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Abstract 

Design methods for stability bracing of columns, beams and frames are 
summarized. The importance of initial out-of-straightness on the brace strength 
and stiffuess requirements is shown. Four types of bracing systems are described; 
relative, discrete, continuous and lean-on. Design examples (AISC - LRFD) illus
trate the use of the bracing formulas. 

Recommendations for lateral bracing and torsional bracing for beams are 
presented. Solutions for restrained beams with the top flange braced are given. It 
is shown that the inflection point cannot be considered a brace point. Stiffener re
quirements to control cross-section distortion are included in the method for de
signing cross frame and diaphragm bracing. 

Introduction 

A general design guide for stability bracing of columns, beams and frames 
is presented herein. The focus is on simplicity, not exact formulations. The design 
recommendations cover four general types of bracing systems; namely relative, 
discrete, continuous and lean-on, as illustrated in Figure 1. A relative brace con
trols the relative movement of adjacent stories or of points along the length of the 
column or beam. If a cut everywhere along the braced member passes through the 
brace, itself, then the brace system is relative as illustrated by diagonal bracing, 
shear walls, or truss bracing. A discrete brace controls the movement only at that 
particular brace point. For example, in Figure 1 b the column is braced at points 1 
by cross beams. A cut at the column midheight does not pass through any brace 
so the brace system is not relative, but is discrete. Two adjacent beams with dia
phragms or cross frames are discretely braced at the cross frame location. Con
tinuous bracing is self evident; the brace is continuously attached along the length 
of the member such as with siding for columns and metal deck forms for beams 
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during construction. A beam or column that relies on adjacent structural members 
for support is braced in a lean-on system. Structural members that are tied or 
linked together such that buckling of the member would require adjacent members 
to buckle with the same lateral displacement characterize lean-on systems as 
shown in Figure ld. In the sway mode Member A leans on Member B. 

An adequate brace system requires both strength and stiffuess. A simple 
brace design formulation such as designing the brace for 2% of the member com
pressive force addresses only the strength criterion. Brace connections, if they are 
flexible, can have a very detrimental effect on stiffness as will be illustrated later. 
Before presenting the various bracing recommendations, some background mate
rial on the importance of initial out-
of-straightness and member inelas
ticity on bracing effects will be dis
cussed. 

Limitations. The brace re
quirements presented will enable a 
member to reach the Euler buckling 
load between the brace points, i. e., 
use K = 1.0. This is not the same 
as the no-sway buckling load as 
illustrated in Figure 2 for the 
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Figure 2 Braced Cantilever 
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braced cantilever. The ideal brace stiffness is ~. p 

I. 0 P,/L corresponding to K = I. O. A brace r 
five times this stiffness is necessary to reach 9S I 

i percent of the K = 0.7 limit. Theoretically, an L 

infinitely stiff brace is required to reach the no- I 

sway limit. In addition, bracing required to 
reach specified rotation capacity or ductility 
limits is beyond the scope of this paper. 

f 
p 

initial out
of-straightness 

A tP 

Background 
Figure 3 Relative Brace 

Member-Out-of-Straightness. Winter (1960) developed the concept of a 
dual criteria for bracing design, strength and stiffness, and he derived the interrela
tionship between them using simple models. He showed that the brace force is a 
function of the initial column out-of-straightness, ~, and the brace stiffness ~ . 
The concept is illustrated for the relative brace system shown in Figure 3, where 
the brace, represented by the spring at the top of the column, controls the move
ment at the top ~ relative to the column base. Summation of moments about point 
A gives P~T = ~L(~T - ~) where ~T = ~ + ~. If ~ = 0 (an initially perfectly 
plumb member), then P or = ~L which indicates that the load increases as the brace 
stiffness. The brace stiffness required in the sway mode to reach the load corre
sponding to Euler buckling between brace points, Po, is called the ideal stiffness, 
~ i , where ~i = P,/L in this case. 

For the out-of-plumb column, the relationship between P, ~, and ~T is 
plotted in Figure 4a. If ~ = ~i, Po can be reached only if the sway deflection gets 
very large. Unfortunately, such large displacements produce large brace forces, 
Ft., since Ft. = ~~. For practical design, ~ must be kept small at the maximum ex
pected load level. This can be accomplished by specifying ~ > ~i . For example if 
~ = 2~i, then ~ = ~o at Po as shown in Figure 4b. The larger the brace stiffness, 
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Figure 4 Effect of Initial Out-of-Plumb 
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the smaller the brace force. The brace force is a linear function of the initial out
of-plumbness. The recommendations given later will assume a particular out -of
straightens and a brace stiffuess at least twice the ideal stiffuess. 

Column Inelasticitv. The bracing requirements for relative braces are 
merely a function of the load on the member, as illustrated above. Other brace 
system requirements (continuous, lean-on) are based on the elastic or inelastic 
stiffuess of the members to be braced as will be given later. In stability problems 
the effect of member inelasticity on the buckling solution can be reasonably 
approximated by using the tangent modulus stiffuess ET instead of the elastic 
modulus, E. The inelastic stiffuess ET = tE where t is the inelastic stiffuess 
reduction factor. The elastic range is defined by the axial stress in the member, not 
the slenderness ratio. A member with low slenderness ratio (LIr) will respond 
elastically if the axial stress is low. In the AISC Specification an axial stress less 
than 0.3 Fy in ASD or 0.33 Fy in LRFD places the column in the elastic range. The 
AISC-ASD and LRFD Manuals of Steel Construction tabulate the stiffuess 
reduction factor for PIA stress levels. In LRFD, t = -7.38(plPy) log (1.176 PlPy) 
where Py is the yield load, FyA. The potential axial buckling capacity of a member 
is t (.877) 1t

2 EII(KLi for PlPy ~ 113. For PlPy < 113, t = 1.0. The t factor will 
be used in some of the example problems. 

Safety Factors. d> Factors and Definitions 

The recommendations presented are based on ultimate strength. Column 
and beam loads are assumed to be factored loads. For brace stiffuess formulations, 
a <!> = 0.75 is recommended in LRFD. If the load calculations are based on service 
loads as in ASD, a factor of safety of 2.0 can be applied to the factored load 
stiffuess requirements. The strength requirements use the built-in safety factors or 
<!> factors within each design specification. In LRFD, the design brace force will be 
based on factored loads and compared to the design 
strength of the member and its connections. In ASD, 
the brace force will be a function of the applied service 
loads, and this force will be compared to the allowable 
brace loads and connection capacity. 

The displacement A, for relative and discrete 
braces is defined with respect to the distance between 
braces as shown in Figure 5. In frames P is the sum of 
the column loads in a story to be stabilized by the 
brace. In the case of a discrete brace for a member, P 

--"torv--f-.,-.....-brace 

col 

would be the average load in the compression member sto"'"'L-J..\.--Ll-o+-+--+-brace 

above and below the brace point. The initial dis- Ll + Ll -~ 

placement A, is a small displacement from the straight 0 

position at the brace points caused by sources other Figure 5 Definitions 
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than the gravity loads or compressive forces . For example ~ would be a dis
placement caused by wind or other lateral forces, erection tolerance (initial out-of
plumb), etc. In all cases, the brace force recommendations are based on an as
sumed ~ = 0.002L. For other ~ use direct proportion. For torsional bracing of 
columns or beams, an initial twist Po of lOis used. 

Relative Braces for Columns or Frames 

DESIGN RECOMMENDATION 
LRFD, 4> = 0.75 

2P 
PREQ'D. = ¢ L 

The design recommendation is based on an initial out-of-plumbness = 

0.aa2L and a brace stiffness twice the ideal value shown in Figure 4. Example 1 
illustrates the bracing design. Each brace must stabilize 1500 kips. The cos func
tions are necessary to convert the diagonal brace to an equivalent brace perpen-

EXAMPLE 1 -. Relative Brace - Tension System 
Typical brace must stabilize three bents 
Factored load each bent = 150 + 250 + 100 = 500 kips 
Design recommendations assume fbr and.a. are perpendicular 

150 k 25
1
0 k ~~k 

to the column 

'. '. ' Brace Force : 
/1"'- ·····1 .. . , 0.004(3 x 500)/cos a = 6.99 k '" , 1-"';.'.. 12' 

Fy = 36 ksi ~~ .... 5/8 threaded rod OK 
i'E-20'--7' 

Brace Stiffness : AbE 2 a _ 2(3 x 500 k) . 
~cos - 0.75(12) . Ab = 0.364 in

2 

gross 

USE 3/4 q,. Ag = 0.44 in
2 

dicular to the column(s). Stiffuess controls the design in this case. If ~ is differ
ent from a. 002L, change F hoc in direct proportion to the actual ~ but no change is 
necessary for p. 

Discrete Bracing Systems for Columns 

Discrete bracing systems can be represented by the model shown in Figure 
6 for three braces. The exact solution taken from Timoshenko (1961) shows the 
relationship between P" and the brace stifihess, p. With no bracing p ... = 

7t
2EII(4Ll At low brace stiffness the buckling load increases substantially with 

the buckled shape a sirigle (1st mode) wave. As the brace stifihess is increased, 
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Figure 6 Three Discrete Braces 

the buckled shape changes and additional brace stiffness becomes less effective. 
Full bracing occurs at ~LlPc = 3.41. This ideal stiffness varies for equally spaced 
braces between 2.0 for one brace to 4.0 for a large number of braces. Thus 4.0 
can be used conservatively for all cases. The design recommendation is based on 
full bracing assuming the load is at Pc. 

DESIGN RECOMMENDATION 
LRFD, <jJ = 0.75 

2P 
~REQ'D=#

¢L 

P = factored load, L = required brace spacing, n = number of braces, # '" 4 - (2Jn) 

Typically, P may be less than PeSO it is conservative to use the actual col
umn load P to derive the design stiffness represented by the dashed line in Figure 
6. Note that the required brace stiffness is inversely proponional to the brace 
spacing L. In many applications there are more potential brace points than neces
sary to support the required member forces. Closer spaced braces require more 
stiffness because the derivations assume that the unbraced length provided is just 
sufficient to support the column load. For example, say three girts are available to 
provide weak axis bracing to the columns. Say that the column load is such that 
only a single full brace at midspan would suffice. Then the required stiffness of the 
three brace arrangement could be conservatively estimated by using the permissible 
unbraced length in the brace stiffness equation rather than the actual unbraced 
length. The continuous bracing formula given in the next section more accurately 
represents the true response of Figure 6 for less than full bracing. 

The design recommendation is based on twice the ideal stiffness to account 
for initial out-of-straightness. The recommended brace force is 1 % of P (See De
sign Example 2). The value of # is based on equal brace spacing and is unconser
vative for unequal spacing. For unequal spacing, # can be simply derived using a 
rigid bar model between braces (Yura, 1994). 
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EXAMPLE 2 - Discrete Brace at Midheight 

120 k 

10' 
W16x26 

5' 
5' 

brace 

10' ~ 

A cross member braces the weak axis of the 
W16x26 at midheight. Factored loads shown. 

n = 1, # = 2; ~req'd = 20~i~~1~0) = 5.33 klin 

5' iF 5' ~ =£. = 48 E I 
& ••• -7-___ ..... L- A. (10 x 12)3 

A. 3 
I _5.33(120) - 6 6' 4 

. req'd 48(29000) - . In. 

TRY C5x6.7, I x= 7.5, Sx = 3.5, Fbr = 0.01(120) = 1.2 k 

Fy = 36 ksi fb = 1.2(120)/4(3.5) = 10.3 ksi OK 

Continuous Bracing 

For a column braced continuously, Timoshenko (1961) gives 

(1) 

where n = number of half sine waves in the buckled shape as shown by the solid 
line in Figure 7. As the brace stiffness per unit length p increases, the buckling 
load and n also increase. The switch in buckling modes for each n occurs when 

/3 L' / Jr'P, = n' (n + 1)' . Substituting this expression for n into Eq. (1) gives 

2L F0;;
P", = P.+-",PP. 

tr 
(2) 

Eq. (2) is an approximate solution, shown dashed in Figure 7, which gives 
the critical load for any value of p without the need to determine n. In the 

inelastic range use -cPe for P, in Eq. (2). 

Eq. (2) can also be used for discrete braces by defining p", P x number of 

braces / L and by limiting P" ::; Jr' EI / [' where l is the distance between braces. 
This approach is accurate for two or more braces. For example, if there are two 
discrete braces, the ideal discrete brace stiffness is f3 = 3P, / [ where l = U3 and 

Per = 1t2EII e 2 Using Eq. (2) with P = 2(3P.ll)/L gives Per = 1.01 (1t2EIIt 2
). 

The bracing design recommendation given below is based on Eq. (2) with 
p adjusted by a factor of two to limit the brace forces, adding a ~ = 0.75, and 
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p 
~ = k I in. per in. 
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cr 10 Ea. (1) 
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Figure 7 Continuous Bracing 

using Po = 0.85 (.877) 'PE 

which is the AISC-LRFD 
column design strength. 
formula. The brace 
strength requirement 

F b. = 7(2 P ~T / L: was 

developed by Zuk (1956) 
where Lo is the max theo
retical unbraced length 
that can support the col
umn load. Taking ~T = 
2~ and ~ = 0.002 La 
gives Fb• = 0.04 P / Lo . 

DESIGN 
RECOMMENDATION 

LRFD 

~,P" = Po + (Lht) ~2 ¢b. fJ Po ; Fb< = 0.04 PlLo 

where Po =~, (.877) ,P" ~,= 0.85, ~ = 0.75 

Lean-On Systems 

When some members 
lean-on adjacent members for 
stability support (bracing), the 
LP concept (Yura, 1971) can be 
used to design the members. 
The approach will be explained 
using the problem shown in Fig. 

• 8, in which Col. A has a load P 
with three connecting beams 

{ 
L 

L 

L 

L 

r 
!~ 
! • . . 

i • 

i · ; · · . 
; · 
l • : 

; , 
; , 
~: • 
\ , 

attached between Cols. A and,,~ r >, 

1.0 

2 
It E iA 

P = 
L2 • 

o '---~-~-
o 

B. There are two principal B A ( a ) (b) 

buckling modes for this struc
ture, the no sway and the sway 
modes. If Col. B is sufficiently 
slender, the system will buckle 

Figure 8 Lean-On Bracing 

in the sway mode, shown by the dot-dash line in Figure 8a. In the sway mode the 
buckling strength involves the sum (LP ,,) of the buckling capacity of each column 
that sways. The system is stable in the sway mode if the sum of the applied loads 
(LP) is less than the :EP ". This assumes all the columns have the same height. If 
Col. B is sufficiently stiff, the buckling capacity may be controlled by the no sway 
mode shown dashed. Both modes must be checked. 
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An exact elastic solution, developed with the ANSYS computer program, 
shows that as la increases, the Per increases linearly in the sway mode. At IslIA ~ 
15.3, Col. A buckles in the no sway mode. The Ib required to develop full bracing 
can be approximated using the EP concept. In the sway mode, the elastic capaci
ties of Cols. A and B are lt2EI,J(4L)2 and lt2ElaI(4L)2, respectively. The desired 
Per corresponding to the no sway mode is lt2EI,JL2. Equating the sum of the sway 
capacities to the Per in the no sway mode, 

gives la = ISlA which is close to the exact solution OfIa = 15.3 IA. In the inelastic 
range, '1: j is used where '1:j is based on the axial load in each column, P j. There can 
be axial load on all the columns. 

Example 3, which is similar to a problem solved by Lutz (1985), shows a 
W12 x 40 with its weak axis in plane supported by an adjacent column W12 x 26 
with the strong axis in-plane. The tie beams have shear only end connections so it 
is assumed that the tie beams do not contribute to the sway-stiffness of the system. 
Sway is prevented at the top of the columns. The W12 x 40 has been sized based 
on buckling between the supports, L = 8 ft. The calculations show that the elastic 
WI2 x 26 adjacent column can brace the weak axis column which is in the inelastic 
range. A W12 x 19 section would also be satisfactory. 

EXAMPLE 3 - Lean-On System 

W12x40 

50 k \ 317 k 
;,.'( " 

<0 
N 
x 
N 
~ 

~ 

";' 
sway 
mode 

AISC-LRFD Spec., Fy = 36 ksi, Factored loads 
Is the W12x26 capable of bracing the W12x40? 

From th AISC Manual, 41 p" = 317 k for L = 8' 
E P concept: W12 x40, A = 11 .6 in~,ly = 44.1 in~ 

W12 x26, A = 7.65 in~, Ix = 204 in4 

Col A : ~ 1 ~ A = 317/(36 x ll.8) - 0.746 >1/3.'. inelastic 

'1: = -7.38(0.746)log(1 .176xO.746) = 0.313 
41 P

A 
= 0 . 85(0 . 313)(0 .877)~ (29000)(44.1)/(288)2 
= 35.5 kips 

Col B : Pa 1 ~ A = 50/(36 x 7.65) = 0_181 < 1/3.' .1: = 1.0 

41 ~ = 0.85(0.877)1'2(29000)(204)/(288)2= 524 kips 

I: P = 35 + 524 = 559 > I: P = 317 + 50 = 367 k OK 
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Strength of Beams with Bracing 

Before beam bracing design requirements are presented, some background 
material on flexural-torsional buckling of beams (usually just called lateral buck
ling) will be summarized. A beam with an unbraced length Lb will bend laterally 

and twist at a critical moment given by ~ = Cb(7tlLb) ~ElyGJ + Jr'E'IyC w / L'b 

as given in the AISC-LRFD Specifications. Cb is modification factor that accounts 
for variations in the moment diagram and support conditions. The unbraced length 
is defined as the distance between points braced against lateral displacement of the 
compression flange or between points braced to prevent twist of the cross section. 
Bracing systems for beams must prevent the relative displacement of the top and 
bottom flanges, i.e. twist of the section. Lateral bracing Goists attached to the top 
flange of a simply supported beam) and torsional bracing (cross frame or dia
phragm between adjacent girders) can effectively control twist. ~ is also affected 
by the load position (top flange loading is more detrimental) and end restraints 
(Galambos, 1988). 

~c ~C;;=1 .67 

L . 
68 ... M - diag. 

~ . L 
~ace L Cb = ~68 

mid,~epth / top fig . E --- _ _ =.;, 
"bottom flg . 

buckled shape 

The suitability of assuming the inflection 
point as a brace point in restrained beams to define 
Lb is frequently raised. In many cases the top 
flange is laterally braced by the slab or joists all 
along the span while the bottom flange is unbraced. 
An inflection points cannot be considered a brace 
point as illustrated by the example shown in Figure 
9. One beam has a moment at one end (Cb = 1.67) 
with Lb = L and the other beam has an inflection 
point at midspan (Cb = 2.3) with Lb = 2L. The 2L 
span with the inflection point will buckle at a load 
that is 68% of the beam with span L. If the inflec
tion point is a brace point, the critical moment of 
both beams would be the same. The buckled shape 

Figure 9 Beam witb Inflection of the 2L beam shows that the top flange and bot
Point 

tom flange move laterally in opposite directions at 
midspan. Even an actual brace on one flange at the 

inflection point does not provide effective bracing at midspan. 

The cases discussed above were solved using a finite element computer 
program and approximate Cb formulas developed as given in Figure 10. These Cb 
values can be used in design with Lb = span length if twist is positively controlled 
only at the supports. Three general cases are derived: bracing only at the ends, 
top flange laterally braced with top flange gravity loading and top flange braced 
with uplift loading. The Cb formula for Case I was adapted from Kirby and Neth
ercot (1979). 
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CASE [ - Braces at the ends of the unbraced length 

x = brace 

C ~ : ~ 
1< Lb )1 

I>" any momen~iagram 
cc:::::. :. ! . . :;Z::> 

I I I I I 
M1 M2 M;. M4 Ms 

12.5 M max 
C -

b - 2.5 Mmax + 3M2 + 4M;. + 3M 4 

Use absolute values for the moments . 
Moments are at the 1/4 points. 
Mmax is the largest of Mi ' 

40t>. 

EX. : 3~ Cb = 2.5(1 00) ~ ~~3(~~~) 4(100) + 3(50) = 1.40 

CASE II - Top flange braced continuously - gravity load 

MO = end moment that gives 
the largest compo stress 
on the bottom flange 

M 1 = the other end moment 
M;.= moment at midspan 

.>.-100 +200 '5 
EX. . 50 

-lOOt=---.. <z:j00 

1. If neither end moment cause compo 
on the bottom fig ., there is no buckl ing . 

2. When one or both end moments cause 
compo on the bottom, use C b with Lb ' 

2 (M1) 8 M;. 
Cb = 3.0 -3" ~ - 3" (Mo+ M1)* 

* Take M 1 = 0 in this term if M 1 is positive 

C - 3 0 2 (+200) 8 (+50) = 5.67 
b- . -T-l00 -T(-100+0) 

Use ~ with Mo to check buckling . 

Use ~ax to check yielding. 

CASE III - Top flange braced continuously - uplift or suction 

t111111 r J I Uniform Loading: Cb = 2.0 

1~ .. Llb .... ~~ compo flange 

M<t 

Figure 10 C. for Braced Beams 
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Beam Bracing 

Two types of bracing systems are available: lateral bracing and torsional 
bracing. A general discussion of beam bracing and the development of the design 
recommendations herein are presented elsewhere (Yura, 1993). Lateral bracing 
can be relative, discrete, continuous or lean-on. Only relative and discrete lateral 
bracing requirements are presented here. Continuous bracing is addressed by 
Trahair (1982) and Yura (1992). Beams that are linked together lean-on each 
other and the lateral buckling cannot occur at the links unless all the members 
buckle. Buckling of an individual beam can occur only between the cross members 
in a lean-on system. No additional bracing requirements are necessary in lean-on 
systems. 

If two adjacent beams are interconnected by a properly design cross frame 
or diaphragm at midspan, that point can be considered a brace point when evaluat
ing the beam buckling strength. Since the beams can move laterally at midspan, 
the effectiveness of such a bracing system is sometimes questioned. As long as the 
two flanges move laterally the same amount, there will be no twist. If twist is pre
vented, the beam can be treated as braced. Tests and theory confirm this approach 
(Y ura, 1992) 

Lateral Bracing. The effectiveness and size of a lateral brace depends on 
its location on the cross section, the moment diagram, the number of discrete 
braces in the span, and location of load on the cross section. Lateral bracing is 
most effective when it is attached to the compression flange. The exception to this 
is for cantilevers where top (tension) flange bracing is effective. The design provi
sions herein are applicable only for bracing attached near the compression flange. 
The provisions also assume top flange loading which is a worse case. When the 

LATERAL BRACE DESIGN RECOMMENDATIONS, LRFD, <!> = 0.75 
Relative Discrete 

Stiffuess: ~L = 2.5Me Cd / <!>LJJ ~L = lOMe Cd / <!>LtJl 
Strength: Fb< = 0.004 Me Cd / h Fb< = 0.01 Me Cd Ih 

where Me = max. moment, h = beam depth, Lb = unbraced length 
Cd = 1.0 single curvature, = 2.0 reverse curvature 

beam has an inflection point lateral bracing must be attached to both flanges and 
the stiffness requirements are greater as given by the Cd factor in the brace re
quirements. For example, for a beam in reverse curvature as shown in Figure 8, a 
brace on both the top and bottom flange at midspan will require twice as much 
stiffness as a similar length beam with compression on only one flange. 
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EXAMPLE 4 - Relative Lateral Brace System 

"11 111' 
I ~ Design the diagonals of the top 

1 "3/4 x 8 flange horiz. truss to stabilize the 
five 80 ft girders with the factored 
moments shown. F y = 36 ksi 

I' , '" . . 
" 

1
< ; 
" • 

I " , , 

, , 
I " . . , " , , 

Five Girders 

, , 
" • 

8f/\ 
" ~ 
': 16 ft 
" .1, " ., 

, , 
" , 
" , , 

PLAN VIEW 

[)12 x 48 

1-1I4x15 1000 k-ft 

~M-diag ... -I( 80ft~ 
girder 

h = 49 in. 

Stiffness : ~ _ 2.5(1000 x 12) = 4.25 klin 
L - 0.75(49)(16 x 12) ea. girder 

x 2.5 girders = 10.6 klin 

(
AE) 2 Ab(29000) ( 1 )2 
T bCOS 8 = 8 x 12 x/5 15 = 10.6 

Ab = 0.393 in
2 

- CONTROLS 

Strength : Fb = 0.004(2.5)(1000 x 12) 149 = 2.45 k 
r 2 

Ab = 2.45 151 (0.9 x 36) = 0.17 in 

USE L 2 x 2 x 1/8 - A = 0.484 iFf 

The lateral bracing provisions are illustrated in Example 4 where a top 
flange relative brace truss system is used to stabilize the compression flange during 
construction of the composite plate girders. Each truss system must stabilize 2.5 
girders. 

Torsional Bracing. Cross frames or diaphragms at discrete locations or 
continuous bracing provided by the floor system in through girders or Pony 
trusses, or by metal decks and slabs represent torsional bracing systems. In the 
development of the design recommendations (Yura, 1993), it was determined that 
factors that had a significant effect on lateral bracing had a substantially reduced 
effect on torsional bracing. The number of braces, top flange loading and brace 
location on the cross section are relatively unimportant when sizing a torsional 
brace. A torsional brace is equally effective if it is attached to the tension flange or 
the compression flange. A moment diagram with compression in both flanges 
( reverse curvature) does not alter the torsional brace requirements. 

On the other hand, the effectiveness of a torsional brace is greatly affected 
by cross section distortion at the brace point as illustrated in Figure 11 . The top 
flange is prevented from twisting by the torsional brace but the web distortion 
permits a relative displacement between the two flanges. A stiffener at the brace 
location can be used to prevent the distortion. The design method considers web 
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torsional brace \ 
dt:;0J$t 42 ,1'1$/ 

Figure 11 

Web Distortion 

distortion and any required stiffeners, Discrete braces and 
continuous bracing use the same basic design formula. 

The continuous bracing stiffuess fiT = fiT n / L 

where ~T = discrete brace stiffuess, n = number of braces 

and L = span length. ~T and fiT are defined as the torsional 

stiffuesses of the bracing system. The system stiffuess ~T is 
primarily related to the stiffuess of the brace, ~b, and the 
stiffuess of the web plus any stiffeners, /3""" by 

1 
= + -

fir fl. (3) 

The ~b for diaphragm systems is given in Figure 12. The discrete web-stiffener 
detail can vary over the web as shown in Figure 13. The stiffuess of each portion 
of the web is given by . 

fI fI fI =3.3E(!!.-..)2 ((L5h,)t!+/,b;) 
" '" h· h 12 12 , , 

(4) 

where 1I~"", = I( lI/3i) and t, is the thickness of the stiffener. For continuous brac
ing, replace 1.5h with 1 in. and neglect the t, term if there is no stiffener. The de
sign recommendations were developed for singly and doubly symmetric sections. 
The portion of the web within hb can be considered inifintely stiff, For rolled sec
tions (h/tw < 60) cross-section distortion will not be significant if the diaphragm 
connection extends at least one-half the web depth. An initial twist of 1° (0.0175 
radians) was used to develop the strength requirement, M... 

Diaphragms 

1~~:X 
h -=J}br 

6 E Ib 
~--
b S 

Through Girders 

] Ib [ 

~ 
~ = 2 E Ib 

b S 

Figure 12 Diaphra~m ~b 
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Figure 13 Partially Stiffened Webs 
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TORSIONAL BRACE DESIGN RECOMNfENDATIONS, LRFD, 4> = 0.75 
como. Ilg. 

c; r t2~~ ~:-
, t · 

~'----,~ .. 

terlSKln ng. 

Stiffness: PT = fiT Lin = 2.4LI1} I (¢nEI'ffC;b) 

Strength: Mb, = Fj" hb = O.04L M} I (n E I'ff C;b) 

where Me = max. moment, Lff = lye + (t/c) Iyt, L = span length, n = number of span 
braces, and Cb = moment modification factor for the full bracing condition. 

EXAMPLE 5 - Torsional Beam Bracing 

] 
~o( 

~ 96 )1 
F 

Girder Properties 

Same as Ex. 4 except use 
diaphragm system shown. 
Mmax= 1000 k-ft, Ct,= 1.0 
4 braces, Fy = 36 ksi, L = 80 ft 

h=49.0,c =30.85,t =18.15in 
. . 4 18.15 . 4 

Ix = 17500 , lye = 32.0 , Iyt = 352 In I eff= 32 + 30.85 352 = 239 In 

Strength : M = 0.04(80 x 12)(1000 x 12)2 = 199 in-k 
br 4(29000)239(1.0) 2 

Sxreq'd= 199/(0.9 x 36) = 6.16in
3 

Stiffness: The stiffness of the diaphragms on the exterior girders is 6EI br IS . 
Since there are diaphragms on both sides of each interior girder, 
the stiffness is 2 x 6EI br IS . The average stiffness available to 
each girder is (2 x 6 + 3 x 12)/5 = 9.6 EI brlS. 

- ~bs 

~ 2.4 (80 x 12)(1000 x 12) 2 = 15960 in-k 1 rad 
T req'd = (0.75)4(29000)239(1.0) 2 

_1 = 
17900 

I = 15960(96) I (9.6 x 29000) = 5.50 in4 
brmin 

Try C9x13.4 : Sx=12.5irf>6.16, Ix =47.9in4 

~b = 9 .6(29000)47 .9/96 = 138,900 in-k 1 radian 

_1_ = 1 + _1_ ~ = 17900 in-klrad 
15960 138,900 ~sec' sec 

-.1... . A = 2(179000) =33(29000)(49)2(1 .5(20)(0.5f 0.3750;) 
~ c • "c 20 20 12 + 12 

b,; =3.10 - USE 3/8 x 3-1/2 stiffener 
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In EXAMPLE 5 a diaphragm torsional bracing system is used for the 
problem given in EXAMPLE 4. The C9 x 13.4 diaphragm will not brace the gird
ers if a stiffener is not used. Even a much larger diaphragm cannot work without 
web stiffeners because of the web distortion. Similar example problems using 
cross frames are given elsewhere (Yura, 1993). 

Summary 

Brace design requirements involve both stiffuess and strength. Care should 
be exercised when using published solutions that do not consider initial out-of
straightness. The recommendations contained here cover many practical situa
tions. Work is underway to incorporate bracing recommendations in various steel 
design specifications which are currently lacking on the topic of bracing. 
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