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ABSTRACT

When required in the moment connection design for Special Moment Frames, AISC
341 provides a prescriptive requirement for the continuity plate thickness and specifies
complete-joint-penetration (CJP) groove welds to connect the continuity plates to the
column flanges. Recently, Tran et al. (2013) proposed a procedure that gives the designer
freedom in sizing the continuity plate thickness and using alternate (i.e., economical) weld
joints. In this research, full-scale testing of two one-sided moment connection specimens
with a Reduced Beam Section (RBS) was conducted to verify the adequacy of this design
procedure. In designing the test specimens, the original procedure was slightly modified
so that the strength check of the continuity plate included not only normal and shear forces
but also moment in the plane of the continuity plate. The specimen design followed AISC
341 and 358, except that the continuity plate thickness and welds were sized based on the
modified procedure. The design resulted in fillet welds to connect the continuity plates to
the columns. One specimen used a deep (W24) column, and the other one had a shallow
(W14) column. To evaluate the effect of yielding in the continuity plates, these plates for
the shallow column specimen were undersized. The specimens were also designed such
that significant shear yielding in the panel zones would result in kinking of the column

flanges to further “challenge” the fillet welds.

Test results showed that these two RBS connections performed as expected and met
the 0.04 rad. story drift requirement of AISC 341. No sign of damage was observed in the
fillet weld joints. The connection performance was still satisfactory when continuity
plates were yielded. The shallow-column specimen performed better than the one with a
deep column; the latter was prone to column twisting despite that additional lateral
bracing was provided at the beam top flange to simulate the concrete slab restraining
effect. Before the proposed design procedure can be implemented, recommendations

were made to further the encouraging findings from this pilot test program.
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1 INTRODUCTION

1.1 Statement of Problem

Steel Special Moment Frames (SMF) are one of the most popular seismic-force-
resisting systems due to their architectural versatility. The beam-to-column moment
connections play a critical role in SMF performance since they transfer bending moments.
The resulting concentrated beam flange forces at column face are very high. These forces
can cause column local flange bending (LFB), column web local yielding (WLY), and
beam flange complete-joint-penetration (CJP) weld fracture due to stress concentration.
To meet the requirements of these limit states, column transverse stiffeners (or continuity
plates) at the beam flange levels are often required in accordance with AISC 341, Seismic
Provisions for Structural Steel Buildings (AISC 2010a). Continuity plates, when required,
add a significant amount of fabrication cost because a total of four continuity plates are
required at each connection and CJP welds are required by AISC 341 to connect these

plates to the column flanges.

The stringent welding requirements for continuity plates were established primarily
to reflect how moment connection specimens tested in the past were fabricated. Another
reason for having this conservative requirement is that no mechanics-based procedure that
allows the designer to calculate the required forces in the continuity plate is available.
Recently, Tran et al. (2013) proposed a flexibility-based procedure to fill this gap. This
procedure opens the door for using non-CJP welds (i.e., fillet welds or partial-joint-
penetration groove welds) to connect continuity plates to the column. In this report, an
experimental verification of this design procedure (with a slight modification to it) is

documented.

1.2 AISC Design Requirements for SMF Continuity Plates and Welds

Section E3.6f of AISC 341 stipulates that continuity plates are not required when the

column flange thickness meets the following two requirements:

R, F

Ry, F
ter = 0.4 [1.8by ty, —22 (1.1)
yclyce



_ bor (1.2)

tep = 5
where
F,, = specified minimum yield stress of the beam flange,
F,. = specified minimum yield stress of the column flange,
R, = ratio of the expected yield stress to the specified minimum yield stress of the
beam,
R,. = ratio of the expected yield stress to the specified minimum yield stress of the

column,

bys =beam flange width,
tpr = beam flange thickness, and

tce = column flange thickness.

Equation (1.1) is obtained by equating the strength associated with the LFB limit state
(Rn = 6.25thFyC) to an approximate beam flange axial force of P,; = 1.8b,t},¢F,,;, and
solving for t.f; F,,;, and E,. are replaced by the expected yield stresses R, F,, and Ry, F.,
respectively, in the above derivation. Equation (1.2) is based on the deformation of the
column flange and is related to low-cycle fatigue failure (Ricles et al. 2000). Where
continuity plates are required, the thickness of the plates shall be determined as following:
(a) for one-sided connections, continuity plate thickness shall be at least one-half of the
thickness of the beam flange, and
(b) for two-sided connections, the continuity plate thickness shall be at least equal to the
thicker of the two beam flanges on either side of the column.

AISC 341 requires that continuity plates be welded to the column flanges using CJP
groove welds. Continuity plates can be welded to the column web using either groove
welds or fillet welds. The required strength of the sum of the welded joints of the continuity
plates to the column web shall be the smallest of the following:

(a) the sum of the design strengths in tension of the contact areas of the continuity plates
to the column flanges that have attached beam flanges,
(b) the design strength in shear of the contact area of the plate with the column web,

(c) the design strength in shear of the column panel zone, and



(d) the sum of the expected yield strengths of the beam flanges transmitting force to the
continuity plates.

Note in the 2016 edition of AISC 341 that items (c) and (d) have been replaced by the

design shear strength of the column web when the continuity plate is welded to the column

web, or the design shear strength of the doubler plate when the continuity plate is welded

to an extended doubler plate.

In this report, welds between the continuity plate and the column flanges are defined
as the flange welds, and the weld between the continuity plate and the column web is

defined as the web weld.

1.3 Flexibility-Based Formulation by Tran et al. (2013)
The procedure originally proposed by Tran et al. (2013) and subsequently modified
slightly in this study is summarized below. Representing the beam flange force as

Puf = Cprybbbftbeyb (13)

AISC 341 assumes the beam flange force adjustment factor, C,, is equal to 1.8 to establish
the minimum column flange thickness requirement in Eq. (1.1) when continuity plates are
not required. While this assumed value is reasonable for the pre-Northridge type welded
flange-bolted web moment connections, where the bolted web is ineffective in contributing
to the moment resistance, Tran et al. (2013) showed that this assumption, and hence Eq.
(1.2), is conservative for some post-Northridge moment connections like the Reduced
Beam Section (RBS) or Welded Unreinforced Flange-Welded Web (WUF-W) moment
connections; the beam web of these connections is directly welded to the column flange

with a CJP weld. Based on finite element analysis, the following C,, values were

recommended by Tran et al. (2013) for use in Egs. (1.1) and (1.3):

(a) for RBS connection: Cpor = 1.25 (1.4)
(b) for WUF-W connection: Cor = 1.75 (1.5)

With a significantly lower C,; value for the RBS connection, continuity plates that are

required per AISC 341 may be unnecessary.



When continuity plates are required, the beam flange axial force, P,¢, is apportioned

to each continuity plate based on the following equation (Tran. et al. 2013):

p ﬁ bbf —lpz — Ztcf Bcf (1.6)

where

bys = beam flange width,

tpz = panel zone thickness,
t.r = column flange thickness,

B.s = column flange out-of-plane flexibility coefficient

2 04 [1 +0.091n (i)]

t
= 0'26Et§f + G g
E = Modulus of elasticity of steel = 29,000 ksi,
G = Shear modulus of elasticity of steel = 11,200 ksi,
b = beip + by (total width of continuity plate),

baip, = corner clip size,

b, = net width of continuity plate,
B, = continuity plate in-plane flexibility coefficient
042 -C b3
= +
Gt Ed3t
C = 0 for interior connections, and for exterior connections:

b
=06(=)—-014=0
(@) 0142

See Tran et al. (2013) for the derivation of Eq. (1.6). Following the procedure, one can
compute the required forces along three edges of the continuity plate (Figure 1.1). To
ensure that the continuity plates have a sufficient in-plane stiffness, the designer then
checks the local flange bending and web local yielding limit states (AISC 2010c) of the
column for the portion of the beam flange force that will be transmitted from the beam

flange to the column web directly:



Pys —2P;; < ¢R, (1.7)

Figure 1.1 shows that the edges of the continuity plate next to the loaded column
flanges are subjected to both normal and shear forces; the shear force is needed to satisfy
moment equilibrium. The Von-Mises yield criterion is then used by Tran et al. to check

the strength of the continuity plates:

2
2
PCp ) / ch)
+ < 1.0 (1.8)
(chz?An % A
\/g n

where from moment equilibrium the shear force is

-3,
E

vep = Yield stress of continuity plate,
d = depth of continuity plate,

tep = thickness of continuity plate, and

Ay = bytep.

When Eg. (1.8) is satisfied, either fillet welds or partial-joint-penetration groove
welds can be used to connect the continuity plates to the column flanges. If not, Tran et al.
suggested that complete-joint-penetration (CJP) groove welds still be used because
continuity plates are expected to yield. To avoid the use of CJP welds, however, an
alternative is to increase the thickness of the continuity plates such that Eq. (1.8) is satisfied.

In designing the specimens for this test program, some modifications were made to
Eg. (1.8). By ignoring the corner clips in the continuity plates, Tran et al. (2013) suggested
that the normal force, P, be located at a distance 0.6b from the column web (Figure 1.1),
and the moment produced by this force with an eccentricity with respect to the center of
the net width of the continuity plate was ignored in checking the strength in Eq. (1.8).
Reviewing the work of Neal (1961) and Astaneh-Asl (1998), Dowswell (2015) suggested
an M-V-P yield criterion, which can be re-written for checking the continuity plate strength

as the following:
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ycp
where Z,,, is the plastic section modulus of the net section:

tepbn

; (1.11)

Zyn =
Refer to Figure 1.2(a) for a continuity plate in a two-sided (i.e., interior) moment
connection, where corners are clipped to clear the k-area of the column section. Freebody
3 in Figure 1.2(c) shows that the normal force P¢p acts at a distance 0.6b from the column

web. Moment equilibrium requires that

v 0-6b Z 1.12
v~ - Zbcllp ( ' )

Next consider Freebody 1 or 2. The corner clip causes the normal force at the edge of the

net width to shift by an amount e* to satisfy moment equilibrium:

beinV.
et = P (1.13)
Pep

Therefore, the moment produced by the eccentrically loaded P, at the center of the net

width equals eP,,,, where

e =0.6b+e" — (byy + 0.5b,,) (1.14)

The same approach can be applied to the continuity plate in a one-sided (i.e., exterior)
moment connection. But the shear force calculation needs to be modified. As shown in
Figure 1.3, it is assumed that the normal force at the non-loaded column flange side of the
continuity plate equals zero. Therefore, the shear force is

V., = 0.6b P 1.15
cp — d _ bcllp cp ( . )

Equation (1.10), not Eq. (1.8), was used to design the continuity plates in this test program.



The procedure to design the fillet welds follows.

(a) Design the flange weld for the required resultant force, R,:

®Rn 2 Ry (1.16)

where

Rep = /ch, +V2 (1.17)

The design strength for 2-sided fillet welds is:

¢R,, = 2(¢)(0.6)t,b,Frxx (1.0 + 0.5sin’® 9) (1.18)
where
¢  =0.75,
te = effective throat of the fillet weld,

Frgxx = minimum specified ultimate strength of the weld,

0 = angle of the resultant force, R.,,, measured from the weld longitudinal axis:

cpr

(b) Check the flange weld at the location of maximum tensile Stress, qax:

1.6P.
Qmax = b L (1-19)
n

When 2-sided fillet welds are used, the value of q,,,, cannot exceed the unit-length design

strength, which can be computed by using Eq. (1.18) with b, = 1.0.
(c) Check maximum shear stress in the flange weld, 7,,,4,:

2V
Tmax = bCp (1-20)
n




(d) Design the web weld for a required shear force equal to the summation of force

allocated to the continuity plate, ) P.,,, as shown in Figure 1.1(a). For exterior moment

connections [Figure 1.1(b)], the required shear force equals F.,,.

$Ry = Yy (1.21)
For 2-sided fillet welds, the design strength is computed as:
®R, = 2(¢)(0.6)t Ly, Frxx (1.22)

where

[, = length of the web weld.

Tran et al. proposed that a ¢ value of 0.9 be used for designing the fillet welds. In this test
program, however, it was decided to use the ¢ value (= 0.75) per AISC 360. Also, it was
judged that using Egs. (1.19) and (1.20) to check the local stresses are too stringent and
conservative. Test results to be presented later showed that no damage was observed in

the fillet welds even though these two equations were not used in design.
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(b) Exterior Connection

Figure 1.1 Freebody Diagram of a Continuity Plate
(Adopted from Tran et al. 2013)
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Figure 1.3 Continuity Plate Freebody Diagrams (Exterior Connection)
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2 TEST PROGRAM

2.1 Design of Test Specimens

2.1.1 Specimens Sizes

A W30x116 beam connected to a W24x176 “deep” column was selected for
Specimen C1, whereas a W36x150 beam connected to a W14x257 “shallow” column was
chosen for Specimen C2. Column height, h, was 16 ft and the beam span, L, was 15 ft.

Table 2.1 shows the cross-sectional dimensions of the beams and the columns.

2.1.2 Moment Connection Design

The reduced beam section (RBS) connection was used for both specimens. The RBS
design was carried out per AISC 358 (AISC 2010b); strong-column/weak-beam condition
and panel zone strength satisfied the AISC 341 requirements. But continuity plates and
welds were designed per the proposed flexibility-based procedure. Figure 2.1 and Figure

2.2 show the connection detail of both specimens.

A summary of key design parameters of each specimen is listed in Table 2.2. While
satisfying the panel zone strength requirement in AISC 341, note the demand-capacity
ratios (DCR) were high (0.9 and 0.95 for Specimens C1 and C2, respectively) so column
flange kinking due to panel zone shear yielding would “challenge” the fillet welds
connecting the continuity plates to the column flanges. For Specimen C2 with a shallow
(W14) column, note the required shear force, Vc¢p (= 62.8 Kips), acting on the continuity

plate and flange weld is significant.

A comparison of the continuity plate and weld design based on the flexibility-based
procedure and AISC 341 is summarized in Table 2.3. The proposed design called for a
continuity plate thickness of 7/8 in. for Specimen C2. AISC 341 implicitly assumes that
continuity plates should remain essentially elastic. Since the effect of yielded continuity
plates has never been reported in the literature, it was decided to use 5/8 in. thick continuity
plates instead. A comparison of the welds for the continuity plates based on both
procedures is also provided in the table. Although the proposed procedure called for
thicker continuity plates, fillet welds, not CJP welds, were used for the flange welds.

11



Table 2.4 summarizes the components of Eq. (1.10) for the continuity plate design
of both specimens. The continuity plates of Specimen C2 were significantly under-sized;
the demand-capacity ratio was 1.31. The shear force component was minimal for the deep-
column Specimen C1, mainly because the depth of the continuity plates was larger [Eq.
(1.15)]. For the shallow-column Specimen C2, both shear and moment components were
significant. Also, note that the moment component played a more significant role than the
shear component in checking the plate strength for both specimens. Therefore, it is not
appropriate to ignore the moment component and use Eq. (1.8) to check the strength of

continuity plates.

2.2 Test Setup

The overall geometry of each test setup is shown in Figure 2.3. The inflection points
were assumed to be at the mid-height of each story. Inflection points were simulated by
mounting the column ends to two W14x257 hinge sections on its back side and a W14x342
on its bottom positioned to experience weak-axis bending (see Figure 2.4 for the hinges
used in the testing of Specimen C2 which were identical for both Specimens). A corbel
was bolted to the free end of the beam and attached to two 500-kip hydraulic actuators.
Lateral restraint was provided on both sides of the specimens at two locations, one at corbel
location and one at 10 ft-3% in. from the centerline of the column. For Specimen C1, which
utilized a deep column, two extra lateral restraints were provided. One was a bracing
provided for the beam top flange near RBS location to simulate the slab restraining effect
and the second was at the top end of the column. The second lateral restraint was a
2L.3x2x1/2 strut to provide lateral support against twisting at the top end of the column; a
deep column without the presence of a concrete slab was shown to prone to twisting (Chi
and Uang 2002). The lateral restraint assembly is illustrated in Figure 2.5 for both

specimens. Figure 2.6 shows the beam bracing and column top bracing for Specimen CL1.

2.3 Specimen Construction and Inspection

All the continuity plate welds were done in a commercial fabricator’s shop. The
beams and the columns were delivered to UCSD. To simulate the field conditions, all
specimens were erected in the upright position and then welding of the beam flanges and

the web to the column flange were conducted in the test laboratory, see Appendix C for the
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Welding Procedure Specifications. Ultrasonic (UT) testing of all CJP welds was conducted

by a certified inspector. See Appendix D for the inspection reports.

2.4 Material Properties

ASTM A992 steel was specified for the beams and columns. The continuity plates
were fabricated from ASTM A572 Gr. 50 steel. Table 2.5 summarizes the steel mechanical
characteristics obtained from both tensile coupon tests conducted at UCSD (Appendix A)
and the Certified Mill Test Reports (Appendix B). Table 2.6 shows the chemical
composition of the materials obtained from the Certified Mill Test Reports.

2.5 Instrumentation

A combination of displacement transducers, strain gage rosettes, and uniaxial strain
gages were used to measure the global and local responses. Figure 2.7 shows the location
of displacement transducers. Displacement transducer L1 was used to control the stroke
of the hydraulic actuators and at the same time used to monitor the beam end displacement.
L2 was used to detect any slippage between the corbel and the beam end plate. L3 and L4
were used to monitor the panel zone shear deformation. L5 and L6 were used to monitor
the column deformation. L7, L8, and L9 were used to monitor displacements at the column
end supports, which were anticipated to be negligible.

Rosettes and uni-axial strain gages were used to measure the strains in the connection

region (see Figure 2.8 and Figure 2.9).

2.6 Data Reduction
The total Inelastic Rotation (6,) of the specimen was calculated by dividing the
inelastic component of the beam tip displacement (5,), measured at the actuator line of

action, by the beam span length from the column centerline to the actuator line of action:

5, 1 1 P
0,=—=-— (Stotal - 86) = Z (8total - _) (21)

e
7L L K
where §,,,,; IS the total beam tip deflection measured by displacement transducer L1, P is
the applied load, and K is the elastic stiffness determined from the initial low-amplitude
test results. The panel zone component was determined from displacement transducers L3

and L4. Together with the measurement of transducers L5 and L6, the component of the
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total beam tip deflection due to the column deformation can also be established (Uang and
Bondad, 1996).

2.7 AISC Acceptance Criteria
Per Section E3.6b of AISC 341, beam-to-column connections used in Special
Moment Frames shall satisfy the following requirements:
(1) The connection shall be capable of accommodating a story drift angle of at least 0.04
rad.
(2) The measured flexural resistance of the connection, determined at the column face,

shall equal at least 0.8M,, of the connected beam at a story drift angle of 0.04 rad, where

M, is the nominal plastic moment of the beam.

2.8 Loading Sequence

Testing was conducted in a displacement control mode. The loading sequence used
for all specimens was the standard AISC loading sequence specified in Section K2 of AISC
341. This loading sequence specifies a series of load cycles at different Story Drift Angles
(hereinafter referred to as “drift”), with the distance from the column centerline to actuator
line of action being used in calculating the drift angle. The loading history begins with six
cycles each at 0.00375, 0.005, and 0.0075 rad drifts. These are followed by four cycles at
0.01 rad drifts, two cycles at 0.015 rad drifts, two cycles at 0.02, 0.03, 0.04 rad drifts, etc.
up until failure. It should be noted that in testing of Specimen C2, after successful
completion of 0.05 rad drift cycles, it was decided to skip the 0.06 rad drift cycles before
one cycle at 0.07 rad drift was applied.
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Table 2.1 Member Sizes and Cross Sectional Dimensions

Spec. No. Member d(in) | tw(in) | h/tw | be(in) | te(in) | be/2ts

Beam

(W30x116) 30.0 | 0.565 | 47.8 10.5 0.85 6.17
C1

Column

(W24x176) 25.2 0.75 28.7 12.9 134 | 481

Beam

(W36x150) 359 | 0.625 | 51.9 12.0 094 | 6.37
C2

Column

(W14x257) 16.4 1.18 9.71 16.0 1.89 | 4.23

Table 2.2 RBS Connection Key Design Parameters
(a) Specimen C1: W30x116 Beam Connected to a W24x176 Column

RBS Dimensions: a = 7 in., b = 25in., ¢ = 2 in.

Plastic Section Modulus of RBS Section, Zpzs = 278.9 in®; ZZRi =0.74

beam

Probable maximum moment, M,,,. = 1470 Kip-ft

Shear force at the center of the RBS, Vzgs = 119.3 Kips

Probable maximum moment at the face of the column, My = 1664 Kip-ft

Plastic moment of the beam based on the expected yield stress, M,,, = 1732.5 Kip-ft

PaMye = 1732.5 = M, = 1664 kip-ft (OK)

Strong-Column/Weak-Beam Check: g;‘:’” = 2.38 > 1.0 (OK)
pb
Panel Zone Demand-Capacity Ratio (DCR) = 567336'151 = 0.9 <1.0 (OK)

No Doubler Plates Required

Continuity Plate Flange Weld Forces (Normal, Shear, and Resultant):
P., = 157.6 Kips, V., = 26.7 Kips, R., = \/P% + V% = 159.8 Kips

Continuity Plate Web Weld Force (Shear): ; P, = 157.6 Kips

Continuity plate thickness,t., = 3/4 in.

Continuity Plate-to-Column Flange Weld: 9/16 in. (Fillet Welds)

Continuity Plate-to-Column Web Weld: 5/16 in. (Fillet Welds)
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Table 2.2 RBS Connection Key Design Parameters (continued)
(b) Specimen C2: W36x150 Beam Connected to a W14x257 Column

RBS Dimensions: a = 7 in., b = 25in., ¢ = 2.5 in.

Plastic Section Modulus of RBS Section, Zpzs = 416.7 in%; 2EES. = (.72

beam

Probable maximum moment, M, = 2196.3 Kip-ft

Shear force at the center of the RBS, Vzps = 173.1 Kips

Probable maximum moment at the face of the column, My = 2477 Kip-ft

Plastic moment of the beam based on the expected yield stress, M,,, = 2662.9 kip-ft

PaMye = 2662.9 = M, = 2477 kip-ft (OK)

Strong-Column/Weak-Beam Ratio: g;’p” = 1.56 > 1.0 (OK)
pb
Panel Zone Demand-Capacity Ratio (DCR) = % = 0.95<1.0 (OK)

No Doubler Plates Required

Continuity Plate Flange Weld Forces (Normal, Shear, and Resultant):
P., = 157 Kips, V., = 62.8 Kips, R, = \/P% + V3 = 169.1 kips

Continuity Plate Web Weld Force (Shear): }; P, = 157 Kips

Continuity plate thickness: t.,= 5/8 in.

Continuity Plate-to-Column Flange Weld: 1/2 in. (Fillet Welds)

Continuity Plate-to-Column Web Weld: 9/16 in. (Fillet Welds)
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Table 2.3 Comparison of Continuity Plate and Weld Design

Specimen C1 Specimen C2
Proposed AISC 341 Proposed AISC 341
Procedure Procedure
Required _ _
Continuity Plate P]C/p __12567'76 N.A. P‘C/p _1652750 N.A.
Forces (Kips) o o o
Continuity Plate : 1/2in. . 1/21n.
Thickness 3/4in. (= tor/2) >/81n. (=tyr/2)
Continuity Plate- . .
to-Column Flange Fillet Weld CJP Weld Fillet Weld CJP Weld
Weld (9/16 in.) (1/2 in.)
fgrgg:ﬂ:%w;% FilletWeld | FilletWeld | FilletWeld | Fillet Weld
Weld (5/161in.) (3/161in.) (9/16 in.) (3/8 in.)
Table 2.4 Strength Check of Continuity Plates
Equation (1.10)
Moment Normal Force Shear Force
Specimen Component, Component, Component,
4
No.
( Fepe > ( FPep )2 / Vep \ 2
anchp chpAn \chp An/
V3
C1l 0.14 0.78 0.01 0.93
C2 0.36 0.80 0.15 1.31
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Table 2.5 Base Metal Mechanical Properties

Spec. Yield Tensile
No Component SﬁsLtTNyge/ Stress Strength E(Io%r)]bg
' ' (ksi)? (ksi)
Beam Flange 56.9 75.6 34.5
(W30x116) A992 (56.5)° (72.0)° (28.0)°
Beam Web 443484
(W30x116) 58.5 73.2 39.5
c1 Column Flange 57.2 70.6 39.1
(W24x176) A992 (57.5)° (72.5)° (27.0)°
Column Web 442208
(W24x176) 58.5 72.2 37.3
Continuity Plate A572 Gr. 50 68.1 85.6 36.9
(3/4in.) SB15106 (58.0)° (81.0)° (25.0)°
Beam Flange 53.5 74.9 38.3
(W36x%150) A992 (57.0)° (75.1)° (26.4)°
Beam Web 60114091/04
(W36x150) 57.9 74.7 38.1
c2 Column Flange 52.3 74.3 37.7
(W14x257) A992 (57.0)° (75.0)° (26.0)°
Column Web 317275
(W14x257) 54.8 74.8 38.6
Continuity Plate A572 Gr. 50 54.1 79.8 35.1
(5/8 in.) 813K 75180 (57.6)° (82.6)° (22.5)°

2Yield strength determined by the 0.2% strain offset method.

b \alues in parentheses from Certified Mill Test Reports, others from testing at UCSD.
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Table 2.6 Chemical Compositions for Components from Mill Certificates

SEZ(.:' Member C Mn P S Si Cu Ni Cr | Mo | V CE
(ngiTls) 0.080 | 1.130 | 0.016 | 0.027 | 0.230 | 0.250 | 0.100 | 0.140 | 0.040 | 0.000 | 0.330
c1 (Vggé'fxnl“;‘ﬁ) 0.080 | 1.360 | 0.018 | 0.018 | 0.210 | 0.220 | 0.100 | 0.140 | 0.030 | 0.060 | 0.370
Pf;fe”g‘/ji%) 0.147 | 1.383 | 0.014 | 0.002 | 0.346 | 0.010 | 0.008 | 0.023 | 0.002 | 0.003 | 0.384
(ngiTSO) 0.100 | 1.170 | 0.011 | 0.028 | 0.230 | 0.380 | 0.170 | 0.150 | 0.044 | 0.002 | 0.370
c2 (V(\l:?dlir;]g?) 0.070 | 1.360 | 0.018 | 0.023 | 0.320 | 0320 | 0.090 | 0.110 | 0.020 | 0.050 | 0.370
Pﬁfe”g”/gi%) 0.180 | 1.220 | 0.013 | 0.004 | 0.279 | 0.024 | 0.010 | 0.040 | 0.005 | 0.056 | 0.406
CE:C+Mn L, Cr+Mo+V  Ni+Cu

5

15
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3 TEST RESULTS

3.1 Specimen C1

3.1.1 Observed Performance

Figure 3.1 shows the specimen prior to testing. At 0.01 rad drift, minor yielding of
beam top and bottom flanges was observed (Figure 3.2). At the end of the second cycle of
-0.015 rad drift, panel zone yielding was observed and vyielding in the beam flanges
extended into the web [Figure 3.3(b) and (c)]. However, no damage to any of the continuity
plates fillet welds was observed, [Figure 3.3(d) and (e)].

Both beam flange local buckling and lateral-torsional buckling were observed at 0.03
rad drift. The specimen reached its peak strength at this drift level, but the fillet welds
remained intact (Figure 3.4). At 0.04 rad drift, yielding in the beam and panel zone as well
as beam buckling became more severe (Figure 3.5). Figure 3.6 shows the global view of
the specimen after completing one cycle at 0.05 rad drift. The beam flexural strength at
the face of the column had degraded below 80% of the beam nominal plastic moment, and
the test was stopped. Figure 3.7 shows the fillet welds of the continuity plates after
completing the test, showing no sign of damage. Figure 3.8 depicts lateral-torsional
buckling of the beam at 0.03, 0.04, and 0.05 rad drifts.

3.1.2 Recorded Response

3.1.2.1 Global Response

A plot of the load versus beam tip displacement is shown in Figure 3.9. The
relationship between the moment at the column face and the story drift angle is shown in
Figure 3.10; the vertical axis on the right shows the moment normalized by the nominal
plastic moment (1,,,) of the beam. Vertical dotted lines indicate 0.04 rad drift as required
by AISC 341 for Special Moment Frame. The specimen completed two cycles at a story
drift angle of 0.04 rad before the moment at the column face degraded below 0.8M1,,,,.

Figure 3.11 shows the relationship between the moment at the column face and the

total plastic rotation. Figure 3.12 shows that the panel zone yielded in shear. The
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“unusual” nonlinear response in the figure was due to twisting of the deep column (Chi and
Uang 2002).

3.1.2.2 Local Response

Figure 3.13 shows the flexural strain profiles of the beam top and bottom flanges at
a section 3 in. away from the column face. Buckling in the beam skewed the strain profiles
at higher drift levels. Figure 3.14 and Figure 3.15 show the strain profiles on the top and
bottom continuity plates, respectively. The continuity plates remained essentially elastic.
Figure 3.16(a) and (c) show the normal strain profiles at Sections G and H, respectively.
The strain near the non-loading column flange was lower than that near the loaded column
flange. Figure 3.16(b) shows the normal strains on both surfaces of the top continuity plate
were very similar. Figure 3.16(d) compares the normal strains of the top and bottom
continuity plates at a section 1% in. away from the non-loaded column flange.

Figure 3.17 shows the flexural strain response of two pairs of strain gages located 30
in. above and below the top and the bottom beam flanges, respectively. The response of
each pair is expected to be similar such that the plot lies on a 45° line. However, warping
stresses created by column twisting when the drift 1.5% caused the response to deviate
from a line of 45°. Figure 3.18 shows that shear yielding occurred near the top and bottom
portions of the beam web.

3.2 Specimen C2

3.2.1 Observed Performance

Significant panel zone yielding with column flange kinking was expected because
Specimen C2 was designed with a demand-capacity ratio of 0.95 for the panel zone. Figure
3.19 shows the specimen prior to testing. The specimen remained essentially elastic until
0.0075 rad drift cycles. At the end of 0.0075 rad drift, yielding of the panel zone started
(Figure 3.20). At the completion of 0.01 rad drift cycles, yielding at the top and the bottom
beam flanges was also visible (Figure 3.21). Figure 3.22 shows the connection at the end
of second cycle of -0.015 rad drift; the fillet welds connecting the continuity plates to the
column flanges were intact. Yielding extended to the beam web at 0.03 rad drift [Figure
3.23(a)]. Panel zone yielding was significant, and yielding of the column flange at the

column flange kink locations was observed [Figure 3.23(b) and (c)]. Figure 3.24 shows
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the specimen at 0.04 rad drift. All the fillet welds were intact [Figure 3.24(c) and (d)].
Although the b#/2ts and h/tw ratios of Specimens C2 were somewhat larger than those of
Specimen C1 (Table 2.1), local buckling was less severe in C2 because the weaker panel
zone accommodated more inelastic deformation at the same drift level. As can be seen in
Figure 3.24(f), panel zone yielding was very significant.

Figure 3.25 shows the specimen after completing two cycles at 0.05 rad drift. It was
then decided to displace the specimen to 0.07 rad drift directly. Testing was stopped after
completing one cycle at 0.07 rad drift because the beam flexural strength at the face of the
column had degraded below 80% of the beam nominal plastic moment. Figure 3.26 and
Figure 3.27 show the connection at the end of +0.07 and -0.07 rad drifts, respectively.
Figure 3.28 shows lateral-torsional buckling of the beam at -0.05 and -0.07 rad drift. At
5% drift, note that lateral-torsional buckling was much less severe in Specimen C2 than in
C1 [Figure 3.8(c)] because the latter had a deep column and was more prone to column
twisting. On the way to return the specimen to its zero beam tip displacement, the beam
bottom flange completely fractured (Figure 3.29).

It was observed after testing that continuity plates had yielded [Figure 3.30(a)] and
column flange yielding at the kink locations was more pronounced [Figure 3.30(b) and
(c)]. No damage in the fillet welds was observed, which was confirmed from magnetic

particle inspection conducted after the test.

3.2.2 Recorded Response

3.2.2.1 Global Response

A plot of the load versus the beam tip displacement is shown in Figure 3.31 The
relationship between the moment at the face of the column and story drift angle is shown
in Figure 3.32. The specimen completed two cycles at a story drift angle of 0.05 rad before
the moment at the column face degraded below 0.8M,,,.

Figure 3.33 shows the relationship between the moment at the column face and the
total plastic rotation. Figure 3.34 shows the panel zone experienced significant shear
yielding and reached 8.5 times the shear yield strain. The column remained essentially
elastic throughout the test.
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3.2.2.2 Local Response

Figure 3.35 shows the flexural strain profiles on the beam top and bottom flanges at
a distance 3 in. away from the column face. (Strain gage S14 malfunctioned.) The strain
profiles were more uniform across the flange width when compared with those of Specimen
C1 (Figure 3.13), mainly because a shallow (W14) column that was less prone to column
twisting was used. The recorded strains in the top and bottom continuity plates (Figure
3.36 and Figure 3.37) showed that yielding had occurred. (Recall that the continuity plates
were intentionally undersized by 1/4 in.) The maximum normal strain was about three
times the yield strain. Despite the significant yielding in the continuity plates, the
connection performance was not affected.

Figure 3.38 compares the normal strain profiles in the top and the bottom continuity
plates. (The reading from rosette RO1 seems unreliable since it almost read zero strains.)
As comparison of Figure 3.38(d) with Figure 3.16(c) of Specimen C1 shows that more
force in the continuity plate was transmitted to the unloaded column flange when a shallow
column was used. Figure 3.39 indicates significant shear yielding on the beam web close

to the column flange.
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(a) Global View from East

(b) Detail A (c) Detail B

Figure 3.1 Specimen C1 Connection Prior to Testing

37



(a) Global View from East

(b) Yielding in Beam Top and Bottom Flanges

Figure 3.2 Specimen C1 at End of -0.01 rad Drift Cycles
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(a) Global View from East

(b) Minor Panel Zone Yielding (c) Spread of Yielding to Beam Web

(d) Detail A (e) Detail B

Figure 3.3 Specimen C1 at -0.015 rad Drift (2" Cycle)
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(a) Global View from East (b) Detail A

(c) Detail B (d) Detail C (Beam Flange Local Buckling)

(e) Beam Lateral-Torsional Buckling

Figure 3.4 Specimen C1 at -0.03 rad Drift (2" Cycle)
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(a) Global View from East

(b) Detail A (c) Detail B

Figure 3.5 Specimen C1 at -0.04 rad Drift (2" Cycle)
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(a) at +0.05 rad Drift

(b) View from East (at -0.05 rad Drift) (c) View from West (at -0.05 rad Drift)

Figure 3.6 Specimen C1 at 0.05 rad Drift (1% Cycle)
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(a) Global View from East

(b) Detail A, View from East (c) Detail A, view from Bottom
(d) Detail B, View from East (e) Detail B, View from Bottom

Figure 3.7 Specimen C1 at Test Completion
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(b) -0.04 rad Drift (2" Cycle)

(c) -0.05 rad Drift (1% Cycle)

Figure 3.8 Specimen C1 Beam Lateral-Torsional Buckling
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(b) Detail A (c) Detail B

Figure 3.19 Specimen C2 Connection Region Prior to Testing
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Figure 3.20 Specimen C2 Panel Zone Minor Yielding at Completion of 0.0075 rad
Drift Cycles

Figure 3.21 Specimen C2 Beam Flange Yielding at Completion of 0.01 rad Drift
Cycles
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(a) Global View from East

(b) Detail A (c) Detail B

Figure 3.22 Specimen C2 Connection at -0.015 rad Drift (2" Cycle)
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(b) Column Flange Yielding Due to (c) Column Flange Yielding Due to
Column Kinking (Back Side) Column Kinking (Front Side)

Figure 3.23 Specimen C2 Connection at -0.03 rad Drift (2" Cycle)
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(a) Global View from East (b) Global View from West

(c) Detail A (d) Detail B

(e) Detail C, Minor Flange and Web Local (F) Detail D, Significant Panel Zone
Buckling Yielding and Column Kinking

Figure 3.24 Specimen C2 Connection at -0.04 rad Drift (2" Cycle)
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(@) View from East

(b) View from West

Figure 3.25 Specimen C2 at -0.05 rad Drift (2" Cycle)
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(c) Detail A (d) Detail B

Figure 3.26 Specimen C2 at +0.07 rad Drift (1% Cycle)
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(c) Detail A, view from Bottom

230
(d) Detail B, View from East (e) Detail B, View from Bottom

Figure 3.27 Specimen C2 Connection at -0.07 rad Drift (1% Cycle)
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(b) -0.07 rad Drift (1% Cycle)

Figure 3.28 Specimen C2 Beam Lateral-Torsional Buckling
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(a) View from East (b) View from West

(c) Close-up View

Figure 3.29 Specimen C2 Complete fracture of Beam Bottom Flange at Test
Completion
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(b) Column Flange Yielding Due to (c) Column Flange Yielding Due to
Column Kinking (Back Side) Column Kinking (Front Side)

Figure 3.30 Specimen C2 Continuity Plate and Column Flanges Yielding

at Test Completion
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4  ANALYSIS OF TEST RESULTS AND FINITE ELEMENT SIMULATION

4.1 Global Response and Failure Mode Comparison

To experimentally verify a proposed design procedure for the continuity plate weld
design, the main variable between the two specimens tested in this research was the column
shape; Specimen C1 had a deep (W24) column and Specimen C2 had a shallow (W14)
column. Testing showed that fillet welded continuity plates did not experience any
damage, and the performances of both RBS connection specimens were no different from
those with CJP welds between the continuity plates and the column flanges. Since deep
column is prone to twist (Chi and Uang 2002), extra bracings were provided at the top
flange near the RBS region and the top end of the column (Figure 2.6); the former was to
simulate the bracing effect provided by the concrete slab. Despite this effort, the effect of
using a deep column was still significant, as explained below.

The global responses of both specimens are compared in Figure 4.1. Strain gage
readings in the column showed that column twisting started at 1.5% drift (Section 3.1.2.2).
Therefore, lateral-torsional buckling (LTB) of the beam was more significant [Figure
4.2(a)]. Such coupled column twisting-beam LTB phenomenon caused the strength of the
connection to peak at 3% drift and then started to degrade thereafter [Figure 4.1(a)]. Since
the simulated top flange bracing was only effective in positive bending, the figure also
shows that the strength reached in the negative bending direction was less. For Specimen
C2 with a W14 column, column twisting was much less a concern. Therefore, this
specimen could reach a higher strength, and strength degradation did not occur until after
4% drift. The higher strength of C2 also means a higher shear in the panel zone, which
together with a slightly higher DCR ratio in designing the panel zone (Table 2.2) explains
why C2 experienced more significant panel zone shear yielding than C1 [Figure 4.2(b)].

Figure 4.3 summarizes the percentage contributions from the beam, panel zone, and
column to the total beam end displacement of both specimens. As expected, beam
contributed the most to the total end displacement. For the reason explained above, panel
zone of Specimen C2 contributed more to the total displacement; the percentage

contribution reduced after 4% drift because the connection strength degraded thereafter.
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The panel zone of Specimen C1 could have deformed more, but was limited by the coupled
deep column twisting-beam LTB mode.

The amount of energy dissipated by each specimen is presented in Figure 4.4, where
the energy has been normalized by the plastic moment, My, computed based on the tensile

coupon test results. The deep-column specimen dissipated less energy.
4.2 Finite Element Analyses

It is difficult to experimentally construct the freebody diagram of the continuity plate
from strain gage measurements. Instead, finite element analysis (FEA) by using the
commercial software ABAQUS/CAE (2014) was conducted. Freebody diagrams
established from the FEA are then compared with those established from the proposed

procedure.

Four node, thick-shell brick elements (Type S4R in ABAQUS) were used to model
the specimens. Typical steel properties (E = 29,000 ksi, v = 0.3) were used in the model
to describe the elastic material characteristics. Also for inelastic behavior, following the
work of Chaboche (1986), material parameters that could simulate both the kinematic and
isotropic hardening responses of an A992/A572 steel coupon under cyclic loading were
incorporated. Figure 4.5 shows the FEA models of both specimens. Figure 4.6 compares
the experimental and predicted global response of each specimen; the correlation is

satisfactory. A comparison of the deformed shapes is presented in Figure 4.7.

Figure 4.8 and Figure 4.9 shows the continuity plate freebody diagrams for both
specimens. For one-sided moment connections, the proposed procedure assumes that the
left (i.e., the non-loaded column flange) side has no normal force; the normal force from
the beam flange is transferred completely to the column web through the continuity plates.
The FEA shows that the non-loaded column flange does resist a portion of the normal force
from the beam flange; the percentage is higher for shallow columns than for deep columns.
This will reduce the shear forces in both the web weld and flange welds. Therefore, the
proposed design procedure is somewhat conservative for continuity plate weld design. The

conservatism increases when a shallow column is used.
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Figure 4.1 Comparison of Global Responses




(b) Specimen C2

Figure 4.2 Comparison of Buckling Mode at 4% Drift
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Figure 4.3 Components of Beam End Displacement
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(a) Specimen C1

(b) Specimen C2

Figure 4.5 FEM Models
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Figure 4.7 Correlation of Deformed Configurations
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5 SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH NEED

5.1 Summary

Based on a weld detail commonly used in steel moment connection tests conducted
in the past, AISC 341 requires that continuity plates in a Special Moment Frame (SMF) be
connected to the column flanges by CJP groove welds. This prescriptive requirement,
where the calculation of the required forces in the continuity plates is unnecessary, would
increase the fabrication cost. As a first step to allowing for other types of weld joints (e.qg.,
fillet welds or partial-point-penetration groove welds) to be used, it is necessary to have a
design procedure to quantify the required forces in the continuity plate. Recently, Tran et
al. (2013) proposed a procedure that considers the in-plane flexibility (or stiffness) of the
continuity plate relative to the out-of-plane flexibility of the column flange being loaded
by the beam flange in determining the forces that are transmitted through the continuity
plates to the column panel zone.

In the procedure proposed by Tran et al., the edges of the continuity plate next to the
column flanges were subjected to both normal and shear forces. This procedure was
modified to include the moment component created by the normal force and an
eccentricity. As a pilot study to experimentally verify this design procedure, two full-scale,
one-sided moment connection specimens with a reduced beam section (RBS) were tested.
The specimen design followed AISC 341 and 358, except that the continuity plate thickness
and welds were sized based on the modified procedure; the design procedure resulted in
fillet welds to connect the continuity plates to the columns. One specimen (C1) used a
deep (W24) column, and the other one (C2) had a shallow (W14) column. The continuity
plates of Specimen C2 were also undersized to evaluate the effect of yielded continuity
plates on the connection performance. While still satisfying the code requirement, the
demand-capacity ratio of the panel zone strength was high (0.90 and 0.95 for C1 and C2,
respectively) such that the effect of column flange kinking at the fillet welds locations
could be evaluated. A992 steel was specified for the beams and columns, and A572 Gr.
50 steel was used for the continuity plates. Both specimens were tested cyclically by using

the AISC loading protocol.
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5.2 Conclusions

Based on the test results and the associated analytical studies, the following

conclusions can be made.

(1) Both specimens performed well and met the 0.04 rad. story drift requirement specified
in AISC 341. Using the fillet welds did not affect the performance of the connection;
as expected, yielding and buckling in the RBS region as well as shear yielding in the

panel zone were observed.

(2) No damage in the fillet welds connecting the continuity plates to the column was
observed, indicating that the AISC 341 prescriptive requirement for expensive CJP

groove welds can be conservative and may not be always needed.

(3) AISC 341 also specifies a prescriptive requirement for the thickness of the continuity
plates: half and full thickness of the beam flange for the exterior and interior moment
connections, respectively (the full thickness requirement has been changed to three-
quarter thickness for the interior connection in the 2016 edition of AISC 341). The
proposed design procedure may result in a continuity plate thickness different from that
required by AISC 341. Test results showed that such prescriptive requirement may not
be needed; the proposed procedure will consider directly the effect of thickness on the

required forces in the continuity plates.

(4) The interface between the continuity plate and the column flanges is subjected to not
only normal force but also shear force and moment; the moment is produced by the
normal force together with an eccentricity (Figure 1.2 and Figure 1.3). The effect of
moment and shear can be significant, especially for continuity plates in shallow
columns (Table 2.4). The combined effect of normal force, shear force, and moment
needs to be considered in checking the strength of continuity plates (Eq. (1.10)).

(5) AISC 341 implicitly assumes that continuity plates shall remain essentially elastic per
the capacity design principles. The continuity plate thickness of one specimen (C2)
was undersized. Testing showed that the connection performance was not affected
although the continuity plates had yielded.
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5.3 Future Research Need

This pilot test program demonstrated that the prescriptive requirement in AISC 341
that requires a specific continuity plate thickness and expensive CJP groove welds to
connect the continuity plates to the column flanges may not always be needed. Only two
one-sided moment connections were tested in this research. Before the proposed design
procedure can be implemented, only two tests are not enough and additional experimental
verification is needed to establish the confidence level. Further testing should include two-
sided moment connections, different connection types, inclusion of doubler plates, use of

partial-joint-penetration groove welds, etc.

For one-sided connections, AISC 341 has been requiring the continuity plate
thickness to be at least one-half of the thickness of the beam flange. For two-sided
connections, AISC 341 in its 2016 edition reduces the required thickness from full to three-
quarter thickness of the beam flange. Experimental verification is needed since these

minimum thickness requirements lack any experimental justification.
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Figure A.1 Tensile Coupon Stress-Strain Relationships
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Appendix C

Welding Procedure Specifications

NJA

==

SCHUFF STEEL

Weld Procedures for:

UCSD AISC Testing

Project No.

N/A

NJA

| NIA N/A
| |
1 Linceln Innershield NR232 (FCAW-E) 11 Standard WPS X
Lincoln Innershield NR232 (FCAW-S) CofC X
Lincoln Innershield NR232 (FCAW- S) D1.8 Certificate, 0.072" Dia. X
Lincoln Innershield NR232 (FCAW- ) Manfuactures Data X
2 Lincoln Innershield NR232 (FCAW-S) 0 Skewed T-joint CJP WPS Qualified X
| Lincoln Innershield NR232 (FCAW-S) [ 190 Skewed T-joint CJP PQR x




SCHUFF STEEL
PREQUALIFIED FCAW-S WELDING PROCEDURE SPECIFICATION (WPS)

Lincoln Innershield NR-232 (E71T-8) Rev. 11 Date  2/10/12
Supporting POR(s):  NA
Mfg / Name: Lincoln / Innershield NR-232 I'M. Diameter(s): 068", .072", Position(s) All
— |AWS Class: ETI'T-8-H16 Flux/Elect Class: - Stringer or Weave: Either w/in 'I'S limits
Z |AWS Spee: A3.20 Shielding: NA Single or Multi-Pass: Either
2 |Process: FCAW-S Composition: NA No. ol Electrodes: 1
* |Equi Semi-Auto & Auto / CV Flow Rate: NA Electrode Spacing: N/A
Polarity DCEN Gas Cup Size: NA CTWD: 34" o 1 1/4”

PREIIEAT / INTERPASS TEMPERATURE

Thickness

Catcgory B

(Fxcludes materials in last column)

Category C
(AS572-60, 65, A913-65. APT 51. X52)

1/8” 1o 3/4” incl.

32°F (note 1)

50°F (note 1)

Over 3/4” (hru 1-1/2” incl. 50°F (note 1) 150°F
Over 1-1/2 thru 2-1/2” incl. 150° T 225°T
Over 2-1/2" 225°F 300°
Maximum Interpass Temp. : 550° T 550° T

General Note: ‘'The minimum preheat or interpass temperature applied to a joint composed of base metals with different minimum preheats shall be the highest of these

minimum preheats.

Note I: When the base metal temperaturc is below 32° F, the base metal shall be preheated to a minimum of 70° F and the minimum interpass temperature shall be

during welding.
WELDING PROCEDU
Layer / s Material WFS Amps Volts “I'ravel Speed Heat Input d
Pass | TS | Thickness (ipm) (A) V) (ipm) (kJfin) NotesiOtier
150 250 20 6.5 46.15
Al 1(0687) | 1/87=t=<U
g (005 a 135165 205275 1921 5080 32,1693
155 240 20 6.5 44.31
All 10727 | 187 =t<U
(07) = 140 - 170 217.5-262.5 19-21 5.0-8.0 31.00-66.2
130 283 20 7.0 48.86
s
Al ) 11751425 | 2575-3125 1921 55-85 34547159
BASE METALS ATTACIHED JOINT DETAILS AND TOLERANCES
BASE MATERIAL 1 BASE MATERIAL 2 FILLET & OTHER PIP P
A 29 (Studs) [ A 29 (Studs) X Fillet X TC-U4b-GI
A36 X A36 (incl. studs) X B-U5-GF
AS3Gr B K AS3Gr B X re-us-Gr
J A 106 Gr. B X A 106 Gr. B O B-U6-GF
X A500A.B.C [ ¢c-U6-GF
B A 529-50, 55 X B-U7-GF
A572-42, 50, 55 O B-US-GI
O A 572-60, 65 O rc-Usa-Gr
A 70936, 50, 508 B A 709-36, 50, 508 O B-U9-GF
A913-50 [ A 913-50 [ BTC-P10-GF OTC-U9a-GF
X] A 913-65 [ A913-65 O B-P11-GF
[ A 992 X a992
X APISL Gr. B B APISL Gr. B
X APLSL X42 B API 5L X42
APLSL X352 X APISL X52

Pipe / Round Tube Diameter:

CJP: D = Any diameter: PJP: Any diameter; Fillet: Any diameter (for applications LA'W. - 3.9,

Box Tube Section Dimensions: All widths and depths (for applications LA.W.-3.9.2,3.12.4,3.13.3)

Backing Material (if applicablc): I Steel [ Other
Backgouge Method (il applicable): Air Carbon Arc O Other

Interpass Cleaning: Slag removed by manual or pneumatic hand tool |Pesning:

None required. Not permitted on root or cover pass.
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Fillet Weld

_L A

T

m

4

I Lo %

Base Metal Ciroove Preparation
‘Thickness Permitted
Welding Joint (U = unlimited) Tolerances Welding Weld Size
Process Designali Tl [ T2 Root Opening As Detailed | As Fit Up Posilions (E) Notes
FCAW-S Fillet U | U R=0 R=0 [ -0,+3/16 All S -
Single-bevel-groove weld (4)
Butt joint (B)
Comer joint (C)
T-joint (T)
4 s *
* T
! v
Base Metal Groove Preparation
Thickness Rool Opening ; Permitled
Welding Joint (U = unlimited) Root Face Tolerances Welding Weld Size
Process ignati T1 T2 Groove Angle As Detailed As Fit Up Positions (L) Notes
R=0 +1/16,-0 +1/8.-1/16 F.H S
FCAW-S BTC-P4-GIF 1/4 min U =1/8 min +U, -0 * 1/16 5 bfgik
@-45° +10°, 0° 10, 57 .08 §-188
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Single-bevel-groove-weld (4)

T-joint (T)
Corner joint (C)

Base Metal Thickness
(U = unlimited) Groove Prepal T G

Welding Joint - " Root Opening Tolerances Welding Shiclding
Process ignati = Groove Angle As Delailed As Fit-Up Positions for FCAW Notes

R-Id e, o o | metws | ik
FCAW-S TC-Uda-GF J ) L t
FCAW:S TC-UAeG L : R=37 1716, -0 174116 . —-— —

a=30° +10°, 0 +10°, 5° ORIl Sk

Single-bevel-groove weld (4)
Butt joint (B) }__ T _.|
—»| |<— f
/ X <BACKGOUGE
o
R
Base Metal Thickness
(U = unlimited) Groove Preparation
Root Opening ‘T'olerances Allowed Gas
Welding Joint Tl T2 Root Face Welding Shiclding
Process Designati Groove Angle As Detailed As Fit-Up Positions for FCAW Notes
R=0t0l/8 +1/16. -0 +1/16,-1/8

FCAW-S B-U4b-GF u - =010l/8 +1/16. -0 Not limited All Not req. ¢, d.j

o« =45° +10°, -0° +10°, -3¢
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Prequalified Tigure Notes:

W omre0o

Not prequalificd for gas metal are welding using short eircuiting tramsfer nor GT AW,

Joint 1s welded from one side only.

Cyelic load application limits these joints to the horizontal welding position.

Backgouge root 1o sound metal before welding second side,

SMAW detailed joints may be used for prequalified GMAW (except GMAW-S) and TCAW.

Minimum weld size (E) as shown in Table 3.4 8 as specified on drawings.

If fillet welds are used in statically loaded structures to reinforce groove welds in comer and T-joints, these shall be equal to 14
T, .but need not exceed 3/8 in. {10 mm). Groove welds in corner and T-joints of cyclically loaded structures shall be reintorced
with fillet welds equal to 14 T, but need not exceed 3/8 in. (10 mm}.

Double-groove welds may have grooves of unequal depth, but the depth of the shallower groove shall be no less than one-fourth
of the thickness of the thinner part joined.

Double-groove welds may have grooves of unequal depth, provided these conform to the limitations of Note f. Also the weld size
{E) applies individually to cach groove.

The orientation of the two members in the joints may vary from 135° to 180 for butt joints, or 457 to 135° for corner joints. or
457 to 90° for T-joints.

For comer Joits, the outside groove preparation may be in either or both members, provided the basic groove conliguration is not
changed and adequate edge distance is maintained to support the welding operations without excessive edge melting.

Weld size (E) 1s based on joints welded flush.

For flare-V-groove welds and flare-bevel-groove welds to rectangular tubular sections, r shall be as two times the wall thickness.
For flare-V.groove welds to swfaces with different radii r. the smaller r shall be used.

Prequalified FCAW WPS Requirements in accordance with AWS D1.1:

e Maximum Root Pass Thickness: Flat — 3/87, Horizontal — 5/167, Vertical — 1/27, Overhead — 5/167,
¢ Maximum Fill Pass Thickness: 1:4”
»  Naximum single-pass tillet weld: Flat — 1/27, ITorizontal —3/3”, Vertical — 127, Overhead — 5/167.
e Splitlayers when:
e Root opening = 172", or
e The layer width w > 5/8" in the F. H, or OH positions for nontubulars, or
e The layer width w = 17 1n the vertical position [or nontubulars or the $G or 6G [or wbulars,
»  Vertical Progression shall be upward.
PWHT:
None required.
Notes:
Rev. Date Summary
11 21012 Revised Heat Input calculations to conform with crent D1.8 CofC
10 S/3172011  |Base Metals (A529, A709) added.
9 Revised Preheat table and Catcgary C preheat added. D18 D clarification. Base Mctals added. Revision table added.
3 Updated WPS format. Updated CTWD to new MfeDat. Add Basc Metals. AAdd studs to Tillet. Add BC-P6 & B-U7. Add pipetube info.
7 Revised Fillet detail. Removed MfgDat and CofC.
6 Added BC-P6-GF
5 16282009 Added .-\umma!i; Revised procedurs table to match shop format. Changed CurrentVolts/TS to bring hicat input within ranges shovwn on DLS
CofCs (except 564" is based on new NR233 CofC).
4 8/12/2009 Format updates, P10 weld size & notes, U4b & US As Fit Tolerances,
3 10722008 |Selected AY13 muterials in BM1, Added B-U3-GF, Misc furmaliing.
2 9182007 |Revised preheal 1able. Upiated B-Uda juinl. iable.
1 9/18/2007  [Preheat Table Formal. Updated BTC-P10. Added Note m to Figure Notes. Added PWHT and Note | 1o noles page.
0 1/24/2007  |Initial release
* Comections made solely for typographical and‘or non il variable crrors will carry the same revision number with a new date and may not be listed hore.
This procedurc has been prepared in accordance with AWS D11, 1.8 (Demand Critical), manufacturer’s v Jations. and project sp
Prepared by: Mike Fchelberger CWI Certification # 116721
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ﬂ%-.@ W3 4 FLUX-CORED SELF-SHIELDED (FCAW-8) WIRE

Innershield NR-232

Mild Steel, All Position * AWS E71T-8

Key Featurss Conformances
» High deposition rates for out-of-position AWS A5.20/A5.20M: 2005 E71T-8-H16
welding ASME SFA-A5.20: E71T-8-H16
» Penetrating arc ABS: 3YSA
: Lloyd’s Register: 3YSH15
» Fast freezing,
EIT, SRy U THTNNS 3G Ryt DNV Grade: ' YMS H15
4 Mee1s AWS D1.8 seismic lot waiver GL: 3YH10S
UM BV Grade: SA3YMH
CWB/CSA W48-06: E491T-8 H16
DB: EN758T423YN2
Tuv: EN758T423YN 2
MIL-E-24403/1:* MIL-71T-8AS
Typical Applications :&“;AD?:
p Structural fabrication, including those subject to y e i nis
seismic requirements
» General plate fabrication
» Hull plate and stiffener welding on ships and
barges
» Machinery parts, tanks, hoppers, racks and : o
scaffolding AI" “I e

9 | THE LINCOLN ELECTRIC COMPANY
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FLIUX-CORED SELF-SHELDED (FCAW-S) WIRE

Innershield” NR"-232

(AWS E71T-8)

DIAMETERS / PACKAGING

Diameter
in (mm)

135 b (8.1 kg) Coil
54 Ib (24.5 kg) Master Carion

135 Ib (8.1 kg) Cail
54 Ib (24.5 ko) Hermetically Sealed Pail

0.088 (1.7)
0072 (1.8)
5/64 (2.0)

0.068 (1.7)
0.072 (1.8)
5/64 (2.0)

ED012518
ED012522
ED012525

ED030232

251b (11.3 kg)
Stesl Spool

ED030644
ED030647

25 Ib (11.3 ka) Plastic Spool
{Vacuum Sealed Foll Bag)

ED030949

501b (22.7 kn)
Call

ED012519
ED012523
ED012526

MECHANICAL PROPERTIES® - As

Required per AWS A5.20/A5.20M: 2005

Yield Strength® Tenslle Strength Elongation  Hardness  Charpy V-Natch / J Relbf)

MPa (icsl)

MPa (ksl)

%

Rockwell B

@ -29°C (-20°F)

Requirements - AWS E71T-8

Typical Results® - As-Welded

400 (58) min. | 480-655(70-95) 22 min.
480-520 (66-75) | 575-615 (83-89)

25-31

87-80

27 (20) min.
47-75 (35-55)

Requirements - AWS E71T-8

0.30 max.

1.75 max.

0.60 max.

DEPOSIT COMPOSITION! — As Reguired per AWS A5.20/A5.20M: 2005

0.03 max.

0.03 max.

1.8 max.

Typical Results®

0.16-0.18

0.61-0.72

0.26-0.33

=0.01

=0.01

0.50.8

TYPICAL OPERATING PROCEDURES

Diameter,

CTWD®  Wire Fead Speed Voltage™ Approx. Current

Melt-Off Rate

Deposition Rate  Efficiency

Polarity mm{in)  m/min (in/min) (volis) (amps) kg/hr {Ib/he)  kg/hr (Ib/hi)

‘ (5.0) 8 {3

: 8 (6.2) 0 (4
0.088in {1.7mm), | 19-32 38 (150) 19-21 250 32 (@7.1) 24 (53) 75
DC- (3/4-11/4) 43 (170 20-22 270 35 (7.9 28 (6.1) 78
50 (195) 23-24 300 43 (94) 32 (7.0) 74
6.4 (250) 23-24 350 54 (11.8) 40 (9.0) 76
74 (320) 25-27 400 69 (15.2) 52 (11.4) 75
20 (80) 16-18 130 1.8 (4.0) 15 (3.3 83
35 (140) 18-21 225 31 (68) 25 (5.5 81
0.072in (1.8mm), | 19-32 39 (155 19-22 240 33 (72 27 (6.0) 83
DC- (3/4-11/4) 43 (170) 20-23 255 36 (8.0) 29 (85 81
6.4 (250) 22-24 315 53 (11.7) 43 (9.6) 82
7.4 (290) 23-25 350 6.2 (13.6) 50 (11.0) 81
15 {80) 16-17 145 17 @7 12 @27 73
5/84 In (2.0 mm), 19-32 29 (115 18-20 260 32 (7.0 25 (5.5) 78
DC- (3/4-11/4) 30 (120) 18-20 270 33 (7.3 26 (.7) 78
33 (130) 20-21 285 35 (7.8) 28 (62 79
46 (180) 22-23 365 50 (10.9) 39 8.7 80
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Material Safety Data Sheets (MSDS) and Certificates of Conformance are available on our website at www.lincolnefectric.com

TEST RESULTS

Test results for i daposit or ition and diffusible hydrogen levels were cbtained from a weld prod and tested ding to
prescribed mmmmw not be assumed to be the expected results in a particuler appiication or weldment. Actuel resuits will vary depending on many factors,
including, but not limited to, weid p durs, plate y and temp: , weldment design and Users ars to confimm by qualification

testing, or other appropriate melns. 1he suitability of any welding commble and procedure before use in the intended application.

CUSTOMER ASSISTANCE POLICY

mLIrcdnEomccmbmmummmul high quality welding equipment, consumables, and cutting equipment. chall elnomedﬁwnudscﬂ'u
customers and to their expectations. mpug' n aakl?neohﬂeetﬁcfornhmmnnor.dvmammuunofwm pioym
wlnqumwolhebutofmenrﬁi ha:edmnhm-tnmpmwdedmmanbyﬂmwmumdmwwedgeﬁzymmvewwnmthewlm elmluya.
however, are not In @ posttion to the for the particular weldment. Accordingly, Lincoln Electric does not
mtargmcrmmomy aﬁﬁtywﬂhmpocnooucnmformmonwmm\hsprommafauchmfcnmahoncrldmodmnotme.upmd or alter
any warranty on our products. Anyewfmnnrmied wmunythutmlgmmsefrwnmemfmnmmwmee hdudngmyinphedwmmﬂyafmrdlmuamyorwwmﬁy
of fitness for any customers’ particulr purposs Is spectfically di

anlnElecldcllnrmmsnvemwmm.la and use d by Lincoln Electric is solely within the control of, undramm:lhesole
responsiblity of tha mmvanabmmmmmmmumﬂm:ﬁmmmummm In applying these types of fabrication methods and service
requirements.

Subject to Change— This Is t0 the best of our knowledge at the time of printing. Please refer to www.lir com for any .

THE LINCOLN ELECTRIC COMPANY =
22801 St. Clair Avenue © Cleveland, OH © 44117-1199 « USA.

© Lincoln Globel, Inc. Al Rights Reserved. Phone: +1,216.481.8100 ¢ www.lincolnelectric.com

THE WELDING EXPERTS®
Issus Dats 01/12
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SCHUFF STEEL

QUALIFTED FCAW-S WELDING PROCEDURE SPECIFICATION (WPS)

Lincoln Innershield NR-232, Skewed-T Rev. 0 Date  9/20/13
Supporting PQR{s): 0190
Mfg / Name: Lincoln / Innershicld NR-232 FM. Diameter: 072 Position(s}: v
. |AWS Class: E7IT-8-HI6 Flire/Eled Class: - Stringer or Weave: Either w/in TS limits
# |AWS Spec: AS20 Shiclding: NA Single or Multi-Pass: Either
2 |Process: FCAW-S Composition: NA (No. of Electrodes: 1
* |izquipment Scmi-Auto & Auto /CV Flaw Rate: NA Llcctrode Spacing: N/A
Polarity: DCEN Gas Cup Size: NA CTWD: 34" o | 14
PREHEAT / INTERPASS TEMPERATURE
: Category B Category &
Thickness (Excludes malcril?in last colummn) (AS72-60. 65, .-\9;3”)25, API 5L X52)
1/8" 10 34" incl. 32°F (note 1) S0°F inote 1)
Over 3/4" thru 1-1/2" incl. 50°F (note 1) 150°F
Over 1-1/2" thru 2-1/2" incl. 150°F 225°F
Over 2-1/27 225°F 3007 F
Maximum Temp. : S30°F 350°F
General Note: The mininmm preheat ar interpass temperature applicd to a joint composed of base metals with different minimum preheats shall be the highest of these
minimum preheats.
Note 1: When the buse metal temperature is below 327F, the base metal shall be preheated 10 @ minimum of 707 F and the minimum interpass temperature shall be
i d during welding,
WELDING PROCEDURE
Layer ! Material WIS Amps Volts Travel Speed Ieat Input
pass | PO | qhickness Gipm} A Vi ot (kliny Blotes s
b e 170 261 19 5 59.51
Al e B 152-188 235-287 18-20 3.75-6.25 40.61-01.84
= o 170 261 19 5 59.91 s
All - [he0rz) | A= 152188 235.287 1820 15625 40.61.76.53 DLE DeApplications
BASE MATERL Al? ';\SF \I‘F.TAL.ZS EMATERIALZ ATTACHED JOINT DETAILS AND TOLERANCES
[ A 29 (Studs) ] A 29 (Studs) 23° Skew
K aA36 X a36
Hasiorn H®As3aGLB
B A 106 Gr. B KAl GrB
BJ A500 A.B.C K A0ABC
B A 529-50, 55 X A 529-50, 55
B A 572-42, 50, 55 & A 572-42, 50, S5
[ A 572-60, 65 [ A 572-60, 65
B4 A 709-36, 50, 508 & A 709-36, 50, S0
& A 913-50 & Av13-50
[J A913-65 [] A 913-65
K A992 X a9
[ API 3L Gr. B (X APTSLGr. B
B3 API 51 X42 B API 5L X42
B API 5L X52 X API 5L X52
Pipc / Round ‘Tube Diameter: NA
Box Tube Scetion Dimensions: NA
Badking Material (i applicable): [ Steel [ Other
Badkgouge Method (if applicable): [J Air Carbea Arc [ Other
Interpass Cleaning:  Slag removed by manual or pneumatic hand tool |I’eenmg: None required. Not permitted on reot or cover pass,
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AASHTO/AWS 1.5/01.5M:2010

ANRNEX N

PROCEDURE QUALIFICATION RECORD WORKSHEET
POR NUMBER 200EGSKEWEDCF

Welder's Name SANAKEITH D921 Welding Test Date 18 AUS 2012
Process FCAW-S Position & Joint Deta#t: []Fig. 5.1 []Fig. 5.2 s
Electrode(s) Mfy. Designailon HNCOLN [IFig.5.3 [JFig.5.8 -
AWS Electrode Classification E-7178 Electrical Stick Cut 4
Flux Mfg. Designation M4 AWS Flux Classification N4 s
Postweld Heat Treatment:  Temp. MA Hold Time NA Heating/Cooling Rate MNA
Current
Diam. Current WFS* Voltage and Polarity
Eleclrade  {1) 072" 0CEN NiA AVGI19.23 avael
(2}
(3}
Shielding Gas NA NDew Point NA Flow Rate N Gas Cup Size NA
Travel Speed: Min. 51PM Max. 5 PM

Base Metal Specification and Thickness §7250 1
Backing Metal Specification and Thickness 57250
Preheat Temp, 190 DEG ¥

Heat Numbey 821208420
Heat Number 521204420
Interpass Temnp.  Min, 192DEGF

Max, 398 PEG T

| FILLER
METAL CURRENT TEMPERATURE
Pass Type & : Wire Fead Travel Stick -
. Number | Layer | Process | Diam. Polarity Speed Amp Volts Speed Out Preheat | Inlerpass
ROOT 1 FCAW-S 072" DCEN 266 19.3/ -] 34" 150
INTER 2 Y ® N 262 89 4 % 248
& 3 » b & o 250 19:1 5 % 274
2 4 x » 2 262 8.5 5 R 377
3 b “ d R 272 19.83 5 X 323
. 6 " - - 279 95 5 | - 102
" T G T 4 255 19.18 5 i 256
COVER 8 o g » 268 19.5 5 # 354
COVER g ¥ s 2 247 19.07 5 i 380
COVER 10 " 2 " 255 19.06 5 " 398
COVER 11 = i = 254 18,8 5 i 388
AVG 261 |AVG 1923 AVG 5
“Optional
Page *__ of ! "

For multiple electredes list each clectrede on separate line, For parallel electrodes show 2 @

" under number and diamatar.

Preheat and interpass temperature measured at mid lencth of olates approximately 25 mm (1 in] from the weld center line,

State/3rd Party Witness NA
Date

Form N-4

Mfr./Contractor SCHUFF STEEL

Form N-4—Procedure Qualification Record (PQR) Worksheet
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Melollurgical DECISIVE=—> TESTING, INC.
MMechanical ARCLING THE GLOBE
Physical i
N.D.T. Inspeciion Specidlist

DATE: 8-21-13
LOMTROLE D758-312

cusTomER SCHUFF STEEL
ADDRESS P.O. BOX 150456

PHOENIX, AZ. 85005 LOCATION: DTILAB
P.0# VERBAL SPECIFICATION: PER AWS D1.1-10
PART NAME: Pl ATFE ACCERTANGE: PER AWS D1.1-10
QUANTITY: 1 EA PROCESS: FCAW
BASE MATERIAL: A572-50 LTl PROCELURE#: R1-4C REV.B
FILLER: E-71T-8 JOINT EESIGN: GROOVE
weELDEH: DANA KEITH PROCERURE #: N/A
ROSITION: 3G THICKNESS: 1" 25°
BADGE: 1081 PERCENT TESTED: 100%

VISUAL & RADIOGRAPHIC INSPECTION
PROCEDURE QUALIRICATION

%E;Rm“"‘m_ [eX REJ. [V
G 1E
PRETATI END
WIER ONILEGE! G. SHRINKAGE
1. SMALL A. LACK OF PERNETRATION  D. CRACKS H. GAS HOLES
2. MODERATE B. LACK OF FUSION E. INCLUSICGNS  |. LINEAR INDICATIONS
3. EXCESSIVE C. UNDERCUTTING F. POROSITY J
FILMUSAGE : 2 EA4.5" X 17"
QUANTITY ACCEPTED: -1- QUANTITY REJESTED: .0-

NOTE: N%sponsibla for any monles overthe Invelce  amount of the job,
RT LEVEL il: 3 BRIAN RUNYAN

RECEIVED BY:

SIGNATURE PRINT

4735 Myrile &vanve > Son Disgo, Colifornio 72105 » {61 §) 225-9006 © FAX (615} 265-9930
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Metallurgical @Eiisg‘fﬁm’ry’ ?ES?EN@, éN'ﬁ:o

Mechanical ARGUND THE GLOBE
o
L ! - - . .
"%‘—- == MN.D.T Inspection Soecialist

Paysical / gﬁ"’"

= | /

N
CUSTOMER: SCHUFF STEEL RATE: 01012
i CONTRCLE: DTT-185
SPECIFICATION: PER AWS D1, i
FILLER: E-71T-8
B.0%: VERBAL PROCESS: FCAW
NTITY: {4 BENDS)
QUANTITY: 1 EACH (4 BENDS) WELDER: DANA KEITH
WATERIAL: A572-50 WELDER Li.: 1081
BEND TEST

1" SKEWED CONNECTION PQR

POSITION TYPEQFTEST RESULTS

20 {4) SIOE BENDS ACCEPTED

(3) MACRO TEST = ACCEPTED

NOT RESPONSIBLE FOR ANY MONIES OVER THE INVOICE AMOUNT OF THE JOB.

INSPECTOR: 5 ;

RECEIVED BY:

SIGNATURE PRINT

A735 Myrile Avanve © Sor Diege, Colifornic $2105 « (619) 285.9006 « FAX (619] 205.9930
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Meicliurgical
Machanical
Physical

DECISIVE=—=> TESTING, INC.

\“%L:- N.B.T. inspection Specialist

ARCUND THE GLOBE

CUSTOMER: SCHUFF STEEL

ARDRESE:

P.GE: VERBAL
QUANTITY: 1 EACH (2 TENSILES)

MATERIAL: AS72-50

TENSILE TEST

o9

DATE: 8-10-13
CONTROLE: DTT-185
SPECIFICATION:
PART

PER AWS D1.1
1" SKEWED CONNECTION PQR

FILLER: E-717-8
PROCESS: FCAW
POSITION: 3ag

WELDER NAME: panNA KEITH

TENSILE STRENGTH

YIELD STRENGTH ELONGATION | Rebuction
ACTUAL ACTUAL | ACTUAL LOAD | PCUNDS PER | ACTUAL LOAD | PQUNDS PER | &T FRACTURE | OCARER

k3. SIZE AREA POUNDS SO, IN. POUKDS . I, NN e
#F1 | 500 X 1.00 500 41,480 82,960 ! 7 1 7 A R
F2 | 500 X 1.00 500 40,752 81.508 7 1 i 7 A

REMARKS : LOCATION OF BREAK = BASE MATERIAL

NGT RESFONSIZLE FOR ANY VICNIES OVER THE INVOICE AMOUNT OF THE JOB,

%
INSPECTOR: _

SIGNATURE

PRINT

4735 Myrile Avenue © Sen Diego, Californio 92105 « i619} 285-9006 « FAY [619) 285-0930
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ArcelorMittal Burns Harbor Plate y
US HWY 12 Bums Harbor, Indana

QUALITY ASSURANCE
REPORT OF TEST AND ANAYLSES

SHIPMENT NO. SRR GHIFPED CAR OR VEHICLE NO.
803-04008 I 03-05-13 CSS-CHGO-UP TTPX 081892| PAGE 7

LEECO STEEL L L C LEECO STEEL LLC

3| 1011 WARRENVILLE RD STE 500 il FWWR DELIVERY
5| LISLE IL 60532 »| TRACK 1907
; ; CLEBURNE TX
SI= ] E
; SERIAL PAT HEAT NO. THICKNESS | WIDTHCRDIA. LENGTH T weeHt | YP'.El.N?I' s?rm.ésm ELoNG. | ReD,
. NUMBER PCS.
gl MR |8 INCHES  INCHES INCHES POUNDS PSI PSI IN % %

QUALITY STEEL MELTED & MANUFACTURED IN THE U. S. A.

PLATES - , CSA G40.21-04 GR 50WT KLD FINE
GRAIN PRAC, ASTM A705-09A GR 50,
ASTM A572-07 GR 50, CH-V A673 FREQ
{H) L 25 FTLB AT -20F --- PLT
CONTROLLED FINISH

MFST - MFST MILL SERIAL# MFST PPI 0048157- 0001 LIFT

MAX 15 TON-GAUGES SEP UNLDG OH-MAGNET LOAD SAME
SIZE & GRADES TOGETHER

CO# V00160 GH 822-6543C

— 821204420 3 1 96 249 19602 66700 84200 8 29

(M55)MFST REF#:100096240A572-50

| Soo—coye )

C-QUENGH TEMPERATURE 1-TEMPER TEMPERATURE N-NORMALIZE TEMPCRATURE
CH EPVHSAD‘I’
SERIAL PAT HEAT HARD TEST B B LAT. EXP
wowmER [WO.|  NUMBER | g 8END, :ﬁ"@f":ﬁ?& —"!l SPE DR o, e ki
Vogalag T 2 ) T o Y T I
B821Z042420 17000V 374 L =20 206 173180
| CHEMICAL ANALYSIS [ maUAD
mareeR: "2l o T # | & T el [ Jolwm e [l el & Jia i § [ &[5

821704420 .11 1.50 .011 .004 .344.285 .18 .03.004.002.002.033.0003 .037.005.005

| ety thal the above results 8re 8 trus and commect copy of Beus’ reeuils contaied i records melrtained by Arcelomiittal Bums Haroor and sz in full complianca with the
of the

ditec above, Thls test repart connof be atared and must be ranamitiag Tt with Any sibsquent third party test reparts, If nequired.
D. W. ELWOOD - WNK

BHPLTRPT.TIF SUPV. QUALITY ASSURANCE
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Tho Linola o Compcy CERTIFICATE OF CONFORMANCE LINCOLN B
Cleveland, Ohio 44117-1199 (APPLIES ONLY TO US. PRODUCTS) ELECTRIC

THE WELDING EXPERTS*
Product: Innershield™NR®-232 [1Year]
Classification: E71T-8-H16
E71T8-A2-CS3-H16

Specification: AWS A5.20:2005, ASME SFA-5.20
AWS A5.36:2012, ASME SFA-5.36

Date May 09, 2013

This is to certify that the product named above and supplied on the referenced order number is of the same classification, manufacturing process, and material
requirements as the material which was used for the test that was concluded on the date shown, the results of which are shown below. Alltesumqnu'edbyﬂ::
specifications shown for classification were performed at that time and the material tested met all requi It was fi d and lied g o
the Quality System Program of the Lincoln Electric Company, Cleveland, Ohio, U.S.A., which meets the requirements of IS09001, NCA38W AWS A5.01, and
other specification and Military requirements, as applicable. The Quality System Program has been approved by ASME, ABS, and VdTUV.

E71T-8-H16
s oo I T RESULTS
Electrode Size 0.068 inch 5/64 inch
Polarity DC- DC-
Voitage, V 21 20
Wire Feed Speed, cm/min (in/min) 483 (190) 457 (180)
Current, A 340
Average Heat Input. kJ/mm (kJ/in) 1 5 (37) 1.8 (46)
Contact Tip to Work Distance, mm (in} 25(1) 25(1)
Pass/Lavers 1877 1318
Preheat Temperature, °C (°F) (60 min.) 20(72) 25 (73)
Interpass Temperature, *C (°F) (276 - 325) 165 (325) 165 (325)
__Postweld Heat Treatment As-welded As-welded As-welded
Mechanical properties of weld deposit
Tensile Strenath. MPa (ksi} (70 - 95) 560 (82) 590 (85)
Yield Strenath. 0.2% Offset. MPa (ksi) (58 min.) 460 (67) 480 (69)
E ion % 22 min. 32 28
Average Impact Enerav (20 min.) 82 (60) 72 (53)
Joules @ -29 °C (ft-lbs @ -20 °F) 80.81.84 (59.60.62) 72.72.72 (53.53.53)
A Hardness. HRB | Nat Requi | a8 89
Chemical composition of weld deposits (weight %)
C 0.30 max. 0.15 0.16
Mn 1.75 max. 0.66 0.68
Si 0.60 max. 0.25 0.27
S 0.03 max. 0.004 0.004
P 0.03 max. 0.006 0.010
Cr 0.20 max. 0.02 0.03
Ni 0.50 max. 0.02 0.02
Mo 0.30 max. 0.01 0.01
v 0.08 max. 0.00 0.00
Cu 0.35 max. 0.02 0.02
Al 1.8 max. 0.6 08
“Diffusible Hydrogen (per AWS A4.3) EZ1T.8H18 RESULTS
Electrode Size 0.068 inch 5/84 inch
Polarity DC- DC-
Diffusible Hydrogen, mL/100g 16.0 max. 8.8 74
Absolute Humidity {(grains moisture/Ib dry air) 42 35
Page 10f2 Cert. No. 22320
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D Lisan Buglo Compity CERTIFICATE OF CONFORMANCE LINCOLN B
Cleveland, Ohio 44117-1199 LI OO YO L RO ELECTRIC

THE WELDING EXPERTS"”

Product: Innershield®NR®-232 [1Year]
Classification: E71T-8-H16
E71T8-A2-CS3-H16
Specification: AWS AS5.20:2005, ASME SFA-5.20
AWS A5.36:2012, ASME SFA-5.36
Date May 09, 2013
E71T8-A2-CS3-H16
Operating Settings Reguirements SESULIS
Electrode Size 0.088 inch 5/64 inch
Polarity DC- DC-
Voltage, V 21 20
Wire Feed Speed, cm/min (in/min) 483 (180) 457 (180)
Current, A 270 340
Average Heat Input, kJ/mm (kJ/in} 15(37) 1.8 (46)
Contact Tip to Work Distance, mm (in) 25(1) 25(1)
Pass/Layers 1817 13/6
Preheat Temperature, °C (°F) (60 min. ) 20 (72) 25 (73)
Interpass Temperature, °C (°F) (275 - 325) 165 (325) 165 (325)
Postweld Heat Treatment As-welded As-welded As-welded
Mechanical properties of weld deposits
Tensile Strenath. MPa (ksi} (70 - 85) 560 (82) 590 (85)
Yield Strenath. 0.2% Offset. MPa (ksi) (58 min.) 460 (67) 480 (69)
Elonaation % 22 min.
Average Impact Enerav (20 min.) 82 (60) 72 (53)
Joules @ -29 °C (ft-lbs @ -20 °F) 80.81.84 (59.60.62) 1 72.72.72 (53.53.53)
Averace Hardness. HRB Not Reauired 88 89
Chemical composition of weld deposits (weight %)
C 0.30 max. 0.15 0.16
Mn 1.75 max. 0.66 0.68
Si 0.60 max. 0.25 0.27
S 0.030 max. 0.004 0.004
P 0.030 max 0.006 0.010
Cr 0.20 max 0.02 0.03
Ni 0.50 max. 0.02 0.02
Mo 0.30 max. 0.01 0.01
Vv 0.08 max. 0.00 0.00
Cu 0.35 max 0.02 0.02
Al 1.8 max 0.6 0.8
B Not Reouired 0.001 0.001
Diffusible Hydrogen (per AWS A4.2) m"’ ‘ s
Electrode Size 0.068 inch 5/64 inch
Polarity DC- DC-
Diffusible Hydrogen, mL/100g 16 max. 9 7
Absolute Humidity (grains moisture/lb dry air) 42 35
1. This certificate lies with the i of EN 10204, Type 2.2.

2. The electrode sizes required to be tested for this classification are 0.068 inch and 5/64 inch. All other sizes manufactured will also meet these
requirements.
3. Test assembly constructed of ASTM A36 steel.

4. Fillet Weld Test (p as required): Met req

5. g Inspection: Met req

6. The strength and elongation p i P here were from tensile i artificially aged at 105°C (220°F) for 48 hours.

7. Results below the limits of the | it or lower than the precisk Q| by the sp are rep as zero. Strength values in SI

units are reported to the nearest 10 MPa converted from actual data. Preheat and interpass temperature values in Sl units are reported to the nearest
5 degrees.

e =4
B oD L s May 09,2013 PR Z™  May0s.2013
Toronto Cunningham, Certification Supervisor Date Dave Fink, Manager, Compliance Date

Engineering, Consumable R&D

Page 20f2 Cert. No. 22320
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£ G
g W= 4 FLUX-CORED SELF-SHELDED (FCAW-S) WIRE

Innershield NR-232

Mild Steel, All Position = AWS E71T-8

Koy Features Conformances
» High deposition rates for out-of-position AWS A5.20/A5.20M: 2005 E71T-8-H16
welding ASME SFA-A5.20: E71T-8-H16
» Penetrating arc ABS: ‘ 3YSA
» Fast freezing, easy to remove slag system gw esr::gm ﬁ‘m; ;5”5
» Meets AWS D1.8 seismic lot waiver aL: ' 3YH10S
requirements BVIGrad . SA3YMH
CWB/CSA W48-06: E491T-8 H16
DB: EN758T423YN2
TWV: EN758T423YN2
MIL-E-24403/1* MIL-71T-8AS
Irples! AnpSoations WS 018
» Structural fabrication, including those subject to s nits
seismic requirements

» General plate fabrication

» Hull plate and stiffener welding on ships and
barges

» Machinery parts, tanks, hoppers, racks and Welding Positions
scaffolding i

9% | THE LINCOLN ELECTRIC COMPANY
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FLUX-CORED SELF-SHELDED (FCAW-S) WIRE

Innershield” NR'-232

{AWS E71T-8)

DIAMETERS / PACKAGING
Diameter 13.5 b (6.1 ka) Coil 135 Ib (6.1 k) Col 251b {11.3kg)
in {mm) 541b(24.5 kg) Master Carton 54 Ib {24.5 ko) Hermetically Sealed Pail Steal Spool
0.068 (1.7) ED012518 ED030643
0.072 (1.8) EDO12522 ED030232 ED030644
5/64 (2.0) ED012525 ED030647
[ 25 Ib {11.3 ko) Plastic Spool 501b (22.7 ko)
in {mm) (Vacuum Sealed Foll Bag) Coll
0.068 {1.7) EDD12519
0.072 (1.) ED030949 ED012523
5/64 (2.0) ED012526

MECHANICAL PROPERTIES" - As Required per AWS A5.20/A5.20M: 2005
Yield Strength™ Tensile Strength Elongation  Hardness  Charpy V-Notch / J ftelbf)

MPa (ksl) MPa (ksi) %  RockwellB  @-20°C(-20°P)
Requirements - AWS E717-8 | 400(s8)min. |480-655(70-95) 22min. | - | 27 (20) min.
Typical Results® - As-Weided 460-520 (66-75)| 575-615(83-89) 2531 | B7-90 | 47-75(35-5)

DEPOSIT COMPOSITION! — As Required per AWS A5.20/A5.20M: 2005

Requirements - AWS E71T-8 0.30max. | 1.75 max. 0.60max. | 0.03 max. 0.03 max. 1.8 max.

Typical Resulis™ 0.16-0.18 | 0.61-0.72 0.26-0.33 =0.01 =0.01 0.5-0.8

TYPICAL OPERATING PROCEDURES

Diameter, CTWD®™  Wire Feed Speed Voltage™ Approx. Current Melt-Off Rate  Deposition Rate Efficiency
[ mm @)  m/min (n/min) (volis) (amps) ka/r (o/hr)  kg/hr (Ib/hr) (%)
(110) 18-19 195 23 (5.0) 1.8 (39 78
.3 (130) 18-21 225 28 (6.2) 20 498 74
0.068 in (1.7 mm), 18-32 3.8 (150) 19-21 250 32 (71) 24 (5.3 75
DC- (3/4-11/4) 4.3 (170) 20-22 270 35 (7.8 28 (6.1) 78
5.0 (195) 23-24 300 43 (94) 32 70 74
6.4 (250) 23-24 350 54 (11.8) 40 (9.0 76
7.4 (320) 25-27 400 6.9 (152 52 (1.4 75
20 80)  16-18 130 18 @y 15 (33 8
3.5 (140) 18-21 225 31 (6.8) 25 (5.5 81
0.072 in (1.8 mm), 19-32 39 (155) 19-22 240 33 (7.2 27 (6.0 83
DC- (3/4-1 1/4) 4.3 (170) 20-23 258 36 (8.0 29 85 81
6.4 (250) 22-24 315 53 (11.7) 43 (98) 82
7.4 (290) 23-25 350 6.2 (13.6) 50 (11.0) 81
1.5 (B0) 16-17 145 1.7 (3.7) 12 @27 73
5/64 in (2.0 mm), 19-32 28 (119 19-20 260 32 (7.0 25 (5.5 78
DC- (3/4-11/4) 3.0 (120) 19-20 270 33 (7.3) 26 (B5.7) 78
3.3 (130) 20-21 285 35 (7.8) 28 6.2 79
48 (180) 22-23 365 5.0 (10.9) 39 (8.7 80

Myped ffu Lefow.

WELDING CONSUMABLES CATALOG | 97
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Matenial Safety Data Shests (MSDS) and Ceriificates of Conformance are available on our website at www.fincolnetectnc.com

TEST RESULTS

Test results for deposit or ition and diffusible hydrogen levels were obtained from a weld p and tested to
prescribed standards, and !nld not be assumed to be the expecled results in a particular application or weidment. Actual results will vary depending on many factors,
Including, but not imited to, wsld procedurs, plate and design and Users ars to confirm by qualification

testing, or other appropriate means, the suitability of any welding comumble and procedure before use in the intended application.

CUSTOMER ASSISTANCE POLICY
The Lincoin Ehw‘c Omlurvy is mmullmﬂm and salling 'gu quality welding equipment, consumables, and cutting equipment. Our challengs Is womul the neads of our

customors an: their expactations. On occasion, agers may ask Lincoln Electric for information or advice about their use of our p
wlnqummmmumlnumm h'crmctl ldadtalh em by the customers mdunknoMedneMmuymwﬂwnlngthewpﬂmo employees,
however, are not in a position to the Informatio the ] fw Ancold igly, Lincoin Electric doss not
warant or mwmmemy lity with mﬁpecttowdl or advice. M f, the advice does not create, axpand, or alter

any warm my on our products, Any express ar |mplisd wmnlﬂylhn might unsuivurn the information uudvlm hl:i.ltlg any implied wmmlyufnmdm“iltyor any warranty
any particuler

Lincoln Electric i u a responsive manufacturer, but the selection and use of smpmmm sold by Lincoin Electic is solely within the control of, and remains Qhe sole
:a Many baeyond the control of Lincoin affect the results cbtained In applying these types of fabrication mathods and

Subject to Change — This Information Is accurate to the bast of our knowledge at the time of printing. Please refer to www.lIncolnelectric.com for any updated Information.

THE LINCOLN ELECTRIC COMPANY
22801 St. Clair Avenue = Cleveland, OH = 44117-1199 » USA.

© Lnon ot c. ARGt Fesred Phone: +1.216.451.5100 * waw.Incolnelectie.cOm e yoe) NG EXPERTS®
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