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Bracing for Stability — State-of-the-Art

Joseph A. Yura', M. ASCE

Abstract

Design methods for stability bracing of columns, beams and frames are
summarized. The importance of initial out-of-straightness on the brace strength
and stiffness requirements is shown. Four types of bracing systems are described;
relative, discrete, continuous and lean-on. Design examples (AISC - LRFD) illus-
trate the use of the bracing formulas.

Recommendations for lateral bracing and torsional bracing for beams are
presented. Solutions for restrained beams with the top flange braced are given. It
is shown that the inflection point cannot be considered a brace point. Stiffener re-
quirements to control cross-section distortion are included in the method for de-
signing cross frame and diaphragm bracing.

Introduction

A general design guide for stability bracing of columns, beams and frames
is presented herein. The focus is on simplicity, not exact formulations. The design
recommendations cover four general types of bracing systems, namely relative,
discrete, continuous and lean-on, as illustrated in Figure 1. A relative brace con-
trols the relative movement of adjacent stories or of points along the length of the
column or beam. If a cut everywhere along the braced member passes through the
brace, itself, then the brace system is relative as illustrated by diagonal bracing,
shear walls, or truss bracing. A discrete brace controls the movement only at that
particular brace point. For example, in Figure 1b the column is braced at points 1
by cross beams. A cut at the column midheight does not pass through any brace
so the brace system is not relative, but is discrete. Two adjacent beams with dia-
phragms or cross frames are discretely braced at the cross frame location. Con-
tinuous bracing is self evident; the brace is continuously attached along the length
of the member such as with siding for columns and metal deck forms for beams
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Figure1 Types of Bracing Systems

during construction. A beam or column that relies on adjacent structural members
for support is braced in a lean-on system. Structural members that are tied or
linked together such that buckling of the member would require adjacent members
to buckle with the same lateral displacement characterize lean-on systems as
shown in Figure 1d. In the sway mode Member A leans on Member B.

An adequate brace system requires both strength and stiffness. A simple
brace design formulation such as designing the brace for 2% of the member com-
pressive force addresses only the strength criterion. Brace connections, if they are
flexible, can have a very detrimental effect on stiffness as will be illustrated later.
Before presenting the various bracing recommendations, some background mate-
rial on the importance of initial out-

of-straightness and member inelas- No sidesway - K=0.7

ticity on bracing effects will be dis- 2
cussed. R,
'E
Limitations. The brace re- 1A K=1.0
quirements presented will enable a Pl
member to reach the Euler buckling K>1
load between the_br.ace points, i.e., Rl : - 5 2 - 7 A
use K =1.0. This is not the same TBrace Design BL/R,

as the no-sway buckling load as

illustrated in Figure 2 for the Figure 2 Braced Cantilever
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1.0 P/L corresponding to K = 1.0. A brace
five times this stiffness is necessary to reach 95
percent of the K = 0.7 limit. Theoretically, an
infinitely stiff brace is required to reach the no-
sway limit. In addition, bracing required to
reach specified rotation capacity or ductility
limits is beyond the scope of this paper.

braced cantilever. The ideal brace stiffness is a,
|
L
|

initial out-
| of-straightness

Figure 3  Relative Brace
Background

Member-Qut-of-Straightness. Winter (1960) developed the concept of a
dual criteria for bracing design, strength and stiffness, and he derived the interrela-
tionship between them using simple models. He showed that the brace force is a
function of the initial column out-of-straightness, A,, and the brace stiffness B.
The concept is illustrated for the relative brace system shown in Figure 3, where
the brace, represented by the spring at the top of the column, controls the move-
ment at the top A relative to the column base. Summation of moments about point
A gives PAr = BL(Ar - A,) where Ar = A + A,. If A, = 0 (an initially perfectly
plumb member), then P, = BL which indicates that the load increases as the brace
stiffness. The brace stiffness required in the sway mode to reach the load corre-
sponding to Euler buckling between brace points, P, is called the ideal stiffness,
Bi, where B;=P,/L in this case.

For the out-of-plumb column, the relationship between P, B, and Ar is
plotted in Figure 4a. If B = [3;, P, can be reached only if the sway deflection gets
very large. Unfortunately, such large displacements produce large brace forces,
Fir, since Fy = BA. For practical design, A must be kept small at the maximum ex-
pected load level. This can be accomplished by specifying f > Bi. For example if
B =2B;, then A = A, at P, as shown in Figure 4b. The larger the brace stiffness,

i
;! 2p;
] B=p
]
)
A, = 0.002L
04% PO
0 4 8 12 16 20 0.5% 1.0% 1.5% 2.0%
(2) ey (b) R (%ol P)

Figure 4 Effect of Initial Out-of-Plumb



the smaller the brace force. The brace force is a linear function of the initial out-
of-plumbness. The recommendations given later will assume a particular out-of-
straightens and a brace stiffness at least twice the ideal stiffness.

Column_Inelasticity.  The bracing requirements for relative braces are
merely a function of the load on the member, as illustrated above. Other brace
system requirements (continuous, lean-on) are based on the elastic or inelastic
stiffness of the members to be braced as will be given later. In stability problems
the effect of member inelasticity on the buckling solution can be reasonably
approximated by using the tangent modulus stiffness Er instead of the elastic
modulus, E. The inelastic stiffness Et = tE where t is the inelastic stiffness
reduction factor. The elastic range is defined by the axial stress in the member, not
the slenderness ratio. A member with low slenderness ratio (L/r) will respond
elastically if the axial stress is low. In the AISC Specification an axial stress less
than 0.3 F, in ASD or 0.33 F, in LRFD places the column in the elastic range. The
AISC-ASD and LRFD Manuals of Steel Construction tabulate the stiffness
reduction factor for P/A stress levels. In LRFD, t = -7.38(P/P,) log (1.176 P/Py)
where P, is the yield load, FyA. The potential axial buckling capacity of a member
is 7 (.877) n* EL/(KL)* for P/P, > 1/3. For P/P, < 1/3, = 1.0. The t factor will
be used in some of the example problems.

Safety Factors, & Factors and Definitions

The recommendations presented are based on ultimate strength. Column
and beam loads are assumed to be factored loads. For brace stiffness formulations,
a ¢ =0.75 is recommended in LRFD. If the load calculations are based on service
loads as in ASD, a factor of safety of 2.0 can be applied to the factored load
stiffness requirements. The strength requirements use the built-in safety factors or
¢ factors within each design specification. In LRFD, the design brace force will be
based on factored loads and compared to the design
strength of the member and its connections. In ASD,
the brace force will be a function of the applied service
loads, and this force will be compared to the allowable
brace loads and connection capacity.

The displacement A, for relative and discrete
braces is defined with respect to the distance between
braces as shown in Figure 5. In frames P is the sum of
the column loads in a story to be stabilized by the
brace. In the case of a discrete brace for a member, P
would be the average load in the compression member story” —A
above and below the brace point. The initial dis- L T
placement A, is a small displacement from the straight 9
position at the brace points caused by sources other

brace

Figure S  Definitions
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than the gravity loads or compressive forces. For example A, would be a dis-
placement caused by wind or other lateral forces, erection tolerance (initial out-of-
plumb), etc. In all cases, the brace force recommendations are based on an as-
sumed A, = 0.002L. For other A,, use direct proportion. For torsional bracing of
columns or beams, an initial twist B, of 1° is used.

Relative Braces for Columns or Frames

DESIGN RECOMMENDATION 2P
LRFD, ¢ = 0.75 Prege = S Fy, = 0.004P

The design recommendation is based on an initial out-of-plumbness =
0.002L and a brace stiffness twice the ideal value shown in Figure 4. Example 1
illustrates the bracing design. Each brace must stabilize 1500 kips. The cos func-
tions are necessary to convert the diagonal brace to an equivalent brace perpen-

EXAMPLE 1 - Relative Brace - Tension System

Typical brace must stabilize three bents

Factored load each bent = 150 + 250 + 100 = 500 kips

Design recommendations assume F,, and A are perpendicular
159 k 250k 100k to the column

Brace Force :

‘u...___‘_ > T
r’;,br_s/'Iz, 1 0.004(3 x 500)/cos 6 = 6.99 k
S S
: e 5/8 threaded rod OK
F, = 36 ksi &
Y 20—
; . ApE
Brace Stiffness: b O h= 2(3 x 500 k) . Ap =0.364 2
L 0.75(12) gross

USE3/4 ¢, Ag = 0.4 in"

dicular to the column(s). Stiffness controls the design in this case. If A, is differ-
ent from 0.002L, change Fy, in direct proportion to the actual A,, but no change is
necessary for 3.

Discrete Bracing Systems for Columns

Discrete bracing systems can be represented by the model shown in Figure
6 for three braces. The exact solution taken from Timoshenko (1961) shows the
relationship between P. and the brace stiffness, B. With no bracing Py =
m’EI/(4L)". At low brKace stiffness the buckling load increases substantially with
the buckled shape a single (1st mode) wave. As the brace stiffness is increased,




BL/R

Figure 6 Three Discrete Braces

the buckled shape changes and additional brace stiffness becomes less effective.
Full bracing occurs at BL/P. = 3.41. This ideal stiffness varies for equally spaced
braces between 2.0 for one brace to 4.0 for a large number of braces. Thus 4.0
can be used conservatively for all cases. The design recommendation is based on
full bracing assuming the load is at P..

DESIGN RECOMMENDATION _u2P
LRFD, ¢ =0.75 : Breq oL Fir=0.01P

P = factored load, L = required brace spacing, n = number of braces, # ~ 4 - (2/n)

Typically, P may be less than P, so it is conservative to use the actual col-
umn load P to derive the design stiffness represented by the dashed line in Figure
6. Note that the required brace stiffness is inversely proportional to the brace
spacing L. In many applications there are more potential brace points than neces-
sary to support the required member forces. Closer spaced braces require more
stiffness because the derivations assume that the unbraced length provided is just
sufficient to support the column load. For example, say three girts are available to
provide weak axis bracing to the columns. Say that the column load is such that
only a single full brace at midspan would suffice. Then the required stiffness of the
three brace arrangement could be conservatively estimated by using the permissible
unbraced length in the brace stiffness equation rather than the actual unbraced
length. The continuous bracing formula given in the next section more accurately
represents the true response of Figure 6 for less than full bracing.

The design recommendation is based on twice the ideal stiffness to account
for initial out-of-straightness. The recommended brace force is 1% of P (See De-
sign Example 2). The value of # is based on equal brace spacing and is unconser-
vative for unequal spacing. For unequal spacing, # can be simply derived using a
rigid bar model between braces (Yura, 1994).




EXAMPLE 2 - Discrete Brace at Midheight

*_%120 k A cross member braces the weak axis of the
W16x26 at midheight. Factored loads shown.
W16x26 2(120
L~ = =3
0| n=1, #=2; 8 = 23-7(5(—12)0—) 5.33 Kiin
brace e A (10x12°
3
10 | =5.33(120)" _ 6.6in
reqd  48(29000)
‘S TRY C5x6.7, 1,=75, §,=3.5, F,, =0.01(120) =1.2k
Fy =36 ksi fy, =1.2(120)/4(3.5) = 10.3 ksi OK

Continuous Bracing

For a column braced continuously, Timoshenko (1961) gives

- 2, BL J
B = P,[n =7 (¢))

where n = number of half sine waves in the buckled shape as shown by the solid
line in Figure 7. As the brace stiffness per unit length S increases, the buckling

load and n also increase. The switch in buckling modes for each n occurs when
B/ z*P, =n? (n+1)°. Substituting this expression for n into Eq. (1) gives

P, = P+— B P, )

[~

Eq. (2) is an approximate solution, shown dashed in Figure 7, which gives
the critical load for any value of g without the need to determine n. In the

inelastic range use 1P, for P, in Eq. (2).

Eq. (2) can also be used for discrete braces by defining #= 8 x number of

braces / L and by limiting P_ < #* EI/¢* where ¢ is the distance between braces.

This approach is accurate for two or more braces. For example, if there are two
discrete braces, the ideal discrete brace stiffness is #=3P. /£ where ¢ =L/3 and

P.=7’El/¢% Using Eq. (2) with 8 = 2(3P./ ¢ )/L gives P = 1.01 (n’El/ ¢ ?).

The bracing design recommendation given below is based on Eq. (2) with
£ adjusted by a factor of two to limit the brace forces, adding a ¢w = 0.75, and

7 YURA



using P, = 0.85 (.877) P:
which is the AISC-LRFD

® column design strength.
formula. The brace
P 15 strength requirement
Fcr Fbr=ﬂ'2PAT/L2° was
" developed by Zuk (1956)
where L, is the max theo-
5 ' retical unbraced length
/f\ "=1D that can support the col-
% 200 400 600 goo umn load. Taking Ar =
'B'LZHZ 2A° aEd Ao = 0.002 Lo
gives For =004 P/L_.
Figure 7 Continuous Bracing
DESIGN - [ ap - F =
SR EN AT ¢c Py =P, + (L/w) 4/2 4, BP, ; Fu= 0.04 P/L,
LRFD where P, = ¢. (.877) 1P, ¢. = 0.85, dpe = 0.75
Lean-On Systems
When some members 10t
lean-on adjacent members for
stability support (bracing), the &t
ZP concept (Yura, 1971) can be Rt
used to design the members. 2
The approach will be explained } P = * Ely i
using the problem shown in Fig. F T i sine curve
* 8, in which Col. A has a load P 0 . '
with three connecting beams 0 10 20
attached between Cols. A and

B. There are two principal
buckling modes for this struc-
ture, the no sway and the sway
modes. If Col. B is sufficiently
slender, the system will buckle

(a)

(b) 's/ 1

Figure 8 Lean-On Bracing

in the sway mode, shown by the dot-dash line in Figure 8a. In the sway mode the
buckling strength involves the sum (ZP,) of the buckling capacity of each column
that sways. The system is stable in the sway mode if the sum of the applied loads
(ZP) is less than the ZP.,. This assumes all the columns have the same height. If
Col. B is sufficiently stiff, the buckling capacity may be controlled by the no sway
mode shown dashed. Both modes must be checked.



An exact elastic solution, developed with the ANSYS computer program,
shows that as Ig increases, the Pcr increases linearly in the sway mode. At Ip/Ix >
15.3, Col. A buckles in the no sway mode. The I, required to develop full bracing
can be approximated using the ZP concept. In the sway mode, the elastic capaci-
ties of Cols. A and B are n’El,/(4L)* and n’Elg/(4L)? respectively. The desired
P.. corresponding to the no sway mode is n’EI/L%. Equating the sum of the sway
capacities to the P in the no sway mode,

n’E(I + I/ (4L)? = R?EI/L?

gives Ig = 151, which is close to the exact solution of Iz = 15.3 I4. In the inelastic
range, T; is used where t; is based on the axial load in each column, P;. There can
be axial load on all the columns. '

Example 3, which is similar to a problem solved by Lutz (1985), shows a
W12 x 40 with its weak axis in plane supported by an adjacent column W12 x 26
with the strong axis in-plane. The tie beams have shear only end connections so it
is assumed that the tie beams do not contribute to the sway-stiffness of the system.
Sway is prevented at the top of the columns. The W12 x 40 has been sized based
on buckling between the supports, L = 8 ft. The calculations show that the elastic
W12 x 26 adjacent column can brace the weak axis column which is in the inelastic
range. A W12 x 19 section would also be satisfactory.

EXAMPLE 3 - Lean-On System

AISC-LRFD Spec,, F, = 36 ksi, Factored loads
W12x40 s the W12x26 capable of bracing the W12x40 2

50k \ 317k
Y From th AISC Manual, ¢ R, =317 kforL =8’
£ 1 L P concept: W12x40, A=116in2, ly "441|n
iR W12x26, A = 7.65 in2, | =204 in’
- X ColA:R!/ F A=317/(36x11.8) =0, 746 >1/3.. inelastic
X il g’ g 38(0.746)log(1.176x0.746) = 0.313
z ‘ ,* $ P, = 0.85(0.313)(0.877) 2 (29000)(44.1)/(288)
1 8 = 35.5 kips
!"'3_1 Col B:F, /F; A =50/(36 x7.65)=0.181 < 13..7= 10
K oR= ! 85(0.877) 7(29000)(204)/(288)2= 524 kips
sway
mode IP =35+524=550>LP=317+50=367k OK




Strength of Beams with Bracing

Before beam bracing design requirements are presented, some background
material on flexural-torsional buckling of beams (usually just called lateral buck-
ling) will be summarized. A beam with an unbraced length L, will bend laterally

and twist at a critical moment given by M = Co(m/Ls) |/EL,GJ +7°E’L,C, /L,

as given in the AISC-LRFD Specifications. C, is modification factor that accounts
for variations in the moment diagram and support conditions. The unbraced length
is defined as the distance between points braced against lateral displacement of the
compression flange or between points braced to prevent twist of the cross section.
Bracing systems for beams must prevent the relative displacement of the top and
bottom flanges, i.e. twist of the section. Lateral bracing (joists attached to the top
flange of a simply supported beam) and torsional bracing (cross frame or dia-
phragm between adjacent girders) can effectively control twist. M, is also affected
by the load position (top flange loading is more detrimental) and end restraints
(Galambos, 1988).

The suitability of assuming the inflection

iy Cp=1.67 point as a brace point in restrained beams to define
‘ L, is frequently raised. In many cases the top
flange is laterally braced by the slab or joists all

68 : M - diag. along the span while the bottom flange is unbraced.

T L,  An inflection points cannot be considered a brace
L . L . . . .

b\ra o Gy =N68 point as illustrated by the example shown in Figure

9. One beam has a moment at one end (C, = 1.67)
middepth top flg. with L, = L and the other beam has an inflection
<L oint at midspan (Cy = 2.3) with L, = 2L. The 2L
\{;ﬁ'ﬂ span with the inflection point will buckle at a load
" that is 68% of the beam with span L. If the inflec-
kiicklsick Shape tion point is a brace point, the critical moment of
both beams would be the same. The buckled shape
of the 2L beam shows that the top flange and bot-
tom flange move laterally in opposite directions at
midspan. Even an actual brace on one flange at the
inflection point does not provide effective bracing at midspan.

Figure 9 Beam with Inflection
Point

The cases discussed above were solved using a finite element computer
program and approximate C, formulas developed as given in Figure 10. These Cs
values can be used in design with L, = span length if twist is positively controlled
only at the supports. Three general cases are derived: bracing only at the ends,
top flange laterally braced with top flange gravity loading and top flange braced
with uplift loading. The C, formula for Case I was adapted from Kirby and Neth-
ercot (1979).

10 YURA



CASE [ - Braces at the ends of the unbraced length

X = brace
L. L) .. 12.5 M oy
e——lg— b 25M__ +3M, +4M, +3M,
t di
[\wﬂmgram

Use absolute values for the moments.
Moments are at the 1/4 points.
M. is the largest of M; .

o - 12.5(100) e
b~ 2.5(100) + 3(30) + 4(100) + 3(50)

CASE I1 - Top flange braced continuously - gravity load

VY VY |
‘( . 3 l 1. If neither end moment cause comp.

a on the bottom flg., there is no buckling.
<
M M M. 2. When one or both end moments cause
B ¢ $L comp. on the bottom, use Cp, with L.
=T T I

Mc,z:;,-‘ndI mometant that gives c =30 2 (M1) g Mg
e largest comp. stress b =30 -\ - AWM
on the bottom flange 3 \Mg/ 3 Mg+ My)

M4= the other end moment * Take M= 0 in this term if M, is positive
Mg = moment at midspan
-100 *200< Cy=30- () F oodoy =567
J\100 /) I 100+
EX. ; 5

qoo>>._*30  +200  use C,, with M to check buckling.

Use M__ to check yielding.

CASE III - Top flange braced continuously - uplift or suction
%MIM-AI’—? Uniform Loading : Cp = 2.0

comp. flange

Figure 10  C, for Braced Beams
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Beam Bracing

Two types of bracing systems are available: lateral bracing and torsional
bracing. A general discussion of beam bracing and the development of the design
recommendations herein are presented elsewhere (Yura, 1993). Lateral bracing
can be relative, discrete, continuous or lean-on. Only relative and discrete lateral
bracing requirements are presented here. Continuous bracing is addressed by
Trahair (1982) and Yura (1992). Beams that are linked together lean-on each
other and the lateral buckling cannot occur at the links unless all the members
buckle. Buckling of an individual beam can occur only between the cross members
in a lean-on system. No additional bracing requirements are necessary in lean-on
systems.

If two adjacent beams are interconnected by a properly design cross frame
or diaphragm at midspan, that point can be considered a brace point when evaluat-
ing the beam buckling strength. Since the beams can move laterally at midspan,
the effectiveness of such a bracing system is sometimes questioned. As long as the
two flanges move laterally the same amount, there will be no twist. If twist is pre-
vented, the beam can be treated as braced. Tests and theory confirm this approach
(Yura, 1992)

Lateral Bracing. The effectiveness and size of a lateral brace depends on
its location on the cross section, the moment diagram, the number of discrete
braces in the span, and location of load on the cross section. Lateral bracing is
most effective when it is attached to the compression flange. The exception to this
is for cantilevers where top (tension) flange bracing is effective. The design provi-
sions herein are applicable only for bracing attached near the compression flange.
The provisions also assume top flange loading which is a worse case. When the

LATERAL BRACE DESIGN RECOMMENDATIONS, LRFD, ¢ = 0.75

Relative Discrete
Stiffness: BL=2.5M; Cq/ ¢Lph L= 10M; Cq4 / $Lph
Strength: Fi. = 0.004 Mg Cq’h For =001 M;Cy4 /h
where Mr = max. moment, h = beam depth, L, = unbraced length
Cs = 1.0 single curvature, = 2.0 reverse curvature

beam has an inflection point lateral bracing must be attached to both flanges and
the stiffness requirements are greater as given by the C4 factor in the brace re-
quirements. For example, for a beam in reverse curvature as shown in Figure 8, a
brace on both the top and bottom flange at midspan will require twice as much
stiffness as a similar length beam with compression on only one flange.

12 YURA




EXAMPLE 4 - Relative Lateral Brace System

= Design the diagonals of the top
3/4x8  flange horiz. truss to stabilize the

C
e

e T A e px4g ve 80 ft girders with the factored
Five Girders moments shown. F, = 36 ksi
1-1/4x 15 1000 k-ft
L] .
L A - M - dlag
Y by girder aé:m
ALY = h =49 in. l«—80 ft—>
) A 13 " Stiffness : B = 2.5(1000x12)  _ 4 25 k/in
¥ ‘o L™ 0.75(49)(16 x 12) _ ea. girder
:"‘\ .r"‘\ TOp ﬂg x 2.5 gird = s
oy o P e
\" \'l _A_E 2 _ b —.1_ _
AR (4 ).,°° ® = gx12xv5 (v5) =108
b H A,=0.393in> = CONTROLS

.
PLAN VIEW Strength: F,, =0.004(2.5)(1000 x 12) / 49 =22.45 k
A, =2.45Y5/(0.9 x 36) =0.17 in

USE L2x2x1/8 - A=0.484irf

The lateral bracing provisions are illustrated in Example 4 where a top
flange relative brace truss system is used to stabilize the compression flange during
construction of the composite plate girders. Each truss system must stabilize 2.5
girders.

Torsional Bracing.  Cross frames or diaphragms at discrete locations or
continuous bracing provided by the floor system in through girders or Pony
trusses, or by metal decks and slabs represent torsional bracing systems. In the
development of the design recommendations (Yura, 1993), it was determined that
factors that had a significant effect on lateral bracing had a substantially reduced
effect on torsional bracing. The number of braces, top flange loading and brace
location on the cross section are relatively unimportant when sizing a torsional
brace. A torsional brace is equally effective if it is attached to the tension flange or
the compression flange. A moment diagram with compression in both flanges
(reverse curvature) does not alter the torsional brace requirements.

On the other hand, the effectiveness of a torsional brace is greatly affected
by cross section distortion at the brace point as illustrated in Figure 11. The top
flange is prevented from twisting by the torsional brace but the web distortion
permits a relative displacement between the two flanges. A stiffener at the brace
location can be used to prevent the distortion. The design method considers web

13 YURA



torsional brace distortion and any required stiffeners. Discrete braces and
L2 Y. W% %  continuous bracing use the same basic design formula.

we\‘EJ The continuous bracing stiffness ET =f4.n/L
where Bt = discrete brace stiffness, n = number of braces
and L = span length. Brand S, are defined as the torsional

stiffnesses of the bracing system. The system stiffness B is
Figure 11 primarily related to the stiffness of the brace, By, and the

L stiffness of the web plus any stiffeners, B, by
Web Distortion

i
ﬂT ﬁsec

<+

L
By €))

The By for diaphragm systems is given in Figure 12. The discrete web-stiffener
detail can vary over the web as shown in Figure 13. The stiffness of each portion
of the web is given by

L5h, )t 3
Be BB, = 335[,1.] [Liﬁ—"-’—] @

A, 12 12

where 1/Bsc = Z(1/B;) and t, is the thickness of the stiffener. For continuous brac-
ing, replace 1.5h with 1 in. and neglect the t, term if there is no stiffener. The de-
sign recommendations were developed for singly and doubly symmetric sections.
The portion of the web within hy can be considered inifintely stiff. For rolled sec-
tions (h/t, < 60) cross-section distortion will not be significant if the diaphragm
connection extends at least one-half the web depth. An initial twist of 1° (0.0175
radians) was used to develop the strength requirement, M.

: .
Diaphragms Through Girders l ]
or Decks h b
| b c ]
hi Np,
Zz i\ /< 7\ hs }
4 i
] —
6 Elp
b S b S h t
Figure 12 Diaphraém By Figure 13  Partially Stiffened Webs
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TORSIONAL BRACE DESIGN RECOMMENDATIONS, LRFD, ¢ =0.75

comp. i

tension ﬂg
Stiffl‘leSS ﬂ-‘w = 'BT L /ﬂ = 2 4[«"{.{ ¢nEfﬁ-Cbb
Strength: M,, = Fy, hy=004LM} / (n E 15 Ch)

where My = max. moment, Lg = I, + (/c) I, L = span length, n = number of span
braces, and C, = moment modification factor for the full bracing condition.

EXAMPLE 5 - Torsional Beam Bracing

T m . Same as Ex. 4 except use

, i il S diaphragm system shown.
4 m [ Mmax= 1000 k-ft, Cy= 1.0

¢ 96 S 4 braces, Fy =36 ksi, L = 80 ft

Girder Properties
h=49.0,c =30.85,t =18.15in

~ o e 1815 4
= 17500, 1,,=32.0, I, = 3521in | 4=32+ 3557 352=239in
2
Stength: , _ 0.04(B80x 121000 x12° _ o0

4(29000)239(1.0)2

S 199!(09X36)‘616ln

X reqd

Stiffness : The stiffness of the diaphragms on the exterior girders is 6El,/S.
Since there are diaphragms on both sides of each interior girder,
the stiffness is 2 x 6Elpr /S. The average stiffness available to
each girderis 2x 6+ 3x 12)/5 = 9.6 El . /S.

2.4 (80 x 12)(1000 x 12) 2

= 15960 in-k / rad

< bs Treqd  (0.75)4(29000)239(1.0)°
A l,, = 15960(96) /(9.6 x 29000) = 5.50 i
I 9 "min
:A v Try C9x13.4 : Sy = 12.5i >6.16, i = 47.9in
v By, = 9.6(29000)47.9 / 96 = 138,900 in-k / radian
| IS |

1 1 1 :
= . B =17900in-
75960 = 138,900 * Puep ’ Fsec Sl

I (N 33(29000) 49)%1.5(20)(0.5] , 0.375 b3
17900 B ¥ P AR = (20)( 12 12 )

bg =3.10 - USE 3/8 x 3-1/2 stiffener




In EXAMPLE 5 a diaphragm torsional bracing system is used for the
problem given in EXAMPLE 4. The C9 x 13.4 diaphragm will not brace the gird-
ers if a stiffener is not used. Even a much larger diaphragm cannot work without
web stiffeners because of the web distortion. Similar example problems using
cross frames are given elsewhere (Yura, 1993).

Summary

Brace design requirements involve both stiffness and strength. Care should
be exercised when using published solutions that do not consider initial out-of-
straightness. The recommendations contained here cover many practical situa-
tions. Work is underway to incorporate bracing recommendations in various steel
design specifications which are currently lacking on the topic of bracing.
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BRACING DESIGA J. A.YURA UNIV. OF TEXAS: . P A
; e
[Qe\cd‘we, Brace Systems
¢ \ /43 A relatwe brace 13 one wabidly costraly e reladvie. wegensit of
\\ ' a.dja.cen{_' stones or ?ofr'j"s a\cmg‘dw_ ‘-Eng‘ﬂq o‘F‘H'le columnj"l‘yp'tca[
i J //& & of wechcal truss b_r‘ar.irg , diogonal ‘omcvs or sbgar walls. An
F e 2 example of a relatwe brace system & shown w ‘F‘ﬁ"‘ Relahve bmce
[ Verbaal 5_\)5*?;‘_ can ke represented by Hhe model shown'n Fig.2. -
| s e, e PR i b
4 f % Lﬂ=bmc€ T‘ B B4 IHA'-‘O ~ Bls== ! braces.
Fig. | B Kk pazpaL £ D _nfex
o orace _Jf_ g 'ﬁ_ &l P= =
(2 force A\ AT A H e L
(&) - Mo sway 1f B>F/_ - T
, A Foad

Fia.2

== or AS/; = B = BET
" : 2o :

To prevedt Suny bu_dcl\.;@ f_-’t’ PA . The swa ] budJ‘&ej load nceeages _im.&:f\lj weh broce shffnes

until the broce reached an ideal valua .. Igrﬂz"ﬂ;u%{ls > ncrease wn budding leod 5 the

column buckles behoees the: braces. TV woa casumed abowe thetthe. column s per&ti-(j straahd.

p s 1 AL ¢ g & o
& Aqél”. AA Mo 1m0k - J3P0: Jads
. r‘ | P(A"Ao\-: AAL = / ‘ .
L [fmibin - AFARA : : P
oi_&'—of-‘ PA-_TL .A‘A G 3
strghtness T'ff,’ (4:-4,) AB=2A; ° sSnEFaEss
La) &A AT= Aop = A—P . A i . I 1 . 1 ‘ o S L
Fra. 4 = L I-_-/?wj o). 4 7 8 Iz .. o 4 .8 L2
= p=Elir %) A AL Fes R (1P fiee

F‘é, S shows that Pe can '54_ reached foc A=78: onlj £ +he deflechon ﬂd‘ very 1af3¢'. Unfortunate
such lowge dis plrcemedhs Frod.ncv. hrge brace forces.” At P= O.CIP&)_AT: 104, ond F,_= \-SZPQ 05 shown
in F1g. 6, For Fra.oh?:ai desagh&he brace shffness must ke 10r3€t‘ than 3, so brace forces will be
wore reasonable . Tf 32 2/3; 1s cheosen for‘des;g};} A=A, of f’,_ ard B _ =0.4%. umauj, +he brace
>hffness provided 1s much largec than 28: amd tha will reduce’ the brace force requied at B even
furthar because A is ceduced. ForatamfleJ oF A =100 } B 0.22% K. A+/6=1-25/3‘-JF;”_= 2%%

PR T _ 2P . g =
DEsxeulez‘c:%MMeuomxou Beco's = e R.= 0.004P
where P = factred load L=dstance betueen braces ,g=o.15

The brace force reommondaton & based en the assumphion that 4 = 0.002L. A, & the
chis placement at the brace pownt caused by wind or other leteral forves erection tolecance (invhial
out-of-plumb), bolt hole oversize du. If A 15 different from 0.002L charge the Fy. m direct

proporhon bthe actual A, . No dc:nae s necessary for 3.
Design Example The fockored leod on each bent = (15042504100%) = 500"

Kk 100 ¥ : .
HS0 =250 rh-:gic‘ T\fPlCﬂl bmce must stahilize 3 berts  so P=3x500=1500 I
Design recommond adions acsus Forard A ans Pcrptnd\cuiﬁ/\ )

daphragm
= +he coluwmn - "
J g 12 Brace Force: 0-004(1500)/cosé = 6.9 < (% theeacd red =105,
g~ DALE 2o 201500) L A= 0.73040 (Y z, 44
A /6‘ ~ ﬁsqness . %b oD B = o.‘.'s(\z_) 3 Abgﬂ?ss ( 4—¢)Ai }

A6 steel A
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3/5

-alse called discrete broces

Single Point Bracing Systems

L

A single point brace controls the de flection of the column
at the pomt of aftachment,only. The brace shffnec s

Brace
/ not oFfected by deflechon at other ponts along the column
An exa\mple_ of o. single poirit brace 1s shown below.
BR;ACE STIFFNESS _ brace force in
R x-direction: i a’.“d"‘e’g‘"“
x-direcmnion i
\E If the brace con Suppor‘f‘Ec:E[;Er)‘cssnbn,
lﬁ- brace A - A= (.z) 2
C shfF_ne)ss /2 F 2 A E
K
14 Lie/in A~ %= AAE
® e
F16.) :
If the brace system \s e Tensian system
. Ly
——————— = _ e _ 2A |=
F F A= A_:Ej Bus 'Tb;
Z-chirection : e =1y ) - _ 4gET,
%/ ol i A= fmer, ° PueT I
brace b

L

Single powt bracin Systems can be represented as shown 1 Fig.1. The exact soluhor
is COmPlﬂ?")C\- plot o% the Ye,lo.rjnanslﬂr"o b_e*l-mecn R.and /3 _ taken m Tuwnoshenko § Gere ::
guen 11 Fig 3 for the cate of three intermediote braoces. With no bracing P = M2E
(at,

V.0
At low brace :s’nffnessJ the buc.[r_ltqé
S+ \oad tncreases substantally with the
P\‘.‘r ‘ouc.lded 51’!011! a. S\r\al{ (IS'Z Mod.e) wave. .
-P;- o As the brace shffnes o increased ths
, & budded shage chamges ard addihonal
S b brace shiffness becomes leas effectve.
Ry 5 ks e i Ful bracing occurs at B L/R,= 3.41.
> \\@ JmEL L Lo me‘g The r.deai tl bracin 5"[’1\‘?{(\3.55 or
fe hy 4 Pr_( varioud numbsers of Mtermediate brace:
1 g . ! 15 uven 11 Timo, GGere and summarized
2 ] AL 2 3 4 helow, The maximum st fness =4/ L/ F
X .41 Eolesl '] 27 3] 4] 5 [lome
Bl/p, | 2| 3 |2411363[313] 4.0
DESIEN Design Example
RECOMMENDAT ION 120k Across member braces the weax
LeF 0O _ *é axis of the V%lg;;.(o at mid heqh:
Areao= ¥ P F=0.01P 0|~ Hllpnite ﬁksq‘n 2 3s(128) = 532K
gL > Ter || 5hs AE_ e 42El
- where _ ' 5 _ a e g— = _
p':‘FOC.‘\'o(‘ed lead , L=1;€q;d bmcma 5 Pocing /‘ SRS I::o'o': 5'.3'3(120)3': 6 (of.ﬂd;
¢=0.15 | # between 2-4 from table 10 © #8(29000) TRy c5xbLT
or # % 4=(2/n) n=no, braces 'S - RF 6.01(120)= 1.20%  TF15,5.73

fo=1.2 (120)/4(3.5)710.3 st 0w
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| CONTINUOUS COL UMM BRACING |

FYOm T\moslﬁenka ﬁJ 6ere

= - 2
2 I
¢ . fzrz pe (hl-f f‘lt-;lp) where 1= numbec of half sime, e
L " _ _ € wmeslﬁﬂe buckjed Sl'tddlﬂ.
To ust this soluhon with a gven B, you musk subsitute,
W n=il2 2 e m E%(!)ama{ wae the smalledt reult. Ta0) has
il no '|!m'.+ éxCeF,\L E):Y‘ £ P:l'daj . A P\o* a? 1Y (,D ‘For vaiues OF
™ _"'k/lh P-erxhlena‘Hq VN owto 3 awen i Fxg-l where K:’)T = %xL-‘ t?i‘a\ brace.
27 L shffness . The solubion isa linear -anc:‘fu‘;rj of A for Svery

value of n. The switch B each n occurs when
- 2
61_1_

Substifue. 2 )inte £) gives
Qn approx mak? seluten
Shissw dasined wk]c‘\ moft}we_s
at Hhe switch Fomﬂ:: as
Bollows

1 ) 1 1 i o .Pcr = 2 l ELEIJ +P€ (

200 400. Ne o) Foo
6‘I'caT L /FeJa

E (’:)Swm the cevheal lod Br any wlug of EL d1rc_écH so it can ke waed W dpsyjn without
d ermm{rﬁ i . gq‘(_’i) should l::aaaiju.sfeal b witiad —oui‘—cﬁ-:s*{m(akfness ti)' Luam.j e brace
fwice asshEr. Tn LRFD replace F’em @) with Er d,(_(.s-rz)z-*g

Pe &L= ¢ +(L’rr")\§ Zd’bréL R and E;*-: ©.04P/ @)

$:0.85 4 .0.75
el w iww_ L= max. ﬂeqf_@.ﬁci‘ unloraced leng‘Hr\ that can SM-P-?O\’JI%Q the,
/ 'Fadoreo( load P _ . : A /3 ch.o‘FloraCQ
Eq (4) con alss ke wod for sngle portt braces by de acmmj e = C

For Slr;«alp pont braces, Eq @) must he fimbed fo Erzﬁiﬂ/a-z whoe Q] 15 the cstanc
bekoeen braces . The wae of Eq4) for single pomt braags s accunate B 2or more
bracm. For onNng i::racﬂ_, Use %-‘_= /:L/.'?SL or the Smcj]e brace Gpproac[‘\ on SheetT B.

:h-?'-(h-}-l)z c

* In LeFO | = -7.38(7p)) dog ((P/B)o.85 ], 1n ASD wae the shffness reduction
factor on p 3-8 AthEd Alsc ASD Manual (sample on p. E
tx See Stake of Act paper foc denuation

P = factored column load.J B= j.lelcl load FA
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LEAK -ON SYSTEMS |

g - P

LH f“&
L {\ ColA

\

" ;
Q_@__?,/’ :’FTZEIA
AT A
- a Y
L ‘.

B P

Fel  |p

Fi6 2

5/i5

Col A s 5uppor{‘e_d by member B. What T s re%'d for full mel.@?

This system s wsually modeled as a. singyle Pa;‘d_ brace system but

+Hhe ﬁ?ﬁhj s hffness 'lEJJOGQ'CuJ‘{" 4o eval

e as follows:

e mnor‘\' fcom DL Ace all Hhese S?ﬁnéS e%uwl shffness ¢

o

AR I F=£=£ ¢ There are many Pc.ss]b.'lEh'cs
LR T What s Correct ?
J.i - F

Col A AJ’(_ ?

Will col A bend 'H\rougl\ the vanous vnodes a.ssoc;c:ufed with sw;a!-e

po\;ﬁ bracn}‘j as 'Hx-cz' Tg 13 ‘increased ? [ (P
’ ; \ }

$' %rﬂ CIED[

lncr'eas'mj IB

* The emd‘ So\u.hcr[ j('o'Hﬂe Sjsl*tm shown 1 F‘S | indicekes that

the reAponse 1Is not similar o ﬂje single po system. As
the Ty is increased  the buckling lead wncreases linearl
tnk| the 1deal brace situakion & roeched whea bude m3
occurs betieen the supports. The respsnse shown n Fig2
ndica es Hhat'the buckled Sko.pe Is a.lu,;ajs a hal{sine
curve bl the fuil quc\}:ﬁ s achieved when :EB: I5.3IA

There & ne .5m\+chu'5 from one shape o the next hgher
moade as shown o .Stn;cjl{’ Po{n‘l' bruc:u:a ;

| LEAN-ON BRACING fS NOT THE SAME AS SINGLE POINT BRACING |

A lean-on S;ys-’(‘Em s one wrohach ‘ﬁ'\e.hbrac{ ' member must
have the same shape as the” buckl -;3. member. Such systems

can ke solved wing the %Pancept.

EX I -Preblem abeve
Elaﬂjrw_ be}\Qwér

Whak Tg & neceatiry S
P«erm\'{' P'-: ’anIﬂ /l__z
B A

h\' ’ITLEIB \ﬂzEIA
L, ay |G

METs MEL, TWEI,

2 R P
1012 W - 2

t. Tg= 15T, ~clpzed

153 |

Ex 2. ~Crane <olumn - Problem from L(L+2‘F\SL’]€{‘J AlSC JourJé\% Q, 1985
Wi12x26 - A3 steel |
% /Wl2>‘-40 IS the W\2x26 5\'\..‘F‘F\<:len+ b -Q,l]!j meg 'H‘H‘.
; W12 %407 .
/ ' = - !
\\: 8 F\'Um ASC V\anuq,l Pﬁﬂo...) 2171 \Fa(- L=5
:1 Epconc:a?# W \2“-401 A= ]].8.',—,—IJI = 4—4.!1}1" r=1.43

\ | )
) |8 Wi2x26,A= 165 Ty= 204wt 1= 5

P2 T2(23000)(44.\)

P

}33‘-’.__'._

27 § s
Mg~ Btk T30 B=a3 Zaoy (300) = 24%

1.8~
_ 2 1% (2%000)( 204) _ K.
.o, B= 5= Camey = 367

= 31 +24= 39 w>21w 2%
¥ L WI12x19 wouldl werle also

Az
4
A
B:

I =

L,J

fa
=t
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STIFeNESS [OF BRACIALG  SYIsSTEMS

z
h.z(

X /i3
Tn the evaluation of the brace shffnay , the etfoat o f
connection {£lox/ \otlt{')r rut ko neluded M/r\j the @B llowin
30.\/}@(‘0.,( O’A’W 7
\ l \
iy = e - % s
BS 55{“3”‘ ﬁ brace @Cmm C )

Eqa(D) indicokas ‘1’19\0} the 560‘1‘_% stiffness muset alwroy lozs'ma,_f[er'
+Ran e smallest st ffness J@ither the brace or the gmnec\wn

Fre %uam}  bracu are framed wdo flat platzy | duch ow webs
of Wi shafes. The deflection of a -C{af_pb:}e subiecled fo a
con Cﬂd‘raf@d lead at +he center (gwe«\ b et awg s%rnna-l—& of
wmatenals +ﬂ*[/)%) LAJ

0.3 hrmetals

Ay = CCL-L':)‘W L}/Ets (.ZJ

0.138 Swr\pfj su«dagb(‘\'&:( e&a&s
0.0b7 {ixed edges

Exaw_f\e 5

A Y4 diagenal brace s atlached 4o the center of the web
of & Wibx2b, Datarmine the brace syetem stiffnew.

lear distance betw2er Filleks

- T=¢

20!
S 4 » =3 Rod SJF\‘@:r\@M :
r . 13 %y A= " (29000) (25
o S _AE . 20 0.4(29000)/z0\
; br 25(12) 25,
. DETA a : !
COME,oHr\ er\c‘{: = 27 h/m |

E.—r'_’—'z/__\?rglo deﬂecﬂuon Canneojno}\ :

Wwixze [\ - - =0,25
iy LA N S‘S'QA%ESFLZ%EQ);” -

At I tA assumed A{‘ o \33(‘}1\) _—:_"5
=t (&BM ppne F Zﬁm(.zs) f
/t;_ 8 F.br &J‘T [BO:mn: Ziz 19.4 V‘/m -QGc,l'\-e‘no( 1‘
l =< |5 R U S NP
Ey | F QT -é—m- -2—_’ . 1q.4+ﬁ-+ ..[;sﬁ-‘T.w-/u15

’ B ¥ c()fj 25:% oT{fod,.Sfir‘F
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BRACING REQUIREMENTS |

STIFFNESS

Brace re%uxrat
) { STRENGTH

RELATIVE

>

=

~
|
)

’
‘.-I K
Lg s

ST
; Bt
e & : s
s 8

1

THEORY ©

Ao
STIFFRESS | /3= “E(HE)

o - | oLl E - __P_ f ’
JIEE}\OO Hl .br L \A +A°)

Loharizsntal chew ponen*
where

+he brace

- Depends on the 4ype of brace ie whether the

brace co

: wirols +he movement ot a sinale porﬁtular‘
pomi' or whether it ontrols the relatve mov ement”

betceen two pomia (or stories)

P= Sum of column loads m a ster
brace. In th '

SINGLE _POINT

A 2o and 40

y 1o be stabilized ize‘f‘{ne

e casz of o pont brace P would be
avrage load 1h the comprasdion

b, Tn the case of

mewmber abote and 0elow

P would be the cornpruaiir-e force wi the member. P is the

3sery:

other

A =
NoTE:
DESIGN:  Assummng A=A,
in SHiffnesd requirem
p=siead

FOEMULAS

ce load.

than

L= 5'\'0\') \ne{qhﬂ’ or distance betw
. athe brace porri
= small dis glacemerit from strawofd pof_:.rhbnfca

+he gmvﬁ
txﬂmple A. would

Oddilrlo'nal dg::plafemevd' of the brace
the compresive brea or growi
ToTAL SMHALL DISPLACEMEN

loads or compresive

be @ d.wplacema.d cawsed
lateral Brces, erection foleramce (inihal out -

een braced

wed by seurces
we forces. Fer
wma' or c‘i“w'r"

b
- plumb) e T

I:ﬁm‘f' o a ruuﬂ’ of

loa
AT THE BRACE POINT =A+4,

Aan\d 4, are measured relabve to adjacen{' brace

points

and A =0.002L and uam'q a safet

ert (fockr of safely for strongth s hamdled drectly by
allowable shrus)’ the theory requirementd above ecom '

s 5

‘762.39-0: 4-P/L- b

RELAT\WE

r=o.oo4P

or

e _conservatively use A=4.0

REQ' D

- |GP/I_ 5 F'b'r_=o,ol. P
SINGLE POINT

=] where A vari&s &iﬂ'ﬁ-’n

0. beam or beam column

fachkr of 2.0

1
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[EXAMPLE 1] \eed”
'é D\G?

Qo

REGD: SIZE OF TeNsiod BRACES To
STABILIZE THE SYSTEM

K Y
EO 1129_ [ @ i Plorace = 3,(50+120 +RO4S0) = 1020k
\%' RELATIVE BRACE
/(\ . % _ . ¥
{~ \%/ :\Vlz, B seis™ AP/L = 4(1020)/12 =34 /1
N ' F, =0.004(lox)= 4,08k
20 ] Thase rﬁ.gunremmh asiume Hhe brace 15
. , gerptn cular b the columns 1o be braced
Tension Bracing sg{’em every Hrd berif | :
Roof acks as rigid chiaphragm o support unbraced bents
Fj=3£p ksi (See Ex.4 for a case with gravily plus wind leads) .
: A Brace Force = f fcosd = 4.08/e48 = 4.76"
ter 2 > S —F 4.7¢
g ,r — » _ . _ 5 .
L w g Frobhy=22ni ; Ay = 7 =0 2100
f - Ass:.umrﬁa rod 15 threaded - %¢ REZD
A, = area o brace
Lyes 288 Brace Shffness
. 1 LTee Jries
B EN pnitts . o i am i
—L;:)Cm@ A"34O/F‘ |
2 _ 5 Ao (ZQ,@) 20 e . A = O3 int
LsE /447 Fé'?ia ksi . —:-5_'-5‘_3" 233) ~°% s E
s‘ncg,:uass ._,. 3 4? REQ'D
| EXAMPLE 2 | - same problem @ Ex. but w2 steel shear dia phragms nstead of
tension rods = 0adum Corrugy sheet

Broce recbu\rémerd‘a orathe camz @ 3= 340%—",— , F =408k

TN 20aa. (£=0.036i) -qeb strength and shffed of arrucated sheet from
T-Y ¥ fimericon Tron and S?eel Irskﬂ& Beeklet * Design of L:;l«.l'egaqe Stei\

Diaphragms) ,
Allowalole sinemfré =0.22% };;o.zzxzoz 445> 408" o
S'anm (t=0.030b ard .L'—' ZD‘) = 1820 !/Fr > 340!?53 0}

USE 20ga

EXAMPLE 3 ~same problem as Exl b wie brck shear wall _

Tr'j 4in. br\dL wdu - ﬁ"am" Remmmended Bua.idms Cc.de Qegwremenﬁ -ﬁgr

[se 4vn brick Engineered Brick Masonry™ ~ min allow shear strad =4 ps|
Filbw= 40[4x20U2)] = 38.4*% >4.08° cf

SHiffneds - From" The Behavior of One Story Brick Shear Walls” by Benjamiri § Williams
Froc. ASCE Vo 64 July 1958 =200, xbnd thickness =330y >3O0 bk

2
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5RAC]NG J. A YUEA UNN. of TEXAS 3
I?XAMPL‘Ei[ ¥ MuH-l's{orj Frame

Notes: 1 Bracing must be ade%ua.i'e 4o stabilize

the sirachure under graudy lead alone
T : i T T and @mbined wind amd gravty lead.
il g ~ 5% e 2. Awial loads i the celumns due b gravily
i hs0t jody AT 77l load alone are shown Bra Hypiaal bent,
e e Axial loads are the same i the
2+ 34 24 “unbroced” berts. Fleor diaphragms
or bracing are wad % frarsmd the
Tpe 2 Construction -simple framing JFJ=3bks|' ; wind shears and PA overfuming
Bracing every thid bent momerts fo the braced bent.
Wind shear per bent (this levd) = 6.5¢ 3. Even thouch the wind forces alter
. _ the distribuhion of the axal Lrces in
Bracing re d b stabilize i the columns ,the sum of the column
Wind shear = 3(5‘.5z) = 19.5

¢ loads mud be ual fo the alo}oljéo{
Col- gravity bads=  B(50+00+100+50)=900°  gravily leads so the shears cue
the PA mowerts are unaffected.

. ' 4. Ui 3L increast wn allowabie siresses
Brace s+ai:i|li‘cj recbulreMenb - relatwe broce for the comianed lead cose.

R.= 0.004 (Jo0) = 3.L"
o= 4P/L= 4@/l = 328"F1
Gravity: AE Ag ks —
© Shiffmess: Se=od0 = 228 Az 28(388)(388) - ou4si
l'.‘ba- oS3 29,000 34/ .
v - - k = "
5+ran3+‘—\- f‘;r— 0.004 P= 0.004@00) =3.l Fb/coa@' 2.8
| Abret © 3'8/.66! = 38/ = O.MT5 n
| va]"rj ol Wind:

Sjti'?fnm: - nNo ckanqe -rro\«n araui'l‘a Abre,rosf 0.45] n'nl
SJrrqu'l'E\ :A - 1.5 4 2.8

- .3 —
w 35220 | 13 0. 8%0 m controls

{(Anef)

l use 1% Threaded Bod (A g =069 i)

proce
Nete 'Hwa} ﬂenﬁrevq#w reéulremenj' or %rau'l{' loads s Qddecl b the regulrEWG;Jf'
Lx wind alone. Do not ddd the larger s’riacgve«s rza%ua'revnent
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BRACING J.A.YURA UNN. OF TEXAS 4
[EXAMPLE 5| -POINT BRACES , . .
PR R N V. - 12-0" Story height
H —— e W iAxis =i Column load akove =115"
BNl ﬂ\ﬂ ‘ Column load below = 200"
L1 NI Col under
consideratw
A B c
laderal suppof‘f‘ of the column uﬂfgr
a

Exterior column m a muﬂid-or\j frame . The onlj
ded by the weak-aus bending stremq
rmdt o beam

consideration at the floor levels is prov
hiffness of the W sechions shown . Heod room reguiremerts do nct pe
of the column. Determine ¥ thea beams have
. T4

Yo frame directly into the web
suf ficient s’rreng’rh and stiffness fo brace the column ot the floor level
drel beams are loterally broced at locations A, B,C and D.

assumed that the span
The beams act onl 1o condrol the column movement at Hus particular floor leve
so they are singje pont braced- Therefore the bracng rC%uiremenb are!

oo = €7 ond F_=0008P

] - @ 88) k:
P= oug. column lcad = (15+200)[2 = 188% 5 L=12 £U88). 5557

6 r

REQD <TI2

» _ k
Fbr-0.0l-OSS) .86

s+ $fness Provided F
A
At

===z " 7 —=———
= .4 = .
L Iy=45.1 LI —’E’- 51.3.,111
- 1q’ s’ q' =)
P Fd(a+b) F,_ 3EI
-~ b:: e — T e I e—
ey To- UGB e B2 E
et b b — .
Wi4x43 ; fa= 3(29000) 45.1 (5)(2¢)144 =45.4 ¥fp7
Wl4x48 1 3= 3 (29000) 51.3 / (Q)*(24) 144 =28.7 7FT
3 N.G.
UsE Prora, = T4 4250 fer =
w1 W 14x78  left side p= 288 Yer 268 7/ oE
j = > 250 /Fr
W 4Gl right side /= Lo >/67DT,4L 6 Z
Check s%enq'w« - The 188 required Grce is provided by the beams p roporTion
Jo their stitnesses ool ¢ N -
= . cco Y= ' = |.4G = < -k
(gylggé"a) s Ml L (mag)/ o z)émgs’ - (5:12) d::cd
- = =.Z: en consl
fig® ey ~ NSRS Lok e F, also

[UsE W 14518 and W14xel] - coL caN Now BE SAFELY DESIGNED Fop KL= 12

4
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BRACING J. A. YURA UNIN. OF TEXAS §
EXAMPLE G . K
_— Sidir O
H:-r; Y 5 19 .I; +he gg?_he sxd:g Suﬁg&nﬂt
) ! Su Irts so
i 8 co\uvﬁﬁ? are brﬁqced at the
Gt 5 one-+third poinits? 5ldm3 1
_AI/""’ 3 y; aftached fo the girts in 2 standadd
/] g - manner using screws for
‘~ fasteners.
% p.5 &
1 .
k=
Assume a 208 wdth of sidin suppo rb each column
From A!S] Booklet ™ DQS\%h of Lxg%‘Gﬁge Steel Dmplnra%ms
72 * 20
P Rewmousothzzz 38
= 1260 ‘VFT
. Reia-hw Bmce (sicin reum&s Jrhe irts from mouinq relah&ehﬂ
22?.5|dm3 ok =0. 0042130) = O‘l?. 3K ox
ﬁmo 4P/ = 4(180)/g = o<I260%T Ok
7
EXAMPLE T} B How much weld 1s required so 'eroa{ the ot
f //flms{.s will ade%u.a}c‘j brcu:Z’ Jo
VAN = Trea the mmpreuwn region of -he;e beam as acdumn.
J— __.___-”k
> — 783'4* p=i¥
—W14x30 M=82kft )

6 Pes s 11 ¥frt

ij\cal me’rol 'ﬂ:or ded'.s mud«?
memde"l{ 10 Himad ‘Hms required
stiffness. Metal deck with 2% .
Corcrete {ill rovtdu 'bo-hmq
+his 4-}1-F{neu Nor mal fasteners

Poirt brace (fr connector re%mre'men}s)
F,.= 0.01 P=0.01 ()= oT *

UsE ,{F o-7 (TGCL)

Floor sg+em -diaphragm -relatiie brace prevonis

Hhat connect the deck -lo‘H';-L lative mouemev& of adiacent joists
\lOkfb can +ransfer +he 0.57% -Qn;Q ./5259'9' 4P/L= 4(.!&/4 -ZIK/FT
tTEN?\ON}FLiNGE EZ:EACNC;I_ vt have bondig s T,
dl . ~ =~ tension Cia Py M=’Fc! ﬁEEQD 1(.9?/1.. ; L =0, 008 P
— “‘L:."'g —comp. flg. —-F ﬁ"' = 4ELe | solve fr T,

— S - - .
assumed no cross sechion distortion )

sd*

chech bmce ‘E‘r" b&hdmcl S-nom-end' H/z = Fd/z

5
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BRACING J. A. YURA UNIV OF TEXAS 6

Continvous E’>r‘ac1'nq b\; Shear Diapi-nraqms

This development is baded on the work of m_A Larson . Discussion of "Lderal
Bracm&vf Columns and Beams” by 6. Winter ral of the Structural Division

ASCE “Nol.84 No sT5 , Septewmber 1358
7 A f-—P-F
Definiton:  Shear s+|{fness/ G
ft’ o Iencﬁ'fn of member
o= Pl = - : _W:*", be braced
- A/L _— . L

shear sh aness J%admn foof of wra’ 4
Get G’ for Light Gage Sfeef Diaphragms 4rom American Iron and Steel
Tnstitute boc&/ef Design of' Lig Gage Sfeel Dia péragm: _

' A,
Thecri: _____ bG = P(“- K) - El” and VEE‘?'D (A+A) %A.

T -P= Comprudne load '['o be carred by the member do whch
Hhe dnaphraam s conhnuouly aﬁadnad alon the lenq
n the p-r.r.e oF the daqp

%[i' allowable load onthe memlocrrﬁ no ac:.noi (s provi eq
ng'bg TQ%UWECI shear S"T%q‘l"l’l \Gr the dmplnmﬂm

A A, = deformahons -see definitions on p.!
Desigm - Same a.ume'!'lo.nS as on sh.®| .

SIRENGTH

S _ R
_STIFFNESS: ngEQ'p_ 4(p -f) ard

or conservatvely &= 4}5 ond \lgu‘= 0.013P

2

v, =0.013(P- PS—“)

EXAMPLE 8

Same ad Em::ft b exceff that the dmp& m 13 atached +o4he
cclumns alongthe enhre 24° leng +h of the cc-[t.unn

E:::;‘v:éne if 'Hne 224qa. crxrusabed siding |s su-‘;-gcgenf' Jo brace ﬁi'ﬂum&@
From thedlsl bosklet  G'= 2IM¥er 5 V =0.487% x20'= 9745417
Didphragm Reguirewls:  ~Smely &'= 4(BY, = 36%pr < 2170pr ok

Note +hat the conservative formulas do . ~
not rezu:re a knowledge of the clumn sre V=o0.013(igd) = 2.34% < 3%{#:3_(p°‘

22ga. diaphragm 15 Ok even uaing the conservahre formudas

o
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BRACING
TABLE 2.1
: Stren
LOAD FACTORS FOR DESIGN OF LIGHT GAGE STEEL DIAPHRAGMS DIQ P"l raem 6+L‘
Type of Load Factor® s =, ]4.+ “_St
Connections Used &m m"‘e Uvm:md DGl:v&y‘ " W
ua ea
e wheee S, = kips per foot of
echanical Fasteners 2.50¢ 27 20 u diaphragm
Welded Connections 2.4 3.0 23 P 3
* The load faciors given are lor diaphragm acuon only. t = 'f‘“\lckn €ss I Ian’JCS
** When backed-up hasteners (bolts, rivets, spreading back fastenen o the like) are used s intermediate i
side lap fasteners, the load factor may be reduced to 2.1 for wind or earthquake only.
The load factors of Table 2.1 are consistent with other pertinent safety pro- S “w
visions of the AlSI Specification for the Design of Light Gage Cold-Formed F = —
Steel Structural Members. allow Load Facfar
Stiffness: -Use 3rapA below S /ackal thickness)
For other +Fhicknesses , S= Sf"P"'X( ©.0198 ./
00 7 2 o g g y g9 ~ > 4 » y ¢
; | ] .
) T .
b4 | .
] ] |l . s
’ / | |6'met "
4 ‘i' !
4 ’
: /. |
z r £
' slo'—
- Py
LY L) R /
10
¥ : > :
¥ > ,
3 r Pre] A -drmd ¢
& e
b / )
g - $rr :
3 i NQTES:
£ 2 L Ponel 1o frome fosteners are In every third velley.
T g 2. The second dimension ot each point Is the 3
] width perpendrcvior 1o the corrugotion.
~~2.J32¢ 3. Intermadiote sidelap fostensrs were vsed. ;
2
e 148ir
— =
) 2 S 4 8§ 67479 € 7 @ 9 00000 z "t T BT

[eres 2z 3 4
Sreor Stifiness, G (Ib/m)

Tested Shear Stiffness for 22" x %" Standard Corrugated Steel Diaphragms
(Thickness of Panels = 0.0198 in.) ‘

<



BRACE STIFENESS REQUREMENT

Javy
_ 4P Il P
ﬂQEG‘D - L o ﬁQBQ‘D = L
redative brace sgle pot;d‘ bmce
} P yP 4P
% 18
. i I
/]
— - 3
f b
_4P _8gpP _12P more braces
ﬁ" :?" /3‘ ,f ﬁ"‘

X

r’-?wr-e more
st ffness ?!
No,

The derwation assumes Hwat the unbraced length provded
s JU-Ai‘ sufficied 4o Pevmd' a lead P on the column. when
there are more bruces than necadary to permit the
column 4 support the load |, is conservahve o uoe

+the PQI'M\.SSIIBI'(’.- Unbraced l-ena% rater Hian the achkual

unbraced lenﬂ'H\ v the formulas for

RER'D*

223«

[EXAMPLE (Ga] -Redo example o with & wi0x39 column

, 180° ,
1 Rl = 217 kaps (A‘sf Colun Talles)
. . = 3"
6"',“2 8 SO unlomced |2n%4-\ could lo#..
=i g’ 45r'£a.i'£r' than 8°, FRom the
. C{Jlun‘;’: load '+alol;4.‘ 'f‘lg. umloraced
2 Corres 180 kL
2 |13 515 Therebre 3 & t0 K
Wiox3q - 48 _ 40180 _ K
i R A 4 408 oy
(Th Ex.l

4= 30 WPTY wHEM
L=8' was usep) '



YP CONCEPT -LEAN ON BE’.ACNC;-@

Sway Buckling Capacity

e 2O
1'&',2E!1 T1
P o A s
1 2 3 cr1 (k1 L)2 based on P1
T 21'2\
b= 2 based on P
2 (kL) 2
b Fc’:r > TP
——12/23in ASD
Arvice loads in ASD ——0.877 ¢ inLRFD
<— factored loads in LRFD P =0
Cf3
ASD Examp(Q,
180 kips 220 180
VA 2
all columns W10x45
12/ ; 5 3 Fy =36 ksi ASD
2
A=133in,1 = 248in"
e d T }‘4’)_ X
— 4
K=o k=2 C rx/ﬂz =2.15
180 .
33° 13.5ksi 16.5
T =.830 531

127 (29000)(248)(83)
23 (2x 144

=370 + 237 + 0 =607 ) 580 kips OK

Using col load tables- 2x12/2.15 = 11.2 ft, P =224x2 =480 NG

I8
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S P concePT }
/&

=
o) 160 oo 100 e £ =36 kst -
W Ils x4 S } & l L 7 /9
Tx= T T T T Cd umns br_a:?a'
Loo % eatton et
l ™ ot flore
& A A A B l Daoign Cls A< B
% K 4’ 77 Factered Loads
H - = 4 b= S haww

35’ ’-ibpl'co.\
Th an unbracecl frame the Bllowin !’e%u.\r;-emenfd wuet las, SOTh.S‘FI@C( :
. Each col et Swffo(T 'Hxﬂ Yo thoF 1s on + \n'-Hq, no 5wa\'([{_=il.0)

maode |
L k VP ' !
“““ - buckln
‘ \ = = Ta!
i i ; s no swcly we L j
| \ : -
' { > < QP B
\ ,] \ / FZ ¢ ne [k=1.5]
&

Check both the x~x and y=-y axes
This mode of buckling & amch +he same G.o%‘Haﬂ. structune had
dtaﬂona" bradnj —l'ojpr-Qvard' s

(4]

. \ .
Z. Chec,k. 5waj l:)uckf'f.)j O'f' an 0’1‘}“’\? S{orj mg:‘l'i\e darecf'lo‘n(%) ‘Hq-n

*Fr‘ama an swas

L I ooyl

These columng do not benel 17 thio Pm#cufa{( cole
(pinned connechans af J;;'o) because their shffnesy
s ppro 177 the Sway mode O‘=°°, Ef:o)
5 FE é E¢/f‘. [lc’.’l.cﬂ' 3 ¢a£ 1S +/7-6 md’rwdual
column Capac,ﬁfﬂzmdjon Mea/:j‘nmom" chart value of
k fhr sway permittec (kz=1.0)




2
ILLosTRATION ~ How TP CodCEPT woR kS /d

P | %
lceL C | je [coo O] ;PO
W 8x3| | W10 X1 // .
' %33(9 st 5,=3Ca / /f
o !
w o swWa
. . 5lm.: 2 nmodaj
o 7 . 8 221
&E XL A4 y
Sma; mode: KL=2.0 Sway Made: K=2.0
LLj= 2xl=32 k.L)"-' 22’
- k. -28
: ?_E_—_S‘!' (pese ) ¢Pn :22[1‘ (P?-Zb)
: L"S"I-A LV?ZIA
SR swoy = uae k=1.0 Naswclj‘-%K:“o .
EE ; K|7= LOx =1k’ BLJ: 16 -H‘Fgr Smgl@ﬂwlu:j"rls_,/or
R'f':i ! _ e - 3 mes wi €a Column
ol T $5 = 74° P228) | 4p = 519% (p226) | loaded cp o tfs own

buc.é./:h loa-d 'f'ée Swa
mede ‘2)'11/ control. =

} Link the 4wo coluwmns  shove bj a pin - connected beam with egual
col, loads . P

: f ) i
w-—? !D_—__—.f_—.%\ [
W Sx3) '
i k. - I~ the no sway mode
k i '}LW(DK?_! l\ bug]:‘]i : with < al lo%'ds on

J : \\ : QQOL\ co “wwmn Co‘ C ;
¢\ ; D WC D "' will bu,c,'r.\e .ﬁrg”f e cauae

7 s S < sway = 4% < 519*
modle mode’ =~ therefpe Col D remang
g&m%}d" '
Sway maede : |

“hs P & wncreased from N0 40. buckhn ,,Cdumn Cuwll + o s

when the Preaaches 54% the individualbway buckling lood. A+ P =< sa
GO%CO\ C wonds o Sway but Gl D braeay &. Column D can ke o

brece a0 lona as the lond on & 45 lase Yhan 2215, 127.5 131.}5‘
it Saliiates't- N
f 4 ! T%mmce ﬁrge—f’ ; / \93._?_79 /
col D). ,
h c :’ c ,’ 5‘23,24/?; >’,D f , _
l f—s%ll 544 7;7 - B g A 1) (_,jzzlu}.
Lad= L2214 -
CQS_Q_LZ:)S‘#A U54A z UCDC;%; (‘nnéffccumh case (2) ‘ i
The alignment Cfaff' Sc)/u‘fw/} Oicfifi"o 15 . O""Hu a‘:;:”‘fzzcgjd;tj
ﬁgd. & . raci or-e anaa.ﬂ
7%6?{:- i »,:-54,.)?_? :mee-,cf"&~@2 L oaA n#v%?ﬁdd.ﬂ (14??.’:/ é‘r‘d)/}ﬂ SJLCJJ '



(ILLUSTRATIOM = 170w $ F CodCEPIT wogrs %,

What o the .swa), bucé//h;? foadd F Y
4’5 J:P 2p= 5454221 =275
>= 138"
m&ﬂ\f\d ‘mj{oﬂ’) Ewy
cl, 1P
. 5 ]
Sﬂhceéimj = ¢ uos-oa-\c SUOGJ COn{TOlS
38 K <« 174"

' . B P=1342"
what & Col B wea a W 0ANz sechon & @y iEE =32,

nstead of Wiox717 5 Then F:lo bwdj.kL:](pJ ci 8,'—'768
!

S 'l
way mode : op = 5.4_1?-{_342 - 3?(9"- ; 'P_su.:a: 198&

mee P
S Su.uz,.a e Mo:waj 1
198"° > 1m4 the shuckne witl buckle at 114
w%mil_'m o U’M-

technially Hhe column will Sufaﬂt:rf :
hl \ner— VTOadé becawse k= o7 ho‘i"lc




XML E
- - Y

- To'ohe oo% oo '7ov' « Factored Load c
7 1© J.’.. ! A} sgais ¥ F=3Grl 78
omedt r'\pmned el L e 7 I,= 58(::‘; T 4
comn e : Co‘umns braced top
) . Proeseiy . A § bottom ad-of- plane
13 A
Jf Desian Cols AS B
%7 Lr fé—' <
H H , 0 X-x axis 1 plany
Hpeal =24 —] ¥y axis  oud-of- phane
Col A:

No Sway; mede = K=1.0 KL]=M° : %Edpzlook‘!"ls

use TA W8x2a| ¢FP = lozkmw (p.229) > 100k ok

|

;

L
Swaj mode : #P'swaj. =0 since G,=Gg =G0 and k=6 |
|

couse @OlL.B 4o brace Col- A

Gl B: Mo sway k=10 KL)-‘I&;'

Sway K=? = Pagp = 7°+3(‘2°°5+7° = 220 kp
= fwo col B

50'H"Cli' ieé€¢a5“§

- (N
J ngQ‘D - -i o

Kg mut be greater han 2.0 .o KL, > 2x16732

W0 haa T"x/r} ~ 2.5 %o Kly 2. = 32/5.15 =144 Sa.a;s "
Ty W10 x45, The W10x39 had #P. = 228 kut since K musst ke qraater tha
J e 2.0, the 228 13 foo clase o the rggd 220 kips]

W12x40 | G/ry= 26l KklLe= 2%1b/246= 12 ¢P=269KF

J

‘So +r)/ W /2x40 -/aéH-er-

~3

or

L%

actual load
) ol affect] 2
{T/; Wizxdo | T,= 3100 Gy =2.6b  A=IL8 W, (2p= 593 ks
Z=1.0
CoL. B - Lo(310/1L) _ _ L=
C= sEEeeeay 58 » CoT® o k=25
far end of , —4 W o - ‘
beam )D:nned @ 2.5%1/2.6b = 150 P e 228 kips

SP P = 2(228) +3(0) = 456’: |
§ s P = 2(70)+ 3(1o0) = 440 SPE>SE P (o
No 5wci)¢ Lo (/(a) = ' -‘,ZLJ 214>70 1’4:,3:: ok




: leu.m n DQA lan 3

uhe{e =10 -@ar /fyﬁ V.
- P
5 T= "'!.3‘8(/%\,\03 (%)
| Be

J

_INELASTIC.  LRED_ CoLUMN__DESIGA

DA YURA  is(es
il

B Tk\.s 1s the same as
dpP ©.85F_A |
CO LS8 ")F § )\‘-\S

O%T’F {-)_\s

2!3000

&’-1-)

0.85 -~ E =

A Cr
- V_L !
¢ 1 F"/ c l

AISC Ex.3-2 p.%-9

’Ll'.cc

W llox3 |
’ T=37%

\5 ‘
E-}=Som

Cortruocusly bvaced
out- of -Flane

Lnoo“

(- r'-n
Try Wizx120 | A7 353 i T 21070 ‘
B=50(353)= 1765 ; B’p = 1108/ = =0.623 2 V3 -7 nelastic

+=-1. )8((3233%(\ \'uox L2 = B b2

o= O co?.\(lo‘lo/\S) 236 ; (-3
1 EREYZES

d:Pn: Z\Bm(\oﬁo)(.bz\)/(z.lezxls) = 463%< |\6o H-Q,_.

. k=2.2 (Q\gvﬂmenj'cf'a

Ty Wi2x 136 | A= 3‘%.6{ T,s 1240

bl

\
Pz 50(39.9) = 1995 ; 7= "1%%\qqs = 0351 7 /3
'*- -1.38(-s51) log (. ntox S50 0.7

Gz 961 (1240/15) _ 3 36 Ggtlo k=2
T T395/20

4P, 213 0 (1240) 76T/ (23 % 12rs)

= 182> 10 ok

; For The PT'O\O\-EW\ above whak size beam wedld ke necessqr_j 4o make The
LOWIZ X120 SQ*\s{:achi‘j?

. T=0.621 |

W\'Hq GB'—-"IO Omd K=

I-b recb‘d = b33 \;‘ﬂ'

$P.=lloo= 213000 (107 (621 J1x 12 ¥18)" givas K= 149

21 {1010/1%)
Ly/20
$.4-25 AISC Man,

\.]9 )(‘: = (4 =

Teta's
U Wzixad  T=843 4

;?ﬁ CD&'(‘-PQ('Q_ ‘Hvu@ me‘HﬂoG{ Uu.1'Hﬂ 'H'W- SJfahdaw’o( "“2"(1’\00‘

R CE . . |

- Try Wi2x120 (A=35.30%, T, 7345 i, 0=3.131n), F=36 ksl

' s

; . ) = 20012) 3L _ ;

i 20 S1d. Method - Ac M(3.13) | 23000 = 0.860¢1-5 _ i
e $P = 0.85x(0.L58  )2x353 = 193 ks Or—

| e Bguiv. Methed: P/Pj=1q3/3caxas.3 Z0.L24 7 V3 . TLlo g

B =

sar
-1.38 (- 624) Log (0. 624/.85) = 0,619

213000 (345) (-6\N) /240" = 191 kips

Ts=

Ok
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LA.YURA

o< o= 57% .
¢ L ’r:j‘—'%\f-ﬁbjco\umn\s braced, ‘;nf)o»xcf ‘
5 bettom oot -%—?lm :
A
Duw(,\ Gl A Qrmﬂ.naswa cau. =10
> = e ke P=look , KL=
s ag' -Uae Asc Col bobles a2 wBR2*

$P,= 102%

Gl B Daugn Gl B o supet 51 okl le Wit k=1

ard o su.waf ST %S0 = 20Tk in flm with =7

' T}j w12 x30 3 A '-'9.'IC§\}1JTX=‘.?35J 3;)=?.O.3m )g:gnq(%): Al 1

B2 . meg
P/§-57/3\u=0.180</3 fe T=ELO

Oux ‘Ov'e)‘P\Gﬂ\.Q_ &P = 2‘3000(20‘3)I’O/LN=K\ \ =N T7e >37 op

Th-plane : 6 M‘" =1.18 C.% =lo s.k= 2.4

v 2 (586/35)

4P = 215008 (238) P/ (2.1 xipxi)? = 2% ®

£P.= 2x312 + 3207 L2 ki
% B 2asq TBC]OO) = 44 <024 o\

et

Uag W 12X 10

! Nete = Hr % Cozsserva;@-@- fo wae, the CLPPcr- From the colum l(‘u.‘cl% Wit KL

\Concar-* EL_ 2.1% lex)2 |
. - - X c-‘: . S —iF = = .d\_o
Bt £ oo = thibses Tl qf s
é ﬂ- .‘-"( S'.—?q)- \q—l
%197 +3x0 = 394 < 414 NG,

$23¢ 1234 Qo34 izaq—

W wao CO[‘*W‘\M o2 w'#e\l'. ord one wi T
| w &sun load ot 2x234 = %Sk.j
20 ‘(-L Eau\ <ol wmn Md‘ﬁup! ot o
cx-'-’- ¢ with K=1.0 an T
< A J
— I LT 7 Try Wiz%5s3  A=1S.6 T,=425, [,=458
F= 30 kel B= 156736 56146

P/5= 2%4/551.06 - 417 meladks
= -7.38(-4\13103(\. Nex.4\T) =0a52

. 2 = -
No ‘5u_no.¢6_‘. C\?Pn“— 2\3%@635.6).“1‘5‘2_/0.0;(201(\2) = 337 223% g ok

Sy 40, +4B = 2130 (4754 95952/ .65 x 0w
GEO Sz (LS = 6713 > 2%X23424L3k Ay
Gp =io

IIZXSO word werk. Uaa W 12%53



_Columns_Braced_on One. _Flange ____ _ 'r:xérl;zplé..__.. . @ Y
‘ 4

P:- 140" ( Lactored b:ﬂ o
iy F

— | ————— o — | .
" o 1 [___BEAM W 1 x 26 (K =36kKs)
| , —_—)
—_— ) 5 | Ix =20 ‘;_'44
‘ Iy=9.59m1
(_ a 2 s j
- ! i -% , e, = to. 20 in.
S'.di ' - 8§ IS o = 1-121tn
£ He Jj = 0.2Gin"
: Girt ‘I‘ 37 | d =15.64-.345= |5,345
C4x1.2 ! E A = Tled in” :
4 L = il Cn 2am0/p =1y 200
W o %200 | Fé’—' 768 i x50 = 3g4”
(Fy=50%3) ouk-of plane i

i Elanﬁ i

* Column br"a.c-ed A Flane bj SlrJFb CLH'CLC'AQCJ +o one £ e b snmp|€ |
l i

connechons ( no rotahona M rugtrant prov dedl by slr;f) only laferal ryo'h"a:-rvi')

- Ouk o p|ane,ﬂ«z coluvmn & eanf\' of an wnbraced Q'a.m-q_;ao@;,mg pmned loadg |
cynd hcycb COnnec,Jran {"c lggam awad ](x= 2.5 i

* TLlQ column can nof +Uu\sJ|' af P:nfd:d a ard d . the ‘}‘op? bottom of the coium;n

Th ree +jP-“4 T _cc\umr\ Lcu.dclmg muat be c,lqe_ckeo( .
. s#onj axis Euler CFlQ‘cura{) buckling with L= iS}drc:l KE2.5
2. wealk axis Euler buc_Umj betueen g'f‘i's L=5 and Ky =he
3. forsional fouc,ldm.cj abeut o reotramed arxw

o 2 T, .2
& _X=orace h 2 X —— P (é—+£b)+GJ
-+— P= Pe.j (Z+ )+GJ or .lb P = 24 IJ
e T o hg b r—-;- ‘ ! C.3 P2y 52.

2 :
wohere R\_Zﬁﬂ E:I-:j/,?l and /Q= distance between focatons whoe

+woist s Pr€U€ﬂ+

P_ 140" _03p>1 =>4=-T.38 (0.36)[4003 (0.34, )] = 0.99
0.85

W

A~ I A LS
S = 2 ——e - (0.29) 20} = 321 > |40
\. s}roﬂj axl3 ! Pcf_x LIB,OOO T L) = 2?3,ooom)1 )
2.29; 9.5 K
2. L-LJQClk avxis Pc'(_‘_)' = 113,000ﬁ$(—3ﬁl = SQZ.‘ > 140

; : 3 29 000(q,59)
, . = 83.4
3, +or'5|onal EucLilic)): Pe\,-'-oaﬂ (nsuljl 82.4

A= JE I /15345 | s=t
D oTE +11200(0.26) « N
%+ )783‘(? \ +9.84 ) ; ]: 39"“.:]4-0 G

a-'= }5‘.2?.’.__ :9,84‘ gc.‘._—;o.es 4 2
to Corbuid of brace S G.8% + 26 + 102 _or-
ol = /SUA/2 = 1.845 R
(aF25Y

15345 * ——“") ' .

4 £lange of column P = 08 8?»9( x F 7.895 +H‘20LU(26)]: ]O%K<|4O :
T (1.845)" + (6. 20"+ (1-12) (No Goad)
|



I S _TorsionAL__BRACING JAY

v/ .

; - . mEL,\ %
W sections can buckle fl@xura!lj (Euler buckling, Py '_LEJ) or 2/
: +or5tonc1”j "n____ZEI_y (le' + G ‘ ” i
; P =y 4—) where L'J: distance belween lateral broceso\
- 2 z : /
T + 5 Ly =distance between Hrsiona) brqces

If a brace prevents taj'éra,{ésrovemen"[' andt wist “hen Ly=L¢ and Euler |

g\e}o{ budgh}ﬁ a\wiﬂj control Tf a brace onk Preve/d‘s lateral mowmeﬂt
V)

T

Hhen torsiondl budiling muat he considered . Tle rods do net prevedt tust
'.i,_-"_f E [f ‘{-aixs mcpvew\en'f‘ \5 ?reuede'd ouk thuts‘{‘ can occur
C “7{ y e hecle Ecb(\) . Euler may still control
co /

: i ET)-(l) s valid _%r ‘huts\-\' about the shear Cerd‘EF, but manj Pmc{ccc'a,(;
s ]@P@\\’c;cdfons —hmanrQ will becur aboud some Pom{“ other than “the sbear"i
con ;

e (cotod for shapes)) .

S m—

member will -l-wts{- Q[oouj' ?o”;d(‘ 9. In such cases .
,I Eq.(V) \s unconservatve . Fr‘om Tivroshenks ardl Gere |
< ‘ “Theory of Eloske Stability’ the ©llewnng fwe -~
e, ettuc&tonj cor lae taed o check +0rston:a buckls
— >‘<—loroce po;rti' brq;— brace Fb'.'d' I
- fal T d 2 ory 1y ()
Cd 7 ("*‘a)*’éi | £ Iz i
i o= oy % h @(-—*’?’xb)‘\‘éj |
I T ar + CEirE = _\4 I, !
: 3 x Tly 2+ r%z_*_ 52 3
= M EL,/ >
' SDW\Q_, mumertéa[ resu(‘fs :
9""—'»-\ W lLoXZ(:%\“*’\u\S"(Cthd lateal wovemedt prevented af betlherds
‘ i—f. '20' -,—Tr T?Lr= "T'\-Z'E%/@%)z = 4'8 kt S
Added brace af miclspan Compater Results

a) i‘:‘g‘;l\ ~both Flanges 1cd€rallj 5uffor\€d .= Q1 ks

Ly=Ly = 120 . '
b) J==!=% only one flange braced biEral]) Q::Z-(Cl K Lgechz)

<) lateral broce ot centrad By= 124 < (‘25?

¥ leral wovement and twist k = L y_)

&) ﬁ P B i N« s Mg~ Lk
gﬂ%ﬂi 5’(‘1§{?n§f“ megnj SG\ZW distorts _ =
) ZTh Smﬁ/“ Symméﬁ’r;: or ms?mme?‘r{c_ 5@@90,5/ laferal ﬁrswﬂaj b“cjf-/mﬂ muof

= (04 Mm%/ rad 1s recg)wréd’ fo preveat Fuist:

o2 s
k¥ Nith a stiffener, a forsional brace



[OXRSIONAL LRAC NG = e

%QW Moucu Torsionar DBrRACING Is REQUIRED @ MipspanN To FoRce BDuckiing
ETweeN The Brace Points

A Co
MPUT ER A S
HAL‘TSI_S YlEI.DS ]p\E FQLL_OW‘”c1 ?E:’U‘—TS'

TORSIONAL BRACE LOCATION

200
160 | Centroidal
Brace
. 120t lateral movement
r (kips) i prevented
80 t \i rotational
| spring
[
pER-
401 [ %m*_ ok W16x26
. v | ,
0 100 200 300
Bt (in-k/rad)

How b calewdate Hhe \deal “i‘orS(o;nq,l brace shffnes
—_— = M = :
1= L/BL Treat each \C(arge as o column witH
ﬁﬁ__ = A 'du./ C- laftera( brace ok m@lspo:q- The

ideal lateval brace & one brace ,

] _L i \){/
—"7"_M“'— * \
o ot TR S _one halfof !

7 L
{9:20% & /__"' i = —A“—P/z lcad on each -gq
- P

P
M= BLAd = @&Qg)d /5]_'—‘ 2'9}% /:2) (59@ sheet 8)
. 2 ;
Torsional Brace Shffness =‘/3JT M/@ ﬁ d zsz |
; 2 = '
Torsonal brace = Lateral brace of one flomge x d/z [ Moy CZ@T
£ aagums |
C. O!?Smd)

A load; O‘F P‘ 124- can tﬂ{éup}:{)f!‘d Lul'H’l nNo brace. . ‘T{’)QFQ](U-LQ
the brace muat support  \Q\-124% = LT K
_ 611524V ‘ '
61_— m_) = &:(a 1A -ie./ rad " Tn Olesign dowble 'H'us
t o accown 7‘ for imitial

VBT oq;{ chmpJnSon ouf-of-sta ,9147%953
it Aalcou'{




TorsionAL BRACING @ ONE FLANGE :
No TRAHSLAT'ON ©f OneE FLANGE.

AI @«/g-/ sl ‘f‘ec.\‘{ﬁ-\j unbraced 'CI‘MJG qs

- 6’\ - ‘I a cafu;}g w/ load P//}j
P | S e _(__ Lo = 2.0 g
HW .

M= Bodd = B (2d)d

2.
Lléa[ -I/O-VSYCMa[ Br-q_.-_q 5‘}‘3‘{"[1‘.!53‘: B‘T{: M/e: ﬁl.i C{
. 'Pd" Dousre To AccouwT
Pi=t ]

PR [MiYiAL |HMPER £ TI0WS

TOI"S\'Oq.qi BF‘LCG.': l_@k"'ﬂl Br—u.e 04: R -rlaqg_e xc{z

LRFD DESIGN EXAMPLE

K Girder is braced on one

: flange. The capacity
Stiffener at least  for buckl i
= half the depth ot for buckling abou
Lp= 5 feet restrained axis = 82 k.
WiEaiicl long) Factored Load = 191 kips
Porace = 191 -82 =109k b =0.75
Frass, 109 x (15.34)°
= 2[R = 2 =" = 570 in-k/rad
Pr ( oL ) X 0.75 x 120 K
4
Ib =0.197 in
B =2X8Elb=6(29000)Ib=570iﬂ-K/rad A
! Lo &0 Ty L2%X2X = 6
Check Strength:
0.9]

Mbr_ BB _ (570)x(0.0175 rad) =26.2 ksi < 32.4 ksi = ¢F,

fr,= = =
br"Sx  Sx 2 x (0.19 in3) OK




TORSIONAL BRACING DESIGN RECOMMEDATIONS

Centroid Brace:

~ Pd?
ﬁTreq'd = 251‘ L

10

be = 51‘ eo= 0.0175 ﬁT

ASD LRFD
2 Pd? Pd*
ﬁT e 2|_ ﬁ-r = ?l: : d) = 0.75
Mpr=0.0175 B Mbr=0.0175 B_

Double ¢ for bracing on single flange

JOtsts 24" deep 635 K
W27\ .6 / {_}

N N/
A/ | L
L =150

I
L = distance beiween braces that prevent twist

5
>

TORSIONAL BUCKLING |
d
(— +a ) + GJ
_ (5 =180 k
bottom s~bra 2= & rf 2
. race
chord a’ e column 2El
where R, = b4
g
L
SECT!ON A-A j




AISC/SSRC Short Course

®

“BRACING FOR STABILITY”

BEAM BUCKLING

[

>DOUBLY - SYMMETRIC and SINGLY-SYMMETRIC SECTIONS
e UNIFORM MOMENT
® MOMENT GRADRIENT
o LOAD HEIGHT EFFECTS
e TIPPING EFFECT

>SPECIAL CASES
@ COPED BEAMS
© TAPERED SECTIONS
® CONTINUOUS BEAMS BRACED AT THE TOP FLANGE
o UNBRACED CANTILEVERS
® INFLECTION POINT AS A BRACE POINT

-

DOUBLY - SYMMETRIC SECTIONS

A M
The resuiting mode of

buckling invoives a
lateral translation and twist

= 17

Canter of
Twist

C=T
SECTION A-A

A

M, for DOUBLY-SYMMETRIC SECTIONS

WARPING STIFFNESS for WIDE FLANGE SHAPES |

I r?
Me= | ¥ EL,GJ + E'I,Cy T
St. Venant Warping
Term Term
2 waping |
L, = spacing between points of full bracing deformation
E = modulus of elasticity T ?T
ly = weak-axis moment of inertia . b .
J = torsional constant = L (b ¢! )73 8) Warpilt?gd ) r“;:z.lggd
G = shear modulus ; f e RENSINS
Cy warping constant = |y d /4
d = distance between flange centroids
AISC LRFD BEAM CURVE ] VARIABLE MOMENT
Mo 2 c S
M M
4>Mr = Sx FL C ) M
Ly
Inelastic | ' A
Buckiing ;s
——
—————
' Elastic M
| Buckling
L L * YiId by # K %

Unbraced Length, Lp

E

BEAMS - 1

@ YuraHelwig !

0

9

5



L

AISC/SSRC Short Course
“BRACING FOR STABILITY

|__LOAD HEIGHT EFFECTS on Mg, (SSRC - 3rd Ed) |

LOAD HEIGHT EFFECTS on M, (SSRC - 4th Ed.) |

2 I, d 2
Mu=c"_2_._“ E 'z ,1 +sz +L5—__K2)Eg" + Cy
/(KLa) ® v /

coefficient to account for load height
=0.45 for distributed loads
=0.55 for midspan point loads

effective length factor
for weak-axis bending

Anndﬁedwﬁde,imadbm&thb-d
height effects (C} ):

Top Range Loading:  C* =G,/B
Load at Shear Center:  C* = C,
Bottom Fiangs Loading: G,* = C, 8
B is defined in the foliowing expressions:
Point Load at Midspan: B = 1- 0,180 W2+ 0,849 W
Uniform Distributed Load: B = 1 - 0.154 W2+ 0.535W

W, the beam parameter,” Is dafined as: w.i‘g_‘j'

A

B

Ch versus W for DOUBLY - SYMMETRIC SECTIONS |

1.1

LOAD HEIGHT EXAMPLE (SSRC - 4th Ed.)

‘op flangs
hﬂu-chldp'zok Tha W21x50 is
- subjected 0 afactored | | » 24.9 in*
1 P @ Top Range 20 f.——y midspan load of J= 1.14in*
F 20 kips at the top :
o Ly=201> 1620 =L, farge. 1 thebaam C,= 25701
WeX [ECv 00
09 SSRG (4th Ed) L1GJ - .
~_ SSRC (3rd Ed) Point Load at Midspan: B = 1- 0.180W" + 0.649W = 1.47
os FEM Top Flange Loading: Cf, = C, /B = 1.35/1.47 =0.92
"o o5 1 15 2 25 . -
W (Beam Parameten) Mg = 4C; ‘beEI,GJ . Ez”c"'f_i: = 1470 kin = 122 et
5 ® & §F 5 Soben R, ==t 122kt =245 dps > 20 kips_OK
201
SINGLY - SYMMETRIC SECTIONS l | EXACT SOLUTION for SINGLY - SYMMETRIC SECTIONS
I
= e x 2
P Iy Mg= LbJEI,GJ [B,+ 1+iL?\B1:}
Compression
Range 8. F a=/ﬁ
"_ — e [——
20, { & Gl
Tension 2
Range C'-I,d p(1-p)
p=0 p=05 p=1.0

E

BEAMS -3

(©) Yura/Helwig 1995



AISC/SSRC Short Course

“BRACING FOR STABILITY

Reverse Curvature:

w
B, 2N e e
w M2 ) :
pbrb kv b by Vazﬁ I ‘s oz os
M M '

p=

MONO-SYMMETRY PARAMETER for EXACT SOLUTION | [ APPROXIMATE SOLUTIONS ]
;,._'!.1"'““" 1 AISC LRFD Singly-Symmetric Equation: :
T =—( xlydA dA - 57000
e B 1,({" y *[f 2, o =T ,J(8,+J1+a,+ B )
sl = |42 certer of gravity ]
i) shear center
ﬁ =8-§ positive i the shear centsr ia located By=225(2p- T)E,j J By=28i ")(%Ji}(l_j
fange between the centrold and the fansion flange. ( )
57000
. ForTeess M Ji{Bi+af1 + 81
bt ﬂ[b"‘ +Bth)? +M]-1'fiz‘° » B 7% iér])zv =
ﬂzcmalsobeapproxma:edwmmblbwhgupmasbn: AASHTO Equation:
2 el (J QT
B, 0.8d(2p- 1)[ (L)] M, :E( L.)‘/O_'m (lvs) + 9.87(Lb
VARIATION of M, with p | | EXAMPLE PROBLEM for SINGLY - SYMMETRIC SECTIONS |
exi P P
20000 . 2 x0.625" & { LEL-'-
Uniform Moment Bt 21.34 &m
M, (k-in) H ; Bapprac= ~20.88 Co=1.0
12000 1% 1* Determing the buckiing capacity of
the singly-symmstric girder shown.
B0OOO
— EXACT SOLUTION _SQLL!]IQNS_
4000 " — LAFD AISC Equation EXACT - Mg = 5788 kein
— AASHTO DOUBLY-SYMMETRIC EQUATION - My = 13563 k-in (-134%)
% 02 o Y 08 AISC SING.-SYMMETRIC EQUATION- Mg = 5885 k-in (-1.8%)
: ' ) AASHTO EQUATION - Mg = 4893 k-in ( 15.5%)
p=lyclly ‘
| MOMENT GRADIENTS on SINGLY-SYMMETRIC SECTIONS | [ VARIATION of C,, with p (finite element)
The C, factors which have been presentad previously are
not directly applicable to singly-symmetric girders. 12
Single Curvature: L35

- |

— d=15
—Lld=20

06 08 1

o ly

E

BEAMS - 4

F :

(©) Yura/Helwig 1995
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AISC/SSRC Short Course
“BRACING FOR STABILITY

SINGLY-SYMMETRIC SECTIONS with REVERSE CURVATURE ]

REVERSE CURVATURE DESIGN EXAMPLE

w - .
M2 = Mg — &x1 w
MM'H! load the baamn can safely
e cary et B
b M =Mpoy M =My torsional buckling. o e
12x1 25’ 25
Mmop = capacity with top flange critical (use pm ).
M bot = capacity with bottom flange critical (use Prat) Gr. 50 2
i 2 { Mm- wl
Design Procedure: =YD 541 | =18in* 24
Mo < CoM For0.1<p«<0.9: Pop™T, — = lymp =180
bR " Uoriop Cy=1.75 Y w’
Mggts CoM L p_=(1-p,_ )=0.89 =144In* Moo=
f bMer bot FOI'E"Oﬁ'\erp: ot ( pm =09, bed 154 H 12
s Cp=1.0 s Cp=1.75
L DESIGN EXAMPLE (continued) I [ SLENDERNESS LIMITS for SINGLY - SYMMETRIC SECTION ]
AISC LRFD Singly-Symmetric Equation:

M, ¢51°°° J(B.+J1+B,+Bf]
By= 225 (2p- 1) bﬁ 32'25(1-9)(""}")(%")2

Using $=09, Ly= 25", py,p = 0.11, and p,,=0.89 :
Co Moy g = LISXA210K _ wizLop?

top 12 = o4 + w =59 kAt
2
1.75x 13906 k*  w(2ly) |
CoMer bot Car == (W =07 kit

Top Flange Controls: w = 5.9

AISC LRFDAPPENDIX F:

A= %’ 1+ 11-)(2 x,.. L
L

sl

Xg= 0.0035

F =50ksi- 165k.6!-335k81
s -291“

J =836in* )
C -1miﬂ A‘r" 127.%[,,
| =132l'1 yc

-173m

- X, =2382

- Ly=220In <300in =Ly

"« ELASTIC BUCKLING

C

D

LOAD HEIGHT EFFECTS for SINGLY-SYMMETRIC SECTIONS I

| VARIATION of C* with p - Spar/depth = 10

The method in the 4th edition of the SSRC Guide can be
adjusted to work for Singly-Symmetric Sections:

Top Flange Loading: Gy =Cy/B W = [E Gy
Bottom Flange Loading: G, = C,B - L,Jﬂ

Midspan Point Load: B=1-0.180 W% 0.649 W
Distributed Load: ~ B=1-0.154 W% 0.535 W

n

11

038

o7
0 02 a4 0.6 0.8 1

P lelly

BEAMS -5

© Yura/Helwig 1995




AISC/SSRC Short Course
“BRACING FOR STABEITY

Why do most design specifications ignor the effects of
load height on the flexural-torsional buckling capacity?

A) TIPPING EFFECT

B) INTERMEDIATE BRACING

TIPPING EFFECT |

Distortion

A

B

I_ VARIATION of C;, with p — Midspan Brace (finite element) —’

| LOAD HEIGHT EFFECTS with INTERMEDIATE BRACING |

13
P Braca Point W
¥~ bbb b biiiiey
: )Jd =15 & L Eol Viw L NS
Cb*u B B 3 N R - SO V|
Ud=10 - 2
! o M=%
11 Moment
W @ Top Flange i\ Diagram
I
i 2 0.89
1 e Ye
0 02 04 Iu.s 08 1 .
P
VARIATION of Cy with p = Top Flange Loading ] WHEN WILL LOAD HEIGHT BE A PROBLEM?
1.1
Braces at 3rd Points bFormpracﬁcalsimaﬁons.loadhaigm\fmnotbea
. Ly/d=10 problem, however, when in doubt use a C;, equal 1o 1.0.
b
N
1L L bUseu-lepmvisimswﬂinedbrbadhoighthcaseswim:n
* — intermediate bracing, and top flange loading.
(oM L /d=5
b
0.9 bAvoidcathnpﬂangebadhgstmasmefo!bwing:
= P {Point Load)
— w (Uniform Distributed Load)
Emn 0.1 02 0.3 04 0.5
Pyl ly

E

BEAMS - 6

(©) Yura/Helwig 1995
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AISC/SSRC Short Course -
“BRACING FOR STABILITY

BUCKLING OF COPED BEAMS | BUCKLING OF COPED BEAMS |

RS =) ()

a8 P g
.

L wiexs 1

Normalized Deflection
=
—

COMPRESSION FLANGE COPED BEAMS | I - COMPRESSION FLANGE COPED BEAMS
b :
dcr:jz CASE A : Copes at both ends 1—,+—L——T—-—~‘—-
- d MLTB (—2-3)0‘11“1-& Mcr
For rolled sections w/ d. < 0.2d : TSEE
asER T Use AISC Equations for LTB for My and Migz i C.r=1.0]
\ For rolled sactions w/ d » 0.2d, or thin web members (ht,, »60):
ke b M .lLE_bdta n.l‘iﬂﬁ
| IREPRIDS THURYU. T | 7 SO —. B e ea Lot
M (L M L M .
o (o e | O om0 i
ar 2d
COMPRESSION FLANGE COPED BEAMS | | TENSION FLANGE and DOUBLE COPED BEAMS |
. g ; Tension Flange Coped Beams: M, = 0.9 M 13 w5
CASEB:Copeatoneendonly | = 2% 277 c
M) (%)CUTMTEQ (Mm)2 DouthqaedBeams %%H
For rolled sections w/ d; < 0.1d : e 1 Mpe =2 fE,Gl
| Use AISC Equations for LTB for M{ ;and Mgz i Cyr=1.0] {
For rolled sections w/ d; » 0.1d, or thin web members (ht,,>60): R ‘Lp Z AN e
I I . M. =1eLd ﬁ
M (MLm)Aasc Mg da 2776 2 ; !;b / . Lb1-4 1
—_ -l + = 2
M L M L M
Ca1-29) B @ Mo || ) G (4o

E F

BEAMS -7
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AISC/SSRC Short Course
“BRACING FOR STABILITY

1

COPED BEAM EXAMPLE (COMPRESSION FLANGE) ]

Jf fDﬂtetmine the maximum factored load
7 |that the coped beam can support
120" ~+e—120" | |without buckiing.
12¢ Cope at one end only
P——

e
316" .
F Wi12x 14 ,_TE) (J) M ) (M
htw=54.3 < 60
de/d=0.26 > 0.2 1
e (vt J
175120, L8 LT8’ AISC
MLTB'C

./El GJ+EXl C (Ln) =585 k-in
M g =565 k-in

21 o
Mg =5EL,d % = 16603 kin

|_COPED BEAM EXAMPLE (COMPRESSION FLANGE) |
peg. AISC LRFD Equation for Tee's:
ly= 11710 d

iJ-OMn 51'22599'1)§£E-4.55
2c =24in -
d, =875in MTE-"'?Z;':" 1 (8,+J1+a,’ ).54k_-.,
.@J.&).m
AL f (—“caMm} (C

M, =281 kin —> @M= 0.9x281 kein = 253 kin

H- -
i "Moo 2 253kin = 4240

"2Eh
A

B

COPED BEAM EXAMPLE (TENSION FLANGE) |

Jf' Determine the maximum factored load
that the coped beam can support
120"he—120" | without buckiing.

WizZx14 175120'

Mu=543<801 M rp=Cl —/Je;c;.ue‘lc ( I:)

L} de/d=0.26 > 0.2
=" Myrp=585 kin

3.1¢6

kT

Tension Flange Cope: M_ = 0.9 M LTB = 526 k-in
& Mgr= 0.9 x 526 k-in = 474 k-in

PL 4 4 F
= =M ——— 474 k-in = 7.9 kips
4 Mo P« 240 —

| DOUBLE COPED BEAM EXAMPLE

P Detarmine the maximum factored load
that the coped beam can support
%12{)-—4«1204 without buckding.
1
153'L 2'=w1=2 — Copaatonemdon!y' "
X
37T;-M-5u<so«- G‘Lm)z (J) ) (M.")‘

L ldefd=0.28 > 02
158 = e

r
Mpy =5 [6,GJ = 27.4 k-in

ly=387902" <000s8in* .:—:—(&75)(02)3 =0.023in’

C

D

DOUBLE COPED BEAM EXAMPLE (CONTINUED) |

1.75 120°
{‘b/JEI.,GJ +ElC, (%n)z =585 k-in

7
Mus=Cy

M, = 248 k-in = $Mg=0.9x248 k-in = 223 k-in

Pz ——— ¥ 0 —=__ 223 k-in = 3.7 kips
SUMMARY:
Compression Flange Cope: P = 4.2 kips
Tension Flange Cope: P = 7.9 kips
Double Flange Cope: P = 3.7 kips

REINFORCING COPED BEAMS
c c

TITITIrr

Al
&
A

03 <

TIZIT

l'sssansnssanives
TTLTIT

& No reduction is required if d ;. < 0.2d

> If d. > 0.2d consider eflects of cross-section
.distorsion.

E

F

BEAMS - 8
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AISC/SSRC Short Course

“BRACING FOR STABILITY

| Cp - TOP FLANGE BRACED |

flange there is no buckling.

| Cp - TOP FLANGE BRACED |
iélllilmr'mendmnem
( ) compression on the boiom N—"

H—--Lb—ﬂ

. When one or both end moments
cause compression on the bottom, Cb 4
use C,, with L. M¢
& uu-endnmentmmgtves 2 (M°+M1)
the largest comp. stress
on the bottomn flange p=3.0- _2 :J‘(]J )" B
M1=ﬂ1eother end moment 4 Mok by 1 0.5 0 0.5 -1 -1.5 -2 -25 -3
-Taan1=unhsmn'm{M nposm | i |
M.;_-momemamidspan oocan ] =

A

| Cp, - TOP FLANGE BRACED (EXAMPLE)

] .

Cp - TOP FLANGE BRACED (UPLIFT) |

The W21x50 has the top flange

+200 continuously braced and is M"T T T T ? T TM‘
(CWaixs0. ) subjectsd to the factored moments (m)
100 F——20 t— shown. I8 the beam stable? i‘_l-b"'*"i
] j+200 cb-a.o-g("v"!‘)-g(w—@mr M, Mg M,
-100 +50 *Taka M, = 0 in thia term if M, is positive BWA .
(+50)
Cp=3.0- z( 190) %(-_ﬂgﬁ) “ERT THREE CASES.

Q

lo.9]s.87

—

x 2 2. - .
-‘CthJEIYGJ+EIwaTt-§ 9062 k-in = 755 k-ft > 100 k-ft
.

M= 5cF, = 0.9(94.5) 36 12 = 255 k-t > 200 k-h OK

. . 100 80
CASE A - Both end moments are positive or zero: M1[5 M,
CASE B-Mg s , M, is positive or zero: 100

My is negative, M, is positive or zero: S ’:lz?o
CASE C - Both end moments are negative:

If the applied loading does not causs
comprassion on the bottom flange
thare is no buckling.

M, = end momant that produces the

smallest tensile stress or the largest
comp. stress in the bottom flangs.

-50 -100
A

C

D

Cp - TOP FLANGE BRACED (UPLIFT) ] | BUCKLING of UNBRACED CANTILEVERS l
CASE A - Both end moments are positive of zero: 1B'0t -12 80 ¥ ¥ I l
0.6 My)
Cu’z""w‘gmﬁ_—t Cy=20- 8080 505 ; g M150 ¢ |
CASE B - My is negative, M4 is positive or zero: 100y -180 - [4
Al
2M - 2Mg+0.165 Mg 2(100)- 2(-180)+0.165{-120)
Co= —omm. Mg Cp= 0.5(1001-(-180) =235 T '\M ¥ Wi
CEM"-") 180
CASE C - Both end moments ars negative: 50 —2 100 Nzc'um"d'-"“g"’"?cn"-"
Lower Bound C,, valuss:
+M (-100-50
Cy=20- %ﬁ.m&%} Cy» Z'D'Wf’ 165»%(%5%)] 1 ¥ ;_LLL}_}
Cp=1.50 ; GyM> 120 _ Cp=128 Cp=204
{
. E F
BEAMS -9
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AISC/SSRC Short Course
“BRACING FOR STABILITY

DO NOT USE ‘2L* FOR UNBRACED CANTILEVERS | [ - _CANTILEVER BEAMS ]

— e ] i — — —
/\ .
L l L

Maximum Twist Maximum Twist
Zero Moment Maximum Moment

A B

EFFECT OF FIXED END CONDITION | | APPROXIMATION for UNBRACED CANTILEVERS
= P, Neglect the warping term
Ly= 20 in the calculation of the
Wiex28 | gcafaclty.
=¢Cy [B,GJ
ly=9.50in* el T o
-y =0260
Col P Column R,
= | = |

Mg =9Cp ;_‘bfﬁ,m = 428 kdin

0 2.15 min 0 2.15 min
WBx24 (220 " WBx24 |220
W14x 211|308 For= (428 kin)/2401n = L78 k W 14x211|3.08
fixed 3.45 max NOTE: IF WARPING TERM IS NOT fixed 3.45 max
NEGLECTED £, =250k
OVERHANGING BEAMS | | BRACING of CANTILEVER BEAMS |
R R P
L W16x26 Y 20' ! ! : l
2 E ] () T
20"t Lg——p—20" ™
o o 7:
i o | ]

Pi'\/

Fp 0.5F Lateral Braca
I-lntarior Controls e
0 1 L 1 I
0 20 40

BEAMS - 10
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AISC/SSRC Short Course
“BRACING FOR STABILITY

| IS THE INFLECTION POINT A BRACE POINT? |

Plan View 19, &
y ¥ v 3 I 3 1
: : =)
ACTUAL ? APPROXIMATE
N ey
[/L—STIL—J\[ - 7

[ THE INFLECTION POINT IS NOT A BRACED POINT |

f—1—

i
—C
I g
i

>

B

I AN INFLECTION POINT IS NOT A BRACE POINT ]

C —])

top fig. ~_ A buckied shape
midd 1 I z
epth I X Jlj bottom fig.

PURE TRANSLATION HAS NO EFFECT ON THE
BUCKLING CAPACITY

Mg = - [E1,G)

LATERAL MOVEMENT
BUT NO TWIST

C

| BUCKLING OF TAPERED MEMBERS

I,jso -+

i —
T L F «50ksi
y
a8 -
( jusa properties st
imidspen o get My
200 1201 ' lendS,.

< |, = CoMu /5y

moment diagrarm I F =186k > 13.4
| l a5 84| OK’
| 1m9 e
13.4 kel
125 (13.4) -
el Cb'zsua.qdmmu(gz)*am 2
BEAMS -11

(©) Yura/Helwig 1995




I e iy I M ' P VO Py h—[g |

Y/

.Ca.u.I - Braces at the endy of the umbracec! \Ewﬁ”r\ I

: Cy= 12.5 Mynox *
2.5M__+3M_ +4M, + M
| Lb Moy 2 1 4
NI Uae alosolicke, value. of the moments
T <_¥ M o 15 the lorgast absolute valug of M M M M,
! M" Mq’. H4. MS’ c‘o 13 inajs U-Qti withthe ™mQq ¥ iwmum momernt

- g ﬁ\.\l/-dw C. = 12.8(\) .
_i.:. 28 : 30 b_ Z.5CIOO) 1‘3(25) -{-4.(15) +3(b) 1.714%

Comparison with existing selutions:

withi the unbraced h"ﬂ%: even 1f My 15 at the 4

o

1

Hg

; N 12:5H
Sh'mth(' line ”‘M\j m‘ﬂs: b

: (A 4O

- \25M L
TSM +SMg o.b-\-«w\ﬂ

7 L
See plot fn companison with AISC € = 171S +1.05 }ﬁi-l--% “_’1
Emcuéﬁ' end swaor{-s ¥ F : B Mo (Hu.)

~— s T B w—

Published ™ 1.35 113 2.60 .10 o4
Eq(M) 1,32 25 L4 2.34 vaz 1.00
2ot
Co=1.75 +1.65 ‘i';;;o.s( ‘:;-1)‘ 22.3
Cb 15
P i 12.5 M,
ol 2.‘5”!,%”1&{**4 H{+3P\% ot
osk b e o i
rﬁ———.—-—-}——:l”’- l
El’"r:*z 4, raho  Shown
+Lo -r.; c‘> -.!5 -|‘.c (M'y)

(g Hr a =ik [P — d‘aﬂrd"‘ = prsmake beam

Cou  conservohee bub differancs & < 6%, l

§
£

LIS

2.3

w See Guide b D“‘ﬁ" of Metal COMfN&S%On Mambrars (J,L,ﬁn) ar lmjd&wﬁ*‘a\s

X Thia\‘corrn.ula. W_Gdop‘l‘{d from @ ;ormujo. i the boole bj ¥arby % Nethereot ™ Daswy L\m}g
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@ J‘\(U%I \qadr

‘C.AS: 2- Beams T top Flanqe braced COﬂ{'muO%\\f - downward loao(

\
-

| Qb

’ (It is assumed that \oodmg iSalso applied at the top 4 Flange)

i.

5 2/3

" 1. If neither end moment pmduces O.Covnpf‘ldwﬂ

straa on the botom f-:ian%e)%-her{ \S no buck!mj

2. When ane or both end moments pr‘od@c.e.. {

botton flange umpresswn |

: = s } Ccmp $L5
Mo‘\ /‘M
—1x
Mg (=M
| ‘M”M‘ and Md(_

L the other end mament

end mowment that produces +h€
\O.f‘q&’.d't' COW\.P Stresd onthe be om g

Cb—BO"‘

Wi

(M +Ml§ l

means 'H\cd' the (M +M \ ferm mwet a\wa}:\
be between LoM and 2.0 M,

I @)

« take M =0 tn this term 1f M s Dosrhvg, T\qu

Cb s used u_.an Mo Yo check LTR.

-] o5 Lo -]

®
LoL o.5L L L&:;{’
FI6.3 Gy for diffore Types of bracing

Era \ec UA-Q MMM "(‘o cher_k jteldnnj
xamp
+lc 0 +lee - oo 56
R oA > S —3 )
M, L j 1 M, L\ﬁ(\_‘ — o IcoK\__J____,I %
e ies R =
100 oo g8 /=-S0 - 200 -% + 5O
Cb SHE (-'00 3( loo-lo 0—:3(+Ioo) C i 3 -\-zoa) 3 1oo+c>
= .00 =l = 5.67 Smce M, s nejd'l‘\u
100 £ 5,07 Baoe bouckling formula
Uz 200 b check bht\anj
Il" bracss —isd oo !
ey /
" P —— ¥V
& // f*
! 4: mﬂ‘-clnm ﬁ:la. bfwf
* 7 ?gsf’:vu-“‘e"
1 .// — i
-r"/ ‘,ﬁ'f > a;P ""
/'- gy e
s b— o
4 ,/
3 /, e
# ’ ’ 1“' braca bebuten endy
o liered maveradt o g iy
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i \' I - ' ' /3
Case 2 Uphft orSuction Lead - Yop Flanqge oraced contin uowsly :
(Load also applied at +op Flam%e) T

| 1t N
| M Al mOM?r\:& sh +I j _
+ cwn are SITiv€ ! e
! | | M.= @nd moment Hhat procluces the |
|~ F ]

/ | smallest tensile streas or lar 4131-.; |
"My N NM Comp ressive stress on the boftom flg,,
H°£ ] l 5.4._’ the smallest Qlae'brmc end g:merﬂ'
' o - ‘
Ex. +20
+25 '5"': :l“f’a
+100 50 Lo W, \
M, M, M, Mo Mo
So\ution

I M, M o M cdo net produce a compressive stress on the
boHom €lange | There 15 na bu.cfc.(Mj. Check cmb; 3\'e,lo{m3.

2. When beth end moments are fosr}\'ue of 30no as showon above

(M, +0.6 M)
= 2.0 ¢+
Co Mg | ©)
uae with larﬂe«o‘\' momedt +hat” producw compresdion
Examples o +2%tsobo Rswy Flange ) €
‘//F\ﬂ C,= 2.0 + @o“'?s'c;“ 00 w783
+100 EWN . B
loo uae with 1S5S0
/\ Cbz 2.0 amce HO=M1=O
3, When M° 18 nega-h've and M, 's pos';rl'\iﬁ ar 3ero
€= 2HM4+2M, 40.165M, (@
Mg +o5swm, |
Examples ¥ T _\125 e 2(|30§1—2(|00)+.le(‘!20)=2-35
+i100 - b 180 + DSCim> with L Bo
=50 ;
- = 2(=10) + 2(I0) +.165(-50) _ 4.2
Tl EETI0 o 1o +.5(ee) -@1.:150
4. When botih Myand M, are nesct-h.v{, |
Co= 2+ CMD(OJ(OB“'%(& )) )
Mg Mo :
M - +loo - oo €

Cym 2+ SLRTZD (s 44 (220)) < |
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shown in Fig. 2(a). For example, at P = 0.95P_ and A, = L,/ 500, the brace force is 7.6% of P, which
is off the scale of the graph. Theoretically the brace force will be infinity when the buckling load is

reached if the ideal brace stiffness is used. W
ideal stiffness is provided because the brace forces get too large. If the brace stiffness is overdesigned,

as represented by the 8 = 28; and 38; curves in Fig. 2(b), then the brace forces will be more reason-
able. For a brace stiffness twice the ideal value and a A,= L, / 500, the brace force is only 0.8 %P, at
P = P,, not infinity as in the ideal brace stiffness case. For a brace stiffness ten times the ideal value,
the brace force will reduce even further to 0.44%. The brace force cannot be less than 0.4%P corres-
ponding to A = 0 (an infinitely stiff brace) for A;= L, / 500. For design F,, = 1%P is recommended
based on a brace stiffness of twice the ideal value and an initial out-of-straightness of L, / 500 because
the Winter model gives slightly unconservative results for the midspan brace problem ( Plaut, 1994 ).

. Published bracing requirements for beams usually only consider the effect of brace stiffness
because perfectly straight beams are considered. Such solutions should not be used directly in design.
Similarly, design rules based on strength considerations only, such as a 2% rule, can result in inadequate
bracing systems. Both strength and stiffness of the brace system must be checked.

Beam Bracing Systems TERA |

. . Beam "b" has lower load so it can
Beam bracing is a much more com- - brace the top flange of girder "a".
plicated topic compared to column bracing. 1 , :

This is due mainly to the fact that most a b '

) . . . . . +« buckled k
column buckling involves primarily bending e —— e s_hfpe vk Treming
whereas beam buckling involves both flexure WAA
and torsion. An effective beam brace resists VAR . ~ 2

buckled shape - strong framing

twist of the cross section. Ingeneral bracing " Girder Top Flange Framing

may be divided into two main categories, PLAN VIEW _

lateral and torsional bracing as illustrated in £ =« AT TR,

Fig. 3. Lateral bracing restrains lateral dis- FHEHH U L LT Metal Deck Forms

placement as its name implies. The effective-
ness of a lateral brace is related to the degree
that twist of the cross section is restrained. IORSIONAL BRACING

For a simply supported beam subjected to ) -

uniform moment, the center of twist is located ~ y°'2P hragms | ,fr;?nszs
at a point outside the tension flange; the top H

flange moves laterally much more than the _|S=—r -
bottom flange. Therefore, a lateral brace

restricts twist best when it is located at the PLAN VIEW - floor beam
top flange. Lateral bracing attached at the — )“”“9
bottom flange of a simply supported beam is

almost totally ineffective. A torsional brace

'I'i'_\rough
=mirders

can be differentiated from a lateral brace in A -"A Bu\ckied Shape
that twist of the cross section is restrained ~

directly, as in the case of twin beams witha U U SECTA-A

cross frame or diaphragm between the . .
members. The cross frame location, while Fig. 3 Types of Beam Bracing

able to displace laterally, is still considered a

brace point because twist is prevented. Some systems such as concrete slabs can act both as lateral and
torsional braces. Bracing that controls both lateral movement and twist is more effective than lateral or
torsional braces acting alone (Tong and Chen, 1988; Yura, 1992). However, since bracing requirements

are 5o minimal, it is more practical to develop separate design recommendations for these two types of
systems. , T

Lateral bracing can be divided into four categories: relative, discrete, continuous and lean-on.
A relative brace system controls the relative lateral movement between two points along the span of the



a half sine curve. Even though there is
lateral movement at the brace point, the load
increase can be more than three times the
unbraced case. The ideal brace stiffness
required to force the beam to buckle between
lateral supports is 1.6 k/in. in this example.
Any brace stiffness greater than this value
does not increase the beam buckling capacity
and the buckled shape is a full sine curve.
When the brace is attached at the top flange,
there is no cross section distortion. No
stiffener is required at the brace point.

A lateral brace placed at the centroid
of the cross section requires an ideal stiffness
of 11.4 k/in. if a 4 x 1/4 stiffener is attached
at midspan and 53.7 k/in. (off scale) if no
stiffener is used. Substantially more bracing
is required for the no stiffener case because of
web distortion at the brace point. The
centroid bracing system is less efficient than
the top flange brace because the centroid
brace force causes the center of twist to
move above the bottom flange and closer to
the brace point which is undesirable for
lateral bracing. 3

For the case of a beam with a
concentrated centroid load at midspan, shown
in Fig. 7, the moment varies along the length.
The ideal centroid brace (110 k/in.) is 44
times larger than the ideal top flange brace
(2.5 k/in.). For both brace locations cross
section distortion had a minor effect (<3%).
The maximum beam moment at midspan
when the beam buckles between the braces is
1.80 times greater than the uniform moment
case which is close to the C, factor = 1.75
given in specifications (AISC, AASHTO).
This higher buckling moment is the main
reason why the ideal top flange brace
requirement is 1.56 times greater (2.49 vs.
1.6 k/in.) than the uniform moment case.

Figure 8 shows the effects of load and
brace position on the buckling strength of
laterally braced beams. If the load is at the
top flange, the effectiveness of a top flange
brace is greatly reduced. For example, for a

Top Flange Brace
/ jo,_stffepe”
3
MCI’
Mno br 2 Centroid Brace
1 U Wiezem M
S‘——- 26—"3
0 *midspan brace
0 4 8 12 16
LATERAL BRACE STIFFNESS ( k/in)
Fig. 6 Effect of Lateral Brace Location
S Top Flange Brace
/ |
4 idesl &
a
“Brace at Centroid "o ac®
P. B
_Cr
P
no br 2 ‘LP at centroid
A W16x26 &
1 n——zd—-—.—i
*midspan brace
00 30 60 S0 120 150
LATERAL BRACE STIFFNESS (k/in)
Fig. 7 Midspan Load at Centroid
Load at Centroid
50
P. 40 /m'M
(kips ) P
= S
T Wiex6 3
20 T7 Flange Load midspan brace
N NI
00 4 8 12 16 20

LATERAL BRACE STIFFNESS (k/in)

Fig. 8 Effect of Load and Brace Position

brace stiffness of 2.5 k/in., the beam would buckle between the ends and the midspan brace at a centroid
load close to 50 kips. If the load is at the top flange, the beam will buckle at a load of 28 kips. For top
flange loading, the ideal top flange brace would have to be increased to 6.2 k/in. to force buckling
between the braces. The load position effect must be considered in the brace design requirements. This
effect is even more important if the lateral brace is attached at the centroid. The results shown in Fig.
8 indicate that a centroid brace is almost totally ineffective for top flange loading. This is not due to



T, VL R
cross section distortion since a stiffener was used at the brace point. The top flange loading causes the
center of twist at buckling to shift to a position close to mid-depth for most practical unbraced lengths,
as shown in Fig. 5. Since there is virtually no lateral displacement near the centroid for top flange
loading, a lateral brace at the centroid will not brace the beam. Because of cross-section distortion and
top flange loading effects, lateral braces at the centroid are not recommended. Lateral braces must be
placed near the top flange of simply supported and overhanging spans. Design recommendations will

be developed only for the top flange lateral bracing situation. Torsional bracing near the centroid or even
the bottom flange can be effective as discussed later.

The load position effect discussed above
assumes that the load remains vertical during - |
buckling and passes through the plane of the web.

In the laboratory, a top flange loading condition
is achieved by loading through a knife edge at the
middle of the flange. In structures the load is
applied to the beams through secondary members

or the slab itself. Loading through the deck can  Restoring Torque Cross Section Distortion
provide a beneficial "tipping" effect illustrated in (a) (b)

Fig. 9. As the beam tries to buckle, the contact ' )

point shifts from mid-flange to the flange tip Fig. 9 Tipping Effect

resulting in a restoring torque which increases the : -

buckling capacity. Unfortunately, cross- section distortion severely limits the beneficial effects of tipping.
Linder (1982, in German) has developed a solution for the tipping effect which considers the flange-web
distortion. The test data (Linder,1982; Raju, 1992)indicates that a cross member merely resting (not
positively attached) on the top flange can significantly increase the lateral buckling capacity. The tipping
solution is sensitive to the initial shape of the cross section and location of the load point on the flange.
Because of these difficulties, it is recommended that the tipping effect not be considered in design.

) When a beam is bent in
double curvature the compression flange
switches from the top flange to the bottom
flange at the inflection point. Beams with M 3000
compression in both the top and bottom (i)
flanges along the span have more severe 2000
bracing requirements than beams with
compression on just one side as illustrated by 1000
the comparison of the cases given in Fig. 10. 16x26 -

The solid lines are BASP solutions for a 20 ft “midspan fig.brace
long W16x26 beam subjected to equal but % 5 10 15 20 25
opposite end moments and with lateral

bracing at the midspan inflection point. For BRACE STIFFNESS:(kih)

no bracing the buckling moment is 1350 in-k. : . . ;

A brace agttached to oﬁe flange is ineffective Fig. 10 Beams with Inflection Points

for reverse curvature because twist at midspan is not prevented. If lateral bracing is attached to both
flanges, the buckling moment increases nonlinearly as the brace stiffness increases to 24 k/in, the ideal
value shown by the black dot. Greater brace stiffness has no effect because buckling occurs between the
brace points. The ideal brace stiffness for a beam with a concentrated midspan load is 2.6 k/in at M.,
= 2920 in-k as shown by the dashed lines. For the two load cases the moment diagrams between brace
points are similar, maximum moment at one end and zero moment at the other end. In designa C, =
175 is used for these cases which corresponds to an expected maximum moment of 2810 ink. The
double curvature case reached a maximum moment 25% higher because of warping restraint at midspan
provided by the adjacent tension flange. In the concentrated load case no such restraint is available since
the compression flanges of both unbraced segments are adjacent to each other. On the other hand, the
brace stiffness at each flange must be 9.2 times the ideal value of the concentrated load case to achieve
the 25 % increase. Since warping restraint is usually ignored in design M, = 2810 in-k is the maximum

4000




Plaas
3

i %R OUREA §D AL
For elastic beams under uniform momeat. the Winter ideal . ‘Table 1 Brace Coefficient

lateral brace stiffness required to force bucklmg between the braces
is B; = #P;/ Ly, where Py = «> EL / L%, L is the out-of-plane

moment of inertia of the compression flange which is for doubly .. | ‘Number
symmetric cross sections, and # is a coefficient depending on the " . | of Braces

number of braces n within the span, as given in Table 1(Winter, .
1960) or approximated by # = 4 - (2/n). The C, factor given in
design specifications for nonuniform moment diagrams canbe usedto
estimate the increased brace requirements for other loading cases. For
example, for a simply supported beam with a load and brace at
midspan shown in Fig. 7, the full bracing stiffness required is 1.56
times greater than the uniform moment case. The Cy, = 1.75 for this
loading case provides a conservative estimate of the imcrease. An
additional modifying factor C; = 1 + (Mg / M,)z is requu'ed when dlere are inflection pomts along the
span (double curvature), where Mg and M are the maximum moments causing compression in the top
and bottom flanges as shown in Fig. 13. The moment ratio must be equal to or less than one, so Cy
varies between 1 and 2. In double curvature cases lateral braces must be attached to both flanges. Top
flange loading increases the brace requirements even when bracing is provided at the load point. The
magnitude of the increase is affected by the number of braces along. x5 . . .-

the span as given by the modifying factor C, = 1L + (1.2/n). For M

one brace C; = 2.2; for many braces top flange loading has no _
effect on brace requirements, i.e. C4= 1.0.

.‘-“

Vet d ...-':-'_-‘;tfﬂ .:.1
In summary, a modified Winter’s ideal bracmg stlffness
defined as follows, -

#CyP ¥ ST S - - .

B = b.fCLCd ‘ ot :
E : ST :;,.'. PR *wmwgw"" . M

":Trés'“.ﬂt;“_-i.}. . S
For the W12x14 beams laterally braced at mldspan shown in Fig. ghpig 13 Double Curvatm'e
12Lh—144m #-2C5-175CL—1+1211-2.2mdtﬁ, 1

= 2 (29000) (2.32/2)/(144% = 16.01 kips, B;° = 0.856 k/in. % =psms
whnch is shown by the * in Fig. 12. Equation (1) compares very favorably with the test results and with
the theoretical BASP results. For design the ideal stiffness given by Eq. (1) must be doubled for beams
with initial out-of-straightness so brace forces can be maintained at reasonable levels as discussed earlier.
The brace force requirement for beams follows directly from the column F, = 0.01P for discrete braces
given earlier. The column load P is replaced with the equivalent compressive beam flange force, either
(Cy, Py) or M /h, where M is the maximum beam moment and h is the distance between flange centroids.
The M;/h estimate of the flange force is applicable for both the elastic and inelastic regions. For relative
bracing the force requirement is one half the discrete value. The lateral brace design recommendations
which follow are based on an initial out-of-straightness of adjacent brace points of L/500. The combined

LATERAL BRACING DESIGN REQ_UIBEMEE!S

. = I B TR (2)“
Stiffness: BL =2#(CpPp CLCi Ly or 2# (Mf/ hy c."LCD/LIJ
S ey R
where # = 4-(2/n)or the coefficient in Table 1 for dlscrete bracmg, = 1.0 for relative bracing
CyPr = Co®?EL./L2;0or = (M;/h) where My is the maximum beam moment
CL = 1+ (1.2/n) for top flange loading; = 1.0 for other loading
Cq = 1+ (Mg/ M) for double curvatuge | 'f “IrO for S‘lflgle curvature !
n = number of braces o Q‘} A
Strength:  Discrete bracing:  Fp, = 0. 01 Cr, Cag M, {[ 4 _ ®3)
Relative bracing:  Fp, = 0.004 CL Cd fi /h @

X Gnservatwe simphticd E¢() ,gE = 10(Mg/h) Cy /L, franyn |



torsional brace attached to the compression flange, then the buckling strength will increase until buckling
occurs between the braces at 3.3 times the no-brace case. The ideal or full bracing requires a stiffness
of 1580 in-k/radian for a 4 x 1/4 stiffener and 3700 in-k/radian for a 2.67 x 1/4 stiffener. Tong and
Chen (1988) developed a closed form solution for ideal torsional brace stiffness neglecting cross-section
distortion that is given by the solid dot at 1450 in-k/radian in Fig. 14. The difference between the Tong
solution and the BASP results is due to web distortion . - Their solution would require a 6 x 3/8 stiffener
to reach the maximum buckling load. If the Tong ideal stiffness (1450 in-k/radian) is used with a 2.67
x 1/4 stiffener, the buckling load is reduced by 14%; no stiffener gives a 51% reduction.

LATERAL BRACING - DESIGN EXAMPLE 1

Span = 80 ft.; 10in. concrete slab

‘l "%

.\ 5 girders @ 8 ft spacing, A36 steel
) - - ‘ -

;:,‘}1 Girder Properiies ‘\ Design a lateral bracing system to stabilize the
ks e \ girders during the deck pour. Use the extemnal
i '\ tension system shown. The form supports

e =561 in° = transmit some load to the bottom flange so
% 12x 48 -
=320 assume centroid loading.
J=129irt| 3-1/4x15 Use Load Factor Design for the construction
condition - L.F. = 1.3

Loads:  Steelgirderr A = 48.75in%, wt = 165 Ib/ft

“Conc. slab: 8 x19 x 150 I'bl'ft3 = 1000 Ib/ft

12
w = 1165 Ib/ft = 1.165 k/it

M = % wl? x LF. = +(1.165) 60)%1.3 = 1211 kA

My= 36 (561)/12 = 1682 k-ft > 1211 k-ft

Try 4 lateral braces @ 16-ft spacing
Check lateral buckling - center 16-ft is most critical (AASHTO 10-102¢)

M

é 32.0 2
91 x 10 (1.0)Tsﬂ2"\| 0.772 ;g'g * 9'87(_165)(012)

15020000 Ib-in = 1251 k-ft > 1211 k-ft 4 braces required

Brace Design: Use the full bracing formula - discrete system -

See Eq2&3
5 ‘
_ T (29000) (32.0) _ . _ 2 EEs - ¥ _
3.5 (248)(1.0)(1.0 )
=2 (16¥12)( ) = 9.04 Kin. for ea. girder = 45.2 k/in. for 5 girders = F/A
(29000) A
Brace stiffness = cogeef = Ab—z- = 45.2 k/in. —>F
b & 5)°335 - <A,
A = 261 in2 <— CONTROLS
Brace Strength: F, = 0.01(5) (1211 x12/40.0) = 14.83k
(A36 steel) “\five girders
AF = 1483/cos0; Ay =‘—‘"-g§'——£ = 0.92 in




for the unbraced beams (zero brace stiffness).
The ideal brace stiffness for top flange
loading is 18% greater than for centroid
loading. This behavior is different from that
shown in Fig. 8 for lateral bracing where the
top flange loading ideal brace is 2.5 times
that for centroid loading.

Figure 18 summarizes the behavior of

a 40-ft span with three equal torsional braces 0 g
spaced 10-ft apart. The beam was stiffened 9 1000 2000 9000 4000 5600
at each brace point to control the distortion. TORSIONAL BRACE STIFFNESS (in-k/radian
The response is non-linear and follows the - ..

pattern discussed earlier for a single brace. Fig. 17 Effect of Load Position

For brace stiffness less than 1400 in-
k/radian, the stringer buckled into a single
wave. Only in the stiffness range of 1400-
1600 in-k/radian did multi-wave buckled
shapes appear. The ideal brace stiffness at
each location was slightly greater than 1600
in-k/radian. This behavior is very different
from the multiple lateral bracing case for the
same beam shown in Fig. 11. For multiple
lateral bracing the beam buckled into two

waves when the moment reached 600 in-k = -

and then into three waves at M_. = 1280 in- - 0 400 800 1200 1600 2000
k. For torsional bracing, the single wave TORSIONAL STIFFNESS @ EACH BRACE (in-k/rad)
controlled up to M, = 1520 in-k. Since the rERAd

maximum moment of 1600 corresponds to i "-Fig 18 Multlple Torsxona.l Braces

bucklmg between the braces, it can be assumed, for design purposes, that torsionally braced beams buckle
in a single wave until the brace stiffness is sufficient to force buckling between the braces. The figure
also shows that a single torsional brace at midspan of a 20-ft span (unbraced length = 10 f) requires
about the same ideal brace stiffness as three braces spaced at 10 ft. In the lateral brace case the three
brace system requires 1.7 times the ideal stiffness of the single brace system, as shown in Fig. 11.

Tests have been conducted on torsionally braced beams wrth various snffener details which are
presented elsewhere (Yura, 1992). The tests show good agreement with the Basp solutions.

Buckling Strength of Torsionally Braced Beams Taylor and Ojalvo (1973) give the following
exact equation for the critical moment of a doubly symmetric beam under uniform moment with
continuous torsional bracing

Top fig. brace k

8 _ga®
M., = M? +B,EI ©) | EWEs Ijui’ w.,\swi‘\;}\%s

: ' i L =30
where M, is the buckling capacity of the M, § =:;3 k)
unbraced beam and B, = attached torsional M, 8 (504 ink)
brace stiffness (k-in/rad per in. length), = 2 . : .
Equation (5), which assumes no cross section 1 R 51.1,0.;_")
distortion, is shown by the dot-dash line in g s e :
Fig. 19. The solid lines are BASP results for e = =L
a W16x26 section with no stiffeners and spans ;e EbEVRf
of 10 ft, 20 ft, and 30 ft under uniform o i

moment with braces attached to the . .
compression flange. Cross-section distortion Fig. 19 Approximate Buckling Formula

-



In crossframes and diaphragms the brace Mt:;r .
moments M, are reacted by vertical forces on the Baam Loadl
main girders as shown in Fig. 22. These forces Vor o 2 *\r 7
increase some main girder moments and decreases LT M b = 2M
others. The effect is greater for the twin girder ~§_ - —2M Brace Load——¥
. S < hr S
system B compared to the interconnected system v's

A. The vertical couple causes a differential

displacement in adjacent girders which reduces

the torsional stiffness of the cross frame system. @

For a brace only at midspan in a twin girder s 4M,,
3

8 8
system the contribution of the inplane girder T i
flexibility to the brace system stiffness is

S

where L is the strong axis moment of inertia of
one girlfier and L is the span length. As the Fig. 22 Beam Load from Braces

number of girders increase, the effect of girder stiffness will be less significant. In multi-girder systems,
the factor 12 in Eq. 7 can be conservatively changed to 24 (n, - 1)2)'1:|8 where n, is the number of girders.
For example, in a six-girder system, the factor becomes 100 or more than eight times the twin girder
value of 12. Helwig (1993) has shown that for twin girders the strong axis stiffness factor By is
significant and Eq. (7) can be used even when there is more than one brace along the span.

Cross-section distortion can be approximated by
considering the flexibility of the web, including full depth
stiffeners if any, as follows:

Fas =33 12 12

E|(N+1sh)e), :,bf] @®)

Torsional Brace

where t, = thickness of web, h = depth of web, t, = hlq /

thickness of stiffener, b, = width of stiffener, and N = e

contact length of the torsional brace as shown in Fig. 23. For T_ m
h

continuous bracing use an effective net width of 1 in. instead
of (N + 1.5h) in 8., and By, in place of 8, to get B. The
dashed lines in Fig. 19 based on Egs. (5) and (6) show good

agreement with the BASP theoretical solutions . For the 10 Fig. 23  Effective Web Wid
ft and 20 ft spans, BASP and Eq. (6) are almost identical. % Fae a1

Other cases with discrete braces and different size stiffeners also show good agreement.

(N+15h)

In general, stiffeners or connection details such as clip angles, can be used to control distortion.
For decks and through girders, the stiffener must be attached to the flange that is braced. Diaphragms
are usually W shapes or channel sections connected to the web of the stringer or girders through clip
angles, shear tabs or stiffeners. When full depth stiffeners or connection details are used to control
distortion, the stiffener size to give the desired stiffness can be determined from Eq. (8). For partial depth
stiffening illustrated in Fig. 24, the stiffness of the various sections of the web can be evaluated
separately, then combined as follows:

)

3 3
3_35( h )2( (N+1.5h;)t,, . t, b,
h;

=k 12 V)

13
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where h; = h, h,. or h, and

1 1 1 ' l _CL —
—_ s 10 b
B 6‘: ﬁ ( ) hg - N

1
6—3 t 5 hp
| " (=
The portion of the web within hy can be considered |

infinitely stiff. For rolled sections, if the diaphragm _T:: e

= +

connection extends over at least one-half the beam hy &
depth, then cross-section distortion will not be signif- t
icant because the webs are fairly stocky compared to Fig. 24 Partially Stiffened Webs

built-up sections. The depth of the diaphragm, h,,

can be less than one-half the girder depth as long as it provides the necessary stiffness to reach the
required moment. Cross frames without web stiffeners should have a depth h, of at least 3/4 of the beam
depth to minimize distortion. The location of a diaphragm or cross frame on the cross section is not very
important; it does not have to be located ciose w0 the compression flange. The stiffeners or connection
angles do not have to be welded to the flanges when diaphragms are used. For cross frames, £,, should
be taken as infinity; only h, and h_ will affect distortion. If stiffeners are required for flange connected
torsional braces on rolled beams, they should extend at least 3/4 depth to be fully effective.

Equation (5) was developed for doubly-symmetric sections. The torsional bracing effect for
singly-symmetric sections can be approximated by replacing I, in Eqgs. (5) with I ¢ defined as follows:
_ t
Lg=le+ -1y (11)

[

where L. and I, are the lateral moment of inertia of the compression flange and tension flange
respectively, and ¢ and t are the distances from the neutral bending axis to the centroid of the
compression and tension flanges respectively, as shown in Fig. 25(a). For a doubly symmetric section
¢ = tand Eq. (11) reduces to Iy. A comparison between BASP solutions and Egs. (5) and (11) for three
different girders with torsional braces is shown in Fig. 25(b). The curves for a W16x26 show very
good agreement. In the other two cases, one of the flanges of the W16x26 section was increased to
10x1/2. In one case the small flange is in tension and in the other case, the compression flange is the

smallest. In all cases Eq. (11) is in good agreement with the theoretical buckling load given by BASP.

Equation (5) shows that the buckling load increases without limit as the continuous torsional brace
stiffness increases. When enough bracing is provided, yielding will control the beam strength so M, can
not exceed M,, the yield or plastic strength of the section. It was found that Eq. (5) for continuous
bracing could be adapted for discrete torsional braces by summing the stiffness of each brace along the
span and dividing by the beam length to get an equivalent continuous brace stiffness. In this case M,

By M
5000 (6666605 o Fig. 10x1/2
comp. flg. - 15.5x1/4 stiffener
— —— == £ 4000
=
‘é’aooo
y
x } x <2000
d 8
: — \ £1000
tension flg. © "
0 2 4 6 8 10
(23 L B, Brace Stifiness (k-in/rad/in. length)

Fig. 25 Singly Symmetric Girders



will be limited to M,, the moment corresponding to buckling between the brace points. By adjusting Eq.
(5) for top flange loading and other loading conditions, the following general formula can be used for the
buckling strength of torsionally braced beams :

CL B, EI
2 2 bb
M, =\j Cyu M, + __.._Cz T < Myor M, Ga)

where Cy,, and Cy,, are the two limiting C,, factors corresponding to an unbraced beam (very weak braces)
and an effectively braced beam (buckling between the braces); Cy is a top flange loading modification
factor; Cp = 1.2 for top flange loading and C; = 1.0 for centroid loading; and ET is the equivalent
effective continuous torsional brace (in-k/radian/in. length) from Eq.(6). The following two cases
illustrate the accuracy of Eq. (12).

! 4x1/4 stiffener
For the case of a single torsional brace - 6] BASP _\ =
at midspan shown in Fig. 26, C,,= 1.35for 2 5 S
‘bu = Eq12

a concentrated load at the midspan of an 3 4 \
unbraced beam (Galambos, 1988). Usually § _ =
designers conservatively use C,= 1.0 for this ‘;; 3 no stiffener
case. For the beam assume:d bra_ced at mid- 2 2 To Flifge Lk Cr= 42
span, Cy,= 1.75 for a straight line moment 5 . 2 - %{ 1.35
diagram with zero moment at one end of the Wi2x14-24ft 7 =1.75
unbraced length. These two values of Cy, are % 100 200 300 400 500 800

used with any value of brace torsional
stiffness in Eq. (12). For accuracy at small
values of brace stiffness the unbraced buck- . .
ling capacity Cy,,M, should also consider top Fig. 26 Effect of Stiffener

flange loading effects. Equation (12) shows excellent agreement with the BASP theory. With no
stifener, 8, from Eq. (8) is 114 in-k/radian, so the effective brace stiffness 81 from Eq. (6) cannot be
greater than 114 regardless of the brace stiffness magnitude at midspan. Equations (6), (8) and (12)
predict the buckling very accurately for all values of attached bracing, even at very low values of bracing
stiffness. A 4 x 1/4 stiffener increased 8., from 114 to 11000 in-k/radian. This makes the effective
brace stiffness very close to the applied stiffness, 8,. With a 4 x 1/4 stiffener, the effective stiffness is
138 in-k/radian if the attached brace stiffness is 140 in-k/radian. The bracing equations can be used to
determine the required stiffener size to reduce the effect of distortion to some tolerance level, say 5%.

Torsional Brace Stiffness (k-in/rad)

Figure 27 shows the correlation between the approximate buckling strength, Eq. (12) and the exact
BASP solution for the case of a concentrated midspan load at the centroid with three equally spaced

braces along the span. Stiffeners at the three brace points prevent cross-section.distortion so 'B'T=

38,/288 in.. Two horizontal cutoffs for Eq. (12) corresponding to the theoreticﬁ moment at buckling
between the braces are shown. The K = 1.0 254

K = 0.88 was calculated using the procedure ,
given in the SSRC Guide (Galambos, 1988). . jcentroid Load
Figure 27 shows that it is impractical to rely

on side span end restraint in determining the ! =

buckling load between braces. An infinitely % 500 1000 1500 2000 2500 3000
stiff brace is required to reach a moment
corresponding to K = 0.88. If a K factor of
i is used in the buckling strength formula, the

limit assumes that the critical unbraced Eq12
length, which is adjacent to the midspan load, & N K= 88
is not restrained by the more lightly loaded 3z \
end spans. To account for the effect of the o — \
end span restraint, an effective length factor - K=1.0
8
S

Brace Stiffness per Brace (k-in/rad)

Fig. 27 Multiple Discrete Braces



The torsional brace stiffness requirement, Eq. (14), must be adjusted for the different design specifi-
cations as discussed earlier for the lateral brace requirements:

AISC-LRFD: Br= Br /¢ where ¢ = 0.75 is suggested
AISC-ASD: Br =26 where 2 is a safety factor
AASHTO-LFD: B¢ = B¢ no change

Torsional Brace Design Examples. In Example 3 a diaphragm torsional bracing system is designed
by the AASHTO-LFD specification to stabilize the five steel girders during construction as described in
Examples 1 and 2 for lateral bracing. The strength criterion, Eq. 15, is initially assumed to control the
size of the diaphragm. A C10x15.3 is sufficient to brace the girders. Both yielding and buckling of the
diaphragm are checked. The stiffness of the C10%x15.3 section, 195,500 in-k/radian, is much greater
than required but the connection to the web of the girder and the in-plane girder flexibility also affect the
stiffness. In this example, the in-plane girder stiffness is very large and its affect on the brace system
stiffness is only 2%. In most practical designs, except for twin girders, this effect can be ignored. If
a full depth connection stiffener is used, a 3/8 x 3-1/2 in. section is required. The weld design between
the channel and the stiffener, which is not shown, must transmit the bracing moment of 293 in-k.

The 40-in. deep cross frame design in Example 4 required a brace force of 7.13 kips from Eq. (15).
The factored girder moment of 1211 k-ft. gives an approximate compression force in the girder of 1211
X 12/49 = 296 kips. Thus, the brace force is 2.5% of the equivalent girder force in this case. The
framing details provide sufficient stiffness. The 3-in. unstiffened web at the top and bottom flanges was
small enough to keep S, well above the required value. For illustration purposes, a 30-in. deep cross
frame attached near the compression flange is also considered. In this case, the cross frame itself
provides a large stiffness, but the 14-in. unstiffened web is too flexible. Cross-section distortion reduces
the system stiffness to 16,900 in.-k/radian, which is less than the required value. If this same cross
frame was placed at the girder midheight, the two 7-in. unstiffened web zones top and bottom would be
stiff enough to satisfy the brace requirements. For a fixed depth of cross frame, attachment at the mid-
depth provides more effective brace stiffness than attachment close to either flange

Closing Remarks and Limitations

Two general structural systems are available for bracing beams, lateral systems and torsional systems.
Torsional bracing is less sensitive than lateral bracing to conditions such as top flange loading, brace
location, and number of braces, but more affected by cross-section distortion. The bracing
recommendations can be used in the inelastic buckling range up to Mp if the M; form of the lateral brace
stiffness equation is used (Ales, 1993).

The recommendations do not address the bracing requirements for moment redistribution or ductility
in seismic design. The bracing formulations will be accurate for design situations in which the buckling
strength does not rely on effective lengths less than one. Lateral restraint provided by lightly loaded side
spans should, in general, not be considered because the brace requirements would be much larger than
the recommendations herein. Also, laboratory observations in the author’s experience ( usually unplanned
failures of test setups ) show that brace forces can be very large when local flange or web buckling occurs
prior to lateral instability. After local buckling the cross section is unsymmetric and vertical loads
develop very significant out of plane load components. The bracing recommendations do not address
such situations.
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TORSIONAL BRACING - DESIGN EXAMPLE 4

S Same as Example 3, but use cross frames. Make all
member sizes the same. A K-frame system will be
considered using double angle members welded to
connection gusset plates. Member lengths are shown in
inches. Use four crossframes. See Examples 1 and 3 for
section properties. Use A36 steel.

Assume brace strength criterion controls - Eq. (15)

0.04 (80 x 12) (1211 X 12)°
= 293 in-kK ; Fy = 7.31kips
4 (29000) 239 (1.08

2R, L, 2(7.31) 62.5

S 98
The AASHTO Load Factor method does not give a strength formula for compression members
so the formulation in Allowable Stress Design will be used. Convert to ASD by dividing the
member force by the 1.3 load factor to get an equivalent service load force.

Diagonal Force (ASD) =9.52/1.3 = 7.3 kips

3

E, (40) =

From Fig. 21 : Max force = diagonal force = = 9.52 kips - comp

Try2L-21/2 x 21/2 x 1/4 r, = .769in. ,A = 2.38 in2

X

¢/r=625/.769=812 ; F = 16980-.53 (81.2)2 = 13490 psi = 13.5 ksi

Pow = 13.49 (2.38) = 32.1kips > 7.3kips OK

Check brace stiffness:
Eq.(14); ﬁT e 17550 in-k/radian - see Example 3

v 1
A 2(29000) (96)° (40 (2.38) . .
3 Fig.21: B, = 2 £22) = 717000 in-K/radian
8 (62.5) >+ (96)
2 Girder : 59 = 406000 in-k/radian - see Example 3
v E:

2
e _a _ 3.3(29000) 49 1.5 (3.0) (5[ ) - i
X pc = ﬁt = 3.0 ( 3'0 ) ( 12 399000 |n-kjrad

1 s

S P : B_=113000> 1 in-k/rad
Bq. [18) : B~ 77000 * 06000 * 369000 B 7530 in-Kired o,
Evaluate the cross frame shown below
2 2
, = 2(28000) (963) (30) (23'38) = 490000 in-k/radian
pe 8 (56.6)° + (96)
30 €6 2 3
_ 3.3(29000) ( 49 \°(1.5(14.0) (5°\ _ .

V| P L (f55) (327 ) = 18300 in-kirad
A 48
v i P T : B, = 16900 < 17550 in-k/rad
y i B~ 490000 * 406000 18300 T NG

-
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- L
/ 5, r/r,
4 A
kip/in per in. length \ 'klpfn ﬁL
H s k\lﬂ’iﬂ/rud;aﬂzr
continuous bracing discrete bracing
Mo Ma - #of b
5[}_ .,9} convert to continuous P, = &—i—%ffe—s-
e
use .75L for
LATERAL BRACING 6ne brace

Th?re are ero O-pprocchps i A Cohll'muou.s Brgcl-.no. ?%&J\O_‘i‘l(): \531\)-’2..4 wl?&c[\
gag the erhéal buckling load Br any value 1 prdcig stifiness. Discrete or
5sn3|e-pan+ systems cohjn.z converted 18 conhiuous as shawn above, £g(D. A
mod fication 'fz: Winfecs column brac C—faif bmdnj) 15 also Srvem This SW'ES the
renamed ok fnces fo Brec the buctin: betoson b9aces. the combmuous

a;aﬁroacé
et g,cdads( ¥ Combined with forsiohal braces . Reducton: for cnd”—cb/-s ﬁ‘a;ﬁ
|J’1C{u 4,

ness Ard

G mhouous Brocing

MCY:“O [<Cbum_rj+('scbb g’ H)—ZA](\‘{-A) < M), a MS

2
where pj:’ﬂ L A= (4|*33 8. .
\ C_P, ’

«

€7 1+ 122 £ oo Flange leadig

r

= 1.0 for centrog lo::alcj

N, is the Buc{dwﬁgs%am th of the unbraced

_ a 22am lY'lCiudI)éj arj J;DP gaﬁ@{.
loo.dmj e#ec . =

Mol dod o TLER o BEE]2 o ABE LRED
A T %+ THE o £
Cbu Is the Cb ﬁm‘ar assuming the beam s urndrace

Cop 18 the Gy fackor assumming the béom braces are 7@{/) effectve

My 15 the buckling loadt betueen the braces

k= number O{: 5‘”‘3‘/‘3'1‘:"'”7{_ érac‘ej M J\ dou.ble, Cur‘Vo:l'\;J?
5

. , 4 . foctor
FARWE s Full Lafecal ~rg Requ rements T
Med fie rlecs ra &rac_:j g;i/ M |
HZEI ﬂ REQ'D = Zt(M/HjCLCGi U/umz *= 4"’(2-/f7) Er' discrefe ’orac&ff
Cbb”_,_,,.-j'—-e L * L ' = | br r’ala+\uc braci?f
or Lil'o T ¢ b Ca= 1+ C“S/ML)Z double curvatuad
whow M = maximuwm 'racforfiaf' mom?nTL ; (Pf ©.75 . Inr ASD wie 2x $2ruce M anc
Ms = :

maximum mom2,1 or ine sid

F:b = 0.0l (H/h)CLCA dicrele hmce
r
= o.OOd—(M/h)CLCA reasy@ brace
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TORSIONAL BRACING DESIGN REQUIREMENTS Y
5
7 =
. . EL. B
Stiffness: M, = JC"I" M: . Cbbz AP T < M, or M, 03]
T CT L l_..bucjc{' &[_bejrween LJ('QCES
capaaty of unbraced bean \__ teld momen
pactiy -| z-For'l'op{:laanQ !oade Cy=\ o-roroHr'Qt‘
Instead of solving Eq. |3 " for the required §_, the following expression can be used
r =BrLin=24LM} [ (nEL 7 G (14)
Strength: M, =F, h, =0. 04LM /(nEI ﬁ'cbb) (15
whece M; = maximum beam moment come 8 ——
Ig = Lo+ (t/0) Ly zr for doubly symmetric sections | F
C,,= moment diagram modification factor for the full bracing condition
L = span length ; 1
n = number of braces along the span W
: — —_————————  (ensionfig.
The available effective stiffness of the brace system Sy is calculated as follows:
Tarsional Brace 1 1 1 1 1 1
N 1/////,7////// _="““"+‘—'+—+"—+——- (16)
FEE/ 1 s Br B. B, B By B
T— l , stiffener
! (N+15h) 3E| h\2 (N+1.5h.)13 t b3
L e ﬁc,ﬁ,,ﬁ BE(EF 2ol an
///////////A' ) ‘ hl 12 12
_hi where h; = h_, h,. or h, ; N = bearing length
o (1P ny, T B, = stiffness of attached brace (see below)
h %‘E} " q Bg=24(ng-1)2SZEIx/(L3ng) (18)
L i where n, is the number of interconnected girders
i IS
Ceoss FRAMES S fea
TEN;SJ}C)N SYSTEM ‘o m’ o- A:hm. .
e T, > [GA,‘ Po=M/B
22
by = SR Tension em -
%J:- + Ai:- horizonla?sy:e required
_oGead  eaneieR e W e o
|
= = I = *
S —_— .
be 22
-.; a 3‘( C % K Brace System -
e diagonals designed for
6 E ]b 2.E1 -F le ¢ s h lension and compression
S P —s A
A, = area of honzonlal members L, = length of diagonal members

A = area of diagonal members S = spacing of girders
= modulus of elasticity h, = height of the cross frame
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- TORSIONAL BRACING - DESIGN EXAMPLE -
r.

R aadaantal 4

Friction controls slip CONSIDEE{
12.5(140)
Coi <

>3 DISTORTION
« 25(140) + 5(8LA+ 4O
Cob= U1 (]

A\SC-LRFD Spec-2nd B 4
A36 Steel - W21X44 J=07 ™
S Factored loads shown Cw= 2110 e
T.=220.Tm
O M= 258 k-ft 2

t,= 0.350in = i

includer fackered . % ] CuM = 878 ink = 73.2 k-t ¥
be.am les m&é"wmw_;&mmv-- S SN 1N Bk, o]
;#‘ Hl/ %
Check torsional bracmg effect of pallet N=12x12=144in
Wy Broe = 33028000) £(0357 (144, 4 542021 ) | =2049ink/rad ; (3, (palled)=¢
% 2021 L g LA Let
A A AN P A e A, ﬂ‘r 2949 [o%)
Eg. 13 M=" (878) +(1 67) 29000 (20 7) 2949 /2 (1 2) (32 x 12) = 206 k-ft SEEEs
0.9 x 206 =186 > 140 k-ft OK

¢
¥ It pallet prouides ne bmc;}nﬂ Ly =32 Cb=l-23 - Wae AC-LRFD Eq F1-13

- Y5 29000 7| 20.7 TI) ° L ze(zii0) = 818w~k
M, ColM, = 3 g 32(12) v 2.6 zaz'm)1 ¢ = 3.2 kFT

L



3.2-2 / Column-Rclated Design
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