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ABSTRACT 

The study presented here deals with a probability-based safety 

factor of structures known as re~istance factor. Resistance factors 

are determined for plate girders in bending, shear, and combined shear 

and bending , and are compared with those obtained by T. V. Galambos at 

Washington University in St . Louis, Missouri. 

Five major steps are followed in this study: 1) Selection of a 

probabilistic design format . 2) Selection of load and plate-girder 

strength prediction models . 3) Collection of data of parameters which 

affect the strength of plate girders . 4) Determination of characteris-

tic values of the parameters, 5) Calibration with an existing design 

specification , 

Cornell's first - order, second-moment format is used as a probabilis-

tic design format , and predictions of plate-girder strengths employ 

formulas which include the Basler-ThUrlimann models. Experimental data 

from related studies is analyzed by statistical methods to determine 

their characteristic values. Calibrations are performed with Part 1 of 

the AISC Specification . 

Results of the study yield more conservative values for resistance 

factors than those recommended by T. V. Galambos. This can be attributed 

to differing characteristic values for parameters selected in each study. 

Key words: Buildings, Coefficients, Load factors, plate girders, 

Statistical analysis, Structural design 

, 
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Chapter 1 

INTRODUCTION 

1.1 Evolvement of thl' Safety COliC pt of Structur:ll Systems 

It hos been well known since IInalysis techniques for structural 

systems were developed that the strength of 11 structural system and the 

loads acting on the system do not have any deterministic values but are 

affected by many chance factors, and that absolute safety or reliability 

of structural systems is not feasible. From past experiences of success 

and failure recorded for similar types of structures, "factors of safety" 

have been determined. The safety or reliability of a structure is pre

sumably assured by those factors of safety . This factors of safety 

concept based on past experience has been widely adopted in many current 

codes and specifications. 

Since the 1950's, there have been significant efforts to reevaluate 

the traditional safety concept for structural systems. The concept and 

methods of probability theory have been introduced in evaluating the 

reliability of structural systems. Theoretical bases for this approach 

were formulated by Freudental (21). However, the complexity and overly 

idealistic aspect of the completely probablitistic approach limited its 

application to design practices. 

Researchers then turned their efforts toward achieving a compromise 

solution by retaining some of the simplicity of the traditional approach 

while incorporating some probabilistic concepts. The first results of 

this effort appeared as load factors, which may be determined by the 

ratio of the characteristic strength of a structure to the characteristic 

applied loads. This approach has been applied in the American Concrete 

Institute (ACI) Code and the American Association of State Highway and 

• 
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Transportation Officials (MSIlTO) SpecHication. Ln this approach , the 

character istic values are taken to be equal to the respective mean values 

minus or plus a certain number times the corresponding standard devia

tions . However, this semi-probabilistic format cannot reflect in a 

consistent manner the uncertain t ies in various parameters which affect 

the safety of structural systems (47). 

In the middle of the 1960 ' s, a significant improvement in the prob

abilistic safety concept was made by C. A. Cornell (15). By employing 

the first-order approximation and the second-moment theorem in probability 

theory, he derived a relatively simple and practical ly feasible design 

format. In this approach, no assumption on probabi l itistic distribution 

of the design variables is made, and only their mean and the variance 

are required . 

Since the Cornell format was introduced, the second-moment format 

has become important for evaluating structural safety. This approach 

has been well summarized in the articles (3,44) prepared by the Task 

Committee on Structural Safety of the American Society of Civil Engi

neers (ASCE). No codes nor specificiations have adopted this approach 

in their practices. However, a proposal by T. V. Galambos (24) is now 

under review by the Committee on Specification for Buildings of the 

American Institute of Steel Construction (AISC). 

1.2 Scope of StudY 

The first explicit application of the probability-based design 

format to design practices may be due to T. V. Galambos. Through the 

studies (24,25,26) presented in the Journal of Structural Division of 

ASCE, Galambos proposed new design criteria for steel structures in-
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eluding design criteria for platl' girders . These design criteria are 

called the Load and Resistance Fuctor Design (LRFD) . 

For assuring the safety of s tructures, the following general formula 

should be satisfied: 

n 
q,R > E ykQk 

n - k-l 
(1.1) 

in which ~ is the "resistance factor" reflecting uncertainties in the 

resistance of a structure , R is the nominal resistance determined by a 
n 

theoretical structural analysis model, y is the "load factor" reflecting 

uncertainties in the loads acting on the structure, and Q is the applied 

load effect estimated by a load predicting model. The summation in 

Eq. (1.1) represents linear combination of applied loads from various 

sources. 

Galambos' load and resistance factors for plate girders were 

developed by carrying out the following studies: 1) Cornell ' s format 

(IS) was selected as a design format. 2) Data obtained at Lehigh Uni-

verhty in the late 1950' s and early 1960' s was used for determining 

char acteristic values of parameters affecting girder strengths . 3) Theor-

ies developed by Basler and ThUrlimann (8,9,10), and McGuire and Cornell 

(37) were employed to determined Rand Q in Eq . (1.1). 4) Calibrations 
n 

with Part 2 (plastic design) of the AISC Specification were carried out . 

The main concern of the research presented here is a reexamination 

of the Galambos resistance factors for plate girders in pure bending, 

shear, and combined shear and bending. For this, strength prediction 

models, load prediction models, and probabilistic design formats are 

reviewed . However, the main effort is given to the evaluation of the 

characteristic values of parameters which affect the strength of plate 

girders . Since the 1960 ' s , numerous additional tests of plate girders 

• 
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have been conducted around the wurld. 8y adding new data (rom those 

recently carried-out tests to the data used in the Galambos study, and 

by investigating the collected da ta with statistical methods, more repre-

sentative characteristic values of parameters may be expected. 

This research is limited io scope to the same girders as used in the 

Galambos study (welded, transversely stiffened, single web plate girders). 

Within these limits, reevaluated resistance factors of plate girders in 

bending, shear, and combined shear and bending are developed, and new 

design criteria are recommended through calibration with Part I (elastic 

design) of the AISC Specification. Details of plate-girder design such 

as end panel requirements and intermediate-stiffner requirements are 

assumed to be satisfied by following the provisions of the AISC Specifi-

cation. 
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RELIABILITY ANALYSIS ~IODEL 

2 . 1 Probability-Based Design Format 

It is well recognized that absolute safety and reliability of 

engineering systems are not feasible because the information used in 

the development of a design invariably contains some kinds of uncer

tainties . The reliability or safety of a design can be assured only in 

terms of probability -- specifically, io terms of probability of survi-

valor in terms of probability of failure . 

Traditionally, safety or reliability is presumably assured by 

5 

prescribing conservative conditions in design through the use of "factors 

of safety". However, the factor of safety is never analyzed nor evalua

ted quantitatively but is determined through accumulated experience. 

Since the lack of absolute reliability is due to the uncertainties 

involved in a design, the evaluation of reliability naturally requires 

a consideration of uncertainties, which is a subject of probability. 

In development of Load and Resistance Factor Design (LRFD) criteria, 

the methods and concepts of probability have a major role. The proba-

bility-based design model is a scheme to evaluate structural safety or 

reliability quantitatively in explicit manner by probabilistic treatment 

of uncertainties in the applied forces and in the structural resistance. 

Among the proposed probabilistic design models, the CEB-ISO format 

(36) proposed by the European Concrete Committee to the International 

Standard Organization is perhaps the most general format. Although it 

may give relatively accurate results in evaluating reliability of a design, 

complexity of the procedure in CEB-ISO format may limit its use in 

practice. 



6 

A major contribution in this field is due to C. A. Cornell (15). 

He suggested a simplified probabilistic design format by utilizing a 

1 first-order approximation method. The strength of this format is its 

simplicity without a significant sacrifice of accuracy . In this format, 

1 only the first two moments , the mean and the va r iance , are used. Thus , 

I Cornell ' s format is sometimes referred to as the first-order, second-

moment theory. With the linearization factor proposed by Lind (36), 

1 Cornell's format may be further simplified. 

Since Cornell's format was proposed, considerable efforts have been 

1 made in this field, and some criticism about the second moment theory has 

1 evolved. Ove Ditlevsen (17) showed that a measure of reliability in the 

domain of very small probability of failure was very sensitive to the 

1 terms which were truncated in the first-order approximation and that the 

1 
second-moment theory was valid only in the case where superposition held. 

In spite of such criticism, the first-order, second-moment design 

1 format such as Cornell's format provides the conceptual base for recent 

studies, for instance, the studies (3,19,44) done by the American Society 

1 of Civil Engineers, Task Committee on Structural Safety. 

1 
Use of only two characteristic values of sampling data, tbe mean 

and the standard deviation wbich is a square root of the variance, may 

1 be the most important advantage of Cornell ' s format because the mean and 

the standard deviation are the only values, in most cases, available in 

1 practice. Because of this advantage, Cornell ' s format is used in this 

1 
work for developing LRFD resistance factor . Galambos also used Cornell's 

format in his study (54). 

'1 

1 
1 
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2.2 First-Order. Second-~loment Ihcory 

Since the reliability of an engineering structure or its component 

is defined as the probability that the system or its component will 

successfully perform its intended function . a reliability measure would 

be s function of design variables (2). If a performance function or 

resistance of a structure is defined as 

7 

(2.1) 

where Xl' X2 • .•. • and Xn are random variables representing design vari

ables and design parameters and gR is a special functional relation. then 

it is clear that R is also a random variable. whose values. r. represent 

levels of performance dependent on the design variables. 

The minimum performance of a structure or its component should not 

be less than the loads acting on it . The loads coming from various 

sources can be expressed as 

(2.2) 

in which Yl • Y2 •• .. • Yn are random variables representing loading vari

ables and gQ is a specified functional relation. Therefore. Q is also 

a random variable. 

The measure of reliability or the probability of survival. P
s

' can 

be defined as 

P - peR > Q) 
S 

(2.J) 

where P denotes a probabilistic function of the random variable (R > Q). 

Conversely. the probability of failure. Pf ' is 

P
f 

- peR < Q) (2.4) 

If probabilistic information on R is known, in o ther words. if the 

shape of the distribution and values of its parameters are known. the 

• 
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probability of survival expressed by Eq. (2.3) can be written as (2) 

(2.5) 

where fR(r) and FR(Q) are the probnbUity density function and cumulative 

distribution function of R, respectively. 

In practice, data may be available only for the basic variables Xi' 

Therefore, any probabilistic information on R must be derived from those 

Xi' Furthermore, the shapes of probability distributions of Xi are 

usually not known. Information on Xi is invariably limited and may be 

sufficient only to evaluate the mean values of Xi and the standard devia

tion, from which the coefficient of variation (C.O.V.) can be determined. 

Thus, any practical formulation of reliability must be based on informa-

tion for the first and second moments, that is, the mean and variance, 

of Xi only. 

If the relationship Y - g(X) for a function is sufficiently well 

behaved, and if the coefficient of variation of X is not large, the 

following approximations are valid (4) 

E[Y] a g (E[Xl) (2.6) 

and 

(2.7) 

in which E[·] and Var[·] denote the mean value and the variance, respec-

tively. Since Eqs. (2.6) and (2.7) are derived from exact solutions by 

keeping only first-order terms, they are called first-order approxima-

tions of the first and second moments. 

2.3 Derivation of Probabilistic Design Format 

As defined by Eq. (2.3), when the resistance of a structural ele-

ment, R, is greater than the load, Q, acting on it, t he element per-
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forms successfully its illLcn!lc!l purpose. Since It anu Q are random vari-

ables , (R-Q) defines a probabilit y distribution function as shown in 

Figure la o Then, the probability of survival, P , is defined as 
s 

P • P[(R - Q) > 0] 
s 

An equivalent representation of structural safety is shown in 

(2.8) 

Figure lb where the probability distribution of the random variable 

(R-Q) is given on a lognormal scale. In this case, the probability of 

survival, P , is defined by s 

(2.9) 

If the "standardized variable", U, of the random variable In(R/Q) 

is introduced, Eq. (2 . 9) can be rewritten as (2) 

P - P[ln(R/Q) > 0] • 
s 

In(R/Q) - In(R/Q) 
P[ m 

IVar [In (R/Q)] 

In(R/Q) 
- P[U > - m] _ 1 - F (-8) 

IVar[ln(R/Q)] u 

In(R/Q) 
, _ -;:::::::::;:==;:m~::;::] 

IVar[ln (R/Q)] 

(2.10) 

in which m denotes the mean, F is the cumulative probability distribu
u 

tion function of the standardized variable U, and 8 is defined as 

In(R/Q) 
m 

8 = -;;::::;:;:::~;;: 
,IVar[ In (R/Q)] 

or 
In(R/Q) 

8 ~ m 
o In(R/Q) 

(2 . 11) 

in which 0ln(R/Q) is the standard deviation of the random variable 

In(RIQ). From Eq . (2.10), it is clear that the probability of failure, 

P
f

, is defined by 

In(R/Q) 
P ~ F (-B) • F [_ m ] 

f u u ,IVar[ln(R/Q)] 
(2.12) 

As seen in Eq. (2.12) and Figure Ib, since the probability of 

failure corresponding to a larger 8 is smaller than that corresponding 

to a smaller B, B can be used as a param~ter of structural safety or 
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structural reli:lbllity. Thus, B La called a "safety index". Specified 

values of a corresponding to different levels of reliability are shown 

in Table 1 (2). 

Table 1 

Safety Level Corresponding to B 

P
f 8 P

f ! 

10-1 
1.28 10-5 4.25 

10-2 
2 . 33 10-6 

4.75 

10-3 3.09 10-7 
5.20 

10-4 
3.72 10-8 5.60 

The safety index B in Eq. (2.11) can be simplified, by use of Eqs. 

(2.6) and (2.7), as 

R 
m 

In(Q) 

8 • m 
(2.13) 

/(l + 0 2 
R Q 

in which OR and 0Q represent the Coefficient of Variance (C.O.V) of 

resistance and applied loads, respectively. The C.O.V. of any random 

variable X is defined as 0 Ix . 
x m 

Eq. (2.13) can be rearranged in the traditional "central factor 

of safety" format. For insuring the safety of a structural element, the 

central safety factor format takes the form 

R > 90 
m- 'm 

(2.14 ) 

in which 9 is a central factor of safety. Comparing Eq. (2.13) and 

Eq. (2.14) gives 

(2.15 ) 

• 

-- ---------------------
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The central factor of safety, hO""ver, combines the uncertainties 

inherent in the resistance and the applied load effects, which are 

independent from each other . Thus, it would be advantageous if the 

central factor of safety e could be split into two parameters which 

could represent the uncertainties in the resistance and in the applied 

loads . This can be accomplished by using the linear expansion technique 

developed by Lin (36), that is 

(2.16) 

in which a, the linearization factor, is given by 

a • (2 . 17) 

Substitution of Eqs. (2.15) and (2.16) into Eq. (2.14) gives 

exp(-aSnR)R > exp(aSnQ)Q m- m (2 .18) 

The right-hand side of Eq. (2 .18) can be further separated to allow an 

independent treatment of the effects of the different types of load. 

2.4 Resistance Factor and the C.O . V. of Applied Load 

If the nominal resistance of a structur al element, R , determined 
n 

by any theoretical analysis model of a structure is used with split 

safety factors , the design criterion can be expressed as (24) 

(2.19) 

where ~ denotes the resistance factor , y represents the load factors, 

and summation means the linear combination of load effects from different 

sources . 
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2.4.1 Resistance factor 

By comparing Eq. (2.18) with Eq. (2.19). the resistance factor ~ 

can be defined by 

R 
m exp(-aSO )R R 
n 

(2.20) 

in which a and S are determined by Eq. (2.17) and Eq. (2.13). respective-

ly. R is the mean resistance capacity which would be determined from 
m 

experimental data . R is the nominal resistance capacity determined by 
n 

a theoretical structural analysis model. and OR represents the C. O.V. 

of resistance capacity calculated from experimental data. 

The strength of a structural element is a random variable reflecting 

many chance factors . These may be separated into three terms; uncer-

tainties inherent in mechanical properties. uncertainties of cross-

sectional properties. and uncertainties associated with the professional 

assumptions adopted in the structural analysis . Thus. for defining OR' 

it is assumed that the resistance capacity of a structural element could 

be expressed by multiplication of these three factors such that 

R - )i·F · P (2 . 21) 

in which M. F. and P represent material properties which are usually 

expressed in terms of stress, cross-sectional properties such as section 

modulus, moment of inertia. and cross-sectional area, and a professional 

factor associated with assumptions or simplification in structural 

analysis. respectively . Then, by utilizing Eq. (2.7). OR can be ex-

pressed as 

(l.22) 

where ~ . OF ' and 0p are the C.O .v .' s of the stress due to variation of 

material properties. of cross-sectional properties due to fabrication 

• 
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error, and of errors in assumptions or simplificacions in the struccural 

analysis . 

Thus, by substituting Eq. (2.22) into Eq. (2.20), che resiscance 

factor is redefined as 

(2.23) 

2.4 . 2 c.o.v. of applied loads 

As implied in Eq. (2.19), it is assumed that loads on a scruccural 

member are che linear summation of separate load effeccs of random mag-

nicude. Ie is also assumed thac each load effecc is che produce of four 

faccors (36); a random variable represencing che racio of che real co 

calculaced load effecc, i.e . , error in idealizacion or simplificacion in 

structural analysis, a determiniscic calculated influence faccor, a ran-

dom variable represencing the uncertainties in assumptions about the 

spatial and temporal variation of each cype of load, and independent load 

intensity. Therefore, by denoting these four faccors as S, C, K, and 

q, respeccively, the cotal applied load on a scruccural element, Q, can 

be expressed as 

(2.24) 

For simplification, dead and live loads are assumed to be present, 

and S is assumed the same for all types of loads. The, Eq. (2 . 24) can 

be simplified to 

(2.25) 

in which S is a random variable representing uncertaincies in load ef-

fecc prediction, CD and C
L 

are deterministic calculated dead and live 

load influence factors, A and B are random variables representing un-
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certainties in the assumptions of the spatial and temporal variation in 

dead and live loads, and D and L denote dead and live load intensities. 

With an assumption that the mean of S is unity, and by applying Eq. (2.7), 

the mean of the random variable Q and the C.O.V . are given by the fol-

lowing equations (25) 

Q 2 CDA D + CLB L m m m m m (2.26) 

and 

(2.27) 

in which the subscript m denotes the mean value. 

Since it is not easy to obtain information about A and B, Ravindra 

(44) has simplified the above equations with assumptions that A and B 
m m 

are unity, that is 

(2.28) 

and 

n2 + (L /D )2 2 
D m m L) 

(1 + L /D ) 2 
m m 

(2.29) 

Eq . (2.29) implies CD - CL which is valid for uniformly distributed dead 

and live loads . The simplified equations given by Eqs. (2 . 28) and (2 . 29) 

are used in this study to determine the safety index S represented by 

Eq . (2 . 13). 

• 
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Ch"pter 3 

UNCERTAINTIES OF APPLIED LOADS AND THE RESISTANCE 

3 . 1 Introduction 

As shown in Eq . (2.20), it is necessary, in order to estimate the 

resistance factors, that the safety index B and the C. O.V. of the resis

tance, OR' be defined. 

The safety index B given by Eq. (2.13) involves variables associated 

with applied loads as well as variables associated with the resistance 

capacity of a structural element; that is , the mean pplied loads, the 

mean resistance, and their C. O. V. , 0Q and OR' respectively . 

The C.O.V . of the resistance. OR given by Eq. (2.22) is determined 

from three independent variables: the material factor (M). the cross

sectionsl factor (F). and the professional factor (P). The profeSSional 

factor which reflects the differences between actual resistance and pre

dicted resistance cannot be estimated unless the types of forces (e.g . , 

bending and shear) resisted by a structural member are defined. There

fore, only the material factor and the cross-sectional 01' the dimensional 

factor are discussed in this chapter. The professional factor is dis

cussed in the following chapters. 

The C.O.V. of applied loads, 0Q' which is indep ndent of the resis

tance, is also discussed in this chapter . 

3.2 Variation in Loading 

Applied load on a structural member is a random variable which is 

influenced by the variation of each load from different sources. As 

shown in Eq. (2.13), data relating to the applied l oad, specifically its 

mean and the C.O .V., are necessary to determine the safety index. This 
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safety index is finally used to evaluate the resistance factor, $, 

defined by Eq. (2.20). 

Eqs. (2 . 28) and (2.29) give the mean applied load and its C.O . V. 

for pres~nting dead and live loads. For convenience, the equations are 

rewritten below : 

(2.28) 

and 

02 + (L /D )202 
D m m L] 

(1 + L /D )2 
m m 

(2.29) 

To define ~ and 0Q' data for each type of load, dead and live load 

in this case, are necessary. 

3.2.1 Dead load 

The dead load is relatively constant in the service life of a struc-

ture. Although major deviation in dead loads are reported in the litera-

ture, these may be attributed to significant alterations in the struc-

tures (44). Therefore, it is assumed that the mean dead load, D , is 
m 

equal to a code specified value, D , which is usually given by the unit c 

weight of materials used in the structure. The C.O . V. of the dead load 

intensity, on, has been estimated by Ravindra (44) to be 0.04. 

3 . 2.2 Live load 

Live loads arise from moveable fL~tures, types of occupancy, and 

other non-permanent loads. Design of a structure under dead and live 

loads should consider the extreme value statistics of the live load over 

the life time of the structure . 

In this study, office type occupancy is assumed as a standard case 

because office-type buildings provide a common type of live load with 



I-
t.) 

I 
I 
I 
I 
I 
I 
I 

• 
I 
I 
I 
I 
I 
I 
I 
•• 
I 
I 

lR 

lhe poss!lJ!l!ty of 8ignHicant vuriut!oll over its service life . Several 

prediction models (18,34,37,49,54) for extreme live load effects in 

office bUildings have been proposed . Out of these models, McGuire and 

Cornell's simplified formula (37) and Ellingwood and Culver's model (18) 

may be suitable for development of LRFD criteria because of their sim-

plicity and their agreement with surveyed data. The McGuire-Cornell 

formula were used in Galambos' research (24) . Although the Ellingwood-

Culver formula takes the same form as the McGuire-Cornell formula, the 

former was developed based on a large amount of data recently surveyed 

in the United States, while the latter was induced from surveyed data 

in the United Kingdom . These equations are given below: 

McGuire-Cornell ; 

Ellingwood-Culver; 

L - 14.9 + 763 (psf) 
m ~ 

15, 000 
AI 

520 
L - 18.7 + - ( f) 

m Ii:" ps 
I 

a -L 
13,900 

~ 

(3.1) 

(3.2) 

(3.4) 

In the above equations , L denotes the maximum mean lifetime total live 
m 

loads, aL is the standard deviation of live load, and ~ is the influence 

area equal to twice the tributary area of the floor beam-type member. 

While no reduction factor has been suggested in the McGuire-Cornell 

model, Ellingwood and Culver have recommended a reduction factor for an 

influence area exceeding 200 sq. ft. as given by 

R.F _ 0.34 + 9.45 (3.5) 

~ 
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A comparison of the unit live load between the McGuire-Cornell 

formula, Ellingwood-Culver formul ,l, American National Standard Institute 

(ANSI) A58.l-1972 (5), and ANSI A58 . 1-1980 Draft (6) is given in Figure 

2. 

The figure shows that the ANSI A.58-1980 Draft takes a more con-

servative view than that of the ANSI A. 58-l972, and also shows that the 

Ellingwood-Culver formula, without using the reduction factor, matches 

very well with the load given by the ANSI A. 58-1980 Draft. 

Therefore, it is concluded that the Ellingwood-Culver formula given 

by Eqs. (3.3) and (3 . 4) provides a proper measurement of the maximum 

mean live load and its standard deviation, from which the C.O.V. of 

live load can be determined. 

3 . 2.3 Other factors 

The only remaining factor required in order to determine 0Q in 

Equation (2 . 29) is the C.O.V. associated with simplification or ideali-

zation of load effect, Os' 

to obtain this information. 

But, few reports are available from which 

Thus, Os - 0.10 is selected by adopting 

the value used in Galambos' work and in a study (44) done by the Task 

Committee on Structural Safety of the American Society of Civil Engi

neering (ASCE). 

A comparison of the load-related factors selected in this research 

with those used in Galambos' work is summarized in Table 2. 

Figure 3 shows the variation of the C. O.V. of applied load with 

respect to tributary area or influence area for four different code 

specified dead loads. Since the average dead load of an office type 

building is rarely less than 50 psf (6), it is concluded that 0Q - 0.13 

is a proper value for the C.O.V. of applied load. This value may be 

• 
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Table 2 

Load-Related Parameters 

Selected value Galambos value 

Code specified load, 0 Code specified load, 0 
c c 

0.04 0.04 

18 . 7 + 520 (a) 14.9 + 763 (b) 

~ ~ 
14 . 2 + 18900 (a) 

11.3 + 15000 (h) 

~ ~ 

0.10 0.10 

Note : (a) the Ellingwood-Culver formula 
(b) the McGuite-Cornell formula 

• 
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conservative for most relll(orced conc rete buildings, for which 0Q • 0.11 

may be proper . However, 0Q • 0. 13 is used in this study. 

3.3 Variation of Mechanical Properties of Steel 

Mechanical properties of steel are commonly described by the elas-

tic moduli in tension, compression and shear ; the yield strength in ten-

sion, compression and shear; and strain hardening properties. The strain 

hardening properties, however, are rarely used in design practice for 

plate girders . In a fabricated structural member such as plate girders, 

the residual stress may have an effect on the member strength. For the 

plate girder, the residual stress has a role in the limitation of the 

web slenderness ratio, but several tests have shown that this limit is 

too conservative and could be neglected in design practice (33). 

Therefore, only the variations of the elastic moduli and the yield 

strength or yield stress in tension, compression and shear are examined 

here. 

3.3.1 Elastic properties 

I The specified elastic properties in standards, codes and specifi-

I 
cations are the modulus of elasticity, E ~ 29,000 ksi, Poisson's ratio, 

v .0.3 and the shear modulus of elasticity, G - E/2(1 + v). Measured 

I elastic moduli may have different distributions due to different testing 

methods and equipments, testing materials from different mills, direc-

1 tion and position of the specimen in the steel plates, and thickness of 

I 
specimens (1,32). 

Since no data could be added to the data used in Galambos' re-

·1 search, his samples shown in Table 3 are used to estimate characteristic 

values of the elastic properties of steel. This data could be considered 

1 
I 

• 
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Property 

E 

E 

E 

E 

E 

E 

G 

v 

v 

Table 3 

Elastic Moduli of Structural Steel 

Investigator Hean(ksi) C.O.V. 

Lyse, Keyser 29,360 0.010 

Rao, et al. 29.437 0.042 

Julian 29,500 0.010 

Julian 29,550 0.010 

Johnston, 291774 0.038 
Opila 

Tall, Alpsten 31,200 0.060 

Lyse, Keyser 12,000 0 .042 

Julian 0.296 0.026 

Julian 0.298 0.021 

24 

From Gal mbos (26) 

~~o . of tests Type of test 

7 Tension 
coupon 

56 Tension 
coupon 

67 Tension 
coupon 

67 Compression 
coupon 

50 Tension and 
compression 
coupon 

94 Tension 
coupon and 
stub colUlDn 

5 Torsion 
coupon 

57 Tension 
coupon 

48 Compression 
coupon 
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representative because they repre qented the work of different investiga-

tors over a time period of more than 20 years, using materials from two 

major mills in the United States. 

From the sampled data in Table 3 with his professional judgement, 

rather than statistical values of the sampled data, Galambos was selected 

E - 29,000 ksi and its C.O .V. - 0.06, G - 11,200 ksi and its C.O.V. _ 

0.06, and v = 0 . 3 and its C.O.V . - 0.03. However, if the same degree of 

significance of test results in Table 3 is assumed (and, in fact, it is 

not easy to say that anyone result is superior to any other), the use 

of the mean values and its C. O.V . s obtained by statistical method is 

desirable according to the concept of the probabilistic design format. 

Therefore, as shown in Appendix I, E - 30,000 ksi and its C.O.V. - 0.05 

which are the statistical values of E from Table 3 can be said to repre-

sent the true mean and the C.O.V . of E with significance level of 1%. 

Table 4 shows other test results by Huber and Beedle (32). 

Property 

E 

E 

Table 4 

Modulus of Elasticity of Structural 
Steel From Hube~ and Beeble (32) 

Hean (ksi) C.O . V. No. of Tests 

29,436 0.010 22 

29,860 0.022 20 

Type of Test 

Tension 
coupon 

Compression 
coupon 

There are no significant changes in the characteristic values of E 

if the sampled data in Tables 3 and 4 are pooled. Therefore, E - 30,000 

ksi and C. O.V . = 0.05 are taken as the proper mean and C.O.V. of E in 

this study. 

• 
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Galambos ' values for Poisson's ratio, v - 0 .3, and its C.O.V. - 0.0), 

are adopted in this work with no argument because they are based on the 

sample data in Table 3 . 

Table ) gives the shear modulus of elasticity f r om only one source 

with a sample size of 5. It may not be significant to evaluate its char-

acteristic values from this data. Theoretically , the shear modulus of 

elasticity is given by G ~ E/2(1 + v) . Thus, the characteristic values 

of G are affected by the characteristic values of E and v. The refore, 

the mean value of G ~ 11,550 and its C.O.V. - 0.06 is determined from 

Eqs . (2 . 7) and (2 . 8). 

3 . 3 . 2 Yield stress 

The principal material property affecting the strength of steel 

structures is the yield stress. Test results (1,7,40) show that the 

yield stress is greatly affected by the strain rate , test method and 

equipment, chemical composition of steel , thickness of the specimens, 

and location and direction of the specimens in steel plates. Moreover, 

there are several methods to define the yield stress (51) . In this 

study, the static yield stress which is defined by the yield stress 

under zero strain is used as the yield stress to predict the strength 

of plate girders because the static yield stress is an appropriate yield 

parameter for building structures with predominantly static load (1) . 

Figure 4 gives the definition of the static yield, whic~ is obtained 

by stopping the straining after the stress-strain curve has reached the 

plastic plateau . 

Nagarja Rao, et al . (40), have developed an equation to estimate the 

static yield stress from the dynamic yield stress . Their equation is 

F d - F a 3.2 + 0.001 t where E is the strain rate in micro-inches 
y ys 
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per inch per secund. UnfOrLUnalcly, IIIO!lt repurted teat results tlo not 

provide the strain rates. 

Values of the measure static yield stress from various sources are 

summarized in Table 5. 

In general, the thinner plate of the same grade steel has greater 

yield point than the thicker plate (1,7). Since most plate-girder webs 

are thinner than the flanges, a coupon from the web has greater yield 

stress than a coupon from the flange if the plate girder has been made 

of the same grade of steel. Since the flanges of plate girders have an 

important role in the bending strength and the webs mainly contribute 

to the shear strength, separation of characteristic values of the web 

yield stress from those of the flange yield stress may be significant. 

However, it is not practical to use different characteristic values of 

the yield stress for different thickness of the flange or the web within 

the range specified by the ASTM Standards (28). 

Compared with F • 1.OSF and C.O.V. - 0.10, which were used in ysm y 

Galambos' work, Table 5 yields F - 0.98F
y 

and C.O.V. a 0.12 for the 
ysm 

flange. From this result, it is concluded, for the convenience of prac-

tical use that F = F and the C.O.V. m 0.12 represent true character-ysm y 

is tic values of F of the flange with the significance level of 1.0%. ys 

For the web of plate girders, the mean static yield stress is 

obtained from the table to be 1.09F and the C.O.V . • 0.21 rather than 
y 

F - 1.1F and the C.O .V. a 0.11 used in Galambos' work (24). Again, ysm y 

for the convenience of practical use, F - 1.1F and the C.O.V. a 0.21 ysm y 

are used in this study as characteristic values of the web static yield 

stress. 
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Table 5 

Values of Measured Static Yield Stress 

Reference Location Specified lIeasurerl Mean Fys/ No. of 
Source on Section Fy(ksi) Mean F ys (ksi) Spec. Fy C.O .V. Sm.ples 

11 
Flange 40.0 35.2 0.88 0.130 22 
Web 40.0 37.1 0.93 0.073 14 

40,47 Flange 36.0 34.6 0.96 0.037 13 
Web 36.0 49.8 1.38 0.229 15 

34 Flange 100.0 104.9 1.05 0.001 14 
Web 36.0 37.6 1.04 0.09,8 14 

42 Flange** 36.0 28 . 5 0.79 4 
Webu 36.0 36.5 1.01 2 

14 Flange** 100.0 106.6 1.07 4 
Web'"'" 100.0 109.1 1.09 2 

24* Flange"'* 55.0 54.9 1.00 24 and Web 

24* Flange** 36.50,65 1.08 0.090 16 

24* Box** 36 . 0 38.1 1.06 0.070 80 
Flange 50.0 54.2 1.08 a.080 13 

24'" 
Flange 33.0 33.0 1.00 0. 120 34 
Web 33.0 34.5 1.05 0.130 36 

Note: * are the data used in Galambos' work 
** are tbe data not used in determining characteristic values of 

the static yield stress 
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The differences betw ... ·n the~ .. characteristic values and those in 

Galambos' work (24) arise mainly [ rom the differences of dispersion of 

collected data; that is, the data used in Galambos' work have smaller 

dispersion than those used in this research. 

)0 

In Table 6 the selected characteristic values of mechanical prop

erties of structural steel for this study are summarized along with the 

values used in the Galambos research. While Galambos' values were ad

justed from statistical values by professional judgement, the values 

selected in this research have been obtained by utilizing statistical 

methods with some modification for the convenience of practical use. 

Although it is recogn!zied that professional judgement can not be entirely 

eliminated in determining characteristic values of any random variable, 

particularly in the case of limited data available, it is desireable to 

use statistical values since that is consistent with the concept of the 

probabilistic design format. 

3.4 Variations in Cross-Sectional Properties 

Very little statistical data for the cross-sectional properties of 

welded shapes are available in the literature, while some information 

regarding rolled shapes has been reported. Tomonaga (53) reported that 

the C.O.V.s of height and width of Japanese heavy rolled Ii-shapes were 

0.002. It could be expected that the welded shape has much larger 

dimensional variation than the rolled shaped. Variations of cross

sectional properties of welded shapes may come from dimensional varia

tions of component plates and inaccuracy of welding. Dimensional vari

ations of steel plates are summarized in Table 7 from three sources. 

The most important cross-sectional properties affecting the strength 

of plate girders are moment of inertia, section modul us and cross-
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Tuble 6 

Summary of Characteristic Material Properties 

Galambos' Value Selected 
Property Mean C.O.V ~lean 

Hodulus of elasticity (E) 29,000 ks! 0.06 30.000 ksi 

Shear elastic modulus (G) 11,200 ksi 0.06 11,550 ksi 

Poisson's ratio (v) 0 . 30 0 . 03 0.30 

Flange yield stress (F ys£) 1.05F 0 . 10 1. OF 
Y Y 

Web yield stress (F ) 1.l0F 0.11 1.1F ysw y y 

Tahle 7 

Dimensional Variations of Steel Plates 

Reference Source Dimension Hean Measured/!'lominal C.O.V . No. 

29 Thickness 0.998 0.012 

Width 1.006 0.005 42 
Thickness 1.016 0 . 019 

34 Width 1.002 0 . 004 
Thickness 1.050 0,007 

Jl 

• 

Value 
C. O. V. 

0.05 

0 . 06 

0.03 

0.12 

0.21 

of Samples 

33 

4 
6 

14 
14 
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I 
sectional area. 

I, J 2 
These I'ropertie~ have the units of L ,L and L , re-

spectively. If inaccuracy of wel ding were neglected for a while, the 

I largest C. O.V. of cross-sectional properties, which correspond to moment 

of inertia, would be estimated at 0.022 from the above data. However, 

I there are many other dimensional factors causing variation of the strength 

I 
of plate girders, such as the squareness of the section and the flatness 

of component plates . These factors may be greatly affected by inaccuracy 

I of welding. 

The other comparative measurement would be dimensional variations 

I of concrete beams. Investigations (20,39) on dimensional variations of 

I 
concrete beams show that the C.O.V.s of concrete cover over the 

reinforcing steel has a value between 0.07 and 0 . 45 . The C.O.V. of the 

I ratio of furnished to calculated area of reinforcing steel in concrete 

beams was between 0.03 and 0.07. Ravindra (44) used the C. O.V. - 0.08 

I for the cross-sectional variation of concrete beams. 

I The C.O.V. of cross-sectional properties of welded shapes will 

likely have a value between 0 .022, which represents the dimensional vari-

I at ions of the component plates of welded shapes , and 0.08, which repre-

sents cross-sectional variations of concrete beams. 

I From this comparative information, it is concluded that the C.O.V. -

I 0.05 which was adopted by Galambos under the assumption of well-controlled 

fabrication, is a reasonable value reflecting the cross-sectional varia-

I tion of plate girders . Differences between furnished mean cross-section-

I 
al properties and nominal specified cross-sectional properties are 

assumed to be negligible. ., Strength of plate girders, of course, is a function of various 

cross-sectional properties such as flange area, slenderness ratio, 

I 
I 
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/lCeCi'H) Inotluluti lIntl '"U"'''"( oC ill,·nla, ail of whlch may have tllfCerenc 

C.O.V.s. However, due to the lack of information on cross-sectional 

variations, separate values of the C.O. V. c.orresponding to each cross

sectional property are not obtained. A C.O.V. - 0.05 will be used as 

the representative value for all cross-sectional propercies which may 

affec.t the strength of place girders. 

)) 



I: 
.s.. ..... 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ., 
I 
I 

34 

Chapter 4 

PLATE GIRDERS IN BENDING 

4.1 Flexural Capacity of Plate r.irders 

The design of steel plate girders was first based on the theoretical 

web buckling strength which is analogous to column buckling theory. How-

ever, it has been shown through research that there is no direct rela-

tionship between the elastic web buckling strength and the ultimate 

strength of plate girders. This is due to the so-called "postbuckling 

strength". Significant work in this field was carried out by Basler and 

his associates at Lehigh University. The current American Institute of 

Steel Construction CAISC) Specifications (50) for transversely stiffened 

plate girders are based on the works of Basler and ThUrlimann (8,9,10). 

Following the work of Basler and ThUrUmann, more exact models (29,42, 

45) have been proposed. Although other models would be more exact, 

particularly for analysis of hybrid girders and unsymmetrical girders, 

the Basler-ThUrlimann model, with a little support from other models 

when it is necessary. is used in this study to predfct the ultimate 

bending strength of plate girders. The choice of the Basler-ThUrlimann 

model has been made because deSigners in the United States are most 

familiar with the model. Whether or not one is more exact than the other. 

the selection of a model does not make any signlficant difference in the 

probabilistic design format because the different predicted values are 

adjusted by the resistance factor. 

In general, plate girders are categorized into regular girders and 

hybrid girders, where the former has the same grade of steel in the web 

as in the flange and the latter has different grades of steel in the two 
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components. These girders sometimes have unequal top and bottom flange 

and are called unsymmetrical pla te girders. 

Although the Basler-ThUrlimann model does not distinguish hybrid 

girders ,and unsymmetrical girders from regular girders, the model ex

plains in a clear manner the general behavior of plate girders. There-

fore, the Basler-ThUrlimann model based on regular girders is first 

introduced, with discussion on unsymmetrical girders and hybrid girders 

following as special cases of regular girders. 

4.1.1 General equation for predicting ultimate bending strength (10 , 
27,33,38) 

When a plate girder is subject to bending, the critical stress, F , 
cr 

of the web is, from the elastic buckling theory, 

(4.1) 

in which k is the plate buckling coefficient, E is the modulus of elas-

ticity, v is Poisson's ratio, h is depth of the web, and t is the web 

thickness . The ratio (hIt) is commonly called the slenderness ratio of 

the web. For preventing the web from buckling before yielding , the web 

slenderness ratio should not exceed (p/t)o given by 

(!I. 2) 

where Fy is the yield stress of the plate girder. 

When the slenderness ratio exceeds (plt)o of Eq. (4.2), the web 

starts to buckle and postbuckling behavior occurs. Provided no lateral 

buckling of the flange occurs, the top and bottom edges of the girder 

remain straight and extreme-fiber stress continues to increase. If the 

web were to remain flat, proportionate increases in stress would develop 

• 
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in the rel'\alnuer or lht! wt!ll. Ill" .'UN" lhe wt!u hnll buckled, howt!ver, the 

variation in stress will be nonlinear in the compression zone as shown 

in Figure Sa. During the increase in moment beyond that corresponding 

to the critical stress of the web, the neutral axis moves down to balance 

the moment. The maximum moment ,is reached at an extreme-fiber stress of 

F. Since the variation in stress in the postbuckling state is not 
y 

known, Basler and ThUrlimann assumed a linear distribution in stress as 

shown in Figure 5b over an effective depth of the web, h , as shown in 
e 

Figure 5c. The effective depth of the web, h ,was ssumed to be 30 e 

times the web thickness for girders with the web slenderness ratio 

(hIt) given by 
max 

(hi t) • max 
(4.3) 

in which F
rt 

is the residual stress in the tension flange, Aw is the web 

area, and Af is the flange area. The term (hit) defines the maximum max 

web slenderness ratio which assures no vertical buckling of the compres--

sion flange and flange stress of F. Linear variation of the effective 
y 

depth. of the web, h , was assumed between (hit) and (hIt) . Thus, e 0 max 

with known he and AwlAf' the ultimate bending strength, Mu ' of plate 

girders can be expressed in terms of Af , Fy ' and h, by calculating a 

reduced section modulus. The variation of M 1M with various values of 
u y 

(hit) and Aw/Af is shown in Figure 6 where (h/t)p is the slenderness 

ratio for development of the plastic stress distribution. Since a curve 

passing through points A, 0, and B in Figure 6 is a s traight line, the 

following equation of the ultimate bending moment was obtained ~O): 

M IH 
u Y 

• I -
A 

0.0005/[h/t 
f 

- (hIt) 1 
a 

• 
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Since a rapid increase of the ultimate strength is doubtful Cor (hit) < 

(h/t) , Eq. (4 . 4) was recommended to apply to plate girders with the web o 

slenderness ratio between (h/t) and (h/t) • 
o max 

Eq. (4 . 4) was derived with the assumption of a stable compression 

flange . However, the yield moment , M , in Eq . (4.4) may not be reached 
y 

due to instabi lity of the compress i on flange. Such instability may come 

from lateral buckling, local buckling, or vertical buckling of the com-

pression flange. Thus, Basler and ThUrlimann suggested substitution of 

Mcr - Fcr'Sx for My in Eq. (4.4), where Fcr is the smallest critical 

stress being determined by lateral, local or vertical buckling of the 

compression flange. 

After the Basler-ThUrlimann formula was proposed , Cooper (J4) modi-

fied Eq. (4.4) from several test results; that is, the Basler-ThUrlimann 

formula could be used for plate girders with (hIt} > (h/t} by replac-
max 

ing (h/t) in Eq. (4.4) by (h/t) given by o r 

A 2 (hi ) klT E 
t r - U(l _ }}F 

cr 

(4.5) 

in which F is the lower critical stress due to either lateral buckling cr 

or local buckling of the compression flange. Eq. (4.5) means that ver-

tical buckling of the compression flange due to failure of the web can 

be ignored. Therefore, by incorporating the influence of local or lat-

eral buckling of the compression flange in Eq. (4 . 4), the ultimate bend-

ing strength of plate girders can be expressed by 

M = F . S [l _ 0.0005 Aw (.!:- _ /_-::kll::...2-=~,--_) ) 
u cr x Af t 1'~2(l _ v }F 

cr 

(4.6) 

The bending buckling coefficient k in Eq. (4.6) is determined by 

the degree of flange restraint provided by the web. If no flange 
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restraint is assumed, the theoretLcal vnlue of k is 23.9, and if full 

flange restraint is assumed, k is equal to 41.8. In this study, k - 35.9 

for the bending buckling coefficient is used as implied in the AISC 

Specification. The remaining factor, F ,which is related to instability 
cr 

of the compression flange, is discussed in the following. 

4.1.1.1 Lateral buckling of the compression flange 

Figure 7 shows a plate girder in pure bending, simply supported, 

held against tipping at both ends, and laterally unbraced between the 

ends. The top flange of the girder is under uniform compression and 

would buckle in its weak direction, downward, if the web would not pre-

vent this . However, if the force in the compression flange is large 

enough, it will tend to buckle in the only direction in which it is free 

to move, horizontally. The bottom flange, being in tension, tends to 

remain straight . Since the two flanges and the web actually form a 

rigid unit, buckling can take place only in the manner shown in Figure 

7b. This phenomenon is termed "lateral buckling of the compression 

flange". In this case , the critical moment, M ,at the mid-span is cr 

expressed by (27) 

2 4 
M 2 _ ~EI GJ + ~EI EC 

cr 12 y 14 Y w 
<..4.7a) 

in which 1 is the length of the span, I is the moment of inertia about 
y 

y-axis, J is the torsional constant, and C is the warping constant. A 
w 

more general formulation, including restraints at the ends corresponding 

to bending about y-axis, is given by (27) 

4 
1T 4EI EC J 

()U.) y w 
(4.7b} 
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in which Cb is a coefficient whie h depenus on the variation in moment 

along the span , and K is an effec tive-length coefficient which depends 

on the condition of restraints at the supports. In the bracket of the 

41 

right-hand side of Eq. (4.7b), the first term represents the St. Venant 

stiffness and the second term represents the warping stiffness. How-

ever, the St. Venant stiffness is negligible for plate girders, which 

usually have wide flanges, because the torsional constant is much smaller 

than the warping constant. Thus, the critical stress, F ,due to latercr 

al buckling can be approximated as (27) 

(4.8) 

in which 

(4.9) 

Eq. (4.9) applies to the compression flange in the elastic range. 

Basler and ThUrlimann (10) recommended a transition curve from F at cr 

F - F [1 -cr y 
(4.10) 

Although there have been several different suggestions (13,52) for K 

and C
b 

in Eqs . (4 . 8) and (4.10), the provisions in the AISC Specifica

tion will be used in this research to determine these values because the 

provisions give a good approximation (38) and have been widely used in 

the United States. 

According to the AISC Specification (50), Cb is determined by 

(4.11) 
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in which Ml is the slDIlller nnd M2 the larger bending moment at the enda 

of the unbraced length, and Ml /M2 is positive for reversed-curvature 

bending and negative for single-curvature bending. If the bending mo-

ment at any point within the span is larger than that at both ends, C
b 

is taken as unity. The value of ' K is taken as 1.0 when both ends are 

hinged and 0.5 when both ends are fixed. 

4.1.1 . 2 Local buckling of the compression flange 

A slender plate under uniform compression may d velop a wave form 

as shown in Figure 4.4a . The critical stress for this rectangular plate 

is given by (27) 

(4.12) 

in which k is the plate buckling coefficient, and band ware the width 

and thickness of the plate, respectively. 

This same phenomenon can occur in the compression flange of plate 

girders. This is called "local buckling of the compression flange". 

For plate girders , band w in Eq . (4.12) denote half of the flange width 

and the flange thickness, respectively . 

The value of k is approximately determined by edge conditions of 

the plate as shown in Figure 8b (13) . Basler and ThUrlimann (JO} assumed 

no restraint on the flange from the web and recommended the use of k • 

0.425 . 

Eq. (4.12) is applicable as long as the flange is in the elastic 

range. In the inelastic range, Basler and ThUrlimann (10) suggested the 

transition curve such that for 

b/w < 

• 
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4.1.2 

F cr 

Hybrid girders 

t - F cr y (".13) 

< b/w < 

(4.14) 

The equations discussed in the previous section are for regular 

girders. Since the web of a plate girder contributes only a small part 

of the bending resistance, and its shear resistance depends on the web 

area and its slenderness ratio, a plate girder may be designed such that 

the web is of a lower-grade steel than the flange. This kind of plate 

girders is called the hybrid girder. 

The general bending behavior (16) of hybrid girders is shown in 

Figure 9 with the corresponding variation of stress distribution. In 

the figure, linearity between load and deflection holds only up to the 

point where the web immediately adjacent to the flange begins to yield 

(point A) . However, the curvature of the segment AB is so small that 

OAB is practically straight. After yielding of the flange (point B), 

the increasing rate of moment falls off rapidly . Thus, the bending 

behavior of the hybrid girders is virtually the same as that of homo-

geneous or regular girders, though the ultimate bending strength of 

regular girders is higher than that of hybrid girders. Therefore, the 

ultimate bending strength of hybrid girders can be determined by either 

the flange-yield moment or the moment determined by Eq . (4 . 6), whichever 
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is smaller. A Joint ASCE-MSIIO Committee (16) suggested the follow1ng 

equation for the flange-yield moment, Hyf. 

2 
M f • M [12 + p(3s - s )] 

y Y 12 + 2p (4.15) 

in which s is the ratio of the web yield stress to the flange yield 

stress, and p is the ratio of the web cross-sectional area to the flange 

cross-sectional area. If instability of the flange is incorporated into 

Eq. (4.15), the ultimate bending strength of hybrid girders can be deter-

mined by either 

or 

M - F ·5 [1 -u cr x 
O. 000/101 (~_ 1_......:::kll::,.2..::i"--_)] 

Af t 1'~2(1 _ v )Fcr 

M = F • S [12 
u cr x 

2 
+ P (3s - 5 ») 

12 + 2p 

(4.16 ) 

(4.16) 

whichever is smaller. Lew, et al. (35), showed that this approach agreed 

well with test results, and the AISC Specification (50) has adopted this 

model. In Eqs. (4.6) and (4.16), F is determined by either Eqs. (4.8) 
cr 

or (4.13) in the elastic range, whichever is smaller. In the inelastic 

range, Eqs. (4.10), (4.13) or (4.14) are used for F in the above equa
cr 

tionll. 

4.1.3 Unsymmetrical girders 

Unsymmetrical plate girders have cross-sections whose centroidal 

axes do not coincide with the horizontal centerline of the web plate. 

Although more exact solutions (29,42,45) for the ultimate bending 

strength of unsymmetrical girders exist, present design specifications 

do not take into consideration the behavior of unsymmetrical girders. 

Test results by Ostapenko, et al (41,48) showed that the ultimate 

• 
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bending strength of unsymmetrical girders was 6%-9% above that predlcted 

by the equations for symmetrical girders , with modification of the neutral 

axis . Since this variation from the predicted values is even smaller 

than the variation of ultimate bending strength of regular girders , no 

particular consideration is given for unsymmetrical girders in this study, 

except the adjustment of the neutral axis according to geometric shapes 

of the cross-section. 

4 . 2 Variation of the Ultimate Bending Strength 

The theoretical ultimate bending strength of plate girders can be 

simply expressed by 

M - F ·S·R u cr x 'l'G (4.l7} 

in which F is the smallest critical stress corresponding to instability cr 

of the compression flange, Sx is the section modulus, and RpG is a reduc

tion factor. Variations of measured ultimate bending strength may come 

from variations of the three factors in Eq. (4.17) and idealization or 

simplification of bending behavior of the plate girder in the theoretical 

model. 

To determine the resistance factor in Eq. (2.23), data on variations 

associated with these factors are necessary. This is discussed in the 

following sections . 

4.2.1 Variation in s tress due to variation of material properties 

If instability of the compression flange exists, the critical stress, 

F ,is, as shown in Eqs. (4.9) and (4 . 13), a function of the modulus of cr 

elasticity, E, Poisson's r a tio, v, and a cross-sectional property, (!lIt} 

or (b/w). Otherwise, it is a function of the flange yield s tress only. 

Variation of critical stress due to variations of material properties E 
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and v can be determined (rom Eqs. (2.6) and (2.7) by substituting E -

30 , 000 ksi, the C.O. V. of E • 0.05 , v • 0.3, and the C. O.V . of v • 0.03 

into Eqs. (4.9) and (4.12). The result, the C.O . V. of F for bending cr 

due to i nstablity of the compression flange, is equal to 0 . 06. In the 

case that the critical stress is . the same as the flange yield stress , 

the C. O. V. of F i s equal to 0 .12 . Since most plate girders in practice c r 

are designed to prevent instability of the compression flange, the 

C. O.V . • 0.12 is selected as a characteristic value representing stress 

variation of bending due to variation of material properties. 

4 . 2. 2 Variation of cross-sectional properties 

Cross-sectional properties affecting the ultimate bending strength 

of plate girders are the section modulus, S , and the reduction factor, x 

~G ' which is a function of the web slenderness ratio. However, as 

discussed in Sec t ion 3 . 3, it is difficult to estimate the C.O.V. of every 

cross- sectional property due to a lack of information. Thus, as pre-

viously shown, a C. O.V . • 0.05 will be used for variation of cross-

sectional properties. 

4.2.3 Uncertainty in the theoretical model 

By virtue of simplification or idealization of structural behavior, 

theoretical models invariably have some amount of error in the predic-

tion of strengh of structural members. The error can be measured by 

comparison of experiment ultimate bending strength with theoretical 

values. A comparison of experimenta1 bending strength with theoretical 

ultimate bending strength is given in Table 8 . For the theoretical 

values, E • 30,000 ksi and v • 0.3 have been used with the measured 

static yield stress. 

• 
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VI T ,ble 8 

I ~ 
Comparison of Experimental and Theoretical Ultimate Bending Strength 

I U'rr ) (Fer) 

Reference Test hIt b/.., S F 14tl locI ~G Hex/Mth x ys F (5' F (6) I Source No. (1) (2) (3) ill. ys ) ill (8) • ys 

in3 Gl-Tl (a) 185 24 555 35.4 ks! 1.00 0.56 1.000 1.11 

I G2-Tl (a) 185 8 577 38.6 0.98 1.00 0.983 0 . 96 
G2-T2 (a) 185 8 577 38.6 1.00 1.00 0.982 0.99 
G3-Tl (a) 185 - 561 35.5 0.96 1.00 0.983 1.03 

I 
(11) G3-T2 (a) 185 - 561 35.5 0.99 1.00 0.985 1.05 

G4-Tl (a) 388 8 522 37.6 0.98 1.00 0 . 911 1.00 
G4-T2 (a) 388 8 522 37.6 1.00 1. 00 0.921 1.03 
G5-Tl (a) 388 - 509 35.5 0 . 97 1.00 0 . 912 1.04 

I G5-T2 ~a) 388 - 509 35.5 0.99 1.00 0.913 1.14 
G-A 166.7 6 . 5 2300 em] 3240kg/cmZ 0.79 1.00 0.989 0.81 
G-B 166.7 7.5 1960 3810 0.72 1.00 1.000 0.81 

I G-C 133.3 5 . 5 1520 7850 0.59 1.00 0.985 0.99 
(23) G-D 133.3 5.5 1520 7850 0.71 1.00 0.962 1.03 

G-E 133.3 5.5 1680 7850 0.73 1.00 0 . 964 1.04 

I 
G-F 133.3 5.5 1680 7850 0.80 1.00 0.954 1.11 
G-G* 133.3 5.5 1520 7850 0 . 59 1.00 0.953 1.01 
8-1* 288 8 171 in] 116.4 ks! 1.00 1.00 0.89 0.948 
B-2* 144 8 198 116.4 1.00 1.00 0 .81 0.988 

I B-4* 288 8 171 110.4 1.00 1.00 0.89 0.951 
(35) 8-5* 288 8 171 110.4 1.00 1.00 0.89 0.861 

B-6* 192 8 185 110.4 1.00 1.00 0.81 0.870 

I B-7* 144 8 198 110.4 1.00 1.00 0.81 0.924 
B-8* 144 8 198 110.4 1.00 1.00 0.81 0.933 

(41) UG1. 2** 295 6.4 224 34.2 0.91 1.00 0.95 1.158 

I UG2.3** 295 6.4 224 36.7 0.91 1.00 0.95 0.912 

Notes: *: Hybrid girder 

I 
**: Unsymmetrical girder 

(;1} : Data used in Galambos' study 
(1) : Web slenderness ratio 
(2) : Flange slenderness ratio 

I (3) : Section modulus 
(4) : Mean measured static yield stress of the flange 
(5) : Critical stress due to lateral buckling/(4) 

I (6) : Critical stress due to local buckling/(4) 
(7) : Reduction factor 
(8) : Experimental/theoretical ultimate bending strength 

I 
I 
I 
I 
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From Table B, the mean value of M 1M h 1s estimated to be 1.0 and 
ex t 

the C.O .V. of M 1M h' 0p' to be 0.10 . ex t 

Therefore, by substituting the values of ~ - 0 . 12, OF • 0.05 and 

° • 0.10 into Eq . (2.22) , the C.O . V. associated with the bending resisp 

tance, OR' is equal to 0.16. 

4.3 Bending Resistance Factor 

4.3.1 Safety index 8 

The safety index 8 which is given by Eq. (2.13) can be obtained 

through calibration with currently used specifications such that the 

same degree of reliability is obtained in the new criterion as in the 

existing design method for a member in a standard situation . In this 

work, calibration is performed with the AISC Specification for a simply 

supported, compact, adequately braced regular girder. A plate girder 

is assumed to be designed according to Part 1 (elastic design) of the 

AISC Specification (50). 

If a plate girder is the standard situation described above is load-

ed with uniformly distributed dead and live loads, the maximum moment on 

the girder is expressed by 

(4.181 

in which CD and CL are influence coefficients of dead and live loads, 

respectively, D and L are, respectively, dead and live load intensi-
c c 

ties defined by the code (6), and ~L is a live l oad reduction factor 

which is, according to ANSI A.58.1-l980 Draft, given by 

(0.25 + ~l 
rt::;, 

for L 
c 

< 100 psf and A > 400 sq. ft. (4.19) 
I 

in which AI is the influence area which is twice the tributary area for 

a beam-type member. 
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According to Part 1 of the AISC Specification, the elastic section 

modulus S is determined by x 

M 
max S • --==- . 

x Fb ' ~G 

COOc + CLLcl1.L 

Fb'~G 
(4.20) 

in which Fb is the allowable bending stress defined by the specification 

and ~G is a stress reduction factor . For the standard case, Fb is given 

by 

(4.21) 

Since the critical stress is the same as the yield stress for the 

given standard situation, the mean experimental ultimate bending strength, 

M , of plate girders may be expressed by 
m 

M • F • 5 • R- • (M 1M ) 
m ysm x -~G ex th m (4.22) 

in which F is the mean static yield stress and (M 1M h) is the mean 
ysm ex t m 

ratio of experimental to theoretical ultimate bending strength. F • 
ysm 

1.0F and (M 1M h) • 1.0 have been estimated in Section 3.3 and Section 
y ex t m 

4.2, respectively . 

Substitution of Eqs. (4.20) and (4.21) into Eq. (4.22), and simpli-

fication yields 

(4.23) 

The mean applied load, moment in this case, ~, is given by 

o • C ·0 + C 'L 
'm 0 m L m 

(4.24) 

in which 0 and L are the mean applied dead and live load intensities, 
m m 

respectively . The mean applied dead load intensity, 0 , is assumed to 
m 

be the same as the code specified load O. The applied live load inten
c 

sity, L , is, according to the Ellingwood-Culver equation, 
m 

L 
m 

• lB.7 + 520 

fA; 
(3.3) 

• 
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The C.O .V. of applied loads, IlQ' which is independent from resistance 

capacity , and the C. O.V . of bending resistance , IlR' have been estimated 

in previous sections to be 0.13 and 0.16, respectively. CD and C
L 

are 

the same for the uniformly distributed dead and live loads. 

The determination of a is accomplished by knowing Mm' ~, IlR ' and 

IlQ• By taking Lc a 50 psf for office buildings, variation of B with 

respect to tributary area, ~, and code specified dead load, D , is 
c 

shown in Figure 10. The figure shows that the value of B approaches 2. 0 

wit~ an increase of the code specified dead load and the tributary area. 

Therefore, B ' 2.0 is selected as a safety index for bending resistance. 

4.3.2 Resistance factor pm 

The resistance factor for bending is determined by 

R 

~m - ~p(-aBIlR) 
n 

(2.20) 

in which R is the mean experimental ultimate bending strength , M ; R 
m m n 

is the theoretical ultimate bending strength, M ; and a is a lineariza
n 

tion factor which is determined by Eq. (2.17). Thus, from ~ - 0.16 and 

IlQ - 0.13, a - 0.70 is obtained . 

The nominal ultimate bending strength for plate girders in the 

standard situation is given by 

(4.26) 

and the mean measured ultimate bending strength can be expressed as 

M - F ·S ·R- · (M 1M h) m ysm x ~l'G ex t m 
(4 . 22) 

Since F IF - 1 . 0 and (M 1M h) - 1.0 from Section 3.3 and Section ysm y ex t m 

4.2, M 1M becomes unity. 
m n 

Therefore, by substituting M 1M - 1.0, a - 0.70, B - 2.0 and IlR -m n 

0.16 into Eq . (2.20), the rl!sistance factor ~ a 0.80 is obtained for bending. 
m 
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Compared with a value of $ - 0.86 presented 1n Galambos ' work (24), 
m 

$ - 0 . 80 is relatively small, wh i ch means this study has selected a m 

more conservative value for the bending resistance. This difference is, 

as shown in Table 9, due to differences of most factors used in the de-

termination of $ , though almosr the same equations have been used in m 

Galambos ' work and in this work . 

In general , the sampled data in the works of Galambos (24,25,26) 

have smaller variations than those used in this research, which resulted 

in the difference in the resistance factors. Furthermore, a - 0.55 used 

in Galambos' work is unreasonably small. In the range of 1/3 < 0Q/OR < 

3, a - 0.75 gives a good approximation with less than 6% error (36). The 

value of a used in his study could not be far beyond this range because 

he used the McGuire-Cornell live load model which gives almost the same 

distribution of live load as that used in this study. 

, 

Il 
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I Table 9 

I 
Summary of Results -- Bending Resistance Factor 

Parameter Galambos' Value (24) Selected Value 

I OR 0.14 0.16 

I ~ 

OF 

0 . 10 0.12 

0.05 0.05 

I Op 0 . 08 0.10 

I 
0Q 

a 

Not shown 0.13 

0.55 0.70 

I B 

M 1M m n 

3.0 2.0 

1.03 1.0 

I 
~m 0.86 0.80 

• • 
I 
•• 
• 
I 
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Ch,' pter 5 

PLATE GIRDER IN SHEAR 

5 . 1 Ultimate Shear Strength 

In evaluating the behavior 9f plate girders subject to shear, it is 

assumed that the web is a plane and the material is elastic-plastic. 

Such a web buckles at a stress that can be predicted by (38) 

F vcr 
k,,2E - ----~~~-c--. 

12(1 _ }) (~)2 
t 

(5.1) 

in which F denotes the critical shear stress, k is the shear buckling vcr 

coefficient, and hand t are the depth and thickness of the web, respec

tively. The behavior explained by Eq. (5.1) is called "beam action" of 

plate girders. Subsequent to the web buckling, the stress distribution 

in the web changes and considerable postbuckling strength may be developed 

due to diagonal tension. This is called "tension field action" of plate 

girders and is shown in Figure 11. However, the exact distribution of 

the diagonal tension bas been unknown (33). 

Basler (9) was the first to successfully formulate a model for the 

tension field action of plate girders. Since the Basler formula was pro-

posed, many variations of the postbuckling tension field have been deve

loped (22,42,46) . The main differences among them are in their explana-

tion of the tension field distribution. Johnston (33) showed a compari-

son of experimental to theoretical shear strength predicted by seven 

different models, in which the Basler formula gave good agreement with 

test results, even though it had a slightly larger variation than the 

other models. 

Since it is a good predictor, and since it is familiar to desigoers 

in the United States mainly due to adoption in the AISC Specification, 
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Figure 11 . General distribution of tension field 
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Figure 12. Basler ' s tension field 
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Figure 13. Equilibrium conditions applied to a free body 
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the Basler formula is used in thi s research for prediction of the ulti-

mate shear strength of plate girders, 

5.1.1 General equation for predicting ultimate shear strength 

The ' tension field in a girder with transverse stiffeners is anchored 

by the flanges and stiffeners, and the resulting lateral load on the flange 

from the tension field causes the flange to bend inward. Therefore, the 

nature of the tension field is influenced by the bending stiffness of the 

flange. 

Basler assumed that the flange was too flexible to support a lateral 

loading from the tension field, so that the band shown in Figure 12 

determines the shear strength . 

A free body taken from Figure 12 is given in Figure 13. By taking 

moments about point 0 in Figure 13 , the shear strengtlt, V t' due to the 

tension field action is predicted by 

(5.2) 

It is postulated that at ultimate shear, tlte angle ~ in the figure will 

be such as to maximize Vt • Titus, 

from wltich 

tan2~ 
h --a 

Since tane - ~ is obtained from Figure 12, 2~ is equal to e. a 

Equa tion (5.2) becomes 

(5,3) 

(5.4) 

Thus, 

(5.5) 

In the plate girders with slender webs, neither the pure beam action 

nor the pure tension field action occurs alone, but rather the sum of 
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both. Therefore, the ultimate shear strength, V , is 
u 

V - V + V u cr t 

59 

(5.6) 

in which V is the shear strength through beam action. V is approxi-cr cr 

mately given by 

V - F ·h·t cr vcr (5.7) 

Substitution of Eqs . (5.5) and (5.7) into Eq. (5.6) gives the ultimate 

shear strength as 

V - F · h·t +!f ·h·t·sine u vcr 2 t (5.8) 

It has been found that the following equation approximates the von 

Mises yield criterion with less than 10% error (9) 

f 
t 

F - 1 
y 

F 
vcr ---
F 

vy 
(5.9) 

According to the von Mises yield criterion, the shear yield stress, 

F (27), 1s 
vy 

F 
F ~_1.. 
vy 13 

(5.10) 

Thus, by substituting Eqs. (5.9) and (5.10) into Eq. (5.8), the ultimate 

shear strength of plate girders is finally expressed as 

V s A [F 
u w vcr 

F 
_~) 1 

F 1 
vy II + u 

1 
2 

(5.ll ) 

in which u - * and 1//1 + u
2 

- sine . The ultimate shear stress F is 
vu 

obtained from Eq. (5.11) by dividing both sides by Aw; that is, 

F - F vu vcr 
+ J3r (1 _ Fvcr ) 1 

2 vy F 1 2 
vy 11 + u 

(5.12) 

The critical shear stress, F ,given in Eq. (5.1) is valid only 
~ r 

in the elastic range. The Olctusl failure s tress of compression elements 
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with a low slenderness ratio may exceed F . Considering this effect, cr 
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Basler (9) assumed that inelastic buckling would occur if F exceeded 
vcr 

0.8F ,and took the inelastic shear stress, F i' as vy vcr 

F • 10.8F ·F (5.13) 
vcri vcr vy 

He also assumed that if F i exceeded F ,the tension field action vcr vy 

could be neglected . Thus, the ultimate shear strength in this range is 

v - F ·A u vcri w 
(5.14) 

5.1.2 Shear buckling coefficient k 

For the shear buckling of plate girders, the web panel is considered 

as a plate. The shear buckling coefficient, k, of a plate is a function 

of not only the boundary conditions along the edges but the aspect ratio 

a of the plate, It in Figure 1 2. By the nature of the flexible flange in 

his model, Basler (9) assumed four pinned edges of the web panel. For 

this case, the following equation (13) gives a good approximation to the 

a 
value of k as long as the aspect ratio, u = It, is greater than 1: 

k - 5.34 + 4.0 
2 

u 
(5.15) 

If the aspect ratio is less than 1, the roles of two sides of the web 

panel in preventing buckling are reversed, and the value of k is given 

by 

k _ 4.0 + 5.~4 
u 

5.2 Variation of Ultimate Shear Strength 

The ultimate shear strength can be simply expressed by 

v - F ./\ 
u vu w 

(5.16) 

(5.17) 
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in which F is determined by either Eq. (5 . 12) or Eq. (,5 .13) • Thus, the 
vu 

ultimate shear stress is expressed in terms of stress and a dimensional 

property. Since these two terms vary due to variations of material pro-

perties and of dimensional properties, the ultimate shear strength also 

shows variation. Uncertainty associated with the theoretical model is 

another factor causing variation in the ultimate shear strength. 

To determine the shear resistance factor, $ , in Eq. (2. 23), data 
v 

on variations in these factors should be known. They are discussed in 

the following sections. 

5.2.1 Variation of the ultimate shear stress 

The ultimate shear stress of plate girders with slender webs is, as 

shown in Eqs. (5.12) and (5.1), determined not only by material proper-

h a 
ties, E, v, and Fyw' but also by dimensional properties, t and h' Since 

variation of dimensional properties is separately reflected in the C.O.V. 

of cross-sectional properties, OF' only the material properties are con

sidered as random variables here. Thus, by utilizing Eqs. C2.6) and 

(2.7), the mean ultimate shear stres s and the variance are expressed by 

and 

F 
vum 

(1 -

3 1 
Var[F 1 - [1 - ---''--"",-lVar[F 1 + 2 Var[F 1 

vu 4(1 + u-) vcr 4(1 + u ) ysw 

(5.18) 

(.'i.19) 

in which the subscript m denotes the mean value, and Var[F ] is given vcr 

by 

2 
4v m 2 2] 

2 
n Vm 

(l - v ) v 
m 

(5.20) 
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where nE and nv ar e the ~ . O . V . s of the modulus of elasticity and Pois

son's ratio, respectively. From the above equations, it is apparent that 

the C. O.V . of the ultimate shear stress is affected by the web slender-

ness ratio and the aspect ratio of the web panel . Variations of the 

C.O . V. of the ultimate shear stress, n 
m' 

with respect to the aspect ratio, 

a and the slenderness h 
Figure 14, h' ratio , t' are shown in where E a 

m 

30,000 ksi, n = 0.05, vm = 0 . 3, n = 0.03 and F = 36 ks! have been E v yw 

used (Jable 61. Figure 14 shows that the C. O.V . of the shear stress 

increases with an increase of the web slenderness ratio and the aspect 

ratio of the web panel. For the selection of ~ associated wtt~ the 

ultima t e shear stress, it is assumed that a high slenderness web is not 

accompanied by a web with a high aspect ratio . Thus, an aspect ratio 

a ~ h = 1.5 and t = 250 ~ 300 is considered as a typical proportion for plate 

girders . From this assumption, ~ = 0.25 is selected as the C.O,V . of 

the ultimate shear stress. 

5.2.2 Uncertainty of theoretical model 

The theoretical formula, which is given by E~ . (5.111 or Eq . ().141, 

for predicting the ultimate shear strengt~ inevitably deviates from 

actual performance due to idealization or simplification in the model. 

The average error of theoretical models can oe measured by comparing the 

experimental and theoretical ultimate shear strength. Ta~e 10 gives 

summarized results of comparisons between experimental values and theo-

retical values of the ultimate shear strength of plate girders. Mea-

sured static yield stresses of the web have been used for the theoreti-

cal shear strength. From the data in Table 10 , (V IV h) • 1.08 and . ex t · m 

the C. O.V., n - 0 . 12 are obtained. Johnston (33) concluded, from data 
p 

including only regular girders, that the Basler formula had (V Iv h) a - ex t m 
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Table 10 

Comparison 0 f Experimental and Theoretical 
Ultimate Shear Strength 

f (3) F (4) A (5) Vex (6) 
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Reference 
Source 

Test 
Number ~ (1) .!! (2) h .::t __ 

ysw cr 101 V 
(ks!) (ksi) (S9. in.) ..,:to!h!....-_ 

(11) 

(41) 

(35 ) 

(43) 

(22) 

G6-Tl (al 
G6-T2 (a) 
G6-T3 (a) 
G7-Tl (a) 
G7-T2 (a) 

UG 1.1 * 
UG 2. 1* 
UG 3.1* 

5-1** 
5-2** 

FlO-1 
FlO-5 

G1-1 
Gl-2 
G2-1 
G2-2 

Hl-Tl (iI) 
HI-Tl (a) 

1.50 
0.75 
0.50 
1. 00 
1. 00 

0.80 
1. 20 
1. 60 

0.83 
0.83 

1. 50 
1.20 

3.00 
1.50 
3.00 
1.50 

3. 00 
1.50 

259 
259 
259 
255 
255 

295 
295 
295 

191 
191 

195 
195 

182 
182 
144 
144 

127 
127 

36.7 
36 . 7 
36.7 
36.7 
36.7 

43 . 4 
43.4 
43.4 

40 .8 
40.8 

38.7 
38.7 

70.4 
70.4 
70.4 
70.4 

108.1 
108.1 

2.87 
5.45 

10.21 
3.88 
3.88 

3.83 
2.52 
2.14 

8.73 
8.73 

5.06 
5.77 

4.71 
5.80 
7.53 
9.27 

9.68 
11.92 

9.65 
9.65 
9.65 
9.80 
9.80 

4.50 
4.50 
4.50 

6.80 
6.80 

12.50 
12.50 

12.30 
12.30 

9.70 
9.70 

19.65 
19.65 

1. 03 
0.95 
0.98 
0.99 
1.02 

1.09 
1.12 
1.19 

0.92 
0.85 

1.09 
1.02 

1.21 
1.02 
1. 34 
1.17 

1.33 
1.08 

Note: *: Unsymmetrical girders 
**: Hybrid girders 

(a): Data used in Galambos' study. Some data used for shear 
analysis in his study cases in this study are categorized 
as the combined shear and bending . 

(1): The aspect ratio of the web panel 
(2): The web slenderness ratio 
(3): Mcn8ured static yield stress of the web 
(4): Critical stress of the web 
(5) : Area of the web 
(6): Experimental/theore t ical ultimate shear strength 
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1.05 and the C.O.V. = 0.13. Galambos had lower values, with (V Iv h) a 
ex t m 

1.03 and the C. O.V . a 0.11 from data taken from two sources. Compared 

with the data used in those two studies, relatively representative data, 

have been collected in Table 10. Thus, (V IV h) - 1.08 and ° - 0 . 12 ex t m p 

are t aken as appropria t e values . 

5 . 3 Shear Resistance Factor 

5 . 3.1 Safety index e 

To determine the safety index B given in Eq. (2.l3) for the shear 

strength, values of the ratio of the mean measured ultimate shear strength 

to the mean applied shea r force , Vum/~, and the C.O .V. s of snear res is-

tance and applied shear force, OR and 0Q are required. 

0Q ~ 0.13 has been estimated in Section 3 . 2 , and from the values 

of ~ • 0.25, 0p a 0 . 12 and OF • 0.25 , the C. O.V. of shear resistance, 

~, is found to be 0 . 28. Thus, by using Eq . (2.l7), the linearization 

factor, a· 0.75 is determined. 

The ratio of Vum to Qm is obtained through calibration with the 

AISC Specification, Part 1. 

A simply supported plate girder under uniformly distributed dead 

and live loads is subjected to a maximum shear force given by 

V - C · D + C ·L ·FL max D c L cLL (5.21) 

in which CD and CL are influence factors of dead and live loads , respec

tively, D and L are the code specified dead and live loads intensities , c c 

and ~L is a live load reduction factor whicn is given by Eq . (4 . 19). 

According to thc AISC Specification, the required weh arca, A , to 
w 

resiat tl.e applied 8hear force is 

Cn'Dc + CL·Lc·RLL 
F 

v 
(~.22) 
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where F is an allowable shear stress which is approximately equal to 
v 
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(5.23 ) 

in wh i ch F is the ultimate shear stress given in Eq. (5.12) . vu 

The mean measured ultimate shear strength, V ,can be expressed by 
urn 

V - F ·A· (V IV ) 
urn vum w ex th m 

(5.24) 

Since F IF is approximately equal to F IF which has been pre-
vum vu yswm yw 

viously estimated to be 1 .10, substitution of Eqs. (5.22) and (5.23) into 

Eq. (5 . 241 gives the mean ultimate shear strength as 

(5.25) 

The mean applied shear force can be expressed by 

o z C ' O + C 'L 
'm 0 m L m 

(5.26 ) 

in which 0 is the mean applied dead load that is assumed to be equal to 
m 

the code specified dead load, 0 , and L the mean applied live load that c m 

is determined by Eq . (3 . 3). 

By substituting all known values discussed above into Eq. C) .13}, 

the value of the shear safety ind~x B can be determined. The variation 

of B with respect to tributary area ~ and code specified dead load Dc 

are shown in Figure 15. The figure shows that the value of B approaches 

2.2 with increasing~ . Therefore, S = 2.2 is taken as the shear safet~ 

index. 

5.3.2 Shear resistance factor tv 
To determine the shear resistance factor, ~ , given fn Eq. (2.20), v . 

the ratio of the mean experimental shear ~trength to nominal ultimate 

shear strength, V IV, shollid be known. um n 
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Figure 15. Variation of safety index, a, for shear with tributary area , A.r 
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The mean experimental ultimate shear strength is expressed by 

v - F ·A· (V IV ) um vum w ex th m 
(5.24 ) 

and the nominal ultimate shear strength is given by 

V - F ·A n vu w (5.27) 

By subtituting F IF ~ F IF ~ 1.1, (Vex/Vth)m u 1.08, B - 2.2 and vum vu - sywm yw-

OR - 0.28 into the corresponding equations, the shear resistance factor, 

~ , is determined to be 0.75. "'v 

Compared with CPv - 0.86 in the work of Galambos (~4), CPv - 0.75 

obtained here is quite small, which means it is much more conservative. 

This is due, as shown in Table 11, to a large difference in the C.O.V. of 

shear stress between the Galambos work and in this work. Galambos ignored 

the influence of the web slenderness ratio and the web aspect ratio on 

the C.O . V. of the shear stress, and took account of stress variation due 

to only variation of material properties. Galambos' value a • 0.55 is, 

as discussed 1n Section 4.3, unreasonably small. 
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Table 11 

Summary of Results Related lUth Shear Resistance Factor 

Parameter Galambos Value (24) Selected Value 

OR 0.16 0.28 

~ 0.11 0.25 

OF 0.05 0 . 05 

0p 0 . 11 0 . 12 

0Q not shown 0.13 

a 0.55 0.75 

B 3.0 2.2 

lV ex/V th)m 1.03 1.08 

4>v 0 . 86 0.75 
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Chapter 6 

PLATE GIRDERS IN COMBINED SHEAR AND BENDING 

6.1 Selection of Interaction Model 

Behavior of plate girders subject to high shear and high moment may 

be the least known area in analysis of the plate girder. Consequently, 

no predominant analytical model explaining the interaction relation 

exists. 

As shown in Figure 16, there have been several different interaction 

models proposed. The primary factors to describe the interaction rela-

tions are the shear strength and the bending strength, which are defined 

differently in each model. 

If shear and bending strengths of plate girders are plotted in the 

ordinate and the abscissa, respectively, in the Cartesian coordinates, 

the intersection of a interaction curve with the ordinate represents the 

ultimate shear strength of plate girders with no applied bending moment, 

and the intersection of an interaction curve with the abscissa defines 

the ultimate bending moment of plate girders with no applied shear forces. 

For keeping consistency with previous work in this research, these two 

ultimate strengths of plate girders should be defined by the same equa-

tions as given in Chapters 4 and 5. 

Therefore, it is concluded that the LFD criteria in the American 

Association of State Highway and Transportation Officials (~\SHTO Speci-

fication (Figure 16c) in which the ultimate bending strength reflects 

instability of the compression flange, is proper as the interaction 

model for this research. The AASHTO model, which is a modification of 

Basler's interaction model (Figure L6c) was also used in Galambos' 

study (24). 
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6.2 Interaction Equations 

Assuming the shear in a plate girder to be carried only by the web, 

shear resistance is maximum when the web has yielded uniformly, or when 

it has a fully developed tension field, in the case of plate girders 

with slender webs . This shear resistance is independent of the bending 

moment in the web panel as long as the moment is less than the flange 

yield moment, M
f

. M
f 

is the moment which can be carried by the flange 

alone when the stresses over the entire flsnge reach the yield point. 

Any large moment than the flange moment must fie resisted in psrt by the 

web, which reduces the shear resistance of the web, until the shear 

capacity finally becomes zero. Therefore, the interaction envelope can 

be described as shown in Figure l6e. In the figure, the yield moment, 

~I , is defined as the moment initiating yielding at the centroid of the 
y 

compression flange and the plastic moment, M , is the moment of a fully 
p 

yielded cross-section. By approximating the distance between the two 

flange centroids as the web depth, h, the three referenced moments of a 

symmetrically proportioned girder can be expressed as 

M - F ·h·A f yf f 
(6.l} 

My - Fy(h. (}..f + ~w) (6.21 

snd 

(6.3) 

The abscissa of points Band C in Figure l6e is a function of Aw/Af as 

shown below: 

(6,41 
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~My -
yt f 4 

A 
w 

(6.5) 

F ' h' (A +-) 
yf f 8 

The curves resulting from Eqs. (6 . 4) and (6.5) are given in Figure 17 for 

various combinations of Aw/Af . 

Basler assumed Aw/Af • 2.0 as a representative proportion for plate 

girders, and selected MflMy a 0.75 and H/My = 1.125. However, since 

development of any moment larger than M is doubtful, the portion of the 
y 

interaction curve to the right of HIM = 1.0 was disregarded . The curve 
y 

BDC in Figure 17 intersects the vertical line of M/M • 1 . 0 at the 
y 

V/V 
1 all values of AjAf • - - for Connecting points B and D, and u 13 

using 

M/M ~ O. 75 and V IV = 0.6 gives the following equation for the inter-y u 

action region between points B 

M 
i1-

y 

and D 

1.375 

in Figure 17 

V 
- 0.625(V-) 

u 
(6.6) 

However, the Basler interaction model does not take into account 

the instability of the compression flange . Because of the instability 

of the compression flange, the flange yield may not be developed. Thus, 

the maximum moment which can be developed is defined by the ultimate 

moment, M , which is expressed by Eq. (4.6) in pure bending cases. By 
u 

substituting this ultimate bending strength for M in Eq. (6.6), the 
y 

interaction equation becomes 

or, in terms of stress, 

: • 1.375 -
u 

fb 
F· 1.375 

bu 

(6.7) 

(6.B) 
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in which fb and fv are, respectively, bending stress and shear stress 

which are defined by 

(6.9) 

and 

(6.10) 

The ultimate bending stress , F
bu

, is equal to the ultimate bending 

moment, M , given in Eq. (4.6) divided by the section modulus, S • 
u x 

The above approach has been adopted by the AASHTO Specification. 

6.3 Uncertainties in Girder Strength 

Strength of plate girders in the interaction range would be expressed 

by two terms; one is bending strength and the other is shear strength, 

which are given as 

and 

M s f 'S 
i b x 

(6.11) 

v - f 'A (6 .12) i v w 

The stress fb and fv are interrelated through Eq . (6.8) . To distinguish 

shear strength and bending strength in the interaction range from the 

shear strength of plate girders s ubject to predominant shear force and 

the bending strength of plate girders in pure bending, hereafter , Mi 

and Vi are referred to as "interaction bending strength" and "interaction 

shear strength", respectively . 

The interaction shear strength and bending strength vary due to 

variations of the stresses , fb and fv' which are a function of ultimate 

shear stress and yield stress. Error associated with the interaction 

equation is another factor causing variation of girder strength in the 

interaction range. Uncertainties t n cross-sectiona l properties, A , and w 



I 
I 
I 

()O 
.". 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

• 

S , also are random variables in predicting girder strength. However, x 

the C.O.V. of cross-sectional properties, OF' has been estimated to be 

0.05 for all cross-sectional properties, uncertainties associated with 
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only stresses and the interaction formula are considered as random vari-

abIes in this section. 

6.3.1 Variation of stress 

The interaction equation given in Eq. (6.8) can be rearranged as 

either 

or 

f 
fb - Fbu (l.375 - 0.62~) 

vu 

f - F (2.2-v vu 

(6.13) 

(6.14) 

in which Fbu and Fyu are the ultimate bending stress and shear stress, 

respectively. 

It is assumed, for simplicity, that f in Eq. (6.13) is a constant 
v 

at a given loading condition as far as the interaction 6ending strength 

is concerned. Similarly. fb in Eq. (6.14) is assumed to be a constant . 

Then. fb and fv are each a function of two random variables Fbu and Fvu' 

As shown in the previous chapters. the C.O.V. of Fbu is governed by the 

C.O.V. of the flange static yield stress. The C.O.V.s of the static 

yield stress of the flange and of the ultimate shear stress have been 

estimated in Sections (4.2) and (5.2). to be 0.12 and 0.25. respectively. 

By using Eqs. (2.5) and (2.6). the mean values and variances of tb 

and f are obtained as: 
v 

f 
v O.625-

F
-) 
vum 

(6.15 ) 
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fv 2 2 
[0.15625\um -F-1 n2 

VUID 

Var[f ] - [F (2.2 
v vum 

f 
- 1.~)]2n~ + 

bum 

f 
[1.6F _b_]2n2 

vum Fb 1 um 
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, (6.16) 

(6.17) 

(6.18) 

In the above equations, Fb is the mean ultimate bending stress of the um 

flange, Fvum is the mean ultimate shear stress, n
1 

is the C.O.V. of F
bu

' 

and n
2 

is the C.O.V. of F 
vu 

From Eqs. (6.15) and (6.16), nfb ' the C. O.V. of f
b

, is obtained as 

f 
(0.62r)2(l~ 

+ ___ --'vum-=_--;:--_ 
f 

(1.375 - 0 . 62~)2 
vum 

and from Eqs. (6.17) and (6.18), nfv ' the C.O.V. of fv' becomes 

Ilf -v 

(1.~)2Ili 
+ ___ :::.bu:::m=-_.--

f 
(2.2 _ 1.~)2 

bum 

(6.19) 

(6.20) 

Since III - 0. 12 and 112 - 0.25 have previously been established, Ilfb and 

nfv are, respectively, functions of fv/Fvum and fb/Fbum which are equi

valent to v/v and M/M , respectively. 
u u 

Therefore, nfb and nfv have different values for different loading 

paths. Table 12 gives the values of nfb and nfv corresponding to the 

loading paths shown in Figure 18. 



I~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

• 

v 
v A 

u 

1.0 t---+--f--,( 

0.6 

0,75 

G 

I 

1.0 

H 

M 
M 

u 

Figure 18. Designation of loading path 

Table 12 

Values of n
fv 

and nfb Corresponding to Loading Path 

Loading Coordinate 
V/V H/M n

fv nfb Path __ u u 

A 1.0 0.3 0.252 0.240 

B 1.0 0.5 0.259 0.240 

C 1.0 0.75 0.288 0.240 

D 0.9 0.8125 0.304 0.211 

E 0.8 0.8750 0.326 0.187 

F 0.7 0.9375 0.359 0.167 

G 0.6 1.0 0.406 0.152 

H 0.5 1.0 0.406 0.141 

I 0.3 t.O 0.406 0.126 

78 
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6.3.2 Uncertainty in interaction formula 

Applied shear force and bending moment on a plate girder are induced 

by applied load P , so they can be expressed in terms of applied load P; 

for instance, V = P/2 and M - P' x/2 for any particular cross-section 

located at distance x from a support of a simply supported girder with 

a concentrated load at the center of span. Therefore , the ratio of M/V 

is independent of the applied load P, and characterizes the inclination 

of the loading path in the interaction diagram if the location of a 

particular cross-section, in a failed panel, is determined. 

The interaction curve ABCD in Figure 19 is defined as the boundary 

between points on the safe side and those which lead to failure. Be-

cause the vector length on the PIP axis may be interpreted as a load 
u 

intensity, the theoretical ultimate load, P , for any particular cross
u 

section subject to combined bending and shear is, by definition, the 

intersection (point E) of this particular loading path with the curve 

ABCD . Thus, once the loading path is determined, in other words once 

the loading condition and concerned cross-section are determined, the 

variation between theoretical and experimental girder strength in the 

interaction range can be measured by comparing rex and rth in Figure 19 . 

The choice of the cross-section for which the moment values and the 

shear values are calculated is important because those values may vary 

throughout the length of the plate girder. This choice is made by 

following Basler's method (8); that is, the cross-section is chosen to 

be in the panel where failure has occurred at a longitudinal distance 

one half the web depth from the high-moment end, or at the middle of the 

longitudinal panel when its length is less than its depth. 
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Results of a comparison between the theoretical ultimate load and 

the experimental ultimate load in the interaction range are summarized 

in Table 13 and plotted in Figure 20. The data in Table 13 includes 

only regular girders and unsymmetrical girders. Hybrid girders may have 

a different trend for the ratio of P /p h' but they have not been ex t 

examined due to lack of data in the literature. 

The data presented in Figure 20 can be grouped into three regions; 

these are the shear dominant region, the high shear-high moment region 

and the moment dominant region. They are termed Region I, Region II 

and Region III, respectively. However, Region III has not been examined 

in this study due to lack of data. 

The data shows that Region I has (P /P h) - 0.98 and the C.O.V. -ex t m 

0.11 while Region II has (P /P h) - 1.07 and the C.O.V. ~ 0.07 . Since ex t m 

the uncertainty in girder strength increases when loading path approaches 

from A to B or from D to C in Figure 20, it may be expected that Region 

I and II will have the smaller mean values and the larger C.O.V.s than 

those of predominant shear or pure bending. However, compared with 

{Vex/Vth)m g 1.08 and the C. O.V. ~ 0.12 for predominant shear, and 

(M /H h) = 1.0 and the C.O.V. = 0.13 for pure bending, the results 
ex t m 

do not agree with the expectations. This may be due to insufficient 

data used in the analysis. Since the girder strength in the interaction 

range is a function of the ultimate shear strength and the ultimate 

bending strength, it may be safe to select the smaller mean value and 

the larger C.O.V. of the values of these two parameters. Therefore, 

(Pex/Pth)m - 1.0 and the C.O.V . - 0.13 are taken as appropriate values 

for the interaction range. 
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Table 13 

Experiment vs Theoretical Strength of Plate Girders in Combined Shear and Bending 

F F S 
M V P 

Reference Test h 
A 

crf ex ex ex 
a w vu x 

M V P
th Region Source No . h t (in2) (ksi) (ksi) (in3 ) u u 

E1-T4 1.0 131 19.10 30 .3 20.43 1922 0.734 0.873 0 . 93 
E2-Tl 3.0 99 25.35 31. 7 16.30 1480 1.007 0.914 1.15 
E2-T2 1.5 99 25.35 31. 7 18.92 1480 1.010 0 .789 1.09 

11 E4-T2 0.75 128 19.60 31. 3 22 .27 1292 1. 02 7 0 . 728 1.08 

Inter- E4-T3 0.5 128 19 .60 31. 3 27.78 1292 1.095 0 .598 1.07 
G8-T3* 1.5 254 9.85 37 . 3 12 . 14 531 0 .774 0.974 1.00 

action G8-T4 1.0 254 9.85 37.3 15.02 531 0.861 0 . 875 1.02 
I UG3 . 2 1.6 295 4.39 32 .6 12 .68 224 1.003 0.767 1.08 i 
I 42,48 UG3.3 1.6 295 4.39 32 .6 12 . 68 224 0 . 990 0 .759 1.06 

UG4 .3 1.46 414 8 .76 33 .4 18.13 439 1. 087 0 .612 1.07 
UG4 .4 1.77 269 8.72 33 . 1 9.95 464 0.925 0.806 1.04 

43 FlO .4 1.5 195 12.85 23 .2 5 . 05 756 1 . 080 0 . 990 1. 23 
E1-Tl* 3 .0 131 19 . 10 30 .3 13.20 1922 0 .596 1 . 101 1.10 
E1-T2* 1.5 131 19 . 10 30.3 17.39 1922 0 .622 0.873 0.87 
E1-T3 1.5 131 19 . 10 30.3 17 .39 1922 0.272 0 .954 0.95 

11 
E4-Tl 1.5 128 19 .60 31. 3 17 .19 1292 0.367 0.88 3 0 .88 
G8-Tl* 3.0 254 9.85 37 . 3 7.80 531 0.565 1.106 1.11 

Shear G9-Tl 3.0 382 6.55 37.9 7.86 505 0.341 0.932 0.93 

Dominant G9-T2 1.5 382 6.55 37.9 13.03 505 0.231 0.879 0.88 
G9-T3 * 1.5 382 6.55 37 . 9 13.03 505 0.561 0.926 0.93 
UG2 . 2 1.2 295 4 . 39 36 . 2 14 . 96 224 0.458 1.065 1. 07 
UG4 . 1 1.77 414 5.70 33.1 17 . 62 439 0.414 0 . 813 0.81 

42,48 UG4.2 1.14 414 5 . 70 33 .7 21 . 04 876 0 . 543 0.994 0.99 
UG4.5 0 . 83 269 8 . 72 33.9 14 . 18 871 0.518 1.053 1.05 
UC4 .6 1.77 269 8 . 72 33.1 9.95 871 0.243 1 . 138 1.14 

!'ote : *: Data used for shear analysis in Galambos ' study . No test data tor the interaction case were used 
in Galambos ' study. <XI 
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6 . 4 Resistance Factor ii for Combined Shear and Bending 

6.4 . 1 Safety index B 

The safety index B given by Eq. (2.13) may be rewritten, by trans-

lating the mean measured girder strength into the mean interaction bend-

ing strength and the mean interaction shear strength, as 

and 

ln (V im/QV1D) 

IORV + 0Q 
(6.21) 

(6.22) 

in which Qvm and ~ are the mean shear force and the mean bending mo

ment, respectively, which are induced from the applied load P, and 0RV 

and 0RM are the C.O.V . s of the interaction shear resistance and the 

interaction bending resistance, respectively. Since 0fv and 0fb are, 

as shown in Table 12, different for each loading path, 0RV and 0RM also 

have different values for each loading path. The values of 0RV and 0RM 

corresponding to the loading p ths shown in Figure 18 are given in 

Table 14, where OF - 0 . 05 and 0p - 0.13 have been used. However, the 

C. o. V. of the applied load, 0Q - 0.13, is unchanged since it is inde

pendent of the resistance of plate girders. 

The ratio of (Vim/Q ) and (M
i 

1M ) is determined through calibra-
vm m m.m 

tion with Part 1 of the AISC Specification. For calibration, a simply 

supported, adequately braced, two-span girder under uniformly distri-

buted dead and live load is assumed as a standard situation. This type 

of girder is subjected to high shear and high bending at the intermed1-

ate support. Then, applied shear force and bending moment induced by 
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Table 14 

Values of I"lRV and I"lRM Corresponding to Loading Path 

Coordinate C.O .V. of Stress Cal C. O.V. of Resistance Cbl 
V/V u M/M u I"lEv I"lfb I"lKV I"lKM 

1.0 0.3 0.252 0 . 240 0 . 288 0.277 

1.0 0 .5 0.259 0.240 0 . 294 0.277 

1.0 0 . 75 0.288 0.240 0.320 0.277 

0.9 0 . R125 0 . 304 0 . 211 0 . 334 0 . 253 

0 . 8 0 . 8750 0 . 326 0 . 187 0.354 0.233 

0.7 0 . 9375 0 . 359 0 . 167 0.385 0.217 

0 . 6 1.0 0. 406 0.152 0.429 0 . 206 

0.5 1.0 0.406 0.142 0.429.. 0.199 

0.3 1.0 0.406 0.126 0.429_ O.lBB 

(al Values from Table 12 

(b) I"l a /~ + 1"l2 + 1"l2 G 112 + (0 .05)2 + (0 . 13)2 
R F P f 



I~ 
'.0 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

"" 

I 
I 
I 
I 
I 

86 

the uniformly distributed loads can be expressed. for the cross-section 

at the intermediate support, as 

and 

v - 0.625(D + L)·s·l 

2 M - 0.125(D + L)·s · l 

(6 . 23) 

(6.24) 

in which D and L denote uniformly distributed dead and live load inten-

sities, and sand 1 represent girder spacing and length of girder span, 

respectively. 

According to the AISC Specification, plate girder webs shall be so 

proportioned that the maximum bending stress, fb ', due to the moment in 

the plane of the girder web, shall not exceed the value determined by 

f ' v 
0.37~)' f ~ 0.6'yf 

v y 
(6 . 25) 

in which f • is the computed average shear stress and, is equal to , 
v v ~ 

divided by a safety factor of 1.65 except the limit state where F -
v 

0.4,. It is assumed for calibration that the shear stress and bending 
y 

stress defined by the AISC Specification are equal to the stresses 

defined by Eqs. (6.13) and (6.14) divided by 1.65. 

The mean interaction shear strength, Vim' and the mean interaction 

bending strength, Mim , can be expressed by 

Vi - f ·A ·(P IP h) m vm w ex t m (6.26) 

and 

(6.27) 

since (P IP h) - (V IV h) - (M 1M h) in the interaction range. ex t m ex t m ex t m 

According to Part 1 of the AISC Specification, the required web 

area and section modulus to resist t he applied shear force and bending 

moment are, respectively, 
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0.65 (D + L .~ )'5·1 
A 

c c L 
(6.28) • w f ' v 

and 

2 

S -0.125 (D c + L c . ~L) . 5 . 1 
(6.29) x f ' b 

in which ~L is a live load reduction factor defined by Eq. (4.19) . 

Since it is assumed that fv - 1.65fv ' and fb • 1.65fb ' and since 

it has been estimated that (P IP h) • 1.0, f If = F IF ~ 1.1, 
ex t 10 vm V yswm yw 

and fbm/fb = Fysfm/Fyf = 1.0, substitution of Aw and Sx given in Eq. 

(6.28) and Eq. (6.29) with these values into the corresponding terms of 

Eqs. (6.26) and (6.27) yields 

v • 1.134(D + L .~ )'s'l im c c -~L (6.3) 

and 

(6.31) 

The mean applied shear force, Q ,and the mean applied bending 
vm 

moment, ~, which are induced by the uniformly distributed dead and 

live loads can be expressed by 

o ·0.625(D + L )·s·l 
'vm m m 

(6.32) 

and 

Q .0.125(D + L )·s.12 
mm m m 

(6. JJ) 

in which the mean live load intensity, L , is defined by Eq. (3.3) and 
10 

the mean dead load intensity, D • is assumed equal to the code specified 
m 

dead load intensity. D . c 

Therefore, the denominator in Eqs. (6.21) and (6.22) becomes, 

respectively, 
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Vim 
o • 1.81S(0 + L 'RL)/(O + L ) 
'vm C C -L C m (6.34) 

and 

Mim 
o • 1.648(0 + L '~L)/(O + L ) 
~ c c -~ c m (6.3S) 

For simplicity in calculating B in Eqs. (6.21) and (6.22), it is 

assumed that (Oc + Lc'~J~ (Dc + Lm) since Lc'~L defined by ANSI A.S8-

1980 Draft agrees fairly well with L given by the Ellingwood-Culver 
m 

formula, which has been shown in Figure 3. 

Thus, the safety indices for the interaction shear strength and the 

interaction bending strength are simplified to 

and 

B ~=O=.~S~ __ ~~O~.S~~~ 
m • fORM + 0Q • ~(ORM + 0.13) 

(6.36) 

(6.37) 

The values of B corresponding to the loading paths in Figure 18 are 

summarized in Table IS . 

6.4.2 Resistance factor ~~ in the interaction range 

The resistance factor given in Eq. (2.20) for the interaction range 

can be separated into 

4>iv 
Vim 

• - exp(-a B 0 ) 
V in v v RV 

(6.38 ) 

and 

(6.39) 
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Table 15 

Values of BV and BM in the I nteraction Range 

C. O.V. of Linearization 
Resistance (a) Factor (b) Safety Index 
nRV nil}! o.v '\! Bv ~ 

0 . 288 0 . 277 0.756 0 . 752 1.899 1 . 634 

0.294 0.277 0 . 758 0 . 752 1.867 1.634 

0.320 0.277 0 . 768 0.752 1. 736 1 . 634 

0.334 0 . 253 0 . 772 0.743 1.675 1. 757 

0.354 0 . 233 0.779 0 . 735 1.591 1. 874 

0.385 0.217 0 . 789 0 . 729 1.477 1.977 

0.429 0.206 0.802 0 . 725 1.338 2.053 

0 . 429 0 . 199 0.8Q2 0.722 1.338 2 . 105 

0 . 429 0 . 188 0.802 0 . 719 1.338 2.187 

(a) Values from Table 14 
(b) Values defined by Eq. (2 . 17) 
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p 
ex f ·A· (-) 

vm w P th m (6.26 ) 

and 

N -im 

P 
ex f ·S .(-) 

bm x P th m 

v ~ f ·A 
in v w 

(6.27) 

(6.40) 

(6.41) 

From the values of (P IP h) - 1.0, f If - 1.10 and fbmlfb - 1.0, extm vmv 

Eqs. (6.38) and (6.39) become 

(6.42) 

and 

(6.43) 

The values of ~iv and ~im are plotted in Figure 21, which shows 

that the shear resistance factor decreases as the loading path moves 

from the shear dominant region to the bending dominant region, and that 

the bending resistance factor decreases when the loading path moves in 

the opposite direction. This simply means that uncertainty of girder 

strength is increased when a plate girder resists two different types 

of forces, which may be due to a multiplication effect of uncertainty 

inherent in girder strength associated with each type of force. 

From Figure 21, it is concluded that a linear connection of points 

A, B, C, and 0 could be a safe interaction envelope reflecting the 

resistance factor for combined shear and bending. A comparison of this 

factored interaction envelop with that proposed by Gnlambos(24) is 
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shown in Figure 22. In developing his factored interaction curve, which 

is supposed to give safe design values, Galambos ignored variation of 

the safety index associated with loading path, and assumed that the 

resistance factor for the interaction range could be determined from the 

resistance factor for predominant shear, ~ , and the resistance factor 
v 

for pure bending, ~. But, Figure 22 shows that the resistance factor 
m 

in the interaction range has different characteristics from what Galambos 

assumped . 

6.4 . 3 LRFD interaction equations 

According to the suggested interaction curve shown in Figure 22, 

the following equations are obtained: 

(~v - ~i)M 

O. 75~iMu ~ 4>V 

0 . 625V
V + ~'! ~ 

1!.+ 
M 

u 

u u 

(6.44) 

(6.45) 

(6.46) 

In the above equations, the resistance factor for predominant shear, 

~v - 0.75, the resistance factor for pure bending, ~m - 0.80 snd the 

resistance factor for combined shear and bending, 'i - 0.70 are the 

values estimated in this study. 
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7.1 Summary 

Chapter 7 

SUMMARY AND CONCLUSIONS 

By using Cornell ' s probabilistic design format, the traditional 

central factor of safety can be split into the resistance factor and 

the load factor in an explicit and simple manner. 

94 

The study presented here has dealt with only the resistance factors 

of plate girders in pure bending , shear, and combined shear and bending. 

In order to determine the resistance factors, the following studies 

were carried out . 

1. Cornell's first-order, second-moment formula is selected as a 

probabilistic design format. In Galambos' study, the Cornell format was 

also used. 

2 . Part 1 of the AISC Specification is selected as a basis of 

calibration through which the same degree of safety can be provided in 

the proposed design criteria as in the current AISC Specification. 

Galambos performed his calibration with Part 2 of the AISC Specification 

in which provisions are provided for plastic design. 

3. Predictions of regular and unsymmetrical girder strengths are 

done by the Basler-Thilrlimann models in this research as in the Galambos 

study . For hybrid girders , however, prediction is done by the formula 

which has been recommended by Subcommittee 1 on Hybrid Beams and Girders, 

Joint ASCE-AASHO Committee on Flextural Members. 

4. Prediction of live load effect on plate girders follows the 

Ellingwood-Culver formula which i s the bosis of the ~NSI A.S8-l980 Draft. 

while the ~lcGuire-Cornell formula wns used in Galambos' study . 
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5. In order to measure the uncertainty associated with a theore-

tical structural analysis model, actual measured val ues in the static 

yield stress and dimensional properties are used in prediction of girder 

strengths. 

6. Uncertainties in girder strength are assumed to come from three 

major sources; that is, uncertainties associated with stress, fabrication, 

and structural analysis models. 

7. For estimating variation in stress, the first-order approxima-

tion technique is employed, and the mean values and the standard devia-

tion are measured for modulus of elasticity, the static yield stress of 

the flange and the web, Poisson's ratio and shear modulus of elasticity. 

8. The C.O.V. of fabrication error follows the value measured by 

Galambos though it is much greater than the value reported after this 

study had been completed (Appendix 2). 

9. The C.O.V. associated with the structural analysis mndel is 

measured from distribution of the ratio of experimental values of girder 

strengths reported in the literature to theoretical values predicted by 

the Basler-ThUrlimann models. 

The results of this study give the resistance factors of 0.8 for 

bending, 0.75 for shear, and 0.70 for combined shear and bending, which 

are smaller than values of 0.86 for all cases as presented by Galambos. 

Comparisons of the study results with those of Galambos' study are given 

in the ends of Chapters 3, 4, 5, and 6. 

From results of this study, the following design criteria of plate 

girders are recommended. In the following equations, Vo and }~ are the 

design shear and the design moment, respectively. computed on the basis 

of design load intensities at the ~ ross-section under consideration. 
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For 0 ~ ~ ~ 0.525Mu 

Vo ~ 
V- + 0 . 09~ ~ 0.75 (7.1) 

u u 

Vo ~ 
0.62Sif" + M ~ 0.96 (7.2) 

u u 

~ Vo M + 0. 238V- ~ 0.80 (7.3) 
u u 

The design shear and moment, Vo and Ha, may not exceed 0.75V
u 

and 0.80M
u

' 

respectively. 

The ultimate bending strength, M , for homogeneous , symmetrical and 
u 

unsymmetrical plate girders is defined by 

A 
M - F ' S [1 - O.OOO~(~ - 980») 

u cr x Af t ~ 
(7.4) 

cr 

The smaller F defined by Eqs . (7.5), (7.6), (7.8), (7.9) or (7.10) cr 

should be used in Eq. (7.4): 

and 

F cr 

F 
cr 

- 296000C
b 

(Ki)2 
r T 

for ). > fi (7.5) 

for ). < fi . (7.6) 

In the above equations, Cb is determined by Eq. (4.11), r
T 

is given by 

Eq. (4.9) and), is given by 

(7.7) 
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in which 1 is the unbraced length of the span. 

and 

F 
cr 

F ~ F 
cr y 

for 

for 

~ > 151.8 
w- IF 

y 

F - F [1 - 0.53(0.009~ - 0.45)1.36] 
cr y w 

9] 

(7.8) 

(7.9) 

in which b is half the width of compression flange and w is the thickness 

of the compression flange. 

The ultimate bending strength, M , for hybrid plate girders is 
u 

determined by either Eq. (7.4) or Eq. (7.11), whichever is smaller . 

(7.11) 

in which F is determined in the same manner as F in Eq. (7.4). cr cr 

The ultimate shear strength, V , for homogeneous, symmetrical and 
u 

unsymmetrical plate girders is calculated by 

F 
V + A [F + -Z2 (1 -

u w vcr 

in which F is determined by vcr 

where 

F vcr 

k ~ 5.34 for 

(7.12) 

(7.13) 

(7.14 ) 
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and 

k 2 for (7.15 ) 

IfF vcr calculated by Eq . (7.13) is greater than O. 46Fy ' then Vu is 

determined by 

v = o.6slF·A 
u Y w (7.16) 

7.2 Conclusions 

Comparisons of the resistance factors for bending, shear, and 

combined shear and bending between this study and Galambos ' study have 

been summarized in the ends of Chapters 4, 5, and 6. 

The fOllowing general conclusions may be drawn from these studies. 

1. The dominant parameters in determining the resistance factor 

are uncertainties associated with the static yield stress and theoreti-

cal strength prediction model of plate girders. Uncertainties associated 

with dimensional properties are negligible. 

2. Differences of resistance factors between this study and Galam-

bos' study arise from two main sources; the one is due to different 

characteristic values of the static yield stress, which results from 

different sampled data used in two studies, and the other is due to 

different statistical treatment of the rel ative parameters. However, 

the former is the dominant factor causing differences . Calinration 

with Part 2 (plastic deisgn, employed for calibration in Galambos' study) 

gives a larger safety index, S, than that obtained from calibration with 

Part 1 (elastic deSign, employed in this research) of the specification. 

However. Galambos reported that calibration with Part 1 and Part 2 of 

the AISC Specification had little effect on the resulting resistance 

factor. 
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3. The resistance factor varies in the ranges M 
of 0 ~ M: ~ 0.75 and 

u 
the interaction curve, which was assumed constant in 

I 
V 

of 0 ~ V- ~ 0.6 for 
u 

Galambos' research. 

I 4. In general, the design criteria based on the probabilistic 

design format are very sensitive to the characteristic values of sampled 

I data of parameters which affect the strength of plate girders. 

I 7.3 Recommendations for Future Study 

I 
The design criteria recommended in this research are based on data 

available in the literature. During the analysis of the data, it has 

I been found that there are limited data available to develop probability-

based design criteria even though numerous tests on plate girders have 

I been performed. Most studies performed in the past f a il to report the 

I 
distribution of test results. In order to develop highly reliable pro-

babilistic design criteria, the following additional studies are recom-

I mended. 

1. Tests on the static yield stress of the structural s teel --

I The static yield stress has not been widely used in structural design. 

I 
Consequently, most tests of plate girders or structural steel has been 

performed on the basis of the upper or lower yield stress. Limited data 

I is available in the literature, especially for the static yield stress 

of high strength steel. Since the static yield stress is affected by 

I the thickness of steel plate and the direction or location of the speci-

I 
men in the plate, attention must be given on these aspects . 

2 . Tests on the strength of plate girders in combined shear and 

I bending -- There have been very limited reports on the strength of plate 

girders, especially hybrid girders in combined shear and bending, which 

I limits reliable analysis of the interaction relation ships between shear 

I 
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and bending. The number of tests is important for obtaining statistic

ally significant results. 

Study of the load factors which is excluded in this research is an-

other subject which needs additional attention prior to complete accept-

ance of the LRFD criteria. 
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ALl Estimation of the Charac teristic Values From Nulti-5ets of Data 

2 It is assumed that only the mean, X
2

, variance, 51' and sample size, 

ni' of k sample sets taken from a population as shown in Figure A.l are 

known. th 
Then, by definition, the mean value of the i sample set, Xi' 

is written as (4) 

ni 
E X f m=l mi mi X = 

1 

n 

or mrlXmi'fmi = ni'Xi (ALI) 

tn th where xmi denotes the m variate in the i sample set, and fmi repre-

sents the frequency corresponding to x
mi

. The variance of the ith sample 

set, 2 
5i ' can be expressed, by definition, as (4) 

nl 
_ X )2 nl 2 -2 

S 2 
r f • LX Elf l' x mi - ni X1 m=l mi ml 1 m- m - n - I 1 n - 1 i 1 

(Al.2) 

or 

nl 2 2? 
t f 'x = (n1 - l)Sl + ni X1-m=l rol roi 

(Al.J) 

The unbiased mean, X, and varlance, 52, of the pooled sample of k 

sample sets are glven by 

and 

k nl 

1~1 m~lfroi'xml 
X - "=""::""':::"";"k -==--== 

L n
t 

1-1 

(Al.4} 

(AI. 5) 



V1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure A. l. 

c 

Figure A.2. 

29,000 

Figure A.3. 

Sample 1 

Population 

Sample k 

Sampled data from population 

k 

i~1ni - 341 
5 - 1500 E 

Probability of a Type I error 

c - 29,096 30,000 

Probability of a Type II error 
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Substitution of Eq. (A1.3) into Eq . (Al.5) yields 

k 2 k -2 -2 k 
S 2 _ .::i _...;t l::..(_n.:.i,---l_)_'_S.:.i,:-+--"i::..~.:.l,-n~i x...;i=---_x---=I::..~.:.l'-n~i 

k (A1. 6) 

n~lni - 1 

With the known mean and variance of a random variable x, the C.O.V. 

of the variable x is determined by 

o 
x 

s --X 

where S is the standard deviation of random varlahle x. 

Al . 2 Hypothesis Testing on Modulus of Elasticity (12) 

(Al.7) 

By using Eqs . (Al.4} and (AI.6) , the mean of the modulus of elas-

ticiyt , E - 30,013 ksi and the standard deviation of E, S - 1324 kai 
m 

are obtained from the data given in Table 3. By substituting these two 

values into Eq . (~ . 7), the C.O.V. of E, 0E' is found to be 0 . 044 . 

Now , assume that the true population-mean of the distribution of E 

is 30,000 ksi and the standard deviation of 1500 ksi. Then by applying 

the hypothesis testing method , it can be determined whether this as sump-

tion, the so-called null hypothesis H , could be accepted or not. This 
o 

kind of decision procedure could lead us to either of two wrong conclu-

sions; the so-called Type I error or the Type II error. A Type I error 

is committed if we reject the null hypothesis when it is true , and a 

Type II error 1s committed if we accept the null hypothesis when it 1s 

false . 

n,e probability of committing a Type I error is called the level ot 

significance of the test and is denoted by a. Figure A. 2 and Figure A.3 

show the concept of the probability of a Type I error and of a Type II 

error, respectively. In Figure A.2 , the probabiliy of a Type I error is 
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represented by the shaded area, and a Type II error is measured by the 

probability that values of a random variable fall in the shaded area of 

Figure A. 3 when the true mean is H!' In both figures, c is determined 

by selecting the significance level of the test . 

Testing about a Type I error is performed with the significance 

level of a -1% and an alternative hypothesis Hl which. is set by the mean 

of E, E • 30 , 000 ksi . Thus, we reject the null hypothesis if the obm 

served mean value lies in the shaded area, or we accept the null hypotbe-

sis if tbe observed sample mean is greater than c in Figure A.2. The 

value of c is determined in the following manner : 

Null hypothesis H: E • 30 , 000 ksi, 
o m 

Alternative hypothesis: E < 30 , 000 ksi, 
m 

Probability of committing a Type I error: 

a • P[Type I error] - prE < clK is true] 
o 

a • 0.01, and 

The standardized normal variable z corresponding to c is expressed by 

c - E __ ---2m:!!... _ c - 30 , 000 c - 30,000 
z· • 81.35 

SE/1n-l 1500//340 
(!.l.8l 

Thus, 

Q • P[z < c - 30,000] • 0 01 
81.35 . (Al. 91 

The area under the normal curve is given in most statistic books. The 

corresponding value of z to a • 0.01 is -1 . 28. Hence 

c - 30,000 • -1.28 
81.35 or c • 29,896 (Al.IO) 

The value of c means that we can not reject the null hypothesis if 

the observed mean value is greater than c. Therefore, we can accept the 

hypothesis of E - 30,000 ksi because our observed mean value was 30,013 
m 

which is greater than E • 29,896. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

But, the test about a Type I error does not guarantee that E _ 
m 
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30,000 ks! is the true mean. Thus , it fs necessary to perform the sec-

ond test about a Type II error. 

Assume that the true mean lies in the left side of the shaded area 

in Figure A.3, for instance, E - 29,000 ksi. 
m Then, the probability of 

a Type II error, S, with a significance level a a 0.01 is 

S - P[Type II error)-P[E > clHliS true)- prE > 29,8961Em - 29,000) • (Al.11) 

The standardized normal variable z is given by 

_ 29,896 - 29,000 _ 11 01 
z 81.35 • (Al.12) 

From most standard statistics references, S corresponding to z -

11.01 can be said to equal zero . Consequently, there would be little 

chance of accepting the null hypothesis, H , when it is false. 
o 

In conclusion, it is reasonable to use the mean modulus of elasti-

city , Em - 30,000 kai and the C.O.V., 0E - 0.05. 
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Appendix 2 

FUKUMOTO REFERENCE 

Upon completion of this study, the author became aware of a new 

reference. Fukumoto and Itoh. reported the mean equal to 0.998, the 

standard deviation equal to 0.78 and the C.O.V. equal to 0.0254 of the 

cross-sectional area of welded beams based on test results. Though. the 

C.O.V. equal to 0.0254 is quite small compared to the C.O .V. equal to 

0.05 used in this study, the effect of the new valua on the resistance 

factors would be negligible because the other C.O.Y.'~ affecting the 

resistance factor are considerably larger than the C.O.V. of cross-

sactional propertie.s. 

Listed below is the Fukumoto reference: 

Fukumoto. Y. and Itoh., U., "Statistical Study of Experiments 
on Welded Beams," Journal of the Structural Division, ASCE, 
Vol. 107, Jan., 1981, pp. 89-103. 




