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ABSTRACT

The study presented here deals with a probability-based safety
factor of structures known as resistance factor. Resistance factors
are determined for plate girders in bending, shear, and combined shear
and bending, and are compared with those obtained by T. V. Galambos at
Washington University in St. Louis, Missouri.

Five major steps are followed in this study: 1) Selection of a
probabilistic design format. 2) Selection of load and plate-girder
strength prediction models. 3) Collection of data of parameters which
affect the strength of plate girders. 4) Determination of characteris-
tic values of the parameters. 5) Calibration with an existing design
specification.

Cornell's first-order, second-moment format is used as a probabilis-
tic design format, and predictions of plate-girder strengths employ
formulas which include the Basler-Thiirlimann models. Experimental data
from related studies is analyzed by statistical methods to determine
their characteristic values, Calibrations are performed with Part 1 of
the AISC Specification.

Results of the study yield more conservative values for resistance
factors than those recommended by T. V. Galambos. This can be attributed

to differing characteristic values for parameters selected in each study.

Key words: Buildings, Coefficients, Load factors, plate girders,

Statistical analysis, Structural design
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Chapter 1

INTRODUCTION

l.1 Evolvement of the Safety Concept of Structural Systems

It has been well known since analysis techniques for structural
systems were developed that the strength of a structural system and the
loads acting on the system do not have any deterministic values but are
affected by many chance factors, and that absolute safety or reliability
of structural systems i{s not feasible. From past experiences of success
and failure recorded for similar types of structures, "factors of safety"
have been determined. The safety or reliability of a structure is pre-
sumably assured by those factors of safety. This factors of safety
concept based on past experience has been widely adopted in many current
codes and specifications.

Since the 1950's, there have been significant efforts to reevaluate
the traditional safety concept for structural systems. The concept and
methods of probability theory have been introduced in evaluating the
reliability of structural systems. Theoretical bases for this approach
were formulated by Freudental (21). However, the complexity and overly
idealistic aspect of the completely probablitistic approach limited its
application to design practices.

Researchers then turned their efforts toward achieving a compromise
solution by retaining some of the simplicity of the traditional approach
while incorporating some probabilistic concepts. The first results of
this effort appeared as load factors, which may be determined by the
ratio of the characteristic strength of a structure to the characteristic
applied loads. This approach has been applied in the American Concrete

Institute (ACI) Code and the American Association of State Highway and
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Transportation Officials (AASHTO) Specification., In this approach, the
characteristic values are taken to be equal to the respective mean values
minus or plus a certain number times the corresponding standard devia-
tions. However, this semi-probabilistic format cannot reflect in a
consistent manner the uncertainties in various parameters which affect
the safety of structural systems (47).

In the middle of the 1960's, a significant improvement in the prob-
abilistic safety concept was made by C. A. Cornell (15). By employing
the first-order approximation and the second-moment theorem in probability
theory, he derived a relatively simple and practically feasible design
format. 1In this approach, no assumption on probabilitistic distribution
of the design variables is made, and only their mean and the variance
are required.

Since the Cornell format was introduced, the second-moment format
has become important for evaluating structural safety. This approach
has been well summarized in the articles (3,44) prepared by the Task
Committee on Structural Safety of the American Society of Civil Engi-
neers (ASCE). No codes nor specificiations have adopted this approach
in their practices. However, a proposal by T. V. Galambos (24) is now
under review by the Committee on Specification for Buildings of the

American Institute of Steel Construction (AISC).

1.2 Scope of Study

The first explicit application of the probability-based design
format to design practices may be due to T. V. Galambos. Through the

studies (24,25,26) presented in the Journal of Structural Division of

ASCE, Galambos proposed new design criteria for steel structures in-
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cluding design criteria for plate girders. These design criteria are
called the Load and Resistance Factor Design (LRFD).
For assuring the safety of structures, the following general formula

should be satisfied:

¢Rt" > él " Qe (1.1)
in which ¢ 1s the "resistance factor" reflecting uncertainties in the
resistance of a structure, Rn is the nominal resistance determined by a
theoretical structural analysis model, y is the "load factor" reflecting
uncertainties in the loads acting on the structure, and Q is the applied
load effect estimated by a load predicting model. The summation in

Eq. (1.1) represents linear combination of applied loads from various
sources.

Galambos' load and resistance factors for plate girders were
developed by carrying out the following studies: 1) Cornell's format
(15) was selected as a design format. 2) Data obtained at Lehigh Uni-
veristy in the late 1950's and early 1960's was used for determining
characteristic values of parameters affecting girder strengths. 3) Theor=-
ies developed by Basler and Thiirlimann (8,9,10), and McGuire and Cornell
(37) were employed to determined Rn and Q in Eq. (1.1). &) Calibrations
with Part 2 (plastic design) of the AISC Specification were carried out.

The main concern of the research presented here is a reexamination
of the Galambos resistance factors for plate girders in pure bending,
shear, and combined shear and bending. For this, strength prediction
models, load prediction models, and probabilistic design formats are
reviewed. However, the main effort is given to the evaluation of the
characteristic values of parameters which affect the strength of plate

girders. Since the 1960's, numerous additional tests of plate girders




have been conducted around the world. By adding new data from those
recently carried-out tests to the data used in the Galambos study, and

by investigating the collected data with statistical methods, more repre-
sentative characteristic values of parameters may be expected.

This research is limited in scope to the same girders as used in the
Galambos study (welded, transversely stiffened, single web plate girders).
Within these limits, reevaluated resistance factors of plate girders in
bending, shear, and combined shear and bending are developed, and new
design criteria are recommended through calibration with Part 1 (elastic
design) of the AISC Specification. Details of plate-girder design such
as end panel requirements and intermediate-stiffner requirements are

assumed to be satisfied by following the provisions of the AISC Specifi-

cation.




Chapter 2

RELIABILITY ANALYSIS MODEL

2.1 Probability-Based Design Format

It is well recognized that absolute safety and reliability of
engineering systems are not feasible because the information used in
the development of a design invariably contains some kinds of uncer-
tainties. The reliability or safety of a design can be assured only in
terms of probability -- specifically, in terms of probability of survi-
val or in terms of probability of failure.

Traditionally, safety or reliability is presumably assured by
prescribing conservative conditions in design through the use of "factors
of safety". However, the factor of safety is never analyzed nor evalua-
ted quantitatively but is determined through accumulated experience.

Since the lack of absolute reliability is due to the uncertainties
involved in a design, the evaluation of reliability naturally requires
a consideration of uncertainties, which is a subject of probability.

In development of Load and Resistance Factor Design (LRFD) criteria,
the methods and concepts of probability have a major role. The proba-
bility-based design model is a scheme to evaluate structural safety or
reliability quantitatively in explicit manner by probabillistic treatment
of uncertainties in the applied forces and in the structural resistance.

Among the proposed probabilistic design models, the CEB-ISO format
(36) proposed by the European Concrete Committee to the International
Standard Organization is perhaps the most general format. Although it
may give relatively accurate results in evaluating reliabilityof a design,

complexity of the procedure in CEB-ISO format may limit its use in

practice.
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A major contribution in this field is due to C. A. Cornell (15).

He suggested a simplified probabilistic design format by utilizing a
first-order approximation method. The strength of this format is its
simplicity without a significant sacrifice of accuracy. In this format,
only the first two moments, the mean and the variance, are used. Thus,
Cornell's format is sometimes referred to as the first-order, second-
moment theory. With the linearization factor proposed by Lind (36),
Cornell's format may be further simplified.

Since Cornell's format was proposed, considerable efforts have been
made in this field, and some criticism about the second moment theory has
evolved. Ove Ditlevsen (17) showed that a measure of reliability in the
domain of very small probability of failure was very sensitive to the
terms which were truncated in the first-order approximation and that the
second-moment theory was valid only in the case where superposition held.

In spite of such criticism, the first-order, second-moment design
format such as Cornell's format provides the conceptual base for recent
studies, for instance, the studies (3,19,44) done by the American Society
of Civil Engineers, Task Committee on Structural Safety.

Use of only two characteristic values of sampling data, the mean
and the standard deviation which is a square root of the variance, may
be the most important advantage of Cornell's format because the mean and
the standard deviation are the only values, in most cases, available in
practice. Because of this advantage, Cornell's format is used in this
work for developing LRFD resistance factor. Galambos also used Cornell's

format in his study (54).
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2.2 First-Order, Second-Moment Theory

Since the reliability of an engineering structure or its component
is defined as the probability that the system or its component will
successfully perform its intended function, a reliability measure would
be a function of design variables (2). If a performance function or

resistance of a structure is defined as

R = gR(Kl, 32' ke xn) (2.1)

where xl. Xz, «ssy and xn are random variables representing design vari-
ables and design parameters and 8 is a special functional relation, then
it is clear that R is also a random variable, whose values, r, represent
levels of performance dependent on the design variables.

The minimum performance of a structure or its component should not
be less than the loads acting on it. The loads coming from various

sources can be expressed as

Q = EQ(Y].' Yzl LR Yn) (2'2)

in which Yl' Yz. s W'ay Yn are random variables representing loading vari-
ables and 3Q is a specified functional relation. Therefore, Q is also
a random variable.

The measure of reliability or the proﬁability of survival, Ps' can

be defined as

A P(R > Q) (2.3)

where P denotes a probabilistic function of the random variable (R > Q).
Conversely, the probability of failure, Pf, is
P, =P(R < Q) . (2.4)

1f probabilistic information on R is known, in other words, if the

shape of the distribution and values of its parameters are known, the




probability of survival expressed by Eq. (2.3) can be written as (2)
P9 = jﬂfR(r)dr -] - FR(Q) (2.3)

where ER(r) and FR(Q) are the probability density function and cumulative

distribution function of R, respectively.

In practice, data may be available only for the basic variables xi.

Therefore, any probabilistic information on R must be derived from those
xi. Furthermore, the shapes of probability distributions of Xi are
usually not known. Information on Ki is invariably limited and may be
sufficient only to evaluate the mean values of Xi and the standard devia-
tion, from which the coefficient of variation (C.0.V.) can be determined.
Thus, any practical formulation of reliability must be based on informa-

tion for the first and second moments, that is, the mean and variance,

of Xi only.

If the relationship Y = g(X) for a function is sufficiently well
behaved, and if the coefficient of variation of X is not large, the

following approximations are valid (4)

E[Y] = g(E[X]) (2.6)
and
2 2 rdg(X) | 42
Var[Y] = Var [X][=% I’”'x] 2.7

in which E[:] and Var[:] denote the mean value and the variance, respec-
tively. Since Egqs. (2.6) and (2.7) are derived from exact solutions by
keeping only first-order terms, they are called first-order approxima-

tions of the first and second moments.

2.3 Derivation of Probabilistic Design Format

As defined by Eq. (2.3), when the resistance of a structural ele-

ment, R, is greater than the load, Q, acting on it, the element per-
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forms successfully its Intended purpose. Since R and Q are random vari-
ables, (R-Q) defines a probability distribution function as shown in

Figure la. Then, the probability of survival, Pa' is defined as
Ps = P[(R - Q) > 0] (2.8)
An equivalent representation of structural safety is shown in

Figure 1lb where the probability distribution of the random variable

(R-Q) is given on a lognormal scale. In this case, the probability of

survival, Ps’ is defined by

R
Ps = P[ln(a) > 0] . (2.9)

If the "standardized variable", U, of the random variable 1n(R/Q)

is introduced, Eq. (2.9) can be rewritten as (2)

1n(R/Q) - 1n(R/Q) In(R/Q)
P_ = P[1n(R/Q) > 0] = P[ m . -
vVar [1n(R/Q)] YVar[1ln(R/Q)]
1n(R/Q)
= P[U > - 2] =1-F (-B) (2.10)
YVar[1n(R/Q)] =

in which m denotes the mean, Fu is the cumulative probability distribu-

tion function of the standardized variable U, and B is defined as

ln(R/Q)m ln(R/Q)m
B = OF [ i =—— (2.11)
YVar[1n(R/Q)] 1n(R/0Q)

in which o is the standard deviation of the random variable
1n(R/Q)

In(R/Q). From Eq. (2.10), it is clear that the probability of failure,

Pf, is defined by

In(R/Q)
Pf =F (-8) = F [~ SR (2.12)
v YVar[1n(R/Q)]

As seen in Eq. (2.12) and Figure 1lb, since the probability of
failure corresponding to a larger B is smaller than that corresponding

to a smaller 8, B can be used as a parameter of structural safety or
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structural reliability. Thus, B (s called a "safety index". Specified

values of B corresponding to different levels of reliability are shown

in Table 1 (2).

Table 1

Safety Level Corresponding to 8

. 8 7 8

107t 1.28 1070 4.25
1072 2.33 1078 4.75
1073 3.09 1077 5.20
10"‘ 3.72 1078 5.60

The safety index B in Eq. (2.11) can be simplified, by use of Egs.

(2.6) and (2.7), as

R

{2.13)

in which QR and . represent the Coefficient of Variance (C.0.V) of

Q
resistance and applied loads, respectively. The C.0.V. of any random
variable X is defined as cxfxm.

Eq. (2.13) can be rearranged in the traditional "central factor

of safety" format. For insuring the safety of a structural element, the

central safety factor format takes the form

R > GQm (2.14)

- =
in which 6 is a central factor of safety. Comparing Eq. (2.13) and

Eq. (2.14) gives

/ 2
8 = exp(B e + 0 ' a (2.15)

Fe I %
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The central factor of safety, however, combines the uncertainties
inherent in the resistance and the applied load effects, which are
independent from each other. Thus, it would be advantageous if the
central factor of safety © could be split into two parameters which
could represent the uncertainties in the resistance and in the applied
loads. This can be accomplished by using the linear expansion technique

developed by Lin (36), that is

J2 2
rQR + QQ = a(nR + QQ) (2.16)

in which a, the linearization factor, is given by

2
3 A + (2/%)

a (2.17)
1+ QQ/nR
Substitution of Eqs. (2.15) and (2.16) into Eq. (2.14) gives
exp(—aBQR)Rm 3'exp(aﬂﬁq)qm - (2.18)

The right-hand side of Eq. (2.18) can be further separated to allow an

independent treatment of the effects of the different types of load.

2.4 Resistance Factor and the C.0.V. of Applied Load

If the nominal resistance of a structural element, Rn' determined
by any theoretical analysis model of a structure is used with split

safety factors, the design criterion can be expressed as (24)

n

b N
LN 1*qum

(2.19)

where ¢ denotes the resistance factor, y represents the load factors,
and summation means the linear combination of load effects from different

sources.
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2.4.1 Resistance factor
By comparing Eq. (2.18) with Eq. (2.19), the resistance factor
can be defined by
R
iy exp(-nﬂﬂg)ﬁf (2.20)

in which a and B are determined by Eq. (2.17) and Eq. (2.13), respective-
ly, Rm is the mean resistance capacity which would be determined from
experimental data, Rn is the nominal resistance capacity determined by

a theoretical structural analysis model, and RR represents the C.0.V.

of resistance capacity calculated from experimental data.

The strength of a structural element is a random variable reflecting
many chance factors. These may be separated into three terms; uncer-
tainties inherent in mechanical properties, uncertainties of cross-
sectional properties, and uncertainties associated with the professional
assumptions adopted in the structural analysis. Thus, for defining QR'
it is assumed that the resistance capacity of a structural element could
be expressed by multiplication of these three factors such that

R = M:F-P (2.21)
in which M, F, and P represent material properties which are usually
expressed in terms of stress, cross-sectional properties such as section
modulus, moment of inertia, and cross-sectional area, and a professional
factor associated with assumptions or simplification in structural
analysis, respectively. Then, by utilizing Eq. (2.7), RR can be ex-
pressed as

2 2 p)
QR - /éu + RF + 0

p (2.22)

where QH' QF’ and 1 are the C.0.V.'s of the stress due to variation of

P

material properties, of cross-sectional properties due to fabrication
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error, and of errors inassumptions or simplifications in the structural

analysis.
Thus, by substituting Eq. (2.22) into Eq. (2.20), the resistance
factor is redefined as

R ’ y
m 2 2 2
¢ = ﬁ: e:q:a(-af.’.-/flM + QF + QP) " (Z2.23)

2.4,2 C.0.V. of applied loads

As implied in Eq. (2.19), it is assumed that loads on a structural
member are the linear summation of separate load effects of random mag-
nitude. It is also assumed that each load effect is the product of four
factors (36); a random variable representing the ratio of the real to
calculated load effect, i.e., error in idealization or simplification in
structural analysis, a deterministic calculated influence factor, a ran-
dom variable representing the uncertainties in assumptions about the
spatial and temporal variation of each type of load, and independent load
intensity. Therefore, by denoting these four factors as S, C, K, and
q, respectively, the total applied load on a structural element, Q, can
be expressed as

n
T

Q8 48

2
SiCiKiqi . (2.24)
For simplification, dead and live loads are assumed to be present,
and S is assumed the same for all types of loads. The, Eq. (2.24) can

be simplified to
Q= S(CDAD + CLBL) (2.25)
in which S is a random variable representing uncertainties in load ef-

fect prediction, CD and CL are deterministic calculated dead and live

load influence factors, A and B are random variables representing un-
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certainties in the assumptions of the spatial and temporal variation in
dead and live loads, and D and L denote dead and live load intensities.
With an assumption that the mean of S is unity, and by applying Eq. (2.7),

the mean of the random variable Q and the C.0.V. are given by the fol-

lowing equations (25)

Q, = CpA D, + C/B L (2.26)
and
2 2
; céazn*(ni + 0% + ciaichné + QE)
2 = (o] + - 14 = ] (2.27)

2
(Cna\mDm + CLBmLm)
in which the subscript m denotes the mean value.

Since it is not easy to obtain information about A and B, Ravindra
(44) has simplified the above equations with assumptions that Am and Bm

are unity, that is
Qm - CDDm + CLLm (2.28)

and

2 2 2
g By + (LD ¢

2
(1 + Lm/Dm)

1 . (2.29)

Eq. (2.29) implies CD = CL which is valid for uniformly distributed dead

and live loads. The simplified equations given by Egqs. (2.28) and (2.29)

are used in this study to determine the safety index B represented by

Eq. (2.13).
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Chapter 3

UNCERTAINTIES OF APPLIED LOADS AND THE RESISTANCE

3.1 Introduction

As shown in Eq. (2.20), it 1is necessary, in order to estimate the

resistance factors, that the safety index B and the C.0.V. of the resis-

tance,

Qp» be defined.

The safety index 8 given by Eq. (2.13) involves variables associated

with applied loads as well as variables associated with the resistance
capacity of a structural element; that is, the mean applied loads, the

mean resistance, and their C.0.V., QQ and QR' respectively.

The C.0.V. of the resistance, RR given by Eq. (2.22) is determined
from three independent variables: the material factor (M), the cross-
sectional factor (F), and the professional factor (P). The professional
factor which reflects the differences between actual resistance and pre-
dicted resistance cannot be estimated unless the types of forces (e.g.,
bending and shear) resisted by a structural member are defined. There-
fore, only the material factor and the cross-sectional or the dimensional
factor are discussed in this chapter. The professional factor is dis-
cussed in the following chapters.

The C.0.V. of applied loads, QQ' which is independent of the resis-

tance, is also discussed in this chapter.

3.2 Variation in Loading

Applied load on a structural member is a random variable which is
influenced by the variation of each load from different sources. As
shown in Eq. (2.13), data relating to the applied load, specifically its

mean and the C.0.V., are necessary to determine the safety index. This




safety index is finally used to evaluate the resistance factor, ¢,
defined by Eq. (2.20).
Eqs. (2.28) and (2.29) give the mean applied load and its C.0.V.

for presenting dead and live loads. For convenience, the equations are

rewritten below:

Qm = CDDm + CLLm (2.28)
and
2 p S
; nD + (Lm/Dm) nL
Q. = (0% + 3 (2.29)
Q ] A+L/)
m m

To define Qm and QQ' data for each type of load, dead and live load

in this case, are necessary.

3.2.1 Dead load

The dead load is relatively constant in the service life of a struc-
ture. Although major deviation in dead loads are reported in the litera-
ture, these may be attributed to significant alterations in the struc-
tures (44). Therefore, it is assumed that the mean dead load, Dm' is
equal to a code specified value, Dc’ which is usually given by the unit
weight of materials used in the structure. The C.0.V. of the dead load

intensity, QD' has been estimated by Ravindra (44) to be 0.04.

3.2.2 Live load

Live loads arise from moveable fixtures, types of occupancy, and
other non-permanent loads. Design of a structure under dead and live
loads should consider the extreme value statistics of the live load over
the life time of the structure.

In this study, office type occupancy is assumed as a standard case

because office-type buildings provide a common type of live load with
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the possibilicy of significant variation over its service life. Several
prediction models (18,34,37,49,54) for extreme live load effects in
office buildings have been proposed. Out of these models, McGuire and
Cornell's simplified formula (37) and Ellingwood and Culver's model (18)
may be suitable for development of LRFD criteria because of their sim-
plicity and their agreement with surveyed data. The McGuire-Cornell
formula were used in Galambos' research (24). Although the Ellingwood-
Culver formula takes the same form as the McGuire-Cornell formula, the
former was developed based on a large amount of data recently surveyed
in the United States, while the latter was induced from surveyed data

in the United Kingdom. These equations are given below:

McGuire-Cornell; L = 14.9 + 163 (psf) (3.1)
‘- A
) o
o, = /11.3 3 Ag N0 (3.2)
L A
I
520
Ellingwood-Culver; L = 18.7 +— £
m /x; (psf)
o, = 14,2 #2200 (3.4)
L AI

In the above equations, Lm denotes the maximum mean lifetime total live

loads, GL is the standard deviation of live load, and AI is the influence

area equal to twice the tributary area of the floor beam-type member.
While no reduction factor has been suggested in the McGuire-Cornell

model, Ellingwood and Culver have recommended a reduction factor for an

influence area exceeding 200 sq. ft. as given by

R.F = 0.34 + == ., (3.5)
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A comparison of the unit live load between the McGuire-Cornell

T
111

5 Y i

formula, Ellingwood-Culver formula, American National Standard Institute
(ANSI) A58.1-1972 (5), and ANSI A58.1-1980 Draft (6) is given in Figure
2.

The figure shows that the ANSI A.58-1980 Draft takes a more con-
servative view than that of the ANSI A.58-1972, and also shows that the
Ellingwood-Culver formula, without using the reduction factor, matches
very well with the load given by the ANSI A.58-1980 Draft.

Therefore, it is concluded that the Ellingwood-Culver formula given
by Eqs. (3.3) and (3.4) provides a proper measurement of the maximum
mean live load and its standard deviation, from which the C.0.V. of

live load can be determined.

3.2.3 Other factors

The only remaining factor required in order to determine QQ in
Equation (2.29) is the C.0.V. associated with simplification or ideali-
zation of load effect, ﬂs. But, few reports are available from which
to obtain this information. Thus, N 0.10 is selected by adopting
the value used in Galambos' work and in a study (44) done by the Task
Committee on Structural Safety of the American Society of Civil Engi-
neering (ASCE).

A comparison of the load-related factors selected in this research
with those used in Galambos' work is summarized in Table 2.

Figure 3 shows the variation of the C.0.V. of applied load with
respect to tributary area or influence area for four different code

specified dead loads. Since the average dead load of an office type

building is rarely less than 50 psf (6), it is concluded that QQ = 0,13

is a proper value for the C.0.V. of applied load. This value may be
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Table 2
Load-Related Parameters
Factor Selected value Galambos wvalue
Mean dead load, Dm Code specified load, DC Code specified load, DC
C.0.V. of Dm 0.04 0.04
Mean live load, L 18.7 + 220 (a) 14.9 + 283 (®)
- V'r YA
I I
8¢ 8] i
Standard deviation 14, 18900 (=) 1.3 F D000 W
rAI E'AI
C.0.V. of live load 0.10 0.10

effect

Note: (a) the Ellingwood-Culver formula
(b) the McGuire-Cornell formula

- S BN BN N B BN B S B B B B B B B B BN .
]
l
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conservative for most reinforced concrete buildings, for which i = 0,11

Q
may be proper. However, QQ = 0.13 is used in this study.

3.3 Variation of Mechanical Properties of Steel

Mechanical properties of steel are commonly described by the elas-
tic moduli in tension, compression and shear; the yield strength in ten-
sion, compression and shear; and strain hardening properties. The strain
hardening properties, however, are rarely used in design practice for
plate girders. In a fabricated structural member such as plate girders,
the residual stress may have an effect on the member strength. For the
plate girder, the residual stress has a role in the limitation of the
web slenderness ratio, but several tests have shown that this limit is
too conservative and could be neglected in design practice (33).

Therefore, only the variations of the elastic moduli and the yield
strength or yield stress in tension, compression and shear are examined

here.

3.3.1 Elastic properties

The specified elastic properties in standards, codes and specifi-
cations are the modulus of elasticity, E = 29,000 ksi, Poisson's ratio,
v = 0.3 and the shear modulus of elasticity, G = E/2(1 + v). Measured
elastic moduli may have different distributions due to different testing
methods and equipments, testing materials from different mills, direc-
tion and position of the specimen in the steel plates, and thickness of
specimens (1,32).

Since no data could be added to the data used in Galambos' re-
search, his samples shown in Table 3 are used to estimate characteristic

values of the elastic properties of steel. This data could be considered




Table 3

Elastic Moduli of Structural Steel From Galambos (26)

24

Property Investigator Mean(ksi) C.O0.V. No. of tests Type of test

E Lyse, Keyser 29,360 0.010 7 Tension
coupon

E Rao, et al. 29.437 0.042 56 Tension
coupon

E Julian 29,500 0.010 67 Tension
coupon

E Julian 29,550 0.010 67 Compression
coupon

E Johnston, 291774 0.038 50 Tension and

Opila compression

coupon

E Tall, Alpsten 31,200 0.060 94 Tension
coupon and
stub column

G Lyse, Keyser 12,000 0.042 5 Torsion
coupon

v Julian 0.296 0.026 57 Tension
coupon

v Julian 0.298 0.021 48 Compression
coupon
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representative because they represented the work of different investiga-
tors over a time period of more than 20 years, using materials from two
major mills in the United States.

From the sampled data in Table 3 with his professional judgement,
rather than statistical values of the sampled data, Galambos was selected
E = 29,000 ksi and its C.0.V, = 0,06, G = 11,200 ksi and its C.0.V. =
0.06, and v = 0.3 and its C.0.V. = 0.03. However, if the same degree of
significance of test results in Table 3 is assumed (and, in fact, it is
not easy to say that any one result is superior to any other), the use
of the mean values and its C.0.V.s obtained by statistical method is
desirable according to the concept of the probabilistic design format.
Therefore, as shown in Appendix I, E = 30,000 ksi and its C.0.V. = 0.05
which are the statistical values of E from Table 3 can be said to repre-
sent the true mean and the C.0.V. of E with significance level of 1%.

Table 4 shows other test results by Huber and Beedle (32).

Table &

Modulus of Elasticity of Structural
Steel From Huber and Beeble (32)

Property Mean (ksi) C.0.Y, No. of Tests Type of Test
E 29,436 0.010 22 Tension
coupon

E 29,860 0.022 20 Compression
coupon

There are no significant changes in the characteristic values of E
if the sampled data in Tables 3 and 4 are pooled. Therefore, E = 30,000
ksi and C.0.V. = 0.05 are taken as the proper mean and C.0.V. of E in

this study.
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Galambos' values for Polsson's ratio, v = 0.3, and its C.0.V. = 0.03,
are adopted in this work with no argument because they are based on the
sample data in Table 3.

Table 3 gives the shear modulus of elasticity from only one source
with a sample size of 5. It may not be significant toevaluate its char-
acteristic values from this data. Theoretically, the shear modulus of
elasticity is given by G = E/2(1 + v). Thus, the characteristic values
of G are affected by the characteristic values of E and v. Therefore,
the mean value of G = 11,550 and its C.0.V, = 0.06 is determined from

Eqs. (2.7) and (2.8).

3.3.2 Yield stress

The principal material property affecting the strength of steel
structures is the yield stress. Test results (1,7,40) show that the
yield stress is greatly affected by the strain rate, test method and
equipment, chemical composition of steel, thickness of the specimens,
and location and direction of the specimens in steel plates. Moreover,
there are several methods to define the yield stress (51). In this
study, the static yield stress which is defined by the yileld stress
under zero strain is used as the yield stress to predict the strength
of plate girders because the static yield stress is an appropriate yield
parameter for building structures with predominantly static load (1).
Figure 4 gives the definition of the static yield, which is obtained
by stopping the straining after the stress-strain curve has reached the
plastic plateau.

Nagarja Rao, et al. (40), have developed an equation to estimate the
static yield stress from the dynamic yield stress. Their equation is

Fyd - Fys = 3,2 + 0.001 & where £ is the strain rate in micro-inches
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per inch per second. Unfortunately, most reported test results do not
provide the strain rates.

Values of the measure static yleld stress from various sources are
summarized in Table 5.

In-general, the thinner plate of the same grade steel has greater
yield point than the thicker plate (1,7). Since most plate-girder webs
are thinner than the flanges, a coupon from the web has greater yield
stress than a coupon from the flange if the plate girder has been made
of the same grade of steel. Since the flanges of plate girders have an
important role in the bending strength and the webs mainly contribute
to the shear strength, separation of characteristic values of the web
yleld stress from those of the flange yield stress may be significant.
However, it is not practical to use different characteristic values of
the yield stress for different thickness of the flange or the web within
the range specified by the ASTM Standards (28).

Compared with Fysm = l.OSFy and C.0.V. = 0.10, which were used in
Galambos' work, Table 5 yields Fysm = 0.98FY and C.0.V. = 0,12 for the
flange. From this result, it is concluded, for the convenience of prac-
tical use that Fysm E FY and the C.0.V. = 0.12 represent true character-
istic values of Fys of the flange with the significance level of 1.0%.

For the web of plate girders, the mean static yield stress is
obtained from the table to be l.OQFY and the C.0.V. = 0.21 rather than
Fysm = 1.11-‘Y and the C.0.V. = 0.11 used in Galambos' work (24). Again,
for the convenience of practical use, Fysm = 1.11"y and the C.0.V. = 0,21
are used in this study as characteristic values of the web static yield

stress.
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Table 5

Values of Measured Static Yield Stress

Reference Location Specified Measured Mean Fysf No. of
Source on Section Exjksi) Mean Fyg (ksi) Spec. Fy, C.0.V. Samples

11

40,4

34

42

14

24k

24%

24%

24%

Note:

Flange 40.0 35.2
Web 40,0 371
7 Flange 36.0 34.6
Web 36.0 49.8
Flange 100.0 104.9
Web 36.0 37.6
Flange** 36.0 28.5
Web** 36.0 36.5
Flange*#* 100.0 106.6
Web** 100.Q 109.1
Flange**
sl Bab 55.0 54.9
Flange** 36.50,65
Box** 36.0 38.1
Flange 50.0 54.2
Flange 33.0 33.0
Web 33.0 34.5
* are the data used in Galambos' work

0.130
0.073

0.037
0.229

0.001
0,098

0.090

0,070
Q,080

0.120
0.130

22
14

13
15

14
14

24

16

80
13

34
36

**% are the data not used in determining characteristic values of

the static yield stress
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The differences between these characteristic values and those in
Galambos' work (24) arise mainly from the differences of dispersion of
collected data; that is, the data used in Galambos' work have smaller
dispersion than those used in this research.

In Table 6 the selected characteristic values of mechanical prop-
erties of structural steel for this study are summarized along with the
values used in the Galambos research. While Galambos' values were ad-
justed from statistical values by professional judgement, the values
selected in this research have been obtained by utilizing statistical
methods with some modification for the convenience of practical use.
Although it is recognizied that professional judgement can not be entirely
eliminated in determining characteristic values of any random variable,
particularly in the case of limited data available, it is desireable to
use statistical values since that is consistent with the concept of the

probabilistic design format.

3.4 Variations in Cross-Sectional Properties

Very little statistical data for the cross-sectional properties of
welded shapes are available in the literature, while some information
regarding rolled shapes has been reported. Tomonaga (53) reported that
the C.0.V.s of height and width of Japanese heavy rolled H-shapes were
0.002. It could be expected that the welded shape has much larger
dimensional variation than the rolled shaped. Variations of cross-
sectional properties of welded shapes may come from dimensional varia-
tions of component plates and inaccuracy of welding. Dimensional vari-
ations of steel plates are summarized in Table 7 from three sources.

The most important cross-sectional properties affecting the strength

of plate girders are moment of inertia, section modulus and cross-




Summary of Characteristic Material Properties

Property

Modulus of elasticity (E)

Shear elastic modulus (G)

Poisson's ratio (v)

Flange yield stress (FYs

Web yield stress (F
ys

¢

.

Table 6

Galambos'
Mean

29,000 ksi
11,200 ksi
0.30
l.OSFy

1.10F
y

Tahle 7

Value

C.0.V

0.06

0.06

0.03

Q.10

0,11

3l

Selected Value

Mean

C.0.V.,

30,000 ksi 0.05

11,550 ksi 0.06

0.30
1.0F
4

1.1F
y

Dimensional Variations of Steel Plates

0.03
0.12

0.21

Reference Source Dimension Mean Measured/Nominal C.0,V, No., of Samples
29 Thickness 0.998 0.019 33
42 Width 1.006 0.005 4
Thickness 1.016 0,019 6
34 Width 1.002 0.004 14
Thickness 1.050 0,007 14
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3 and Lz. re-

sectional area. These properties have the units of LG, L
spectively. If inaccuracy of welding were neglected for a while, the
largest C.0.V. of cross-sectional properties, which correspond to moment
of inertia, would be estimated at 0.022 from the above data. However,
there aré many other dimensional factors causing variation of the scrength'
of plate girders, such as the squareness of the section and the flatness
of component plates. These factors may be greatly affected by inaccuracy
of welding.

The other comparative measurement would be dimensional variations
of concrete beams. Investigations (20,39) on dimensional variations of
concrete beams show that the C.0.V.s of concrete cover over the
reinforcing steel has a value between 0.07 and 0.45. The C.0.V. of the
ratio of furnished to calculated area of reinforcing steel in concrete
beams was between 0.03 and 0.07. Ravindra (44) used the C.0.V. = 0.08
for the cross-sectional variation of concrete beams.

The C.0.V. of cross-sectional properties of welded shapes will
likely have a value between 0.022, which represents the dimensional vari-
ations of the component plates of welded shapes, and 0.08, which repre-
sents cross-sectional variations of concrete beams.

From this comparative information, it is concluded that the C.0.V. =
0.05 which was adopted by Galambos under the assumption of well-controlled
fabrication, is a reasonable value reflecting the cross-sectional varia-
tion of plate girders. Differences between furnished mean cross-section-
al properties and nominal specified cross-sectional properties are
assumed to be negligible,

Strength of plate girders, of course, is a function of various

cross-sectional properties such as flange area, slendernmess ratio,
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section modulus and moment of inertla, all of which may have different
C.0.V.s. However, due to the lack of information on cross-sectional
variacions, separate values of the C.0.V. corresponding to each cross-
sectional property are not obtained. A C.0.V. = 0.05 will be used as
the representative value for all cross-sectional properties which may

affect the strength of plate girders.
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Chapter 4

PLATE GIRDERS IN BENDING

4.1 Flexural Capacity of Plate CGirders

The design of steel plate girders was first based on the theoretical
web buckling strength which 1is Analogous to column buckling theory. How-
ever, it has been shown through research that there is no direct rela-
tionship between the elastic web buckling strength and the ultimate
strength of plate girders. This is due to the so-called "postbuckling
strength”. Significant work in this field was carried out by Basler and
his associates at Lehigh University. The current American Institute of
Steel Construction (AISC) Specifications (50) for transversely stiffened
plate girders are based on the works of Basler and Thiirlimann (8,9,10).
Following the work of Basler and Thlirlimann, more exact models (29,42,
45) have been proposed. Although other models would be more exact,
particularly for analysis of hybrid girders and unsymmetrical girders,
the Basler-Thiirlimann model, with a little support from other models
when it is necessary, is used in this study to predict the ultimate
bending strength of plate girders. The choice of the Basler-Thiirlimann
model has been made because designers in the United States are most
familiar with the model. Whether or not one is more exact than the other,
the selection of a model does not make any significant difference in the
probabilistic design format because the different predicted values are
adjusted by the resistance factor.

In general, plate girders are categorized into regular girders and
hybrid girders, where the former has the same grade of steel in the web

as in the flange and the latter has different grades of steel in the two
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components. These girders sometimes have unequal top and bottom flange
and are called unsymmetrical plate girders.

Although the Basler-Thiirlimann model does not distinguish hybrid
girders_and unsymmetrical girders from regular girders, the model ex-
plains in a clear manner the general behavior of plate girders. There~
fore, the Basler-Thiirlimann model based on regular girders is first
introduced, with discussion on unsymmetrical girders and hybrid girders
following as special cases of regular girders.

4.1.1 General equation for predicting ultimate bending strength (10,
2

7,33,38)

When a plate girder is subject to bending, the critical stress, F

rl
of the web is, from the elastic buckling theory,

2
£ = kv E (4.1)

€T 1201 - vO)(h/t)

in which k is the plate buckling coefficient, E is the modulus of elas-
ticity, v is Poisson's ratio, h is depth of the web, and t is the web

thickness., The ratio (h/t) is commonly called the slenderness ratio of
the web. For preventing the web from buckling before yielding, the web

slenderness ratio should not exceed (_h/c)0 given by

3
(h/t) = /———“—’1—52— (4.2)
_ 120 ~ v)F_

where Fy is the yileld stress of the plate girder.

When the slenderness ratio exceeds (_h/t)o of Eq. (4.2), the web
starts to buckle and postbuckling behavior occurs. Provided no lateral
buckling of the flange occurs, the top and bottom edges of the girder
remain straight and extreme-fiber stress continues to increase. If the

web were to remain flat, proportionate increases in stress would develop
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in the remainder of the web. HBecause the web has buckled, however, the
variation in stress will be nonlinear in the compression zone as shown

in Figure 5a. During the increcase in moment beyond that corresponding

to the critical stress of the web, the neutral axis moves down to balance
the mumeﬁt. The maximum moment is reached at an extreme-~fiber stress of
Fy. Since the variation in stress in the postbuckling state is not
known, Basler and Thiirlimann assumed a linear distribution in stress as
shown in Figure 5b over an effective depth of the web, he' as shown in
Figure 5c. The effective depth of the web, he' was assumed to be 30
times the web thickness for girders with the web slenderness ratio

(h/t)max given by

/t) / e’ S (4.3)
(h/t - - .
nax 24(1 - UZ)(FH +EOF Ag

in which Frt is the residual stress in the tension flange, A, is the web

area, and Af is the flange area. The term (h!t)max defines the maximum
web slenderness ratio which assures no vertical buckling of the compres-
sion flange and flange stress of Fy' Linear variation of the effective
depth of the web, he’ was assumed between (h/t}0 and (h/t)max. Thus,
with known he and Aw/Af' the ultimate bending stremgth, M , of plate
girders can be expressed in terms of Af. Fy, and h, by calculating a
reduced section modulus. The variation of Mulﬂy with various values of
(h/t) and Aulaf is shown in Figure 6 where (hit)p is the slenderness
ratio for development of the plastic stress distribution. Since a curve
passing through points A, O, and B in Figure 6 is a straight line, the
following equation of the ultimate bending moment was obtained (10):

A

M /M =1 - 0.0005~[h/t - (h/t) ] . (4,4)
uy Af o
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Since a rapid increase of the ultimate strength is doubtful for (h/t) <
(h}t)o. Eq. (4.4) was recommended to apply to plate girders with the web
slenderness ratio between (h/c)o and (h/t)max.

eq (4.4) was derived with the assumption of a stable compression
flange. However, the yield moment, My’ in Eq. (4.4) may not be reached
due to instability of the compression flange. Such instability may come
from lateral buckling, local buckling, or vertical buckling of the com-
pression flange. Thus, Basler and Thilrlimann suggested substitution of
Hcr = Fcr-sx for MY in Eq. (4.4), where Fcr is the smallest critical
stress being determined by lateral, local or vertical buckling of the
compression flange.

After the Basler-Thiirlimann formula was proposed, Cooper (l4) modi-
fied Eq. (4.4) from several test results; that is, the Basler-Thilrlimann
formula could be used for plate girders with (h/t) > (h!t)max by replac-

ing (_h/l:)o in Eq. (4.4) by (_h/t)r given by

2
(/e = / <k (&.5)
12(1 = v )Fcr

in which Fcr is the lower critical stress due to either lateral buckling

or local buckling of the compression flange. Eq. (4.5) means that ver-
tical buckling of the compression flange due to failure of the web can

be ignored. Therefore, by incorporating the influence of local or lat-
eral buckling of the compression flange in Eq. (4.4), the ultimate bend-

ing strength of plate girders can be expressed by

A 2
M =F -5 [1 -o.ooosf(%-/ “"’j )1 . (4.6)
" =% R £ 22( - P __

The bending buckling coefficient k in Eq. (4.6) is determined by

the degree of flange restraint provided by the web. If no flange
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restraint 1s assumed, the theoretical value of k is 23.9, and 1if full
flange restraint is assumed, k is equal to 41.8. In this study, k = 35.9
for the bending buckling coefficient is used as implied in the AISC

Specification. The remaining factor, Fcr’ which is related to instability

of the compression flange, is discussed in the following.

4.1.1.1 Lateral buckling of the compression flange

Figure 7 shows a plate girder in pure bending, simply supported,
held against tipping at both ends, and laterally unbraced between the
ends. The top flange of the girder is under uniform compression and
would buckle in its weak direction, downward, if the web would not pre-
vent this. However, if the force in the compression flange is large
enough, it will tend to buckle in the only direction in which it is free
to move, horizontally. The bottom flange, being in tension, tends to
remain straight. Since the two flanges and the web actually form a
rigid unit, buckling can take place only in the manner shown in Figure
7b. This phenomenon is termed "lateral buckling of the compression
flange". In this case, the critical moment, Mcr' at the mid-span is

expressed by (27)

2 4
M % =Xgrcr+tErEC (4.7a)
cr £2 y l& y w

in which £ is the length of the span, IY is the moment of inertia about
y-axis, J is the torsional constant, and Cw is the warping constant. A
more general formulation, including restraints at the ends corresponding

to bending about y-axis, is given by (27)

2 4
M % = c2(——EI GJ + ——£I EC_] (4.7b)
‘: 41 il (K2)




er

(a)

=

(b)

Figure 7. Lateral buckling of compression flange
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in which Cb is a coefficient which depends on the variation in moment
along the span, and K is an effective-length coefficient which depends
on the condition of restraints at the supports. In the bracket of the
right-hand side of Eq. (4.7b), the first term represents the St. Venant
stiffness and the second term represents the warping stiffness. How-
ever, the St. Venant stiffness is negligible for plate girders, which
usually have wide flanges, because the torsional constant is much smaller
than the warping constant. Thus, the critical stress, Fcr' due to later-

al buckling can be approximated as (27)

F =¢C 1’E (4.8)
er b K, 2 e
G;—)
T
in which

2 Iv/2
r = X (4.9)
T Ag + Awla

Eq. (4.9) applies to the compression flange in the elastic range.
Basler and Thiirlimann (10) recommended a transition curve from Fcr at
- = =
L=20to Fcr Fy/Z at L rTV(ZECb)/Fy, thus,

Ko, 2
(;—) F

P
P, =T [l - ——]
" y 4 EC,

(4.10)

Although there have been several different suggestions (13,52) for K
and Cb in Eqs. (4.8) and (4.10), the provisions in the AISC Specifica-
tion will be used in this research to determine these values because the
provisions give a good approximation (38) and have been widely used in

the United States.

According to the AISC Specification (50), Cb is determined by

2
e = + + b < a.
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in which Ml is the smaller and HZ the larger bending moment at the ends
of the unbraced length, and M1/M2 is positive for reversed-curvature

bending and negative for single-curvature bending. If the bending mo~
ment at any point within the span is larger than that at both ends, Cb

is taken as unity. The value of'K is taken as 1.0 when both ends are

hinged and 0.5 when both ends are fixed.

4.1.1.2 Local buckling of the compression flange

A slender plate under uniform compression may develop a wave form
as shown in Figure 4.4a. The critical stress for this rectangular plate

is given by (27)

szﬁ
2

F -
1200 - v )(%)

cT

5 (4.12)

in which k is the plate buckling coefficient, and b and w are the width
and thickness of the plate, respectively.

This same phenomenon can occur in the compression flange of plate
girders. This is called "local buckling of the compression flange".

For plate girders, b and w in Eq. (4.12) denote half of the flange width
and the flange thickness, respectively.

The value of k is approximately determined by edge conditions of
the plate as shown in Figure 8b (13). Basler and Thiirlimann (10) assumed
no restraint on the flange from the web and recommended the use of k =
0.425,

Eq. (4.12) 1is applicable as long as the flange is in the elastic
range. In the inelastic range, Basler and Thilrlimann (10) suggested the

transition curve such that for

;
b/w < 0,45 /—EE Ez ,
120 - vhE,
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0.45 _k“....E..i..._“ b/\d‘: _..._..15.1_5_:5_ :
12(1 = v )Fy 6(1 - v )FY

L

and for

2
2(1 - vO)F
N b y 1.36
E Fy[l - 0.53(;/ = - 0.45) 1 .« (4.14)

kn“E

4.1.2 Hybrid girders

The equations discussed in the previous section are for regular
girders. Since the web of a plate girder contributes only a small part
of the bending resistance, and its shear resistance depends on the web
area and its slenderness ratio, a plate girder may be designed such that
the web is of a lower-grade steel than the flange. This kind of plate
girders is called the hybrid girder.

The general bending behavior (16) of hybrid girders is shown in
Figure 9 with the corresponding variation of stress distribution. In
the figure, linearity between load and deflection holds only up to the
point where the web immediately adjacent to the flange begins to yield
(point A). However, the curvature of the segment AB is so small that
OAB is practically straight. After yielding of the flange (point B),
the increasing rate of moment falls off rapidly. Thus, the bending
behavior of the hybrid girders is virtually the same as that of homo-
geneous or regular girders, though the ultimate bending strength of
regular girders is higher than that of hybrid girders. Therefore, the
ultimate bending strength of hybrid girders can be determined by either

the flange-yield moment or the moment determined by Eq. (4.6), whichever
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Figure 9. Theoretical load deflection curve for hybrid girder (16)
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is smaller. A Joint ASCE-AASHO Committee (16) suggested the following

equation for the flange-yleld moment, Myf.

12 + p(3s - 32)]
12 + 2p

Myf = My( (4.,15)

in which s is the ratio of the web yleld stress to the flange yield
stress, and p is the ratio of the web cross-sectional area to the flange
cross-sectional area. If instability of the flange is incorporated into
Eq. (4.15), the ultimate bending strength of hybrid girders can be deter-

mined by either

/- kﬂZE

A
h
M =F .S [1-0.00052 - )] (4.16)
u  er X Agt /12(1 - vO)Fer
or
M =F .8 [12 + p(35 - 52)] (& 16)
u er x '

12 + 2p

whichever is smaller. Lew, et al. (35), showed that this approach agreed
well with test results, and the AISC Specification (50) has adopted this
model. In Egs. (4.6) and (4.16), Fcr is determined by either Eqs. (4.8)
or (4.13) in the elastic range, whichever is smaller. In the inelastic
range, Eqs. (4.10), (4.13) or (4.14) are used for Fcr in the above equa-

tions.

4.1.3 Unsymmetrical girders

Unsymmetrical plate girders have cross-sections whose centroidal
axes do not coincide with the horizontal centerline of the web plate.
Although more exact solutions (29,42,45) for the ultimate bending
strength of unsymmetrical girders exist, present design specifications
do not take into consideration the behavior of unsymmetrical girders.

Test results by Ostapenko, et al (41,48) showed that the ultimate
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bending strength of unsymmetrical girders was 6X-9% above that predicted
by the equations for symmetrical girders, with modification of the neutral
axis. Since this variation from the predicted values 1s even smaller

than the variation of ultimate bending strength of regular girders, no
particular consideration is given for unsymmetrical girders in this study, .
except the adjustment of the neutral axis according to geometric shapes

of the cross-section.

4.2 Variationof the Ultimate Bending Strength

The theoretical ultimate bending strength of plate girders can be
simply expressed by

Mu = Fcr-Sx-RPG (4.17)

in which Fcr is the smallest critical stress corresponding to instability
of the compression flange, Sx is the section modulus, and RPG is a reduc-
tion factor. Variations of measured ultimate bending strength may come
from variations of the three factors in Eq. (4.17) and idealization or
simplification of bending behavior of the plate girder in the theoretical
model.

To determine the resistance factor in Eq. (2.23), data on variations
associated with these factors are necessary, This is discussed in the

following sections.

4.2.1 Variation in stress due to variation of material properties

If instability of the compression flange exists, the critical stress,
Fcr‘ is, as shown in Egqs. (4.9) and (4.13), a function of the modulus of
elasticity, E, Poisson's ratio, v, and a cross-sectional property, (h/t)

or (b/w). Otherwise, it is a function of the flange yield stress only.

Variation of critical stress due to variations of material properties E
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and v can be determined from Eqs. (2.6) and (2.7) by substituting E =
30,000 ksi, the C.0.V. of E = 0,05, v = 0.3, and the C.0.V. of v = 0,03
into Eqs. (4.9) and (4.12). The result, the C.0.V. of Fcr for bending
due to instablity of the compression flange, is equal to 0.06. In the
case thaf the critical stress is,the same as the flange yield stress,

the C.0.V. of Fcr is equal to 0,12, Since most plate girders in practice
are designed to prevent instability of the compression flange, the

C.0.V. = 0.12 is selected as a characteristic value representing stress

variation of bending due to variation of material properties.

4.2.2 Variation of cross-sectional properties

Cross-sectional properties affecting the ultimate bending strength
of plate girders are the section modulus, Sx’ and the reduction factor,
RPG' which is a function of the web slenderness ratio. However, as
discussed in Section 3.3, it 1is difficult to estimate the C.0.V. of every
cross-sectional property due to a lack of information. Thus, as pre-
viously shown, a C.0.V. = 0.05 will be used for variation of cross-

sectional properties.

4.2.3 Uncertainty in the theoretical model

By virtue of simplification or idealization of structural behavior,
theoretical models invariably have some amount of error in the predic-
tion of strengh of structural members. The error can be measured by
comparison of experiment ultimate bending strength with theoretical
values. A comparison of experimental bending strength with theoretical
ultimate bending strength is given in Table 8. For the theoretical
values, E = 30,000 ksi and v = 0.3 have been used with the measured

static yield stress.




Table 8

Comparison of Experimental and Theoretical Ultimate Bending Strength

(F(-r}
Reference Test h/t 8 Fya Flazé. ¥ RPG Mexmth
No. (1) (3) (4) “ys*?’ “ys () ()
Gl1-T1 (a) 185 24 555 1n3 35.4 ksi 1.00 0.5¢ 1.000 1.11
G2-T1 (a) 185 8 S5¢f 38.6 0.98 1.00 0.983 0.96
G2-T2 (a) 185 8 577 38.6 1.00 1.00 0.982 0,99
G3-T1 (a) 185 - 561 35,3 0.96 1.00 0,983 1.03
G3-T2 (a) 185 - 561 35.5 0.99 1.00 0.985 1.05
G4-T1 (a) 1388 8 522 37.6 0.98 1.00 0,911 1.00
G4-T2 (a) 388 8 522 37.6 1.00 1.00 0.921 1.03
G5-T1 (a) 388 - 509 302 0.97 1.00 0,912 1.04
G5-T2 (a) 388 - 509 i L 0.99 1.00 0,913 1.14
G-A 166.7 6.5 2300 3240kg/cm= 0.79 1.00 0.989 0.81
G-B 166.7 7.5 1960 3810 0.72 1.00 1.000 0.81
G-C 133.3 5.5 1520 7850 0.59 1.00 0.985 0.99
G-D 1333 9.9 1520 7850 0.71 1.00 0.962 1.03
G-E 1333 3.3 1680 7850 0.73 1.00 0.964 1.04
G-F 133.3 5.5 1680 7850 0.80 1.00 0.954 1.11
G-G* 133.3 5.5 1520 7850 0,59 1.00 0.953 1.01
B-1% 288 8 171 in3 116.4 1.00 1.00 0.89 0.948
B-2* 144 8 198 116.4 1.00 1.00 0.81 0.988
B-4* 288 8 171 110.4 1.00 1.00 0.89 0.951
B-5% 288 8 171 110.4 1.00 1.00 0.89 0.861
B-6%* 192 8 185 110.4 1.00 1.00 0.81 0.870
B-7%* 144 8 198 110.4 1.00 1.00 9.81 0.924
B-8% 144 8 198 110.4 1.00 1.00 0.81 0.933
UGL, 2%* 295 6.4 224 34,2 0.91 1.00 0.95 1.158
UG2, 3%* 295 6.4 224 36.7 0,91 1.00 0.95 0.912

*
**:
(a):
(1):
(2):
3):
4):
(5):
(6):
(7):
(8):

Hybrid girder
Unsymmetrical girder

Data used in Galambos' study

Web slenderness ratio

Flange slenderness ratio
Section modulus

Mean measured static yield stress of the flange
Critical stress due to lateral buckling/(4)
Critical stress due to local buckling/(4)

Reduction factor
Experimental/theoretical ultimate bending strength
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From Table 8, the mean value of Mefoch is estimated to be 1.0 and
the C.0.V. of Hex/Mth’ Qp, to be 0.10.
Therefore, by substituting the values of QH = 0.12, QF = 0.05 and

np = 0.10 into Eq. (2.22), the C.0.V. associated with the bending resis-

tance, QR. is equal to 0.16,

4.3 Bending Resistance Factor

4,3.1 Safety index B

The safety index B which is given by Eq. (2.13) can be obtained
through calibration with currently used specifications such that the
same degree of reliability is obtained in the new criterion as in the
existing design method for a member in a standard situation, In this
work, calibration is performed with the AISC Specification for a simply
supported, compact, adequately braced regular girder. A plate girder
is assumed to be designed according to Part 1 (elastic design) of the
AISC Specification (50).

If a plate girder is the standard situation described above is load-
ed with uniformly distributed dead and live loads, the maximum moment on
the girder is expressed by

Mmax = CD-Dc + CL-LC'RLL (4,18)

in which CD and CL are influence coefficients of dead and live loads,

respectively, Dc and Lc are, respectively, dead and live load intensi-
ties defined by the code (6), and RLL is a live load reduction factor
which is, according to ANSI A.58.1-1980 Draft, given by

R, = (0.25 + =) for L < 100 psf and A_ > 400 sq. ft. (4.19)
c

/AL

L

in which AI is the influence area which is twice the tributary area for

a beam-type member.
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According to Part 1 of the AISC Specification, the elastic section

modulus Sx is determined by

M +
max " CDDc CLLCRLL

- (4.20)
b Rpg b Reg

in which Fb is the allowable bending stress defined by the specification

x F

and RPG is a stress reduction factor. For the standard case, Fb is given

by

Fb = 0.66FY . (4.21)

Since the critical stress is the same as the yield stress for the

given standard situation, the mean experimental ultimate bending strength,

Mm' of plate girders may be expressed by

Mm . Fysm.sx-RPG.(Mex/Mth)m (4.22)
in which F is the mean static yield stress and (M__/M . ) 1is the mean
ysm ex th'm
ratio of experimental to theoretical ultimate bending strength. Fysm =
1.0F and (M /M ) = 1.0 have been estimated in Section 3.3 and Section
y ex th'm

4.2, respectively.
Substitution of Eqs. (4.20) and (4.21) into Eq. (4.22), and simpli-
fication yields
M= 1.515(CD'DC + CL'Lc‘RLL) ‘ (4.23)
The mean applied load, moment in this case, Qm, is given by
= . - . 4,24
Q, = CpD, +C L, (4.24)
in which Dm and Lm are the mean applied dead and live load intensities,
respectively. The mean applied dead load intensity, Dm' is assumed to

be the same as the code specified load Dc' The applied live load inten-

sity, Lm' is, according to the Ellingwood-Culver equation,

un
ro

0

L = 18.7 + (3.3)
m

A

A
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The C.0.V. of applied loads, nq, which is independent from resistance

capacity, and the C.0.V. of bending resistance, nR, have been estimated
in previous sections to be 0.13 and 0.16, respectively. CD and CL are
the same for the uniformly distributed dead and live loads.

The determination of 8 is accomplished by knowing Hm. Qm' QR' and
ﬂq. By taking l..c = 50 psf for office buildings, variation of B with
respect to tributary area, AT' and code specified dead load, Dc, is
shown in Figure 10. The figure shows that the value of 8 approaches 2.0
with an increase of the code specified dead load and the tributary area.

Therefore, 8 = 2.0 is selected as a safety index for bending resistance.

4.3.2 Resistance factor ¢p

The resistance factor for bending is determined by

R
m

¢m . E;exp(-GBQR) (2.20)

in which Rm is the mean experimental ultimate bending strength, Mm; Rn
is the theoretical ultimate bending strength, Mu: and o is a lineariza-
tion factor which is determined by Eq. (2.17). Thus, from ﬂn = 0,16 and
RQ = 0,13, a = 0.70 is obtained.

The nominal ultimate bending strength for plate girders in the

standard situation is given by
Hn = Fy'sx.RPG (4.26)
and the mean measured ultimate bending strength can be expressed as

Mm = Fysm-sx.RPG.(Hex/ch)m : (4.22)

Since ¥ /F =1.0and M /M .) = 1.0 from Section 3.3 and Section
ysm Yy ex th'm
4.2, M /M becomes unity.
m n
Therefore, by substituting HmIMn =1.0, a =0,70, 8 = 2,0 and nR =

0.16 into Eq. (2.20), the resistance factor ¢m==0.80 is obtained for bending.
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Compared with a value of ¢m = 0,86 presented in Galambos' work (24),
¢m = 0,80 is relatively small, which means this study has selected a
more conservative value for the bending resistance. This difference is,
as shown in Table 9, due to differences of most factors used in the de~
termination of ¢m' though almost the same equations have been used in
Calambos' work and in this work.

In general, the sampled data in the works of Galambos (24,25,26)
have smaller variations than those used in this research, which resulted
in the difference in the resistance factors. Furthermore, a = 0.55 used
in Galambos' work is unreasonably small. In the range of 1/3 < QQ/nR <
3, a = 0.75 gives a good approximation with less than 6% error (36). The
value of a used in his study could not be far beyond this range because

he used the McGuire-Cornell live load model which gives almost the same

distribution of live load as that used in this study.




Parameter
fl
R
™
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P
fl
Q
a
a
-~
M /M
m n
@
m

Table 9

Summary of Results -- Bending Resistance Factor

Galambos' Value (24)

0.14

0.05

0.08

Not shown

0.55

3.0

1.03

0.86
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Selected Value

0.

16

.80

0.12

0.05
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Chapter 5

PLATE GIRDER IN SHEAR

5.1 Ultimate Shear Strength

In evaluating the behavior of plate girders subject to shear, it is
assumed that the web is a plane and the material is elastic-plastic,
Such a web buckles at a stress that can be predicted by (38)

kﬂzE

F = (5.1)
ver 12(1 - vZ)(%)Z

in which Fvcr denotes the critical shear stress, k is the shear buckling
coefficient, and h and t are the depth and thickness of the web, respec-
tively. The behavior explained by Eq. (5.1) is called "beam action" of
plate girders. Subsequent to the web buckling, the stress distribution
in the web changes and considerable postbuckling strength may be developed
due to diagonal tension. This is called "tension field action" of plate
girders and is shown in Figure 11. However, the exact distribution of
the diagonal tension has been unknown (33).

Basler (9) was the first to successfully formulate a model for the
tension field action of plate girders. Since the Basler formula was pro-
posed, many variations of the postbuckling tension field have been deve-
loped (22,42,46). The main differences among them are in their explana-
tion of the tension field distribution. Johnston (33) showed a compari-
son of experimental to theoretical shear strength predicted by seven
different models, in which the Basler formula gave good agreement with
test results, even though it had a slightly larger variation than the
other models.

Since it is a good predictor, and since it is familiar to desigpers

in the United States mainly due to adoption in the AISC Specification,
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the Basler formula is used in this research for prediction of the ulti-

mate shear strength of plate girders.

5.1.1 General equation for predicting ultimate shear strength

The' tension field in a girder with transverse stiffeners 1s anchored
by the flanges and stiffeners, ;ﬁd the resulting lateral load on the flange
from the tension field causes the flange to bend inward. Therefore, the
nature of the tension field is influenced by the bending stiffness of the
flange.

Basler assumed that the flange was too flexible to support a lateral
loading from the tension field, so that the band shown in Figure 12
determines the shear strength.

A free body taken from Figure 12 is given in Figure 13. By taking

moments about point 0 in Figure 13, the shear strength, Vt, due to the
tension field action is predicted by
V_ = 2f .h-t-sin2¢ (5.2)
t 2t ) i

It is postulated that at ultimate shear, the angle ¢ in the figure will

be such as to maximize Vt. Thus,

dv
C
?ﬂf fc-t(hc052¢ asin24) 0 5.3)

from which
tan2¢ = 2 . (5.4)

Since tan® -‘% is obtained from Figure 12, 24 is equal to 6. Thus,
Equation (5.2) becomes
V=3 hetostng (5.5)
- 5 - '
In the plate girders with slender webs, neither the pure beam action

nor the pure tension field action occurs alone, but rather the sum of
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both. Therefore, the ultimate shear strength, Vu, is

Vu = Vcr + Vt (5.6)

in which vcr is the shear strength through beam action. Vcr is approxi-

mately given by

VYV _=TF ‘het . (5.7)

Substitution of Eqs. (5.5) and (5.7) into Eq. (5.6) gives the ultimate

shear strength as

1
Vu = Fv:r.h.t ;- Eft-h°t-sin8 (5.8)

It has been found that the following equation approximates the von
Mises yield criterion with less than 10% error (9)

ft FVCT:
e 1l - 5 (5.9)

vy
According to the von Mises yield criterion, the shear yield stress,

F (27), 1s
vy

F

FW--E ) (5.10)
S )

Thus, by substituting Eqs. (5.9) and (5.10) into Eq. (5.8), the ultimate

shear strength of plate girders is finally expressed as

F
v =a(r  +83p @ --Yer 1
u W ver 2 vy Fv / 7
Y 1+

] (5.11)

in which u = % and 1/¥1 + uz = ginf6. The ultimate shear stress Fvu is

obtained from Eq. (5.11) by dividing both sides by A that is,

F "
P =F +0% s g 2 T S (5.12)
vu ver 2 vy Pv ,/ =
y 1 +u”

The critical shear stress, Frr, given in Eq. (5.1) 1is valid only

in the elastic range. The actual failure stress of compression elements
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with a low slenderness ratio may exceed Fcr° Considering this effect,
Basler (9) assumed that inelastic buckling would occur if Fvcr exceeded

0.8F__, and took the inelastic shear stress, F , as
vy veri

WY R T
- 0°8Fvcr Fvy . (5.13)
He also assumed that if F exceeded F , the tension field action
veri vy

could be neglected. Thus, the ultimate shear strength in this range 1is

V =F

u vcri'Aw (5.14)

5.1.2 Shear buckling coefficient k

For the shear buckling of plate girders, the web panel is considered
as a plate. The shear buckling coefficient, k, of a plate is a function
of not only the boundary conditions along the edges but the aspect ratio
of the plate, % in Figure 12. By the nature of the flexible flange in
his model, Basler (9) assumed four pinned edges of the web panel. For
this case, the following equation (13) gives a good approximation to the
value of k as long as the aspect ratio, u = %. is greater than 1:

k=536 +290 | (5.15)

u
1f the aspect ratio is less than 1, the roles of two sides of the web
panel in preventing buckling are reversed, and the value of k is given
by

5'34 . (5.16)

5.2 Variation of Ultimate Shear Strength

The ultimate shear strength can be simply expressed by

V =F A (5.17)
u vu W
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in which Fvu is determined by either Eq. (5.12) or Eq. (5.13). Thus, the
ultimate shear stress is expressed in terms of stress and a dimensional
property. Since these two terms vary due to variations of material pro-
perties and of dimensional properties, the ultimate shear strength also
shows variation. Uncertainty associated with the theoretical model is
another factor causing variation in the ultimate shear strength,

To determine the shear resistance factor, ¢v' in Eq. (2.23), data
on variations in these factors should be known. They are discussed in

the following sections.

5.2.1 Variation of the ultimate shear stress

The ultimate shear stress of plate girders with slender webs 1is, as
shown in Egqs. (5.12) and (5.1), determined not only by material proper-
ties, E, v, and wa, but also by dimensional properties, % and %. Since
variation of dimensional properties is separately reflected in the C.0.V,
of cross-sectional properties, ﬁF' only the material properties are con-

sidered as random variables here. Thus, by utilizing Eqs. (2.6) and

(2.7), the mean ultimate shear stress and the variance are expressed by

2
kn“E

Fon = (- ———) S %Fysm S

221 + u2 121 - “m)(i) Yl + u2

and
3

Var(F_ ] = [1 - |Var[F ] + —-——Var[F ] (5.19)

. 4(1 + ud) ver' L + ud) i

in which the subscript m denotes the mean value, and Var[Fvcr] is given

by
knE a2 22]  (5.20)
Var(F_ ] = [ B —1?[ap + —S—a i :
12(1 - Vo )( -—) (1 - v )
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where QE and Qv are the C.0.V.s of the modulus of elasticity and Pois-
son's ratio, respectively. From the above equations, it is apparent that
the C.0.V. of the ultimate shear stress is affected by the web slender-
ness ratio and the aspect ratio of the web panel. Variations of the
C.0.V. of the ultimate shear stress, Qm’ with respect to the aspect ratio,
%, and the slenderness ratio, %, are shown in Figure 14, where Em B

30,000 ksi, Q. = 0,05, W 0.3, Qv = 0,03 and wa = 36 ksi have been

E
used (Table 6). Figure 14 shows that the C.0.V. of the shear stress
increases with an increase of the weh slenderness ratio and the aspect
ratio of the web panel. For the selection of QM associated with the
ultimate shear stress, it is assumed that a high slenderness webh is not
accompanied by a web with a high aspect ratifo. Thus, an aspect ratio

% = 1.5 and-% = 250 ~ 300 1s considered as a typical proportion for plate
girders. From this assumption, QM = (0,25 1is selected as the C.0,V, of

the ultimate shear stress.

5.2.2 Uncertainty of theoretical model

The theoretical formula, which is given by Eq. (5.11) or Eq. (5.14),
for predicting the ultimate shear strength inevitably deviates from
actual performance due to idealization or simplification in the model,
The average error of theoretical models can be measured by comparing the
experimental and theoretical ultimate shear strength. Tahle 10 gives
summarized results of comparisons between experimental values and theo-
retical values of the ultimate shear strength of plate girders. Mea-
sured static yield stresses of the web have been used for the theoreti-
cal shear strength. From the data in Table 10, (vevath)m = 1,08 and
the C.0.V., Qp = 0,12 are obtained. Johnston (33) concluded, from data

including only regular girders, that the Basler formula had {Vevath)m =
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Reference

Source

(11)

(41)

(35)

(43)

(22)

(22)

Note:

s

(a):

(1):
(2):
(3):
(4):
(5):
(6):

Table 10

Comparison of Experimental and Theoretical
Ultimate Shear Strength

Test
Number

a h
h (1) t (2)

Foow 3 Fop () A, (5) ‘ex

ySw
(ksi) (ksi)

(sq.in.)vth

64

G6-T1 (a) 1.50
G6-T2 (a) 0.75
G6-T3 (a) 0.50
G7-T1 (a) 1.00
G7-T2 (a) 1.00

UG 1.1 * 0.80
UG 2.1% 1.20
UG 3.1% 1.60
S—-1%% 0.83
S-2%% 0.83
F10-1 1.50
F10-5 1.20
Gl-1 3.00
Gl-2 1.50
G2-1 3.00
G2-2 1.50

H1-T1 (a) 3.00
H1-T1 (a) 1.50

259
259
259
255
255

295
295
295

191
191

195
195

182
182
144
144

127
127

Unsymmetrical girders

Hybrid girders

Data used in Galambos' study.

36.7 2.87
36.7 5.45
30.7 102
36.7 3,88
36.7 3.88
43.4 3.83
43.4 252
43.4 2.14
40.8 8.73
40.8 8.73

P | 5.06
38.7 5.77
70.4 4.71
70.4 5.80
70.4 733
70.4 9.27

108.1 9.68
108.1 11,92

6.
6.

12,
12,

12.
12,
8
9.

19.
19,

80
80

50
50

30
30
70
70

65
65

1.21
1.02
1.34
1.17

Some data used for shear

analysis in his study cases in this studyare categorized
as the combined shear and bending. ;

The aspect ratio of the web panel
The web slenderness ratio

Measured static yield stress of the web

Critical stress of the web

Area of the web

Experimental/theoretical ultimate shear strength
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1.05 and the C.0.V. = 0,13. Galambos had lower values, with (vexlvth) =
1.03 and the C.0.V. = 0.11 from data taken from two sources. Compared
with the data used in those two studies, relatively representative data,
have been collected in Table 10. Thus, (vex/vth) = 1,08 and Qp = 0,12

are taken as appropriate values,

5.3 Shear Resistance Factor

5.3.1 Safety index B

To determine the safety index 8 given in Eq. (2.13) for the shear
strength, values of the ratio of the mean measured ultimate shear strength
to the mean applied shear force, Vum/Qm. and the C.0.,V.s of shear resis-
tance and applied shear force, QR and QQ are required.

QQ = 0.13 has been estimated in Section 3.2, and from the values
of RM = 0,25, QP = (0,12 and QF = 0.25, the C.0.V, of shear resistance,
QR’ is found to be 0.28. Thus, by using Eq. (2.17), the linearization
factor, a = 0,75 is determined.

The ratio of Vum to Qm is obtained through calibration with the
AISC Specification, Part 1.

A simply supported plate girder under uniformly distributed dead

and live loads 1s subjected to a maximum shear force given by

vmax a CD-Dc - CL'Lc'RLL (5.21)

in which CD and CL are influence factors of dead and live loads, respec-
tively, Dc and LC are the code specified dead and live loads intensities,
and RLL is a live load reduction factor which is given by Eq. (4.19).

According to the AISC Specification, the required web area, Aw. to
resist the applied shear force 1a

A = MAX Ep.nc i CL‘LC.RLL

W FV I.-'\"r

(5.22)
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where Fv is an allowable shear stress which is approximately equal to
Fvu
FV -17-6—5 (5.23)

in which Fvu is the ultimate shear stress given in Eq. (5.12).

The mean measured ultimate shear strength, Vum, can be expressed by

vum = Fvum'Aw-(vevath)m . (5.24)

Since Fvum/Fvu is approximately equal to Fyswm/wa which has been pre-
viously estimated to be 1.10, substitution of Eqs. (5.22) and (5.23) into

Eq. (5.24) gives the mean ultimate shear strength as

Vum = 1.96(CD-DC + CL-LC'RLL) . (5.25)

The mean applied shear force can be expressed by

Qm = CD.Dm + CL.Lm (5.26)

in which Dm is the mean applied dead load that is assumed to be equal to
the code specified dead load, Dc’ and Lm the mean applied live load that
is determined by Eq. (3.3).

By substituting all known values discussed above into Eq. (2.13),
the value of the shear safety index 8 can be determined. The variation
of B with respect to tributary area AT and code specified dead load Dc
are shown in Figure 15. The figure shows that the value of B approaches
2.2 with increasing AT. Therefore, B8 = 2.2 is taken as the shear safety

index.

5.3.2 Shear resistance factor ¢y

To determine the shear resistance factor, ¢v' given in Eq. (2.20),

the ratio of the mean experimental shear strength to nominal ultimate

shear strength, V /V should be known,
um’ n
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The mean experimental ultimate shear strength is expressed by

vum = Fvum'Aw'(vex/vth)m (5.24)

and the nominal ultimate shear strength is given by

Vn = Fvu-Aw . (5.27)

By subtituting ¥ /F_ A F JE. . il X, & IV = 1,08, B = 2.2 and
vum' ~vu yw — ex

— " sywm

QR = 0.28 into the corresponding equations, the shear resistance factor,

av, is determined to be 0.75.

th)m

Compared with § ™ 0.86 in the work of Galambos (24), ¢v = 0.75
obtained here is quite small, which means it is much more conservative.
This is due, as shown in Table 11, to a large difference in the C.0.V. of
shear stress between the Galambos work and in this work. Galambos ignored
the influence of the web slenderness ratio and the web aspect ratio on
the C.0.V. of the shear stress, and took account of stress variation due
to only variation of material properties. Galambos' value a = 0,55 is,

as discussed in Section 4.3, unreasonably small.
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Table 11
Summary of Results Related With Shear Resistance Factor
Parameter Galambos Value (24) Selected Value

0.16 0.28

N 0.05 0.05

not shown 0.13
1 099 0. 75
3.0 M

{‘exf\th)m 1,03 1,08

¢ 0.86 0.75

- aa N R B BN B TR TR B B B B B B B B e =
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Chapter 6

PLATE GIRDERS IN COMBINED SHEAR AND BENDING

6.1 Selection of Interaction Model

Behavior of plate girders subject to high shear and high moment may
be the least known area in analysis of the plate girder. Consequently,
no predominant analytical model explaining the interaction relation
exists.

As shown in Figure 16, there have been several different interaction
models proposed. The primary factors to describe the interaction rela-
tions are the shear strength and the hending strength, which are defined
differently in each model.

If shear and bending strengths of plate girders are plotted in the
ordinate and the abscissa, respectively, in the Cartesian coordinates,
the intersection of a interaction curve with the ordinate represents the
ultimate shear strength of plate girders with no applied hending moment,
and the intersection of an interaction curve with the ahscissa defines
the ultimate bending moment of plate girders with no applied shear forces,
For keeping consistency with previous work in this research, these two
ultimate strengths of plate girders should be defined by the same equa-
tions as given in Chapters 4 and 5,

Therefore, it is concluded that the LFD criteria in the American
Association of State Highway and Transportation Officials (AASHTO) Speci-
fication (Figure 16c) in which the ultimate bending strength reflects
instability of the compression flange, is proper as the interaction
model for this research, The AASHTO model, which i{s a modification of
Basler's interaction model (Figure l6c) was also used in Galambos'

study (24).




. 71
' v v
vu
' vuo - -
|
v o = - - —— -
' cr ? 1
:
.
P
l 1 1
I ]
M M b N M
' '{f .Tu h | .1f .!:T ‘1u M
(a) Hoglund (33) (b) Fujii (23)
i v
X v
[
i ! | |
! Ir-p-"""__ ‘_‘
l 0.6V e - -: 5
u ]
]
|
i |
'
|
1
l 0.75M M M M “v »
u u g5 M
i o i
o u
' (c) AASHTO (24) (d) Chern-Ostapenko (42)
X
I vy A
_L P e —— - ——
|
M
l M_
_‘J'
(e) Basler (8)
' Figure 16. Shear-moment interaction model




72

6.2 Interaction Equations

Assuming the shear in a plate girder to be carried only by the web,
shear resistance is maximum when the web has yielded uniformly, or when
it has a fully developed tension field, in the case of plate girders
with slender webs. This shear resistance is independent of the bending
moment in the web panel as long as the moment is less than the flange
yield moment, Mf. Mf 1s the moment which can he carried by the flange
alone when the stresses over the entire flange reach the yield point,
Any large moment than the flange moment must be resisted in part by the
web, which reduces the shear resistance of the weh, until the shear
capacity finally becomes zero. Therefore, the interaction envelope can
be described as shown in Figure l6e. In the figure, the yleld moment,
My’ is defined as the moment initiating yifelding at the centroid of the
compression flange and the plastic moment, MP, is the moment of a fully
ylelded cross-section. By approximating the distance hetween the two
flange centroids as the web depth, h, the three referenced moments of a

symmetrically proportioned girder can be expressed as

Hf = Fyf-h.af 5 (6.1)
1
My - Fyf-h-(Af + Eﬁw) ’ (6.2)
and
1
Mp - Fyf h (Af + ZAw) = (6,3)

The abscissa of points B and C in Figure l6e is a function of hufﬁf as

shown below:

X va-h-Af i ) %G
A, 1 + AUR:AE :
FVf.h.(Af + ?)

:‘IL{
]

-
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and
&w
Mp . Fyt‘h'(Af +-7r) ) 1 + AwléAf e
My Aw 1+ Aw/GAf : :

The curves resulting from Eqs. (6.4) and (6.5) are given in Figure 17 for
various combinations of Aw/Af'

Basler assumed Aw/Af = 2.0 as a representative proportion for plate
girders, and selected Mf!My = 0.75 and Mp/My = 1,125. However, since
development of any moment larger than My is doubtful, the portion of the
interaction curve to the right of M/My = 1.0 was disregarded. The curve
BDC in Figure 17 intersects the vertical line of M!MY = 1.0 at the
V/Vu --ﬁ% for all values of Awaf. Connecting points B and D, and using
M!My = 0.75 and V/Vu = 0.6 gives the following equation for the inter-

action region between points B and D in Figure 17

M A
T 1.375 - 0.625(6—) . (6.6)

u
However, the Basler interaction model does not take into account
the instability of the compression flange. Because of the instability
of the compression flange, the flange yield may not be developed. Thus,
the maximum moment which can be developed is defined by the ultimate
moment, Mu' which is expressed by Eq. (4.6) in pure bending cases. By
substituting this ultimate bending strength for My in Eq. (6.6), the

interaction equation becomes

M \'J
X - 1.375 - 0.625&;—) _ (6.7)
u u
or, in terms of stress,
fb £
F—w 1.375:» 0.525(—F—¥~) (6.8)
bu v
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in which fb and fv are, respectively, bending stress and shear stress
which are defined by

fb = M/Sx (6.9)
and

fb - VIAU ’ (6.10)

The ultimate bending stress, is equal to the ultimate bending

Fbu'
moment, Mu' given in Eq. (4.6) divided by the section modulus, Sx'

The above approach has been adopted by the AASHTO Specification.

6.3 Uncertainties in Girder Strength

Strength of plate girders in the interaction range would be expressed
by two terms; one is bending strength and the other is shear strength,
which are given as

M, = £ °§ (6.11)

and

y, = fv'A . (6.12)

The stress f. and fv are interrelated through Eq. (6.8). To distinguish

b

shear strength and bending strength in the interaction range from the
shear strength of plate girders subject to predominant shear force and

the bending strength of plate girders in pure bending, hereafter, Mi

and Vi are referred to as "interaction bending strength" and "interaction

shear strength", respectively.
The interaction shear strength and bending strength vary due to

variations of the stresses, f and fv' which are a function of ultimate

b
shear stress and yleld stress. Error associated with the interaction
equation is another factor causing variation of girder strength in the

interaction range. Uncertainties in cross-sectional properties, Aw’ and



¥

76

Sx' also are random variables in predicting girder strength. However,

the C.0.V. of cross-sectional properties, Q_, has been estimated to be

F’
0.05 for all cross-sectional properties, uncertainties associated with

only stresses and the interaction formula are considered as random vari-

ables in this section.

6.3.1 Variation of stress

The interaction equation given in Eq. (6.8) can be rearranged as

either
£
£, = B, (1.375 - 0.625;1L) (6.13)
vu
or
£y
£, = F (2.2 - 1.6;;:) (6.14)

in which Fbu and Fvu are the ultimate bending stress and shear stress,
respectively.

It is assumed, for simplieity, that fv in Eq. (6.13) is a constant
at a given loading condition as far as the interaction bending strength
is concerned. Similarly, fb in Eq. (6.14) 1is assumed to be a constant.

Then, fb and fv are each a function of two random variables F . and Fvu'

b
As shown in the previous chapters, the C.0.V. of Fbu is governed by the
C.0.V. of the flange static yield stress. The C.0.V.s of the static
vield stress of the flange and of the ultimate shear stress have been
estimated in Sections (4.2) and (5.2), to be 0.12 and 0.25, respectively.
By using Eqs. (2.5) and (2.6), the mean values and variances of Eb

and fv are obtained as:

£

v
£, = F (L.375 - 0.625.——) (6.15)
vum
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fv e fv v
Var[fb] = [Fbum(1.3?5 - 0.625;7-—0] Ql + I0.15625Fbum §———] 32 s (5.16)
vum vum
fb
fvm = Fvum(2‘2 - 1.6;———) 5 (6.17)
bum
and
£ .22 fy 2.2
Var[fv] = [Fvum(z'z ~ 1.65———)] Qz + [1.6Fvum 5 ] Ql . (6.18)
bum bum

In the above equations, Fbum is the mean ultimate bending stress of the

flange, Fvum is the mean ultimate shear stress, Ql is the C.0.V. of Fbu’

and R, is the C.0.V. of F .
2 vu

From Eqs. (6.15) and (6.16), be, the C.0.V. of £, , is obtained as

b'
fv o
(0.6255———) QE
Qg, = a2 + A (6.19)
b 1 L s
(1.375 - 0.6257——)
vum

and from Eqs. (6.17) and (6.18), va, the C.0.V. of fv' becomes

f

(1.6 i
2 ) Fbum) 1
Q¢ = g . (6.20)
v 2 fb 5
(2.2 - l.&F—-‘)
v bum

Since ﬂl = 0.12 and ﬂz = 0.25 have previously been established, be and
Q¢ , are, respectively, functions of fv/Fvum and fb;Fbum which are equi-
valent to V!Vu and H!Hu. respectively.

Therefore, ﬂfb and ﬁfv have different values for different loading

paths. Table 12 gives the values of ey and Q¢ corresponding to the

loading paths shown in Figure 18.




Figure 18.

Values of an

Loading
Path

A

and Q.
I

Table 12

Coordinate
Y,y
1.0 0.3
1.0 0.5
1.0 D S
0.9 0.8125
0.8 0.8750
0.7 0.9375
0.6 1.0
0.5 -0
0.3 1.0

Designation of loading path

.326
359
L4086
406

406

Corresponding to Loading Path

0.187

0.167
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6.3.2 Uncertainty in interaction formula

Applied shear force and bending moment on a plate girder are induced
by applied load P, so they can be expressed in terms of applied load P;
for instance, V = P/2 and M = P*x/2 for any particular cross-section
located at distance x from a support of a simply supported girder with
a concentrated load at the center of span. Therefore, the ratio of M/V
is independent of the applied load P, and characterizes the inclination
of the loading path in the interaction diagram if the location of a
particular cross-section, in a failed panel, is determined.

The interaction curve ABCD in Figure 19 is defined as the boundary
between points on the safe side and those which lead to failure. Be-
cause the vector length on the P/Pu axis may be interpreted as a load
intensity, the theoretical ultimate load, Pu' for any particular cross-
section subject to combined bending and shear is, by definition, the
intersection (point E) of this particular loading path with the curve
ABCD., Thus, once the loading path is determined, in other words once
the loading condition and concerned cross-section are determined, the
variation between theoretical and experimental girder strength in the

interaction range can be measured by comparing P and r. in Figure 19.

h

The choice of the cross-section for which the moment values and the
shear values are calculated is important because those values may vary
throughout the length of the plate girder. This choice is made by
following Basler's method (8); that is, the cross-section is chosen to
be in the panel where failure has occurred at a longitudinal distance

one half the web depth from the high-moment end, or at the middle of the

longitudinal panel when 1its length 1is less than its depth,




Figure

19.

Faflure

Load=-moment
diagram

and

load-shear relationships in interaction
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Results of a comparison between the theoretical ultimate load and
the experimental ultimate load in the interaction range are summarized
in Table 13 and plotted in Figure 20. The data in Table 13 includes
only regular girders and unsymmetrical girders. Hybrid girders may have
a different trend for the ratio of Pex/Pth’ but they have not been
examined due to lack of data in the literature.

The data presented in Figure 20 can be grouped into three regions;
these are the shear dominant region, the high shear-high moment region
and the moment dominant region. They are termed Region I, Region II
and Region III, respectively. However, Region III has not been examined
in this study due to lack of data.

The data shows that Region I has (Pex/Pth)ln = 0.98 and the C.0.V. =
0.11 while Region II has (Pex/Pth)m = 1.07 and the C.0.V. = 0.07. Since
the uncertainty in girder strength increases when loading path approaches
from A to B or from D to C in Figure 20, it may be expected that Region
I and IT will have the smaller mean values and the larger C.0.V.s than
those of predominant shear or pure bending. However, compared with
(vex/vth)m = 1.08 and the C.0.V. = 0.12 for predominant shear, and
(Hex/Mth)m = 1,0 and the C.0.V. = 0.13 for pure bending, the results
do not agree with the expectations. This may be due to insufficient
data used in the analysis. Since the girder strength in the interaction
range is a function of the ultimate shear strength and the ultimate
bending strength, it may be safe to select the smaller mean value and
the larger C.0.V. of the values of these two parameters. Therefore,
(Pex/Pth)m = 1,0 and the C.0.V. = 0.13 are taken as appropriate values

for the interaction range.



Table 13

Experiment vs Theoretical Strength of Plate Girders in Combined Shear and Bending

=
<
-

Reference Test a h sz Fcrf Fru Sxa ?§£ =X 325

Region Source No. h e (in") (ksi) (ksi) (in”) = s _u _th
E1-T4 1.0 131 19.10 30.3 20.43 1922 0.734 0.873 0.93

E2-T1 3.0 99 25.35 31.7 16.30 1480 1.007 0.914 1.15

E2-T2 1.5 99 25.35 31.7 18.92 1480 1.010 0.789 1.09

11 E4-T2 0.75 128 19.60 31.3 22.27 1292 1.027 0.728 1.08

ot E4-T3 0.5 128 19.60 31.3 27.78 1292 1.095 0.598 1.07
it G8-T3% 1.5 254 9.85 37.3 12.14 531 0.774 0.974 1.00
G8-T4 1.0 254 9.85 37.3 15.02 531 0.861 0.875 1.02

E UG3.2 1.6 295 4.39 32.6 12.68 224 1.003 0.767 1.08
| 42 48 Y63.3 1.6 295 4.39 32.6 12.68 224 0.990 0.759 1.06
g UG4.3 1.46 414 8.76 33.4 18.13 439 1.087 0.612 1.07

UG4. 4 1.77 269 8.72 33.1 9.95 464 0.925 0.806 1.04

43 F10.4 1.5 195 12.85 23.2 5.05 756 1.080 0.990 1.23

E1-T1* 3.0 131 19.10 30.3 13.20 1922 0.596 1.101 1.10

E1-T2% 1.5 131 19.10 30.3 17.39 1922 0.622 0.873 0.87

E1-T3 1.5 131 19.10 30.3 17.39 1922 0.272 0.954 0.95

1 E4-T1 1.5 128 19.60 31.3 17.19 1292 0.367 0.883 0.88

G8-T1* 3.0 254 9.85 37.3 7.80 531 0.565 1.106 1.11

Shear G9-T1 3.0 382 6.55 37.9 7.86 505 0.341 0.932 0.93
Domtnant G9-T2 1.5 382 6.55 37.9 13,03 505 0.231 0.879 0.88
G9-T3* 1.5 382 6.55 37.9 13.03 505 0.561 0.926 0.93

UG2.2 1.2 295 4.39 36.2 14.96 224 0.458 1.065 1.07

- UG4.1 1.77 414 5.70 3.1 17,62 439 0.414 0.813 0.81

42,48 UG4.2 1.14 414 5.70 33.7 21.04 876 0,543 0.99 0.99

UG4.5 0.83 269 8.72 33.9 14.18 871 0.518 1.053 1.05

UG4.6 1.77 269 8.72 33.1 9.95 871 0,243 1,138 1.14

Note: #*: Data used for shear analysis in Galambos' study. No test data for the interaction case were used
in Galambos' study.

(4"
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6.4 Resistance Factor ¢4 for Combined Shear and Bending

6.4.1 Safety index 8

The safety index B given by Eq. (2.13) may be rewritten, by trans-
lating the mean measured girder strength into the mean interaction bend-

ing strength and the mean interaction shear strength, as

In(V, /Q )
B i (6.21)

. MRy + T

and

- ln(uim,Qmm)

- /nm + 1,

8 (6.22)

in which va and Qmm are the mean shear force and the mean bending mo-

ment, respectively, which are induced from the applied load P, and QRV

and QRM are the C.0.V.s of the interaction shear resistance and the

interaction bending resistance, respectively. Since va and be are,

as shown in Table 12, different for each loading path, QRV and QRM also

have different values for each loading path. The values of QRV and QRH
corresponding to the loading paths shown in Figure 18 are given in

Table 14, where 2, = 0.05 and 1, = 0.13 have been used. However, the

F P

C.0.V. of the applied load, @, = 0.13, is unchanged since it is inde-

Q
pendent of the resistance of plate girders.

The ratio of (Viquvm) and (Mim/Mmm) is determined through calibra-
tion with Part 1 of the AISC Specification. For calibration, a simply
supported, adequately braced, two-span girder under uniformly distri-
buted dead and live load is assumed as a standard situation. This type

of girder is subjected to high shear and high bending at the intermedi-

ate support. Then, applied shear force and bending moment induced by




Table 14

Values of RRV and QRM Corresponding to Loading Path

Coordinate C.0.V, of Stress (a) C.0.V. of Resistance (b)
Loading

Saer, TV M/M %%, %y, Ty .
A 1.0 0.3 0.252 0.240 0,288 0,277
4 1.0 0.5 0.259 0.240 0.29 0.277
c 1.0 0.75 0.288 0.240 0.320 0.277
D 0.9 0.8125  0.304 0.211 0.334 0.253
E 0.8 0.8750  0.326 0.187 0.354 0.233
F 0.7 0.9375  0.359 0.167 0.385 0.217
G 0.6 1.0 0.406 0.152 0,429 0.206
H 0.5 1.0 0.406 0.142 0.429 0.199
1 0.3 1.0 0,406 0,126 0.429 0.188

Note: (a) Values from Table 12
/o2 + 02 + 22 = a2 + 0.05)2 + 0.13)2
(b) d‘!R = rf'.M + DF o u-P "f ( . 5} ( = | )
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the uniformly distributed loads can be expressed, for the cross-section
at the intermediate support, as
V = 0.625(D + L)*s-1 (6.23)

and

M= 0.125(D + L)-S'l2 (6.24)

in which D and L denote uniformly distributed dead and live load inten-
sities, and s and 1 represent girder spacing and length of girder span,
respectively.

According to the AISC Specification, plate girder webs shall be so
proportioned that the maximum bending stress, fb', due to the moment in
the plane of the girder web, shall not exceed the value determined by

£ 1
£,' = (0.825 - 0'37%3Fyf < 0.6F (6.25)
in which fv' is the computed average shear stress and Fv is equal to F
divided by a safety factor of 1,65 except the limit state where Fv =
O.QFy. It is assumed for calibration that the shear stress and bending
stress defined by the AISC Specification are equal to the stresses
defined by Eqs. (6.13) and (6.14) divided by 1.65.

The mean interaction shear strength, vim’ and the mean interaction

bending strength, Him' can be expressed by

V.. = fvm.Aw-(Pex/Pth) (6.26)

im m

and

Mim - fbm.sw'(Pex/Pth)m (6.27)

since {Pex/Pth)m = (V /Vth)Tu = (Mex/Mth)m in the interaction range.

ex
According to Part 1 of the AISC Specification, the required web
area and section modulus to resist the applied shear force and bending

moment are, respectively,
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0.65(b + L 'RL )*s-1
c c L
Aw - f ' (6-28}
v
and
0.125(0_ + LC'RLL)-Solz
Sx = F (6.29)
b

in which RLL is a live load reduction factor defined by Eq. (4.19).

Since it is assumed that fv = 1.65fv' and £, = l.65fb' and since

b

it has been estimated that (Pex/Pth)m = 1.0, fvm!fv = F /

F_ = 1.1,
yswm'  yw

and fbm/fb = F /Fyf = 1.0, substitution of A, and S, siven in Eq.

ysfm
(6.28) and Eq. (6.29) with these values into the corresponding terms of
Eqs. (6.26) and (6.27) yields

Vim = 1.13&(0c +* LC-RLL)'s-l (6.3)

and

2

M e G.ZOG(DC +* Lc-RLL)'s-l (6.31)

i
The mean applied shear force, va, and the mean applied bending
moment, Qmm, which are induced by the uniformly distributed dead and

live loads can be expressed by

;L 0.625(Dm + Lm)'s-l (6.32)

and

2

Qy = 0-125(, + L )*s-1 (6.33)

in which the mean live load intensity, Lm' is defined by Eq. (3.3) and
the mean dead load intensity, Dm, is assumed equal to the code specified

dead load intensity, Dc'

Therefore, the denominator in Eqs. (6.21) and (6.22) becomes,

respectively,
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vim
Q—v; = 1.815(Dc + LC.RLL)/(DC + Lm) (6.34)
and
Mim
6;; E 1.648(1)c + LE-RLL)/(Dc + Lm) . (6.35)

For simplicity in calculating 8 in Eqs. (6.21) and (6.22), it is
assumed that (Dc + Lc.RIJ)z (Dc + Lm) since LC'RLL defined by ANSI A.58-
1980 Draft agrees fairly well with Lm given by the Ellingwood-Culver
formula, which has been shown in Figure 3.

Thus, the safety indices for the interaction shear strength and the

interaction bending strength are simplified to

0.6 0.6
g = = (6.36)
v ';{_‘——4-_7 (lv(.QRv + 0.13)

RV . 0
and

0.5 0.9
E - = (6-3?)
m m IIM(QRH + 0.13)

The values of B corresponding to the loading paths in Figure 18 are

summarized in Table 15.

6.4.2 Resistance factor $, in the interaction range

The resistance factor given in Eq. (2.20) for the interaction range

can be separated into

Vin
4Dll.v it exp(-avbvﬂRV) (6.38)
in
and
M
des = B exp(-ay8.0..) (6.39)
im ﬁin"’“’ MM RM s




P —

Values of BV and

C.0.V. of
Loading ?esistance éa)
Path RV _RM
A 0.288 0.277
B 0.294 0.277
c 0.320 0.277
D 0.334 0.253
E 0.354 0.233
F 0.385 0.217
G 0.429 0.206
H 0.429 0.199
I 0.429 0.188
Notes: (a)
(b)

Table 15
SM in the Interaction
Linearization
Factor (b)

i o
0.756 0.752
0.758 0,752
0.768 0.752
0.772 0.743
0.779 0.735
0.789 0.729
0.802 0.725
0.802 0.722
0.802 0.719

Values from Table 14
Values defined by Eq. (2.17)

Range

89

Safety Index

gy
1.899
1.867
1.736
1.675
1.591
1.477
1.338
1,338

1.338

By

1.634

1.634

1.757
1.874
1.977
2.053
2,105

2.187



90
in which ¢1v and ¢1m are the resistance factors for interaction shear
strength and bending strength, respectively, and

Pex
Vim = fvm'Aw'(?__)m . (6.26)

th

Pex
Mim = fbm.sx'(i__)m . (6.27)

th
vin - fv'Aw . (6.40)

and

Mim E t‘b-Sx : (6.41)

From the values of (Pexz’Pth)m = 1.0, fvm/fv = 1,10 and fbm/fb = 1.0,
Eqs. (6.38) and (6.39) become

¢, = 1.10exp(-a 8 2 .) (6.42)

and

¢im = l.Oexp(—uHBMQRM) " (6.43)

The values of ¢iv and ¢im are plotted in Figure 21, which shows
that the shear resistance factor decreases as the loading path moves
from the shear dominant region to the bending dominant region, and that
the bending resistance factor decreases when the loading path moves in
the opposite direction. This simply means that uncertainty of girder
strength is increased when a plate girder resists two different types
of forces, which may be due to a multiplication effect of uncertainty
inherent in girder strength associated with each type of force.

From Figure 21, it is concluded that a linear connect;on of points
A, B, C, and D could be a safe interaction envelope reflecting the
resistance factor for combined shear and bending. A comparison of this

factored interaction envelop with that proposed by Galambos (24) is
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s Factored
interaction
envelope

e

0.525 0.70 bm = (0,80 1.0 —

Figure 21, Variation of resistance factor in the interaction range
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shown in Figure 22. 1In developing his factored interaction curve, which
is supposed to give safe design values, Galambos ignored variation of

the safety index associated with loading path, and assumed that the
resistance factor for the interaction range could be determined from the
resistance factor for predominant shear, ¢v' and the resistance factor
for pure bending, ¢m' But, Figure 22 shows that the resistance factor

in the interaction range has different characteristics from what Galambos

assumped.

6.4.3 LRFD interaction equations

According to the suggested interaction curve shown in Figure 22,
the following equations are obtained:

for 0 < M < 0.75¢.M

(b, - ¢, )M
'] v i
VN Ny (6:44)
u iu

for 0'6°1Vu <V < ¢1Vu or 0.75¢1Mu <M< ¢1Mu
0.625- + - < 1.375¢ (6.45)
Bt S Tt A '

and for ¢1Hu <M< o 3

(¢ -9, )V
M m i

X TR =% " (6.46)
u g

In the above equations, the resistance factor for predominant shear,
e 0.75, the resistance factor for pure bending, #m = 0.80 and the

resistance factor for combined shear and bending, ¢, = 0.70 are the

i

values estimated in this study.
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Chapter 7

SUMMARY AND CONCLUSIONS

7.1 Summary

By using Cornell's probabilistic design format, the traditional
central factor of safety can be split into the resistance factor and
the load factor in an explicit and simple manner.

The study presented here has dealt with only the resistance factors
of plate girders in pure bending, shear, and combined shear and bending.

In order to determine the resistance factors, the following studies
were carried out.

1. Cornell's first-order, second-moment formula is selected as a
probabilistic design format. In Galambos' study, the Cornell format was
also used.

2. Part 1 of the AISC Specification is selected as a basis of
calibration through which the same degree of safety can be provided in
the proposed design criteria as in the current AISC Specification.
Galambos performed his calibration with Part 2 of the AISC Specification
in which provisions are provided for plastic design.

3. Predictions of regular and unsymmetrical girder strengths are
done by the Basler-Thiirlimann models in this research as in the Galambos
study. For hybrid girders, however, prediction is done by the formula
which has been recommended by Subcommittee 1 on Hybrid Beams and Girders,
Joint ASCE-AASHO Committee on Flextural Members.

4, Prediction of live load effect on plate girders follows the
Ellingwood-Culver formula which is the basis of the ANST A.58-1980 Draft,

while the McGuire-Cornell formula was used in Galambos' study.
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5. 1In order to measure the uncertainty associated with a theore-~
tical structural analysis model, actual measured values in the static
yield stress and dimensional properties are used in prediction of girder
strengths.

6. Uncertainties in girder strength are assumed to come from three
major sources; that is, uncertainties associated with stress, fabrication,
and structural analysis models.

7. For estimating variation in stress, the first-order approxima-
tion technique is employed, and the mean values and the standard devia-
tion are measured for modulus of elasticity, the static yield stress of
the flange and the web, Poisson's ratio and shear modulus of elasticity.

8. The C.0.V. of fabrication error follows the value measured by
Galambos though it is much greater than the value reported after this
study had heen completed (Appendix 2).

9. The C.0.V. associated with the structural analysis model 1is
measured from distribution of the ratio of experimental values of girder
strengths reported in the literature to theoretical values predicted by
the Basler-Thiirlimann models.

The results of this study give the resistance factors of 0.8 for
bending, 0.75 for shear, and 0.70 for combined shear and bending, which
are smaller than values of 0.86 for all cases as presented by Galambos.
Comparisons of the study results with those of Galambos' study are given
in the ends of Chapters 3, 4, 5, and 6.

From results of this study, the following design criteria of plate
girders are recommended. In the following equations, VD and HD are the
design shear and the design moment, respectively, computed on the basis

of design load intensities at the cross-section under consideration,
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%
For 0 < M) < 0.525M_
| -
-+ o.ogswﬁio.rs . (7.1)
u u
For 0.&2Vu £V < O.GOVU or O.SESHU <My < 0.?014u
v LY
o.sst—D+M§50.96 : (7.2)
u u
\r
For 0.70M_ < M, < 0.80M_
. VD
o>+ 0.2385" < 0.80 . (7.3)
u u

The design shear and moment, VD and MD, may not exceed 0.?5Vu and 0.80M ,
u

respectively.
The ultimate bending strength, Hu, for homogeneous, symmetrical and

unsymmetrical plate girders is defined by

A
M =F_-S_(1 - 0.0005 2 - 280y, | (7.4)
u er X P
f /Fcr

The smaller Fcr defined by Eqs. (7.5), (7.6), (7.8), (7.9) or (7.10)

should be used in Eq. (7.4):

296000C

5 vomemgmc) 3
1 (E£)3 for A > v2 (7.5)
3
and
AZ e
Fcr = Fy(l - 77) for A < V2 (7.6)
In the above equations, Cb is determined by Eq. (4.11), T is given by
Eq. (4.9) and )\ is given by
F
£ v

™ 2.96 x 10
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in which 1 is the unbraced length of the span.
Fcr h 11£520 for % > 151.8 ’ (7.8)
©) /F_
w y
b 48.3
Fcr Fy for = < el (7.9)
YF
b 4
and
F_ = F [1-0,53(0.00932 - 0.45)1°3%] for 38:3.B 151.8 .5 44
cT b { W ';F——w* /F_
y y

in which b is half the width of compression flange and w is the thickness
of the compression flange.
The ultimate bending strength, Mu, for hybrid plate girders is

determined by either Eq. (7.4) or Eq. (7.11), whichever 1is smaller.

A 3F Fvw 2
12 + Gy gi= (255)"]
( i . ¢ S (J:11
Mu Fcr Sxt A -11)
12 + 2(;;5)

3
in which Fcr is determined in the same manner as FCr in Eq. (7.4).
The ultimate shear strength, Vu, for homogeneous, symmetrical and

unsymmetrical plate girders is calculated by

F ﬁFvcr y
vu ) Aw[Fvcr i ?¥(1 % F ) ] (7.12)
Y / a,2
- v 1+ (ﬁ)
in which F is determined by
ver
P = 27,000k (7.13)
ver h, 2
)
t
where
k=536 + =% for ()21 (7.14)
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and

k=4.0+23% for &) <1 . (7.15)

a,?2
(E)
1f Fvcr calculated by Eq. (7.13) is greater than 0.46Fy, then Vu is
determined by

v, - 0.68/?;-Aw . (7.16)

7.2 Conclusions

Comparisons of the resistance factors for bending, shear, and
combined shear and bending between this study and Galambos' study have
been summarized in the ends of Chapters 4, 5, and 6.

The following general conclusions may be drawn from these studies.

1. The dominant parameters in determining the resistance factor
are uncertainties associated with the static yield stress and theoreti-
cal strength prediction model of plate girders. Uncertainties associated
with dimensional properties are negligible.

2. Differences of resistance factors between this study and Galam-
bos' study arise from two main sources; the one is due to different
characteristic values of the static yield stress, which results from
different sampled data used in two studies, and the other is due to
different statistical treatment of the relative parameters, However,
the former is the dominant factor causing differences. Calihration
with Part 2 (plastic deisgn, employed for calibration in Galambos' study)
gives a larger safety index, B8, than that obtained from calibration with
Part 1 (elastic design, employed in this research) of the sﬁecification.
However, Galambos reported that calibration with Part 1 and Part 2 of
the AISC Specification had little effect on the resulting resistance

factor.
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3. The resistance factor varies in the ranges of 0 :_ﬁL‘i 0.75 and
v u
of 0 < v 2 0.6 for the interaction curve, which was assumed constant in

u
Calambos' research,

4., In general, the design criteria based on the probabilistic
design format are very sensitive to the characteristic values of sampled

data of parameters which affect the strength of plate girders.

7.3 Recommendations for Future Study

The design criteria recommended in this research are based on data
available in the literature. During the analysis of the data, it has
been found that there are limited data available to develop probability-
based design criteria even though numerous tests on plate girders have
been performed. Most studies performed in the past fail to report the
distribution of test results, In order to develop highly reliable pro-
babilistic design criteria, the following additional studies are recom—
mended.

1. Tests on the static yleld stress of the structural steel —

The static yield stress has not been widely used in structural design,
Consequently, most tests of plate girders or structural steel has been
performed on the basis of the upper or lower yleld stress, Limited data
is available in the literature, especially for the static yield stress
of high strength steel. Since the static yield stress is affected by
the thickness of steel plate and the direction or location of the speci-
men in the plate, attention must be given on these aspects,

2. Tests on the strength of plate girders in combined shear and
bending -- There have been very limited reports on the strength of plate
girders, especially hybrid girders in combined shear and bending, which

limits reliable analysis of the interaction relationships between shear
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and bending. The number of tests is important for obtaining statistic-
ally significant results.

Study of the load factors which is excluded in this research is an-
other subject which needs additional attention prior to complete accept-

ance of the LRFD criteria.
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Appendix 1

ESTIMATION OF THE CHARACTERISTIC VALUES FROM MULTI-SETS
OF DATA AND HYPOTHESIS TESTING

Al.l Estimation of the Characteristic Values From Multi-Sets of Data

It is assumed that only the mean, ié, variance, Sf. and sample size,

s of k sample sets taken from a population as shown in Figure A.l are

known. Then, by definition, the mean value of the ith sample set, X

il
is written as (4)
o
E.X . f n
— m=1l mi mi ] - -
Xl n, or L X fmi ny Xi (Al.1)
th th
where X 4 denotes the m  variate in the {1 sample set, and fmi repre-
sents the frequency corresponding to X 4 The variance of the ith sample
set, 512, can be expressed, by definition, as (4)
o =.3 5 2 =2
2 _whifar" Oy < Xg)  Ghifas Ty = 0%y
S - = (A1.2)
. 5 n, - 1 Ny ™ 4
i i
or
T 1)8% + n X2 1.3
nk1fns Fpy = 9y = 1IS; + 0, X, (AL.3)

The unbiased mean, X, and variance, Sz. of the pooled sample of k

sample sets are given by

k nyq
L E-T .o%
7 i1 m=1"mi "mi (Al.4)
k
Ly
i=]
and
e Hola .
y i - N, J
2 o 151 m=1 Ti mi i=1"4 ) (Al1.5)
g n, =1
i=1 i
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Substitution of Eq. (Al.3) into Eq. (Al.5) yields
k k k
2 =2 =2
I.(n, =-1)+S, + L n X -X" .In
2 1'1 = =
. i 1k1111 L) b O (AL.6)
n£1n1 &

With the known mean and variance of a random variable x, the C.0.V.

of the variable x is determined by

l =
x

=417

(Al1.7)

where S is the standard deviation of random variable x.

Al.2 Hypothesis Testing on Modulus of Elasticity (12)

By using Eqs. (Al.4) and (Al.6), the mean of the modulus of elas-
ticiye, Em = 30,013 ksi and the standard deviation of E, § = 1324 ksi
are ohtained from the data given in Table 3. By substituting these two

values into Eq. (Al.7), the C.0.V. of E, 2., is found to be 0,044,

E?

Now, assume that the true population-mean of the distribution of E
is 30,000 ksi and the standard deviation of 1500 ksi, Then by applying
the hypothesis testing method, it can be determined whether this assump-
tion, the so-called null hypothesis HO, could be accepted or not. This
kind of decision procedure could lead us to either of two wrong conclu~
sions; the so-called Type I error or the Type II error. A Type I error
is conmitted if we reject the null hypothesis when it is true, and a
Type II error is committed if we accept the null hypothesis when it is
false,

The probability of commicting a Type I error is called the level of
significance of the test and is denoted by a. Figure A.2 and Figure A.3

show the concept of the probability of a Type I error and of a Type II

error, respectively. In Figure A.2, the probabiliy of a Type I error is
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represented by the shaded area, and a Type II error is measured by the
probability that values of a random variable fall in the shaded area of
Figure A.3 when the true mean is Hl. In both figures, ¢ is determined
by selecting the significance level of the test.

Testing about a Type I error is performed with the significance
level of a=1% andan alternative hypothesis Hl which is set by the mean
of E, Em = 30,000 ksi. Thus, we reject the null hypothesis if the ob=-
served mean value lies in the shaded area, or we accept the null hypothe-
sis 1f the observed sample mean is greater than ¢ in Figure A,2, The
value of ¢ is determined in the following manner:

Null hypothesis HO: Em = 30,000 ksi,

Alternative hypothesis: Em < 30,000 ksi,

Probability of committing a Type I error: o« = 0,01, and

a = P[Type I error] = P[E < clHo is true] .

The standardized normal variable z corresponding to ¢ is expressed by

c - E
2 m _ c=30,000 ¢ —81303,5000 _ B
Sg/Yo-1  1500//340 .
Thus,
awPlg < 30,000, _ 6o (A1.9)

81.35
The area under the normal curve is given in most statistic books, The
corresponding value of z to a = 0.01 is -1.28. Hence

¢ - 30,000
81.35

= ~1.28 or c = 29,896 ., (Al1,10)
The value of c means that we can not reject the null hypothesis {if
the observed mean value is greater than c¢. Therefore, we can accept the

hypothesis of Em = 30,000 ksi because our observed mean value was 30,013

which is greater than E = 29,896.
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But, the test about a Type I error does not guarantee that Em =
30,000 ksi is the true mean. Thus, it is necessary to perform the sec-
ond test about a Type II error.

Assume that the true mean lies in the left side of the shaded area
in Figure A.3, for instance, Em = 29,000 ksi. Then, the probability of
a Type II error, B, with a significance level a = 0,01 is

8 = P[Type II error] =P[E> c|H1 is true] = P(E> 29,395|sm- 29,000] . (A1.11)

The standardized normal variable z is given by

_ 29,896 - 29,000 _
z T 11.01 . (A1.12)

From most standard statistics references, 8 corresponding to z =
11,01 can be said to equal zero. Consequently, there would be little
chance of accepting the null hypothesis, Ho, when it is false,

In conclusion, it is reasonable to use the mean modulus of elasti-

city, Em = 30,000 ksi and the C,0.V., Q, = 0,05.

E
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Appendix 2

FUKUMOTO REFERENCE

Upon completion of this study, the author became aware of a new
reference. Fukumoto and Itoh reported the mean equal to 0,998, the
standard deviation equal to 0.78 and the C.0.V. equal to 0,0254 of the
cross-sectional area of welded beams based on test results, Though the
C.0.V. equal to 0.0254 is quite small compared to the C,0.V, equal to
0.05 used in this study, the effect of the new value on the resistance
factors would be negligible because the other C,0.V,'s affecting the
resistance factor are considerably larger than the C,0.V, of cross-
sectional properties.

Listed below is the Fukumoto reference:

Fukumoto, Y. and Itoh, U., "Statistical Study of Experiments

on Welded Beams," Journal of the Structural Division, ASCE,
Vol. 107, Jan., 1981, pp. 89-103,







