisted
of the flexural System II stress and the axial System I
stress, the latter not subject to a stress reduction, as
explained below.

The theoretical “allowable load”, computed by the
linear flexural theory, with the allowable stress of
1.4 t/cm? for the carbon structural steel St 37 of the test
model, was 2.06 metric tons. The ratio of the allowable
load determined by ultimate load considerations to the
theoretical allowable load was then

4.8/2.06 = 2.35

This ratio was used in the final design to reduce the
computed values of the local flexural stresses in the ribs,
although the material and the sizes of the ribs (see
Fig. 1.8) did not correspond to those of the scale model
tested.

The following conditions had to be satisfied:

(a) i+ ZL‘;S £ fatiow

(b) fl é fallow

where
1 = axial stress in the deck due to its action as the
top flange of the main girders of the bridge
Ji = flexural stress in the ribs due to local wheel

loads, computed in accordance with the
ordinary flexural theory

falow = allowable stress of 2.1 t/cm?, or 29.9 ksi, as
stipulated by the Yugoslavian specificatiors
for the St 52 (a low-alloy steel) used. A
259, increase of the allowable stress was
permitted for the effects of the heavier
German regulation truck load

It is of interest to discuss in more detail the actual
stress conditions in the deck of this structure, designed
in accordance with the above design conditions.

According to condition (a), the computed flexural
stress, fir, in the ribs could exceed the yield point stress
of 3.6 t/cm? of the St 52 only if the axial stress, f;, were
smaller than 0.27f,,w or 0.57 t/cm?.

Actually, due to the location of the neutral axis near
the mid-depth of the girders, the theoretical System I
stresses, fy, constituted a major part of the total rib
stresses and varied between 1.6-2.0 t/cm®. The local
theoretical System II stresses, fi;, were generally low,
because the rib and deck sizes were governed in most
parts of the deck by the System I considerations, ard
reached a maximum value of 1.2 t/cm? (tension) in the
614 X ls-in. ribs with a 34-in. thick deck plate.
Thus the maximum total theoretical design stress, fy 4+
fir, never exceeded the value of 2.7 t’cm? which is
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considerably below 3.6 t/cm? the yield point of the steel
used, and no permanent rib deformation could take
place. The actual total maximum stresses in the ribs
under traffic are certainly still much lower, because of
the unlikelihood of developing the full design values
of the f; stresses in the deck, as discussed in Section
9.1.2.

It is seen that the design condition (a), which may
at first appear very radical, is, in fact, rather conserva-
tive.

A similar procedure was used in the design of the
Europe-Bridge (Fig. 7.15), where the stresses due to
the local loads were multiplied by a factor of 0.5,
chosen by analogous considerations, prior to the super-
position with the System I stresses in the ribs. Another
stipulation was added requiring that the maximum total
design stress (without reduction of the local stresses)
shall at no point exceed the yield stress [58].

9.3.3 Increase of the Allowable Stresses for Super-
position of the System I and System II Effects

An increase of the allowable stresses for the super-
position of the System I and System II effects by a
logical extension of the existing allowable stress pro-
visions for the principal (Group H) and additional
(Group Z) loads to the design of steel deck bridges has
been proposed for the new issue of the German Specifica-
ttons for Steel Highway Bridges (DIN 1073).

Group H loads, or the principal loads, as defined in
the existing general German bridge specifications,
include: dead load, live load, impact, effects of the
support settlements, concrete shrinkage and plastic flow.

Group Z loads, or the additional loads, are the effects
of temperature, wind, snow, braking and inertia forces,
friction at supports and the railing loads.

In accordance with the proposed design provisions
for steel deck bridges, the System I and System II
stresses, considered separately, should each be smaller
than the allowable stresses for the H-loads, while for
superposition of the System I and System II stresses in
the longitudinal ribs the allowable stresses for H -+
Z-loads should be permitted, or

(€ fi £ fu
(d) fu £ fu
(&) fren £ fuez

where fy and fgiz are the allowable stress values for
Group H loads, or Group H and Group Z loads com-
bined, respectively, and f; and fi; are the System I or
System 11 stresses.

The proposed values of the allowable stresses, fu and
fu+z, which are equal to the allowable stresses of the

German Railroad Bridge Specifications (BE), adjusted
earlier, are given in Table 9.3.3.

Design provisions (c), (d) and (e), with allowable
stresses given in Table 9.3.3, have already been applied
in the design of several steel deck bridges.

TABLE 9.3.3

PROPOSED ALLOWABLE STRESSES FOR STEEL HIGH-
WAY BRIDGES, GERMAN SPECIFICATIONS DIN 1073

Stresses in t/cm? (ksi)

St 37 (Carbon Steel) St 52 (Low-Alloy Steel),

Stress | fv = 2.4 t/em? (341 ksi) | f, = 3.6 t/cm? (51.2 ksi)
H ‘ H+2Z H ] H+Z

Tension 1.6 (22.7)/1.8 (25.6)(2.4 (34.1)]2.7 (38.4)

Compr., 1.4 (19.8)11.6 (22.7)12.1 (29.9)[2.4 (34.1)

Shear 0.92(13.1){1.04(14.8)[1.39(19.8)}1.56(22.2)

Provision (e) is entirely warranted and conservative,
in view of the high local load capacity of the deck and
a small probability of reaching the maximum design
stresses in Systems I and 11 simultaneously, as discussed
before.

Adoption of a similar provision in the AASHO
Specifications for Highway Bridges is suggested in Sec-
tion 9.5.1.

9.3.4 Second-Order Effects in the Superposition
of Stresses

In adding up the stresses in the individual component
structural systems of a bridge deck to obtain the maxi-
mum effects, it is assumed that the relationship between
the loads and the stresses in each system remains linear
and is not affected by the interaction.

This assumption is, however, not strictly true, since
the interaction of structural Systems I, IT and III will
tend to affect the stresses in the individual systems.

For example, the local flexural stresses in the ribs
(System II) will be somewhat increased or decreased
by an amount proportional to the axial stress in the rib
acting as a part of System I and the rib deflection under
the local load. If both the axial stresses and the deflec-
tions are relatively large, the effects on the stresses in
the ribs may no longer be negligible.

The stress interaction will become much more com-
plicated under increasing local loads, or in very slender
deck panels, where the second-order effects will tend to
develop in the local Systems II and I1l, as discussed in
Sections 1.2.4.2 and 6.2.2.

While theoretical research in this field is in progress,
results applicable to design are not yet available, and
the secondary interaction effects are being disregarded
in present design practice.
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It is, however, believed that interaction does not
significantly affect the high ultimate local load carrying
capacity of Systems II and III.

9.4 DECK PLATE (SYSTEM III)

The criteria for design of the deck plate acting as an
independent structural member supported by the longi-
tudinal ribs are discussed in Chapter 6.

In accordance with the conclusions summarized in
Section 6.4, the deck plate thickness should be deter-
mined by the allowable deflection rather than by the
local stresses under the wheel loads.

It should be mentioned that, for checking the com-
bined stress in the deck plate resulting from a super-
position of the System I, II and III stresses, a design
condition

Je £ 0.9/,

is occasionally specified, where f, is the vield point stress
of the deck plate and f, the value of the “comparative
stress” computed by the Huber-V.Mises-Hencky
formula

fo=Nf2 = Lf, + £2 + 30,7

where f, and f, are the values of the axial stresses in the
x- and y-directions, respectively, and o,, is the shearing
stress. The value of f, is considered, in accordance with
the hypothesis of constant work of deformation, to be
the criterion for yielding of steel under a bi-axial stress
condition [49].

However, in the particular case of stresses in the deck
plate under the effects of a local wheel load (see Fig.
6.1) the “comparative stress” value by the above formula
does not provide a valid criterion for yielding of the
deck plate, since the area of the plate where the critical
stress condition occurs is confined to a local stress peak
at a point under the wheel, surrounded by material
with a lower stress intensity, which prevents the occur-
rence of yielding at the critical point.

It should also be noted that the “comparative stress”
criterion is not well applicable to the weld material or
to the plate areas in the immediate vicinity of the welds,
where the maximum stresses occur.

9.5 DESIGN SPECIFICATIONS

9.5.1 Proposed Tentative Design Provisions

In order to permit a more advantageous utilization
of the structural characteristics of steel deck bridges
than is possible under the current Standard Specifica-
tions for Highway Bridges of the AASHO [1], the fol-
lowing tentative special design provisions for steel deck
bridges are suggested:

Steel deck highway bridges shall be designed in ac-
cordance with the current specifications of the AASHO
except as noted below:

1. Wheel Loads

In the design of steel plate bridge decks for H20 or
H20-516 loading, single axle loads of 24,000 pounds or
double axle loads of 16,000 pounds each, spaced 4 ft

" apart, shall be used in the computation of the direct

effects of the wheel loads on the deck plate and the
longitudinal ribs, instead of the 32,000-pound axles of
the standard truck loading.

The contact area of one 12,000-pound or 8000-pound
wheel shall be assumed 20 in. wide and 10 in. long at
the surface of the roadway. A further increase of the
loaded area shall be considered by assuming a 45° load
distribution by the wearing surface.

In the computation of the indirect effects on the stresses
in the longitudinal ribs (effects of floor beam flexibility
due to truck loads in lanes adjoining the critical lane
under consideration), and in the design of the floor
beams the full H20 or H20-S16 loading is used.

2. Design of the Deck Plates

2.1 Deck Plate of Low-Alloy Steel

The thickness of the deck plate made of low-alloy steel
with a yield point stress of 46,000 psi or more, normally
used in the design of the deck, shall be determined by
the allowable deflection under a wheel, which shall not
exceed 1/300 of the spacing of the deck plate supports,
unless a greater thickness is required for the deck plate
acting as the flange of the ribs, floor beams or the main
structural members of the bridge.

The plate thickness, t5 , satisfying the above condition
may be determined, provided that the spacing of the
deck plate supports does not exceed 24 in., by the formula

tp > 0.007a Vb

where
a = spacing of the open ribs, or the maximum spacing
of the walls of the closed ribs, in inches
p = design unit pressure at the top of the steel plate
under the standard 12,000-pound wheel, com-
puted in accordance with the assumptions of
Provision 1, above

Computation of the local flexural stresses in the
deck plate satisfying the above allowable deflection
provision is not required.

2.2 Deck Plate of Carbon Structural Sieel

For the design of the deck plate in carbon structural
steel special design provisions have to be established,
subject to approval by the Bridge Engineer.
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2.3 Minimum Thickness

The minimum thickness of the deck plate shall be
3/8 in.
3. Design of the Longitudinal Ribs

3.1 Allowable Stresses
{(a) Tension and Shear

The following percentages of the basic allowable
stresses of the AASHO specifications shall be used:

Condition (I)—stresses in the ribs and in the deck plate
acting as the flange of the main girders..........100%,

Condition (II)—stresses due to the local flexure of the
ribs under the wheel loads. . ................... 1009,

Condition (I)+(1I)—superposition of the above effects
........................................... 1259,

(b) Compression

The allowable compressive stresses shall be governed
by the safety against overall and local buckling of the
ribs, determined in accordance with procedures and
formulas given in Appendix II of this Manual, with the
following factors of safety:

Condition (I)~—compression in the ribs and in the deck
plate acting as the flange of the main girders. ... .. 1.85

Condition (IT)—compression due to the local flexure of
the ribs under the wheel loads. ... ............... 1.85

Condition (I)+4(I1I)—superposition of the above effects
.............................................. 1.5

(c) Special Provisions

Allowable stresses higher than those stipulated in
Provisions 3.1a and b above may be specified for Condi-
tions (II) and (I)+(II), subject to special permission
by the Bridge Engineer, provided the appropriateness
of such stress increase is proven by tests.

3.2 Slenderness of Ribs

The slenderness ratio of the ribs, 4/tg, where 4 is the
depth and ¢ the rib plate thickness, shall not be sub-
ject to limitations if the ribs are designed in accordance
with Provisions 3.1a and b, above.

4. Minimum Thickness of Closed Ribs

A minimum thickness of 3/16 in. of the closed ribs -

may be used, provided the ribs are welded airtight.

9.5.2 Commentary on the Proposed Design Provi-
sions for Steel Deck Bridges

The justification and background of the design
provisions suggested in Section 9.5.1 may be found in
the preceding chapters of this Manual.

1. Wheel Loads
A discussion of the wheel and axle loads of the
AASHO specifications and their application to the
design of steel bridge decks is given in Section 3.4.2.
For suggestions regarding simplification of the loading
assumptions see Section 9.5.3.

2. Design of the Deck Plate

The proposed provisions are based on the structural
behavior of the deck plate under wheel loads, discussed
in detail in Chapter 9.

The inappropriateness of the ‘“allowable stress”
approach in predicting the elastic behavior and the
static strength of the deck plate has been pointed out in
Section 6.2.2.2. A discussion of the fatigue factor in
the design of the deck plate is given in Section 6.1c.

The value of the allowable deflection of the deck plate
of 14499 of the plate span, replacing the ‘“allowable
stress” provision, is arbitrary, as discussed in Section
6.3.2. The recommended formula for the plate thick-
ness is based on the empirical formula by Kloeppel,
see equations (6.5) to (6.7a).

The extension of Kloeppel’s formula to the deck plate
supported by closed ribs, with the stipulation that the
longer of the two deck plate spans be used, is conserva-
tive.

It should be noted that, with the usual geometric
conditions and wheel loads, the maximum theoretical
stress in the deck plates proportioned by the above
deflection formula is approximately constant, regardless
of the rib spacing, and is well within the elastic range of
the low-alloy plate. The actual stresses and deflections
occurring in the bridge deck may be considerably
lower (see Sections 6.2.1.2.1¢ and 6.2.2.3). Thus the
proposed design provisions for the deck plate are reason-
ably conservative.

3. Design of the Longitudinal Ribs

The proposed provisions for the design of the longitud-
inal ribs, increasing the allowable stresses for the case of
superposition of the System I and System II stresses in
the ribs, reflect both the small structural significance
and the low probability of the occurrence of the local
stress peaks in the ribs.

The provisions are patterned on the similar proposed
German specifications for steel deck bridges (see Section
9.3.3), and are essentially similar to the existing pro-
visions of the AASHO specifications {1] for the combined
loading conditions (AASHO specifications, Section 1.4.1,
loading Groups I1-1X).

The structural behavior and stresses underlying the
proposed provisions are discussed in the following sec-
tions of this Manual: System I—Sections 1.2.3 and 9.1;
System II-—Sections 1.2.4 and 9.2; superposition of
Systems I and II—Sections 1.2.6 and 9.3.
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The proposed 259, increase of the allowable stresses
in tenston and shear corresponds to the lowest percentage
increased provided by the AASHO specifications, Section
1.4.1, for combined loading.

A similar application of the allowable stresses in
compression of the AASHO specifications is not possible,
since the present criteria underlying the choice of the
allowable stresses of the specifications (column buckling,
based on the secant formula, and lateral buckling of the
compressive flanges of girders) are not applicable to
the design of steel decks.

In the determination of the allowable compressive
stresses in the longitudinal ribs, the following conditions
have to be considered: (a) buckling of the entire deck
between the floor beams, and (b) local buckling of the
rib plate.

The methods of determining the critical compressive
stresses for these cases are given and discussed in Appen-
dix II.

The uniformly distributed System I compression in
the deck may cause either of the above buckling phe-
nomena. The local flexural compression in the rib
walls, due to the System II action of the ribs, may,
theoretically, cause the local buckling of the rib plate;
however, the possibility of developing a dangerous local
buckling deformation in a rib is remote because of
geometric conditions (see Appendix II).

Since the local plate buckling due to System Il
stresses does not affect the ultimate capacity of the rib,
and since such local buckling of a rib plate of the
directly loaded rib cannot precipitate the overall
buckling of the entire deck under System I stresses, the
decrease of the required factor of safety for the combined
System I -4 Il compressive stresses is justified, similarly
as in the case of tensile stresses.

The proposed factors of safety of 1.85 and 1.5 are
chosen for consistency with the safety factors of the
proposed provisions for the allowable tensile stresses.

It should be noted that for decks of usual proportions,
the danger of rib buckling is small, especially in the
closed rib system, and, therefore, the allowable compres-
sive stresses obtained in accordance with the proposed
provisions will not be much below the allowable tensile
stress values.

The proposed provision (¢) would make it possible to
apply semi-empirical design procedures, similar to
those discussed in Section 9.3.2. This provision would

be particularly appropriate in the design of decks in
which System I stresses predominate, as may be the
case in steel deck bridges with very long spans.

4. Minimum Thickness of Closed Ribs

The recommendation of reducing the minimum re-
quired thickness of the walls of the closed airtight ribs
to 3{g in. is based on the good corrosion resistance of
the closed ribs (see Section 7.4.2) and conforms to cur-
rent practice.

9.5.3 Thoughts on Future Design Specifications for
Steel Deck Bridges

In the development of future design specifications,
which would reflect the structural characteristics of
steel deck bridges more adequately than the proposed
tentative provisions outlined above, consideration of the
following problems would be desirable:

(a) A more consistent and far-reaching application of
ultimate design principles, coupled with a judicious re-
evaluation of the basic factors of safety for all bridge
members. This would require a further study of ulti-
mate behavior as well as fatigue behavior of steel bridge
decks.

(b) Realistic evaluation of the actual System I live
load stresses in the decks of long span bridges, to be super-
imposed with local System II stresses.

(c) Consideration of second order interaction effects in the
superposition of the System I and System II action of
the bridge deck.

(d) -Simplification of the loading assumptions used in the
design of the longitudinal ribs in System II. It should
be noted that the application of the truck loads of the
current AASHO specifications, with the variable axle
spacings and wheel loads, unduly complicates the design
computations, as is evident from the Design Charts
given in Appendix I. The use of a single axle in the
computation of the maximum positive moment in a
rib and application of two axles with a constant spacing
in the computation of the negative moment and the
effects of floor beam flexibility may suffice.

(e) Elimination of the restrictive live load deflection
provision limiting the deflection to 1§, of the span
length.

(f) Revision of the web design provisions in order to
make possible the use of efficient thin webs for deep
girders.



CHAPTER 10

Computation Procedure for Practical Design

10.1 INTRODUCTION

In this Chapter procedures are summarized for the
design of steel plate bridge decks with open and with
closed ribs, based on the formulas presented and ex-
plained in Chapters 3, 4 and 5 and the design charts
given in the Appendix.

The determination of the deck plate thickness, governed
by considerations given in Chapter 6, is not discussed
in this chapter.

The computation of the characteristic sectzon properties
and rigidity values of the deck is made by formulas
given in Chapter 3.

In a general case of loading, the bending moments in
the deck system will have to be computed by the formulas
given in Chapters 4 and 5, with the general Charts
1, 2,5, 17, 18 and 19.

For the standard bridge loadings of the AASHO
specifications the maximum values of the bending moments
needed in the design may be obtained more directly
by Charts 3, 4, 6—16 and 20-32, which will be sufficient
in most cases.

However, computations by formulas will still be
required for such problems as determination of the
stresses in ribs not directly loaded, more refined com-
putation of the bending moments in open ribs with
consideration of the deck plate rigidity, more accurate
computation of the bending moments per rib in the
closed rib system, determination of the effects of floor
beams of non-uniform rigidity, etc.

Both design procedures, by formulas and general
charts and by charts for AASHO loads, are outlined
in detail.

The computation is made in fwo steps. In the first
step the bending moments in the longitudinal ribs and
in the floor beams are computed under the assumption
that the floor beams are rigid. In the second step
the effects of the elastic flexibility of the floor beams are
determined.

The stresses in the deck due to its action as a flange of
the main carrying members of the bridge (System I)
are not considered. These stresses are computed by
the conventional methods and superimposed on the
stresses due to the local action of the loads on the deck
(System II), computed in accordance with the procedure
outlined in this chapter.

The general designations used in the computations
are given in the nomenclature in the front of this Manual.
The special terms used in the computation of the effects
of floor beam flexibility are defined and explained in
Section 3.5 and in Chapter 5.

The system dimensions and the axes of co-ordinates
are given in Figure 3.1, the rib dimensions in Figure
3.9, and the wheel load dimensions are shown in Figure
3.10.

The design procedures given in this Chapter are
illustrated by numerical examples in Chapter 11.

10.2 BENDING MOMENTS IN THE DECK WITH
OPEN RIBS

10.2.1 General

A typical deck with open ribs is shown in Figure 1.2a.

The spacing of the open ribs is governed by the
loading and the deck plate thickness used, and ranges
between 11 and 16 in. in most cases.

The usual spacing of the floor beams in the deck
with open ribs is between 5 and 7 ft.

In determination of the sizes of flat bar longitudinal
ribs, safety against buckling of the slender ribs subject
to compression should be investigated by means of
the formulas given in Appendix II.

10.2.2 Section Properties and Relative Rigidities

In the design computations of the deck system the
moments of inertia and the section moduli of the longi-
tudinal ribs and the floor beams are needed.

In computation of these section properties, appro-
priate effective widths of the deck plating have to be
used, as discussed in Chapter 3.

10.2.2.1 Longitudinal Ribs

The assumptions and formulas used in the computa-
tion of the section properties of the ribs are summarized
in Table 3.3.2.2, lines 1 and 2.

(a) Values of Ig’, and Sg’, for computation of the live
load stresses in the ribs on rigid supports

1. The effective rib spacing, a,*, is obtained in
a general case from Chart 2b, as a function of the
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width, 2g, of one wheel, with consideration of the load
distribution by the wearing surface. Case 1 (wheel
centered over the rib) should be used, unless the wheel
width, 2g, is greater than 2.84.

In design in accordance with the AASHO specifica-
tions, the effective rib spacing, a¢*, may be obtained
directly from Chart 4. The use of the 8 kip and 12 kip
wheels, Figure 3.11b, is recommended in the design
of the ribs, as discussed in Section 3.4.2.1.

2. With the effective rib spacing, a¢*, determined,
the effective width of plate, a,’, is obtained from Chart
1, using the effective rib span, s; = 0.7s.

3. The moment of inertia, Ir’, and the section
moduli, Sgs’ and Ser’ are computed with the effective
width of plate, ao’.

(b) Values of Ir and Sk, for computation of the effects
of floor beam flexibility

The effective width, aq, is equal to 1.1a.

With this value, the moment of inertia, Ir, and the
section moduli, Spp and Sgr, are computed.

10.2.2.2 Floor Beams

The effective width of plate, s, acting with one
floor beam is obtained from Chart 1, using s* = s,
and / equal to the main girder spacing, if floor beams
may be assumed to be simply supported (see line 6,
Table 3.3.2.2).

In a case of floor beams framed into torsionally stiff
box girders, or continuous over more than two main
girders, an effective span /; = 0.7/ may be used for
the purpose of determination of the effective width.

If greater accuracy is desired in the computation
of the live load stresses in the deck plate acting as the
top flange of a floor beam, the effective width of the
deck plate, s;’, may be computed by the formulas given
in line 7 of Table 3.3.2.2.

10.2.2.3 Relative Rigidity Coeflicients, ¥

The relative rigidity coefficient of the ribs and the
floor beams, 7, is computed by equation (5.7), with the
values of Ir and Ir determined in accordance with
lines 2 and 6, respectively, of Table 3.3.2.2.

If the rib sizes and the moments of inertia of the
floor beam vary along the length of the floor beam,
appropriate average values have to be used in the
computation of the coefficient -y, as discussed in Section
5.3.2.

If a more refined computation of the bending moment
in the ribs is desired, the relative rigidity coefficient
of the deck plate and the ribs, v’, is computed by equa-
tion (4.18), with the value of Iz’ computed in accord-
ance with line 1 of Table 3.3.2.2.

10.2.3 Computation of the Bending Moments by
General Formulas

10.2.3.1 Bending Moments in a System with Rigid
Floor Beams (Step 1 of the Computation)

10.2.3.1.1 Bending Moments in the Ribs—Usual
Conditions

In the usual cases, with the open rib spans not ex-
ceeding 6 ft, the bending moments in the ribs depend,
practically, only on the span and the spacing of the
ribs and the magnitudes and the dimensions of the
wheel loads, and are independent of the rigidities of
the system.

Critical bending moments are caused by one or
several wheel loads aligned in the longitudinal direction
of the bridge over the rib under consideration. In
Step 1 of the computation (rigid floor beams) addi-
tional wheels placed over other ribs have no effect on
the bending moments in the rib considered.

(a)  Positive moment at the midspan

1. The total positive moment, M., at the midspan
of the ribs due to a wheel load, P, at the midspan (Fig.
4.4c) is computed by equation (4.10).

2. Additional bending moment increments at the
midspan of the panel 0-0 are obtained by placing the
wheel loads, P, represented by concentrated loads,
in the distant panels (Fig. 4.4b).

The values of the bending moments are obtained
by equation (4.9), or by means of the influence line,
Chart 5a, or Table 4.2.5.

3. The bending moment per rib is obtained from
the total bending moment by equation (4.5a).

The ratio R/P is obtained from Chart 2a, or may be
computed by equations given in Section 4.2.4.2.

(b) Negative moment at the support

The negative moment in the rib at the floor beam
is computed in a similar manner by equation (4.6),
(4.6a) or (4.6b) or by means of the influence line,
Chart 5b, or Table 4.2.5.

10.2.3.1.2 Correction of the Bending Moments
in the Ribs Due to Effects of Deck
Plate Rigidity

If the relative rigidity coefficient, v’ (see Section
10.2.2.3), is smaller than the values given by equation
(4.20) or (4.20a), the bending moments computed in
Section 10.2.3.1.1, above, which are always on the
safe side, may be considered sufficiently accurate for
design purposes.

If, in the case of longer rib spans, the values of v’
are larger, or if a greater accuracy is desired, the moment
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corrections, AMp’, which represent a reduction of the
bending moments, mav be computed by equation
(4.15) or (4.19), in conjunction with equations (4.15a),
(4.16) and (4.17).

The reactions Ry, R:, ...R,, needed in the com-
putations, are obtained from the influence line, Chart
5c or Table 4.2.5, or by equations given in Section
4.2.4.2.

10.2.3.1.3 Bending Moments in the Floor Beams

The loads on rigid floor beams due to truck axles
in various positions on the bridge are computed by
equations (4.11) and (4.12), or by means of the influence
line, Chart 5¢ or Table 4.2.5.

Bending moments in the floor beams due to these loads
are determined by the usual methods.

10.2.3.2 Bending Moment Corrections Due to
Floor Beam Flexibility (Step 2 of the
Computation)

10.2.3.2.1 Loading

In determination of the effects of floor beam flexi-
hility on the bending moments at any point of the
deck the loading on the entire deck has to be con-
sidered.

In the computation of the bending moment increase
at the midspan of a rib, the position and the magnitude
of the wheel loads in the lane enclosing the rib under
consideration must be the same as used in Step 1 of
the computation, with second wheels added in each
axle (Fig. 10.1). The truck loads in the adjoining
lanes must be placed in such a manner as to cause
maximum deflections of the floor beams enclosing the
panel under consideration.

In the computation of the effects of the floor beam
flexibility on the bending moments in the floor beams,
the truck loads must be in the same positions as used
in Step 1 of the computation.

In all cases the actual loadings are replaced by their
first sinusoidal component loads, obtained through
the Fourier analysis, as explained in Section 3.5.

10.2.3.2.2 Bending Moment Increase in the Ribs

The bending moment increase in a rib, AMpy, due
to floor beam flexibility is computed by equation (5.9)
if only one lane is loaded and by equation (5.10) if
several lanes are loaded simultaneously, with different
loads and load positions in each lane.

The ratios F,/P and #,/s in equation (5.9) are
defined in Section 5.3.3.1. In this case the load P
denotes the weight of one wheel or axle placed in the
lane under consideration. The values of the reactions,
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Section A-A

W Loads used in step 1 of the computation (ribs on rigid supports).

[ Additional loads used in step 2 of the computation
(effects of floor beam flexibility).

Fig. 10.1. Typical position of loads in the computation of the
bending moment at the midspan of the critical rib

Fn, are obtained from the influence line, Chart 5c,
or by equations (4.11) and (4.12) (see Section 4.2.4.1c).

In the computation of the moment increase AMgc,
at the midspan of the ribs, the values of 4c,,/s are ob-
tained from Chart 17, using the value of the relative
rigidity coeflicient, v, for the system considered. v

In the computation of the moment correction AMpggs,
at the support of the ribs, the values of 4g,,/s are ob-
tained from Chart 18.

In most practical cases the bending moment incre-
ments, AMgc and AMpgs, are positive, resulting in an
increase of the total positive moment at the midspan
and a decrease of the total negative moment at the
support of the ribs. Therefore, in the cases where
the negative bending moment at the support does
not govern the design of the ribs, the bending moment
increment, AMpgg , does not have to be computed.

10.2.3.2.3 Bending Moment Relief in the Floor
Beams

The bending moment relief in a floor beam due to
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floor beam flexibility is computed, for any point, x,
of the floor beam, by equation (5.14).

The values of the reactions, Fy...F,, , of a beam on
rigid supports, due to axle loads, P, needed in equation
(5.14) are obtained from the influence line, Chart 5c,
or by equations (4.11) and (4.12).

The values of influence ordinates, J,, of a beam
on elastic supports are obtained from Chart 19.

The length, [, is the actual span of the floor beams,
considered to be simply supported at the main girders.
If this assumption is not valid, see Section 10.2.3.2.5.

10.2.3.2.4 Additional Effects of Heavier Floor
Beams

If all floor beams of the bridge are of the same rigidity,
the effects of the floor beam flexibility are obtained by
procedures outlined in Sections 10.2.3.2.2 and 10.2.3.2.3
above.

If heavier floor beams or diaphragms are used at
certain intervals, bending moment adjustments, in
addition to the corrections computed in Sections
10.2.3.2.2 and 10.2.3.2.3, have to be made.

Generally, the bending moments will be increased
in the heavier floor beams and will be decreased in
the lighter floor beams adjoining the heavy ones.

The negative bending moments in the ribs over the
heavy supports will be increased, while the bending
moments at other points may be increased, or decreased,
depending on the relative rigidities.

The change of the bending moments in ribs, AMg,,
due to one heavier floor beam, is computed by equation
(5.28), with equations (5.24) and (5.13), using designa-
tions given in Section 5.4.2. The effects of additional
heavy floor beams are obtained in a similar manner
and the results are superimposed.

The change of the bending moments in the floor
heams, AMy, due to one heavy floor beam, is com-
puted by equations (5.29) and (5.30), with equations
(5.24) and (5.13).

10.2.3.2.5 Effects of Flexibility of Continuous or
Elastically Restrained Floor Beams

In the case of floor beams continuous over more
than two main girders, or framed into torsionally stiff
box girders, the effects of floor beam flexibility are
determined by procedures indicated in Section 5.5.

10.2.4 Computation of the Bending Moments by
Charts for AASHO Loads

Prior to the determination of the bending moments
by charts, the section properties and the relative rigidity
coefflicients of the system have to be computed in accord-

10.2.4.1 Bending Moments in a System with
Rigid Floor Beams (Step 1 of the Computa-
tion)

10.2.4.1.1 Bending Moments in the Ribs

In Step 1 of the computation of the bending moments
in the ribs the use of the 8 kip and 12 kip wheels is
recommended (see Section 3.4.2.1) with an impact
factor of 309.

(a)  Positive moment at the midspan

1. The total positive moment, M¢, at the midspan
of the ribs is obtained from Chart 6. Both loading
cases, consisting of a single wheel load at the midspan
of the rib with or without additional wheels in other
rib panels, have to be evaluated.

2. The bending moment per rib is obtained by
multiplication of the moment obtained from Chart 6
by the ratio Ry/P from Chart 3(a).

(b)  Negative bending moment at the support

The negative bending moment per rib is obtained
in a similar manner from Charts 7 and 3(a).

(c) Correction of the bending moments due to effects of
deck plate rigidity

The necessity for such correction is determined by
the magnitude of the relative rigidity coefficient, v’
(see Section 10.2.3.1.2). If necessary, the bending
moment correction is computed by formulas indicated
in Section 10.2.3.1.2.

10.2.4.1.2 Bending Moments in the Floor Beams

Trucks are to be placed in design traffic lanes, in ac-
cordance with the AASHO specifications, Section 1.2.6.
Full axle loads are used, as specified in the AASHO
specifications, Section 1.2.5, with an impact factor
in accordance with Section 1.2.12 of the AASHO speci-
fications.

1. Reactions Fy, due to one lane loaded, are
obtained from Chart 15 for one axle load (Case A)
and for a full truck load (Case B).

2. The maximum floor beam moment is obtained
from Chart 16. The floor beam is assumed to he
simply supported at the main girders. The load
reduction coeflicients for multiple lane loading (see
AASHO specifications, Section 1.2.9) are included in
Chart 16.

3. If the floor beam is elastically restrained by
torsionally stiff main girders or continuous over more
than 2 main girders, the bending moments are com-
puted in accordance with these conditions by the usual
methods.
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10.2.4.2 Bending Moment Corrections Due to
Floor Beam Flexibility (Step 2 of the
Computation)

10.2.4.2.1 Bending Moment Increase in the Ribs

In addition to the wheel loads used in Step 1 of the
computation, Section 10.2.4.1.1, other wheel loads
are added in the lane under consideration and in the
adjoining lanes, as discussed in Section 10.2.3.2.1 and
shown in Figure 10.1. In the lanes other than the
lane under consideration, full AASHO truck loads are
used.

The bending moment increments in the ribs are
computed by equations (5.9) and (5.10), used in the
“Computation by Formulas,” Section 10.2.3.2.2, except
that the values needed in the evaluation of these equa-
tions are obtained directly from the charts.

1. In the computation of the bending moment
increment, AMpgy, at the midspan of the ribs the
value of Z(F/P) (3¢/s), needed in equation (5.9), is ob-
tained for the same loading cases as used in Section
10.2.4.1.1 from Charts 20, 21 or 22.

2. The value of Q;/Qy at critical rib is obtained
from Chart 28.

3. With the above values, the moment increment,
AMpc, due to critical lane loaded, is computed by
equation (5.9).

4. The effect of other lanes loaded is obtained in a
similar manner, by means of Charts 23 and 29.

5. The total moment increment is computed by
equation (5.10).

6. The change, AMgs, of the negative bending
moments at the supports of ribs is computed, if needed,
in a similar manner as the moment increment AMp.,
by means of equations (5.9) and (5.10) with Charts
24-29, inclusive.

10.2.4.2.2 Bending Moment Relief in the Floor
Beams

The bending moment relief, AMp, in floor beam is
computed by equation (5.14), with the value of
(Fo/P) — Z(Fu/P)3om obtained from Chart 30 and 31,
and the value of Q;/Qo at the critical point of the floor
beam obtained from Chart 32, which includes the
AASHO reduction coefficient for multiple lane loading.

10.2.4.2.3 Additional Effects of Heavier Floor
Beams

The computation of the additional effects of heavier
floor beams is outlined in Section 10.2.3.2.4.

The value of Fy/P, equation (5.13), may be easily
found from the influence line, #, obtained by connecting

the influence ordinates at the supports, &, (Chart 19),
with a smooth curve (see numerical example, Section
11.2.3.3.1).

10.2.4.2.4 Effect of Flexibility of Continuous or
Elastically Restrained Floor Beams

The effects of floor beam flexibility in such cases may
be obtained in an approximate manner by procedures
outlined for simply supported floor beams, Sections
10.2.4.2.1 and 10.2.4.2.2, with the following modifica-
tions:

The relative rigidity coefficient, v (Section 10.2.2.3)
is determined with an effective span, /;, of the floor
beams, rather than the actual span, / (see Section 5.5).

Charts 28, 29 and 32 should be entered with the
effective span value, /;, as defined in Section 5.5.

Charts 20-27 and 30-31 are valid.

10.3 BENDING MOMENTS IN THE DECK WITH
CLOSED RIBS

10.3.1 General

A typical deck with closed ribs is shown in Figure
1.2b.

In tentative determination of the sizes of the ribs
it should be kept in mind that in the closed ribs system
the wheel loads applied to the deck are distributed
laterally to a considerable degree, unlike in the deck
system with open ribs.

Relatively thin rib plates may be used if the ribs are
designed to be air-tight.

The closed ribs of usual proportions may be considered
safe against buckling under the action of the compressive
stresses in the ribs.

The spacing of the closed ribs is usually about 2 ft.

The floor beam spacing is generally greater than 7 ft
and should be determined by economic considerations.
If large floor beam spacing is used, deflections of the ribs
should be checked.

With floor beam spacing larger than in a system with
open ribs the floor beams are, generally, more rigid,
and the effects of their flexibility on the stresses in the
deck are less significant than in the open rib system.

10.3.2 Section Properties and Relative Rigidities

10.3.2.1 Flexural Rigidity of the Ribs

The assumptions and formulas used in the computa-
tion of the section properties of the ribs and the flexural
rigidity, D,, of the deck system are summarized in
Table 3.3.2.2, lines 3, 4 and 5.
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(a) Value of In , for computation of the flexural rigidity, D,

1. Using the assumption s; = 0.7s, the effective
width of the deck plate, ao + ey, acting with the rib
m = 0, is obtained from Chart 1 and equation (3.6).

2. The above value of as 4 ey is used in the com-
putation of the moment of inertia, I , of one rib.

3. The flexural rigidity, D, , is computed by equation
(3.7).

(b) Values of Ig' and Sg’, for computation of the stresses
in the ribs on rigid supports

The value of the effective spacing, ¢*, can be com-
puted by equation (3.8a) only if the bending moments
My, in the rib directly loaded, and M, , in the adjoining
rib, are computed by formulas given in Chapter 4.
It should be noted that the bending moment AM,
cannot be obtained by charts given in the Appendix.

However, in most cases, the stresses obtained by using
the section moduli based on the value Ir, Section
10.3.2.1a, above, will be sufficiently accurate for design
purposes, as explained in Section 3.3.2.2.c.

(c) Values of Ig and Sg, for computation of the siresses
due to floor beam flexibility

These values are obtained by formulas given in line 5,
Table 3.3.2.2.

10.3.2.2 Torsional Rigidity of the Ribs

The effective torsional rigidity, H, of the deck system
with closed ribs is computed by formulas given in
Section 3.3.3.2.

1. The rib section property, K, is computed by
equation (3.14).

2. 'The reduction coefhcient, u, for the various types
of closed ribs, is obtained by the appropriate equations
(3.15) to (3.19a).

3. The value of H is computed by equation (3.13).

10.3.2.3 Flexural Rigidity of the Floor Beams

The flexural rigidity and the section properties of the
floor beams are computed in accordance with Section
10.2.2.2.

10.3.2.4 Relative Rigidities

The following relative rigidity coetlicients are needed:

1. The relative transverse rigidity of the deck, H/D,
(sce Sections 10.3.2.1a and 10.3.2.2).

2. The relative rigidity of the ribs and the floor
beams, v.

The latter is computed by equation (5.7a), with the
values of /p and I, determined in accordance with lines
5 and 6, respectively, of Table 3.3.2.2.

For other comments see Section 5.3.2.

10.3.3 Computation of the Bending Moments by
General Formulas

10.3.3.1 Bending Moments in the Ribs in a System
with Rigid Floor Beams

10.3.3.1.1 Loading Arrangement

As a rule, the loading used in the computation of the
bending moments in a rib consists of one wheel or
several wheels aligned in the longitudinal direction
over the rib under consideration, as shown on sketches,
Charts 9-14.

The effect of wheels placed over adjacent ribs, i.e.
second wheels of the same vehicle or the wheels of the
adjoining vehicle (Fig. 4.12) on the bending moments
in the rib under consideration is small for the rib spans
and the relative rigidity ratios, H/D,, in the usual
range (see Section 4.3.6.2). Approximate values of
the bending moment increments due to loads over
adjacent ribs are given in Table 4.3.6.2.

The computation of the bending moments due to
more than one wheel in the transverse direction of the
bridge requires the use of a longer substitute span, &,
which, in turn, retards the convergence of the series
expressing the moments.

In all cases it is advantageous to use only symmetrical
loading with respect to the center of the substitute span,
b (Figs. 3.14-3.16), since, in such case, only the odd
terms of the series, n = 1, 3, 5 ..., enter into the com-
putations, the even terms being equal to zero.

The positions of the wheel loads in the longitudinal
direction of the bridge may, for the computation of the
bending moments, be determined by means of the in-
fluence lines, Charts 5a and b.

10.3.3.1.2 Choice of the Substitute Deck Span in
the x-Direction, b, and the Number
of Terms of the Series Needed

In the computation of the bending moments in the
ribs in a system with rigid floor beams a substitute
span, b, rather than the actual deck span in the x-
direction, /, is used (Fig. 4.12), as explained in Section
3.5.2, in order to improve the convergence of the series.

For a given computation accuracy, the required
substitute span, &, increases with the span, s, of the
longitudinal ribs and with the ratic /D, of the system.

Generally, the substitute span, &, should be longer
than the width of the deck affected by the loading ap-
plied, so that the supports assumed at x = 0 and x = &
(Fig. 4.12) have no effect on the bending moments in
the deck system.

For the usual case of loading consisting of one wheel
or a number of wheels arranged in the longitudinal
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direction of the bridge (Fig. 3.14) the relationship
between the accuracy of the results and the width two
span ratio, (b — 2g)°s, and the relative rigidity ratio,
H’'D,, is shown in Figure 10.2, based on numerical
computations using a sufhciently large number of terms
of the series. This diagram may be used to determine
the minimum value of the substitute span, #, needed
in the computation.

If the effect of the wheels placed over adjacent ribs,
as shown with dashed lines in Figure 4.12, should be
included in the computation, the value of b has to be
appropriately increased.

Additional criteria for the choice of the substitute
span, b, are obtained by inspection of Figure 10.3,
illustrating the computation by equation (4.46) of the
positive moment, M, at the midspan of the ribs due
to one wheel load. The alternating positive and
negative half-waves of the successive moment incre-
ments, 8A, are determined by the loading function,
Q1./Qu, expressed, in this case, by equation (3.23).
In order to obtain a repeating sine function in each
wave, the length b must be a multiple of the half-width
of the wheel, ¢. It is furthermore desirable that each
half-wave contain an odd number of terms. The
above conditions are satisfied with the ratios b g equal
to 6, 10, 14, 18, ..., resulting in 3, 5, 7, 9 ... terms,
respectively, in each half-wave.

The last term, 7.y, included in the computation of
the bending moment should be the middle term in a
positive or a negative half-wave, as is seen from Figure
10.3. Generally, the computation may be discon-
tinued if the total moment change due to the next half-
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wave interval of the moment increments is smaller than
the desired accuracy of the results (see Fig. 10.3).

10.3.3.1.3 Fourier Analysis of Loading

The actual wheel loads on the deck are represented
by sinusoidal component loads, as discussed in Section
3.5.2.

The Fourier coefficients, Q,,/Qq, are needed at the
location x of the substitute span, # (Figs. 3.14-3.16),
where the bending moment is sought.

The maximum. bending moment occurs in the rib
located directly under the wheel load. For the usual
case of loading by one wheel (Fig. 3.14), the coefficient
Q.2/Qq at the critical location, x = 5’2, is computed
by equation (3.23).

If the bending moments in other ribs are needed,
or a moment distribution curve is desired, as shown in
Figure 2.8, the coefficients Q,,/Q, for additional loca-
tions x may be computed by equation (3.22).

Formulas for other cases of symmetrical loading are
given in Section 3.5.3. Additional formulas may be
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derived, if needed, from the general equations (3.20a)
and (3.21).

The values of Q,,/Qo are computed in tables for the
necessary number of terms (see Section 11.3.2.1).

It should be noted that the coefficients Q,,/Q, enter
the formulas for the bending moments only at the end
of the computation procedure (Section 10.3.3.1.5).
Thus, with the basic numerical computations completed,
the values of the bending moments at the various loca-
tions, x, of the substitute span b may be easily obtained
by using appropriate sets of the Q,,/Q, coeflicients.

10.3.3.1.4 Computation of Constants

1. The basic constant, «,, is computed, for the
values of n used, by equation (4.23).

2. The following functions are needed in the com-
putation of the positive bending moments at the mid-
span of the ribs due to a distributed wheel load (Fig. 4.11):

(1) as sinh as coth as
2) as/2 cosh (as/2)

(3) «ac sinh ac

4) «a (% - c) cosh [a (—2{ — c>:l

(5) o=

The numerical values of these functions, obtained
from [4], [24], or similar references, are tabulated,
as shown in Section 11.3.2.1.

The values for each n used should be filled in only
as needed. The values of sinh as are computed only
until the ratio as/sinh as becomes equal to 0 within
the computation accuracy. The value of coth as
need be computed only until it becomes equal to 1
within the computation accuracy. Lines (2), (3)
and (4) above have to be computed only if the values
of the parameter as are smaller than the values given
with equations (4.56) and (4.57). For larger values of
as, line (5) is needed instead.

3. In the computation of the bending moments
at the support due to concentrated loads at various loca-
tions, y (Fig. 4.3a), the following functions, in addition
to those in line (1) above, are needed:

(6) cosh as

(7) sinh ay cosh ay
®) o gmeto

() e

The functions in lines (6) and (7) are computed
only if @y < 4, see equation (4.51). For larger values
of ay lines (8) and (9) are needed instead.

4. In the computation of the bending moments
at the midspan due to concentrated lvads at various loca-
tions, y (Figs. 4.4a and 4.4b), the following functions,
in addition to those in lines (1), (2) and (6) through
(9), are needed.

(10)  tanh (as/2)

(an oG

The value of tanh(as/2) is computed only if
af(s/2) + y] < 12; the function in line (11) is com-
puted only if «[(s5/2) + y] > 12, see equation (4.53).
In computation of lines (2), (7) and (8) equations
(4.33) to (4.55) have to be considered.

5. With the functions given in line (1), above,
the constants o* and « are computed, for all values of
n used, by equations (4.26), (4.27) and (4.29), or by
equations (4.48) to (4.50) for larger values of as (see Sec-
tion 4.3.5.2).

10.3.3.1.5 Bending Moment at the Midspan of
Ribs

(a) Bending moment due to a distributed load al the mid-
span (Fig. 4.77)

1. The dimensionless values of M,,/Qs are com-
puted by equation (4.47) with equation (4.43). If
the values of as are large, equations (4.56) and (4.57)
are used instead. The necessary number of terms is
determined in accordance with Section 10.3.3.1.2.
The intermediate computation steps and the end results
should be tabulated.

2. The terms M,/Qs are multiplied by the Fourier
coeflicients Q,./Qq¢ (see Section 10.3.3.1.3), and the
final bending moment per one inch of width of the
deck at the location x is obtained by equation (4.46).

(b)  Bending moment due to a concenirated load in panel
0-0 (Fig. 4.4a)

1. The values of nc,/s are computed by equation
(4.41) with equations (4.42) and (4.43). If the values
of as become large, equations (4.53) to (4.55) are used
instead.

2. The bending moment is computed in a similar
manner as in case (a), above, by equation (4.35).

(¢) Bending moment due to a concentrated load in other
panels (Fig. 4.4b)

1. The values of 5¢,/s are computed by equation
(4.38) with equations (4.39) and (4.43) (see Section
4.3.4.1b). If the values of ay and as become large,
equations (4.51) and (4.55) are used instead.

2. The bending moment is computed by equation
(4.35).
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10.3.3.1.6 Bending Moment at the Support of
Ribs

In the computation of the bending moment at the
support of ribs, only concentrated loads, P, at locations
Y1, y2 ... etc. are used (Fig. 4.3a). The values of y
are measured from the nearest support with the lower
number, m, in all cases. The bending moment due to
several loads, P, at various locations, y, is obtained by
superposition of the individual effects.

1. The values of n¢,/s are computed by equation
(4.38) with equations (4.39) and (4.40). If the values
of as and ay become large, equations (4.51) and (4.52)
are used instead.

2. The bending moment is computed by equation
(4.35).

10.3.3.1.7 Computation of Bending Moments
Per Rib

The bending moments computed in accordance with
Sections 10.3.3.1.5 and 10.3.3.1.6 are obtained in units
of kip-in./in., at the location x used in the computation
of the coefficients Q,./ Qo (Section 10.3.3.1.3),

In the usual cases it is sufficient to compute the
bending moment acting on the critical rib by multiplying
the moment obtained by equation (4.35) by the rib
width, ¢ + e, equation (4.35a). This value of the
bending moment per rib is conservative (see Fig. 2.8).

If greater accuracy is desired, the moment per rib
may be computed by equation (4.36).

In the special case of one load placed at the midspan
of the plate strip, &, (Fig. 3.14), the moment in the
rib located under the load may be obtained by equation
(4.36a).

10.3.3.2 Bending Moments in Rigid Floor Beams

Bending moments in the rigid floor beams in a
system with closed ribs are computed in the same
manner as in that with open ribs (see Section 10.2.3.1.3).

10.3.3.3 Additional Bending Moments Due to
Floor Beam Flexibility

The effects of floor beam flexibility on the bending
moments in the deck system with closed ribs are com-
puted by procedures given in Section 10.2.3.2, except
that in the computation of the additional bending
moments in the ribs equation (5.9a) is used instead
of equation (5.9).

10.3.4 Computation of the Bending Moments by
Charts for AASHO Loads

Before the computation of the bending moments
the section properties and the rigidity coefficients of

the deck systemn have to be determined in accordance
with Section 10.3.2.

10.3.4.1 Bending Moments in a System with Rigid
Floor Beams

10.3.4.1.1 Bending Moments in the Ribs

(a) General

The charts for the determination of the bending
moments in the closed ribs are computed for the stand-
ard wheel loads of the AASHO trucks. The use of
the 8 kip and 12 kip wheel loads over the ribs where
the bending moment is sought, with an impact factor
of 30%, is recommended (see Section 3.4.2.1).

Charts 9-14 give the bending moments per unit
width due to one wheel load or several wheel loads
placed directly over the rib under consideration. Addi-
tional possible wheel loads 6 ft or 4 ft away over adjacent
ribs are not considered in these charts (see Section
4.3.6.2).

If consideration of the additional wheels 6 ft or 4 ft
away is required, the correction factors given in
Table 4.3.6.2 may be used.

It sbould be noted that if additional wheels 4 ft
away are used directly opposite the wheels placed over
the rib under consideration, Chart 23 for the computa-
tion of the bending moment increment in the ribs
due to loads in adjoining lanes cannot always be used.

(b)  Bending moment at the midspan .

1. The bending moment per unit width is obtained
for one wheel over the midspan, with or without addi-
tional wheel loads over the rib considered, from Charts
9 and 11, or from Charts 10 and 12, depending on the
loading used.

The decision as to whether one wheel or several wheels
over the rib considered constitute the critical loading
is made by comparing the maximum moments obtained
with consideration of the effects of floor beam flexibility
in both cases (see Section 10.3.4.2).

2. The bending moment per rib is obtained by
multiplying the value from Charts 9-12 by the rib
width, a + e (equation 4.35a).

(c)  Bending moment at the support

The bending moment at the support of the ribs is
obtained in a similar manner by Chart 13 and equation
(4.35a).

10.3.4.1.2 Bending Moments in the Floor Beams

The procedure for the computation of the bending
moments in the rigid floor beams by Charts is given
in Section 10.2.4.1.2.
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10.3.4.2 Additional Bending Moments Due to
Floor Beam Flexibility

The procedure is the same as given for the system
with open ribs (Section 10.2.4.2}, except that equation
(5.9a) is used instead of equation (5.9) in the deter-
mination of the additional moments in the ribs.

10.4 COMPUTATION OF STRESSES

10.4.1 Stresses in System II

Stresses in Systemn II are defined as flexural stresses
in the longitudinal ribs and in the floor beams, acting
together with appropriate portions of the deck plate
as their flanges, due to the local action of the loads
placed on the deck (see Sections 1.2.2 and 1.2.4.1).

10.4.1.1 Flexural Stresses in the Ribs

Stresses in the ribs are computed separately for the
following loading cases:

(A) Live load—ribs on rigid floor beams

(B) Live load—additional effects of floor beam

flexibility

(C) Dead load

The section moduli for the live load stresses are com-
puted in accordance with Sections 10.2.2.1 and 10.3.2.1.
For computations of the dead load stresses, section
moduli computed in accordance with lines (2) or (5)
of Table 3.3.2.2 may be used.

In computing the live load stresses several groups of
loads may have to be compared in order to determine
which loading produces the maximum stress at the
point under consideration due to cases (A) + (B),
above.

The bending moments in the ribs due to dead load
are computed, with consideration of the erection proce-
dure, by the usual formulas for continuous beams on
rigid supports. The steel dead weight and the super-
imposed dead weight (wearing surface) are treated
separately. The effect of the heavier floor beams on
the dead load stresses in the ribs may be computed in a
similar manner as discussed in Section 5.4.

10.4.1.2 Flexural Stresses in the Floor Beams

Stresses in the floor beams are computed separately
for loading cases (A), (B) and (C) (Section 10.4.1.1).

The floor beam section moduli are computed in
accordance with Section 10.2.2.2.

The erection stresses have to be considered in the com-
putation of the dead load stresses.

10.4.2 Stress Superposition, System I + II

Maximum stresses in the deck are obtained by super-
position of the System II stresses in the longitudinal
direction of the bridge (Section 10.4.1.1) and the
System I stresses in the deck acting as the flange of the
main carrying members of the bridge (girders or trusses).

Points of the bridge deck where the maximum tensile
and compressive stresses occur in the usual cases are
designated “A” and “B” in Figure 1.37. For addi-
tional comments regarding stress superposition, see
Section 1.2.6.

The System I stresses are computed by the usual
methods (see Section 1.2.3). In the computation of
the dead load stresses the erection procedure has to he
considered. Stresses at the top or the bottom of the
ribs are computed with consideration of the distance
of the point under investigation from the neutral axis
of the bridge cross section (Fig. 1.37). In the cases
of unsymmetrical bridge loading the stress is assumed
to vary linearly between the main girders (Fig. 1.30b).

10.4.3 Shearing Stresses

Shearing stresses in the deck plate and in the welds
have to be computed in System I and System II.

Maximum shears in the longitudinal ribs in System
II may be conservatively estimated by placing wheel
loads over the rib near the floor beam and assuming
that the entire load is transmitted to the floor beam by
the rib under consideration.

Maximum shears in the floor beams are computed
with consideration of the floor beam flexibility by
methods discussed in Section 5.3.4.2,

Shearing stresses in the floor beam webs and in the
welds between the webs and the deck plate have to’
be computed with proper consideration of the cutouts
in the floor beam webs for the longitudinal ribs.

10.4.4 Alternating and Pulsating Stresses

Alternating and pulsating stresses in the ribs and
the floor beams may have to be investigated in the
design.

Greatest amplitudes between the maximum and the
minimum values of the stresses at any point of a rib are
usually obtained if the maximum variation of both
System I and System 11 stresses is considered.

For computation of the alternating stresses in System
II, Charts 8 and 14 may be used.




CHAPTER 11

Numerical Examples

11.1 INTRODUCTION

The use of the formulas given in Chapters 3 to 5
and of the charts given in Appendix I is illustrated by
the design computations of a steel plate deck of a con-
tinuous plate girder bridge with the following principal
dimensions:

Spans: 270-375-270 ft
Width: 68 ft-0 in. 0. to o. of fascias
Main girder spacing: 50 ft- 0 in.

Designs are presented for both principal deck systems:
with open ribs (Section 11.2) and with closed ribs
(Section 11.3).

The loads and stresses are in accordance with the
current AASHO Standard Specifications for Highway
Bridges [1), as interpreted in Section 3.4 of this Manual.

For each system the design computation is made
twice: by the general formulas, and by the charts
for the AASHO loading, to provide a comparison of
the two design procedures. It is seen that the use of
the charts significantly reduces the time needed for
the design, especially in the case of a deck with closed
ribs.

Numerical computations are presented in detail
only for the bending moments and stresses in the deck
acting as an independent structural element (System

II). Computations of the stresses in the deck as the
top flange of the main girders (System I), the design
of welds, and other computations made by routine
methods are not included.

The design computations are made in accordance
with the procedures outlined in Chapter 10, where
additional comments on the individual computation
steps may be found.

It should be emphasized that the layout of the deck
plating panels, spacing of the ribs and floor beams,
and other structural details shown in the numerical
examples are not the only possible solutions, and that,
in each practical case, a study of various alternative
arrangements and details will be required to determine
the design which will best satisfy the given conditions.

11.2 DECK WITH OPEN RIBS
11.2.1 General

11.2.1.1 Dimensions and Details

The general layout of the deck is shown in Figure
11.1.

Figure 11.2 shows typical deck dimensions and details.
In general, it may be more economical to vary the size
of the longitudinal ribs in the longitudinal as well as in
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the transverse direction of the bridge, as required.
However, in order to limit the scope of the design
computations, only one rib size is used in this numerical
example.

All material is low-alloy structural steel, except for the
intermediate floor beams which, in this case, are de-
signed in carbon structural steel in order to limit the
deflections of the deck.

The heavier floor beams, spaced 23.44 ft o.c., provide
the cross frames of the bridge and serve, in this case,
as erection supports for the deck plating panels (see
Fig.11.2).

11.2.1.2 Choice of Deck Plate Thickness

The thickness of the deck plate is determined in
accordance with the recommendations outlined in
Chapter 6.

Applying the allowable deflection criterion of 1449
of the deck plate span between the ribs, the deck plate
thickness theoretically required for the chosen spacing
of the ribs is obtained from equation (6.7a).

With rib spacing @ = 12 in., and the design pressure
of a 12,000-1b wheel, including impact, p = 59 psi

(see Section 3.4.2), the plate thickness, tp, is obtained as
tp = (0.007)(12)(¥/59) = 0.328 in.

A thickness of 3¢ in. is chosen.

It should be noted that the maximum value of the
local flexural stress in the 3g-in. deck plate of this
design example is 25.9 ksi, and the maximum deflec-
tion is approximately 1gg¢ of the deck plate span
between the ribs, as computed in Section 6.2.1.3.1.

The 34-in. thickness of the deck plate as the top
flange of the main girders, the longitudinal ribs and the
floor beams is ample, as indicated by the relatively
low axial stresses in the deck plate (see Sections 11.2.1.6,
11.2.2.4.1 and 11.2.2.4.2).

The shearing strength of the 3§-in. deck plate acting
as the top flange of the main girders is also satisfactory.

11.2.1.3 Section Properties

11.2.1.3.1 Longitudinal Ribs
(a) Values of Iz’ and Sg’ for computation of the live load
stresses in the ribs on rigid supports

For the 8-kip and 12-kip wheels used in the rib
design, with the width 2¢ = 22 in., the ratio of the
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loading width to rib spacing is computed

2g__
a 1

1 o
™~

= 1.83

o

With this value, the effective rib spacing is obtained
trom Chart 2, Case 1, as

* 00* | .
a* =—)a= (147)(12) = 17.6 in.
a

This value may also be directly obtained from Chart 4.
By formula, Line 1, Table 3.3.2.2, the effective rib
span is computed as

51 = 0.75 = (0.7) (5.86) (12) = 493 in.
Entering Chart 1 with the value

ao* 176
— = = = 0.357
1 49.3

the effective width of deck plate acting with the directly
loaded rib is obtained as (Fig. 11.3a)
, ay N .
a' = |\ —; ) a* = (0.85)(17.6) = 15.0in.
g

The section properties of one rib consisting of an
815 X l4-in. stiffener and the deck plate with the
effective width a,” are obtained as follows:

Ig’ = 734 in¢ Spr’ = 34.9in? Spp’ = 10.8in?

(b) Values of I and Sg for computation of the effects of
Sloor beam flexibility

By formula, Line 2, Table 3.3.2.2 the effective width
of deck plate is (Fig. 11.3b)

a = 11la = (1.1)(12) = 13.2 in.
The corresponding rib section properties are

Ir = 70.7 in.* Ser = 31.5in3 Sge = 10.7 in3

11.2.1.3.2 Floor Beams

(a) Intermediate floor beams
Bv formulas, Line 6, Table 3.3.2.2 and Chart 1

s* = 5 = 703 in.

s* 70.3

7 = —--—~(50>(]2) = 0.117

The eflective width of deck plate acting with one
floor beam is (Fig. 11.3c)

Sg = (i.;) S* - (1.06)(70.3) = 74-5 in'
§

With this value of 5, the following section properties
are computed:

At midspan:
I = 7810 in4 Spp = 905in® Spp = 276 in?
At quarter-points:
Ir = 6350 in.*

(b) Heavy floor beams

The section properties are computed with the same
effective width of deck plate, and are (Fig. 11.3d):
At midspan:

Io = 22,740 in.4,
Sp = 1370in? Sp = 5170 in? Sy = 608 in.?

At quarter-points:
Iy = 19,920 in 4
Average value:

22,740 + 19,920

> = 21,330 in.*

Irave) =
For the lower portion of the floor beam, carrying the
erection dead load, the values at the midspan are:

Ip = 4415 in.* Spa = Spy = 268 in?

11.2.1.4 Relative Rigidity Coeflicients

11.2.1.4.1 Rigidity Ratio of the Ribs and the
Floor Beams, v

The average moment of inertia of the floor beam,
resulting in the same floor beam deflection at midspan
under the design loading as that of the actual floor beam
(see Section 5.3.2), may be approximately computed
as the average of the moments of inertia at the midspan
and at the quarter-point.

7810 + 6350

IF(gvg) = 5 = 7080 in.“

By equation (5.7)

e (600)4(70.7) 3
T oasrily  (12)(70.3)%(x%)(7080)

3.2

11.2.1.4.2 Rigidity Ratio of the Deck Plate and
the Ribs, v’

The ratio v’ is computed by equation (4.18) as

, st (0.375)8 [(0.81)(70.3))
Y T 10921k ant | (10.92)(73.4) 12974
= 0.0041

Since the value of v’ is smaller than 0.006 (see equa-
tion 4.20), no correction for the effects of the deck plate
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Fig.11.3. Cross sections of structural elements of the deck with
open ribs

rigidity (Section 4.2.7) is needed in the computation of
the bending moments.

11.2.1.4.3 Rigidity Ratio of the Heavy and the
Intermediate Floor Beams, 3

The coefficient 8, needed in the computation of the
effects of the heavy floor beams (Section 5.4) is com-
puted as

11.2.1.5 Elastic Stability of Ribs

The elastic stability of ribs subject to compression
is investigated by formulas given in Appendix II.

Maximum compressive stresses in the ribs are ob-
tained by superposition of the System I and System II
stresses.

In order to evaluate the local buckling strength of the
814 X lg-in. ribs used in the design (Fig. 11.3), the
ideal buckling stress, f;, is computed by equation
(I1.1a).

With

lr % 1

KT 8l 17
and £ = 1.0 (see Appendix II, Section I1.1.3.1.1), the
ideal buckling stress is

fi = (26,200)(1.0) (%)2 = 90.7 ksi

Since the above value of /, is greater than the propor-
tional limit of the low-alloy steel used, the critical
buckling stress in the inelastic range, f., , has to be com-
puted.

With the ratio

50
L= =055
fio 907

the ratio f.,/'f, is found from Figure I1.2, Curve 1, as

Lo _ 95

fo

Thus the critical buckling stress is
fer = (0.95)(50) = 47.5 ksi

With the factor of safety of 1.5, as recommended in
Section 9.5.1, the allowable compressive stress for the
superposition of the System I and Systern II effects in a
rib is

7.5
Satlow = 15 = 31.7 ksi

The actual maximum combined compressive stress
in the rib is 18.8 ksi (Section 11.2.2.4.1). Thus the
local buckling safety of the 814 X l4-in. ribs is ample.

The overall buckling strength of the deck acting as the
top flange of the main girders is even more adequate,
as may be verified by formulas given in Section 11.2
of Appendix II.

11.2.1.6 Stresses in the Deck as the Flange of the
Main Girders

The maximum stresses in the deck acting as the
upper flange of the main girders (System I), computed
at points 4 and B of the deck (Fig. 11.1), as discussed
in Section 1.2.6, are

Point A4
Top of deck plate, ksi 12.5 —-11.2
Bottom of rib, ksi 11.3 — 9.5

11.2.2 Design by General Formulas

11.2.2.1 Bending Moments in a System with Rigid
Floor Beams

11.2.2.1.1 Loading

(a) Ribs

In the design of the ribs the 12-kip and 8-kip wheel
loads are used, in accordance with Figures 5 and 6
and footnote, Section 1.2.5(C) of the 1961 AASHO
specifications (see Section 3.4.2.1 of this Manual).

The positions of the wheels used in the design are
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shown in Figure 11.4. The position of the 8-kip wheels
to obtain the largest effect in loading cases a; and d
is determined by inspection of the influence lines,
Charts 5a and 5b, respectively.

Using the wheel width, 2g, of 22 in. (Section 3.4.2.2)
it is seen from Chart 2a that the load on one rib, R,
is greatest if the wheel is centered over the rib (Case 1).
With the value of 2¢/a = 1.83, the load per rib is

R
R, = (73-”) P = 0.615P

A 309, impact factor is used in the design of the ribs.

(b) Floor beams
In the design of the floor beams, 32-kip truck axles

are used.

The loading cases used in the design are shown in
Figure 11.5.

The impact factor, computed in accordance with
Section 1.2.12 (C) of the AASHO specifications, is

_ 50 _ 50 — 0.286
L4125 50 + 125
Thus, the axle load, P, is
P = 32(1.286) = 41.1 kips

The loads on the floor beam, F;, due to one truck
are, for loading case A,

F, = 41.1 kips

and for loading case B (eqs. 4.11 and 4.12),

41.1 2.28
41.1 411 — j| —0.803
L+ (11 4+ 57 —ososs(220) 4
2.28\* 2.28\¢
1.3923 <g—8—6) — 0.5885 (—8) :| (—0.2679)

5.86
43.0 kips

It

Ey

411 + 19 =

I

11.2.2.1.2 Live Load Moments at Midspan of
Ribs

For loading case a (Fig. 11.4a), the bending moment
per rib, Mg, at the midspan is computed by equation
{(4.10) with equation (4.5a), using ¢ = 0.5 ft, as

It

(12)(1.3)(0.615)(5.86) X

[01708 025<05>+01057<05):‘
86 5.86

= 8.46 k-ft

Mrc

For loading case a, the moment at midspan is obtained

! =13x12k

2. 93 2 93
Loading case a

F 14 e 14 -
P

P=13x12k 21
2¢=12"
YGP=13x4k)
3 e A1' A0' 7\o Al A2 3
! 5 (J‘b 1, 135
A 293 586] ~3 .
b & T bl T A4 T

Loading case a,
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iP=13x8k
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Loading case d
{b) Loading for maximum moment at support of ribs
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Loadings used in the design of the open ribs in
a system with rigid floor beams

Fig. 11.4.
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(b) Position of loads in the transverse direction

Fig. 11.5. Loadings used in the design of floor beams
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by equations (4.10), (4.9) and (4.5a), as
Mpe = 8.46 + 4(1.3)(0.615)(5.86) X

[ -0.1830 (52 ) -+ 0.3170 (5 21)
5.86 5.86

> 21) ] (—0.2679) +

0.1340
(5

(8)(1.3)(0.615)(5.86) X
01830(32 ) + 0.31 o<321> -
[ 5.86 5.86
3.21
0.1340 (57%) } (—0.2679) +

(8)(1.3)(0.615)(5.86) X
0.1830 (@) + 0.3170 (1 35)
[_ ' 5.86 5.86

135\
0.1340 [ =) | (—0.2679)2
340 (5.86) } ¢ )

= 8.46 + 0.03 + 0.27 — 0.07 = 8.69 k-ft
with the 4-kip wheel included, and
Mge = 8.46 + 0.27 — 0.07 = 8.66 k-ft

without the 4-kip wheel.

11.2.2.1.3 Live Load Moment at Support of
Ribs

The bending moment per rib, Mzs, is computed for
loading case d (Fig. 11.4b) by equation (4.6a) with
(4.5a) as

Mzs = (2)(8)(0.615)(5.86) X
2.0 2.00
[ 0s(35e) + 0806 (35 ) -
2.00\*
0.366 (Q—J ] +
8(0.615)(5.86) X
[ 05<186> +0.866 (1 86) 3
5.86 5.86
1.86)?

0.366 <5§)) ] (—0.2679)2 +

(4)(0.615)(5.86) X
{ 05<228 + 0.86 6( 28) -
5.86 > 5.86
0.366 (3@)] (—0.2679)?
5.86

= —6.23 — 0.23 — 0.11 = —6.66 k-ft

11.2.2.1.4 Live Load Moments in Floor Beams

The maximum bending moments at a point under
the wheel nearest to the center of the bridge, x = 29 ft
(Fig. 11.5b), computed for truck loads, F;, obtained
in Section 11.2.2.1.1b for loading cases A and B (Fig.
11.5a), are given below. The load intensity reduction
coefficients for multiple lane loading of 109, for 3
lanes loaded and 259 for 4 lanes loaded (AASHO
specifications, Section 1.2.9) have been considered.

Max. Bending Moments (k-ft)

Lanes Loaded Loading A Loading B
2 741 775
3 774 810
4 709 742

It is seen that loading of 3 lanes governs.

11.2.2.1.5 Dead Load Moments

The erection procedure assumed in this case (Fig.
11.2) requires the ribs to carry the erection load of the
deck panels to the heavy floor beams, spaced 23.44 ft
o.c.

The lower portions of the heavy floor beams carry
the erection load, the completed sections of the heavy
floor beams and the intermediate floor beams carry the
superimposed dead load.

The dead loads used in the computation are as
follows:

Superimposed Dead Load

Erection Wearing Center
Member Load Surface Mall
Ribs (incl. weight of
interm. floor beams),
Ibs/ft 36 25 e
Intermediate floor beams,
Ibs/ft — 147 352
Heavy floor beams, lbs/ft 920 147 352

With the above weights the following dead load
moments are obtained:

(a) Ribs

Erection load:
Moment at heavy floor beams

_ (—0.036)(23.44)* _

—1.64 k-ft
12
Moment midway between heavy floor beams
= +0.82 k-ft
Superimposed dead load:
Moment at floor beams
—0.025)(5.86)*
= (=0.025)(5.86) = —0.07 k-ft
12
Moment at midspan
= +0.04 k-ft
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(b) Floor beams
The sidewalk load causes the following negative
moments in the floor beams:

Heavyv floor beams, erection condition: - 14 k-ft
All floor beams, superimposed dead load: —13 k-ft

With the weights given above, the bending moments
at the midspan of the floor beams are:

Heavy floor beams, erection loads:
288 — 14 = 274 k-ft

All floor beams, superimposed loads:
56 — 13 = 43 k-ft

11.2.2.2 Effects of Floor Beam Flexibility, All Floor
Beams Uniform

11.2.2.2.1 Additional Bending Moments in Ribs

(a) Positive moment increment

The maximum positive bending moment increment
is obtained in the rib under the wheel near the midspan
of the floor beam (Fig. 11.6b).

For computation of the effects of floor beam flexi-
bility, the loads over the critical rib are the same as
used in Section 11.2.2.1.2. Other loads used in the
computation are shown in Figure 11.6a. Placing loads
in additional lanes would cause a decrease of the bend-
ing moment, due to the AASHO load reduction co-
efficients for multiple lane loading.

The values needed in the evaluation of equation (5.9)
for the bending moment increment are computed as
follows:

The values of Qy, with consideration of the 309,
impact factor, are:

For a 12-kip wheel load,

P (12)(1.3) .
= — = ———— = 0.709 k/in.
QO Zg 22 /1
For a 16-kip wheel load,
P 16)(1.3
Qo = — = 16a.3 = 0.800 k/in.
2g 26

The first Fourier coefficients, Q;,/Qo, are computed
at the location x = 29 ft (Fig. 11.6b) by equation
(3.27).

For the truck in the critical lane,

Q1 8 3Ir . 11 . 327 297w

= — ¢c0$ — sl —— sin

% 7 50260 M 0 M 50

= 0.126

For the axle in the adjoining lane, with 16-kip wheels
and 2¢g = 26in.,

Q1. 8 3r . 137 . 187 . 29r¢

—— = — ¢0s — sin sin —— == 0.149

Q0 7 T a2ye0) ™ 50 T 50
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Fig. 11.6. Loading used in the computation of the maximum
bending moments at the midspan of open ribs with considera-
tion of floor beam flexibility

Computation of the expression Y _(F,,/P)(ficm/s) for
loading cases a and a, in the critical lane and for load-
ing h in the adjoining lane is given in Table 11.2.2.2.1.

The values of F,,/P, defined in Section 5.3.3.1, are
obtained separately for each wheel load by Chart 5¢
or equations (4.11) and (4.12). The load P is the
12-kip wheel load. The 8-kip and 4-kip wheel loads
are expressed as fractions of P (see sketch, Table
11.2.2.1).

The dimensionless influence ordinates 4,./s for the
hending moment at the midspan of the panel 0-0,
are obtained from Chart 17 for vy = 3.2.

The bending moment increments per rib, AMgc,
are computed by equation (5.9) as follows:

Loading a in critical lane,

AMpe = (0.709)(5.86)(12)(0.126)(0.314) = 1.97 k-ft

Loading a; in critical lane, 4-kip wheel included,
AMpge = (0.709)(5.86)(12)(0.126)(0.177) = 1.11 k-ft

Loading a, in critical lane, 4-kip wheel not included,
AMpe = (0.709)(5.86)(12)(0.126)(0.207) = 1.30 k-ft
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TABLE 11.2.2.2.1
BENDING MOMENT INCREMENT AT MIDSPAN OF RIBS. COMPUTATION OF ZX(Fa/PXi,/s)
:
Loading W P mlr:x.suzu (2] Gpmip : .
(Figs. 11.4a ! Values Reference A4 Z _:Ef
& 11.6) computed ? ? ? ? ? ? ? ? ? , ra
F £ F Fi £ Fo F F £ LI
Support {m) 'y 3 P L A o 1 f 2 3 ' 4 ‘:
W /s | Chart 17 | —0.062 * —0.09 | ~0.088  +0.004 : +0.266 | +0 266 | 40 004 ' ~0.062 |
! ' : ; . : . ;
Fn/P 1Eq. 4.11-12, +0.002 ' —0.009 . +0.034 | —0 127 | +0.601 | +0.601 | —0.127 +0.002 |
Casc at . ' : . . — ; ,
i Fu/Pa,_/s) ! 0 +0.001 | —0.003 | —0.001 [ +0.160 | +0.160 + ~0.001 | 0 | 4+0.314
l [ Wheel (1) | Eqs. 411 +0.002 | ~0.009 +0.034 | —0.127 | +0.601 | +0.601 | —0.127 | +0.002 !
i Wheel (2} | & 412 0 6 i +0.001 | —0.006 0021 ! —0.079} +0.358 | L +0.024
Case a, Fu/p | Wheet 3) | or 0 0 0 +0.002 ;| —0.006 | +0.021 . —~0.079 | —0.042
with | Wheel (4) | Chart 5c | +0.007 | —0.024 | +0.325 | +0.035 | —06.009 | +0.002 | —0.001 | 0
wheel (4) i ; ' e . S U S
1 Total Fu/P | ;40009 | —0.033 | +0.360 | —0.09 | +0.607 | +0.545 { +0.151 | +1.075 | +0.065 | —0.016 |
! ‘ Sl i :
! (Fu/PX&,., /5) i [ —0.001 | +0.003 o032 o , +0.161 | +0.145 | +0.001 © —0.095 f =0.006 | +0.001 | 40177
! : i : : ‘
Case a, ‘ Fa/P E | +0.002 | ~0.009 | +0.035 | —0.131 | +0.616 | +0.543 | +0.152 | +1.075 | +0.065 | —0.016 |
without | ; i : !
wheel (4) | (Fu/PX3, /5) | i o +0.001 © ~0.003 | ~0.001 | +0.164 E +0.145 | +0.001 | ~0.095 | —0.006! +0.001 , +0.207

t Case a consists of wheel (1) only.

Case h, additional lane loaded, is the same as Case a except that P = 1.3 X 16 kips.

TABLE 11.2.2.2.2
MOMENT RELIEF IN FLOOR BEAMS. COMPUTATION OF (Fo/P) — (Fo/P)

]
Lo Val (fp=1286x32k (2}P BB, ER)
woading alue ’ (Fe -
Refere 3 v
(Fig. 11.5) computed clerence 3)y 1P Ba (513 (Fo/P)
Fay Fay faY FAY ya¥ paY pay i
Support, m oy I L T ; R Y
Fam Chart 19 | 40010 | +0.052 | +0.125 [ 40.212 1 +0.264 | +0.212 L4025 | +0.052 | +0 010
Fu/P Eqs. 4.11-4.12 ! ! ! i +1.000 | | : { :
Casc At = ‘ ; fm——) i ! ! ;
(Fn/P) Bom i ! | | +0.264 ; ; : +0.264 1 +0.736
N I N i i
i Axle (1 ' ! | +1.000 i ‘
P ARl A& ‘ i ! Pt ] l }»
I Axle (2) 4120r 0 1 —0.001 [ +0.003 | —0.010 [ +0.037 | ~0.138 | +0.740 | +0.453 | —0.105
Fu/P Chart 5¢ ! , ‘ ‘ |
Casc B Axle (3) | —0.026 | +0.113 | +0.185 | —0.035 | +0.009 | —0.002 | +0.001 o i o ‘
; : ! ! a ! ! ‘
' Total Fu/P ' —0.026 , +0.112 | +0.188 | —0.045 | +xv04o| ~0.140 | +0.741 | 4+0.453 | —0.105
(Fn/P)3om i 0 +0,006 | +0,024 | =0.010 , 40,276 : —0.030 | +0.093 | +0.023 —0.001 | +0.381 | +0 665

t Casc A consists of axle (1) only.

Loading h in adjoining lane,

AMpc

(0.800)(5.86)(12)(0.149)(0.314) = 2.64 k-ft

The definitions of the loading cases used are given in

Charts 20 and 23.

The total bending moment increments per rib at the
midspan of ribs, computed under the assumption of all
floor beams uniform, are obtained by equation (5.10)

Loadings a + h,

AMpge = 1.97 + 2.64 = 4.61 k-ft
Loadings a; + h,
AMge = 1.30 + 2.64 = 3.94 k-ft

(b) Negative moment reduction

In a system with uniform rigidity of all floor beams,
a reduction of the negative rib moments over the floor

beams due to floor beam flexibility is expected.

If the

negative moment in the rib in the rigid system (Section
11.2.2.1.3) is already smaller than the positive moment,
the moment reduction, AM s, does not have to be
considered.

However, in this case, the moment reduction AM ¢
is computed for the purposes of superposition with the
moment increment over the support of ribs, AMpg,
over the heavy floor beams, see Section 11.2.2.3.1b.

The value of AMgs, obtained for loading d in a
similar manner as AM ., above, is

AMgs = 2.30 k-ft

11.2.2.2.2 Bending Moment Relief in Floor Beams

The bending moment relief in the floor beams is
computed for the critical case of 3 lanes loaded (see
Section 11.2.2.1.4),
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TABLE 11.2.2.3.1a
EFFECT OF HEAVY FLOOR BEAMS ON MOMENTS IN RIBS. COMPUTATION OF Fy/P AND FyP
| Loading FoiB ' FyP
(Figs. 11.42 , | 114 lp:mxxza, I /——rép e o
& 11.6, Value | Reference A 4 f e
Table computed T I T I T T T 1, T L
11.2.2.2.1) | (Eq. 513)
Support, m | A L ‘ I J
Fom J . +0.052 | 40125 | +0.212 . +0.264 U o212 | +0.125 | +0.052 | } +0.010 | —0,065 ! _0.051 ,
! Chart 19 ’ | : : 7 ;
Som ~0.009 | ~0.013 | —0.009 ’ +0.010 | +0.052  +0.125 4 +0.212 © +0.264 } +0.212 | +0.125 | |
; ; ‘ i i ; ) !
* Total Fu/P 111;’;";1 +0.002 ’ —0.009 ‘ +0.034 | ~0.127 | +0.601 ‘ +0.601 | ~0.127 | +0 034 | ~0.009 | +0.002 | [
f : : | ’
Casc at | Floor Beam 0 0 ; —0.001 [ +0.007 ' —0.03¢ | +0.127 | 40,075 | 0006, © | o | o  +0.168
| (Fn/P)dom [ ‘ : i ! ; i | :
—_— : | . ! ;
F‘W'/‘:;"‘;““ ; o | o 0 | ~0.001 | 40,031 | +0.075 | ~0.027 | +o. 009J —0002! o ! ' 4+0.085
Fr im ; ; | | !
: J i i | 1 : i : (
Total Fu/P | 11Tza:l§1 +0.009  —0.033 | +0.360 “ ~0.09 | +0.607 - +0.545 | +0.151 ' +1.075 { 4+0.065 | ~0.016 |
Case a; ! Fi Be 0 J‘ i J ! J i ! ‘ ! ‘
with ) "F‘"/P)‘S“ 0 —0.004)\ +o,o7sl ~0.025 ° +0.129 | +0.068 | +0.008| +0.011 1 ~0.001 1 0 +0.262 |
front axle | Fn/P) Bom J J | ; ‘ “ i i :
: ; X : |
» Floor Beam 4 o | o ~0.003 | ~0.001 | 40.032 | +0.068 | +0.032 | L0284 ' to. 014 | ~0.002 . [ +0.424
(Fn/P) dim | ! ! | ! ‘ ; i |
i J : ! |
. | : | ’ | : i
Total Fn/P “Tz"';’;l +0.002 | ~0.009 | +0.035 | =0.131 | +0.616 | +0.543 | +0.152 L 41,075 40 065 ~0.016 | 5
422 ‘ ! | | :
Casc a, ! Floor Beam 0 y i i i i J J
without ! (;Of/P)afn 0 l —0.00t i +0.008 | —0.035 [ +0.130 | +0.068 | +0.008 ! +0.011 \ ~0.001 i 0 | 40.188 |
front axle ‘ n/P) dem i ! ! ‘ ‘
- Floor Beam 4 i ] 5 i !
" o | o | o ! -ouv01. +o. . 1 \ -
(FrrPy i ; | f +0.032 . +0.068 | +0.032 | +0.284 ‘ +0.014 | —0.002 | +0.427
1 See note, Table 11.2.2.2.1.

The values needed in the evaluation of equation
(5.14) are computed as follows:

With the impact factor of 0.286 used in the design
of the floor beams, the value of Q, for a 16-kip wheel
load is

P _ (16)(1.286)

% 6 = 0.792 k/in., or 9.5 k/ft

Q =

The value of Q1./Qo, computed by equation (3.30)
at location x = 29 ft (Fig. 11.5b), is

Q2 8 3n 13rx
—— = — 0§ — sin ————
Qo ™ (12)(50)
187 32 45 29
[sm% -+ sm—5—07—r -+ sin —Sg] sin —5—015
= (.349

Computation of the expression Fo/P by equation
(5.13) for loading cases A and B (Fig. 11.5a) is shown in
Table 11.2.2.2.2.

The values of F,/P are obtained by Chart 5¢ or
equations (4.11) and (4.12). The influence ordinates,
Jom , for reaction at floor beam 0 are obtained from
Chart 19.

The bending moment relief, AM , in the floor beams

is computed by equation (5.14), with consideration of
the AASHO reduction factor of 0.90 for three lanes
loaded, as follows:

Loading A,

50\?

AMg = (9.5) (——) (0.349)(0.736)(0.90) = 557 k-ft
m

Loading B,
50\?

AMe = (9.5) <—> (0.349)(0.665)(0.90) = 503 k-ft
.2

It is seen, by comparison with the bending moments
in a rigid system, Section 11.2.2.1.4, that in this case
the bending moment relief in the floor beams due to
their flexibility is considerable.

11.2.2.3 Effects of Heavy Floor Beams

11.2.2.3.1 Adjustment of the Live Load Bending
Moments in Ribs

(a) Positive moment increment

The maximum additional positive bending moment
due to the effects of heavy floor beams will occur at
the midspan of the rib panels 1-2 or 2-3 (see sketch,
Table 11.2.2.3.1a).
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The effects of heavy floor beams on the rib moments
are computed for the same loading cases a, a; and h
as used in Section 11.2.2.2.1.

In order to obtain the bending moment increment
AMpgc at the midspan of the panel 1-2, the effects of
the heavy floor beams, m = 0 and m = 4, are computed
and superimposed.

Equations (5.28) with (5.24) and (5.13) are used in
the computations.

Reactions, Fy and F,, at supportsm = O and m = 4
of a beam on elastic supports with all supports of uni-
form rigidity. are computed by equation (5.13) in Table
11.2.2.3.1a.

The additional redundant reactions, X; and X,
of the heavy floor beams are computed by equation
(5.24). With 8 = 3.01 and J¢g = §4 = 0.264 (from
Chart 19, with vy = 3.2)

§=E"—’-’< . )=1.313@

P P \0.264 +1/(3.01 — 1) P
Similarly
X4 F4P
— = 1313 —
P P

The expression Qysa(Q12/Qo) in equation (5.28) is
computed with the values used in Section 11.2.2.2.1.

The computation of the bending moment increments
AMpg by equation (5.28) is shown in Table 11.2.2.3.1b.

Another method of obtaining the values of Fop/P
and F,p/P is shown in Section 11.2.3.3.

(b) Negative moment increment

Over the heavy floor beams, m = 0, 4 ... etc., the
negative bending moments in the ribs are larger than
those in a system with uniform floor beam rigidity.

The bending moment increment, AMgs, over the
heavy floor beams is obtained for loading case d in a
similar manner as the positive moment increment,
AMpge , and is equal to

AMps = —1.83 k-ft

Thus, the total negative bending moment per rib
over the heavy floor beams near the midspan of floor
beams is (see Sections 11.2.2.1.3 and 11.2.2.2.1)

Mps = —6.66 + 230 — 1.83 = —6.19 k-ft

It is seen that this moment is smaller than the nega-
tive moment Mgs = —6.66 k-ft in the ribs near the
main girders.

11.2.2.3.2 Adjustment of the Live Load Bending
Moments in Floor Beams

(a) Moment increase in heavy floor beams

The bending moment increment in the heavy floor
beam, m = 0 is computed for loading cases A and B, three
lanes loaded, by equation (5.29) with equations (5.24)
and (5.13). The effect of the adjoining heavy floor beams,
m = 4 and 4’ (see sketch, Table 11.2.2.3.2a), are small
and may be disregarded.

The values of Fy/P are computed in Table 11.2.2.2.2.
The computation of the bending moment increment
AM g is shown in Table 11.2.2.3.2b.

It is seen that loading B is critical.

(b)Y Moment reduction in intermediate floor beams

The bending moment reduction in floor beam
m = 2 is computed by equation (5.30) with equations
(5.24) and (5.13). The effect of both heavy floor
beams, m = 0 and m = 4, is considered.

TABLE 11.2.2.3.1b
MOMENT INCREMENTS AMjzc AT MIDSPAN OF RIB PANEL 1-2 DUE TO HEAVY FLOOR BEAMS

(1) (2) (3) (4) (5) @ oo (8)
Due to F - -
; Heavy X Qux Nem AMRC = =
~ = . < Total AM
Loading Floor P P Qosa s —(4)(5) (6) otal AMpc
Beam No.
Table Section
Reference 11.2.2.31a Eq. 5.24 11.22.21 Chart 17 Eq. 5.28
c 0 0.168 0.221 6.29 +0.004 —0.006
asc a 4 0.085 0.112 6.29 —0.088 +0.062 +0.06 k-ft/rib
Case 0 0.188 0.247 6.29 +0.004 —~0.006
ait 4 0.427 0.561 6.29 —0.088 +0.311 +0.30
Cose b 0 0.168 0.221 8.39 +0.004 —0.007
4 0.085 0.112 8.39 —0.088 +0.083 +0.08

1 Without front axle.
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TABLE 11.2.2.3.2a

EFFECT OF HEAVY FLOOR BEAMS. COMPUTATION OF Fo/P AND F,/P FOR LOADING SHOWN
T P=13x16k P R
y e Fo/P and
Referenee FooP
1 BS 1 1L L 1 .
ihg. 513
) 5upporz m ra t 0 1 2 3 4 5 o
T e £0 125 40212 40 264 #0212 40125 0052 +0010 00w —0 013
Chart 19
Fam ~0.013  ~0.000 40010 40051  4+0.125  40.212  +0.264 40212 +0 125
T EaP T0.026 40112 40 188 0 045 +1.046  —0.140 0741 40 453 —0 105
(FniP) dum Table 11.2.2.2.2 0,005 40024 4005  —0 010 40131 —0.007  +0.007  —0.004  +0 001 40 189
(FniP) Fim 5] ~ 0001 +0.002 —0 002 +0.131 — 0. 030 +0.196 “+0 096 —0 013 +0 379

The computation is made for both cases A and B.
The results are shown for case B only, three lanes
loaded, in Tables 11.2.2.3.2a and b.

The bending moment relief in the intermediate
floor beams m = 1 and 3, next to the heavy floor beams
is larger than in floor beams m = 2. Thus, proportion-
ing floor beams m = 1 and 3 for the bending moments in
floor beam m = 2 is conservative.

11.2.2.3.3 Adjustment of the Dead Load
Moments Due to Superimposed
Loads

Similarly as the live load, the superimposed dead
load may be represented by its first Fourier component
load (see Section 5.3.1).

The first Fourier component load, Q) , for a uniformly
distributed dead load is obtained from equation (3.22)
bysetting n = 1, b = [ and g = [/2

In the above equation Q, designates the uniformly
distributed dead load per unit width of the deck. With
the value of Q 0.147 k/ft (see Section 11.2.2.1.5),

_ (4)(0.147) ¢in X
l

T

Ql:

To this must be added the first Fourier component
load due to the additional weight of the 4-ft wide center
mall, which is 0.352 — 0.147 = 0.205 k/ft (see Section
11.2.2.1.5). From equation (3.22), with

Qo = 0.205 k/ft, [ = 50 ft and 2¢g = width of mall = 4 ft,

(4)(0.205) . 2=
=~ sin —
50

Thus, for the entire superimposed dead load, con-
sisting of the wearing surface and the center mall, the
value of the first Fourier component load is

T
= 0.187 sin 7

Qus sin "7" = 0.033 sin ”-lx

ks

Qi = (0.187 + 0.033) sin "Tx = 0.220 sin _7r1_x (k/ft)

Since the above load is applied to each floor beam,
the reactions, F, of the elastic floor beams of uniform

TABLE 11.2.2.3.2b

EFFECT OF HEAVY FLOOR BEAMS. BENDING MOMENT CHANGES IN FLOOR BEAMS m = 0 AND 2
(1) (2) (3) (4) (5) (6) (7) f (8) %) (10)
- - AM =
Loading Effect Fo P X, Quf1\:| 1~ o Omo (5)(6)(7) 0.90Y AM
of Floor = or — - Qo —1{ -~ or or
Case Beam No ? P P Qe 1 -3 3 or k-f
' “ m )6 8y &Y
Reference T
able
" 112222 Eq. (5.24) Chart Chart Eq. (5.29) AASHO
oor 19 19 or (5.30) | Sect. 1.2.9
11.2.2.3.2a
Beam m . I
~N i
0 A 0 0.264 0.347 840 0.736 +214 +193
B 0 0.381 0.500 840 0.736 -+309 +278
» B 0 0.189 0.248 840 0 125 — 26 — 0
4 0.379 0.498 840 0.125 — 52




170 ORTHOTROPIC STEEL DECK BRIDGES

rigidity are equal to the load, or, designating the total
load per floor beam as P,

The ratio of the redundant additional reaction at the
heavy floor beam to the load per floor beam, X,/P,
is computed by equation (5.24) with the coefficient
computed in Section 11.2.2.3.1a, as

é’ = (1)(1.313)

The additional bending moment at the midspan of
the heavy floor beams, x = //2, due to the superimposed
dead load is computed by equation (5.29), with
300 = 0264, as

- 50\
AMp, = (0.220) <—-) (1.313)(1 — 0.264) = 54 k-ft
T

The bending moment relief at the midspan of the
intermediate floor beams, m = 2, due to the super-
imposed dead load, is computed by equation (5.30),
with the value of d% = 0.125 obtained from Chart 19,
as

- 50\2
AMy, = o.zzo( ) (1.313)(0.125)(2) = 18 k-ft

™

The factor of 2 in the above equation is due to the
superposition of the effects of the two heavy floor beams,
m = 0 and m = 4, between which the intermediate
floor beam m = 2 is located.

The bending moment increment in the ribs over the
heavy floor beams due to the superimposed dead load
is disregarded.

11.2.2.4 Summary of Moments and Stresses

11.2.2.4.1 Ribs

The comparison of the bending moments at the
midspan of ribs due to loading cases a and a, (Fig.
11.4a) in the critical lane and loading h in the adjoining
lane (Fig. 11.6) is given below:

Bending Moments (k-ft)
Loading Loading

Case a4+ h a + h Section
1. Rigid system 8.46 8.66 11.2.2.1.2
Effects of fioor beam flexi-
bility 4.61 3.94 11.2.2.2.1
3. Effects of heavy floor beams 0.14 0.38 11.2.2.3.1
Total L.L. Moment 13.21 12.98

It is seen that loading case a + h is critical.
A summary of the maximum moments and stresses
in the ribs is given in Table 11.2.2.4.1.

TABLE 11.2.2.4.1
MAXIMUM BENDING MOMENTS AND STRESSES IN RIBS

Section Modulus Stress
ding M t in.? .
Location Loading Ben uzift)omen (in.#) (ksi)
Top Bottom Top Bottom
(N L.L., rigid system 8.46 34.9 10.8 —-2.9 9.4
(2) L.L., effect of floor beam flexibility 4.61
(3) LL., effect of heavy floor beams 0.14
(4) D.L., erection 0.82
Point A (5) D.L., superimposed 0.04
(Fig. 11.1) | (6) Total, lines (2) to (5) 5.61 31.5 10.7 -2.1 6.3
(7) Total, System II stress -5.0 15.7
(8) Max. System I stress 12.5 11.3
(9 Total stress 7.5 27.0
(10) L.L., rigid system —6.66 34.9 10.8 2.3 —7.4
(11 D.L., erection —1.64
(12) D.L., superimposed -0.07
Point B (13) Total, lines (11) and (12) —1.71 31.5 10.7 0.6 -1.9
(Fig. 11.1)
(14) Total, System II stress 2.9 -9.3
(15) Max. System 1 stress —-11.2 —-9.5
(16) Total stress —8.3 —18.8
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TABLE 11.2.2.4.2
MAXIMUM BENDING MOMENTS AND STRESSES IN FLOOR BEAMS

Intermediate Floor Beams Heavy Floor Beams
Fig. 11.3¢ Fig. 11.3d
Loading . . Stress (ksi)
Moment Stress (ksi) Moment
(k-ft) (k-ft) Top Bottom
Top Bottom Pt. @O Pt ® Pt. ®

D.L., erection 274 —-12.3 12.3
D.L., superimposed, rigid floor beams 43 4?)l 0.9 02 19
D.L., superimposed, effect of floor beam flexibility —18 54} ' - '
Total D.L. effect 25 —~0.3 1.1 37 —-0.9 —-12.1 14.2
L.L., rigid floor beams 810 810
L.L., effect of flexibility, uniform floor beams —503 —503
L.L., effect of heavy floor beams —70 278
Total L.L. effect 237 ~3.1 10.3 585 —5.1 1.4 11.5
Total 262 —~3.4 11.4 956 —-6.0 —10.7 25.7

11.2.2.4.2 Floor Beams

Comparison of the bending moments due to loadings
A and B (Fig. 11.5a) indicates that the maximum
total live load moments in floor beams are obtained
with loading B, three lanes loaded.

A summary of the maximum moments and stresses
in the floor beams is given in Table 11.2.2.4.2.

In the computation of the stresses, section moduli
of the floor beams computed in Section 11.2.1.3.2 are
used.

11.2.3 Design by Charts for AASHO Loads

The section properties and the relative rigidity
coeflicients are computed as shown in Section 11.2.1.

11.2.3.1 Bending Moments in a System with Rigid
Floor Beams

11.2.3.1.1 Live Load Moments in Ribs

The loading and the load positions used are given in
Section 11.2.2.1.1a.

(a) Moment at midspan

From Chart 6, for s =
obtained as

5.86 ft, the total moment is

13.7 k-ft
14.1 k-ft

for loading a, M, =
for loading a,, M, =

The moment per rib is computed with the coefficient
Ry/P = 0.615, obtained from Chart 3a for the 12-kip
wheel, as

0.615 (13.7) = 8.4 k-ft
0.615 (14.1) = 8.7 k-ft

for loading a, Mgc =
for loading a,, Mge =
(b} Moment at support

The moment at support is obtained for loading d from
Charts 7 and 3a as

Mps = (0.615) (—=10.9) = —6.7 k-ft

11.2.3.1.2 Live Load Moment in Floor Beams

The loading used is given in Section 11.2.2.1.1b.
From Chart 15, the reaction of one loaded lane on a
floor beam is

Loading A Loading B
Fo

P

1.00 1.05

From Chart 16 the moment coefhicient is obtained
for I = 50 ft, lane width of 13 ft, 3 lanes loaded, as

M _ 0.378
Fol '

The maximum bending moments are then computed
as follows:

= (5w

(41.1)(50)(1.0)(0.378)
(41.1)(50)(1.05)(0.378)

i
i

775 k-ft (loading A)
815 k-ft (loading B)

i
It

11.2.3.1.3 Dead Load Moments

Computation of the dead load moments is shown in
Section 11.2.2.1.5.
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11.2.3.2 Effects of Floor Beam Flexibility,
All Floor Beams Uniform

11.2.3.2.1 Additional Bending Moments in Ribs

(a) Positive moment increment

The loadings and their positions are shown in Figures
11.4a and 11.6.

From Charts 20 and 23, for v = 3.2, as computed
in Section 11.2.1.4.1, and 5 = 5.86 ft.

Loading a Loading a, Loading h
Fag
P s

= 0.315 0.210 0.315

From Chart 28, for the “critical” lane loaded, for

{ = 50 ftand 2g = 22 in., on a four-lane bridge,
Qe
Qo

From Chart 29, for one adjoining lane loaded, for
=50 ft

= 0.126

= = 0.148
Qo

The values of Qy = P/2g are 0.709 k/in. and 0.800
k/in., for the 12-kip and the 16-kip wheel, respectively,
as computed in Section 11.2.2.2.1.

With the above values, the additional bending
moments per rib, AMgc, are computed by equation
(5.9) as follows

Loading a in critical lane,

AMge = (0.709)(5.86)(12)(0.126)(0.315) = 2.0 k-ft

Loading a, in critical lane, the 4-kip front wheel not
included,

AMge = (0.709)(5.86)(12)(0.126)(0.210) = 1.3 k-ft
Loading h in adjoining lane,
AMpge = (0.800)(5.86)(12)(0.148)(0.315)

The total bending moment increments per rib are ob-
tained by equation (5.10) as follows:

Loadings a 4 h,

i

2.6 k-t

AMpe = 2.0 + 2.6 = 4.6 k-ft
Loadings a, + h,
AMpe = 1.3 4+ 2.6 = 3.9 k-ft

(b) Negative moment reduction

The reduction of the negative bending moment,
AMpgs, over the floor heams at the midspan of the
floor beams is computed for loading d (see Section
11.2.2.2.1 for comments).

From Chart 24, fory = 3.2 and s = 5.86 ft.,

Z gf = (.54

With the values of

3¢

= 0.473 k/in.

and Q;/Qy = 0.126, as computed in Section 11.2.3.2.1a,

the negative moment reduction is obtained from equa-
ton (5.9) as

AMgs = (0.473)(5.86)(12)(0.126)(0.54) = 2.3 k-ft

11.2.3.2.2 Bending Moment Relief in Floor
Beams

From Chart 30, for v = 3.2, s = 5.86, loading B,

i ZF”5 = 0.66
P P tm — M.

and from Chart 32, for three lanes loaded, with
! = 50 ft and the lane width of 13 ft

Qe _ 0.314

Qo
With the value of @y = 9.5 k/ft, as computed in
Section 11.2.2.2.2, the bending moment relief is com-
puted by equation (5.14) as

50\
AMg = 95 <—> (0.314)(0.66) = 499 k-ft
™

11.2.3.3 Effects of Heavy Floor Beams

11.2.3.3.1 Change of the Bending Moments in
Ribs

The bending moment increment AM g at the mid-
span of the deck panels 1-2 or 2-3 (see sketch, Table
11.2.2.3.1) is computed by equation (5.28), similarly
as in Section 11.2.2.3.1.

The reactions £, and F, of a beam on elastic supports
with all supports of uniform rigidity may be obtained
from influence lines &y = Fy/P and &, = F,/P,
Figure 11.7. These influence lines are obtained by con-
necting with a smooth curve the ordinates J, from
Chart 19, for y = 3.2.

For the critical loading case a,, without the front
4-kip wheels, with the 12-kip wheel designated as P
(see Table 11.2.2.3.1a), the following values are ob-
tained from influence lines, Figure 11.7.

Fo/P = 0.19 FP = 0.43
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Similarly, for loading h in the adjoining lane

Fo/P =017  I,/P = 0.086

With the above values the bending moment incre-
ments, AMgo, are obtained as shown in Section

11.2.2.3.1.
The results are:
Due to loading a,, AMp; = +0.31 k-ft/rib

Due to loading h, AMpc = +0.08 k-ft/rib

i

11.2.3.3.2 Adjustment of the Bending Moments
in Floor Beams

The bending moment corrections AMy are com-
puted, with the values of F,/P and F,/P determined
from Figure 11.7, in accordance with the procedure
given in Sections 11.2.2.3.2 and 3.

11.2.3.4 Summary of Moments and Stresses

The summaries of the moments obtained by means
of charts are similar to those given in Sections 11.2.4.1.2.

11.3 DECK WITH CLOSED RIBS
11.3.1 General

11.3.1.1 Dimensions and Details

The general layout of the deck is shown in Figure 11.8.
The bridge cross section with typical details is shown
in Figure 11.9.  The ribs are spaced at 2 ft-0 in. o.c.,
except for the ribs adjoining the main girders, where
closer spacing is used.

The 913 in. deep trapezoidal ribs are designed to be
air-tight after erection, to preclude corrosion of the

Loading case a; 14" 'I'
{without the 4 Kk 2 H >
front wheels) P=13x12k %, I ip

Y iy 3

.L_s—.i.s:sse—‘:zj |
- 3

£ I —
" w \
1)
A
o~ <t ™~
— O —
N I o
S o o o |0 @
- g 8
=] 3 ]
2 ¢
(=]
— L — T
m =1 0 1 2 3 4 5

Fig. 11.7. Influence lines for reactions Fyand F, of a beam on
elastic supports, with all supports of uniform rigidity.
vy = 32

inside of the ribs. This justifies the use of a 17 in.
thick plate for the ribs, which is common practice in
the decks with closed ribs.

The deck plate thickness of 5 in. is determined by
considerations similar to those in Section 11.2.1.2.

The floor beams, spaced 15 ft-0 in. o.c. are all of the
same type. The lower portions of the floor beams
serve, in this design, as erection supports for the deck
panels.

All material is low-alloy structural steel.

11.3.1.2 Section Properties

11.3.1.2.1 Longitudinal Ribs

The section properties are computed with the effective
widths of deck plate given in Lines 3 and 5, respectively,
Table 3.3.2.2.

|
(‘ bearings Floor be ¢ bearings ¢ span
I oor beams [ |
- e " ===
-L | . — i TT R R i F] ES
i Main girders i ! | | i
! 1 Po»?tLA<~ S Ll
b ST T T I
[ | | ? _ _ I ,_l;—F’omt B
= N R = = = = TN e 4
| ST | N TN S S S O TR
A |
r Longitudinat ribs
fe——————18 spaces @ 15'-0" = 270'-0" . 25 spaces @ 15'-0" = 375'-0"———F > »

Elevation

Fig. 11.8. Deck with closed ribs — general layout

e e e
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Fig. 11.10. Cross sections of structural elements of the deck
with closed ribs

(a) Values of Ir and Sp used in the computation of the
moments and stresses in the ribs on rigid supports

In accordance with Line 3, Table 3.3.2.2,

5 = 0.7s = (0.7)(180) = 126 in.
1
a_ B o105 ¢ =1L o087
51 126 5 126

With the above values, the effective width ratios are
obtained from Chart 1 as
D107 2=108
a e
The effective width of deck plate acting with one
rib is then computed by equation (3.6) as

ap + e = (1.07)(13) + (1.08)(11) = 25.8 in.

The section properties of the rib (Fig. 11.10a) are:

Ip = 197 int Ser = 76.9 in.? Sgs = 26.9 in.?

(b) Values of Ig and Sg for computation of the effects of
Aloor beam flexibility
In accordance with Line 5, Table 3.3.2.2,

a + e = 11(a + ¢) = (1.1)(13 4 11) = 26.4 in.
The section properties (Fig. 11.10b) are:
Ip = 198 in.* Spr = 78.5 in.? Sep = 26.9 in.?
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(c) Torsional rigidity
The value of GK is computed by equation (3.14) as

442
GK = G —rnrron———
(u/tr) + (a/tp)

{(55)es]

6 + 2(10.13) 13
0.25 0.375

= 11.2 X 103

= 2.62 X 10 k-in.?

Further, the following coefficients are computed in
accordance with formulas given in Section 3.3.3.2:

(0.375)2 e
E]p = 29 X 103 —W = 140 k-m.“/m.
0.25 \3
={—] =029
P (o.375)

= (0.81) (180) = 145.8 in.
From equation (3.15a)

[2 (13) + 6](13 + 11)(6)(10.13) —
(0.296) (13)* (11 — 6)

— = 0.347
(13 + 6)[2(10.13) X
[13 4+ (13)(6) + 6]+ 6 + (0.296)(13)7]
0.347 / 6
o= = <I§> = 0.0801
0.347 <13 - 6) _ <13 + 11>< 6 )
€z = 2 13 13+ 6 2 (13)
= ~—(.1980

From equation {3.15)

._=1+

1 262)(106(
m

T 2
)es) >
12(13-{—11)2 145.8

11\? (0.347)2/ 6 \?
[(E) T (13 +6 + 0347) + 0296 <13)
24
0.296

(}%_1_;)(0_08012 — (0.0801)(0.1980) +

0.1 9803>
3

The effective torsional rigidity, H, of the deck is
computed by equation (3.13) as

= 4.44

2.62 X 108

= 2222~ 12,280 kein./in.
2(4.44)(24) in%/in

11.3.1.2.2 Floor Beams
In accordance with Line 6, Table 3.3.2.2,

s* 180
= — = (.30

s*¥ = 5 = 180 in. —
l 600

The effective width of deck plate acting with one
floor beam is obtained from Chart 1 as

= (0.915)(180) = 165 in.

With this width of plate as the top flange (Fig. 11.10¢),
the following section properties are computed:

At midspan:
Iy = 26,040 in.4,
Sr = 2660 in.? Sry = 2320 in.? Spy = 589 in3
At quarter-points:
Ip = 22,770 in.4

Average value:

26,040 + 22,770
Ip = h—jz'—— = 24,405 in.¢
For the lower portion of the floor beam, carrying
the erection dead load, the section properties at the
midspan are obtained as:

Iy = 3800 in.4 Spr = Spp = 230 in.?

11.3.1.3 Relative Rigidity Coeflicients

11.3.1.3.1 Ratio H/D,

The deck rigidity in the longitudinal direction, D,,
is computed by equation (3.7) as

~ (29 X 107)(197)

y = 5 rn = 238,000 k-in.?/in.

and the relative rigidity ratio, H/D,, is

H 12,280

= = 0.051
D, 238,000

11.3.1.3.2 Relative Rigidity Coefficient

The relative rigidity coefficient is computed with the
average value of the moment of inertia of the floor
beams by equation (5.7a) as

(600)4(198)

(13 & 11180y (m) i24.4085) ~ °077

Yy =
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11.3.2 Design by General Formulas

11.3.2.1 Bending Moments in a System with Rigid
Floor Beams

11.3.2.1.1 Loading

(a) Ribs

In the design of the ribs the 12-kip and 8-kip wheel
loads are used (see Section 3.4.2.1).

The load positions are shown in Figure 11.11. In
the computation of the bending moment at the midspan
loading a rather than loading a; (Fig. 11.4a) is used,
since, in this case, the total bending moment, obtained
by superposition of the moment in the rigid system and
the effects of floor beam flexibility is greater for loading
a, as determined by preliminary computations.

P=13x12k
20=12"1‘
) r-y ;3 =
m =il 0 —.l 0 1
L3
L :
5 = 180" s : s |

Loading case a

(a} Loading for maximum moment at support of ribs

Loading case e

(b) Loading for maximum moment at midspan of ribs

Fig. 11.11. Loadings used in the design of the closed ribsin a
system with rigid floor beams

In the system with rigid floor beams the additional
wheels 6 ft and 4 ft away in the transverse direction of
the bridge would cause an increase of the bending
moments by approximately 19, and 3.5%, respectively
(see Table 4.3.6.2). Considering that the values of the
bending moments computed by formulas given in this
Manual for the relatively long rib spans of 15 ft are
conservative (see Section 4.3.6.2), the effect of the
wheels located on the adjacent ribs on the bending
moments in a system with rigid floor beams is dis-
regarded in this computation.

A 309 impact factor is used.

The values of Qy are:
For 8-kip wheel load
P 8X13

— T = 0.473 k/in.
&= T '
For 12-kip wheel load
12X 13 .
QO = T = 0.709 k/ln.

{b) Floor beams

The critical loading case (one or three truck axles)
and the number of lanes loaded producing the maximum
moment in the floor beams is determined by inspection
of Charts 5¢c and 19 and preliminary computations
using appropriate values of the Q.,/Qp coefficients,
with consideration of the AASHO load intensity reduc-
tion for multiple lane loading. It is found that loading
case B (3 truck axles), 3 lanes loaded, governs the
design.

The critical position of the axles, determined by
inspection of influence line, Chart 5c¢, is shown in Figure
11.12.

——— 14"
(: <—7'T7‘q
y: 411k ‘P=1.286x32k=41,1k

[

z 1
s=15' . !0 s ‘!

s

4P—103k

Loading case B

Fig. 11.12. Loading used in the design of the floor beams

The position of trucks in the transverse direction of
the bridge is the same as used in the design of the deck
with open ribs, Figure 11.5b.

The impact factor is 1.286, as determined in Section
11.2.2.1.1.

11.3.2.1.2 Choice of the Substitute Span, 5, in
the x-Direction

As discussed in Section 10.3.3.1.2, a reduced rather
than the full deck width is used in the computations.

In accordance with the criteria given in Section
10.3.3.1.2, the value of & is chosen as 154 in., or 14g.
This results in 7 terms in each half-wave of the bending
moment computation (see Fig. 10.3).

11.3.2.1.3 Fourier Analysis of Loading

In this example the bending moments are computed
by equation (4.35) at the midspan (x = §/2) of the sub-
stitute span, b (Fig. 3.15). For this purpose the values
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of the sinusoidal component loads, Q,,, are needed
atx = b/2.

The computation of the values Q,./Qy by equation
(3.23) is shown in Table 11.3.2.1.3.

TABLE 11.3.2.1.3

COMPUTATION OF THE FOURIER COEFFICIENTS
Q../0s AT THE LOCATION x = b/2

gl
(0

(1) (2) (3) (4)
n nxg/b sin (nwrg/b) Qnz/Qo
1 0.22440 +0.22252 +0.28332
3 0.67320 +0.62349 +0.26462
5 1.12200 +0.90097 | +0.22943
7 1.57080 +1.00000 @ +0.18189
9 2.01960 +0.90097 | +0.1274¢
11 2.46839 +0.62349 . +0.07217
13 2.91719 +0.22252 +0.02179
15 —0.22252 —0.01889
17 —0.62349 —0 04670
19 —0.90097 —0.06038
21 ~1.00000 | -0 06063
23 —0.90097 —0.04988
25 —0.62349 —0.03175
27 —0.22252 —0.01049
29 é 4+0.22252 ¢ +0.00977
31 +0.62349 +0.02561
33 | +0.90097 +0.03476
35 +1.00000 |  +0.03638

11.3.2.1.4 Computation of Constants

The constant «, is computed by equation (4.23) as
a, = - A/2(0.051) = 0.00651n
154

The values of hyperbolic functions and constants
needed in the computation of the positive and the
negative moments in the ribs are computed in accord-
ance with Section 10.3.3.1.4, as shown in Tables
11.3.2.1.4a and b.

Dimensions and load ordinates used in the computa-
tions are shown in Figure 11.11.

Tables 11.3.2.1.4a and b are filled only as needed
in the computations of the bending moments in Sections
11.3.2.1.5 and 6.

11.3.2.1.5 Live Load Moment at Midspan of
Ribs

The bending moment M at the midspan of ribs is
computed for a single wheel load, P = 1.3 kip, Figure
11.11 (see Section 11.3.2.1.1).

Hyperbolic functions and constants computed in
Table 11.3.2.1.4a are used.

The moment M. is computed by equation (4.46)
as shown in Table 11.3.2.1.5. The evaluation of the
series 3 (Qnr/Qo)(Mey Qs) is done by multiplying the
values of Q,,/Qs (Table 11.3.2.1.3) by M, Qs com-
puted by equations (4.47) or (4.56) and (4.57) for each
value of n, and summing up the terms. The summation
is stopped after the middle term, n = 35, of the third
half-wave, as discussed in Section 10.3.3.1.2 and illus-
trated graphically in Figure 10.3.

The result of the summation is, as computed in Table
11.3.2.1.5,

33 ur /‘/I n
> Qns <i> = 0.10199
n=1 Qo QS

The bending moment per inch width of deck at the
location of the centerline of the critical rib is, bv equation
(4.46),

M = (0.709)(180)(0.10199) = 13.02 k-in. ‘in.

The bending moment per rib is obtained by equation
(4.35a) as

Mpe = (13.02)(13 + 11) = 312 k-in. rib

11.3.2.1.6 Live Load Moment at Support of
Ribs

The loading used in the computation of the bending
moment Mg at the support of ribs is shown in Figure
11.11 (see Section 11.3.2.1.1).

Hyperbolic functions and constants used in the
computation are given in Table 11.3.2.1.4b.

The moments M g are computed in Table 11.3.2.1.6
separately for the loads, P, located at 3, = 60 in. and
y2 = 108 in., in panel 0-1 (Fig. 11.11b). Equations
(4.38) with (4.39) and (4.40) are used. For large
values of as and ay the shortcut formulas (4.51) and
(4.52) are used as noted in Table 11.3.2.1.6.

The total bending moment at support is computed
by equation (4.35) as

Mg = 2(0.473)(180)(—0.06343-0.04501) =
—18.47 k-in. in.

The factor 2 in the above equation is introduced
because of the symmetrical loading in panel 0-1', not
included in the computations in Table 11.3.2.1.6.
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TABLE 11.3.2.1.4a
HYPERBOLIC FUNCTIONS AND CONSTANTS NEEDED IN COMPUTATION OF POSITIVE MOMENT IN RIBS

(1) (5) (6) (7) (8) €2 (10) (11) (12) (13) (14) (15) (16) (17) (18)
. I I § [ cosh ac a* 3 x
n as sinh as cosh as coth as az omha-i ac sinh ac a(E—‘> a(i—:) ¢ Note 1 Note 2 Note 3
2

1 1.1727 1.46059 1.77012 | 1.21192 | 0.5864 | 1.17692 | 0.0391 | 0.03911 | 0.5473 | 1.15354 0197119 | 2.1372(9} —0.2484(®
3 3.5182 | 16.84701 | 16.87666 | 1.00176 | 1.7591 | 2.98970 | 0.1173 | 0.11757 | 1.6418 | 2.67903 0.79117 3.1907 | —0.1608

5 5.8637 | 176.01066 | 176.01350 | 1.00002 | 2.9318 | 9.40734 | 0.1955 | 0.19675 | 2.7364 | 7.74807 0.96669 5.0313 | —0.1004
7 §.2092 1837.30 1837.30 | 1.00000 | 4.1046 | 30.3175 | 0.2736 | 0.27702 | 3.8309 | 23.0629 0.99553 7.2416®) —0.0694
9 | 10.5547 | 19178.6 19178.6 5.2773 | 97.9227 | 0.3518 | 0.35910 | 4.9255 | 68.8827 | 0.70342 | 0.99945 9.5600 | ~0.0524
11 | 12.9001 | 200176. 200176 6.4502 | 316.384 | 0.4300 | 0.44337 0.65051 | 0.99994 11.9008 | —0.0421
13 | 15.2456 7.6228 | 1022.14 | 0.5082 | 0.53036 0.60158 | 1.00000¢%) |14.2456()] —0.0351
15 | 17.5911 8.7955 | 3302.23 | 0.5864 0.55630 16.5911 | —0.0301%
17 | 19.9366 0.6645 0.51453 18.9366 | —0.0264
19 | 22.2820 0.7427 0.47582 21.2820 | —0.0235
21 | 24.6275 0.8209 0. 44004 23.6275 | —0.0212
23 | 26.9730 0.8991 0.40694 25.9730 | —0.0193
25 | 29.3185 0.9773 0.37633 28.3185 | —0.0177
27 | 31.6640 1.0555 0.34802 30,6640 | —0.0163
29 | 34.009% 1.1336 0.32187 33.0094 | —0.0151
3| 36.3549 1.2118 0.29766 35.3549 | —0.0141
33 | 38.7004 1.2900 0.27527 37.7004 | —0.0133
35 | 41.0459 1.3682 0.25656 40.0459 | —0.0125
NOTES:
1. (a) eq. (4.27) 2. (a) eq. (4.26) 3. (a) eq. (4.29) .

(b) cg. (4.48) for n > 13 (b) eq. (4.49) forn > 5 (b) eq. (4.50) for n > 13

(¢) eq. (4.49a) for n > 11

TABLE 11.3.2.1.4b
HYPERBOLIC FUNCTIONS AND CONSTANTS NEEDED IN COMPUTATION OF NEGATIVE MOMENTS IN RIBS

1 (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) 31 (32) 33 (34)
n an sinh ay: | cosh ay: e | g — = mey (s — yie— 2| (23) (26) ays sinh ay: | coshays | ¢~%% |a(s —ys)le—=G—2)| (23) (33)
1] 0.3909) 0.40093 | 1.07738 0.7036| 0.76311] 1.25791
31 1.1727| 1.46059 | 1.77012 2.1109 | 4.06727| 4.18840
51 1.9546| 3.45974| 3.60136] 0.0028 |—0.10320 3.5182 | 16.84701 | 16.87666 | 0.02965 | 2.3455 | 0.09580 | —0.00989
7| 2.7364| 7.68481 ] 7.74961 | 0.0008 |—0.0697 |0.06482] 5.4728|0.00420 | —0.00029 | 4.9255{ 68 87546 | 68.88272 | 0.00726 | 3.2837 | 0.03749 | —0.00261
9 3.5182{16.84701 | 16.87666 | 0.00003 |—0.0524 | 0.02965| 7.0365|0.00088 | —0.00005! 6.3328 0.00178 | 4.2219 | 0.01467 | ~0.00077
111 4.3001 0 —0.0421 |{0.01357: 8.6001|0.00018| —0.00001 | 7.7401 0.00044 | 5.1601 { 0.00574 | —0.00024
13| 5.0819 0 —0.0351 :0.00621 | 10.1638 | 0.00004 0 9.1474 0.00011 | 6.0983 | 0.00225 | —0.00008
15| 5.8637 0 —0.0301 | 0.00284 0 10.5547 0.00003 | 7.0365 | 0.00088 | —0.00003
17| 6.6455 0 -0.0264 | 0.00130 (4] 11.9620 0.00001 | 7.9746 { 0.00034 | —0.00001
19| 7.4274 0 —0.0235 | 0.00059 0 13.3693 0 8.9128 | 0.00013 0
21} 8.2092 0 —-0.0212 | 0.00027 1] 1] 1]
23| 8.9910 0 —0.0193 | 0.00012 0 0 0
251 9.7729 o ~0.0177 | 0.00006 0 1] ]
27 | 10.5547 0 —-0.0163 | 0.00003 0 0 1]
291 11.3365 0 —-0.0151 | 0.00001 0 0 0
31| 12.1183 0 —0.0141 [} [} 0 0
33 0 ~0.0133 0 0 0 0
35 0 --0.0125 0 0 0 4]

noTE: (a) Values of « from column (18), Table 11.3.2.1.4a.
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TABLE 11.3.2.1.5
COMPUTATION OF THE BENDING MOMENT Me AT MIDSPAN OF RIBS

S L B € 1) | (36) I N I ) (39) o)
Mo* | cosh al(s/2) — ¢ - 3 B : ;
. 5 [l cosh (as/2) J 4 | B | Me, /Qs = A + B§ {(4) X (39)
eq. (4.43) Note 1 ] Note j Note 3 | eq (447) | eq. (4.46)
— | — SR [ .
1 | —0.42883 | 0.98013 ,‘ 0.21667 ’ —0.06437 0.15230 . 40.043150
3 | —0.02028 | 0.89609 | 0.12590 I —0.01946 0.10644 +0.028166
5 T —=0.00502 0.82362 } 0.07693 | —0.00448 0.07245 +0.016622
7 I ~0.00108 0.76071 | 0.05327 I —0.00104 | 0.05223 +0.009500
9 | —0.00025 0.70344 0.03993 | —0.00025 0.03968 +0.005058
11 | —0.00006 | 0.65051 { 0.03150 | ~0.00006 J 0.03144 | +40.002269
13 | —0.00002 0.60158 0.02571 | —0.00002 0.02569 | +0.000560
|
15 } 0 0.55630 0.02151 0 0.02151 —0.000406
17 0 0.51453 0.01832 0 0.01832 ~0.000856
19 | 0 0.47582 0.01584 0 0.01584 —0.000956
21 j 0 0.44004 0.01385 0 0.01385 —0.000840
23 i 0 0.40694 0.01223 0 0.01223 —0.000610
25 0 0.37633 0.01088 0 0.01088 —0.000345
27 | 0 0.34802 0.00975 0 0.00975 —0.000102
|
29 : 0 ; 0.32187 0.00879 0 0.00879 +0.000086
31 0 | 0.27966 0.00797 0 0.00797 +0.000204
33 j 0 J 0.27527 0.00726 0 0.00726 +0.000252
35 0 0.25656 0.00662 0 0.00662 +0.000241
! ‘ |
35
Mo _ > Goe Men _ 40.101993
Qos  »Z1 Qo Qs

NoTtEs: 1. Forn > 11 c‘_‘“__._osh al(s/2) .—C} = e
cosh (as/2)
<1 _ cosha((s/2) ~ ¢]
cosh (as/2)

T3, gee eq. (4.56).

857
'
i

2asac

"i&f(l_.i

5 ac cosh(as/2)

sinh ac

>
i

The bending moment per rib is obtained by equation
(4.35a) as

Mps = (—1847)(13 + 11) = —444 k-in./rib

11.3.2.1.7 Live Load Moments in Floor Beams

The reaction of one truck on floor beam m = 0
(Fig. 11.12) is computed by equations (4.11) and (4.12)

as

b= 2 (41.1) [l — 2.1962 (—Z)q -+ 1.1962<z—>3] +
15 15
10.3[~O.8038 <~6*> + 1.3923 (£)2 -
15 15
0.5885 <—6~)3]
15

= 51.6 kips per lane

); for n > 11 see eq. (4.56).

); for n > 11 see eq. (4.57).

The maximum design moment occurs under the
wheel at x = 29 ft (Fig. 11.5b) and is, with considera-
tion of the 109, reduction for three lanes loaded
(AASHO specifications),

18

. : 5 . 18
Mp = (0.90)(51.6) [56 (29) + 0 (29) + % (21)]

= 971 k-ft

11.3.2.1.8 Dead Load Moments

The dead loads are as follows:

Ribs: steel weight
wearing surface

Total

27 lbs per sq ft
25 lbs per sq ft
52 lbs per sq ft

490 1bs per ft
375 lbs per ft

Floor beams: erection dead load
superimposed dead load
superimposed

mall load at center 2090 lbs
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TABLE 11.3.2.1.6
COMPUTATION OF THE BENDING MOMENT Mg AT SUPPORT OF RIBS

W) 42y (383) a4y 1 (a5) (46) | a7 sy Loy ooy Loy T L (1) G0 | (8%)
S ; ! ¥ = 60 in. | ye = 108 in. :
M i i | N { ; {
R ! R = T R S A Ci sinh ay, L Qe : Cysinhay, | T
. I $ ; ‘ | €\ sinh ay, + Ciy, /s ” ’Q* - Ci sinh ay, + y Cays/s n L T n'
o | , ) 1 (e cosh ay, ® ‘ U Cy cosh ay, S Qe
[P i ! . PO S i A SV, | [
v | Eq. (4.40) . ) . (4. ! 5 . * Eqgs. (4.38) -
Py ra At Hq. (4. i Note 2 : > i { Note 3 | ‘
' | Note 1 Eq. (4.39) ote Dk (4.35) | Note 4 ; i Note 3 ; & (4.35)
e — —————— e S B et i :
1 ~1.34206 131898 —1 0] ~1.2484 . 10 055408 —0 52330 =0 416130 05057 —0.023046 | 1.05460 ) —0.20331 | —0 74903 1 6.04766 | —0 018135
31 0 20864 -1 01130 | =1 1608 | 44700 —0 29303 . —0.38693 0 32004 —0.017669 4.11323; —0.07517 | —0.69648 ' 0 22835 | —0 012606
50 —0 10492 1.00059 -1.1004 3 46178 —0 13958 ' —0 36680 0,49362° —0 011882 16.85695 | —0 019769 —0.66024 ' 0.32000 ' —0.007702
70 —0 07005 1.00004 -1 0694 7 (8512 —0 06449  —0 35647, 0.57904 - —0 007377 68 87822 | —0.00462 | —0.64164 | 0 35374  —0 004507
9 —0 05257 1.00000 —1.0524 16.84701  —0.02060®™ —0.35080 1 0.61960 , —0 004151 | | —0.00101 | —0.63144 : 0.36755 | —0.002463
1t} —0.04218 ~1.0421 [ ~0 01356 —0 34737 ' 0.63907 ; —0.001946 | ~0.00020 | —0.62526 | 0.37454 | —0 001140
13, —0 03514 ‘ | =1.0351 | 00621 —0.34503 0 64876 —0.000497 —0.00003 | —0.62106 | 0.37891  —0.000290 -
b j i \ 1 ' : J ‘
; : ; i ; : ; ;

151 —0.0301 wi ’ L —1.0302 | —0 00284 ' —0 343400 65376 +0 000373 | I o ~0.61812 1 0.38188 | +0.000218
17 —0 0264 ! ‘ | ~1.0264 - , | —0.00130 | —0.34213 ) 0.65657 | +0.000810 | Lo | —0.61584 | 0.38416 | +0.000474
1191 —0 0235 i L —1.0235 - L —0.00059  —0.34117 . 0.65824 | +0 000935 | 0 { —0.61410 | 0 38590 . +0 000548
21 —00212 ; L —t1.0212 =0 00027 ¢ —0.34040 0.65933 40 000848 | 0 | —0.61272 | 0.38728 ' +0.000498
23] —0.n193 i L—1.0193 . ‘ §~0.00012 ' —0.33977 066011 i +0.000636 0 —0.61158 | 0.38842 | +0.000374 "
1251 —0.0177 ¢ ; | —1.0177 ' [ =0.00006 —0.33923 - 0.66071 +0.000371 | 0 —0.61062 | 0.38938 ¢ +-0.000219 |
1270 ~0.0163 - P—t1.0163 ' —0 00003 —0.3387710.66120 . +0.000113 - 0 | ~0.60978 | 0.39022 ' 40000067

C j | ‘ ‘ ‘ : ; ‘
20 ~0.0151 | ! ~1.0151 S —0.00001 =0 33837 0.66162 | —0 000098 | 0 i —0.60906 | 0.30094 ~0.000058
31 =0 0141 ‘ " —1.0141 0 —0.33803 0.66197 | —0 000239 0 l‘ —~0 60846 ' 0.39154  —0.000142 .
33 -0 0133 ‘ T 10133 0 ~0 33777 066223 | —0.000306 0 | ~0.60798 < 039202 —~0 000181 1
L350 —0.0125 , ' 10125 | Co S =0.33750 0 66250 —0.000301 L0 b ~0.60750 1 0.39250 ' ~0 000179
notEs: (1) forn > 13 eq. (4.52).
(2} for n > 9 cq. (4.51).
(3} 9’ = C,sinhay + C2cosh ay + Coy/s + Cu
(4) for n > 5 cq. {4.51).
The dead load moments in ribs are: 11.3.2.2 Effects of Floor Beam Flexibility
0.052)(15)? s .
Mpg = — (0.052)(15)" (2)(12) = —24 k-in./rib 11.3.2.2.1 Additional Moment at Midspan of
12 Ribs
(0.052)(15)* : . : :
. . o
Mpe = ——22270 (2)(12) = 12 kein./rib The loading used in the computation of the bending
24 moment increment, AMgc, due to floor beam flexi-

The moments in floor beams at the main girders
due to sidewalk dead load are:

Due to erection loads, Mpg = —9.0 k-ft
Due to superimposed loads, Mps = —34.0 k-ft

The dead load moments at the midspan of floor
beams are:

Due to erection loads,

0.490)(50)?
Mo = («_»-SM —~ 9.0 = 144 k-t

Due to superimposed loads,

{0.375)(50)* {2.09)(50;
Mpe = 8)< + - :( - 34.0

= 109 k-ft

bility is shown in Figure 11.13. The loading in the
“critical lane” corresponds to that used in Section
11.3.2.1.5, with the second wheel added. In the
adjoining lane two 32-kip truck axles are placed to
cause maximum deflection of the floor beams m = 0
and 0’. The front 8-kip axle, having a relieving eflect,
is omitted. No loads are placed in the outside bridge
lanes, since their effects, in this case, would be offset
by the load intensity reduction coefficients for multiple
lane loading, in accordance with the AASHO speci-
fications.

The values of @ and Q1,/Qy needed in the computa-
tion of the bending moment increments, AM ¢ . are the
same as used in the computations of the deck with
open ribs (see Section 11.2.2.2.1).

The values of F,, 'P for loading a in the critical lane,
needed in the evaluation of equation (5.9a), are given
in Table 11.2.2.2.1.  The values of F,,/P for the loading
in the adjoining lane are computed in a similar manner
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by equations (4.11) and (4.12) and given in Table
11.3.2.2.1.

The values of E(F,,,"P}(ﬁm /s) are computed in
Table 11.3.2.2.1. The ordinates ey -5 are obtained
from Chart 17. Because of the loading symmetry the
computation is made for the supports on one side onlv
and the results are used in equation (5.9a) with a
factor of 2.

The bending moment increments, AMyz., are ob-
tained by equation (5.9a) as follows:

Load in critical lane,

AMgpe = (0.709)(180)(13 + 11)(0.126)(0.0262)(2)
= 20.2 k-in./rib

Load in additional lane,

BMpre = (0.800)(180)(13 + 11)(0.149)(0.0391)(2)
= 40.3 k-in./rib

The total additional moment at midspan of ribs is,
by equation (5.10),

AMpge = 20.2 + 40.3 = 60.5 k-in./rib

The bending moment relief at support of ribs, AM g,
is not computed.

11.3.2.2.2 Moment Relief in Floor Beams

The loading used in the computation of the bending
moment relief AM , is the same as used in the computa-
tion of the bending moments in the system with rigid
floor beams, Section 11.3.2.1.1b (see Figs. 11.12 and
11.5b).

The values of Fy/P are computed by equations
(4.11) and (4.12) and given in Table 11.3.2.2.2. The
values of &, are obtained for v = 0.077 from Chart
19. The computation of the value of Y.(F,/P) 8,
is given in Table 11.3.2.2.2.

The values of @y and Q../Q, for three lanes loaded
~ (Fig. 11.5b) are the same as used in Section 11.2.2.2.2.
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Fig. 11.13. Loading used in the computation of the maximum
bending moments at midspan of closed ribs with consideration
of floor beam flexibility

The bending moment relief in the floor beam at the
location x = 29 ft is, by equation (5.14),

AMp = (9.5)(?)2(0.349)<1.252 — 1.040)(0.90)

= 160 k-ft
The factor of 0.90 is the reduction coefficient for
three lanes loaded of the AASHO specifications.
11.3.2.3 Summary of Moments and Stresses

The summary of the bending moments in the ribs
and the floor beams is given in Tables 11.3.2.3.1 and 2.
The flexural stresses are determined by using the section
moduli computed in Sections 11.3.1.2.1 and 2.

TABLE 11.3.2.2.1
ADDITIONAL MOMENT AT MIDSPAN OF RIBS, COMPUTATION OF Z(Fn/PY g, /5)

Values ] .
Loading Case computed Reference m =0 1 2 3 4 ]Z ‘_F_"' ng
(Fig. 11.13) - j P s
B, /s Chart 17 +0.037 —0.033 —~0.006 ~0.002 +0.001 |
Table |
Critical lane Fn/P 11.2.2.2.1 +0.601 —0.127 +0.034 ~0.009 +0.002 |
loaded Case a [
(Fn) P /5) 4+0.0222 | +0.0042 | —0.0002 0 0 l’ 100262
Additional lane FulP Eqs. 4.11-4.12] +1.028 —~0.035 +0.009 —0.003 +0.001 }
loaded (Font PY(Fip /) +0.0380 40.0012 —0.0001 0 0 [ 10,0391
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TABLE 11,

3.2.2.2

MOMENT RELIEF IN FLOOR BEAMS, COMPUTATION OF (Fy/P) — (Fo/P)

Values | f , . , | | | F/P  |(Fo/P)—
Ref: =3 2 ! 1 ‘ 0 1 ' 2 3 |
computed ‘ clerenee 4 om | ! ! , |(Eq. 5.13)| (Fo/P)
; ] |
Fu/P 1Eqs. 4.11-4.12) —0.004 | 40.029 | +0.605 | +1.252 | +0.437 | —0.090 | +0.024 r
Jom Chart 19 -0.018 -~0.019 +0.215 +0.650 +0.215 —0.019 —0.018 |
(Fn/P)Som 0 —0.001 +0.130 +0.815 ‘ +0.094 +0.002 0 1.040 0.212
TABLE 11.3.2.3.1
MAXIMUM BENDING MOMENTS AND STRESSES IN RIBS
; Stress (ksi
Location Loading Bendulg 'Momem (ksi)
(k-in.) Top Bottom
Dead load 12
L.L., rigid system 312
Midspan, Point 4 L.L., effect of floor beam flexibility 61
(Fig. 11.8) Total, System 11 385 ~5.0 14.3
System I stress 12.5 11.3
Total stress 7.5 25.6
Dead load —24
L.L., rigid system —444
Support, Point B Total, System 11 - 468 6.1 —17.4
System 1 stress -11.2 -9.5
Total stress —~5.1 -26.9
TABLE 11.3.2.3.2
MAXIMUM BENDING MOMENTS AND STRESSES IN FLOOR BEAMS
‘ .
l Bending Stress (ksi)
Location Loading { Moment Top ! P ' Bottom
e PL@ | ‘@ ' P. ®
Lower portion of - )} ction 144 _— ! -7.5 75
floor beam [ I ]
! 3 i .
D.L., superimposed ! 109 ] !
Entire section of L.L., rigid floor beam l b : ‘
floor beam L.L., effect of fexibility —160 ’ \
\ ! )
' Total 4 920 —4.1 l 48 | 18.8
Total stress | —4.1 ; -2.7 ! 26.3
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11.3.3 Design by Charts for AASHO Loads

The section properties and the relative rigidity
coeflicients are computed as shown in Section 11.3.1.

The loads used in the design are given in Sections
11.3.2.1.1 and 11.3.2.2.1 and 2.

11.3.3.1 Bending Moments in a System with
Rigid Floor Beams
11.3.3.1.1 Live Load Moments in Ribs

(a) Moment at midspan

For loading a the moment is obtained from Chart 9,
with s = 15 ft, H/D, = 0.051, as

Me = 13.0 k-in./in.
The moment per rib, by equation (4.35a), is
Mge = (13.00(13 + 11) = 312 k-in./rib
For loading a; the moment obtained from Chart 11 is

M¢ = 13.5 kin./in.
Mge = (13.5)(13 + 11) = 324 k-in./rib

I

(b) Moment at support
From Chart 13, for s = 15, H/D, = 0.051, loading e,
the moment at support is obtained as
Ms = —18.6 k-in./in.
Mpg = —(18.6)(13 4+ 11) = —446k-in./rib

11.3.3.1.2 Live Load Moments in Floor Beams
From Chart 15, for s = 15 ft, loading case B,

Fo

— =125
P

From Chart 16, for [ = 50 ft, lane width W = 13 ft,

for 3 lanes loaded,

M = (.378

Fol
for 2 lanes loaded

M

— = (.360

Fy!

The above values include the AASHO load reduction
coeflicient for multiple lanes loaded.

The impact factor is computed, in accordance with the
AASHO formula, as:

50 50

1= = = (1.286
L+ 125 50 4+ 125

Thus, the axle load, P, including impact is:

P = (1.286)(32) = 41.1 kips

The maximum floor beam moment is then, with 3
lanes loaded,

M Fy . NP
Mp = 1P Pl = (0.378)(1.25)(41.1)(50) = 973 k-ft

]
and with 2 lanes loaded

My = (0.360)(1.25)(41.1)(50) = 925 k-ft

11.3.3.1.3 Dead Load Moments

The dead load moments are computed as shown in
Section 11.3.2.1.8.

11.3.3.2 Effects of Floor Beam Flexibility

11.3.3.2.1 Additional Moment at Midspan of
Ribs
In order to compute the additional moments at the

midspan of ribs by equation (5.9a) the values of

Qu:/Q , and $(Fn/P) (i, /5) are needed.
The values of Q, are computed as shown in Section

11.3.2.1.1.
The values of Q,,/Q, are obtained from Charts

28 and 29.

For the critical lane loaded (Fig. 11.13), for / = 50 ft,
W = 13 ft and 2¢ = 22 in., the loading coefficient is
obtained from Chart 28 as

le
Qo

For one additional lane loaded (Fig. 11.13), the
loading coefficient is, from Chart 29,

le
Qo

Loading of more than two lanes is not considered
because of the AASHO load intensity reduction (see
Section 11.3.2.2.1).

The values of Y_(F,/P) (figy, /5) or the critical lane are
taken from Chart 20.

For v = 0.077, loading a

= 0.126

= (.149

Fn g,
P s

0.0526

i

For loading a,

En

= (.0132
5
For the additional lane loaded, loading h,, the value
is obtained from Chart 23 as
F,

m g,
— =fm = (.0770
P
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The additional moments at midspan of ribs are
computed by equation (5.9a) as follows:

Load in critical lane,
loading a:
AMpe = (0.709)(180)(24)(0.126)(0.0526)
= 20.3 k-in./rib
loading a, :
AMge = (0.709)(180)(24)(0.126)(0.0132)
= 5.1 k-in./rib
Load in additional lane,
loading h,:

AMge = (0.800)(180)(24)(0.149)(0.0770)
= 39.6 k-in./rib

11.3.3.2.2 Moment Relief in Floor Beams

The value of Q, for the 16-kip wheels is computed in
Section 11.2.2.2.2.

The value of (Fy/P) — 2.(Fn/P)8n, needed in the
evaluation of equation (5.14), is obtained from Chart
31, fory = 0.077,s = 15 ft, Case B,

F F, .
2 - 2 Bom = 0.21
P P

The values of Q,;/Q, are obtained from Chart 32,

for! = 50ft, W = 13 ft.

For 3 lanes loaded

G _ o5
Q

]

The above value includes the 109, load reduction
in accordance with the AASHO specifications for 3
lanes loaded.

For 2 lanes loaded,

By equation (5.14) the relieving moments in the
floor beams are:
3 lanes loaded,

50\*
AMp = (9.5) (—) (0.315)(0.21) = 159 k-ft
T
2 lanes loaded,
50\?
AMp = (9.5) { — ) (0.298)(0.21) = 151 k-ft
™

11.3.3.3 Summary of Moments and Stresses

The governing loading cases are determined as
follows:

(a) Live load moment at midspan of ribs
Loading a -+ h;:
Mge + AMpe = 312 4 20 4 40 = 372 k-in./rib
Loading a, + hy:
Mge + AMpe = 324 4 5 + 40 = 369 k-in./rib
It is seen that loading a + h; governs
(b) Live load moment at support of ribs
Loading e:
Mgs = —446 k-in./rib
(c) Live load moment in floor beams

3 lanes loaded,

Mz + AMp = 973 — 159 = 814 k-ft
2 lanes loaded,
My + AM; = 925 — 151 = 774 k-ft

Loading of 3 lanes produces the critical moment.
Summary of the maximum bending moments and
stresses is similar to that given in Section 11.3.2.3.
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Chart 28. Computation of additional moment in ribs due to floor beam flexibility. Values of Q,, (), at critical

rib, lane over critical rib loaded
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Chart 32. Computation of moment reliefin a floor beam due to floor beam flexibility. Values of Q,,/(Q, at critical
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Appendix |I—Buckling Formulas for Steel Decks

II.1 LOCAL BUCKLING OF RIB PLATE

I1.1.1 Elastic Buckling

The ideal buckling stress, f;, for a plate loaded as
shown in Figure I1.1a, with edge conditions shown in
Figure I1.1c is, for an elastic material with constant mod-
ulus of elasticity, given by the following equation [32]:

nE t\*

where

L = modulus of elasticity of the material

v = Poisson’s ratio

t = plate thickness

h = plate width

k = constant, depending on the loading and the
edge conditions. Various values for # for long
plates are given in Table I1.1

TABLE II.1

VALUES OF £ IN EQUATION (11.1) FOR LOADING AND
EDGE CONDITIONS SHOWN IN FIGURE Il.1a

AND IL1c [32]
% Edge Condition
Loading | :
) @ | e [ w o
A ’ 6.97 5.40 | 4.00 | 1.28 | 0.43
B 13.56 | 12.16 | 7.81 | 626 | 1.7
C [ 13 56 9.80 | 7.81 | 1.64 | 0.57

The values of £ given in Table II.1 are valid for plates
with a length-to-width ratio, s/4, greater than 1.5 (see
Fig. I11.1). This condition is always satisfied with the
ribs of steel plate decks, with a possible exception in the
case of flexural (System II) stresses in short ribs, where
the length of the rib subjected to compression (portions
of the rib near the supports at floor beams) may be
shorter than 1.54. Therefore the values of the buckling
stresses in the ribs subjected to local flexure, computed
with the k-values from Table II.1 may be conserva-
tive. See also comments in Section 11.1.3.2.

With the values of £ = 29,000 ksi and » = 0.3,
equation (I1.1) becomes

te\? .
fo = 26,200k (7’3) k/in.? (I1.1a)

(4

I1.1.2 Inelastic Buckling

The ideal buckling stress, f; , given by equation
(IL.1) is the critical buckling stress, f,,, of the plate if
its value does not exceed the proportional limit, f, ,
of the material. When the stress given by equation
(I1.1) exceeds the proportional limit, the critical buck-
ling stress, f.,, will be smaller than the ideal buckling
stress, f;.

The inelastic buckling theory of plates is rather
complex; Bleich [5] shows that the critical buckling
stress of plates may be computed by the formula:

m=ki£ﬁiGY=ﬁvﬁ (I1.2)

12(1 — )
where
r = E./E
Er = tangent modulus = slope of the stress-strain

diagram of the material at the stress f,,
Note that when f., < f,, 7 = 1, and equation (I11.2)
is identical with equation (II.1).
The value of r may be approximated with sufficient
accuracy by the following equation [5]:

_ (fu _'fcr)fcr
Ty (3

where f, is the yield stress of the material.

Introducing equation (II.3) into equation (I1.2)
and solving for f./f,, the following relationship is
obtained:

cr 1
fer = - (1L.4)
R0
fv ANE
For a steel plate, an average value of f,/f, = 0.75

may be used, resulting in

ffﬂ = ! 5 (I1.4a)
v 1 4+ 0.1875 <~”>
f

i

The values of f,,/f, computed by equation (II.4a)
are shown as Curve 1 in Figure [1.2.

A33
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Fig. I1.2. Buckling curves for plates and columns

I1.1.3 Computation of Critical Buckling Stress
11.1.3.1 Choice of £

I1.1.3.1.1 Open Ribs

The edge conditions of the open ribs are not accurately
defined by anv of the cases in Figure II.lc, but lie
somewhere between cases (4) and (5). Based on a
method given in [5], the following values of £ are proper
for the usual rib and deck plate proportions.

(a) System [ stresses

The case of System I compressive stresses (nearly
uniform compression over the cross section of the ribs)
corresponds to loading case A of Figure II.1. The
value of k for the ribs is found to be between 0.6 and
1.0. The k-values will be at the lower end of the range
for short, thick widely spaced ribs and thin deck plates
and at the upper end of the range for deep, slender
closely spaced ribs and thick deck plates. As a guide
in choosing £, the appropriate value of £ for the 813-in.
X 1;-in. ribs spaced 12 in. o.c. and 3g-in. thick deck
plate of the numerical example, Section 11.2, may
be taken as 0.7.

(b) System 11 stresses

The flexural compressive stresses in the ribs in the
negative bending moment areas near the floor beams
most nearly resemble the loading case C of Figure
II.1. Since, as noted in Sections II.1.1 and 11.1.3.2,
the assumptions used in the investigation of the local
buckling due to System II stresses are conservative,
larger values of £, ranging between 1.0 and 1.4, seem
to be appropriate in this case.

(c) System I + II stresses
In this case the values of £ may be chosen between
0.8 and 1.2.

11.1.3.1.2 Closed Ribs

For the closed ribs the following assumptions are
sufficiently accurate:

(a) Sides of rib: assume rib fixed at the deck plate
and simply supported at the bottom (edge condition
(2), Fig. Il.1c}, £ = 5.4 to 9.9 depending on loading
(see Table I1.1). Note that %’ must be substituted for
h in equation (II.1a).

(b)  Bottom of rib: assume both sides simply sup-
ported (edge condition (3), Fig. II.1c), £ = 4.0. The
buckling stress in the bottom of the rib will not be
critical except when ; > 0.86/4" for loading case A,
or j > 0.64/' for loading case C.. Note that ; must be
substituted for # in equation (II.1a).
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11.1.3.2 Determination of 1.,

With the value of & determined, the ideal buckling
stress, f,, is computed by equation (II.1a). Using this
stress, the value of /., is determined from Curve 1,
Figure I1.2.

When the value of f; is less than 0.75f,, Figure I1.2
need not be used, since, in such case, f,, = fi

It should be noted that for thick ribs (small values of
h/t) the value of £ has little effect on f,, , which, in such
cases, is near the yield stress.

Regarding local buckling due to System II or System
I + II compressive stresses in the ribs, it should be noted
that these stresses reach their maximum near the floor
beams and fall off rapidly in the direction toward the
midspan of the ribs, and, therefore, the value of fer
determined by this method will be conservative. Local
buckling deformation due to System II stresses is
unlikely, since before any measurable deformations
could occur due to local buckling of the loaded rib, the
load would be redistributed through membrane stresses
to the adjacent ribs.

Because of the geometric conditions of steel plate decks
of usual proportions the local buckling strength of the
deck plate is always greater than that of the ribs and ne~d
not be investigated.

II.2  OVERALL BUCKLING OF THE DECK

I1.2.1 Elastic Buckling

The floor beams of steel bridge decks of usual dimen-
sions are sufficiently rigid to act as transverse stiffeners
of the deck, which will buckle as an edge-loaded plate
with simply supported edges at the floor beams. Buck-
ling of the individual longitudinal ribs of the deck is
impossible, because of the elastic restraint provided by
the deck plate and the adjoining ribs.

In the investigation of buckling of the bridge deck
subjected to a uniform compression as the flange of the
main girders it is permissible to consider buckling in
the vertical direction of one rib only as a part of the
deck.

Writing Euler’s buckling formula in the nomenclature
used in this Manual, the ideal buckling stress is obtained

as
)2

try

o
Pas

¢

fo= (I1.5)

or, for steel,

286,000
)
r

where 7 is the radius of gyration of a rib computed from
the moment of inertia, I, , of one rib as defined in Sec-
tion 3.3.2.2 and the cross-sectional area of the corre-
sponding section.

k/in.? (I1.5a)

/i

I1.2.2  Inelastic Buckling

When the ideal buckling stress, f, , exceeds the propor-
tional imit of the material, the critical buckling stress,
fer , will be smaller than f,. The critical buckling stress
is given by the tangent modulus formula [5], which can
be expressed as

fer = fir (11.6)

where » = E,/E as before.
With Bleich's approximation for r asgiven in equation
(I1.3), solving equation (I1.6) for f.,/f, results in

fo oy (L)L
fﬂ fz/ ju fi

Using the value f,/f, = 0.75 as before, the ratio
fer/fy is obtained as

(IL.7)

Jer fy
— =1 - 0.1875 = I1.7
fu fl ( a)

The values of f.,/f, computed by equation (I1.7a)
are given by Curve 2 in Figure I11.2.

Curve 3, given for comparison, is based on the fo/fy
ratio of 0.5, and is recommended by the Column Re-
search Council for the design of rolled columns [8].
This choice of the proportional limit reflects the effect
of the residual stresses in rolled sections of structural
carbon steel.

In steel plate decks of low-alloy steel the relative
magnitudes of the residual stresses are likely to be
smaller than those in the rolled sections. Therefore
the use of Curve 2, based on the f,/f, ratio of 0.75, is
recommended in the design of the ribs.




