Errata List AISC Steel Construction Manual, 13th Edition, Second Printing

The following list represents corrections that have been made in the Third Printing of the 13th Edition of the Steel Construction Manual.

Page(s)	Item
1-34	Table 1-5: Replace "C8x18.7" with "C8x18.5."
1-34	Table 1-5: For a C6x13, the dimension T is $4\frac{3}{8}$ in.
1-56	Table I-8: The WT10.5x28.5 should only have references to note "c" and not note "c, h."
1-58	Table I-8: The WT8x20 and the WT8x18 should only have references to note "c" and not note "c, h." Note "h" should be removed from the bottom of the table.
1-108	Table 1-16: Replace "C8x18.7" with "C8x18.5"
1-108	Table 1-16: Replace the r_x values with the values given in the attached Table 1-16.
2-12	The table at the bottom of the page should be revised and is shown below:

	Load F	_oad Ratio from Step 3 (times 1.6 for ASD, 1.0 for LRFD)												
Design Story Drift Limit	0	5	10	20	30	40	50	60	80	100	120			
<i>H</i> /100	1	1.1	1.1	1.3	1.4	_	_	_	_	_	_			
H/200	1	1	1.1	1.1	1.2	1.3	1.3	1.4	_	_	_			
H/300	1	1	1	1.1	1.1	1.2	1.2	1.3	1.4	1.5	-			
<i>H</i> /400	1	1	1	1.1	1.1	1.1	1.2	1.2	1.3	1.3	1.4			
H/500	1	1	1	1	1.1	1.1	1.1	1.2	1.2	1.3	1.3			

- 2-21 For the section "Steel Castings and Forgings" the "ASTM A148 grade 80-35" should read "ASTM A216 grade 80-35."
- 2-47 A reference should be added alphabetically between SSPC and Tide, and should read as follows:
 - Thornton, W.A., 1992, "Eliminating the Guesswork in Connection Design," Proceedings of the AISC National Steel Construction Conference, pp. 24-1 – 24-21, AISC, Chicago, IL.
- 3-16 Table 3-2: The value of I_x for a W18x86 and a W12x120 should be switched. For a W18x86 the value should be 1530 and a W12x120 should be 1070.
- 3-39 Table 3-6: Replace the values for a 23 ft span with the following:

Shan	Shane W36x												
Silap	~	33	30	3	02	2	82	2	62	2	47	2	31
Desiç	gn	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Span, ft	23	1220	1840	1110	1670	1030	1550	955	1430	894	1340	836	1260
3-49		Table 3-6: For a W24x370 using ASD, at 16 ft span, the Maximum Total Uniform Load should read "1410" not "11410."											
3-72		Table 1 note "v	Table 3-6: The footnote on the W12x14 should be "v" rather than "f." The following note "v" should replace the note "f" at the bottom of the page:										ng
		^v Shap ksi, Ω _v	^v Shape does not meet the h/t_w limit for shear in Specification Section G2.1a with $F_y=50$ ksi, $\Omega_v = 1.67$, $\phi_v = 0.90$.										50
3-84		Table 3	3-8: The	title sh	ould read	l "C Sh	apes" rat	her than	"S Shap	es."			
3-123		Table : "184" :	3-10: Tl should re	he Avai ad "180	lable AS)" rather	SD Mor than "1	nent labe 88."	el on the	e vertical	l axis b	etween "	'176'' ar	nd
3-137		Table 3	3-11: Re	place "	C8x18.7	" with "	C8x18.5	."					
3-139		Table 3	3-11: Re	place "	C8x18.7	" with "	C8x18.5	."					
3-144		Table 3	3-13: Re	place th	is table	with the	attached	l Table (3-13.				
3-207		Table : "Strong rib (R_p :	3-21: Fo g studs p =0.60)."	or the I ber rib (Deck Per $R_p=0.75$)	pendicu " and "	ular cond Weak str	lition, " uds per	Strong s rib" sho	tuds per uld reac	r rib" sh I "Weak	ould rea studs p	ad er
4-10-4-	23	Table with "I	4-1 and $P_{ex}(KL)^2$	Table 4 10 ⁴ " ar	-2: Rep nd " $P_{ey}(K)$	blace th $(L)^2/10^4$	e Proper	ties, "P	$ex(KL^2)/1$	0 ⁴ " an	d "P _{ey} (K	CL ²)/10 ⁴	"
4-48 - 4-	63	Table 4	4-4: The	units fo	or the rad	lius of g	gyration s	hould r	ead "in."				
4-57		Table 4	4-4: The	last val	ue of Ef	fective	Length, I	KL, shou	ıld read '	'30."			
4-116, 11	7	Table 4	4-7: The	units fo	or the Pro	operties	, r_x and r_y	, should	d read "in	ı."			
4-129		Table 4	4-9: The	weight	per foot	should	read as f	ollows:					

Shana	2L7x4x											
Shape	3/4	5/8	1/2 ^C	7⁄16 [°]	3%°							
Wt/ft	52.4	44.2	35.7	31.5	27.2							

5-16 Table 5-2: Insert the label, $L3\frac{1}{2}x2\frac{1}{2}$, along with a space below the currently labeled $L3\frac{1}{2}x3x\frac{1}{4}$.

6-3 In the last line of the Table: In the "LRFD" column, replace ϕ_c with ϕ_t , and in the "ASD" column, replace Ω with Ω_t .

- 7-85 Table 7-20: For a Heavy Hex $\frac{1}{8}$ -in.-diameter bolt the value *H* should be $\frac{1}{16}$ in." rather than $\frac{1}{8}$ in."
- 8-16 At the end of the second paragraph a reference should be made to "Figure 8-9b" instead of "Figure 8-10b."
- 8-47 Table 8-2: Replace the left-hand figure with the version in the attached Table 8-2.
- 9-7 The equations for F_{cr} should both include the limit, $\leq F_{\nu}$, as follows:

$$F_{cr} = \frac{\pi^2 E}{12(1-\upsilon^2)} \left(\frac{t_w}{h_o}\right)^2 fk \le F_y$$
$$= 26,210 \left(\frac{t_w}{h_o}\right)^2 fk \le F_y$$

9-8 The top equation for F_{cr} should include $\leq F_{v}$ as follows:

$$F_{cr} = 0.62\pi E \frac{t_w^2}{ch_o} f_d \le F_y$$

- 10-4 Figure 10-1 should be replaced with the attached Figure 10-1.
- 10-14 The bolt and angle ASD available strength for A490 SC Class B with OVS hole type and 1/4 in. angle thickness should be 180 kips, not 80 kips.
- 10-86 In the third paragraph following the heading, "Table 10-5 All-Bolted Unstiffened Seated Connections," both references to "Figure 10-8a" should be to "Figure 10-7a."
- 10-124 In the second paragraph following the heading, "Table 10-11. Bolted/Welded Single-Angle Connections," Table 8-10 should be referenced rather than Table 8-11.
- 10-141 Figure 10-28(a) "SECT. F-F" showing the elevation view of column B2 should read "SECT. E-E"
- 10-146 Replace Figure 10-32 with the attached Figure 10-32.
- 14-18 The equation for R_n appearing under the heading, "Flexural Strength of the Cap Plate," should include the variable " t_1 " instead of " t_c "
- 16.1-29 In Case 7 of Table D3.1, "with web connected with 4 or more fasteners in the direction of loading" should read, "with web connected with 4 or more fasteners <u>per line</u> in the direction of loading."
- 16.1-217 The equation for R_n following Equation C-B3-4 should read " $R_n=4D\Omega$ " instead of " $R_n=4D/\Omega$."
- 16.1-397 Replace Equation C-A-2-2 with the following:

$$\delta_{w} = \frac{\alpha_{s}\delta_{o}\left[1 + \frac{\pi^{3}}{32}\alpha_{p} + \frac{\pi^{2}}{8\rho}\left(1 + \alpha_{p}\right) + 0.185\alpha_{s}\alpha_{p}\right]}{1 - 0.25\pi\alpha_{s}\alpha_{p}}$$

1 –108

Table 1–16 2C Shapes Properties														
	Area.			Axis Y-Y Separation, <i>s.</i> in.										
Shape	A		0				3/	8			3	/4		r,
		1	S	r	Z	1	S	r	Z	1	S	r	Z	- x
	in. ²	in.4	in. ³	in.	in. ³	in.4	in. ³	in.	in. ³	in.4	in. ³	in.	in. ³	in.
2C15×50 ∽40	29.4 23 5	40.7	9 25	1.18 1.18	30.7 22 9	50.5 40 2	12.9 10.9	1.31 1.31	36.2 27.3	62.4 49.6	15.3 12 7	1.46 1.45	41.7 31 7	5.24 5.44
×33.9	19.9	28.5	8.38	1.20	19.0	35.1	9.78	1.33	22.7	43.1	11.4	1.47	26.4	5.63
2C12×30	17.6	18.2	5.75	1.02	15.1	23.3	6.94	1.15	18.4	29.6	8.36	1.30	21.7	4.29
×25	14.7	15.6	5.11	1.03	12.1	19.8	6.12	1.16	14.9	25.0	7.32	1.31	17.6	4.43
×20.7	12.2	13.6	4.64	1.06	10.0	17.2	5.51	1.19	12.3	21.7	6.55	1.34	14.6	4.61
2C10×30 ×25	17.6	15.3	5.04 4.25	0.931	15.3	20.2	6.27 5.27	1.07	18.6 14.5	26.3 21 1	7.73	1.22	21.9	3.42
×20	11.7	9.91	3.62	0.914	8.84	13.0	4.44	1.05	11.0	16.9	5.43	1.20	13.2	3.66
×15.3	8.96	8.14	3.13	0.953	6.69	10.6	3.80	1.09	8.37	13.7	4.59	1.23	10.0	3.87
2C9×20	11.7	8.80	3.32	0.866	8.76	11.8	4.15	1.00	11.0	15.6	5.15	1.15	13.2	3.22
×15 ×13.4	8.81	6.86 6.34	2.76	0.882	6.25 5 59	9.10	3.41	1.02	7.90	12.0	4.19	1.17	9.55	3.40 3.40
208~18.5	11.00	7.46	2.01	0.007	8.10	10.00	3.75	0.062	10.2	13.7	1 71	1.10	12.3	2 82
×13.7	8.07	5.51	2.95	0.825	5.49	7.47	2.95	0.962	7.00	10.0	3.68	1.11	8.52	2.02
×11.5	6.74	4.82	2.13	0.846	4.57	6.50	2.66	0.982	5.83	8.66	3.29	1.13	7.10	3.11
2C7×14.7	8.66	5.18	2.25	0.773	5.94	7.21	2.90	0.912	7.57	9.85	3.68	1.07	9.19	2.51
×12.2 ×9.8	7.19	4.30	1.96	0.773	4.69	5.97	2.51	0.911	6.04	8.14	3.17	1.06	7.39	2.60
206, 12	7.62	4 11	1.72	0.734	5.00	5.05	2.17	0.020	6.56	0.72	2.70	1.00	7.00	2.72
×10.5	6.15	3.26	1.60	0.734	3.86	4.63	2.00	0.870	5.02	6.43	2.67	1.03	6.17	2.13
×8.2	4.78	2.63	1.37	0.741	2.93	3.72	1.76	0.881	3.82	5.14	2.24	1.04	4.72	2.34
2C5×9	5.28	2.45	1.30	0.682	3.22	3.59	1.73	0.824	4.21	5.09	2.25	0.982	5.20	1.83
×0.7	3.93	1.00	1.00	0.000	2.30	2.71	1.40	0.001	3.09	0.04	1.01	0.969	3.03	1.90
204×7.2 ×5.4	4.26	1.75	0.812	0.637	2.52	2.63	1.38	0.786	3.32 2.45	3.81	1.82	0.946	4.12	1.47 1.56
×4.5	2.76	1.25	0.789	0.673	1.95	1.86	1.05	0.820	2.47	2.66	1.36	0.981	2.98	1.63
2C3×6	3.52	1.33	0.833	0.614	2.12	2.06	1.15	0.764	2.78	3.03	1.54	0.927	3.44	1.08
×5	2.94	1.05	0.699	0.597	1.65	1.63	0.969	0.746	2.20	2.43	1.30	0.909	2.75	1.12
×4.1 ×3.5	2.41	0.842	0.597	0.591	1.43	1.32	0.827	0.741	1.88	1.97 1,80	1.10	0.905	2.33	1.17

AMERICAN INSTITUTE OF STEEL CONSTRUCTION, INC.

4

	Table 3–13 Available Flexural Strength, kip-ft $F_y = 46 \text{ ksi}$													
HSS16-H	HSS16-HSS4 ¹ / ₂ Square HSS													
Shape		M _n /Ω ASD	¢ <i>M_n</i> LRFD	Shape		M _n /Ω ASD	¢ <i>M_n</i> LRFD							
HSS16×16× HSS14×14×	⁵ /8 1/2 ^f 3/8 ^f 5/16 ^f 5/8 1/2 3/8 ^f 5/ f	459 352 232 181 347 285 185	690 529 348 272 521 428 278	HSS7×7×	5/8 1/2 3/8 5/16 1/4 3/16 ^f 1/8 ^f	75.9 64.1 50.7 43.4 35.6 23.1 13.3	114 96.4 76.2 65.2 53.6 34.7 20.0							
HSS12×12×	5/16 ¹ 5/8 1/2 3/8 ^f 5/16 ^f 1/4 ^f 3/16 ^f	145 250 206 149 113 83.3 55.7	219 376 309 223 169 125 83.8	H220×0×	³ /8 ¹ /2 ³ /8 ⁵ /16 ¹ /4 ³ /16 ^f ¹ /8 ^f	53.2 45.4 36.3 31.2 25.7 18.5 10.4	80.0 68.3 54.6 46.9 38.7 27.8 15.6							
HSS10×10×	⁵ /8 ¹ /2 ³ /8 ⁵ /16 ^f ¹ /4 ^f ³ /16 ^f	168 139 108 86.1 61.6 41.4	252 210 163 129 92.5 62.3	HSS5 ¹ /2×5 ¹ /2× HSS5×5×	³ /8 ⁵ /16 ¹ /4 ³ /16 ^f ¹ /8 ^f ¹ /2	30.0 25.9 21.4 16.4 8.98 30.0	45.1 38.9 32.2 24.6 13.5 45.0							
HSS9×9×	5/8 1/2 3/8 5/16 1/4 ^f 3/16 ^f 1/8 ^f	133 111 86.8 73.8 51.7 35.0 20.0	200 167 130 111 77.8 52.5 30.1	HSS4 ¹ /2×4 ¹ /2×	³ /8 ⁵ /16 ¹ /4 ³ /16 ¹ /8 ^f ¹ /2 ³ /8	24.3 21.0 17.5 13.5 7.67 23.4 19.2	36.5 31.6 26.2 20.3 11.5 35.2 28.8							
HSS8×8×	5/8 1/2 3/8 5/16 1/4 ^f 3/16 ^f 1/8 ^f	103 86.0 67.6 57.6 44.1 28.8 16.5	154 129 102 86.6 66.3 43.3 24.8		5/16 1/4 3/16 1/8 ^f	16.7 13.9 10.8 6.43	25.1 20.9 16.3 9.66							
f Shape exceeds cor	npact lim	it for flexure with	$F_y = 46$ ksi.											

3–144

AMERICAN INSTITUTE OF STEEL CONSTRUCTION, INC.

Co	Table 8–2 (continued)CJFPrequalified Welded JointsComplete-Joint-Penetration Groove Welds													
Single-11-	aroove weld (6)							Tolerand	es				
Butt joint Corner jo	(B) int (C)	.,			N			As Detaile (see 3.13.	ed 1)	As (see	Fit-Up 3.13.1)			
		_ /			<u> </u>	/		$R = +^{1}/_{16},$	-0	+1/	16, — ¹ /8			
			K- JGE		\mathcal{T}	−∕ ^{₿/}	ACK- DUGE	α = +10°, ·	-0°	+10°, −5°				
15	a y		, 1	τ ^α γ	()			$f = \pm^{1/16}$	6	Not Limited				
		<u>+</u>	Ē		<u>+</u>			$r = +\frac{1}{8}, -$	-0	+1/8, -0				
	k f ⊨ =- R	Base Metal Thickr			f ↑	rotion								
Welding	Joint	(U = unlimited)					Allowed	Gas	ina	Notos			
Process	Designation	T ₁	Т ₂	Root Opening	Groove Angle	Root Face	Bevel Radius	Positions for		AW	NOLES			
	B-116	Ш	ш	$R = 0$ to $^{1}/_{8}$	$\alpha = 45^{\circ}$	f = 1/8	r = 1/4	All	_		4, 5, 10			
			0	$R = 0$ to $^{1}/_{8}$	$\alpha = 20^{\circ}$	f = 1/8	r = 1/4	F, OH	_		4, 5, 10			
SMAW	C-U6		U	$R = 0$ to $^{1}/_{8}$	α = 45°	f = 1/8	r = 1/4	All	_		4, 5, 7, 10			
	0.00			$R = 0 \text{ to } \frac{1}{8}$	α = 20°	f = 1/8	r = 1/4	F, OH	_		4, 5, 7, 10			
GMAW	B-U6-GF	U	U	$R = 0 \text{ to } \frac{1}{8}$	$\alpha = 20^{\circ}$	f = 1/8	r = 1/4	All	Not re	eq.	1, 4, 10			
FCAW	C-U6-GF	U	U	$R = 0$ to $\frac{1}{8}$	α = 20°	f = 1/8	r = 1/4	All	Not re	eq.	1, 4, 7, 10			

Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)

AMERICAN INSTITUTE OF STEEL CONSTRUCTION, INC.

6

SCOPE

The specification requirements and other design considerations summarized in this Part apply to the design of simple shear connections. For the design of flexible moment connections, see Part 11. For the design of fully restrained (FR) moment connections, see Part 12.

FORCE TRANSFER

The required strength (end reaction), R_u or R_a , is determined by analysis as indicated in AISC Specification Section B3. Per AISC Specification Section J1.2, the ends of members with simple shear connections are normally assumed to be free to rotate under load. While simple shear connections do actually possess some rotational restraint (see curve A in Figure 10–1), this small amount can be neglected and the connection idealized as completely flexible. The simple shear connections shown in this Manual are suitable to accommodate the end rotations required per AISC Specification Section J1.2.

Support rotation is acceptably limited for most framing details involving simple shear connections without explicit consideration. The case of a bare spandrel girder supporting infill beams, however, may require consideration to verify that an acceptable level of support rotational stiffness is present. Sumner (2003) showed that a nominal interconnection between the top flange of the gider and the top flange of the framing beam is sufficient to limit support rotation.

Figure 10–1. Illustration of typical moment rotation curve for simple shear connection. American Institute of Steel Construction, Inc.

10–4

The detail shown in Figure 10–31c is used frequently when m is up to 6 or 7 in. The load on the shop bolts in this case is no greater than that in Figure 10–31a. However, to provide more lateral stiffness, the fittings are cut from a 15-in. channel and are detailed to overlap the beam web sufficiently to permit four shop bolts on two gage lines.

A stool or pedestal, cut from a rolled shape, can be used with or without fillers to provide for the necessary m distance, as in Figure 10–31d. A pair of connection angles and a tee will also serve a similar purpose, as shown in Figure 10–31e. To provide adequate strength to

Figure 10–32. Welded raised-beam connections.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION, INC.

10–146

8