

STRUCTURAL SYSTEMS RESEARCH PROJECT

Report No. SSRP-07/10

CYCLIC TESTING OF BOLTED FLANGE PLATE STEEL MOMENT CONNECTIONS FOR SPECIAL MOMENT FRAMES

by

ATSUSHI SATO JAMES NEWELL CHIA-MING UANG

June 2007

Final Report to American Institute of Steel Construction, Inc.

Department of Structural Engineering University of California, San Diego La Jolla, California 92093-0085

University of California, San Diego Department of Structural Engineering Structural Systems Research Project

Report No. SSRP-07/10

Cyclic Testing of Bolted Flange Plate Steel Moment Connections for Special Moment Frames

by

Atsushi Sato

Visiting Scholar

James Newell

Graduate Student Researcher

Chia-Ming Uang

Professor of Structural Engineering

Final Report to American Institute of Steel Construction, Inc.

Department of Structural Engineering University of California, San Diego La Jolla, California 92093-0085

June 2007

ABSTRACT

To expand the experimental database for prequalifying the bolted flange plate (BFP) moment connection for special moment frames (SMFs), cyclic testing of three fullscale BFP steel moment connection specimens has taken place at the University of California, San Diego. One-sided moment connection specimens, without a concrete structural slab were fabricated and tested in accordance with Appendix S of the AISC *Seismic Provisions for Structural Steel Buildings*. Specimens were designed using the procedure developed by the BFP Committee of AISC's Connection Prequalification Review Panel (CPRP). Beam sizes for these specimens (W30×108, W30×148, and W36×150) were larger than previously tested to extend the range of available experimental results; W14 columns were used.

All three specimens met the Acceptance Criteria of the AISC Seismic Provisions for Structural Steel Buildings for beam-to-column connections in special moment frames. Specimens achieved an interstory drift angle of 0.06 radians before failure. All three specimens experienced necking in the beam flange at the outermost row of bolts. Specimens BFP-1 and BFP-3 eventually failed by beam flange net section fracture. The tensile strain on the net section where fracture occurred was further increased by lateraltorsional buckling (LTB) of the beam. On large drift cycles (5% and 6%) column twisting was observed in addition to beam LTB. The specimens did not include a concrete structural slab, which would limit LTB and column twisting. However, column twisting has not previously been observed in testing of moment connection specimens with W14 columns without a concrete structural slab. Bolt-slip occurred early during testing of all three specimens. The BFP connection differs from welded moment connections in that the additional component of bolt slip-bearing contributes to overall inelastic deformation of the connection. Slip-bearing deformation contributed a significant amount to the total deformation (approximately 30% of the total deformation at an interstory drift angle of 0.04 radians).

ACKNOWLEDGEMENTS

Funding for this project was provided by the American Institute of Steel Construction; Mr. Tom Schlafly was the project manager. Design of the test specimens was provided by Professor Linda Hanagan of Pennsylvania State University. Materials and fabrication were donated by Schuff Steel Company and Nucor Fastener. Technical assistance from the staff at the Powell Structures Laboratory at the University of California, San Diego was greatly appreciated.

TABLE OF CONTENTS

AF	BSTE	RACT	i
AC	CKN	OWLEDGEMENTS	ii
TA	BLI	E OF CONTENTS	, iii
LI	ST C	OF FIGURES	v
LI	ST C	OF TABLES	viii
LI	ST C	OF SYMBOLS	. ix
1.	INT	TRODUCTION	1
	1.1	General	1
	1.2	Scope and Objectives	1
2.	TES	STING PROGRAM	2
	2.1	Test Setup and Connection Details	2
	2.2	Fabrication and Erection	3
	2.3	Material Properties	4
	2.4	Loading History	5
	2.5	Instrumentation	5
	2.6	Data Reduction Procedure	6
3.	TES	ST RESULTS	29
	3.1	Introduction	29
	3.2	Specimen BFP-1	29
		3.2.1 Observed Performance	29
		3.2.2 Recorded Response	30
	3.3	Specimen BFP-2	31
		3.3.1 Observed Performance	31
		3.3.2 Recorded Response	32
	3.4	Specimen BFP-3	32
		3.4.1 Observed Performance	33
		3.4.2 Recorded Response	33
4.	CO	MPARISON OF EXPERIMENTAL RESULTS	79
	4.1	Global Response	79

Re	cord	S	96
AP	PEN	NDIX B: Welding Procedure Specifications and Procedure Qualification	
AP	PEN	NDIX A: Shop Drawings	89
RE	EFEI	RENCES	88
	5.2	Conclusions	87
	5.1	Summary	87
5.	SUN	MMARY AND CONCLUSIONS	87
	4.6	Net Section Fracture	81
	4.5	Bolt Slip-Bearing Deformation	81
	4.4	Lateral-Torsional Buckling and Column Twisting	80
	4.3	Beam Overstrength	80
	4.2	Displacement Components	79

LIST OF FIGURES

Figure 2.1 Test Setup for Specimens BFP-1 and BFP-2	9
Figure 2.2 Test Setup for Specimen BFP-3	. 10
Figure 2.3 Lateral Bracing Frame A	. 11
Figure 2.4 Lateral Bracing Frame B (Specimen BFP-3)	. 12
Figure 2.5 Close-up of Column Supports	. 13
Figure 2.6 Specimen BFP-1: Connection Details	. 14
Figure 2.7 Specimen BFP-2: Connection Details	. 15
Figure 2.8 Specimen BFP-3: Connection Details	. 16
Figure 2.9 Electroslag Welding	. 17
Figure 2.10 Flux-cored Arc Welding	. 18
Figure 2.11 Bolt Tensioning	. 19
Figure 2.12 Tension Control Bolt Pretension Verification	. 19
Figure 2.13 Shims Between Beam Flange and Flange Plate	. 20
Figure 2.14 AISC Loading Sequence	. 20
Figure 2.15 Displacement Transducer Locations	. 21
Figure 2.16 Displacement Transducer Locations Detail at Connection	. 22
Figure 2.17 Specimen BFP-1: Uniaxial and Rosette Strain Gage Location	. 23
Figure 2.18 Specimen BFP-2: Uniaxial and Rosette Strain Gage Location	. 25
Figure 2.19 Specimen BFP-3: Uniaxial and Rosette Strain Gage Location	. 27
Figure 2.20 Data Reduction Procedure Instrumentation Plan	. 28
Figure 3.1 Specimen BFP-1: Before Testing	. 35
Figure 3.2 Specimen BFP-1: Overall Deformed Configuration	. 36
Figure 3.3 Specimen BFP-1: Yielding Pattern and Beam Local Buckling	. 37
Figure 3.4 Specimen BFP-1: Panel Zone Yielding Pattern	. 38
Figure 3.5 Specimen BFP-1: Actuator Skewed to East Side at +6% Drift (2nd Cycle)	. 39
Figure 3.6 Specimen BFP-1: Beam Bottom Flange Net Section Fracture on 2nd Cycle	
at +6% Drift	. 40
Figure 3.7 Specimen BFP-1: Load versus Beam Tip Displacement	. 41

Figure 3.8 Specimen BFP-1: Beam Moment versus Beam Tip Displacement	41
Figure 3.9 Specimen BFP-1: Beam Moment versus Total Plastic Rotation	42
Figure 3.10 Specimen BFP-1: Beam Moment versus Panel Zone Deformation	42
Figure 3.11 Specimen BFP-1: Beam Moment versus Column Total Rotation	43
Figure 3.12 Specimen BFP-1: Beam Moment versus Slip-Bearing Rotation	43
Figure 3.13 Specimen BFP-1: Beam Moment versus Beam Rotation	44
Figure 3.14 Specimen BFP-1: Components of Beam Tip Displacement	44
Figure 3.15 Specimen BFP-1: Shear Strain in Panel Zone	45
Figure 3.16 Specimen BFP-1: Strains in Flange Plate near Electroslag Weld	46
Figure 3.17 Specimen BFP-1: Beam Flange Strains at Net Section	47
Figure 3.18 Specimen BFP-1: Strains in Column Flange	48
Figure 3.19 Specimen BFP-2: Before Testing	49
Figure 3.20 Specimen BFP-2: Overall Deformed Configuration	50
Figure 3.21 Specimen BFP-2: Yielding Pattern and Beam Local Buckling	51
Figure 3.22 Specimen BFP-2: Panel Zone Yielding Pattern	52
Figure 3.23 Specimen BFP-2: Beam Lateral-Torsional Buckling	53
Figure 3.24 Specimen BFP-2: Actuator Skewed to East Side	54
Figure 3.25 Specimen BFP-2: Beam Flange Bolt Hole Ovalization and Necking at	
Outermost Bolt Row (after Testing)	54
Figure 3.26 Specimen BFP-2: Load versus Beam Tip Displacement	55
Figure 3.27 Specimen BFP-2: Beam Moment versus Beam Tip Displacement	55
Figure 3.28 Specimen BFP-2: Beam Moment versus Total Plastic Rotation	56
Figure 3.29 Specimen BFP-2: Beam Moment versus Panel Zone Deformation	56
Figure 3.30 Specimen BFP-2: Beam Moment versus Column Total Rotation	57
Figure 3.31 Specimen BFP-2: Beam Moment versus Slip-Bearing Rotation	57
Figure 3.32 Specimen BFP-2: Beam Moment versus Beam Rotation	58
Figure 3.33 Specimen BFP-2: Components of Beam Tip Displacement	58
Figure 3.34 Specimen BFP-2: Shear Strain in Panel Zone	59
Figure 3.35 Specimen BFP-2: Strains in Flange Plate near Electroslag Weld	60
Figure 3.36 Specimen BFP-2: Beam Flange Strains at Net Section	61
Figure 3.37 Specimen BFP-2: Strains in Column Flange	62

Figure 3.38 Specimen BFP-3: Before Testing	63
Figure 3.39 Specimen BFP-3: Overall Deformed Configuration	64
Figure 3.40 Specimen BFP-3: Yielding Pattern and Beam Local Buckling	65
Figure 3.41 Specimen BFP-3: Panel Zone Yielding Pattern	66
Figure 3.42 Specimen BFP-3: Local Buckling at +5% Drift	67
Figure 3.43 Specimen BFP-3: Lateral-Torsional Buckling at +6% Drift	68
Figure 3.44 Specimen BFP-3: Yielding in Column	69
Figure 3.45 Specimen BFP-3: Beam Bottom Flange Net Section Fracture on 1st Cycl	e
at +7% Drift	70
Figure 3.46 Specimen BFP-3: Load versus Beam Tip Displacement	71
Figure 3.47 Specimen BFP-3: Beam Moment versus Beam Tip Displacement	71
Figure 3.48 Specimen BFP-3: Beam Moment versus Total Plastic Rotation	72
Figure 3.49 Specimen BFP-3: Beam Moment versus Panel Zone Deformation	72
Figure 3.50 Specimen BFP-3: Beam Moment versus Column Total Rotation	73
Figure 3.51 Specimen BFP-3: Beam Moment versus Slip-Bearing Rotation	73
Figure 3.52 Specimen BFP-3: Beam Moment versus Beam Rotation	74
Figure 3.53 Specimen BFP-3: Components of Beam Tip Displacement	74
Figure 3.54 Specimen BFP-3: Shear Strain in Panel Zone	75
Figure 3.55 Specimen BFP-3: Strains in Flange Plate near Flux-cored Arc Weld	76
Figure 3.56 Specimen BFP-3: Strains in Beam Flange	77
Figure 3.57 Specimen BFP-3: Strains in Column Flange	78
Figure 4.1 Moment versus Beam Tip Displacement Relationships	83
Figure 4.2 Components of Beam Tip Displacement	84
Figure 4.3 Beam Cyclic Overstrength Ratio	85
Figure 4.4 Specimen BFP-2: Column Flange Strains	85
Figure 4.5 Specimen BFP-3: Strain Profiles across Beam Bottom Flange Width	86

LIST OF TABLES

Table 2.1 Member Sizes and Connection Details	7
Table 2.2 Panel Zone Shear	7
Table 2.3 Steel Mechanical Properties	8

LIST OF SYMBOLS

- F_u Specified minimum tensile strength
- F_{y} Specified minimum yield stress
- *H* Column height
- L_b Beam clear length
- L_c Clear bay width
- *M* Moment of the beam
- M_{pa} Actual plastic moment of the beam
- M_{pn} Nominal plastic moment of the beam
- M_u Ultimate moment of the beam achieved at assumed plastic hinge location (outermost row of bolts)
- *a* Panel zone width
- *b* Panel zone depth
- d_b Beam depth
- d_c Column depth
- d_i Distance between displacement transducers δ_5 and δ_6
- α Overstrength factor accounting for cyclic strain hardening
- δ_1, δ_2 Column displacement transducer (see Figure 2.20)
- δ_3 , δ_4 Panel zone displacement transducer (see Figure 2.20)
- δ_5 , δ_6 Slip-bearing displacement transducer (see Figure 2.20)
- δ_b Beam component of δ_{total}
- δ_c Column component of δ_{total}
- δ_{pz} Panel zone component of δ_{total}
- δ_{SB} Slip-bearing component of δ_{total}
- δ_{total} Total beam tip displacement
- θ_c Column rotation
- θ_{SB} Slip-bearing rotation
- $\overline{\gamma}$ Average panel zone shear strain

1. INTRODUCTION

1.1 General

Steel moment connections in high seismic regions typically use welded beam flange to column flange joints. Field welding and the associated inspection of these connections has significant economic impact on the overall cost of the building. A moment connection that could eliminate field welding in favor of field bolting and shop welding could result in a more economical seismic moment frame connection.

One type of bolted moment frame connection consists of plates that are shop welded to the column flange and field bolted to the beam flange and is known as the bolted flange plate (BFP) moment connection. As a part of the SAC Joint Venture Phase II Connection Performance Program, eight full-scale BFP moment connection specimens were tested (Schneider and Teeraparbwong, 2000). Tested connections exhibited predictable, ductile behavior and met established acceptance criteria. However, beam sizes were limited to W24×68 and W30×99.

The AISC Connection Prequalification Review Panel (CPRP) is in the process of reviewing the bolted flange plate moment connection for inclusion in the next edition of the AISC *Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications* (ANSI/AISC 358-05). To expand the experimental database for prequalifying the BFP moment connection for special moment frames, cyclic testing of three full-scale BFP steel moment connection specimens has been conducted. Beam sizes for these specimens (W30×108, W30×148, and W36×150) were larger than previously tested to extend the range of available experimental results.

1.2 Scope and Objectives

To expand the experimental database for prequalifying the bolted flange plate (BFP) moment connection for special moment frames (SMFs), three full-scale, one-sided BFP steel moment connection specimens, without a concrete structural slab were subjected to cycling testing in accordance with Appendix S of the AISC *Seismic Provisions for Structural Steel Buildings* (AISC, 2005b) at the University of California, San Diego.

1

2. TESTING PROGRAM

2.1 Test Setup and Connection Details

The overall specimen geometry and test setup are shown in Figures 2.1 and 2.2. The beam length varied for the three specimens in order to maintain the target clear beam span-to-depth ratio $(L_c/d_b=12)$. In accordance with the AISC Seismic Provisions, the required lateral bracing distance for Specimens 1, 2, and 3 was 107, 113, and 123 in., respectively. For Specimens BFP-1 and BFP-2 lateral bracing of the beam was provided 105 in. from the centerline of the column, as shown in Figures 2.1 and 2.3. The only change in the test setup between Specimens BFP-1 and BFP-2 was to move the actuator position outward approximately 6 in. for Specimen BFP-2. The same lateral bracing at a distance of 105 in. from the column was also used for Specimen BFP-3. But since testing of both Specimens BFP-1 and BFP-2 showed column twisting, it was decided to add a second lateral bracing location at 177 in. from the column centerline (see Figures 2.2 to 2.4). The lateral bracing consisted of steel bracing columns provided on both sides of the beam. These columns were connected to each other above and below the specimen with either a cross beam or threaded rod, depending on the location. Mounted on the guide columns were short lengths of W-shapes or steel plates that were greased to minimize friction forces and adjusted to meet the beam flanges.

To simulate inflection points in the actual building, the ends of the specimen columns were mounted on short sections of $W14\times370$ positioned to experience weak axis bending (Figure 2.5). A steel corbel piece was bolted to the end of the beam for attachment of the servo-controlled hydraulic actuator to the specimens.

Beam-to-column connection details are shown in Figures 2.6 to 2.8 for Specimens BFP-1, BFP-2, and BFP-3, respectively. Shop drawings for the specimens are included in Appendix A. Bolt holes in the beam shear tab were short-slotted with the slot length oriented parallel to the beam span and bolt holes in the beam web were standard holes. Bolt holes in the flange plate were oversized holes (1-1/4 in. dia. for 1 in. dia. bolts) and bolt holes in the beam flange were standard holes (1-1/16 in. dia. for 1 in. dia. bolts). As indicated in Table 2.1, Specimens BFP-1 and BFP-2 had 1 in. continuity plates and Specimen BFP-3 did not have continuity plates.

zone doubler plate and Specimens BFP-2 and BFP-3 had a 3/4 in. doubler plate. The doubler plate for these specimens was unintentionally offset 3 in. towards the bottom of the beam during fabrication. Table 2.2 summarizes the required shear strength and the design strength of the panel zone for each specimen.

2.2 Fabrication and Erection

Two different welding processes were used to complete the flange plate to column flange complete joint penetration (CJP) groove welds. Flange plates were welded to one flange of the column using the electroslag welding (ESW) process and to the other flange of the column using the flux-cored arc welding (FCAW) process. For each specimen, plates were welded with both process, i.e., two flange plates were welded with the ESW process to one column flange and the other two flange plates were welded with the FCAW process to the opposite column flange. In the testing program these welded joints did not fracture and, therefore, only one welding process was tested per specimen. Otherwise, the beam would have been removed and re-connected to the opposite side of the column for re-testing.

Fabrication services were provided by Schuff Steel Company at their Gilbert, AZ facility. Electroslag welding of the flange plates to the column was tested for both Specimens BFP-1 and BFP-2. Figure 2.9 shows the ESW setup and welding process. As shown in the figure the sides of the weld were formed by water-cooled copper shoes. Two Arcmatic 105-VMC 3/32 in. dia. electrodes were used inside a consumable guide tube. This electrode has a specified minimum Charpy-V Notch Toughness of 15 ft-lbs at -20°F. Flux (FES72) was added by hand per the fabricator's standard procedure. It took approximately 15 minutes to weld each flange plate. Welding Procedure Specifications (WPSs) for this process are included in Appendix B.

Flux-cored arc welding of the flange plates to the column was tested for Specimen BFP-3. Figure 2.10 shows the FCAW setup and welding process. Welding was done with an E70T-1 gas-shielded flux-cored electrode (Hobart Brothers TM-11, 3/32 in. dia.) and 100% CO₂ shielding gas. This electrode has a specified minimum Charpy-V Notch Toughness of 20 ft-lbs at 0°F.

Welding of continuity plates and panel zone doubler plates for all specimens was completed with the FCAW process. Welding was done with an E70T-1/E70T-9 gas-shielded flux-cored electrode (Lincoln Outershield 70, 3/32 in. dia.) and 100% CO₂ shielding gas. This electrode has a specified minimum Charpy-V Notch Toughness of 20 ft-lbs at -20°F. WPSs for these welds are included in Appendix B.

Schuff Steel Company provided quality control inspection of the fabricated specimens. Welds were subjected to a combination of visual, magnetic particle, and ultrasonic inspection.

Specimens were erected at UCSD by laboratory staff. The column was first placed in position in the test setup, followed by installation of the beam to simulate the field erection process. Beam web to shear tab bolts were F1852 (A325TC) tension control bolts. Flange plate to beam flange bolts were F2280 (A490TC) tension control bolts. A Tone shear wrench supplied by Schuff Steel Company was used to tension the bolts (Figure 2.11). Bolts were initially brought to the snug-tight condition with connected plies in firm contact followed by systematic tensioning of the bolts. For the beam web to shear tab connection the middle bolt was tensioned first and then bolts were tensioned outward from the middle progressing in an alternating up and down pattern. Flange plate to beam flange bolts were tensioned, starting with the most rigid portion of the connection near the face of the column and then working progressively outward. Bolt pretension verification was conducted at UCSD, as shown in Figure 2.12. The average value of pretension was consistently observed to be 69 kips for the 1 in. dia. F2280 bolts when tested in a Skidmore-Wilhelm Bolt Tension Calibrator. This erection process and the bolt tensioning procedures were discussed with Schuff Steel Company field personnel prior to work.

For all specimens, two 1/8 in. finger shim plates (total 1/4 in.) were installed between the top flange plate and beam top flange, as shown in Figure 2.13. No shims were used between the bottom flange plate and beam bottom flange.

2.3 Material Properties

A992 steel was specified for all beam and column sections. A572 Gr. 50 steel was specified for all plate material. The values shown in Table 2.3 are the material

properties obtained from tensile coupon testing conducted by Colorado Metallurgical Services (CMS) and Certified Mill Test Reports.

2.4 Loading History

The loading sequence for beam-to-column moment connections as defined in the 2005 AISC *Seismic Provisions* was used for testing. This loading sequence is presented in Figure 2.14. Displacement was applied at the beam tip and was controlled by the interstory drift angle. The loading began with six cycles each at 0.375%, 0.5%, and 0.75% drift. The next four cycles in the loading sequence were at 1% drift, followed by two cycles each at 1.5%, 2%, 3%, 4%, 5% drift, etc., until the specimen failed.

2.5 Instrumentation

A combination of displacement transducers, strain gage rosettes, and uniaxial strain gages were placed in specific locations on the specimens to measure global or local responses. The applied load was measured with a load cell mounted on the actuator. Figures 2.15 and 2.16 show the location of displacement transducers. Displacement transducer L1 measured the overall vertical displacement of the beam tip, located 10-3/4 in. from the centerline of the actuator. L2, L3, and L4 monitored movement of the column ends, which was intended to be negligible. L5 and L6 measured column movement (L15 and L16 used in BFP-3 only). L7 and L8 measured the slippage between flange plate and beam flange (L11 and L12 used in BFP-2 and BFP-3 to measure slippage at the shear tab). L9 and L10 measured the average shear deformation of the column panel zone. For Specimen BFP-3, which did not require continuity plates in accordance with the AISC Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications (ANSI/AISC 358-05), L13 and L14 measured the local deformation of the column flange. The various rosette and uniaxial strain gages were used to measure the strain throughout the connection region (see Figures 2.17 to 2.19).

2.6 Data Reduction Procedure

To determine the contribution of panel zone, column, slip-bearing, and beam deformation to the overall beam tip deformation the following four step data reduction procedure was used. Figure 2.20 shows the displacement transducer naming convention used in the data reduction procedure.

(1) Panel Zone Component: Use Eq. 2.1 to compute the average panel zone shear strain, $\overline{\gamma}$ and Eq. 2.2 to compute the panel zone deformation contribution, δ_{pz} to total beam tip displacement, δ_{total} .

$$\overline{\gamma} = \frac{\sqrt{a^2 + b^2}}{2ab} \left(\delta_3 - \delta_4\right) \tag{2.1}$$

$$\delta_{pz} = \bar{\gamma} L_b \tag{2.2}$$

(2) Column Component: The column rotation, θ_c , can be computed from Eq. 2.3 and the column deformation contribution, δ_c to δ_{total} from Eq. 2.4.

$$\theta_c = \frac{\left(\delta_2 - \delta_1\right)_{total}}{d_b} - \overline{\gamma} \left(1 - \frac{d_b}{H}\right)$$
(2.3)

$$\delta_c = \Theta_c \left(L_b + \frac{d_c}{2} \right) \tag{2.4}$$

(3) Slip-Bearing Component: The slip-bearing rotation, θ_{SB} , and slip-bearing beam tip displacement component, δ_{SB} can be computed from Eqs. 2.5 and 2.6 respectively.

$$\theta_{SB} = \frac{\left(\delta_5 - \delta_6\right)}{d_i} \tag{2.5}$$

$$\delta_{SB} = \theta_{SB} L_b \tag{2.6}$$

(4) Beam Component: The beam component, δ_b of δ_{total} can be computed from Eq. 2.7.

$$\delta_b = \delta_{total} - \delta_{pz} + \frac{\overline{\gamma}d_b}{H} \left(L_b + \frac{d_c}{2} \right) - \delta_c - \delta_{SB}$$
(2.7)

Table 2.1 Member Sizes and Connection Details

Specimen Designation	Column	Beam	L_c (in.)	L_c/d_b^{a}
BFP-1	W14×233	W30×108	355-3/4	11.94
BFP-2	W14×233	W30×148	367-1/2	11.97
BFP-3	W14×311	W36×150	426-7/8	11.89

(a) Member Sizes

^aClear bay width-to-beam depth ratio, L_c/d_b (target ratio = 12)

Flange Panel Zone Flange Row Continuity Specimen Plates Plate of **Doubler Plate** Plates Designation (in.) Welding (in.) Bolts (in.) BFP-1 1-1/2 ESW 7 NA 1 BFP-2 1-3/4 3/4 ESW 11 1 BFP-3 1-3/4 FCAW 10 3/4 NA

(b) Connection Details

Table 2.2 Panel Zone Shear

Specimen Designation	Required Strength (kips)	Design Strength (kips)	Demand-Capacity Ratio
BFP-1	658	643	1.02
BFP-2	980	997	0.98
BFP-3	944	1297	0.73

Table 2.3 Steel Mechanical Properties

Member	Steel Grade	Yield Strength ^a (ksi)	Tensile Strength ^a (ksi)	Elongation ^{a,b} (%)	Heat No.	Steel Mill
Column	1002	51.5	76.5	28	262570	Nucor-
(W14×233)	A992	(57.0)	(75.5)	(25)	203379	Yamato
Beam	1002	52.0	77.5	30	262212	Nucor-
(W30×108)	A992	(57.0)	(75.0)	(24)	205512	Yamato
BFP	A572	60.5	87.5	25	M04059	Oregon
(1-1/2 in. Plate)	Gr. 50	(63.0)	(85.3)	(22)	WI04938	Steel Mills
Continuity Plate	A572	(56.7)	(80.2)	(20)	6102822	Nucor
(1 in. Plate)	Gr. 50	(30.7)	(00.5)	(20)	0103033	INUCOI

(a) Specimen BFP-1

(b) Specimen BFP-2

Member	Steel Grade	Yield Strength ^a (ksi)	Tensile Strength ^a (ksi)	Elongation ^{a,b} (%)	Heat No.	Steel Mill
Column	1002	51.5	76.5	28	262570	Nucor-
(W14×233)	A992	(57.0)	(75.5)	(25)	203379	Yamato
Beam	1002	58.5	80.0	27	222608	Nucor-
(W30×148)	A992	(60.0)	(79.0)	(22)	232098	Yamato
BFP	A572	54.5	81.5	27	4106401	Nucor
(1-3/4 in. Plate)	Gr. 50	(60.1)	(84.6)	(17)	4100491	INUCOI
Doubler Plate	A572	(57.0)	(78.0)	(20)	W2I 775	Insoo
(3/4 in. Plate)	Gr. 50	(37.0)	(78.0)	(20)	W3L773	ipseo
Continuity Plate	A572	(56.7)	(80.2)	(20)	6102922	Nucor
(1 in. Plate)	Gr. 50	(30.7)	(00.5)	(20)	0103833	INUCOI

(c) Specimen BFP-3

Member	Steel Grade	Yield Strength ^a (ksi)	Tensile Strength ^a (ksi)	Elongation ^{a,b} (%)	Heat No.	Steel Mill
Column	1002	55.0	78.0	27	262117	Nucor-
(W14×311)	A992	(56.0)	(76.0)	(25)	203447	Yamato
Beam	1002	-	-	-	255565	Nucor-
(W36×150)	A992	(58.0)	(75.0)	(26)	255505	Yamato
BFP	A572	54.5	81.5	27	4106401	Nucor
(1-3/4 in. Plate)	Gr. 50	(60.1)	(84.6)	(17)	4100491	INUCOI
Doubler Plate	A572	(57.0)	(78.0)	(20)	W3I 775	Insee
(3/4 in. Plate)	Gr. 50	(37.0)	(78.0)	(20)	W JL// J	ipsco

^aValues in parentheses are based on Certified Mill Test Reports, others from testing by CMS. ^bCertified Mill Test Report elongation in parentheses based on 8 in. gauge length, others based on 2 in. gage length.

(a) Schematic

(b) Photo Figure 2.1 Test Setup for Specimens BFP-1 and BFP-2

(a) Schematic

(b) Photo Figure 2.2 Test Setup for Specimen BFP-3

(a) Schematic

(b) Photo Figure 2.3 Lateral Bracing Frame A

(a) Schematic

(b) Photo Figure 2.4 Lateral Bracing Frame B (Specimen BFP-3)

(a) Top Hinge

(b) Bottom Hinge Figure 2.5 Close-up of Column Supports

Figure 2.6 Specimen BFP-1: Connection Details

Figure 2.7 Specimen BFP-2: Connection Details

Figure 2.8 Specimen BFP-3: Connection Details

(a) Setup

(b) Close-up of Setup

(c) Welding Process Figure 2.9 Electroslag Welding

(a) Setup

(b) Welding Process Figure 2.10 Flux-cored Arc Welding

Figure 2.11 Bolt Tensioning

Figure 2.12 Tension Control Bolt Pretension Verification

Figure 2.13 Shims Between Beam Flange and Flange Plate

Figure 2.14 AISC Loading Sequence

Figure 2.15 Displacement Transducer Locations

Section A-A (a) Specimens BFP-1 and BFP-2

Figure 2.16 Displacement Transducer Locations Detail at Connection

Figure 2.17 Specimen BFP-1: Uniaxial and Rosette Strain Gage Location

(d) Top (Bottom) Beam Flange [Outer Side]

(e) Bottom Beam Flange [Inner Side]

Figure 2.17 Specimen BFP-1: Uniaxial and Rosette Strain Gage Location (cont.)

(a) Elevation and Section

(b) Top Flange Plate

(c) Bottom Flange Plate

Figure 2.18 Specimen BFP-2: Uniaxial and Rosette Strain Gage Location

(d) Top (Bottom) Beam Flange [Outer Side]

(e) Bottom Beam Flange [Inner Side]

Figure 2.18 Specimen BFP-2: Uniaxial and Rosette Strain Gage Location (cont.)

3@6"

3"

(c) Bottom Flange Plate

Figure 2.19 Specimen BFP-3: Uniaxial and Rosette Strain Gage Location

<u>م</u>

East

Side

9"

(d) Top (Bottom) Beam Flange [Outer Side]

(e) Bottom Beam Flange [Inner Side]

Figure 2.19 Specimen BFP-3: Uniaxial and Rosette Strain Gage Location (cont.)

Figure 2.20 Data Reduction Procedure Instrumentation Plan

3. TEST RESULTS

3.1 Introduction

This chapter presents the observed performance and recorded response for the three bolted flange plate beam-to-column moment connection specimens. Figures are included which show the progression of yielding, flange local buckling, and overall deformation with increasing drift. Also included, where appropriate, are figures showing specimen fracture. Plots of applied load versus beam tip displacement (and story drift ratio) and moment versus beam tip displacement illustrate specimen global behavior. Plots of moment versus the contributing components of beam tip displacement (panel zone shear deformation, column rotation, slip-bearing deformation of the bolted flange plate joint, and beam rotation) are provided to evaluate the relative contribution of each individual component to overall specimen displacement. (The data reduction procedure for determination of these displacement components is described in Chapter 2.) Also, selected plots of specimen strain versus applied load are included to illustrate specimen panel zone, flange plate, beam flange, and column flange strain demand.

3.2 Specimen BFP-1

Specimen BFP-1 (W30×108 beam, W14×233 column, and flange plate to column flange weld by ESW process) was tested on February 15, 2007 using the loading sequence for beam-to-column moment connections as defined in the 2005 AISC *Seismic Provisions* (see Figure 2.14). Test results showed that this specimen satisfied the Acceptance Criteria of the AISC *Seismic Provisions* for beam-to-column connections in special moment frames. Specimen BFP-1 failed by beam flange net section fracture on the second excursion to +6% drift.

3.2.1 Observed Performance

Figure 3.1 shows an overall view of the specimen and a close-up of the connection region before testing. Bolt slip, which was accompanied by very loud noise, occurred during the first cycle at 0.375% drift and on all subsequent cycles. Minor yielding in the panel zone, as evidenced by the flaking of the whitewash, was observed at 2% drift. Obvious yielding in the panel zone and minor yielding in the beam flanges was

observed at 3% drift. Flange and web local buckling initiated at 4% story drift, and lateral-torsional buckling (LTB) was observed at 5% drift simultaneously with twisting of the column. Photos of the overall deformed configurations are shown in Figure 3.2. Figure 3.3 shows the yielding pattern in the beam at 2% to 6% drift. Figure 3.4 shows the progression of panel zone yielding. The significant LTB of the beam at 6% drift resulted in skewing of the actuator to the east side, as shown in Figure 3.5. The specimen failed on the second excursion to +6% drift by net section fracture of the beam bottom flange at the outermost bolt row. Figure 3.6 shows the location and a close-up view of the fracture. Ductile fracture was accompanied by the occurrence of necking at the net section.

3.2.2 Recorded Response

A plot of the load versus beam tip displacement relationship is shown in Figure 3.7 and moment (at column face) versus beam tip displacement relationship is shown in Figure 3.8. The Interstory Drift Angle (i.e., total rotation) achieved by Specimen BFP-1 was 0.06 radian, where the beam flexural strength at the column face did not degrade below 80% of the nominal plastic moment (M_{pn}) of the beam. Figure 3.9 shows the relationship between the moment and the total plastic rotation. Deformation of the beam, column, panel zone, and bolt slippage and bearing contributed to the total rotation of the specimen. Figure 3.10 shows the relationship between moment and shear deformation at the panel zone, Figure 3.11 shows the relationship between moment and column total rotation, and Figure 3.12 shows the relationship between moment and beam slip-bearing rotation at the bolted flange plate connection. (The slip-bearing rotation resulting from relative slip and bolt bearing deformation between the flange plates and beam flanges was calculated as described in Chapter 2.) Figure 3.13 shows the relationship between moment and beam rotation. As shown in Figures 3.10 and 3.12, shear deformation in the panel zone and slippage between the bolted flange plate and beam flange made significant contributions to the total rotation. The column response remained in the elastic range (Figure 3.11). Figure 3.14 shows the relative contribution of the beam, panel zone, column, and slippage-bearing to the overall beam tip displacement at 1% to 6% drift.

Figure 3.15 shows the shear strain in the panel zone. Significant yielding in the panel zone can be observed. Figure 3.16 shows the strain in the flange plate near the ESW CJP groove weld; strains of up to about 5 times the yield strain were observed. Figure 3.17 shows the strain at the net section of beam flange, and Figure 3.18 shows the strain in the column flange.

3.3 Specimen BFP-2

Specimen BFP-2 (W30×148 beam, W14×233 column, and flange plate to column flange weld by ESW process) was tested on February 21, 2007 using the loading sequence for beam-to-column moment connections as defined in the 2005 AISC *Seismic Provisions*. Test results showed that this specimen satisfied the Acceptance Criteria of the AISC *Seismic Provisions* for beam-to-column connections in special moment frames. Specimen BFP-2 completed one cycle at 6% drift before testing was suspended due to excessive lateral-torsional buckling (LTB) of the beam.

3.3.1 Observed Performance

Figure 3.19 shows an overall view of the specimen and a close-up of the connection region before testing. Bolt slip occurred during the first cycle at 0.375% drift and on all subsequent cycles. Minor yielding in the panel zone, as evidenced by the flaking of the whitewash, was observed at 3% drift. Obvious yielding in the panel zone, yielding in the beam flanges, and minor yielding of the flange plates were observed at 4% drift. Also at 4% drift, minor local buckling of the beam web was observed. LTB of the beam and associated column twisting were observed at 5% drift. Photos of the overall deformed configurations are shown in Figure 3.20. Figures 3.21 and 3.22 show the yielding pattern in the beam and progression of panel zone yielding, respectively. Figure 3.23(a) and (b) shows beam LTB and column twisting at 5% drift. The deformation became more significant at 6% drift. The test was stopped after one complete cycle at 6% drift due to excessive column twisting [see Figure 3.23(c)]. Figure 3.24 shows the actuator skewed to one side at +5% and +6% drift. Figure 3.25 shows ovalization and necking of the beam top flange bolt hole at the outermost row of bolts.

3.3.2 Recorded Response

A plot of the load versus beam tip displacement relationship is shown in Figure 3.26, and moment (at column face) versus beam tip displacement relationship is shown in Figure 3.27. The specimen achieved an Interstory Drift Angle of 0.06 radian. Figure 3.28 shows the relationship between the moment and the total plastic rotation. Figure 3.29 shows the relationship between moment and shear deformation in the panel zone. The shear deformation plotted in Figure 3.29 should be viewed with caution because column twisting affected the measurements of displacement transducers L9 and L10 (see Figure 2.16). Figure 3.30 shows the relationship between moment and column total rotation. Figure 3.31 shows the relationship between moment and beam slip-bearing rotation at the bolted flange plate connection, and Figure 3.32 shows the relationship between moment and beam rotation. Shear deformation in the panel zone and slippage at the bolted flange plate made significant contributions to the total rotation (Figure 3.29 and Figure 3.31). The column response remained in the elastic range (Figure 3.30). Figure 3.33 shows the relative contribution of the components to the overall beam tip displacement at 1% to 4% drift. (Components for 5% and 6% drift are not shown because column twisting affected the measurements.)

Figure 3.34 shows the shear strain in panel zone. Significant yielding in the panel zone can be observed. Figure 3.35 shows the strain in the flange plate near the ESW CJP groove weld; strains of up to about 7 times the yield strain were observed. Figure 3.36 shows the strain in the beam flange at the net section of the outermost row of bolts. As shown in Figure 3.36(c), significant yielding was observed at the net section. Figure 3.37 shows relatively minor yielding in the column flange.

3.4 Specimen BFP-3

Specimen BFP-3 (W36×150 beam, W14×311 column, and flange plate to column flange weld by FCAW process) was tested on March 7, 2007 using the loading sequence for beam-to-column moment connections as defined in the 2005 AISC *Seismic Provisions*. Test results showed that this specimen satisfied the Acceptance Criteria of the AISC *Seismic Provisions* for beam-to-column connections in special moment frames.

Specimen BFP-3 failed by beam flange net section fracture on the first excursion to +7% drift.

3.4.1 Observed Performance

Figure 3.38 shows an overall view of the specimen and a close-up of the connection region before testing. Bolt slip occurred during the first cycle at 0.5% drift and on all subsequent cycles. Minor yielding in the beam flange was observed at 2% drift. Beam flange and web local buckling was observed at 4% drift. At 5% drift, necking of the beam flange at the net section of outermost bolt row was observed for both the top and bottom flanges. Beam LTB and associated column twisting were observed at 6% drift. Photos of the overall deformed configurations are shown in Figure 3.39. Figure 3.40 shows the yielding pattern in the beam. Panel zone yielding was very limited (Figure 3.41). Recall that the panel zone shear demand-capacity ratio (DCR) was 0.73 for Specimen BFP-3, compared with a DCR of approximately 1.0 for Specimens BFP-1 and BFP-2 (see Table 2.2). Beam flange and web local buckling at 5% drift is shown in Figure 3.42. As shown in Figure 3.43, obvious LTB and column twisting were observed at 6% drift level. The unusual yielding pattern of the column shown in Figure 3.44 might have been caused by column twisting (i.e., warping stress), flange local bending, and/or web local yielding of the column. The failure mode of this specimen was similar to Specimen BFP-1. On the first excursion to +7% drift net section fracture of the beam bottom flange at the outermost bolt row was observed. Figure 3.45 shows the location and a close-up view of the fracture.

3.4.2 Recorded Response

A plot of the load versus beam tip displacement relationship is shown in Figure 3.46, and moment (at column face) versus beam tip displacement relationship is shown in Figure 3.47. The specimen achieved an Interstory Drift Angle of 0.06 radian. Figure 3.48 shows the relationship between the moment and the total plastic rotation. Figure 3.49 shows the relationship between moment and shear deformation at the panel zone. Figure 3.50 shows the relationship between moment and beam slip-bearing rotation at the bolted

flange plate connection, and Figure 3.52 shows the relationship between moment and beam rotation. The column panel zone remained in the elastic range (Figure 3.49). Panel zone yielding was very limited, although the column flange experienced significant yielding due to column twisting, flange local bending, and web local yielding. Figure 3.53 shows the relative contribution of the components to the overall beam tip displacement at 1% to 6% drift.

Figure 3.54 shows the shear strain in the panel zone, which remained essentially elastic. Figure 3.55 shows the strain in the flange plate near the FCAW CJP groove weld; strains of up to about 15 times the yield strain were observed. Figure 3.56 shows the strain in the beam flange at the net section of the outermost row of bolts. Significant yielding at the net section can be observed from Figure 3.56. Minor yielding can be observed in the column flange (see Figure 3.57).

(a) Overall View

(b) Close-up of Connection Region Figure 3.1 Specimen BFP-1: Before Testing

Positive Drift

Negative Drift

(a) 4% Drift

(b) 5% Drift

(c) 6% Drift Figure 3.2 Specimen BFP-1: Overall Deformed Configuration

(a) 2% Drift

(b) 3% Drift

(c) 4% Drift

(d) 5% Drift

(e) 6% Drift (1st Cycle)(f) 6% Drift (2nd Cycle)Figure 3.3 Specimen BFP-1: Yielding Pattern and Beam Local Buckling

(a) 2% Drift

(b) 3% Drift

(c) 4% Drift

(d) 5% Drift

(e) 6% Drift Figure 3.4 Specimen BFP-1: Panel Zone Yielding Pattern

Figure 3.5 Specimen BFP-1: Actuator Skewed to East Side at +6% Drift (2nd Cycle)

(a) Fracture Location

(b) Close-up

Figure 3.6 Specimen BFP-1: Beam Bottom Flange Net Section Fracture on 2nd Cycle at +6% Drift

Figure 3.7 Specimen BFP-1: Load versus Beam Tip Displacement

Figure 3.8 Specimen BFP-1: Beam Moment versus Beam Tip Displacement

Figure 3.9 Specimen BFP-1: Beam Moment versus Total Plastic Rotation

Figure 3.10 Specimen BFP-1: Beam Moment versus Panel Zone Deformation

Figure 3.11 Specimen BFP-1: Beam Moment versus Column Total Rotation

Figure 3.12 Specimen BFP-1: Beam Moment versus Slip-Bearing Rotation

Figure 3.13 Specimen BFP-1: Beam Moment versus Beam Rotation

Figure 3.14 Specimen BFP-1: Components of Beam Tip Displacement

Figure 3.15 Specimen BFP-1: Shear Strain in Panel Zone

Figure 3.16 Specimen BFP-1: Strains in Flange Plate near Electroslag Weld

Beam Bottom Flange

(a) Strain Gage Locations

Figure 3.17 Specimen BFP-1: Beam Flange Strains at Net Section

Figure 3.18 Specimen BFP-1: Strains in Column Flange

(a) Overall View

(b) Close-up of Connection Region Figure 3.19 Specimen BFP-2: Before Testing

Positive Drift

Negative Drift

(a) 4% Drift

(b) 5% Drift

(c) 6% Drift Figure 3.20 Specimen BFP-2: Overall Deformed Configuration

(a) 3% Drift

(b) 4% Drift

(c) 5% Drift (d) 6% Drift Figure 3.21 Specimen BFP-2: Yielding Pattern and Beam Local Buckling

(a) 3% Drift

(b) 4% Drift

(c) 5% Drift(d) 6% DriftFigure 3.22 Specimen BFP-2: Panel Zone Yielding Pattern

(a) +5% Drift

(b) -5% Drift

(c) +6% Drift Figure 3.23 Specimen BFP-2: Beam Lateral-Torsional Buckling

(a) +5% Drift(b) +6% DriftFigure 3.24 Specimen BFP-2: Actuator Skewed to East Side

Figure 3.25 Specimen BFP-2: Beam Flange Bolt Hole Ovalization and Necking at Outermost Bolt Row (after Testing)

Figure 3.26 Specimen BFP-2: Load versus Beam Tip Displacement

Figure 3.27 Specimen BFP-2: Beam Moment versus Beam Tip Displacement

Figure 3.28 Specimen BFP-2: Beam Moment versus Total Plastic Rotation

Figure 3.29 Specimen BFP-2: Beam Moment versus Panel Zone Deformation

Figure 3.30 Specimen BFP-2: Beam Moment versus Column Total Rotation

Figure 3.31 Specimen BFP-2: Beam Moment versus Slip-Bearing Rotation

Figure 3.32 Specimen BFP-2: Beam Moment versus Beam Rotation

Figure 3.33 Specimen BFP-2: Components of Beam Tip Displacement

Figure 3.34 Specimen BFP-2: Shear Strain in Panel Zone

(a) Strain Gage Locations

Top Flange Plate

Bottom Flange Plate

Figure 3.35 Specimen BFP-2: Strains in Flange Plate near Electroslag Weld

Figure 3.36 Specimen BFP-2: Beam Flange Strains at Net Section

Figure 3.37 Specimen BFP-2: Strains in Column Flange

(a) Overall View

(b) Close-up of Connection Region Figure 3.38 Specimen BFP-3: Before Testing

Positive Drift

Negative Drift

(a) 4% Drift

(b) 5% Drift

(c) 6% Drift Figure 3.39 Specimen BFP-3: Overall Deformed Configuration

(a) 3% Drift

(c) 5% Drift (d) 6% Drift Figure 3.40 Specimen BFP-3: Yielding Pattern and Beam Local Buckling

(a) 3% Drift

(b) 4% Drift

1

(c) 5% Drift(d) 6% DriftFigure 3.41 Specimen BFP-3: Panel Zone Yielding Pattern

(a) Web Local Buckling

(b) Flange Local Buckling Figure 3.42 Specimen BFP-3: Local Buckling at +5% Drift

(a) Overall View

(b) Close-up of Connection Figure 3.43 Specimen BFP-3: Lateral-Torsional Buckling at +6% Drift

(a) Overall

(b) West Side Top Detail

(c) East Side Top Detail Figure 3.44 Specimen BFP-3: Yielding in Column

(a) Fracture Location

(b) Close-up

Figure 3.45 Specimen BFP-3: Beam Bottom Flange Net Section Fracture on 1st Cycle at +7% Drift

Figure 3.46 Specimen BFP-3: Load versus Beam Tip Displacement

Figure 3.47 Specimen BFP-3: Beam Moment versus Beam Tip Displacement

Figure 3.48 Specimen BFP-3: Beam Moment versus Total Plastic Rotation

Figure 3.49 Specimen BFP-3: Beam Moment versus Panel Zone Deformation

Figure 3.50 Specimen BFP-3: Beam Moment versus Column Total Rotation

Figure 3.51 Specimen BFP-3: Beam Moment versus Slip-Bearing Rotation

Figure 3.52 Specimen BFP-3: Beam Moment versus Beam Rotation

Figure 3.53 Specimen BFP-3: Components of Beam Tip Displacement

Figure 3.54 Specimen BFP-3: Shear Strain in Panel Zone

Figure 3.55 Specimen BFP-3: Strains in Flange Plate near Flux-cored Arc Weld

Figure 3.56 Specimen BFP-3: Strains in Beam Flange

Figure 3.57 Specimen BFP-3: Strains in Column Flange

4. COMPARISON OF EXPERIMENTAL RESULTS

4.1 Global Response

A plot of the moment (at column face) versus beam tip displacement relationship is shown in Figure 4.1 for the three specimens. To meet the Acceptance Criteria of the AISC *Seismic Provisions*, specimens shall satisfy the following requirements: (1) the connection must be capable of sustaining an interstory drift angle of at least 0.04 radians, and (2) the required flexural strength of the connections, determined at the column face, must equal at least 80% of the nominal plastic moment (M_{pn}) of the connected beam at an interstory drift angle of 0.04 radians. The vertical dashed lines shown in Figure 4.1 are at 4% drift and the horizontal dashed lines are at 80% of the nominal plastic moment. Specimens exceeded the requirements of the AISC Acceptance Criteria and achieved an interstory drift angle of at least 0.06 radian. The pinching observed in the hysteresis loops is mainly attributed to the slip-bearing behavior of the bolted connection. After some amount of initial slippage, hardening behavior can be observed due to bearing between the bolt, flange plate, and beam flange.

4.2 Displacement Components

Figure 4.2 shows the relative contribution of the column, beam, panel zone, and slip-bearing deformation to the overall beam tip displacement at different drift levels. [For Specimen BFP-2, components at 5% and 6% drift are not shown in Figure 4.2(b) because column twisting affected the measurements.] Shear deformation in the panel zone and slippage between the flange plate and beam flange made significant contributions to the total beam tip displacement of Specimens BFP-1 and BFP-2. Deformation in the panel zone of Specimen BFP-3 was limited because of the strong panel zone (demand-capacity ratio of 0.73). But slippage and beam tip displacement. The BFP connection differs from welded moment connections in that the additional component of bolt slip-bearing contributes to overall inelastic deformation of the total deformation (approximately 30% of the total deformation at an interstory drift angle of 0.04 radians).

4.3 Beam Overstrength

The overstrength factor, α , resulting from cyclic strain hardening, for each specimen as computed from Eq. 4.1 is shown in Figure 4.3.

$$\alpha = \frac{M_u}{M_{pa}} \tag{4.1}$$

Ultimate moment, M_u , was calculated from test data at the assumed plastic hinge location [i.e., at the center of the outermost (furthest from the column face) row of bolts] and M_{pa} was the plastic moment of the beam based on measured flange yield strength. Specimen overstrength values were similar to the value of 1.15 [= $(F_y+F_u)/2F_y$] given by AISC *Prequalified Connections* (AISC 2005a).

4.4 Lateral-Torsional Buckling and Column Twisting

Beam flange and web local buckling initiated at 4% drift, and lateral-torsional buckling (LTB) of the beam together with twisting of the column was observed at 5%drift for all specimens. Figure 4.4(b) shows one column flange strain gage, near the flange tip, plotted versus the gage near the opposite flange tip [see Figure 4.4(a)] for Specimen BFP-2. Deviation from the one-to-one (dashed) line provides an indication of column twisting (i.e., warping stress). Similar evidence of column twisting was observed for the other specimens. The specimens did not include a concrete structural slab, which would have provided lateral bracing to the beam top flange and torsional restraint to the column. Column twisting has been observed in testing of RBS moment connection specimens with deep columns and without a concrete structural slab (Chi and Uang, 2002), but not in testing with W14 columns. Additional deep column moment connection testing has indicated that the presence of a concrete structural slab mitigates column twisting issues associated with deep columns (Zhang and Ricles, 2006). However, the column twisting observed in this testing is a phenomenon that has not been previously observed in testing of moment connections with W14 columns with or without a concrete structural slab.

Potential contributing factors to the observed column twisting include: (1) the geometry of the flange plate connection, which pushes the plastic hinge location further away from the column face, and (2) the oversized holes in the flange plates allowing

transverse movement of the beam. The gap between oversized bolt holes and the bolt shank allows for transverse movement of the beam; the second-order effect resulting from such eccentricity in the beam compression flange, although small initially, promotes LTB of the beam. With the plastic hinge located further away from the column face than for typical (e.g., RBS) welded moment connections, the effect of out-of-plane forces is magnified (Chi and Uang, 2002).

4.5 Bolt Slip-Bearing Deformation

It is expected based on the design of the bolted connection that slip will occur. However, slip occurred at approximately one-half the expected slip capacity considering the total resistance of all bolts in the connection. Bolt slip, which produced very loud noises, occurred during early cycles (at 0.375% or 0.5% drift) and on all subsequent cycles. As shown in Figure 4.2, deformation from slip-bearing made a significant contribution to the total deformation. For all specimens at 4% drift slip-bearing deformation contributed approximately 30% of the total deformation. The level of slipbearing deformation was observed to be consistent for different loading amplitudes (i.e., 2, 3, 4% drift).

The contribution of slip-bearing deformation to the total deformation is dependent on the oversize of the bolt holes in the flange plate and beam flange. During testing bolt slip was observed to occur on early cycles and significantly contributed to the overall beam tip displacement on these cycles. As a result, beam flange yielding for the BFP specimens was not observed to occur until 2% drift, whereas for a typical welded moment connection, flange yielding would be expected at about 1% drift. Also, the observed level of beam flange and web local buckling was less severe than observed in previous testing of welded moment connections (Uang et al., 2000). Bolt slippage and bearing deformation in the BFP connection accommodated deformation that would have induced both local and lateral-torsional buckling in a welded connection.

4.6 Net Section Fracture

Specimens BFP-1 and BFP-3 eventually failed by net section fracture of the beam flange at the outermost row of bolts. Testing of Specimen BFP-2 was stopped before

fracture, but necking at the outermost row of bolts was observed and it is likely that fracture on the net section would have occurred if testing was continued. Strain demand on the net section was exacerbated by LTB of the beam. Figure 4.5 shows strain profiles across the Specimen BFP-3 beam bottom flange for different drift levels. The skew of the strain profiles at higher drift levels resulted from beam LTB. Maintaining an adequate edge distance is, therefore, important for the design of BFP connections.

Figure 4.1 Moment versus Beam Tip Displacement Relationships

(c) Specimen BFP-3 Figure 4.2 Components of Beam Tip Displacement

Figure 4.3 Beam Cyclic Overstrength Ratio

(b) Strain Profile (S17, S18, S19)

Figure 4.5 Specimen BFP-3: Strain Profiles across Beam Bottom Flange Width

5. SUMMARY AND CONCLUSIONS

5.1 Summary

Three full-scale, one-sided, bolted flange plate steel moment-frame connection specimens consisting of W14 columns and W30 to W36 beams were subjected to increasing amplitude cyclic testing to support prequalification of the bolted flange plate connection for special moment resisting frames. Specimens were designed in accordance with the design procedure developed by the BFP Committee of AISC's Connection Prequalification Review Panel.

5.2 Conclusions

All three specimens performed well and met the Acceptance Criteria of the AISC *Seismic Provisions*. Specimens achieved an interstory drift angle of 0.06 radians before failure. All three specimens experienced necking in the beam flange at the outermost row of bolts. Specimens BFP-1 and BFP-3 eventually failed by beam flange net section fracture. The tensile demand on the net section where fracture occurred was further increased by LTB of the beam.

On large drift cycles (0.05 and 0.06 radians) column twisting was observed in addition to beam LTB. The specimens did not include a concrete structural slab, which would limit LTB and column twisting. However, column twisting has not previously been observed in testing of moment connection specimens with W14 columns without a concrete structural slab.

Bolt-slip occurred early during testing of all three specimens. The BFP connection differs from welded moment connections in that the additional component of bolt slip-bearing contributes to overall inelastic deformation of the connection. Slip-bearing deformation contributed a significant amount to the total deformation (approximately 30% of the total deformation at an interstory drift angle of 0.04 radians).
REFERENCES

- (1) American Institute of Steel Construction (AISC). (2005a), *Prequalified Connections* for Special and Intermediate Steel Moment Frames for Seismic Applications, ANSI/AISC 358-05, Chicago, IL.
- (2) American Institute of Steel Construction (AISC). (2005b), Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-05, Chicago, IL.
- (3) American Institute of Steel Construction (AISC). (2005c), Specification for Structural Steel Buildings, ANSI/AISC 360-05, Chicago, IL.
- (4) American Welding Society (AWS). (2005), *Structural Welding Code–Seismic Supplement*, AWS D1.8, Miami, FL.
- (5) Chi, B., and Uang, C.-M. (2002), "Cyclic Response and Design Recommendations of Reduced Beam Section Moment Connections with Deep Columns," *Journal of Structural Engineering*, ASCE, Vol. 128, No. 4, pp. 464-473.
- (6) Schneider, S., and Teeraparbwong, I. (2000), *Bolted Flange Plate Connections*, *Report No. SAC/BD-00/05*, SAC Joint Venture, Sacramento, CA.
- (7) Uang, C.M., and Bondad, D. (1996), *Static Cyclic Testing of Pre-Northridge and Haunch Repaired Steel Moment Connections, Report No. SSRP-96/02*, Division of Structural Engineering, University of California, San Diego, La Jolla, CA.
- (8) Uang, C.M., Yu, Q.S., Noel, S., and Gross, J. (2000), "Cyclic Testing of Steel Moment Connection Rehabilitated with RBS or Welded Haunch," Journal of Structural Engineering, ASCE, Vol. 126, No. 1, pp. 57-68.
- (9) Zhang, X., and Ricles, J. (2006), "Experimental Evaluation of Reduced Beam Section Connections to Deep Columns," *Journal of Structural Engineering*, ASCE, Vol. 132, No. 3, pp. 346-357.

APPENDIX A: Shop Drawings

APPENDIX B: Welding Procedure Specifications and Procedure Qualification Records

Page 1 of 2

		Weldi	ng Proc	edure Speci	fication		W 215 (NGI-ESW)
WPS No. W 215 (M	NGI-ESW) F	levision ()	Date 11/5/20	01 B	y BRIAN ROBERTS	
Authorized By JIM M	IURRAY		Date	11/5/2001	P	requalified 🗌	
Welding Process(es)	ESW			Type: Mar	nual 🗆 🛛	Aachine 🗆 Semi-A	Auto 🖂 Auto 🖂
Supporting PQR(s)	88647						
JOINT Type T-JOINT Backing Yes ⊠ N Backing Material M Root Opening 3/4" Groove Angle 0° Back Gouge Ye Method N/ BASE METALS Material Spec. AS Type or Grade SE Thickness: Groove Fillet	oo Single Weld NATER COOLED Cd Root Face D Radius (J- is No TM A6 to E MEMO (1) to (IN.) 1.0	Doub DPPER mension U) NA ASTM A SEE ME - 2.2	0 MAT'L THE MAT'L THE 6 MO (1)	POSITION Position of Vertical Pro ELECTRICA Transfer M	Groove gression: L CHARAC ode (GMA)		ATER COOLED OPPER SHOE 12 - 22 INCHES ATER COOLED ATER COOLED DOWN
Diameter (Pipe,) FILLER METALS AWS Specification AWS Classification	A5.25-97 VMC 105	ARCMAT	TIC LAG	Short- Current: Other <u>N/</u> Tungsten E Size N.	Circuiting AC	☐ Globular ☐ DCEP ⊠ DCEN ☐ GTAW): Type NA	Spray 🗌 Pulsed 🗌
SHIELDING Flux FES72 Electrode-Flux (Class FES72-EWTG PREHEAT Preheat Temp., Min. Thickness Up to 3 Over 3/4" to 1-1 Over 1-1/2" to 2-1	Gas NA Composition N Gas Cup Size NONE /4" Temperature /2"	IA IA NA NA NA		TECHNIQUE Stringer or Multi-pass Number of Electrode S Contact Tu Peening Interpass C	Weave Be or Single P Electrodes spacing: Lo be to Work NA	ad NA ass (per side) N 2 ongitudinal NA Lateral 5/8' Angle 0° Distance NA	IA
Over 2-1	/2"				HEAT IN	Time NA	
interpass remp., with		IA. NONE	WELDIN	G PROCEDURE			
Laver/Pass Process	Filler Metal Class	Diameter	Cur. Type	Amps or WFS	Volts	Travel Speed	Other Notes
1 ESW	EWTG/VMC 105	3/32"	DCEP	785/165ipm	38	1-1/2 iom	TS - Bate of Bise
							Oscillation Required See Memo (2)

Page 1 of 3

Proced	lure Qua	lification Re	cord			88647
PQR No. 88647 Revision	0	Date 6/14/20	001 By JIM	MURRAY		
Authorized By JIM MURRAY		Date 6/14/20	001	Type Man	nual 🗌 Machi	ne 🗌
Welding Process(es) ESW Ref	erence WPS	8 No. W 215, W	216	Semi-A	Auto 🗌 🛛 Au	ito 🖂
JOINT Type BUTT Backing Yes ⊠ No □ Single Weld ⊠ Double ™ Backing Material WATER COOLED COPPER Root Opening 13/16" Root Face Dimension M Groove Angle 0° Radius (J-U) NA Back Gouging Yes □ No ⊠ Method	Weld 🗆			1978	WATER COOL IS COPPE	N 5-08
BASE METALS		POSITION				
Material Spec. A572 to A572		Position of G	roove VER	TICAL	-illet	
Type or Grade 50 to 50		Vertical Prog	ession:	Up 🛛 Dow	/n 🗌	
Thickness: Groove (IN.)2 Fillet ()		ELECTRICAL	CHARACTE	RISTICS		
Diameter (Pipe,)		Transfer Mod	e (GMAW):			
FILLER METALS AWS Specification A5.25-92 ARCMATIC AWS Classification VMC 105 (EWTG) VERTASLAG SHIELDING Email Control Mail	G	Short-C Current: A Other <u>NA</u> Tungsten Ele Size <u>NA</u>	ircuiting .C DCE .ctrode (GTA	Globular EP DCEN AW): Type <u>NA</u>	Spray 🗌	
Flux Gas NA		TECHNIQUE				
FES/2 Composition NA		Stringer or W	eave Bead	NA		
FES72-EWTG Gas Cup Size NA		Multi-pass or	Single Pass	s (per side)	NA	
PREHEAT Preheat Temp., Min. NONE Interpass Temp., Min. NONE Max. NONE POSTWELD HEAT TREATMENT Temp. NA Time NA	uired 🗌	Number of E Electrode Sp Later Contact Tube Peening Interpass Cle	ectrodes acing: Long al <u>5/8"</u> e to Work Di NO eaning NA	2 gitudinal NA Ang stance NA	gle <u>0°</u>	_
industria <u>Francia</u>	WELDING	PROCEDURE				
Layer/Pass Process Filler Metal Class Diameter	Cur. Type	Amps or WFS	Volts	Travel Speed	Other Notes	
1 ESW EWTG 3/32"	DCEP	785/165ipm	38	1 1/2 ipm	TS = Rate of F	Rise
		and the second second second	20070			1000000
	-					

Page 2 of 3

			Procedur	e Qualific	ation R	ecord			8864
			TE	ST RESULT	s				
			TE	NSILE TEST					
Specimen no.	Width	Thickness	Area	Ultimat	e tensile id, lb	Ultimat stress	te unit s, psi	Character of failure and location	
T1A	.755	.901	0.68025	60,000		88.2 KS	1	B.M. / DUCTILE	
T1B	.756	1.011	0.76432	68,400		89.5 KS	1	B.M. / DUCTILE	
T2A	.755	.990	0.74745	65.200		87.2 KS	I	B.M. / DUCTILE	
T2B	.756	.932	0.70459	61,700	B.M. / DUCTILE				
17.							5 k j		
			GUI	DED BEND T	EST				
Specimen no.	Type of be	end	Result		Remark				
1	SIDE	1	PASS						
2	SIDE		PASS						
3	SIDE	1	PASS						
4	SIDE	1	PASS						
Appearance Undercut Piping porosity Convexity Test date Witnessed by	ACCEPT ACCEPT ACCEPT ACCEPT 5/23/200 NA	ACCEPT ACCEPT ACCEPT ACCEPT 5/23/2001 NA			H report no: 45524 Hesuit UT report no: Result FILLET WELD TEST RESUlt Minimum size multiple pass M: Macroetch M: 1. 3. 1.			ACCEPT	_
Other Test CVN IMPACTS CVN: @ -20°F	6@-20℉; 0° ;	F; +70°F		2. All-weld-me Tensile s	etal tensior	n test	2. 90.9 KSI		
#1=30, #2=42,	#3=35; AVG	=36 ft/lb		Yield poir	nt/strength,	psi	67.2 KSI		
#1=32, #2=63,	#3=47; AVG	=47 ft/lb		Elongatio	on in 2 in.,9	6	23.3		
CVN: @ +70 °F #1=92, #2=92,	; #3=93; AVG	=92 ft/lb		Laborato	ry test no.		45524B		
Welder's name	SERGIO E	BARRERA		Cloc	k no. 950	11	Stamp no.	SB	
Test conducted	by CANSPE	EC GROUP INC		Labo	oratory				
Test number		Per	RON JA	COBS					
We, the undersi	gned, certify	that the stateme	ents in this re	cord are corre	ect and tha	t the test v	velds were	e prepared, welded, and	
tested in accord	ance with the	e requirements o	of section 4 o	f ANSI/AWS	D1.1,2000) Str	uctural We	elding Code-Steel.	
Manufacturer	SCHUFF ST	EEL CO.		By JIM	MURRAY	5		Date 6/14/2001	
				Title N.D	.E. TECH.				

PREQUALIFIED FCAW WELDING PROCEDURE SPECIFICATION (WPS) LINCOLN O.S. 70 (E70T-1 / E70T-9) REV. 0

FILLER METAL	SHIELDING	TECHNIQUE
FILLER METAL: LINCOLN O.S. 70	GAS: CO-2	STRINGER OR WEAVE BEAD: STRINGER
AWS CLASSIFICATION: E70T-1 / E70T-9	COMPOSITION: 100%	SINGLE PASS OR MULTI-PASS: BOTH
AWS SPECIFICATION: A5.20	FLOW RATE: 40 - 50 CFH	NUMBER OF ELECTRODES: 1
TYPE: SEMI-AUTO	GAS CUP SIZE: 1/2"	ELECTRODE SPACING: N/A
POSITION(S): F, H		CONTACT TUBE TO WORK DISTANCE: 1-1/8" (± 1/4")

PREHEAT / INTERPASS TH	EMP. (EXCLUDING GRADE 65)	PREHEAT / INTERPAS	8 TEMPERATURE – GRADE 65
THICKNESS T	EMPERATURE (MIN.)	THICKNESS	TEMPERATURE (MIN.)
UP TO 3/4"	32° F	UP TO 3/4"	50° F
OVER 3/4" TO 1-1/2"	50° F	OVER 3/4" TO 1-1/2"	150° F
OVER 1-1/2" TO 2-1/2"	150° F	OVER 1-1/2" TO 2-1/2"	225° F
OVER 2-1/2"	225° F	OVER 2-1/2"	300° F
MAXIMUM INTERPASS TEMP.	: 550° F	MAXIMUM INTERPASS TEMP	P. : 550° F
NOTE: THE MINIMUM PREHEA	AT OR INTERPASS TEMPERATURE AI	PPLIED TO A JOINT COMPOSED	OF BASE METALS WITH

DIFFERENT MINIMUM PREHEATS SHALL BE THE HIGHEST OF THESE MINIMUM PREHEATS.

				WELDING F	ROCEDURE			
		FILLER METAL		CUF	RENT			
PASS OR WELD LAYER(S)	PROCESS	CLASS	DIAM.	TYPE & POLARITY	AMPS OR WIRE FEED SPEED	VOLTS	TRAVEL SPEED (IPM)	NOTES
ALL	FCAW	E70T1	3/32"	DCEP	455/200 ipm	30	18	MATERIALS ≥ 3/8"
		E70T9			410 - 500	28 - 32	13 - 23	RANGES
			,	HEAT INPUT: 3	2.7 – 73.8 kJ/in.	×.		
ALL	FCAW	E70T1	3/32"	DCEP	350/125 ipm	25.5	11	MATERIALS < 3/8"
		E70T9			315 - 385	24 - 27	8 - 14	RANGES
				HEAT INPUT: 3	2.4 – 77.9 kJ/in.			

BASE N	METALS	ATTAC	HED PREQUALIFIEID JOIN	T DETAILS AND T	OLERANCES
BASE MATERIAL 1 T	O BASE MATERIAL 2	FILLE'	г РЈР	1	CJP
BASE MATERIAL 1 (TYPE/GRADE) ⊠ A 36 ⊠ A 53 ⊠ A 500 A, B, C ⊠ A 572-50 □ A 913-50 □ A 913-65 ⊠ A 992 □ OTHER:	BASE MATERIAL 2 (TYPE/GRADE) ⊠ A 36 ⊠ A 53 ⊠ A 500 A, B, C ⊠ A 972-50 □ A 913-50 □ A 913-65 ⊠ A 992 □ OTHER:	⊠ FILLET	□ BC-P2-GF □ B-P3-GF ○ BTC-P4-GF □ BTC-P5-GF □ BC-P6-GF □ BC-P6-GF □ BC-P8-GF □ BC-P8-GF □ BTC-P9-GF ○ BTC-P9-GF	□ B-L1a-GF □ B-L1b-GF □ TC-L1-GF □ B-U2a-GF □ C-U2a-GF □ B-U2-GF □ B-U2-GF □ B-U3-GF □ B-U4a-GF □ B-U4a-GF □ B-U4b-GF	 ☐ TC-U4b-GF ☐ B-U5-GF ☐ TC-U5-GF ☐ B-U6-GF ☐ C-U6-GF ☐ B-U7-GF ☐ B-U8-GF ☐ TC-U8a-GF ☐ B-U9-GF ☐ TC-U9a-GF
BACKING MATERIAL (IF A	APPLICABLE): 🛛 STEEL [OTHER:	6. M		2. 2
BACKGOUGE METHOD (II	7 APPLICABLE): 🖾 AIR CAF	BON ARC	OTHER:		
INTERPASS CLEANING: C	HIP OR BRUSH		PEENING: NONE		
BY: BRIAN ROBERTS	DATE: 1-24-2007	AUTHORIZE	D BY: KEITH LANDWEHR	DATE: 1-24-200	7

		Base N	vletal		Joint Prepara	tion	~			N
Welding	loint	Thickness (U=unlimited)		Deat	Tolerances		3	Permitted	Gar	o t
Process	Designation	T1	T 2	Opening	As Detailed	As Fit Up	Weld Size	Positions	Shielding	e s
FCAW (E70T-1) (E70T-9)	FILLET	U	U	R = 0	R = 0	-0, +3/16	S	F, H	Required	

		Base Me	ətal	G	roove Preparatio				
		Thickne	SS	Root Opening	Toler	ances	Permitted	Weld	
Welding	Joint	(U=unlimited)		Root Face	As Detailed	As Fit Up	Welding	Size	
Process	Designation	T1	T2	Groove Angle	(see 3.12.3)	(see 3.12.3)	Positions	(E)	Notes
FCAW (E70T-1) (E70T-9)	BTC-P4-GF	1/4 min	U	R = 0 f =1/8 min α = 45°	+1/16, -0 unlimited +10° , -0°	+1/8, -1/16 ±1/16 +10° , -5°	F,H	S	B E, J N, V

		Ba	se Met	al		Groove Preparati				
		Thi	Thickness		Root Opening	Tolerances		Permitted	Weld	
Welding	Joint	(U=i	unlimit	ed)	Root Face	As Detailed	As Fit Up	Welding	Size	
Process	Designation	T1	T2	T3	Bend Radius	(see 3.12.3	(see 3.12.3)	Positions	(E)	Notes
FCAW (E70T-1) (E70T-9)	BTC-P10-GF	3/16 min	U	T1 min	R = 0 f =3/16 min C =3T1 / 2 min	+ 1/16, -0 +U, -0 -0, +Not - Limited	+1/8, -1/16 +U, -1/16 -0, +Not - Limited	F, H	5/8 T1	J N, Z

a*	8	Base I	Metal		Gro	1				
		Thickr	less			Tol	erances	Permitted	Gas	N
Welding	Joint	(U=unlii	mited)	Root	Groove	As Detailed	As Fit Up	Welding	Shielding	t
Process	Designation	71	T 2	Opening	Angle	(see 3.13.1)	(see 3.13.1)	Positions		s
FCAW	B-U4a-GF	U)	(5)	R = 3/16	$\alpha = 30^{\circ}$	R = +1/16, -0	+1/4, -1/16	F, H	Required	Br
(E70T-1) (E70T-9)				R = 1/4	α. = 45°	α = +10°, -0°	+10°,-5°			N
	e			R = 3/8	or = 30 _e			F		

		Base	wetar		Gn	uove Preparation			100	
		Thickness				Tolera	ances	Permitted	Gas	N
Welding	Joint	(U=unl	imited)	Root	Groove	As Detailed	As Fit Up	Welding	Shielding	t
Process	Designation	T1	T 2	Opening	Angle	(see 3.13.1)	(see 3.13.1)	Positions		s
FCAW	TC-U4a-GF	U	U	R = 3/16	α = 30°	R = +1/16, -0	+1/4, -1/16	F, H	Required	J
(E70T-1) (E70T-9)				R = 1/4	a = 45°	α = +10°, -0°	+10°, -5°			N V
attaineni eti				R = 3/8	α = 30°			F	h	1271

		Base Metal Thickness		G	roove Preparation		Gas		
				Root Opening	Т	Tolerances		N	
Welding	Joint	(U=unlir	nited)	Root Face	As Detailed	As Fit Up	Welding	Shielding	t
Process	Designation	T1	T2	Groove Angle	(see 3.13.1)	(see 3.13.1)	Positions		s
FCAW (E70T-1) (E70T-9)	B-U4b-GF	U	Ĩ	R = 0 to 1/8 f= 0 to 1/8 o. = 45*	+1/16, -0 +1/16, -0 +10° , -0°	+1/16, -1/8 Not limited +10° , -5°	F, H	Required	Br C N

		Base M	etal	G	roove Preparation	í.		2027	
		Thickness		Root Opening	Tolerances		Permitted	Gas	N
Welding	Joint	(U=unlin	nited)	Root Face	As Detailed	As Fit Up	Welding	Shielding	t
Process	Designation	T1	T2	Groove Angle	(see 3.13.1)	(see 3.13.1)	Positions		s
FCAW (E70T-1) (E70T-9)	TC-U4b-GF	U	U	R = 0 to 1/8 f= 0 to 1/8 c. = 45°	+1/16, -0 +1/16, -0 +10°, -0°	+1/16, -1/8 Not limited +10° , -5°	F, H	Required	C J N V

Notes:

- B: Joint is welded from one side only.
- Br: Cyclic load application limits these joints to the horizontal welding position.
- C: Backgouge root to sound metal before welding second side.
- E: Minimum weld size (E) as shown in Table 3.4. S as specified on drawings.
- J: If fillet welds are used in statically loaded structures to reinforce groove welds in corner and T-joints, these shall be equal to 1/4 T1, but need not exceed 3/8 in. (10 mm). Groove welds in corner and T-joints of cyclically loaded structures shall be reinforced with fillet welds equal to 1/4 T₁, but need not exceed 3/8 in. (10 mm).
- M: Double-groove welds may have grooves of unequal depth, but the depth of the shallower groove shall be no less than one-fourth of the thickness of the thinner part joined.
- Mp: Double-groove welds may have grooves of unequal depth, provided these conform to the limitations of Note E. Also the weld size (E) applies individually to each groove.
- N: The orientation of the two members in the joints may vary from 135° to 180° for butt joints, or 45° to 135° for corner joints, or 45° to 90° for T-joints.
- V: For corner joints, the outside groove preparation may be in either or both members, provided the basic groove configuration is not changed and adequate edge distance is maintained to support the welding operations without excessive edge melting. Z: Weld size (E) is based on joints welded flush.

Prequalified WPS Requirements:

- Maximum Root Pass Thickness: Flat 3/8", horizontal 5/16".
- . Maximum Fill Pass Thickness: 1/4"
- Maximum single-pass fillet weld: flat 1/2", horizontal 3/8".
- Split layers when the layer width w > 5/8"

Allowable Range Variances:

- Volts: ±7%
- Amps: ±10 %
- Wire Feed Speed: ± 10 %
- Travel Speed: ±25%

OUTERSHIELD 70 AW S A5 20-95: E70T-1 & E70T-9

This bw hydrogen wire is designed for . Good resistance to porosity due to sigh and mulph pass, sem hutomatic and automatic welding in the fat and horizontalpostions. Lpenetrates through nust, m illscale and light oil. Is spray type transfer, by spatter and easy to rem ove slag, contribute to its high operator appeal. Outershield 70 can be used on both mild and many bw alby steels.

ADVANTAGE LINCOLN

- Form id steeland m any bw alby steels.
- Especially recommended for applications requiring deep penetration.
- · Excelentbead wetting, bw spatter, and fast follow characteristics.
- · Exceptionalm echanical properties and x-may quality.

- heavy scale or mist contam nation.
- CSA approved.
- M anufactured under a quality system certified to ISO 9002 requirem ents.

TYPICAL APPLICATIONS

- Bridge, ship, barge or offshore drilling rig construction.
- · Generalfabrication.
 - Machinery fabrication.
 - Structuralfabricating.

WELDING POSITIONS

CONFORMANCE

AW S A5.20-95: E70T-1 & E70T-9 ASME SFA-5.20: E70T-1 ABS: 2SA-2YSAH15 DNV: IIYM SH15 Lbyd's: 2S-2YSH15

SHIELDING GAS

100% CO2 Fbw Rate: 40-50 CFM

100% CO2

DIFFUSIBLE HYDROGEN

Shielding Gas	TypicalResults (n 1/100g weld deposit)

7-14

DIAMETERS / PACKAGING

D iam Inche	eter es (nm)	25 Lb.(11kg) ReadiReel	50 Lb. Ø3kg) Coil	300 Lb. (136 kg) Speed Feed" Reel	600 Lb. 272 kg) Speed Feed Reel	600 Lb. 272 kg) Speed Feed Drum	900 Lb. 408 kg Speed Feed Reel
1/16	Q.6)	ED \$12783	ED 012782		ED014588		
5/64	2.0)		ED 012785				
3/32	2A)		ED 012784	ED015022	ED014120	ED014119	EDS14622
1/8	82)		ED 014324				

MECHANICAL PROPERTIES (1) - As Welled perAW 5 A5 20

	Yield Strength	Tensile Strength	Ebngation	Chapy ft-bs	(Joules)
	psiMPa)	psi MPa)	(8)	0 0 F (-18 °C)	0-20°F (-29°C)
Required					
AW SE70T-1	58,000 (100)	70,000 (183)	22	20 (27)m in.	
AW S E701-9	m in.	min.	min.		2027)m n.
TestResults					
100% CO2 AsWelled	83,500 (576)	92,100 (635)	27	28 (39)	23 (31)
100% CO2 Starss Relayed for1 hourat 1150 F 621 C)	76,400 527)	80,500 (555)	27	20 07)	18 04)

1) Typizalallweldmetal

6

OUTERSHIELD 70 =

W me Polanny SlectricalStickout W me W eight	W ne Sp n/m n	Feed eed (n/m/n)	Am Voltage Wolts)	Approx. Current (am ps)	Me. R Ibs/hi	li-Off ate : kg/hr)	Depo R Ibs/hi	osizion ate r kg/hr)	Efficiency &)
1/16" DC+ 3/4" (9mm) 0.707 bs/1000"	125 200 250 300 375	82) 51) 64) 7.6) 95)	23-25 25-27 25-28 27-29 29-31	170 235 275 310 365	5.3 8.5 10.6 12.7 15.9	(2 A) (3 B) (4 B) (5 B) (7 2)	4.6 7.4 9.2 11.1 14.0	Q.1) (3.4) (6.2) (6.4)	87 87 87 87 88
5/64" DC+ 1" (25mm) 1.123 bs/1000"	125 175 225 250 300 325	82) 84) 67) 64) 76) 63)	23-26 26-28 27-29 29-31 30-32 31-33	250 350 375 400 450 470	8.4 11.8 15.2 16.9 20.2 21.9	8.8) 6.4) 6.9) (7.7) 9.2) 9.9)	7.0 10.0 13.0 14.4 17.4 18.8	82) (45) 69) 65) 79) 85)	83 85 86 86 86 86
3/32" DC+ 1-1/6" (29mm) 1.554 bs/1000"	125 200 250 300 325	82) 61) 64) 7.6) 83)	24-27 28-31 30-32 31-34 33-35	335 455 530 590 615	11.7 18.6 23.3 28.0 30.3	53) 85) 00.6) 02.7) 03.7)	9.8 16.0 20.2 24.3 26.4	6A) (7.3) (9.2) (1.0) (12.0)	84 86 87 87 87
1/8" DC+ 1-1/8" 29mm) 2.580 bs/1000"	75 100 125 150 175	(1.9) (2.5) (3.2) (3.8) (6.4)	26 - 28 27 - 29 28 - 30 29 - 31 30 - 32	375 460 535 595 640	12.1 16.1 20.1 24.1 28.1	6.5) (7.3) (9.1) (0.9) (2.7)	9.5 13.2 17.0 20.8 24.6	(0.3) (6.0) (7.7) (9.4) (0.1.2)	79 82 85 86 87

DEPOSIT COMPOSITION (1)

Requirem ents	.18	1.75	.03	.03	.90
AW S E70T-1	m ax.				
TestResults 100% COo	.084	1.41	009	.011	.73

4) Typicalallweldmetal.

7

This is to certify that the product named above and supplied on the referenced order number is of the same classification, manufacturing process, and material requirements as the material which was used for the last process are classification were performed at that time and the material twich was tested and supplied according to the Outably System Program (the Lincoin Electric Company, Cleveland, Ohio, U.S.A, which meets and supplication according to the Quality System Program (the Lincoin Electric Company, Cleveland, Ohio, U.S.A, which meets the requirements of ISO3001, NCA3800, ANSI/ANS A5.01, JIS 23802, and other specification and Millitary requirements, as applicable. The Quality System Program has been approved by SMRF, ABS, and V0TUV. ELECTRIC 25 Feb 2006 LINCOLN Cert. No. 13100 [1 Year] tensile specimen artificially aged at 220° F (104 ° C) for 48 hours, as permitted by WYS A5 20^{-52} . A manually aged reusile specimen may take months to achieve the specified properties. See AWS A5 20^{-52} , paragraph A8.3. The time required for the natural aging of weld deposits is dependent upon ambient conditions, weldment geometry, the metallureical structure of the weld deposit and other factors. The strength and elongation properties were obtained from .505" iance Engineering, David A. Fink, Manager, Comp Consumable R&D Department C CERTIFICATE OF CONFORMANCE (APPLIES ONLY TO U.S. PRODUCTS) values requirements. Results before the detection limits of the instrument or lower than the precision required by specification are reported as zero. Strength values in St lunk are reported to the nearest 10 MPa converted from actual data. Preheat and interpass temperature in St units are reported to the nearest 5 degrees. The diffusible hydrogen result for the 1/16 is 4.1 mJ/100g with absolute humidity of 24 grains of moisture par B. of dry air. Radiographic Test: Met requirements. The Need Test (positions are acquired) Met arquirements. Thest assembly construed and are the excluded dameter required to be tested is 3.22, smaller stores will also meet these
 322 inch
 322 inch

 DC+
 322 inch

 DC+
 100% CC,

 DC+
 100% CC,

 Contact Tp to Work Distance, mm (in)
 508 (200)

 Preheat Term, "C (*)
 (60 min.)

 Interpress Layers
 368 (200)

 Machanical properties of the weld deposits (in the as-welded condition)
 26 (6)

 Interpress Term, "C (*)
 (60 min.)
 26 (6)

 Machanical properties of the weld deposits (in the as-welded condition)
 26 (6)

 Tersite Strength, MPa (ks)
 (60 min.)
 26 (6)

 Machanical properties of the weld deposits (in the as-welded condition)
 26 (6)

 Charpy V-rotich impact Properties
 (60 min.)
 26 (7)

 Joules @ -20 ° f)
 275-325)
 50 (7)
 0.06 1.56 0.73 0.01 15.4 24 24 Outershield[®] 70 E70T-1-H16, E70T-9-H16 AWS A5.20-95, ASME SFA-5.20 February 23, 2006 0.18 max. 1.75 max. 0.90 max. 0.03 max. 0.03 max. Diffusible Hydrogen (mL/100g) per AWS A4.3 Absolute Humldity (grains moisture/lb dry air) Chemical analysis (weight %) The Lincoln Electric Company 22801 St. Clair Avenue Cleveland, Ohio 44117-1199 μ S S S S S Test Completed: Classification: Specification: Page 1 of 1 Product:

Page 1 of 2

Welding Procedure Specification

í			Weldi	ng Proc	edure Speci	ficatio	n	F 254
WPS No. Authorized Welding Pr Supporting	F 254 By JIM M rocess(es) PQR(s)	URRAY FCAW 88667	levision 2	2 Date	Date 7/24/20 7/16/2002 Type: Ma	003_ inual []	By JIM MURRAY Prequalified Machine Semi-A	uto 🛛 Auto 🗌
JOINT Type D Backing Backing Root Ope Groove A Back Goo Met	OUBLERP Yes⊠No MaterialM ening NA AngleNA ugeYe thodNA	LATE WELD "J" Gr D D Single Weld IAIN MEMBER Root Face D Radius (J S D No X	oove Dout imension U) 5/8"	ble Weld _]		DOLLARS PL TO WI	NEARAUTE AND
BASE ME Material Type or C Thickness Diameter FILLER M AWS Sp AWS Cla	TALS Spec. SEI Grade s: Groove (Fillet ((Pipe,)) ETALS ecification I ssification I	E NOTES to to in) 1/8) NA NA A5.20 E70T-9	SEE NO - <u>3/4</u> - NA - NA	TES	POSITION Position of Vertical Pro ELECTRICA Transfer M Short Current: Other N Tungsten B Size N	Groove ogression AL CHAR/ lode (GM -Circuiting AC A Electrode A	Flat Fille b: Up □ ACTERISTICS AW): g Globular DCEP DCEN OCETAW): Type	et Down Spray Pulsed
SHIELDIN Flux NA Electrode NA	G e-Flux (Class	Gas <u>CO-2</u> Composition 1 s) Flow Rate 4 Gas Cup Size	00% 5 CFH 1/2"		TECHNIQUE Stringer or Multi-pass Number of Electrode S	E Weave E or Single Electrode Spacing:	Bead Stringer* Pass (per side) E es 1 Longitudinal NA Lateral NA	ither*
Preheat Preheat Thickne Ove Over	Temp., Min. ess Up to 3/ er 3/4" to 1-1. 1-1/2" to 2-1. Over 2-1. 5 Temp., Min	NONE**** 4" Temperature /2" /2" . NONE**** Ma	NONE**** 50° 150° 225° IX. NONE		Contact Tu Peening Interpass (POSTWELD Temp.	ube to Wo NONE Cleaning O HEAT T	Angle NA ork Distance <u>1 1/8"</u> HAND/AIR TOOL REATMENT PWHT Time	Required
	((WELDIN	IG PROCEDURE	1		
Layer/Pass	Process	Filler Metal Class	Diameter	Cur. Type	Amps or WFS	Volts	Travel Speed	Other Notes
ALL	FCAW	E70 T9	3/32	DCEP	500/180ipm	28		NOTE**

Page 2 of 2

Page 1 of 3

Procedure Qualification Record

			Proced	lure Qual	lification Re	cord				8866
PQR No. Authorized	88667 By JIM MUI	RRAY	Revision	3	Date 12/7/2004 By JIM MURRAY Date 10/6/2001 Type Manual Machine					
Welding Pr	ocess(es)	FCAW	Het	erence WPS	5 NO. F 254,F 26	55	Semi-A	Auto 🖂	Auto	i li li
JOINT Type "J Backing Y Backing M Root Oper Groove An Back Gour	"GROOVE Yes⊠ No aterial ST ing 0 gle 0	Single Weld EEL Root Face Di Radius (J-U)	Double mension 3/	Weld 🗌 8		98	6 5 4 3 2 1 58 R.)/8°	~
Mol										
BASE METALS Material Spec. A572 to A572 Type or Grade 50 to 50 Thickness: Groove (in)3/8 Fillet ()					POSITION Position of Groove Flat Fillet Vertical Progression: Up Down					
Diameter (Pipe,)				Transfer Mode (GMAW):						
FILLER METALS AWS Specification A5.20 AWS Classification E70T9 LINC. OS-70				Short-Circuiting Globular Spray Current: AC DCEP DCEN Pulsed Other						
SHIELDING Flux NA Electrode	SHIELDING Flux Gas NA Composition Electrode-Flux (Class) Flow Rate 45 CFH				Size Type TECHNIQUE Stringer or Weave Bead Stringer					
PREHEAT Preheat Interpass	Temp., Min. s Temp., Mir	AMBIENT AMBIENT Ma	ax. NONE		Number of E Electrode Sp Later	lectrodes acing: Lon al NA	1 gitudinal NA Anj	gle NA		
POSTWE Temp. Time	LD HEAT TH NA NA	REATMENT	Req	uired 🗌	Contact Tube Peening Interpass Cle	e to Work D NONE eaning <u>H</u>	Distance <u>1 1/8'</u> AND TOOL			
				WELDING	PROCEDURE					
Layer/Pass	Process	Filler Metal Class	Diameter	Cur. Type	Amps or WFS	Volts	Travel Speed	Other N	Notes	
ALL	FCAW	E70T-9	3/32	DCEP	500 AMPS	28	18			
	-									

			Procedure	e Qualifica	tion Re	cord	
			TES	ST RESULTS			
			TEN	NSILE TEST			
Specimen no.	Width	Thickness	Area	Ultimate I load	ensile Ib	Ultimate unit stress, psi	Character of failure and location
Α	.754	.335	0.25259	20,440		81.0 KSI	B.M.; BRITTLE
В	.756	.328	0.24797	20,570		83.0 KSI	B.M.; BRITTLE
			GUID	ED BEND TE	ST		
Specimen no.	pecimen no. Type of bend Result		Result	Remark			
A	FACE		PASS				
В	FACE		PASS				
Α	ROOT	1	PASS				
в	ROOT	1	PASS				
Undercut Piping porosity Convexity Test date Witnessed by Other Test	dercut ACCEPT ing porosity ACCEPT nvexity ACCEPT st date 9/20/2001 nessed by NA			UT report n Minimum si Macroetch 1 2 All-weld-meta	p: FILLET W ze multiple 3 I tension to	Resu ELD TEST RES pass	It ULTS Maximum size single pass Macroetch 13 2
				Tensile stre	ngth, psi		
				Yield point/	strength, p	si	
				Laboratory	test no.		
Welder's name	ALFONSO	OLGUIN		Clock	10.	Stamp n	IO. AO
Test conducted	by CANSPE	EC GROUP INC		Labora	itory		
Test number	207-01-09	-046050		Per I	OBERTS	STEWART PE	
We, the undersi	gned, certify	that the stateme	ents in this reco	ord are correc	and that t	he test welds we	ere prepared, welded, and
tested in accord	lance with the	e requirements o	of section 4 of	ANSI/AWS D	.1 ,2000) Structural V	Velding Code-Steel.
Manufacturer	SCHUFF ST	EEL CO.		By JIM M	URRAY		Date 10/6/2001
				Title N.D.E	. TECH.		

Page 3 of 3

