

BRACING FOR STABILITY[©]

Joseph A. Yura University of Texas at Austin

> Todd A. Helwig University of Houston

> > May 1995

Sponsored by:

Structural Stability Research Council American Institute of Steel Construction

RR3305

Bracing for Stability — State-of-the-Art

Joseph A. Yura¹, M. ASCE

Abstract

Design methods for stability bracing of columns, beams and frames are summarized. The importance of initial out-of-straightness on the brace strength and stiffness requirements is shown. Four types of bracing systems are described; relative, discrete, continuous and lean-on. Design examples (AISC - LRFD) illustrate the use of the bracing formulas.

Recommendations for lateral bracing and torsional bracing for beams are presented. Solutions for restrained beams with the top flange braced are given. It is shown that the inflection point cannot be considered a brace point. Stiffener requirements to control cross-section distortion are included in the method for designing cross frame and diaphragm bracing.

Introduction

A general design guide for stability bracing of columns, beams and frames is presented herein. The focus is on simplicity, not exact formulations. The design recommendations cover four general types of bracing systems; namely relative, discrete, continuous and lean-on, as illustrated in Figure 1. A relative brace controls the relative movement of adjacent stories or of points along the length of the column or beam. If a cut everywhere along the braced member passes through the brace, itself, then the brace system is relative as illustrated by diagonal bracing, shear walls, or truss bracing. A discrete brace controls the movement only at that particular brace point. For example, in Figure 1b the column is braced at points 1 by cross beams. A cut at the column midheight does not pass through any brace so the brace system is not relative, but is discrete. Two adjacent beams with diaphragms or cross frames are discretely braced at the cross frame location. Continuous bracing is self evident; the brace is continuously attached along the length of the member such as with siding for columns and metal deck forms for beams

¹ Warren S. Bellows Professor, Dept. of Civil Engineering, The University of Texas at Austin, Austin, TX 78712.

Figure 1 Types of Bracing Systems

during construction. A beam or column that relies on adjacent structural members for support is braced in a lean-on system. Structural members that are tied or linked together such that buckling of the member would require adjacent members to buckle with the same lateral displacement characterize lean-on systems as shown in Figure 1d. In the sway mode Member A leans on Member B.

An adequate brace system requires both strength and stiffness. A simple brace design formulation such as designing the brace for 2% of the member compressive force addresses only the strength criterion. Brace connections, if they are flexible, can have a very detrimental effect on stiffness as will be illustrated later. Before presenting the various bracing recommendations, some background mate-

rial on the importance of initial outof-straightness and member inelasticity on bracing effects will be discussed.

<u>Limitations</u>. The brace requirements presented will enable a member to reach the Euler buckling load between the brace points, i.e., use K = 1.0. This is not the same as the no-sway buckling load as illustrated in Figure 2 for the

YURA

braced cantilever. The ideal brace stiffness is 1.0 P_o/L corresponding to K = 1.0. A brace five times this stiffness is necessary to reach 95 percent of the K = 0.7 limit. Theoretically, an infinitely stiff brace is required to reach the no-sway limit. In addition, bracing required to reach specified rotation capacity or ductility limits is beyond the scope of this paper.

Background

Figure 3 Relative Brace

<u>Member-Out-of-Straightness</u>. Winter (1960) developed the concept of a dual criteria for bracing design, strength and stiffness, and he derived the interrelationship between them using simple models. He showed that the brace force is a function of the initial column out-of-straightness, Δ_o , and the brace stiffness β . The concept is illustrated for the relative brace system shown in Figure 3, where the brace, represented by the spring at the top of the column, controls the movement at the top Δ relative to the column base. Summation of moments about point A gives $P\Delta_T = \beta L(\Delta_T - \Delta_o)$ where $\Delta_T = \Delta + \Delta_o$. If $\Delta_o = 0$ (an initially perfectly plumb member), then $P_{cr} = \beta L$ which indicates that the load increases as the brace stiffness. The brace stiffness required in the sway mode to reach the load corresponding to Euler buckling between brace points, P_o , is called the ideal stiffness, β_i , where $\beta_i = P_o/L$ in this case.

For the out-of-plumb column, the relationship between P, β , and Δ_T is plotted in Figure 4a. If $\beta = \beta_i$, P_o can be reached only if the sway deflection gets very large. Unfortunately, such large displacements produce large brace forces, F_{br} , since $F_{br} = \beta \Delta$. For practical design, Δ must be kept small at the maximum expected load level. This can be accomplished by specifying $\beta > \beta_i$. For example if $\beta = 2\beta_i$, then $\Delta = \Delta_o$ at P_o as shown in Figure 4b. The larger the brace stiffness,

Figure 4 Effect of Initial Out-of-Plumb

YURA

the smaller the brace force. The brace force is a linear function of the initial outof-plumbness. The recommendations given later will assume a particular out-ofstraightens and a brace stiffness at least twice the ideal stiffness.

The bracing requirements for relative braces are Column Inelasticity. merely a function of the load on the member, as illustrated above. Other brace system requirements (continuous, lean-on) are based on the elastic or inelastic stiffness of the members to be braced as will be given later. In stability problems the effect of member inelasticity on the buckling solution can be reasonably approximated by using the tangent modulus stiffness E_T instead of the elastic modulus, E. The inelastic stiffness $E_T = \tau E$ where τ is the inelastic stiffness reduction factor. The elastic range is defined by the axial stress in the member, not the slenderness ratio. A member with low slenderness ratio (L/r) will respond elastically if the axial stress is low. In the AISC Specification an axial stress less than 0.3 F_y in ASD or 0.33 F_y in LRFD places the column in the elastic range. The AISC-ASD and LRFD Manuals of Steel Construction tabulate the stiffness reduction factor for P/A stress levels. In LRFD, $\tau = -7.38(P/P_y) \log (1.176 P/P_y)$ where Py is the yield load, FyA. The potential axial buckling capacity of a member is τ (.877) $\pi^2 \text{ EI/(KL)}^2$ for P/P_y $\geq 1/3$. For P/P_y < 1/3, $\tau = 1.0$. The τ factor will be used in some of the example problems.

Safety Factors, & Factors and Definitions

The recommendations presented are based on ultimate strength. Column and beam loads are assumed to be factored loads. For brace stiffness formulations, $a \phi = 0.75$ is recommended in LRFD. If the load calculations are based on service loads as in ASD, a factor of safety of 2.0 can be applied to the factored load stiffness requirements. The strength requirements use the built-in safety factors or ϕ factors within each design specification. In LRFD, the design brace force will be

based on factored loads and compared to the design strength of the member and its connections. In ASD, the brace force will be a function of the applied service loads, and this force will be compared to the allowable brace loads and connection capacity.

The displacement Δ_o for relative and discrete braces is defined with respect to the distance between braces as shown in Figure 5. In frames P is the sum of the column loads in a story to be stabilized by the brace. In the case of a discrete brace for a member, P would be the average load in the compression member above and below the brace point. The initial displacement Δ_o is a small displacement from the straight position at the brace points caused by sources other

Figure 5 Definitions

than the gravity loads or compressive forces. For example Δ_{\circ} would be a displacement caused by wind or other lateral forces, erection tolerance (initial out-ofplumb), etc. In all cases, the brace force recommendations are based on an assumed $\Delta_{\circ} = 0.002L$. For other Δ_{\circ} , use direct proportion. For torsional bracing of columns or beams, an initial twist β_{\circ} of 1° is used.

Relative Braces for Columns or Frames

DESIGN RECOMMENDATION	2 P	
LRFD, $\phi = 0.75$	$\beta_{\text{REQ'D.}} = \frac{1}{\phi L}$	$\mathbf{F}_{\mathbf{br}} = 0.004 \mathbf{P}$

The design recommendation is based on an initial out-of-plumbness = 0.002L and a brace stiffness twice the ideal value shown in Figure 4. Example 1 illustrates the bracing design. Each brace must stabilize 1500 kips. The cos functions are necessary to convert the diagonal brace to an equivalent brace perpen-

dicular to the column(s). Stiffness controls the design in this case. If Δ_0 is different from 0.002L, change F_{br} in direct proportion to the actual Δ_0 , but no change is necessary for β .

Discrete Bracing Systems for Columns

Discrete bracing systems can be represented by the model shown in Figure 6 for three braces. The exact solution taken from Timoshenko (1961) shows the relationship between P_{cr} and the brace stiffness, β . With no bracing $P_{cr} = \pi^2 E I/(4L)^2$. At low brace stiffness the buckling load increases substantially with the buckled shape a single (1st mode) wave. As the brace stiffness is increased,

Figure 6 Three Discrete Braces

the buckled shape changes and additional brace stiffness becomes less effective. Full bracing occurs at $\beta L/P_e = 3.41$. This ideal stiffness varies for equally spaced braces between 2.0 for one brace to 4.0 for a large number of braces. Thus 4.0 can be used conservatively for all cases. The design recommendation is based on full bracing assuming the load is at P_e .

DESIGN RECOMMENDATION	2 _ # 2 P	
LRFD, $\phi = 0.75$	$p_{\text{REQ'D}} = \# \frac{1}{\phi L}$	$F_{br} = 0.01P$
P = factored load, L = required brace	spacing, n = number of	braces, $\# \approx 4 - (2/n)$

Typically, P may be less than P_e so it is conservative to use the actual column load P to derive the design stiffness represented by the dashed line in Figure 6. Note that the required brace stiffness is inversely proportional to the brace spacing L. In many applications there are more potential brace points than necessary to support the required member forces. Closer spaced braces require more stiffness because the derivations <u>assume</u> that the unbraced length provided is just sufficient to support the column load. For example, say three girts are available to provide weak axis bracing to the columns. Say that the column load is such that only a single full brace at midspan would suffice. Then the required stiffness of the three brace arrangement could be conservatively estimated by using the permissible unbraced length in the brace stiffness equation rather than the actual unbraced length. The continuous bracing formula given in the next section more accurately represents the true response of Figure 6 for less than full bracing.

The design recommendation is based on twice the ideal stiffness to account for initial out-of-straightness. The recommended brace force is 1% of P (See Design Example 2). The value of # is based on equal brace spacing and is unconservative for unequal spacing. For unequal spacing, # can be simply derived using a rigid bar model between braces (Yura, 1994).

Continuous Bracing

For a column braced continuously, Timoshenko (1961) gives

$$P_{cr} = P_{e} \left(n^{2} + \frac{\overline{\beta}L^{2}}{n^{2}\pi^{2}P_{e}} \right)$$
(1)

where n = number of half sine waves in the buckled shape as shown by the solid line in Figure 7. As the brace stiffness per unit length $\overline{\beta}$ increases, the buckling load and n also increase. The switch in buckling modes for each n occurs when $\overline{\beta} L^2 / \pi^2 P_e = n^2 (n+1)^2$. Substituting this expression for n into Eq. (1) gives

$$P_{cr} = P_e + \frac{2L}{\pi} \sqrt{\beta} P_e$$
 (2)

Eq. (2) is an approximate solution, shown dashed in Figure 7, which gives the critical load for any value of $\overline{\beta}$ without the need to determine n. In the inelastic range use τP_e for P_e in Eq. (2).

Eq. (2) can also be used for discrete braces by defining $\overline{\beta} = \beta \times$ number of braces / L and by limiting $P_{cr} \le \pi^2 EI / \ell^2$ where ℓ is the distance between braces. This approach is accurate for two or more braces. For example, if there are two discrete braces, the ideal discrete brace stiffness is $\beta = 3P_e / \ell$ where $\ell = L/3$ and $P_{cr} = \pi^2 EI / \ell^2$. Using Eq. (2) with $\overline{\beta} = 2(3P_e / \ell)/L$ gives $P_{cr} = 1.01 (\pi^2 EI / \ell^2)$.

The bracing design recommendation given below is based on Eq. (2) with $\overline{\beta}$ adjusted by a factor of two to limit the brace forces, adding a $\phi_{br} = 0.75$, and

using $P_o = 0.85$ (.877) τP_E which is the AISC-LRFD column design strength. formula. The brace strength requirement $\overline{F}_{br} = \pi^2 P \Delta_T / L_o^2$ was developed by Zuk (1956) where L_o is the max theoretical unbraced length that can support the column load. Taking $\Delta_T =$ $2\Delta_{o}$ and $\Delta_{o} = 0.002 L_{o}$ gives $\overline{F}_{br} = 0.04 P / L_{a}$.

Figure 7 Continuous Bracing

DESIGN RECOMMENDATION LRFD	$\phi_{\rm c} P_{\rm cr} = P_{\rm o} + (L/\pi) \sqrt{2 \phi_{\rm br} \overline{\beta} P_{\rm o}} ; F_{\rm br} = 0.04 \text{ P/L}_{\rm o}$ where $P_{\rm o} = \phi_{\rm c} (.877) \tau P_{\rm c}, \phi_{\rm c} = 0.85, \phi_{\rm br} = 0.75$
----------------------------------	--

Lean-On Systems

When some members lean-on adjacent members for stability support (bracing), the ΣP concept (Yura, 1971) can be used to design the members. The approach will be explained using the problem shown in Fig. 8, in which Col. A has a load P with three connecting beams attached between Cols. A and B. There are two principal buckling modes for this structure, the no sway and the sway modes. If Col. B is sufficiently slender, the system will buckle

in the sway mode, shown by the dot-dash line in Figure 8a. In the sway mode the buckling strength involves the sum (ΣP_{cr}) of the buckling capacity of each column that sways. The system is stable in the sway mode if the sum of the applied loads (ΣP) is less than the ΣP_{cr} . This assumes all the columns have the same height. If Col. B is sufficiently stiff, the buckling capacity may be controlled by the no sway mode shown dashed. Both modes must be checked.

An exact elastic solution, developed with the ANSYS computer program, shows that as I_B increases, the Pcr increases linearly in the sway mode. At $I_B/I_A \ge$ 15.3, Col. A buckles in the no sway mode. The I_b required to develop full bracing can be approximated using the ΣP concept. In the sway mode, the elastic capacities of Cols. A and B are $\pi^2 E I_A/(4L)^2$ and $\pi^2 E I_B/(4L)^2$, respectively. The desired P_{cr} corresponding to the no sway mode is $\pi^2 E I_A/L^2$. Equating the sum of the sway capacities to the P_{cr} in the no sway mode,

$$\pi^{2}E(I_{A} + I_{B} / (4L)^{2} = \pi^{2}EI_{A}/L^{2}$$

gives $I_B = 15I_A$ which is close to the exact solution of $I_B = 15.3 I_A$. In the inelastic range, τ_i is used where τ_i is based on the axial load in each column, P_i . There can be axial load on all the columns.

Example 3, which is similar to a problem solved by Lutz (1985), shows a $W12 \times 40$ with its weak axis in plane supported by an adjacent column $W12 \times 26$ with the strong axis in-plane. The tie beams have shear only end connections so it is assumed that the tie beams do not contribute to the sway-stiffness of the system. Sway is prevented at the top of the columns. The $W12 \times 40$ has been sized based on buckling between the supports, L = 8 ft. The calculations show that the elastic $W12 \times 26$ adjacent column can brace the weak axis column which is in the inelastic range. A $W12 \times 19$ section would also be satisfactory.

Strength of Beams with Bracing

Before beam bracing design requirements are presented, some background material on flexural-torsional buckling of beams (usually just called lateral buckling) will be summarized. A beam with an unbraced length L_b will bend laterally and twist at a critical moment given by $M_{cr} = C_b(\pi/L_b) \sqrt{EI_yGJ + \pi^2E^2I_yC_w/L_b^2}$ as given in the AISC-LRFD Specifications. C_b is modification factor that accounts for variations in the moment diagram and support conditions. The unbraced length is defined as the distance between points braced against lateral displacement of the compression flange or between points braced to prevent twist of the cross section. Bracing systems for beams must prevent the <u>relative</u> displacement of the top and bottom flanges, i.e. twist of the section. Lateral bracing (joists attached to the top flange of a simply supported beam) and torsional bracing (cross frame or diaphragm between adjacent girders) can effectively control twist. M_{cr} is also affected by the load position (top flange loading is more detrimental) and end restraints (Galambos, 1988).

The suitability of assuming the inflection point as a brace point in restrained beams to define L_b is frequently raised. In many cases the top flange is laterally braced by the slab or joists all along the span while the bottom flange is unbraced. An inflection points cannot be considered a brace point as illustrated by the example shown in Figure 9. One beam has a moment at one end $(C_b = 1.67)$ with $L_b = L$ and the other beam has an inflection point at midspan ($C_b = 2.3$) with $L_b = 2L$. The 2L span with the inflection point will buckle at a load that is 68% of the beam with span L. If the inflection point is a brace point, the critical moment of both beams would be the same. The buckled shape of the 2L beam shows that the top flange and bottom flange move laterally in opposite directions at midspan. Even an actual brace on one flange at the

inflection point does not provide effective bracing at midspan.

The cases discussed above were solved using a finite element computer program and approximate C_b formulas developed as given in Figure 10. These C_b values can be used in design with L_b = span length if twist is positively controlled only at the supports. Three general cases are derived: bracing only at the ends, top flange laterally braced with top flange gravity loading and top flange braced with uplift loading. The C_b formula for Case I was adapted from Kirby and Nethercot (1979).

YURA

Beam Bracing

Two types of bracing systems are available: lateral bracing and torsional bracing. A general discussion of beam bracing and the development of the design recommendations herein are presented elsewhere (Yura, 1993). Lateral bracing can be relative, discrete, continuous or lean-on. Only relative and discrete lateral bracing requirements are presented here. Continuous bracing is addressed by Trahair (1982) and Yura (1992). Beams that are linked together lean-on each other and the lateral buckling cannot occur at the links unless all the members buckle. Buckling of an individual beam can occur only between the cross members in a lean-on system. No additional bracing requirements are necessary in lean-on systems.

If two adjacent beams are interconnected by a properly design cross frame or diaphragm at midspan, that point can be considered a brace point when evaluating the beam buckling strength. Since the beams can move laterally at midspan, the effectiveness of such a bracing system is sometimes questioned. As long as the two flanges move laterally the same amount, there will be no twist. If <u>twist</u> is prevented, the beam can be treated as braced. Tests and theory confirm this approach (Yura, 1992)

Lateral Bracing. The effectiveness and size of a lateral brace depends on its location on the cross section, the moment diagram, the number of discrete braces in the span, and location of load on the cross section. Lateral bracing is most effective when it is attached to the compression flange. The exception to this is for cantilevers where top (tension) flange bracing is effective. The design provisions herein are applicable only for bracing attached near the compression flange. The provisions also assume top flange loading which is a worse case. When the

LATE	RAL BRA	CE DESIGN RECOMMENDATIO	DNS, LRFD, $\phi = 0.75$
		Relative	Discrete
	Stiffness:	$\beta_L = 2.5 M_f C_d / \phi L_b h$	$\beta_{\rm L} = 10 M_{\rm f} C_{\rm d} / \phi L_{\rm b} h$
	Strength:	$F_{br} = 0.004 M_f C_d / h$	$F_{br} = 0.01 M_f C_d /h$
where	$M_{f} = C_{d} =$	max. moment, $h = beam depth$, L_b 1.0 single curvature, = 2.0 reverse	= unbraced length curvature

beam has an inflection point lateral bracing must be attached to both flanges and the stiffness requirements are greater as given by the C_d factor in the brace requirements. For example, for a beam in reverse curvature as shown in Figure 8, a brace on both the top and bottom flange at midspan will require twice as much stiffness as a similar length beam with compression on only one flange.

The lateral bracing provisions are illustrated in Example 4 where a top flange relative brace truss system is used to stabilize the compression flange during construction of the composite plate girders. Each truss system must stabilize 2.5 girders.

<u>Torsional Bracing</u>. Cross frames or diaphragms at discrete locations or continuous bracing provided by the floor system in through girders or Pony trusses, or by metal decks and slabs represent torsional bracing systems. In the development of the design recommendations (Yura, 1993), it was determined that factors that had a significant effect on lateral bracing had a substantially reduced effect on torsional bracing. The number of braces, top flange loading and brace location on the cross section are relatively unimportant when sizing a torsional brace. A torsional brace is equally effective if it is attached to the tension flange or the compression flange. A moment diagram with compression in both flanges (reverse curvature) does not alter the torsional brace requirements.

On the other hand, the effectiveness of a torsional brace is greatly affected by cross section distortion at the brace point as illustrated in Figure 11. The top flange is prevented from twisting by the torsional brace but the web distortion permits a relative displacement between the two flanges. A stiffener at the brace location can be used to prevent the distortion. The design method considers web

distortion and any required stiffeners. Discrete braces and continuous bracing use the same basic design formula.

The continuous bracing stiffness $\overline{\beta}_{T} = \beta_{T} n/L$ where β_{T} = discrete brace stiffness, n = number of braces and L = span length. β_{T} and $\overline{\beta}_{T}$ are defined as the torsional stiffnesses of the bracing system. The system stiffness β_{T} is primarily related to the stiffness of the brace, β_{b} , and the stiffness of the web plus any stiffeners, β_{sec} , by

Figure 11

٦

$$\frac{1}{\beta_T} = \frac{1}{\beta_{\text{sec}}} + \frac{1}{\beta_b}$$
(3)

The β_b for diaphragm systems is given in Figure 12. The discrete web-stiffener detail can vary over the web as shown in Figure 13. The stiffness of each portion of the web is given by

$$\beta_{c}, \beta_{s}, \beta_{t} = \frac{3.3E}{h_{i}} \left(\frac{h}{h_{i}}\right)^{2} \left(\frac{(1.5h_{i})t_{w}^{3}}{12} + \frac{t_{s}b_{s}^{3}}{12}\right)$$
(4)

where $1/\beta_{sec} = \Sigma(1/\beta_i)$ and t_s is the thickness of the stiffener. For continuous bracing, replace 1.5h with 1 in. and neglect the t_s term if there is no stiffener. The design recommendations were developed for singly and doubly symmetric sections. The portion of the web within h_b can be considered inifintely stiff. For rolled sections (h/t_w < 60) cross-section distortion will not be significant if the diaphragm connection extends at least one-half the web depth. An initial twist of 1° (0.0175 radians) was used to develop the strength requirement, M_{br}.

Figure 12 Diaphragm β_b

Figure 13 Partially Stiffened Webs

YURA

In EXAMPLE 5 a diaphragm torsional bracing system is used for the problem given in EXAMPLE 4. The C9 \times 13.4 diaphragm will not brace the girders if a stiffener is not used. Even a much larger diaphragm cannot work without web stiffeners because of the web distortion. Similar example problems using cross frames are given elsewhere (Yura, 1993).

Summary

Brace design requirements involve both stiffness and strength. Care should be exercised when using published solutions that do not consider initial out-ofstraightness. The recommendations contained here cover many practical situations. Work is underway to incorporate bracing recommendations in various steel design specifications which are currently lacking on the topic of bracing.

<u>REFERENCES</u>

- Galambos, T.V., Ed., 1988, Guide to Stability Criteria for Metal Structures, 4th Ed., Structural Stability Research Council, Wiley.
- Kirby, P., and Nethercot, D., 1979, Design for Structural Stability, Wiley.
- Lutz, A.L., and Fisher, J. 1985, "A Unified Approach for Stability Bracing Requirements," Engrg. Journal, Amer. Inst. of Steel Constr., Vol. 22, No. 4, pp. 163-167.
- Timoshenko, S. and Gere, J., 1961, Theory of Elastic Stability, New York, McGraw-Hill Book Company
- Trahair, N.S., and Nethercot, D.A., 1982, "Bracing Requirements in Thin-Walled Structures," chapter 3, Developments in Thin-Walled Structures, Vol. 2, Rhodes and Walker, Ed., Elsevier, pp. 93-129.
- Winter, G., 1960, "Lateral Bracing of Columns and Beams," Transactions, ASCE, Vol. 125, Part 1, pp. 809-825.
- Yura, J.A., 1971, "The effective length of columns in unbraced frames," Engrg. Journal, Amer. Inst. of Steel Const., Vol. 8, No. 2, pp. 37-42.
- Yura, J.A., Phillips, B., Raju, S., and Webb, S., 1992, "Bracing of Steel Beams in Bridges," Research Report 1239-4F, Center for Transportation Research, Univ. of Texas, October, 80 pp.
- Yura, J.A., 1993, "Fundamentals of Beam Bracing," Proceedings, Structural Stability Research Council Conference, "Is Your Structure Suitably Braced?" Milwaukee,.
- Yura, J.A., 1994, "Winters Bracing Model Revisited," 50th Anniversary Proceedings, Structural Stability Research Council, pp.
- Zuk, W., 1956, "Lateral Bracing Forces on Beams and Columns," Journal of the EM Division, ASCE, Vol. 82, No. EM3, July.

SUMMARY OF BRACING RECOMMENDATIONS

(B)

1/15

Joseph A. Yura Department of Civil Engineering The University of Texas at Austin Austin, TX

March 1995

BRACING DESIGN J. A. YURA

UNIV. OF TEXAS

Fig. 5 shows that P_e can be reached for $\beta = \beta_i$ only if the deflection get very large. Unfortunately such large displacements produce large brace forces. At $P = 0.9P_e$, $\Delta_T = 10A$, and $F_{br} = 1.8$ % P_e as shown in Fig. 6. For practical design the brace stiffness must be larger than β_i so brace forces will be more reasonable. If $\beta = 2\beta_i$ is chosen for design, $\Delta = \Delta'$ at P_e and $F_{br} = 0.4$ %. Usually, the brace stiffness provided is much larger than $2\beta_i$ and this will reduce the brace force required at P_e even further because Δ is reduced. For example, if $\beta = 10\beta_i$, $F_{br} = 0.22$ % P_e . At $\beta = 1.25\beta_i$, $F_{br} = 2\% P_e$

 $F_{br} = \beta \Delta = \frac{\rho}{L} \left(\Delta + \Delta_{o} \right) = \beta L \left(\frac{\Delta_{o}}{L} \right) \left(\frac{\beta L}{\beta L - 1} \right)$

DESIGN RECOMMENDATION	$\beta_{REQ'D} = \frac{2P}{\Phi L} ; F_{F} = 0.004P$
LRFD	where $P = factored load$ L=distance between braces, $\phi = 0.75$

The brace force recommondation is based on the assumption that $\Delta_{s} = 0.002 \text{ L}$. Δ_{o} is the displacement at the brace point caused by wind or other lateral forces, erection tolerance (initial out-of-plumb), bolt hole oversize, etc. If Δ_{o} is different from 0.002 L, change the Fbr in direct proportion to the actual Δ_{o} . No change is necessary for β .

 $\frac{\text{Design Example}}{\frac{150^{k}}{250^{k}}} = 100^{k}$ The factored load on each bent = (150+250+100^{k}) = 500^{k}
Typical brace must stabilize 3 bents so P=3×500=1500 k diaphragm Design recommendations assume For and A are perpendicular to the column: A36 steel $\frac{100^{k}}{120^{k}}$ $\frac{12^{\prime}}{12^{\prime}}$ Brace Force: $0.004(1500)/cos\theta = 6.99^{k}$ ($\frac{5}{8}$ threaded rod=10.0^k, Stiffness: $\frac{A_{b}E}{L_{b}}cos^{2}\theta = \frac{2(1500)}{0.75(12)}$; $A_{b}=0.364$ in $\frac{340}{340}$, $A_{g}=.44$)

where
P=factored load, L=regid bracing spacing
q=0.75, # between 2-4 from table
or #≈4-(2/n), n=no. braces

J.A. YURA

UNIV OF TEXAS

- For single point braces, Eq.(4) must be limited to $P_{er} = \pi^2 EI/a^2$ where "a" is the distance between braces. The use of Eq.(4) for single point braces is accurate for 2 or more braces. For one brace, use $\overline{B_L} = B_L/.75L$ or the single brace approach on sheet B.
- * In LRFD, 2= -7.38 (P/Py) log [(P/P3)/0.85]; in ASD use the stiffness reduction factor on p 3-8 9th Ed Alsc ASD Manual (sample on p. E

P= factored column load, Py= yield load, FyA

- CITER TO BE AND A STATE

	+ /-		-	
	1	FI	f.	
13		¥1	1	
		ţ,	1	
		t		
		E		
		Ę.	1	
		Pl	1	
		1		
and the second second				
	•.			
			1	
			£. '	
S. Sheeterse 1	i			
	1		- ·	
	Å		ł	
			Line Line	
				i.
	£ 1	.		
		8	1	
		Ľ		
	E.		minutive	
			1	
			1	
and the second		Children	1	
	1		****	
	L .		3	
A Start Contractor				
			6	
			1.1.44	
		1000	100 m	
		y was a second se		
	ŧ.			
			13	
	ŧ.			
			fethu-	
			4	
	E		1	
	ł		1.4	
	Į		A Dest	
			i i	
And		-	K. 7. (

3 - 8	,	7	9	thE	d itu	, m 1	415C	6/1
$F_y = 36 \text{ ksi}$ Table A $F_y = 50 \text{ ksi}$ Stiffness Reduction Factors f_a/F_e'								
fa	F 36 ksi	, 50 ksi	fa	F 36 ksi	, 50 ksi	fa	/ 36 ksi	y 50 ksi
28.0 27.9 27.8 27.7 27.6 27.5 27.4 27.3 27.2 27.1		0.097 0.104 0.112 0.120 0.127 0.136 0.144 0.152 0.160 0.168	21.9 21.8 21.7 21.6 21.5 21.4 21.3 21.2 21.1 21.0		0.614 0.622 0.630 0.637 0.645 0.653 0.660 0.668 0.675 0.683	15.9 15.8 15.7 15.6 15.5 15.4 15.3 15.2 15.2 15.1 15.0	0.599 0.610 0.621 0.632 0.643 0.653 0.664 0.675 0.684 0.695	0.956 0.959 0.962 0.964 0.967 0.970 0.972 0.974 0.977 0.979
27.0 26.9 26.8 26.7 26.6 26.5 26.4 26.3 26.4 26.3 26.2 26.1		0.177 0.184 0.193 0.202 0.210 0.218 0.227 0.236 0.245 0.245 0.253	20.9 20.8 20.7 20.6 20.5 20.4 20.3 20.2 20.1 20.0		0.689 0.697 0.704 0.712 0.718 0.725 0.732 0.739 0.746 0.753	14.9 14.8 14.7 14.6 14.5 14.4 14.3 14.2 14.1 14.0	0.704 0.715 0.724 0.734 0.743 0.753 0.762 0.770 0.780 0.789	0.981 0.983 0.985 0.987 0.988 0.990 0.991 0.993 0.994 0.995
26.0 25.9 25.8 25.7 25.5 25.5 25.4 25.3 25.2 25.2		0.262 0.271 0.280 0.288 0.297 0.306 0.315 0.324 0.333 0.342	19.9 19.8 19.7 19.6 19.5 19.4 19.3 19.2 19.1 19.0	0.125 0.136 0.147 0.158 0.169 0.181 0.193 0.204 0.216 0.228	0.760 0.768 0.772 0.778 0.785 0.792 0.798 0.804 0.810 0.816	13.9 13.8 13.7 13.6 13.5 13.4 13.3 13.2 13.2 13.1 13.0	0.797 0.805 0.814 0.822 0.830 0.838 0.845 0.853 0.860 0.868	0.996 0.997 0.998 0.998 0.999 0.999 1.000
25.1 25.0 24.9 24.8 24.7 24.6 24.5 24.4 24.3 24.2 24.2		0.350 0.359 0.368 0.377 0.386 0.394 0.403 0.412 0.421	18.9 18.8 18.7 18.6 18.5 18.4 18.3 18.2 18.1 18.0	0.241 0.252 0.264 0.277 0.288 0.301 0.314 0.326 0.338 0.350	0.822 0.827 0.833 0.839 0.844 0.849 0.855 0.860 0.865 0.865 0.871	12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0	0.874 0.881 0.888 0.895 0.901 0.907 0.913 0.918 0.924 0.929	
24.1 24.0 23.9 23.8 23.7 23.6 23.5 23.4 23.3 23.4 23.3 23.2		0.430 0.439 0.447 0.456 0.465 0.473 0.482 0.482 0.490 0.499 0.507	17.9 17.8 17.7 17.6 17.5 17.4 17.3 17.2 17.1 17.0	0.363 0.375 0.387 0.400 0.411 0.424 0.436 0.448 0.460 0.472	0.875 0.880 0.885 0.890 0.894 0.839 0.903 0.903 0.908 0.912 0.917	11.9 11.8 11.7 11.6 11.5 11.4 11.3 11.2 11.1 11.0	0.934 0.939 0.944 0.953 0.958 0.958 0.962 0.966 0.970 0.973	1111111
23.1 23.0 22.9 22.8 22.7 22.6 22.5 22.5 22.5 22.4 22.3 22.2		0.516 0.524 0.533 0.541 0.549 0.557 0.565 0.565 0.574 0.582 0.590	16.9 16.8 16.7 16.6 16.5 16.4 16.3 16.2 16.1 16.0	0.484 0.496 0.508 0.519 0.531 0.543 0.554 0.555 0.577 0.588	0.920 0.924 0.928 0.932 0.935 0.939 0.942 0.946 0.950 0.952	10.9 10.8 10.7 10.6 10.5 10.4 10.3 10.2 10.1 10.0	0.976 0.979 0.982 0.984 0.987 0.989 0.989 0.991 0.993 0.995 0.996	
22.1 22.0	=	0.598 0.606				9.9 9.8 9.7 9.6	0.997 0.998 0.999 1.000	

American Institute of Steel Construction

9/15

Try 4in. brick wall - From Recommended Building Code Requirements for Engineered Brick Mosonry' min allow shear stren = 4Cpsi Fallow = 40[4 × 20(12)] = 38.4 × 74.08 + 05 USE 4 in brick Stiffness - From The Behavior of One Story Brick Shear Walls by Benjamin & Williams Proc. ASCE Vol. 84 July 1958 B= 200 b/Le × brick thickness = 1330 E/PT > 340 DE

10/15

TEXAS UNN. OF J.A. YURA BRACING EXAMPLE 4 Notes: 1 Bracing must be adequate to stabilize - Multistory Frame the structure under gravity load abne and combined wind and gravity load. 2. Axial loads in the columns due to gravity load alone are shown for a typical bent. 11 50K 100^K 5Ő 100 Axial loads are the same in the "unbraced' bents. Floor diaphragms or bracing are used to transmit the wind shears and PD overturning Type 2 Construction - simple framing, Fy= 36 ksi. moments to the braced bent. Bracing every third bent 3. Even though the wind forces alter Wind shear per bent (this level) = 6.5k the distribution of the axial forces in the columns, the sum of the column Bracing read to stabilize Wind shear = 3(6.5") = 19.5" loads must be equal to the applied gravity loads so the shears due to Col. gravity bads = 3(50+100+100+50)=900k The PA moments are unaffected. 4. Use 33% increase in allowable stresses Brace stability requirements - relative brace for the combined load case. $F_{pr} = 0.004 (900^{k}) = 3.6^{k}$ $\beta_{PPO'P} = 4P/L = 4 (900)/11' = 328^{k}/FT$ <u>Gravity</u>: Stiffness: $\frac{A_{bF}}{L_{br}} \cos^2 \theta = 328^{E/FT}$; $A_{br} = \frac{328(35.8)}{29,000} (\frac{35.8}{34})^2 = 0.451 \text{ in}^2$ Strength: $F_{br} = 0.004 P = 0.004(900) = 3.6^{k} F_{b}/cos \theta = 3.8^{k}$ Abrnet = 3.8/6Fy = 3.8/22 = 0.173 in Gravity plus Wind:

Stiffness: - no change from gravity
$$A_{brgross} = 0.451 \text{ in}^2$$

Strength: $A_{br} = \frac{19.5}{1.33(22)\cos\theta} + \frac{3.8}{1.33(22)} = 0.830 \text{ in}^3 - \text{controls}$
(Anet)

use $1\frac{1}{4}$ ϕ Threaded Rod $(A_{\text{Net}} = 0.969 \text{ in}^2)$

brace Note that the strength requirement for gravity loads is added to the requirement for wind alone. Do not add the larger stiffness requirement.

$$\frac{11/15}{12}$$
BRACING
JAYUPA
UNN. OF TEXAS
$$\frac{1}{4}$$

$$\frac{1}{12}$$

÷

5 J. A. YURA UNIN. OF TEXAS BRACING EXAMPLE G 1 180K Siding 22 ga. Is the 22 ga siding sufficient (+=0.0299)(to support the girls so that the columns are braced at the one-third points? Siding is attached to the girts in a standard 8 Girt manner using screws for fasteners. 20' Assume a 20ft width of siding supports each column From AISI Booklet "Design of Light Gage Steel Diaphragms" 22ga × 20 E Fallow = 0.180 K/FT × 20' = 3.6" B = 1260 K/FT Relative Brace (siding prevents the girts from moving relatively) F_{REQ'D} = 0.004(180) = 0.72K2 3.6K OK 22ap. Siding OK BREGD = 4P/L = 4(180)/8 = 90<1260 /FT OK EXAMPLE 7 How much weld is required so that the joist -Joists will adequately brace the beam Tred the compression region of the beam as acdumn. 71^{k} = 83^{kft} P=71^k -W 14 × 30 M = 83 kftPoint brace (for connector requirements) Breid=71 K/FT F_= 0.01 P=0.01 (71) = 0.71 K Typical metal floor decks provide approximately lotimes this required USE x 3, V 0-5, (Tack) stiffness. Metal deck with 21/2 in. concrete fill provides 30 times Floor system -diaphragm -relative brace prevents the relative movement of adjacent joists . $B_{REQ'D} = 4P/L = 4(71)/4' = 71^{E/FT}$ this stiffness. Normal fasteners that connect the deck to the josts can transfer the 0.57" free. TENSION FLANGE BRACING - brace - must have bending stiffness Ib BREQ'D = 16P/L ; F= 0.008P M=Fd tension fla $\Box = F$ A = F $A = \frac{4EI_b}{Sd^2} - solve for I_b$ assumed no cross section distortion; check brace for bending moment, M/z = Fd/z

12/15

J. A. YURA

UNIV OF TEXAS

13/15

6

Continuous Bracing by Shear Diaphragms

This development is based on the work of <u>M.A. Larson</u>, Discussion of "Lateral Bracing of Columns and Beams" by G. Winter, Journal of the Structural Division, ASCE, Vol. 84, No ST5, September 1958

Shear stiffness, G Definition: length of member width to be braced $G' = \frac{F/b}{\Delta'}$ diaphragm shear stiffness Gradian per foot of width Get G' for Light Gage Steel Diaphragms from American Iron and Steel Institute bocklet "Design of Light Gage Steel Diaphragms". $bG' = P(1 + \frac{\Delta_o}{\Delta}) - P_{all}$ and $V_{REQ'D} = P\frac{\pi}{L}(\Delta + \Delta_o) - P_{all}\frac{\pi}{L}\Delta$ Theory: P= compressive load to be carried by the member to which the diaphragm is continuously attached along the length Pall = allowable load on the member (if no bracing is provided VRED'D = required shear strength for the diaphragm A.A. = deformations - see definitions on p.1 Design: - Same assumptions as on sh.#1 <u>STIFFNESS</u>: $bG'_{REQD} = 4(P - \frac{P_{all}}{2})$ and <u>STRENGTH</u> $V_{all} = 0.013(P - \frac{P_{all}}{2})$ or conservatively G'= 4Pb and Vall= 0.013P Same as Example 6 except that the diaphragm is attached to the columns along the entire 24' length of the column. Determine if the 22ga. corrugated siding is sufficient to brace the column carrying 180° Front the column for the col EXAMPLE 8 Load Factor From the AISI booklet G'= 2170/FT ; V = 0.487 4/FT x20'= 9.74 4/2.7 Diaphragm Requirements: -Simply 6'= 4 (180)/20 = 36 #/FT < 2170/FT OF Note that the conservative formulas do T not require a knowledge of the column sizes $V = 0.013(180) = 2.34^{k} < \frac{9.74}{27} = 3.6^{0k}$ 22ga. diaphragm is OK even using the conservative formulas

TABLE 21

LOAD FACTORS FOR DESIGN OF LIGHT GAGE STEEL DIAPHRAGMS

Type of	Load Factor®				
Connections Used	Wind or Earthquake	Gravity Live Load	Gravity Dead Load		
Mechanical Fasteners	2.5**	2.7	2.0		
Welded Connections	2.4	3.0	2.3		

The load factors given are for diaphragm action only.
** When backed-up fasteners (bolts, rivets, spreading back fasteners or the like) are used as intermediate side lap fasteners, the load factor may be reduced to 2.1 for wind or earthquake only.

The load factors of Table 2.1 are consistent with other pertinent safety provisions of the AISI Specification for the Design of Light Gage Cold-Formed Steel Structural Members.

Diaphragm Strength 5_= .14 + 11.5t where $S_u = k_{ips}$ per toot of diaphragm t = thickness in inches

Fallow = Su I rad Factor

Tested Shear Stiffness for 21/2" x 1/2" Standard Corrugated Steel Diaphragms (Thickness of Panels = 0.0198 in.)

14/15

BRACE STIFFNESS REQUIREMENT

The derivation assumes that the unbraced length provided is just sufficient to permit a load P on the column. When there are more braces than necessary to permit the column to support the load, it is conservative to use the permissible unbraced length rather than the actual unbraced length in the formulas for BREQD.

EXAMPLE 6a - Redo example & with a W10x39 column

Pallow = 213 kips (AISC Column Tables) L= 8' so unbraced length could be greater than 8°. From the column load tables, the umbraced length corresponding to 180 kips is 13'. Therefore $\beta_{\text{REQD}} = \frac{4P}{L} = \frac{4(180)}{13} = 55 \text{ M/FT}$ (In Ex. 6 B= 90 WPT WHEN L= 8' WAS USED)

15/

8

\$

ΣΡ CONCEPT - LEAN ON BRACING

EXHMILE

$$\frac{1}{1} \frac{1}{1} \frac{1}$$

J.A. YURA

HOW MUCH TORSIONAL BRACING IS REQUIRED @ MIDSPAN TO FORCE BUCKLING BETWEEN THE BRACE POINTS?

TORSIONAL BRACE LOCATION 200 Centroidal 160 Brace lateral movement 120 P_{cr} (kips) prevented rotational 80 spring IPEAL 40 BRACE 64 W16x26 0 300 200 0 100 (in-k/rad) β_T

A COMPUTER ANALYSIS YIELDS THE FOLLOWING RESULTS:

How to calculate the ideal torsional brace stiffness

$$\frac{1}{2} + \frac{1}{2} +$$

•.

TORSIONAL BRACING DESIGN RECOMMEDATIONS

1

- Use the provisions outlined for load height in cases with no intermediate bracing, and top flange loading.
- Avoid cases with top flange loading such as the following:

F

BEAMS - 6

L_b/d=5

0.4

0.5

- P (Point Load)

0.2

- w (Uniform Distributed Load)

 $\rho = l_{yc}/l_y$

E

0.3

C_b*

0.9

0.8 L 0

0.1

(

Ę.

``

TECHNICAL PAPERS

Lateral Buckling of Coped Steel Beams. Jung-June R. Cheng, Joseph A. Yura, and C. Philip Johnson1

(

shown in Fig. 2(a). For example, at $P = 0.95P_{cr}$ and $\Delta_0 = L_b / 500$, the brace force is 7.6% of P_e which is off the scale of the graph. Theoretically the brace force will be infinity when the buckling load is reached if the ideal brace stiffness is used. Thus, a brace system will not be satisfactory if the theoretical ideal stiffness is provided because the brace forces get too large. If the brace stiffness is overdesigned, as represented by the $\beta_L = 2\beta_i$ and $3\beta_i$ curves in Fig. 2(b), then the brace forces will be more reasonable. For a brace stiffness twice the ideal value and a $\Delta_0 = L_b / 500$, the brace force is only $0.8\%P_e$ at $P = P_e$, not infinity as in the ideal brace stiffness case. For a brace stiffness ten times the ideal value, the brace force will reduce even further to 0.44%. The brace force cannot be less than 0.4%P corresponding to $\Delta = 0$ (an infinitely stiff brace) for $\Delta_0 = L_b / 500$. For design $F_{br} = 1\%P$ is recommended based on a brace stiffness of twice the ideal value and an initial out-of-straightness of $L_b / 500$ because the Winter model gives slightly unconservative results for the midspan brace problem (Plaut, 1994).

Published bracing requirements for beams usually only consider the effect of brace stiffness because perfectly straight beams are considered. Such solutions should not be used directly in design. Similarly, design rules based on strength considerations only, such as a 2% rule, can result in inadequate bracing systems. Both strength and stiffness of the brace system must be checked.

Beam Bracing Systems

Beam bracing is a much more complicated topic compared to column bracing. This is due mainly to the fact that most column buckling involves primarily bending whereas beam buckling involves both flexure and torsion. An effective beam brace resists twist of the cross section. In general bracing may be divided into two main categories, lateral and torsional bracing as illustrated in Fig. 3. Lateral bracing restrains lateral displacement as its name implies. The effectiveness of a lateral brace is related to the degree that twist of the cross section is restrained. For a simply supported beam subjected to uniform moment, the center of twist is located at a point outside the tension flange; the top flange moves laterally much more than the bottom flange. Therefore, a lateral brace restricts twist best when it is located at the top flange. Lateral bracing attached at the bottom flange of a simply supported beam is almost totally ineffective. A torsional brace can be differentiated from a lateral brace in that twist of the cross section is restrained directly, as in the case of twin beams with a cross frame or diaphragm between the members. The cross frame location, while able to displace laterally, is still considered a

E.

Fig. 3 Types of Beam Bracing

brace point because twist is prevented. Some systems such as concrete slabs can act both as lateral and torsional braces. Bracing that controls both lateral movement and twist is more effective than lateral or torsional braces acting alone (Tong and Chen, 1988; Yura, 1992). However, since bracing requirements are so minimal, it is more practical to develop separate design recommendations for these two types of systems.

Lateral bracing can be divided into four categories: relative, discrete, continuous and lean-on. A relative brace system controls the relative lateral movement between two points along the span of the

-

a half sine curve. Even though there is lateral movement at the brace point, the load increase can be more than three times the unbraced case. The ideal brace stiffness required to force the beam to buckle between lateral supports is 1.6 k/in. in this example. Any brace stiffness greater than this value does not increase the beam buckling capacity and the buckled shape is a full sine curve. When the brace is attached at the top flange, there is no cross section distortion. No stiffener is required at the brace point.

A lateral brace placed at the centroid of the cross section requires an ideal stiffness of 11.4 k/in. if a 4 x 1/4 stiffener is attached at midspan and 53.7 k/in. (off scale) if no stiffener is used. Substantially more bracing is required for the no stiffener case because of web distortion at the brace point. The centroid bracing system is less efficient than the top flange brace because the centroid brace force causes the center of twist to move <u>above</u> the bottom flange and closer to the brace point which is undesirable for lateral bracing.

For the case of a beam with a concentrated centroid load at midspan, shown in Fig. 7, the moment varies along the length. The ideal centroid brace (110 k/in.) is 44 times larger than the ideal top flange brace (2.5 k/in.). For both brace locations cross section distortion had a minor effect (<3%). The maximum beam moment at midspan when the beam buckles between the braces is 1.80 times greater than the uniform moment case which is close to the $C_{\rm b}$ factor = 1.75 given in specifications (AISC, AASHTO). This higher buckling moment is the main reason why the ideal top flange brace requirement is 1.56 times greater (2.49 vs. 1.6 k/in.) than the uniform moment case.

Figure 8 shows the effects of load and brace position on the buckling strength of laterally braced beams. If the load is at the top flange, the effectiveness of a top flange brace is greatly reduced. For example, for a

Fig. 6 Effect of Lateral Brace Location

Fig. 8 Effect of Load and Brace Position

brace stiffness of 2.5 k/in., the beam would buckle between the ends and the midspan brace at a centroid load close to 50 kips. If the load is at the top flange, the beam will buckle at a load of 28 kips. For top flange loading, the ideal top flange brace would have to be increased to 6.2 k/in. to force buckling between the braces. The load position effect must be considered in the brace design requirements. This effect is even more important if the lateral brace is attached at the centroid. The results shown in Fig. 8 indicate that a centroid brace is almost totally ineffective for top flange loading. This is not due to

cross section distortion since a stiffener was used at the brace point. The top flange loading causes the center of twist at buckling to shift to a position close to mid-depth for most practical unbraced lengths, as shown in Fig. 5. Since there is virtually no lateral displacement near the centroid for top flange loading, a lateral brace at the centroid will not brace the beam. Because of cross-section distortion and top flange loading effects, lateral braces at the centroid are not recommended. Lateral braces must be placed near the top flange of simply supported and overhanging spans. Design recommendations will be developed only for the top flange lateral bracing situation. Torsional bracing near the centroid or even the bottom flange can be effective as discussed later.

n. . . V

The load position effect discussed above assumes that the load remains vertical during buckling and passes through the plane of the web. In the laboratory, a top flange loading condition is achieved by loading through a knife edge at the middle of the flange. In structures the load is applied to the beams through secondary members or the slab itself. Loading through the deck can provide a beneficial "tipping" effect illustrated in Fig. 9. As the beam tries to buckle, the contact point shifts from mid-flange to the flange tip resulting in a restoring torque which increases the

1

buckling capacity. Unfortunately, cross-section distortion severely limits the beneficial effects of tipping. Linder (1982, in German) has developed a solution for the tipping effect which considers the flange-web distortion. The test data (Linder, 1982; Raju, 1992)indicates that a cross member merely resting (not positively attached) on the top flange can significantly increase the lateral buckling capacity. The tipping solution is sensitive to the initial shape of the cross section and location of the load point on the flange. Because of these difficulties, it is recommended that the tipping effect not be considered in design.

When a beam is bent in double curvature the compression flange switches from the top flange to the bottom flange at the inflection point. Beams with compression in both the top and bottom flanges along the span have more severe bracing requirements than beams with compression on just one side as illustrated by the comparison of the cases given in Fig. 10. The solid lines are BASP solutions for a 20 ft long W16x26 beam subjected to equal but opposite end moments and with lateral bracing at the midspan inflection point. For no bracing the buckling moment is 1350 in-k. A brace attached to one flange is ineffective

for reverse curvature because twist at midspan is not prevented. If lateral bracing is attached to both flanges, the buckling moment increases nonlinearly as the brace stiffness increases to 24 k/in, the ideal value shown by the black dot. Greater brace stiffness has no effect because buckling occurs between the brace points. The ideal brace stiffness for a beam with a concentrated midspan load is 2.6 k/in at $M_{cr} = 2920$ in-k as shown by the dashed lines. For the two load cases the moment diagrams between brace points are similar, maximum moment at one end and zero moment at the other end. In design a $C_b = 1.75$ is used for these cases which corresponds to an expected maximum moment of 2810 in-k. The double curvature case reached a maximum moment 25% higher because of warping restraint at midspan provided by the adjacent tension flange. In the concentrated load case no such restraint is available since the compression flanges of both unbraced segments are adjacent to each other. On the other hand, the brace stiffness at each flange must be 9.2 times the ideal value of the concentrated load case to achieve the 25% increase. Since warping restraint is usually ignored in design $M_{cr} = 2810$ in-k is the maximum

· DI CA DEPILA BERHOU.

For elastic beams under uniform moment the Winter ideal lateral brace stiffness required to force buckling between the braces is $\beta_i = \#P_f / L_b$ where $P_f = \pi^2 EI_{ye} / L_b^2$, I_{ye} is the out-of-plane moment of inertia of the compression flange which is $I_y/2$ for doubly symmetric cross sections, and # is a coefficient depending on the number of braces n within the span, as given in Table 1(Winter, 1960) or approximated by # = 4 - (2/n). The C_b factor given in design specifications for nonuniform moment diagrams can be used to estimate the increased brace requirements for other loading cases. For example, for a simply supported beam with a load and brace at midspan shown in Fig. 7, the full bracing stiffness required is 1.56 times greater than the uniform moment case. The $C_b = 1.75$ for this loading case provides a conservative estimate of the increase. An

Table 1. Brace Coefficient

Number of Braces	Braçe Coef.
1	2
2	.3
3	3.41
4	3.63
Many	4.0

M,

additional modifying factor $C_d = 1 + (M_S / M_L)^2$ is required when there are inflection points along the span (double curvature), where M_S and M_L are the maximum moments causing compression in the top and bottom flanges as shown in Fig. 13. The moment ratio must be equal to or less than one, so C_d varies between 1 and 2. In double curvature cases lateral braces must be attached to both flanges. Top flange loading increases the brace requirements even when bracing is provided at the load point. The magnitude of the increase is affected by the number of braces along. the span as given by the modifying factor $C_L = 1 + (1.2/n)$. For M_S one brace $C_L = 2.2$; for many braces top flange loading has no effect on brace requirements, i.e. $C_d = 1.0$.

In summary, a modified Winter's ideal bracing stiffness can defined as follows,

$$\beta_i^* = \frac{\# C_b P_f}{L_b} C_L C_d$$

For the W12x14 beams laterally braced at midspan shown in Fig. Fig. 13 Double Curvature 12, $L_b = 144$ in., # = 2, $C_b = 1.75$, $C_L = 1 + 1.2/1 = 2.2$, and $P_f = \pi^2 (29000) (2.32/2)/(144)^2 = 16.01$ kips, $\beta_i^* = 0.856$ k/in.

(1)

rr alland

with initial out-of-straightness so brace forces can be maintained at reasonable levels as discussed earlier. The brace force requirement for beams follows directly from the column $F_{br} = 0.01P$ for discrete braces given earlier. The column load P is replaced with the equivalent compressive beam flange force, either $(C_b P_f)$ or M_f /h , where M_f is the maximum beam moment and h is the distance between flange centroids. The M_f /h estimate of the flange force is applicable for both the elastic and inelastic regions. For relative bracing the force requirement is one half the discrete value. The lateral brace design recommendations which follow are based on an initial out-of-straightness of adjacent brace points of $L_b/500$. The combined

LATERAL BRACING DESIGN REQUIREMENTS
Stiffness:
$$\beta_L^{\pm} = 2 \# (C_b P_f) C_L C_d / L_b$$
 or $2 \# (M_f / h) C_L C_D / L_b$ (2)
where $\# = 4 - (2/n)$ or the coefficient in Table 1 for discrete bracing; = 1.0 for relative bracing
 $C_b P_f = C_b \pi^2 E I_{yc} / L_b^2$; or $= (M_f / h)$ where M_f is the maximum beam moment
 $C_L = 1 + (1.2/n)$ for top flange loading; = 1.0 for other loading
 $C_d = 1 + (M_S / M_L)^2$ for double curvature; = 1.0 for single curvature
 $n =$ number of braces
Strength: Discrete bracing: $F_{br} = 0.01 C_L C_d M_f / h$ (3)
Relative bracing: $F_{br} = 0.004 C_L C_d M_f / h$ (4)

* Conservative simplified Eq(2) B= 10 (Mf/h) Cd/Lb for any n

torsional brace attached to the compression flange, then the buckling strength will increase until buckling occurs between the braces at 3.3 times the no-brace case. The ideal or full bracing requires a stiffness of 1580 in-k/radian for a 4 x 1/4 stiffener and 3700 in-k/radian for a 2.67 x 1/4 stiffener. Tong and Chen (1988) developed a closed form solution for ideal torsional brace stiffness neglecting cross-section distortion that is given by the solid dot at 1450 in-k/radian in Fig. 14. The difference between the Tong solution and the BASP results is due to web distortion. Their solution would require a 6 x 3/8 stiffener to reach the maximum buckling load. If the Tong ideal stiffness (1450 in-k/radian) is used with a 2.67 x 1/4 stiffener, the buckling load is reduced by 14%; no stiffener gives a 51% reduction.

for the unbraced beams (zero brace stiffness). The ideal brace stiffness for top flange loading is 18% greater than for centroid loading. This behavior is different from that shown in Fig. 8 for lateral bracing where the top flange loading ideal brace is 2.5 times that for centroid loading.

(

(

Figure 18 summarizes the behavior of a 40-ft span with three equal torsional braces spaced 10-ft apart. The beam was stiffened at each brace point to control the distortion. The response is non-linear and follows the pattern discussed earlier for a single brace. For brace stiffness less than 1400 ink/radian, the stringer buckled into a single wave. Only in the stiffness range of 1400-1600 in-k/radian did multi-wave buckled shapes appear. The ideal brace stiffness at each location was slightly greater than 1600 in-k/radian. This behavior is very different from the multiple lateral bracing case for the same beam shown in Fig. 11. For multiple lateral bracing the beam buckled into two waves when the moment reached 600 in-k and then into three waves at $M_{cr} = 1280$ ink. For torsional bracing, the single wave controlled up to $M_{cr} = 1520$ in-k. Since the maximum moment of 1600 corresponds to

maximum moment of 1600 corresponds to Fig. 18 Multiple Torsional Braces buckling between the braces, it can be assumed, for design purposes, that torsionally braced beams buckle in a single wave until the brace stiffness is sufficient to force buckling between the braces. The figure also shows that a single torsional brace at midspan of a 20-ft span (unbraced length = 10 ft) requires about the same ideal brace stiffness as three braces spaced at 10 ft. In the lateral brace case the three brace system requires 1.7 times the ideal stiffness of the single brace system, as shown in Fig. 11.

Tests have been conducted on torsionally braced beams with various stiffener details which are presented elsewhere (Yura, 1992). The tests show good agreement with the Basp solutions.

Buckling Strength of Torsionally Braced Beams. Taylor and Ojalvo (1973) give the following exact equation for the critical moment of a doubly symmetric beam under uniform moment with continuous torsional bracing

$$M_{cr} = \sqrt{M_o^2 + \beta_b E I_y}$$
(5)

where M_o is the buckling capacity of the unbraced beam and $\overline{\beta}_b$ = attached torsional brace stiffness (k-in/rad per in. length). Equation (5), which assumes no cross section distortion, is shown by the dot-dash line in Fig. 19. The solid lines are BASP results for a W16x26 section with no stiffeners and spans of 10 ft, 20 ft, and 30 ft under uniform moment with braces attached to the compression flange. Cross-section distortion

In crossframes and diaphragms the brace moments M_{br} are reacted by vertical forces on the main girders as shown in Fig. 22. These forces increase some main girder moments and decreases others. The effect is greater for the twin girder system B compared to the interconnected system Α. The vertical couple causes a differential displacement in adjacent girders which reduces the torsional stiffness of the cross frame system. For a brace only at midspan in a twin girder system the contribution of the inplane girder flexibility to the brace system stiffness is

$$\beta_g = \frac{12 S^2 E I_x}{L^3} \tag{7}$$

where I_x is the strong axis moment of inertia of one girder and L is the span length. As the

number of girders increase, the effect of girder stiffness will be less significant. In multi-girder systems, the factor 12 in Eq. 7 can be conservatively changed to 24 $(n_g - 1)^2/n_g$ where n_g is the number of girders. For example, in a six-girder system, the factor becomes 100 or more than eight times the twin girder value of 12. Helwig (1993) has shown that for twin girders the strong axis stiffness factor β_g is significant and Eq. (7) can be used even when there is more than one brace along the span.

Cross-section distortion can be approximated by considering the flexibility of the web, including full depth stiffeners if any, as follows:

$$\beta_{sec} = 3.3 \frac{E}{h} \left[\frac{(N+1.5h) t_w^3}{12} + \frac{t_s b_s^3}{12} \right]$$
(8)

where $t_w =$ thickness of web, h = depth of web, $t_s =$ thickness of stiffener, $b_s =$ width of stiffener, and N = contact length of the torsional brace as shown in Fig. 23. For continuous bracing use an effective net width of 1 in. instead of (N + 1.5h) in β_{sec} and $\overline{\beta}_b$ in place of β_b to get $\overline{\beta}_T$. The dashed lines in Fig. 19 based on Eqs. (5) and (6) show good agreement with the BASP theoretical solutions. For the 10 ft and 20 ft spans, BASP and Eq. (6) are almost identical.

Effective Web Width

Other cases with discrete braces and different size stiffeners also show good agreement.

In general, stiffeners or connection details such as clip angles, can be used to control distortion. For decks and through girders, the stiffener must be attached to the flange that is braced. Diaphragms are usually W shapes or channel sections connected to the web of the stringer or girders through clip angles, shear tabs or stiffeners. When full depth stiffeners or connection details are used to control distortion, the stiffener size to give the desired stiffness can be determined from Eq. (8). For partial depth stiffening illustrated in Fig. 24, the stiffness of the various sections of the web can be evaluated separately, then combined as follows:

$$\beta_i = \frac{3.3E}{h_i} \left(\frac{h}{h_i}\right)^2 \left(\frac{(N+1.5h_i)t_w^3}{12} + \frac{t_s b_s^3}{12}\right)$$
(9)

where $h_i = h_c$, h_s . or h_t and

14

$$\frac{1}{\beta_{sec}} = \frac{1}{\beta_c} + \frac{1}{\beta_s} + \frac{1}{\beta_t}$$
(10)

The portion of the web within h_b can be considered infinitely stiff. For rolled sections, if the diaphragm connection extends over at least one-half the beam depth, then cross-section distortion will not be significant because the webs are fairly stocky compared to built-up sections. The depth of the diaphragm, h_s ,

Fig. 24 Partially Stiffened Webs

can be less than one-half the girder depth as long as it provides the necessary stiffness to reach the required moment. Cross frames without web stiffeners should have a depth h_s of at least 3/4 of the beam depth to minimize distortion. The location of a diaphragm or cross frame on the cross section is not very important; it does not have to be located close to the compression flange. The stiffeners or connection angles do not have to be welded to the flanges when diaphragms are used. For cross frames, β_s , should be taken as infinity; only h_t and h_c will affect distortion. If stiffeners are required for flange connected torsional braces on rolled beams, they should extend at least 3/4 depth to be fully effective.

Equation (5) was developed for doubly-symmetric sections. The torsional bracing effect for singly-symmetric sections can be approximated by replacing I_v in Eqs. (5) with I_{eff} defined as follows:

$$I_{eff} = I_{yc} + \frac{t}{c} I_{yt}$$
(11)

where I_{yc} and I_{yt} are the lateral moment of inertia of the compression flange and tension flange respectively, and c and t are the distances from the neutral bending axis to the centroid of the compression and tension flanges respectively, as shown in Fig. 25(a). For a doubly symmetric section c = t and Eq. (11) reduces to I_y . A comparison between BASP solutions and Eqs. (5) and (11) for three different girders with torsional braces is shown in Fig. 25(b). The curves for a W16x26 show very good agreement. In the other two cases, one of the flanges of the W16x26 section was increased to 10x1/2. In one case the small flange is in tension and in the other case, the compression flange is the smallest. In all cases Eq. (11) is in good agreement with the theoretical buckling load given by BASP.

Equation (5) shows that the buckling load increases without limit as the continuous torsional brace stiffness increases. When enough bracing is provided, yielding will control the beam strength so M_{cr} can not exceed M_y , the yield or plastic strength of the section. It was found that Eq. (5) for continuous bracing could be adapted for discrete torsional braces by summing the stiffness of each brace along the span and dividing by the beam length to get an equivalent continuous brace stiffness. In this case M_{cr}

Fig. 25 Singly Symmetric Girders

will be limited to M_s , the moment corresponding to buckling between the brace points. By adjusting Eq. (5) for top flange loading and other loading conditions, the following general formula can be used for the buckling strength of torsionally braced beams :

$$M_{cr} = \sqrt{C_{bu}^2 M_o^2 + \frac{C_{bb}^2 \overline{\beta}_T EI_{eff}}{C_T}} \leq M_y \text{ or } M_s$$
(12)

where C_{bu} and C_{bb} are the two limiting C_b factors corresponding to an unbraced beam (very weak braces) and an effectively braced beam (buckling between the braces); C_T is a top flange loading modification factor; $C_T = 1.2$ for top flange loading and $C_T = 1.0$ for centroid loading; and $\overline{\beta}_T$ is the equivalent effective continuous torsional brace (in-k/radian/in. length) from Eq.(6). The following two cases illustrate the accuracy of Eq. (12).

For the case of a single torsional brace at midspan shown in Fig. 26, $C_{bu} = 1.35$ for a concentrated load at the midspan of an unbraced beam (Galambos, 1988). Usually designers conservatively use $C_b = 1.0$ for this case. For the beam assumed braced at midspan, $C_{bb} = 1.75$ for a straight line moment diagram with zero moment at one end of the unbraced length. These two values of C_b are used with any value of brace torsional stiffness in Eq. (12). For accuracy at small values of brace stiffness the unbraced buckling capacity $C_{bu}M_0$ should also consider top

Fig. 26 Effect of Stiffener

flange loading effects. Equation (12) shows excellent agreement with the BASP theory. With no stiffener, β_{sec} from Eq. (8) is 114 in-k/radian, so the effective brace stiffness β_T from Eq. (6) cannot be greater than 114 regardless of the brace stiffness magnitude at midspan. Equations (6), (8) and (12) predict the buckling very accurately for all values of attached bracing, even at very low values of bracing stiffness. A 4 x 1/4 stiffener increased β_{sec} from 114 to 11000 in-k/radian. This makes the effective brace stiffness very close to the applied stiffness, β_b . With a 4 x 1/4 stiffener, the effective stiffness is 138 in-k/radian if the attached brace stiffness is 140 in-k/radian. The bracing equations can be used to determine the required stiffener size to reduce the effect of distortion to some tolerance level, say 5%.

Figure 27 shows the correlation between the approximate buckling strength, Eq. (12) and the exact BASP solution for the case of a concentrated midspan load at the centroid with three equally spaced braces along the span. Stiffeners at the three brace points prevent cross-section distortion so $\overline{\beta}_{T} = 3\beta_{\rm b}/288$ in.. Two horizontal cutoffs for Eq. (12) corresponding to the theoretical moment at buckling

between the braces are shown. The K = 1.0limit assumes that the critical unbraced length, which is adjacent to the midspan load, is not restrained by the more lightly loaded end spans. To account for the effect of the end span restraint, an effective length factor K = 0.88 was calculated using the procedure given in the SSRC Guide (Galambos, 1988). Figure 27 shows that it is impractical to rely on side span end restraint in determining the buckling load between braces. An infinitely stiff brace is required to reach a moment corresponding to K = 0.88. If a K factor of 1 is used in the buckling strength formula, the

Fig. 27 Multiple Discrete Braces

The torsional brace stiffness requirement, Eq. (14), must be adjusted for the different design specifications as discussed earlier for the lateral brace requirements: 17

AISC-LRFD:	$\beta_{\rm T} \geq \beta_{\rm T}^* / \phi$	where $\phi = 0.75$ is suggested
AISC-ASD:	$\beta_{\rm T} \geq 2 \beta_{\rm T}^*$	where 2 is a safety factor
AASHTO-LFD:	$\beta_{\rm T} \geq \beta_{\rm T}^*$	no change

Torsional Brace Design Examples. In Example 3 a diaphragm torsional bracing system is designed by the AASHTO-LFD specification to stabilize the five steel girders during construction as described in Examples 1 and 2 for lateral bracing. The strength criterion, Eq. 15, is initially assumed to control the size of the diaphragm. A $C10 \times 15.3$ is sufficient to brace the girders. Both yielding and buckling of the diaphragm are checked. The stiffness of the $C10 \times 15.3$ section, 195,500 in-k/radian, is much greater than required but the connection to the web of the girder and the in-plane girder flexibility also affect the stiffness. In this example, the in-plane girder stiffness is very large and its affect on the brace system stiffness is only 2%. In most practical designs, except for twin girders, this effect can be ignored. If a full depth connection stiffener is used, a $3/8 \times 3-1/2$ in. section is required. The weld design between the channel and the stiffener, which is not shown, must transmit the bracing moment of 293 in-k.

The 40-in. deep cross frame design in Example 4 required a brace force of 7.13 kips from Eq. (15). The factored girder moment of 1211 k-ft. gives an approximate compression force in the girder of 1211 $\times 12/49 = 296$ kips. Thus, the brace force is 2.5% of the equivalent girder force in this case. The framing details provide sufficient stiffness. The 3-in. unstiffened web at the top and bottom flanges was small enough to keep β_{sec} well above the required value. For illustration purposes, a 30-in. deep cross frame attached near the compression flange is also considered. In this case, the cross frame itself provides a large stiffness, but the 14-in. unstiffened web is too flexible. Cross-section distortion reduces the system stiffness to 16,900 in.-k/radian, which is less than the required value. If this same cross frame was placed at the girder midheight, the two 7-in. unstiffened web zones top and bottom would be stiff enough to satisfy the brace requirements. For a fixed depth of cross frame, attachment at the middepth provides more effective brace stiffness than attachment close to either flange

Closing Remarks and Limitations

Two general structural systems are available for bracing beams, lateral systems and torsional systems. Torsional bracing is less sensitive than lateral bracing to conditions such as top flange loading, brace location, and number of braces, but more affected by cross-section distortion. The bracing recommendations can be used in the inelastic buckling range up to M_p if the M_f form of the lateral brace stiffness equation is used (Ales, 1993).

The recommendations do not address the bracing requirements for moment redistribution or ductility in seismic design. The bracing formulations will be accurate for design situations in which the buckling strength does not rely on effective lengths less than one. Lateral restraint provided by lightly loaded side spans should, in general, not be considered because the brace requirements would be much larger than the recommendations herein. Also, laboratory observations in the author's experience (usually unplanned failures of test setups) show that brace forces can be very large when local flange or web buckling occurs prior to lateral instability. After local buckling the cross section is unsymmetric and vertical loads develop very significant out of plane load components. The bracing recommendations do not address such situations.

References

Akay, H.U., Johnson, C.P., and Will, K.M., 1977, "Lateral and Local Buckling of Beams and Frames," Journal of the Structural Division, ASCE, ST9, September, pp. 1821-1832.

Ales, J. M. and Yura, J. A., 1993, "Bracing Design for Inelastic Structures", Structural Stability Research Council Conference-Is Your Structure Suitably Braced?, April 6-7, Milwaukee, WI..

Choo, K.M., 1987, , "Buckling Program BASP for Use on a Microcomputer", Thesis presented to The University of Texas at Austin, May

Galambos, T.V., Ed., 1988, Structural Stability Research Council, Guide to Stability Design Criteria for Metal Structures, 4th Edition, New York: John Wiley & Sons, Inc.

There are two approaches. A continuous bracing equation is given which gives the critical buckling load for any value of bracing stiffness. Discrete or single-point systems can be converted to continuous as shown above, Eg(1). A modification to Winters column bracing (full bracing) is also given. This gives the required stiffness to free the buckling between braces. The continuous approach must be used if combined with torsional braces. Reductions for out-of-straightness are included.

$$\frac{Gatauous Brooing}{M_{cr} = \sqrt{\left[\left(C_{bu} M_{o}^{2} + \left(.5 C_{bb} P_{y} h \right)^{2} A \right] (1+A)} \leq M_{y} \text{ or } M_{s}}$$
where $P_{y} = \frac{\pi^{2} E I_{y}}{L^{2}}$; $A = L \sqrt{\frac{.33 \overline{\beta}_{L}}{C_{L} P_{y}}}$; $C_{L} = 1 + \frac{1.2}{n}$ for top flange loading
= 1.0 for centrad loading
M_{o} is the buckling strength of the unbraced beam including any top flange
loading effects. = $\pi E \sqrt{\frac{I_{y}J}{2.6} + \frac{\pi^{2}T_{s}^{2}h^{2}}{4L^{2}}}$ or Eg FI-13 in Alsc LRFD
C bu is the Cb factor assuming the beam is unbraced
C bu is the Cb factor assuming the beam braces are fully effective
M_{s} is the buckling load between the braces
 $n = number$ of single-point braces
 $M = number$ of single-point braces
 M_{s} double curvative
 $M_{cb} \frac{\pi^{2}EI_{yc}}{L^{2}_{b}} = 2 \frac{\#}{(M_{h})C_{L}C_{d}}$ where $\# = 4 - (2/n)$ for discrete bracing
 $Where M = maximum factored moment, $\phi = 0.75$. In ASD use 2x service M and
 $M_{s} = maximum moment on sing side
For = 0.01 (M/h)C_{L}Cd relative brace
L factored moment, in CLEFD Service moment in ASD$$

TORSIONAL BRACING DESIGN REQUIREMENTS

Stiffness:

ess:

$$M_{cr} = \sqrt{C_{bo}^{2} M_{o}^{2} + \frac{C_{bb}^{2} E I_{cff} \overline{\beta}_{T}}{2 C_{T}}} \leq M_{y} \text{ or } M_{s}$$
(13)
capacity of unbraced bean-

$$C_{T} = 1.2 \text{ for top flange loading, } C_{T} = 1.0 \text{ for other}$$

Instead of solving Eq. 13 ' for the required $\overline{\beta}_{\tau}$, the following expression can be used

$$\beta_T = \overline{\beta}_T L / n = 2.4 L M_f^2 / (n E I_{eff} C_{bb}^2)$$
⁽¹⁴⁾

Strength:

$$M_{br} = F_{br} h_b = 0.04 L M_f^2 / (n E I_{eff} C_{bb}^2)$$
(15)

where $M_f = maximum$ beam moment $I_{eff} = I_{ye} + (t/c) I_{yt}$; = I_y for doubly symmetric sections C_{bb} = moment diagram modification factor for the full bracing condition span length L = number of braces along the span = n tension flg

The available effective stiffness of the brace system β_T is calculated as follows:

stiffener

Diaphragms

 $\beta = \frac{6 E I_{b}}{S}$

or Decks

$$\frac{1}{\beta_{\rm T}} = \frac{1}{\beta_{\rm c}} + \frac{1}{\beta_{\rm s}} + \frac{1}{\beta_{\rm t}} + \frac{1}{\beta_{\rm b}} + \frac{1}{\beta_{\rm g}}$$
(16)

$$\beta_{c}, \beta_{s}, \beta_{t} = \frac{3.3E}{h_{i}} \left(\frac{h}{h_{i}}\right)^{2} \left(\frac{(N+1.5h_{i})t_{w}^{3}}{12} + \frac{t_{s}b_{s}^{3}}{12}\right)$$
(17)

Through Girders

2 E I

where $h_i = h_c$, h_s . or h_t ; N = bearing length β_{b} = stiffness of attached brace (see below) $\beta_{g} = 24(n_{g}-1)^{2} S^{2} EL_{x}/(L^{3} n_{g})$ where n_{g} is the number of interconnected girders (18)

comp. fig.

I

2/3

COMPRESSION SYSTEM

E

 $L_c =$ length of diagonal S = spacing of girders length of diagonal members

- Ac = area of diagonal members = modulus of elasticity

h = height of the cross frame

If pallet provides no bracing,
$$L_b = 32^{\prime}$$
, $C_b = 1.23$ - Use AUC-LRFD Eq F1-13

$$M_n = C_b M_o = 1.23 \frac{71}{32(12)} \frac{29000}{2.6} \sqrt{\frac{20.7(.77)}{2.6} + \frac{\pi^2}{(32\times12)^2}} \frac{20.7(2110)}{2.7(2110)} = 878 \text{ m} - k}{3.2 \text{ k-ft}}$$

3.2-2 / Column-Related Design