

Report No. SSRP 16-10 (DRAFT)

STRUCTURAL SYSTEMS RESEARCH PROJECT

EXPERIMENTAL VERIFICATION OF A PROCEDURE FOR SMF CONTINUITY PLATE WELD DESIGN

by

ADEL MASHAYEKH CHIA-MING UANG

Draft Final Report Submitted to American Institute of Steel Construction

February 2017

Department of Structural Engineering University of California, San Diego La Jolla, California 92093 University of California, San Diego Department of Structural Engineering Structural Systems Research Project

Report No. SSRP 16-10

Experimental Verification of a Procedure for SMF Continuity Plate Weld Design

by

Adel Mashayekh

Graduate Student Researcher

Chia-Ming Uang

Professor

Draft Final Report Submitted to American Institute of Steel Construction

Department of Structural Engineering University of California, San Diego La Jolla, California 92093

ABSTRACT

When required in the moment connection design for Special Moment Frames, AISC 341 provides a prescriptive requirement for the continuity plate thickness and specifies complete-joint-penetration (CJP) groove welds to connect the continuity plates to the column flanges. Recently, Tran et al. (2013) proposed a procedure that gives the designer freedom in sizing the continuity plate thickness and using alternate (i.e., economical) weld joints. In this research, full-scale testing of two one-sided moment connection specimens with a Reduced Beam Section (RBS) was conducted to verify the adequacy of this design procedure. In designing the test specimens, the original procedure was slightly modified so that the strength check of the continuity plate included not only normal and shear forces but also moment in the plane of the continuity plate. The specimen design followed AISC 341 and 358, except that the continuity plate thickness and welds were sized based on the modified procedure. The design resulted in fillet welds to connect the continuity plates to the columns. One specimen used a deep (W24) column, and the other one had a shallow (W14) column. To evaluate the effect of yielding in the continuity plates, these plates for the shallow column specimen were undersized. The specimens were also designed such that significant shear yielding in the panel zones would result in kinking of the column flanges to further "challenge" the fillet welds.

Test results showed that these two RBS connections performed as expected and met the 0.04 rad. story drift requirement of AISC 341. No sign of damage was observed in the fillet weld joints. The connection performance was still satisfactory when continuity plates were yielded. The shallow-column specimen performed better than the one with a deep column; the latter was prone to column twisting despite that additional lateral bracing was provided at the beam top flange to simulate the concrete slab restraining effect. Before the proposed design procedure can be implemented, recommendations were made to further the encouraging findings from this pilot test program.

ACKNOWLEDGEMENTS

This project was sponsored by the American Institute of Steel Construction (AISC). Mr. Tom Schlafly served as the project manager for this research. Schuff Steel Company donated the test specimens. AMEC Foster Wheeler donated weld inspection services to this project. Mr. Patrick M. Hassett of Hassett Engineering, Inc. reviewed the design of the test specimens.

AB	STRA	C T		i
AC	KNOV	VLEDG	EMENTS	ii
TA	BLE O	F CON	TENTS	iii
LIS	T OF	TABLE	'S	v
LIS	TOF	FIGUR	ES	vi
1	INTF	RODUC	TION	1
	1.1	Statem	ent of Problem	1
	1.2	AISC	Design Requirements for SMF Continuity Plates and Welds	1
	1.3	Flexibi	ility-Based Formulation by Tran et al. (2013)	3
2	TEST	r prog	GRAM	11
	2.1	Design	of Test Specimens	11
		2.1.1	Specimens Sizes	11
		2.1.2	Moment Connection Design	11
	2.2	Test Se	etup	12
	2.3	Specin	nen Construction and Inspection	12
	2.4	Materi	al Properties	13
	2.5	Instrum	nentation	13
	2.6	Data R	eduction	13
	2.7	AISC .	Acceptance Criteria	14
	2.8	Loadin	ng Sequence	14
3	TEST	Г RESU	LTS	33
	3.1	Specin	nen C1	33
		3.1.1	Observed Performance	33
		3.1.2	Recorded Response	33
	3.2	Specin	nen C2	34
		3.2.1	Observed Performance	34
		3.2.2	Recorded Response	35
4	ANA	LYSIS	OF TEST RESULTS AND FINITE ELEMENT SIMULATION	J 71
	4.1	Global	Response and Failure Mode Comparison	71

TABLE OF CONTENTS

	4.2	Finite Element Analyses	72
5	SUM	MARY, CONCLUSIONS, AND FUTURE RESEARCH NEED	81
	5.1	Summary	81
	5.2	Conclusions	82
	5.3	Future Research Need	83
6	REFE	RENCES	84
Арр	endix	A Tensile Coupon Test Results	86
Арр	endix	B Mill Certificates	88
Арр	endix	C Welding Procedure Specifications	95
Арр	endix	D Welding Inspection Reports1	20

LIST OF TABLES

Table 2.1 Member Sizes and Cross Sectional Dimensions	15
Table 2.2 RBS Connection Key Design Parameters	15
Table 2.3 Comparison of Continuity Plate and Weld Design	17
Table 2.4 Strength Check of Continuity Plates	17
Table 2.5 Base Metal Mechanical Properties	18
Table 2.6 Chemical Compositions for Components from Mill Certificates	19

LIST OF FIGURES

Figure 1.1 Freebody Diagram of a Continuity Plate	9
Figure 1.2 Continuity Plate Freebody Diagrams (Interior Connection)	10
Figure 1.3 Continuity Plate Freebody Diagrams (Exterior Connection)	10
Figure 2.1 Specimen C1 Connection Detail	20
Figure 2.2 Specimen C2 Connection Detail	21
Figure 2.3 Test Setup	22
Figure 2.4 Hinge Supports	24
Figure 2.5 Beam Lateral Bracing System	25
Figure 2.6 RBS and Column Top Bracings (Specimen C1 with a Deep Column)	26
Figure 2.7 Location of Displacement Transducers	27
Figure 2.8 Specimen C1 Strain Gage and Rosette Locations	28
Figure 2.9 Specimen C2 Strain Gage and Rosette Locations	30
Figure 2.10 Loading Protocol	32
Figure 3.1 Specimen C1 Connection Prior to Testing	37
Figure 3.2 Specimen C1 at End of -0.01 rad Drift Cycles	38
Figure 3.3 Specimen C1 at -0.015 rad Drift (2 nd Cycle)	39
Figure 3.4 Specimen C1 at -0.03 rad Drift (2 nd Cycle)	40
Figure 3.5 Specimen C1 at -0.04 rad Drift (2 nd Cycle)	41
Figure 3.6 Specimen C1 at 0.05 rad Drift (1 st Cycle)	42
Figure 3.7 Specimen C1 at Test Completion	43
Figure 3.8 Specimen C1 Beam Lateral-Torsional Buckling	44
Figure 3.9 Specimen C1 Load versus Beam Tip Displacement Relationship	45
Figure 3.10 Specimen C1 Moment versus Story Drift Angle Relationship	45
Figure 3.11 Specimen C1 Moment versus Total Plastic Rotation Relationship	46
Figure 3.12 Specimen C1 Moment versus Total Panel Zone Shear Deformation	
Relationship	46
Figure 3.13 Specimen C1 Beam Flange Flexural Strain Profiles	47
Figure 3.14 Specimen C1 Top Continuity Plate Strain Profiles	48
Figure 3.15 Specimen C1 Bottom Continuity Plate Strain Profiles	49

Figure 3.16 Specimen C1 Top and Bottom Continuity Plates Strain Profiles 50
Figure 3.17 Specimen C1: Effect of Column Twisting on Column Flexural Strains 51
Figure 3.18 Specimen C1 Beam Web Shear Strain Profiles
Figure 3.19 Specimen C2 Connection Region Prior to Testing
Figure 3.20 Specimen C2 Panel Zone Minor Yielding at Completion of 0.0075 rad Drift
Cycles
Figure 3.21 Specimen C2 Beam Flange Yielding at Completion of 0.01 rad Drift Cycles
Figure 3.22 Specimen C2 Connection at -0.015 rad Drift (2 nd Cycle)
Figure 3.23 Specimen C2 Connection at -0.03 rad Drift (2 nd Cycle)
Figure 3.24 Specimen C2 Connection at -0.04 rad Drift (2 nd Cycle)
Figure 3.25 Specimen C2 at -0.05 rad Drift (2 nd Cycle)
Figure 3.26 Specimen C2 at +0.07 rad Drift (1 st Cycle)
Figure 3.27 Specimen C2 Connection at -0.07 rad Drift (1st Cycle)
Figure 3.28 Specimen C2 Beam Lateral-Torsional Buckling
Figure 3.29 Specimen C2 Complete fracture of Beam Bottom Flange at Test Completion
Figure 3.30 Specimen C2 Continuity Plate and Column Flanges Yielding
Figure 3.31 Specimen C2 Load versus Beam Tip Displacement Relationship 64
Figure 3.32 Specimen C2 Moment versus Story Drift Angle Relationship 64
Figure 3.33 Specimen C2 Moment versus Total Plastic Rotation Relationship65
Figure 3.34 Specimen C2 Moment versus Total Panel Zone Shear Deformation
Relationship
Figure 3.35 Specimen C2 Beam Flange Flexural Strain Profiles
Figure 3.36 Specimen C2 Top Continuity Plate Strain Profiles
Figure 3.37 Specimen C2 Bottom Continuity Plate Strain Profiles
Figure 3.38 Specimen C2 Top and Bottom Continuity Plates Strain Profiles
Figure 3.39 Specimen C2 Beam Web Shear Strain Profiles
Figure 4.1 Comparison of Global Responses
Figure 4.2 Comparison of Buckling Mode at 4% Drift
Figure 4.3 Components of Beam End Displacement75

Figure 4.4 Normalized Dissipated Energy	76
Figure 4.5 FEM Models	77
Figure 4.6 Correlation of Global Responses	78
Figure 4.7 Correlation of Deformed Configurations	79
Figure 4.8 Specimen C1 Comparison of Forces Acting on Continuity Plate	80
Figure 4.9 Specimen C2 Comparison of Forces Acting on Continuity Plate	80
Figure A.1 Tensile Coupon Stress-Strain Relationships	86

1 INTRODUCTION

1.1 Statement of Problem

Steel Special Moment Frames (SMF) are one of the most popular seismic-forceresisting systems due to their architectural versatility. The beam-to-column moment connections play a critical role in SMF performance since they transfer bending moments. The resulting concentrated beam flange forces at column face are very high. These forces can cause column local flange bending (LFB), column web local yielding (WLY), and beam flange complete-joint-penetration (CJP) weld fracture due to stress concentration. To meet the requirements of these limit states, column transverse stiffeners (or continuity plates) at the beam flange levels are often required in accordance with AISC 341, *Seismic Provisions for Structural Steel Buildings* (AISC 2010a). Continuity plates, when required, add a significant amount of fabrication cost because a total of four continuity plates are required at each connection and CJP welds are required by AISC 341 to connect these plates to the column flanges.

The stringent welding requirements for continuity plates were established primarily to reflect how moment connection specimens tested in the past were fabricated. Another reason for having this conservative requirement is that no mechanics-based procedure that allows the designer to calculate the required forces in the continuity plate is available. Recently, Tran et al. (2013) proposed a flexibility-based procedure to fill this gap. This procedure opens the door for using non-CJP welds (i.e., fillet welds or partial-joint-penetration groove welds) to connect continuity plates to the column. In this report, an experimental verification of this design procedure (with a slight modification to it) is documented.

1.2 AISC Design Requirements for SMF Continuity Plates and Welds

Section E3.6f of AISC 341 stipulates that continuity plates are not required when the column flange thickness meets the following two requirements:

$$t_{cf} \ge 0.4 \sqrt{1.8b_{bf}t_{bf}\frac{R_{yb}F_{yb}}{R_{yc}F_{yc}}}$$
(1.1)

$$t_{cf} \ge \frac{b_{bf}}{6} \tag{1.2}$$

where

- F_{yb} = specified minimum yield stress of the beam flange,
- F_{yc} = specified minimum yield stress of the column flange,
- R_{yb} = ratio of the expected yield stress to the specified minimum yield stress of the beam,
- R_{yc} = ratio of the expected yield stress to the specified minimum yield stress of the column,
- b_{bf} = beam flange width,
- t_{bf} = beam flange thickness, and
- t_{cf} = column flange thickness.

Equation (1.1) is obtained by equating the strength associated with the LFB limit state $(R_n = 6.25t_{cf}^2 F_{yc})$ to an approximate beam flange axial force of $P_{uf} = 1.8b_{bf}t_{bf}F_{yb}$ and solving for t_{cf} ; F_{yb} and F_{yc} are replaced by the expected yield stresses $R_{yb}F_{yb}$ and $R_{yc}F_{yc}$, respectively, in the above derivation. Equation (1.2) is based on the deformation of the column flange and is related to low-cycle fatigue failure (Ricles et al. 2000). Where continuity plates are required, the thickness of the plates shall be determined as following: (a) for one-sided connections, continuity plate thickness shall be at least one-half of the

thickness of the beam flange, and

(b) for two-sided connections, the continuity plate thickness shall be at least equal to the thicker of the two beam flanges on either side of the column.

AISC 341 requires that continuity plates be welded to the column flanges using CJP groove welds. Continuity plates can be welded to the column web using either groove welds or fillet welds. The required strength of the sum of the welded joints of the continuity plates to the column web shall be the smallest of the following:

- (a) the sum of the design strengths in tension of the contact areas of the continuity plates to the column flanges that have attached beam flanges,
- (b) the design strength in shear of the contact area of the plate with the column web,
- (c) the design strength in shear of the column panel zone, and

(d) the sum of the expected yield strengths of the beam flanges transmitting force to the continuity plates.

Note in the 2016 edition of AISC 341 that items (c) and (d) have been replaced by the design shear strength of the column web when the continuity plate is welded to the column web, or the design shear strength of the doubler plate when the continuity plate is welded to an extended doubler plate.

In this report, welds between the continuity plate and the column flanges are defined as the *flange welds*, and the weld between the continuity plate and the column web is defined as the *web weld*.

1.3 Flexibility-Based Formulation by Tran et al. (2013)

The procedure originally proposed by Tran et al. (2013) and subsequently modified slightly in this study is summarized below. Representing the beam flange force as

$$P_{uf} = C_{pf} R_{yb} b_{bf} t_{bf} F_{yb} \tag{1.3}$$

AISC 341 assumes the beam flange force adjustment factor, C_{pf} , is equal to 1.8 to establish the minimum column flange thickness requirement in Eq. (1.1) when continuity plates are not required. While this assumed value is reasonable for the pre-Northridge type welded flange-bolted web moment connections, where the bolted web is ineffective in contributing to the moment resistance, Tran et al. (2013) showed that this assumption, and hence Eq. (1.1), is conservative for some post-Northridge moment connections like the Reduced Beam Section (RBS) or Welded Unreinforced Flange-Welded Web (WUF-W) moment connections; the beam web of these connections is directly welded to the column flange with a CJP weld. Based on finite element analysis, the following C_{pf} values were recommended by Tran et al. (2013) for use in Eqs. (1.1) and (1.3):

(a) for RBS connection:
$$C_{pf} = 1.25$$
 (1.4)

(b) for WUF-W connection:
$$C_{pf} = 1.75$$
 (1.5)

With a significantly lower C_{pf} value for the RBS connection, continuity plates that are required per AISC 341 may be unnecessary.

When continuity plates are required, the beam flange axial force, P_{uf} , is apportioned to each continuity plate based on the following equation (Tran. et al. 2013):

$$P_{cp} = \frac{P_{uf}}{2} \left(\frac{b_{bf} - t_{pz} - 2t_{cf}}{b_{bf}} \right) \left(\frac{B_{cf}}{B_{cf} + B_{cp}} \right)$$
(1.6)

where

 b_{bf} = beam flange width,

 t_{pz} = panel zone thickness,

 t_{cf} = column flange thickness,

 B_{cf} = column flange out-of-plane flexibility coefficient

$$= 0.26 \frac{b^2}{Et_{cf}^3} + \frac{0.4 \left[1 + 0.09 \ln\left(\frac{b}{t_{cf}}\right)\right]}{Gt_{cf}}$$

E = Modulus of elasticity of steel = 29,000 ksi,

G = Shear modulus of elasticity of steel = 11,200 ksi,

 $b = b_{clip} + b_n$ (total width of continuity plate),

 b_{clip} = corner clip size,

 b_n = net width of continuity plate,

 B_{cp} = continuity plate in-plane flexibility coefficient

$$=\frac{0.42-C}{Gt}+\frac{b^3}{Ed^3t}$$

C = 0 for interior connections, and for exterior connections:

$$= 0.6 \left(\frac{b}{d}\right) - 0.14 \ge 0$$

See Tran et al. (2013) for the derivation of Eq. (1.6). Following the procedure, one can compute the required forces along three edges of the continuity plate (Figure 1.1). To ensure that the continuity plates have a sufficient in-plane stiffness, the designer then checks the local flange bending and web local yielding limit states (AISC 2010c) of the column for the portion of the beam flange force that will be transmitted from the beam flange to the column web directly:

$$P_{uf} - 2P_{cf} \le \phi R_n \tag{1.7}$$

Figure 1.1 shows that the edges of the continuity plate next to the loaded column flanges are subjected to both normal and shear forces; the shear force is needed to satisfy moment equilibrium. The Von-Mises yield criterion is then used by Tran et al. to check the strength of the continuity plates:

$$\left(\frac{P_{cp}}{F_{ycp}A_n}\right)^2 + \left(\frac{V_{cp}}{\frac{F_{ycp}}{\sqrt{3}}A_n}\right)^2 \le 1.0$$
(1.8)

where from moment equilibrium the shear force is

$$V_{cp} = \left(\frac{0.6b}{d}\right) \sum P_{cp} \tag{1.9}$$

 F_{ycp} = yield stress of continuity plate,

d =depth of continuity plate,

 t_{cp} = thickness of continuity plate, and

$$A_n = b_n t_{cp}.$$

When Eq. (1.8) is satisfied, either fillet welds or partial-joint-penetration groove welds can be used to connect the continuity plates to the column flanges. If not, Tran et al. suggested that complete-joint-penetration (CJP) groove welds still be used because continuity plates are expected to yield. To avoid the use of CJP welds, however, an alternative is to increase the thickness of the continuity plates such that Eq. (1.8) is satisfied.

In designing the specimens for this test program, some modifications were made to Eq. (1.8). By ignoring the corner clips in the continuity plates, Tran et al. (2013) suggested that the normal force, P_{cp} , be located at a distance 0.6b from the column web (Figure 1.1), and the moment produced by this force with an eccentricity with respect to the center of the net width of the continuity plate was ignored in checking the strength in Eq. (1.8). Reviewing the work of Neal (1961) and Astaneh-Asl (1998), Dowswell (2015) suggested an *M-V-P* yield criterion, which can be re-written for checking the continuity plate strength as the following:

$$\left(\frac{P_{cp}e}{Z_{xn}F_{ycp}}\right) + \left(\frac{P_{cp}}{F_{ycp}A_n}\right)^2 + \left(\frac{V_{cp}}{\frac{F_{ycp}}{\sqrt{3}}A_n}\right)^4 \le 1.0$$
(1.10)

where Z_{xn} is the plastic section modulus of the net section:

$$Z_{xn} = \frac{t_{cp}b_n^2}{4}$$
(1.11)

Refer to Figure 1.2(a) for a continuity plate in a two-sided (i.e., interior) moment connection, where corners are clipped to clear the k-area of the column section. Freebody 3 in Figure 1.2(c) shows that the normal force P_{cp} acts at a distance 0.6*b* from the column web. Moment equilibrium requires that

$$V_{cp} = \left(\frac{0.6b}{d - 2b_{clip}}\right) \sum P_{cp} \tag{1.12}$$

Next consider Freebody 1 or 2. The corner clip causes the normal force at the edge of the net width to shift by an amount e^* to satisfy moment equilibrium:

$$e^* = \frac{b_{clip}V_{cp}}{P_{cp}} \tag{1.13}$$

Therefore, the moment produced by the eccentrically loaded P_{cp} at the center of the net width equals eP_{cp} , where

$$e = 0.6b + e^* - (b_{clip} + 0.5b_n) \tag{1.14}$$

The same approach can be applied to the continuity plate in a one-sided (i.e., exterior) moment connection. But the shear force calculation needs to be modified. As shown in Figure 1.3, it is assumed that the normal force at the non-loaded column flange side of the continuity plate equals zero. Therefore, the shear force is

$$V_{cp} = \left(\frac{0.6b}{d - b_{clip}}\right) P_{cp} \tag{1.15}$$

Equation (1.10), not Eq. (1.8), was used to design the continuity plates in this test program.

The procedure to design the fillet welds follows.

(a) Design the flange weld for the required resultant force, R_{cp} :

$$\phi R_n \ge R_{cp} \tag{1.16}$$

where

$$R_{cp} = \sqrt{P_{cp}^2 + V_{cp}^2}$$
(1.17)

The design strength for 2-sided fillet welds is:

$$\phi R_n = 2(\phi)(0.6)t_e b_n F_{EXX}(1.0 + 0.5\sin^{1.5}\theta)$$
(1.18)

where

$$\phi = 0.75,$$

 t_e = effective throat of the fillet weld,

 F_{EXX} = minimum specified ultimate strength of the weld,

 θ = angle of the resultant force, R_{cp} , measured from the weld longitudinal axis:

$$= \tan^{-1} \frac{P_{cp}}{V_{cp}}$$

(b) Check the flange weld at the location of maximum tensile stress, q_{max} :

$$q_{max} = \frac{1.6P_{cp}}{b_n} \tag{1.19}$$

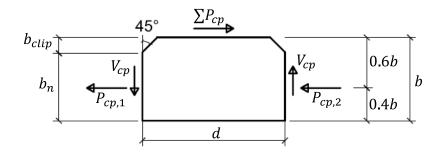
When 2-sided fillet welds are used, the value of q_{max} cannot exceed the unit-length design strength, which can be computed by using Eq. (1.18) with $b_n = 1.0$.

(c) Check maximum shear stress in the flange weld, τ_{max} :

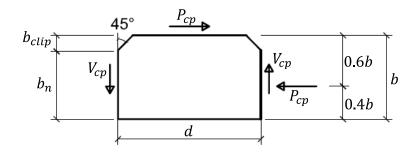
$$\tau_{max} = \frac{2V_{cp}}{b_n} \tag{1.20}$$

(d) Design the web weld for a required shear force equal to the summation of force allocated to the continuity plate, $\sum P_{cp}$, as shown in Figure 1.1(a). For exterior moment connections [Figure 1.1(b)], the required shear force equals P_{cp} .

$$\phi R_n \ge \sum P_{cp} \tag{1.21}$$


For 2-sided fillet welds, the design strength is computed as:

$$\phi R_n = 2(\phi)(0.6)t_e l_w F_{EXX} \tag{1.22}$$


where

 l_w = length of the web weld.

Tran et al. proposed that a ϕ value of 0.9 be used for designing the fillet welds. In this test program, however, it was decided to use the ϕ value (= 0.75) per AISC 360. Also, it was judged that using Eqs. (1.19) and (1.20) to check the local stresses are too stringent and conservative. Test results to be presented later showed that no damage was observed in the fillet welds even though these two equations were not used in design.

(a) Interior Connection

(b) Exterior Connection

Figure 1.1 Freebody Diagram of a Continuity Plate (Adopted from Tran et al. 2013)

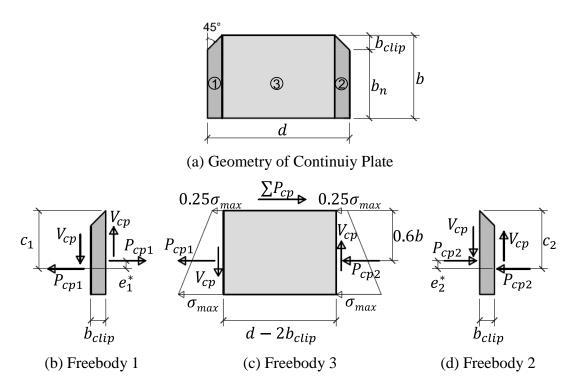


Figure 1.2 Continuity Plate Freebody Diagrams (Interior Connection)

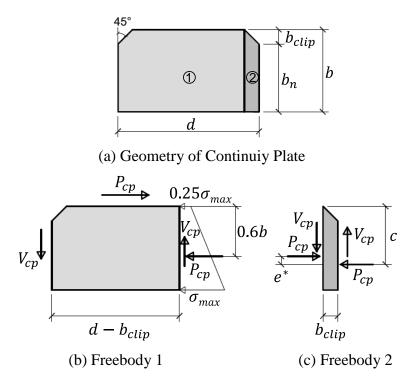


Figure 1.3 Continuity Plate Freebody Diagrams (Exterior Connection)

2 TEST PROGRAM

2.1 Design of Test Specimens

2.1.1 Specimens Sizes

A W30×116 beam connected to a W24×176 "deep" column was selected for Specimen C1, whereas a W36×150 beam connected to a W14×257 "shallow" column was chosen for Specimen C2. Column height, h, was 16 ft and the beam span, L, was 15 ft. Table 2.1 shows the cross-sectional dimensions of the beams and the columns.

2.1.2 Moment Connection Design

The reduced beam section (RBS) connection was used for both specimens. The RBS design was carried out per AISC 358 (AISC 2010b); strong-column/weak-beam condition and panel zone strength satisfied the AISC 341 requirements. But continuity plates and welds were designed per the proposed flexibility-based procedure. Figure 2.1 and Figure 2.2 show the connection detail of both specimens.

A summary of key design parameters of each specimen is listed in Table 2.2. While satisfying the panel zone strength requirement in AISC 341, note the demand-capacity ratios (DCR) were high (0.9 and 0.95 for Specimens C1 and C2, respectively) so column flange kinking due to panel zone shear yielding would "challenge" the fillet welds connecting the continuity plates to the column flanges. For Specimen C2 with a shallow (W14) column, note the required shear force, V_{cp} (= 62.8 kips), acting on the continuity plate and flange weld is significant.

A comparison of the continuity plate and weld design based on the flexibility-based procedure and AISC 341 is summarized in Table 2.3. The proposed design called for a continuity plate thickness of 7/8 in. for Specimen C2. AISC 341 implicitly assumes that continuity plates should remain essentially elastic. Since the effect of yielded continuity plates has never been reported in the literature, it was decided to use 5/8 in. thick continuity plates instead. A comparison of the welds for the continuity plates based on both procedures is also provided in the table. Although the proposed procedure called for thicker continuity plates, fillet welds, not CJP welds, were used for the flange welds.

Table 2.4 summarizes the components of Eq. (1.10) for the continuity plate design of both specimens. The continuity plates of Specimen C2 were significantly under-sized; the demand-capacity ratio was 1.31. The shear force component was minimal for the deepcolumn Specimen C1, mainly because the depth of the continuity plates was larger [Eq. (1.15)]. For the shallow-column Specimen C2, both shear and moment components were significant. Also, note that the moment component played a more significant role than the shear component in checking the plate strength for both specimens. Therefore, it is not appropriate to ignore the moment component and use Eq. (1.8) to check the strength of continuity plates.

2.2 Test Setup

The overall geometry of each test setup is shown in Figure 2.3. The inflection points were assumed to be at the mid-height of each story. Inflection points were simulated by mounting the column ends to two W14×257 hinge sections on its back side and a W14×342 on its bottom positioned to experience weak-axis bending (see Figure 2.4 for the hinges used in the testing of Specimen C2 which were identical for both Specimens). A corbel was bolted to the free end of the beam and attached to two 500-kip hydraulic actuators. Lateral restraint was provided on both sides of the specimens at two locations, one at corbel location and one at 10 ft-3¼ in. from the centerline of the column. For Specimen C1, which utilized a deep column, two extra lateral restraints were provided. One was a bracing provided for the beam top flange near RBS location to simulate the slab restraining effect and the second was at the top end of the column. The second lateral restraint was a $2L3\times2\times1/2$ strut to provide lateral support against twisting at the top end of the column; a deep column without the presence of a concrete slab was shown to prone to twisting (Chi and Uang 2002). The lateral restraint assembly is illustrated in Figure 2.5 for both specimens. Figure 2.6 shows the beam bracing and column top bracing for Specimen C1.

2.3 Specimen Construction and Inspection

All the continuity plate welds were done in a commercial fabricator's shop. The beams and the columns were delivered to UCSD. To simulate the field conditions, all specimens were erected in the upright position and then welding of the beam flanges and the web to the column flange were conducted in the test laboratory, see Appendix C for the

Welding Procedure Specifications. Ultrasonic (UT) testing of all CJP welds was conducted by a certified inspector. See Appendix D for the inspection reports.

2.4 Material Properties

ASTM A992 steel was specified for the beams and columns. The continuity plates were fabricated from ASTM A572 Gr. 50 steel. Table 2.5 summarizes the steel mechanical characteristics obtained from both tensile coupon tests conducted at UCSD (Appendix A) and the Certified Mill Test Reports (Appendix B). Table 2.6 shows the chemical composition of the materials obtained from the Certified Mill Test Reports.

2.5 Instrumentation

A combination of displacement transducers, strain gage rosettes, and uniaxial strain gages were used to measure the global and local responses. Figure 2.7 shows the location of displacement transducers. Displacement transducer L1 was used to control the stroke of the hydraulic actuators and at the same time used to monitor the beam end displacement. L2 was used to detect any slippage between the corbel and the beam end plate. L3 and L4 were used to monitor the panel zone shear deformation. L5 and L6 were used to monitor the column deformation. L7, L8, and L9 were used to monitor displacements at the column end supports, which were anticipated to be negligible.

Rosettes and uni-axial strain gages were used to measure the strains in the connection region (see Figure 2.8 and Figure 2.9).

2.6 Data Reduction

The total Inelastic Rotation (θ_p) of the specimen was calculated by dividing the inelastic component of the beam tip displacement (δ_p) , measured at the actuator line of action, by the beam span length from the column centerline to the actuator line of action:

$$\theta_p = \frac{\delta_p}{L} = \frac{1}{L} \left(\delta_{total} - \delta_e \right) = \frac{1}{L} \left(\delta_{total} - \frac{P}{K} \right)$$
(2.1)

where δ_{total} is the total beam tip deflection measured by displacement transducer L1, *P* is the applied load, and *K* is the elastic stiffness determined from the initial low-amplitude test results. The panel zone component was determined from displacement transducers L3 and L4. Together with the measurement of transducers L5 and L6, the component of the total beam tip deflection due to the column deformation can also be established (Uang and Bondad, 1996).

2.7 AISC Acceptance Criteria

Per Section E3.6b of AISC 341, beam-to-column connections used in Special Moment Frames shall satisfy the following requirements:

- The connection shall be capable of accommodating a story drift angle of at least 0.04 rad.
- (2) The measured flexural resistance of the connection, determined at the column face, shall equal at least $0.8M_p$ of the connected beam at a story drift angle of 0.04 rad, where M_p is the nominal plastic moment of the beam.

2.8 Loading Sequence

Testing was conducted in a displacement control mode. The loading sequence used for all specimens was the standard AISC loading sequence specified in Section K2 of AISC 341. This loading sequence specifies a series of load cycles at different Story Drift Angles (hereinafter referred to as "drift"), with the distance from the column centerline to actuator line of action being used in calculating the drift angle. The loading history begins with six cycles each at 0.00375, 0.005, and 0.0075 rad drifts. These are followed by four cycles at 0.01 rad drifts, two cycles at 0.015 rad drifts, two cycles at 0.02, 0.03, 0.04 rad drifts, etc. up until failure. It should be noted that in testing of Specimen C2, after successful completion of 0.05 rad drift cycles, it was decided to skip the 0.06 rad drift cycles before one cycle at 0.07 rad drift was applied.

Spec. No.	Member	<i>d</i> (in)	t_w (in)	h/t _w	$b_f(in)$	$t_f(in)$	$b_{f}/2t_{f}$
Cl	Beam (W30×116)	30.0	0.565	47.8	10.5	0.85	6.17
C1	Column (W24×176)	25.2	0.75	28.7	12.9	1.34	4.81
C2	Beam (W36×150)	35.9	0.625	51.9	12.0	0.94	6.37
	Column (W14×257)	16.4	1.18	9.71	16.0	1.89	4.23

Table 2.1 Member Sizes and Cross Sectional Dimensions

Table 2.2 RBS Connection Key Design Parameters

(a) Specimen	C1:	W30×116 Beam	Connected to a	W24×176 Column
--------------	-----	--------------	----------------	----------------

RBS Dimensions: $a = 7$ in., $b = 25$ in., $c = 2$ in.						
Plastic Section Modulus of RBS Section, $Z_{RBS} = 278.9 \text{ in}^3$; $\frac{Z_{RBS}}{Z_{beam}} = 0.74$						
Probable maximum moment, $M_{pr} = 1470$ kip-ft						
Shear force at the center of the RBS, $V_{RBS} = 119.3$ kips						
Probable maximum moment at the face of the column, $M_f = 1664$ kip-ft						
Plastic moment of the beam based on the expected yield stress, $M_{pe} = 1732.5$ kip-ft						
$\phi_d M_{pe} = 1732.5 \ge M_f = 1664$ kip-ft (OK)						
Strong-Column/Weak-Beam Check: $\frac{\sum M_{pc}^*}{\sum M_{pb}^*} = 2.38 \ge 1.0 \text{ (OK)}$						
Panel Zone Demand-Capacity Ratio (DCR) = $\frac{573.11}{636.5}$ = 0.9 \leq 1.0 (OK)						
No Doubler Plates Required						
Continuity Plate Flange Weld Forces (Normal, Shear, and Resultant):						
$P_{cp} = 157.6$ kips, $V_{cp} = 26.7$ kips, $R_{cp} = \sqrt{P_{cp}^2 + V_{cp}^2} = 159.8$ kips						
Continuity Plate Web Weld Force (Shear): $\sum P_{cp} = 157.6$ kips						
Continuity plate thickness, $t_{cp} = 3/4$ in.						
Continuity Plate-to-Column Flange Weld: 9/16 in. (Fillet Welds)						
Continuity Plate-to-Column Web Weld: 5/16 in. (Fillet Welds)						

Table 2.2 RBS	Connection	Key	Design	Parameters	(continued)

(b) Specimen C2: W36×150 Beam Connected to a W14×257 Column
RBS Dimensions: $a = 7$ in., $b = 25$ in., $c = 2.5$ in.
Plastic Section Modulus of RBS Section, $Z_{RBS} = 416.7 \text{ in}^3$; $\frac{Z_{RBS}}{Z_{beam}} = 0.72$
Probable maximum moment, $M_{pr} = 2196.3$ kip-ft
Shear force at the center of the RBS, $V_{RBS} = 173.1$ kips
Probable maximum moment at the face of the column, $M_f = 2477$ kip-ft
Plastic moment of the beam based on the expected yield stress, $M_{pe} = 2662.9$ kip-ft
$\phi_d M_{pe} = 2662.9 \ge M_f = 2477$ kip-ft (OK)
Strong-Column/Weak-Beam Ratio: $\frac{\sum M_{pc}^*}{\sum M_{pb}^*} = 1.56 \ge 1.0 \text{ (OK)}$
Panel Zone Demand-Capacity Ratio (DCR) = $\frac{688.2}{723.8} = 0.95 \le 1.0$ (OK)
No Doubler Plates Required
Continuity Plate Flange Weld Forces (Normal, Shear, and Resultant):
$P_{cp} = 157$ kips, $V_{cp} = 62.8$ kips, $R_{cp} = \sqrt{P_{cp}^2 + V_{cp}^2} = 169.1$ kips
Continuity Plate Web Weld Force (Shear): $\sum P_{cp} = 157$ kips
Continuity plate thickness: $t_{cp} = 5/8$ in.
Continuity Plate-to-Column Flange Weld: 1/2 in. (Fillet Welds)
Continuity Plate-to-Column Web Weld: 9/16 in. (Fillet Welds)

	Specime	n C1	Specimen C2		
	Proposed Procedure	AISC 341	Proposed Procedure	AISC 341	
Required Continuity Plate Forces (kips)	$P_{cp} = 157.6$ $V_{cp} = 26.7$	N.A.	$P_{cp} = 157.0$ $V_{cp} = 62.8$	N.A.	
Continuity Plate Thickness	3/4 in.	1/2 in. (= $t_{bf}/2$)	5/8 in.	1/2 in. (= $t_{bf}/2$)	
Continuity Plate- to-Column Flange Weld	Fillet Weld (9/16 in.)	CJP Weld	Fillet Weld (1/2 in.)	CJP Weld	
Continuity Plate- to-Column Web Weld	Fillet Weld (5/16 in.)	Fillet Weld (3/16 in.)	Fillet Weld (9/16 in.)	Fillet Weld (3/8 in.)	

Table 2.3 Comparison of Continuity Plate and Weld Design

Table 2.4 Strength Check of Continuity Plates

	Equation (1.10)							
	Moment	Normal Force	Shear Force					
Specimen	Component,	Component,	Component,					
No.	$\left(\frac{P_{cp}e}{Z_{xn}F_{ycp}}\right)$	$\left(\frac{P_{cp}}{F_{ycp}A_n}\right)^2$	$\left(\frac{V_{cp}}{\frac{F_{ycp}}{\sqrt{3}}A_n}\right)^4$	Σ				
C1	0.14	0.78	0.01	0.93				
C2	0.36	0.80	0.15	1.31				

Spec. No.	Component	Steel Type/ Heat No.	Yield Stress (ksi) ^a	Tensile Strength (ksi)	Elong. (%) ^b	
C1	Beam Flange (W30×116)	A992	56.9 (56.5) ^b	75.6 (72.0) ^b	34.5 (28.0) ^b	
	Beam Web (W30×116)	443484	58.5	73.2	39.5	
	Column Flange (W24×176)	A992	57.2 (57.5) ^b	70.6 (72.5) ^b	39.1 (27.0) ^b	
	Column Web (W24×176)	442208	58.5	72.2	37.3	
	Continuity Plate (3/4 in.)	A572 Gr. 50 SB15106	68.1 (58.0) ^b	85.6 (81.0) ^b	36.9 (25.0) ^b	
C2	Beam Flange (W36×150)	A992	53.5 (57.0) ^b	74.9 (75.1) ^b	38.3 (26.4) ^b	
	Beam Web (W36×150)	60114091/04	57.9	74.7	38.1	
	Column Flange (W14×257)	A992	52.3 (57.0) ^b	74.3 (75.0) ^b	37.7 (26.0) ^b	
	Column Web (W14×257)	317275	54.8	74.8	38.6	
	Continuity Plate (5/8 in.)	A572 Gr. 50 813K75180	54.1 (57.6) ^b	79.8 (82.6) ^b	35.1 (22.5) ^b	

Table 2.5 Base Metal Mechanical Properties

^a Yield strength determined by the 0.2% strain offset method.
^b Values in parentheses from Certified Mill Test Reports, others from testing at UCSD.

Spec. No.	Member	С	Mn	Р	S	Si	Cu	Ni	Cr	Мо	V	CE
C1	Beam (W30×116)	0.080	1.130	0.016	0.027	0.230	0.250	0.100	0.140	0.040	0.000	0.330
	Column (W24×176)	0.080	1.360	0.018	0.018	0.210	0.220	0.100	0.140	0.030	0.060	0.370
	Continuity Plate (3/4 in.)	0.147	1.383	0.014	0.002	0.346	0.010	0.008	0.023	0.002	0.003	0.384
C2	Beam (W36×150)	0.100	1.170	0.011	0.028	0.230	0.380	0.170	0.150	0.044	0.002	0.370
	Column (W14×257)	0.070	1.360	0.018	0.023	0.320	0320	0.090	0.110	0.020	0.050	0.370
	Continuity Plate (5/8 in.)	0.180	1.220	0.013	0.004	0.279	0.024	0.010	0.040	0.005	0.056	0.406
$CE = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$												

Table 2.6 Chemical Compositions for Components from Mill Certificates

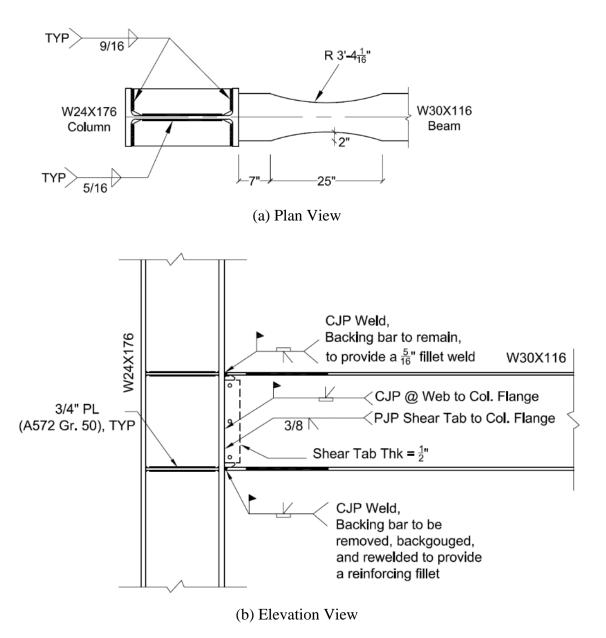
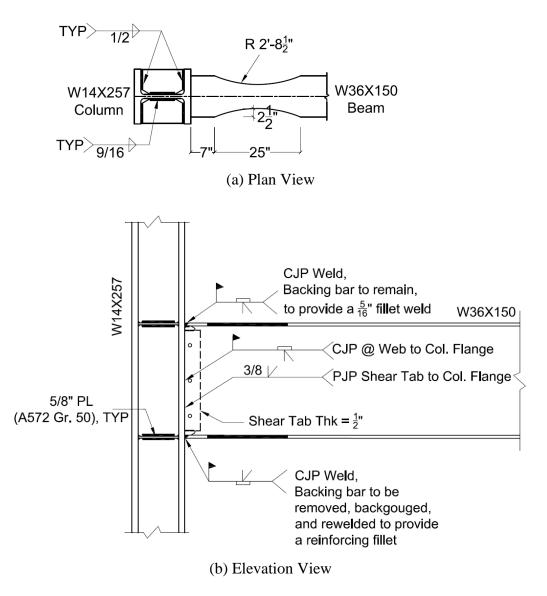
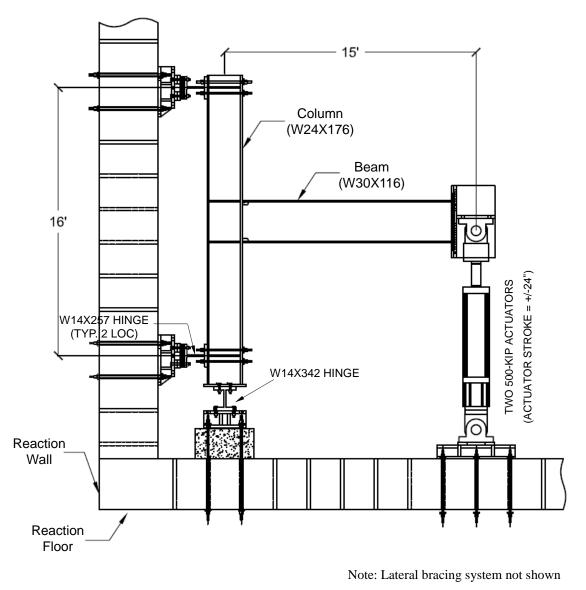
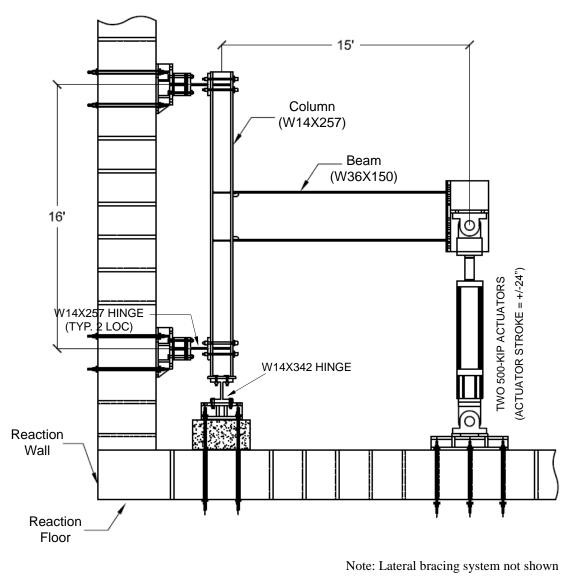




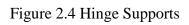
Figure 2.1 Specimen C1 Connection Detail

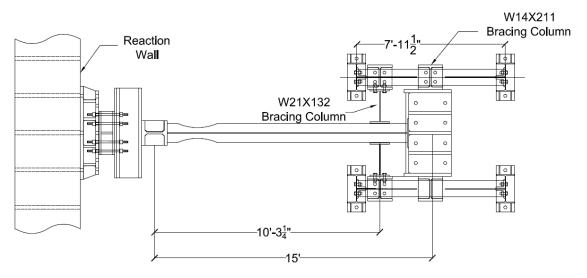


(a) Specimen C1

Figure 2.3 Test Setup

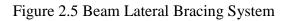
(b) Specimen C2

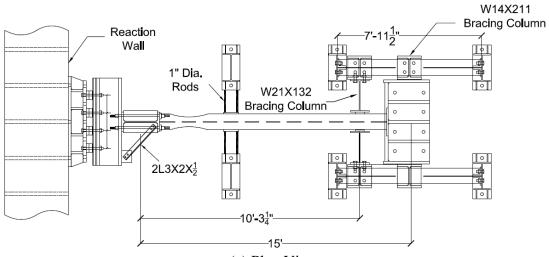

Figure 2.3 Test Setup (continued)



(a) Top End

(b) Bottom End


(a) Plan View



(b) View from West

(c) View from South-East

(a) Plan View

(b) View from East

(c) View from West

(d) Column Top Bracing

Figure 2.6 RBS and Column Top Bracings (Specimen C1 with a Deep Column)

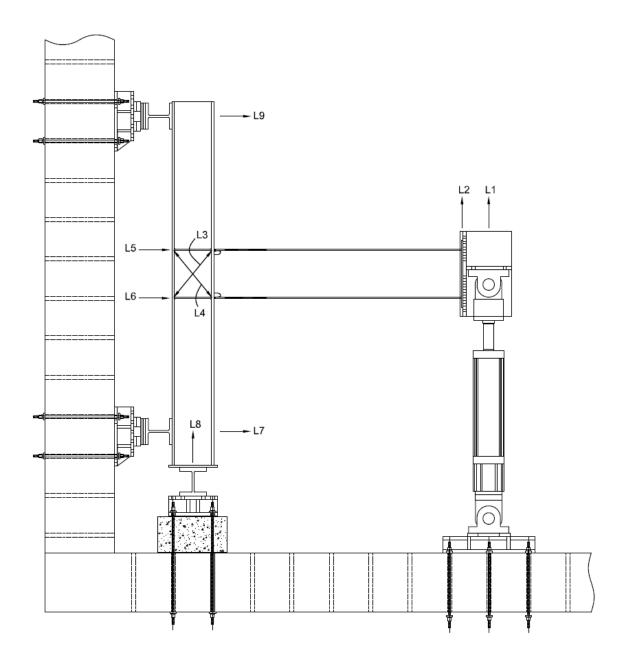
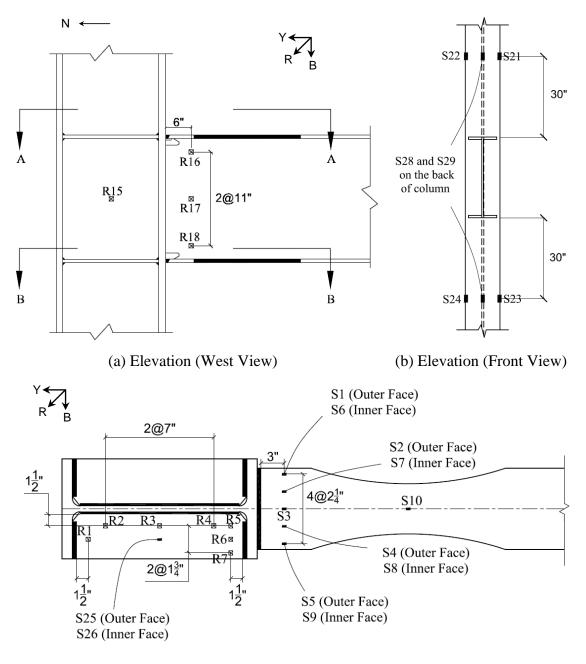
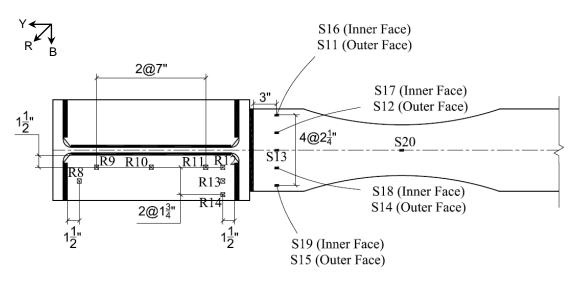


Figure 2.7 Location of Displacement Transducers

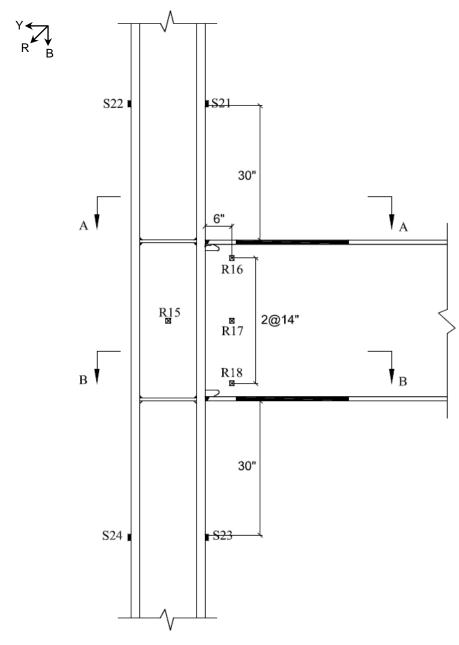


Figure 2.8 Specimen C1 Strain Gage and Rosette Locations

(c) View B-B

Figure 2.8 Specimen C1 Strain Gage and Rosette Locations (continued)

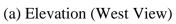


Figure 2.9 Specimen C2 Strain Gage and Rosette Locations

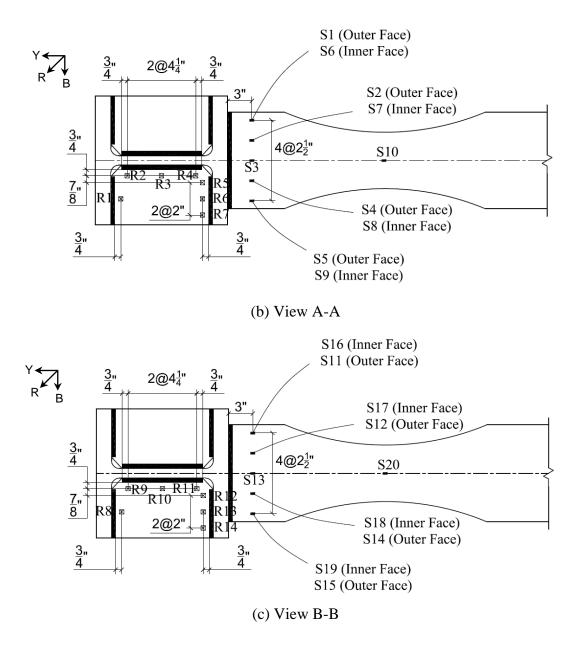
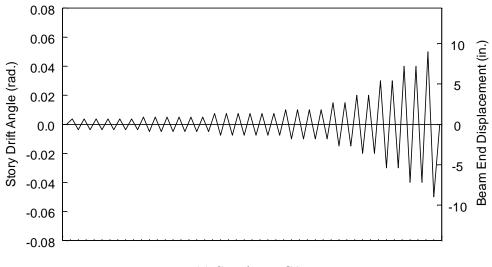
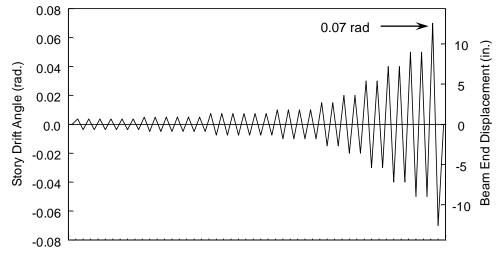




Figure 2.9 Specimen C2 Strain Gage and Rosette Locations (continued)

(a) Specimen C1

(b) Specimen C2

Figure 2.10 Loading Protocol

3 TEST RESULTS

3.1 Specimen C1

3.1.1 Observed Performance

Figure 3.1 shows the specimen prior to testing. At 0.01 rad drift, minor yielding of beam top and bottom flanges was observed (Figure 3.2). At the end of the second cycle of -0.015 rad drift, panel zone yielding was observed and yielding in the beam flanges extended into the web [Figure 3.3(b) and (c)]. However, no damage to any of the continuity plates fillet welds was observed, [Figure 3.3(d) and (e)].

Both beam flange local buckling and lateral-torsional buckling were observed at 0.03 rad drift. The specimen reached its peak strength at this drift level, but the fillet welds remained intact (Figure 3.4). At 0.04 rad drift, yielding in the beam and panel zone as well as beam buckling became more severe (Figure 3.5). Figure 3.6 shows the global view of the specimen after completing one cycle at 0.05 rad drift. The beam flexural strength at the face of the column had degraded below 80% of the beam nominal plastic moment, and the test was stopped. Figure 3.7 shows the fillet welds of the continuity plates after completing the test, showing no sign of damage. Figure 3.8 depicts lateral-torsional buckling of the beam at 0.03, 0.04, and 0.05 rad drifts.

3.1.2 Recorded Response

3.1.2.1 Global Response

A plot of the load versus beam tip displacement is shown in Figure 3.9. The relationship between the moment at the column face and the story drift angle is shown in Figure 3.10; the vertical axis on the right shows the moment normalized by the nominal plastic moment (M_{pn}) of the beam. Vertical dotted lines indicate 0.04 rad drift as required by AISC 341 for Special Moment Frame. The specimen completed two cycles at a story drift angle of 0.04 rad before the moment at the column face degraded below $0.8M_{pn}$.

Figure 3.11 shows the relationship between the moment at the column face and the total plastic rotation. Figure 3.12 shows that the panel zone yielded in shear. The

"unusual" nonlinear response in the figure was due to twisting of the deep column (Chi and Uang 2002).

3.1.2.2 Local Response

Figure 3.13 shows the flexural strain profiles of the beam top and bottom flanges at a section 3 in. away from the column face. Buckling in the beam skewed the strain profiles at higher drift levels. Figure 3.14 and Figure 3.15 show the strain profiles on the top and bottom continuity plates, respectively. The continuity plates remained essentially elastic. Figure 3.16(a) and (c) show the normal strain profiles at Sections G and H, respectively. The strain near the non-loading column flange was lower than that near the loaded column flange. Figure 3.16(b) shows the normal strains on both surfaces of the top continuity plate were very similar. Figure 3.16(d) compares the normal strains of the top and bottom continuity plates at a section 1½ in. away from the non-loaded column flange.

Figure 3.17 shows the flexural strain response of two pairs of strain gages located 30 in. above and below the top and the bottom beam flanges, respectively. The response of each pair is expected to be similar such that the plot lies on a 45° line. However, warping stresses created by column twisting when the drift 1.5% caused the response to deviate from a line of 45°. Figure 3.18 shows that shear yielding occurred near the top and bottom portions of the beam web.

3.2 Specimen C2

3.2.1 Observed Performance

Significant panel zone yielding with column flange kinking was expected because Specimen C2 was designed with a demand-capacity ratio of 0.95 for the panel zone. Figure 3.19 shows the specimen prior to testing. The specimen remained essentially elastic until 0.0075 rad drift cycles. At the end of 0.0075 rad drift, yielding of the panel zone started (Figure 3.20). At the completion of 0.01 rad drift cycles, yielding at the top and the bottom beam flanges was also visible (Figure 3.21). Figure 3.22 shows the connection at the end of second cycle of -0.015 rad drift; the fillet welds connecting the continuity plates to the column flanges were intact. Yielding extended to the beam web at 0.03 rad drift [Figure 3.23(a)]. Panel zone yielding was significant, and yielding of the column flange at the column flange kink locations was observed [Figure 3.23(b) and (c)]. Figure 3.24 shows the specimen at 0.04 rad drift. All the fillet welds were intact [Figure 3.24(c) and (d)]. Although the $b_f/2t_f$ and h/t_w ratios of Specimens C2 were somewhat larger than those of Specimen C1 (Table 2.1), local buckling was less severe in C2 because the weaker panel zone accommodated more inelastic deformation at the same drift level. As can be seen in Figure 3.24(f), panel zone yielding was very significant.

Figure 3.25 shows the specimen after completing two cycles at 0.05 rad drift. It was then decided to displace the specimen to 0.07 rad drift directly. Testing was stopped after completing one cycle at 0.07 rad drift because the beam flexural strength at the face of the column had degraded below 80% of the beam nominal plastic moment. Figure 3.26 and Figure 3.27 show the connection at the end of +0.07 and -0.07 rad drifts, respectively. Figure 3.28 shows lateral-torsional buckling of the beam at -0.05 and -0.07 rad drift. At 5% drift, note that lateral-torsional buckling was much less severe in Specimen C2 than in C1 [Figure 3.8(c)] because the latter had a deep column and was more prone to column twisting. On the way to return the specimen to its zero beam tip displacement, the beam bottom flange completely fractured (Figure 3.29).

It was observed after testing that continuity plates had yielded [Figure 3.30(a)] and column flange yielding at the kink locations was more pronounced [Figure 3.30(b) and (c)]. No damage in the fillet welds was observed, which was confirmed from magnetic particle inspection conducted after the test.

3.2.2 Recorded Response

3.2.2.1 Global Response

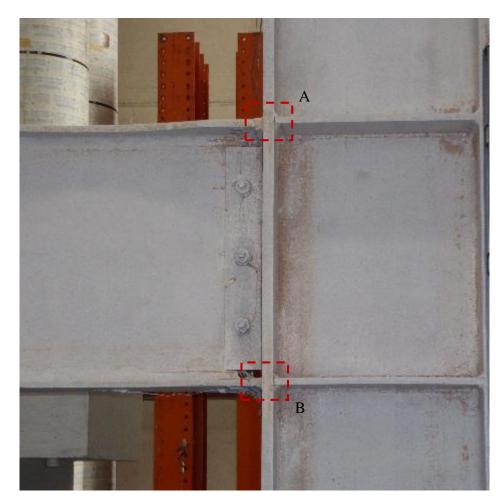

A plot of the load versus the beam tip displacement is shown in Figure 3.31 The relationship between the moment at the face of the column and story drift angle is shown in Figure 3.32. The specimen completed two cycles at a story drift angle of 0.05 rad before the moment at the column face degraded below $0.8M_{pn}$.

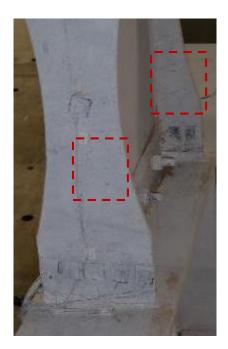
Figure 3.33 shows the relationship between the moment at the column face and the total plastic rotation. Figure 3.34 shows the panel zone experienced significant shear yielding and reached 8.5 times the shear yield strain. The column remained essentially elastic throughout the test.

3.2.2.2 Local Response

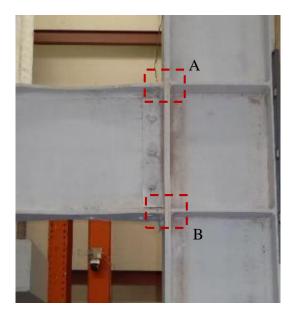
Figure 3.35 shows the flexural strain profiles on the beam top and bottom flanges at a distance 3 in. away from the column face. (Strain gage S14 malfunctioned.) The strain profiles were more uniform across the flange width when compared with those of Specimen C1 (Figure 3.13), mainly because a shallow (W14) column that was less prone to column twisting was used. The recorded strains in the top and bottom continuity plates (Figure 3.36 and Figure 3.37) showed that yielding had occurred. (Recall that the continuity plates were intentionally undersized by 1/4 in.) The maximum normal strain was about three times the yield strain. Despite the significant yielding in the continuity plates, the connection performance was not affected.

Figure 3.38 compares the normal strain profiles in the top and the bottom continuity plates. (The reading from rosette R01 seems unreliable since it almost read zero strains.) As comparison of Figure 3.38(d) with Figure 3.16(c) of Specimen C1 shows that more force in the continuity plate was transmitted to the unloaded column flange when a shallow column was used. Figure 3.39 indicates significant shear yielding on the beam web close to the column flange.

(a) Global View from East


(b) Detail A

(c) Detail B



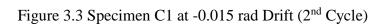
(a) Global View from East

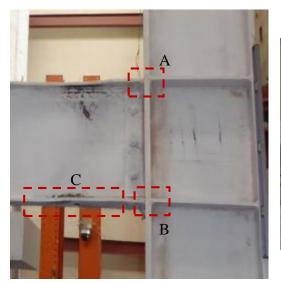
(b) Yielding in Beam Top and Bottom Flanges

Figure 3.2 Specimen C1 at End of -0.01 rad Drift Cycles

(a) Global View from East

(b) Minor Panel Zone Yielding

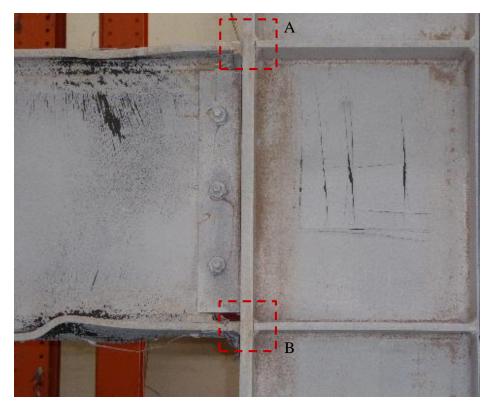

(c) Spread of Yielding to Beam Web



(d) Detail A

(a) Global View from East

(c) Detail B



(d) Detail C (Beam Flange Local Buckling)

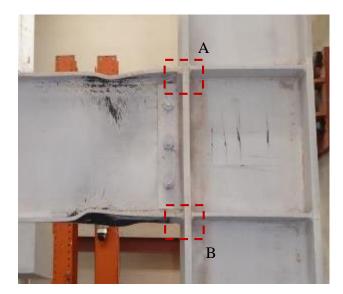
(e) Beam Lateral-Torsional Buckling

Figure 3.4 Specimen C1 at -0.03 rad Drift (2nd Cycle)

(a) Global View from East

Figure 3.5 Specimen C1 at -0.04 rad Drift (2nd Cycle)

(a) at +0.05 rad Drift



(b) View from East (at -0.05 rad Drift)

(c) View from West (at -0.05 rad Drift)

Figure 3.6 Specimen C1 at 0.05 rad Drift (1st Cycle)

(a) Global View from East

(b) Detail A, View from East

(d) Detail B, View from East

(c) Detail A, view from Bottom

(e) Detail B, View from Bottom

Figure 3.7 Specimen C1 at Test Completion

(a) -0.03 rad Drift (2nd Cycle)

(b) -0.04 rad Drift (2nd Cycle)

(c) -0.05 rad Drift (1st Cycle)

Figure 3.8 Specimen C1 Beam Lateral-Torsional Buckling

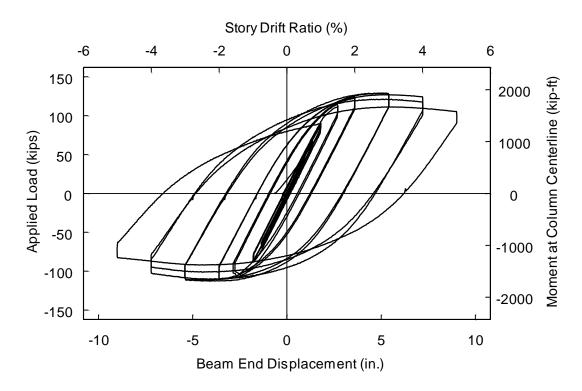


Figure 3.9 Specimen C1 Load versus Beam Tip Displacement Relationship

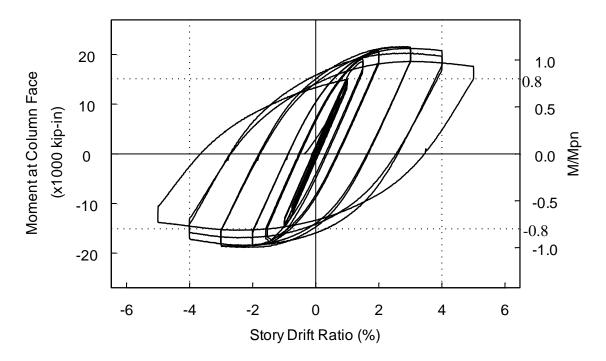


Figure 3.10 Specimen C1 Moment versus Story Drift Angle Relationship

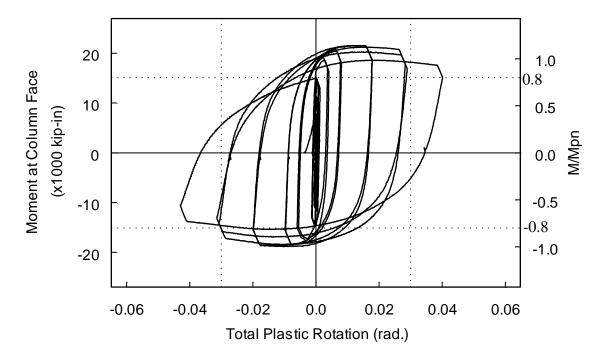


Figure 3.11 Specimen C1 Moment versus Total Plastic Rotation Relationship

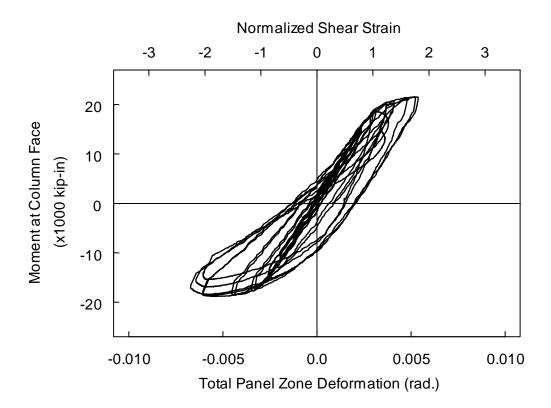


Figure 3.12 Specimen C1 Moment versus Total Panel Zone Shear Deformation Relationship

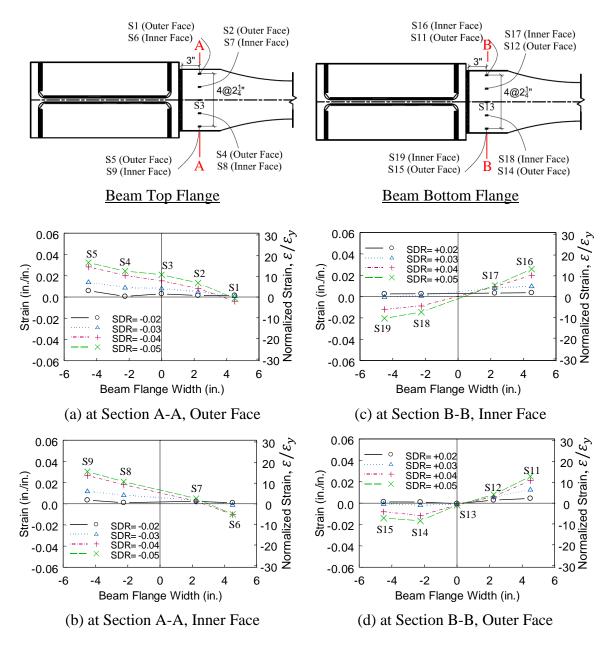


Figure 3.13 Specimen C1 Beam Flange Flexural Strain Profiles

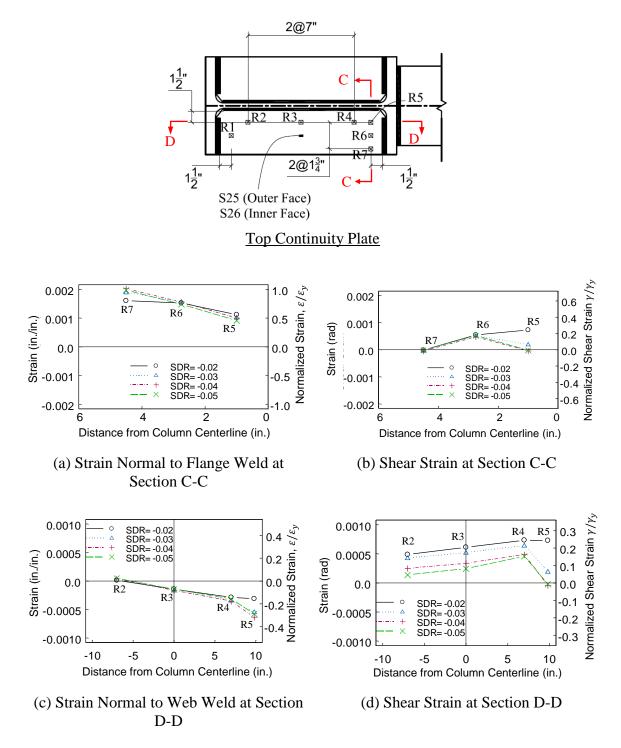


Figure 3.14 Specimen C1 Top Continuity Plate Strain Profiles

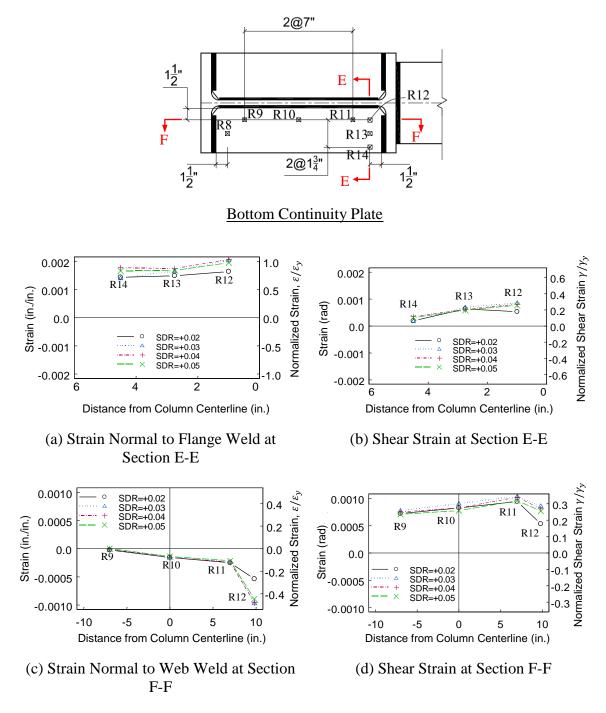


Figure 3.15 Specimen C1 Bottom Continuity Plate Strain Profiles

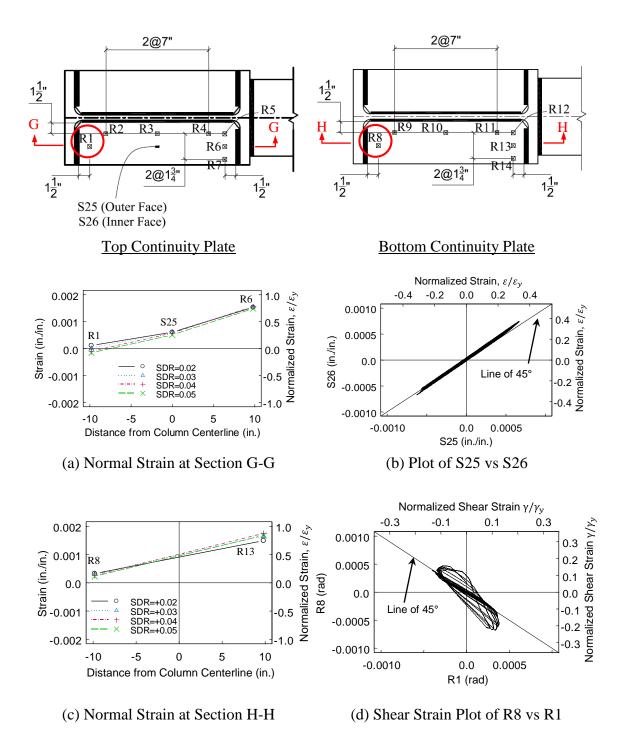
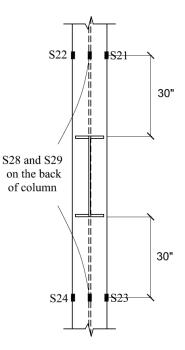



Figure 3.16 Specimen C1 Top and Bottom Continuity Plates Strain Profiles

(a) Location of Strain Gages on the South Face of the Column

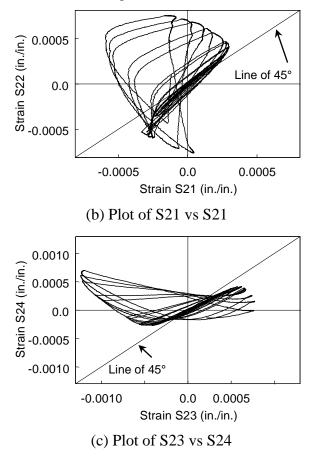


Figure 3.17 Specimen C1: Effect of Column Twisting on Column Flexural Strains

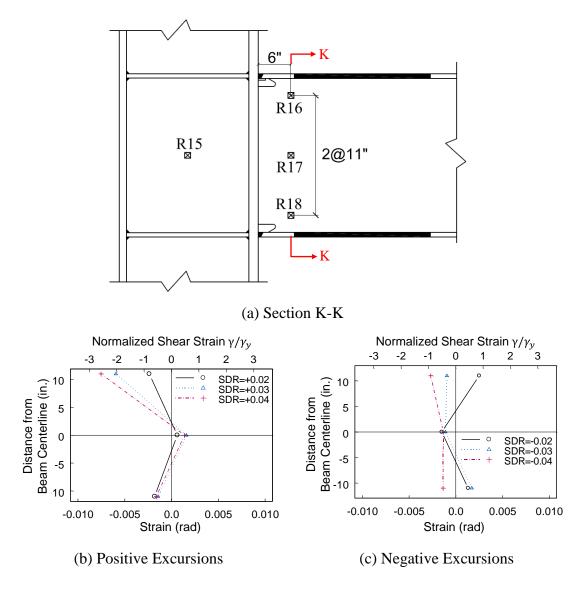


Figure 3.18 Specimen C1 Beam Web Shear Strain Profiles

(a) Global View from East

(b) Detail A

(c) Detail B

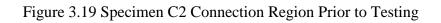
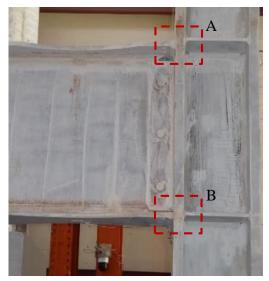
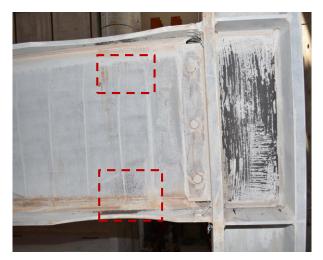



Figure 3.20 Specimen C2 Panel Zone Minor Yielding at Completion of 0.0075 rad Drift Cycles

Figure 3.21 Specimen C2 Beam Flange Yielding at Completion of 0.01 rad Drift Cycles

(a) Global View from East

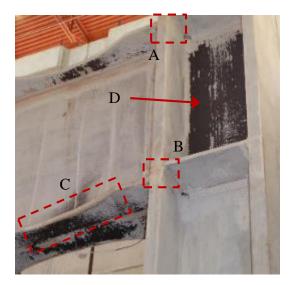


(b) Detail A

(c) Detail B

Figure 3.22 Specimen C2 Connection at -0.015 rad Drift (2nd Cycle)

(a) Spread of Yielding to Beam Web



(b) Column Flange Yielding Due to Column Kinking (Back Side)

(c) Column Flange Yielding Due to Column Kinking (Front Side)

Figure 3.23 Specimen C2 Connection at -0.03 rad Drift (2nd Cycle)

(a) Global View from East

(c) Detail A

(e) Detail C, Minor Flange and Web Local Buckling

(b) Global View from West

(d) Detail B

(f) Detail D, Significant Panel Zone Yielding and Column Kinking

Figure 3.24 Specimen C2 Connection at -0.04 rad Drift (2nd Cycle)

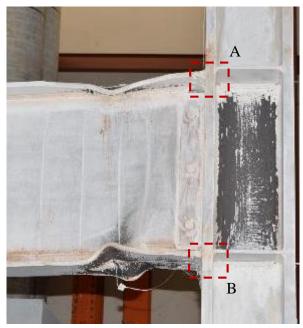
(a) View from East

(b) View from West

Figure 3.25 Specimen C2 at -0.05 rad Drift (2nd Cycle)

(a) Global View from East

(b) Global View from South East



(c) Detail A

(d) Detail B

Figure 3.26 Specimen C2 at +0.07 rad Drift (1st Cycle)

(a) Global View from East

(b) Detail A, View from East

(d) Detail B, View from East

(c) Detail A, view from Bottom

(e) Detail B, View from Bottom

Figure 3.27 Specimen C2 Connection at -0.07 rad Drift (1st Cycle)

(a) -0.05 rad Drift (2nd Cycle)

(b) -0.07 rad Drift (1st Cycle)

Figure 3.28 Specimen C2 Beam Lateral-Torsional Buckling

(a) View from East

(b) View from West

(c) Close-up View

Figure 3.29 Specimen C2 Complete fracture of Beam Bottom Flange at Test Completion

(a) Yielding in Bottom Continuity Plate

(b) Column Flange Yielding Due to Column Kinking (Back Side)

(c) Column Flange Yielding Due to Column Kinking (Front Side)

Figure 3.30 Specimen C2 Continuity Plate and Column Flanges Yielding at Test Completion

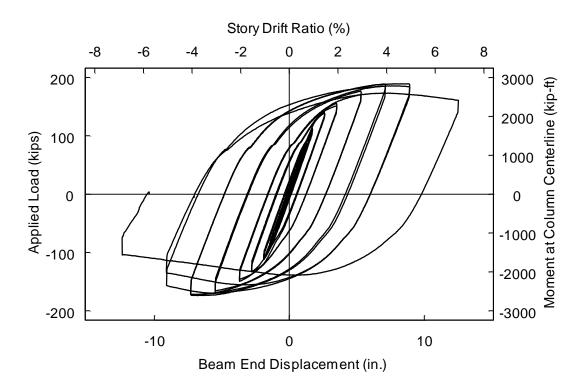


Figure 3.31 Specimen C2 Load versus Beam Tip Displacement Relationship

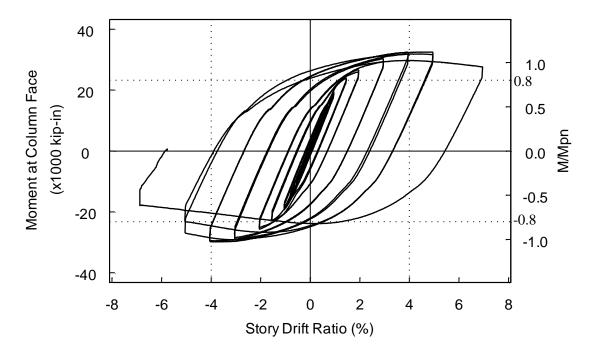


Figure 3.32 Specimen C2 Moment versus Story Drift Angle Relationship

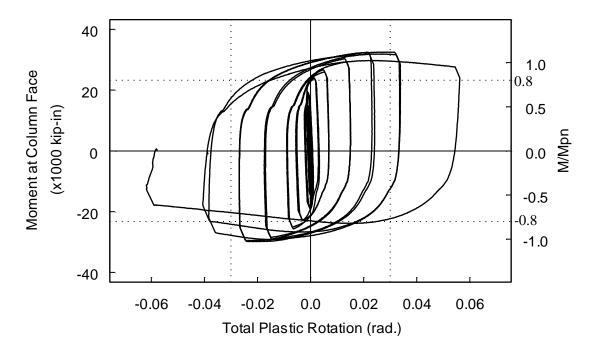


Figure 3.33 Specimen C2 Moment versus Total Plastic Rotation Relationship

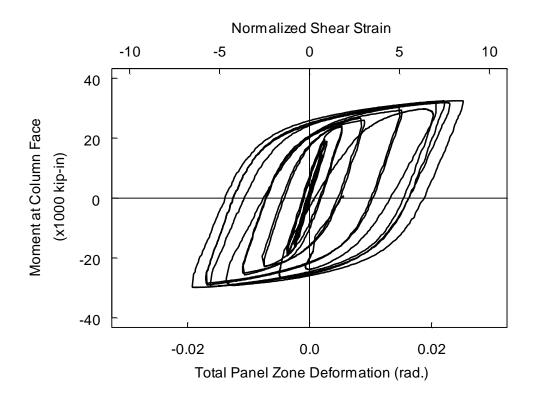


Figure 3.34 Specimen C2 Moment versus Total Panel Zone Shear Deformation Relationship

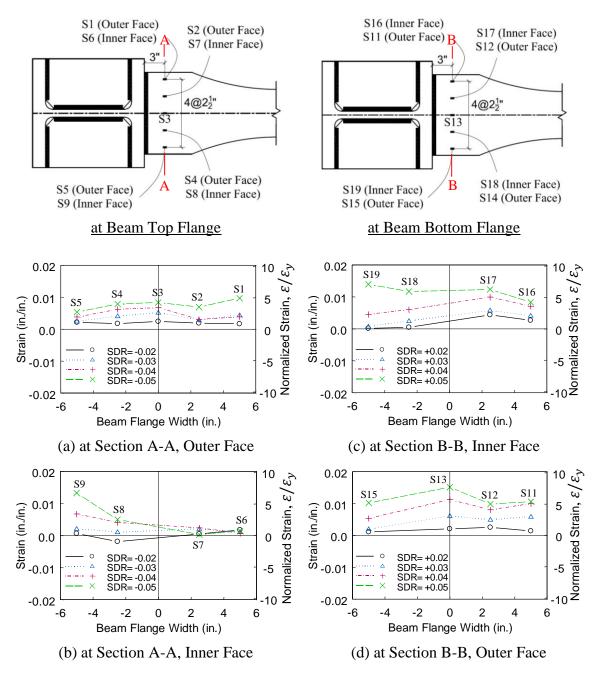


Figure 3.35 Specimen C2 Beam Flange Flexural Strain Profiles

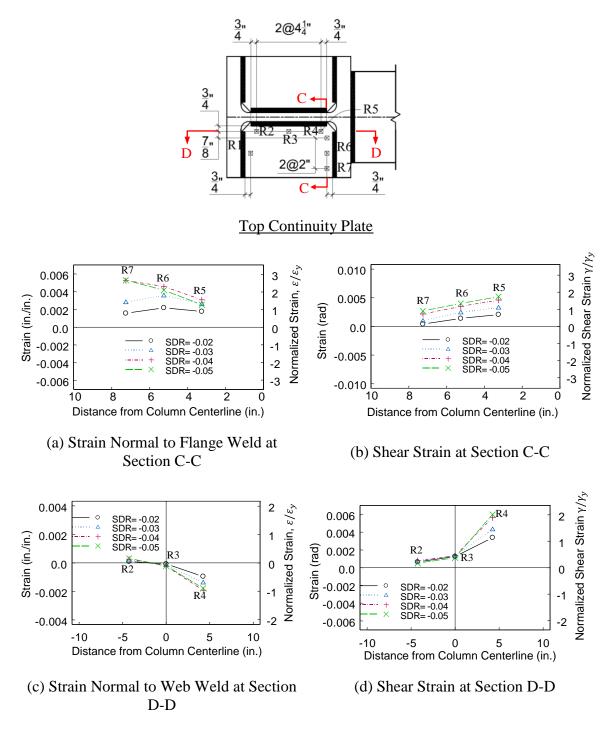
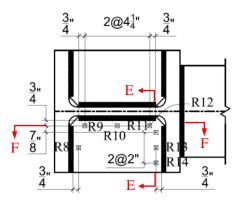



Figure 3.36 Specimen C2 Top Continuity Plate Strain Profiles

Bottom Continuity Plate

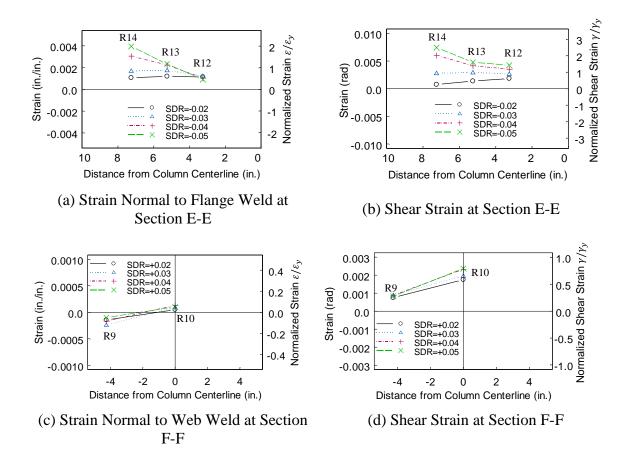


Figure 3.37 Specimen C2 Bottom Continuity Plate Strain Profiles

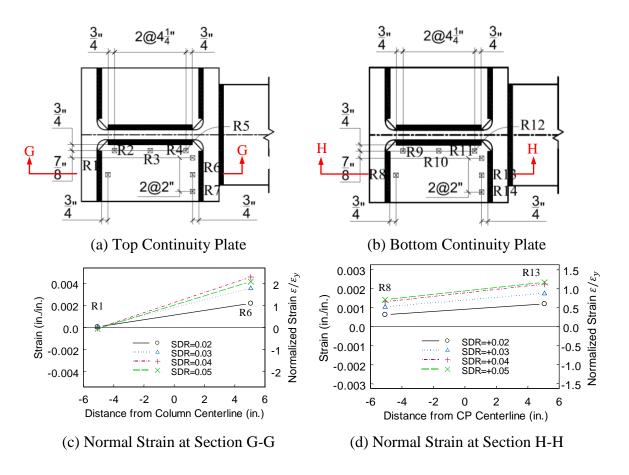


Figure 3.38 Specimen C2 Top and Bottom Continuity Plates Strain Profiles

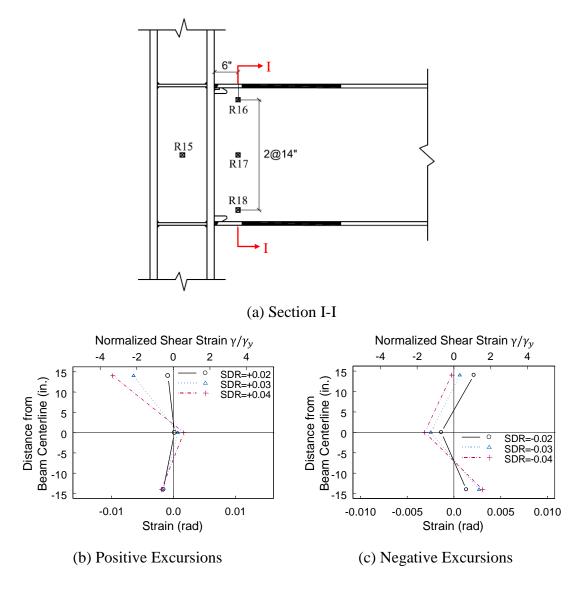


Figure 3.39 Specimen C2 Beam Web Shear Strain Profiles

4 ANALYSIS OF TEST RESULTS AND FINITE ELEMENT SIMULATION

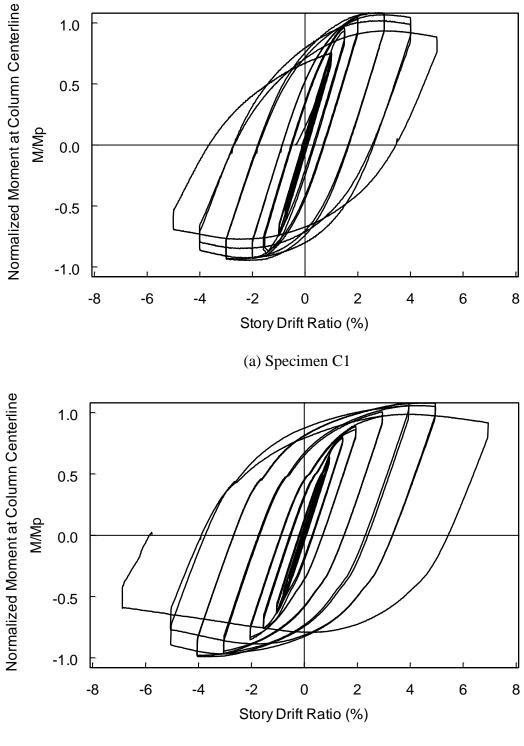
4.1 Global Response and Failure Mode Comparison

To experimentally verify a proposed design procedure for the continuity plate weld design, the main variable between the two specimens tested in this research was the column shape; Specimen C1 had a deep (W24) column and Specimen C2 had a shallow (W14) column. Testing showed that fillet welded continuity plates did not experience any damage, and the performances of both RBS connection specimens were no different from those with CJP welds between the continuity plates and the column flanges. Since deep column is prone to twist (Chi and Uang 2002), extra bracings were provided at the top flange near the RBS region and the top end of the column (Figure 2.6); the former was to simulate the bracing effect provided by the concrete slab. Despite this effort, the effect of using a deep column was still significant, as explained below.

The global responses of both specimens are compared in Figure 4.1. Strain gage readings in the column showed that column twisting started at 1.5% drift (Section 3.1.2.2). Therefore, lateral-torsional buckling (LTB) of the beam was more significant [Figure 4.2(a)]. Such coupled column twisting-beam LTB phenomenon caused the strength of the connection to peak at 3% drift and then started to degrade thereafter [Figure 4.1(a)]. Since the simulated top flange bracing was only effective in positive bending, the figure also shows that the strength reached in the negative bending direction was less. For Specimen C2 with a W14 column, column twisting was much less a concern. Therefore, this specimen could reach a higher strength, and strength degradation did not occur until after 4% drift. The higher strength of C2 also means a higher shear in the panel zone, which together with a slightly higher DCR ratio in designing the panel zone (Table 2.2) explains why C2 experienced more significant panel zone shear yielding than C1 [Figure 4.2(b)].

Figure 4.3 summarizes the percentage contributions from the beam, panel zone, and column to the total beam end displacement of both specimens. As expected, beam contributed the most to the total end displacement. For the reason explained above, panel zone of Specimen C2 contributed more to the total displacement; the percentage contribution reduced after 4% drift because the connection strength degraded thereafter.

The panel zone of Specimen C1 could have deformed more, but was limited by the coupled deep column twisting-beam LTB mode.


The amount of energy dissipated by each specimen is presented in Figure 4.4, where the energy has been normalized by the plastic moment, M_p , computed based on the tensile coupon test results. The deep-column specimen dissipated less energy.

4.2 Finite Element Analyses

It is difficult to experimentally construct the freebody diagram of the continuity plate from strain gage measurements. Instead, finite element analysis (FEA) by using the commercial software ABAQUS/CAE (2014) was conducted. Freebody diagrams established from the FEA are then compared with those established from the proposed procedure.

Four node, thick-shell brick elements (Type S4R in ABAQUS) were used to model the specimens. Typical steel properties (E = 29,000 ksi, v = 0.3) were used in the model to describe the elastic material characteristics. Also for inelastic behavior, following the work of Chaboche (1986), material parameters that could simulate both the kinematic and isotropic hardening responses of an A992/A572 steel coupon under cyclic loading were incorporated. Figure 4.5 shows the FEA models of both specimens. Figure 4.6 compares the experimental and predicted global response of each specimen; the correlation is satisfactory. A comparison of the deformed shapes is presented in Figure 4.7.

Figure 4.8 and Figure 4.9 shows the continuity plate freebody diagrams for both specimens. For one-sided moment connections, the proposed procedure assumes that the left (i.e., the non-loaded column flange) side has no normal force; the normal force from the beam flange is transferred completely to the column web through the continuity plates. The FEA shows that the non-loaded column flange does resist a portion of the normal force from the beam flange; the percentage is higher for shallow columns than for deep columns. This will reduce the shear forces in both the web weld and flange welds. Therefore, the proposed design procedure is somewhat conservative for continuity plate weld design. The conservatism increases when a shallow column is used.

(b) Specimen C2

Figure 4.1 Comparison of Global Responses

(a) Specimen C1

(b) Specimen C2

Figure 4.2 Comparison of Buckling Mode at 4% Drift

Figure 4.3 Components of Beam End Displacement

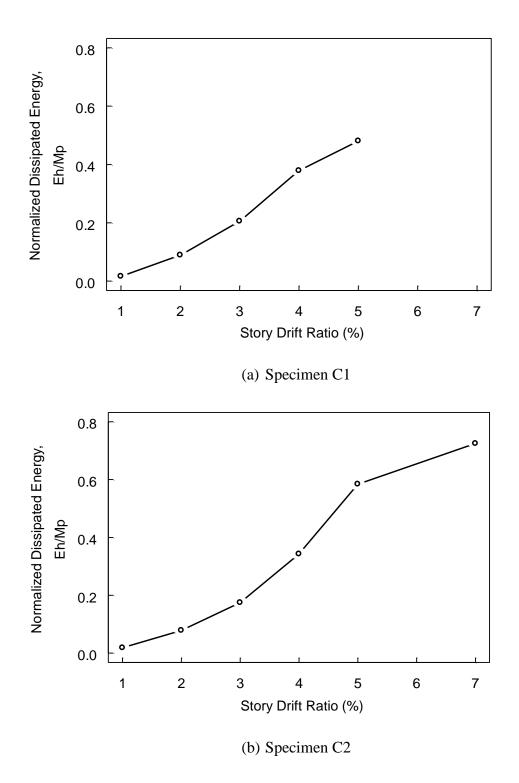
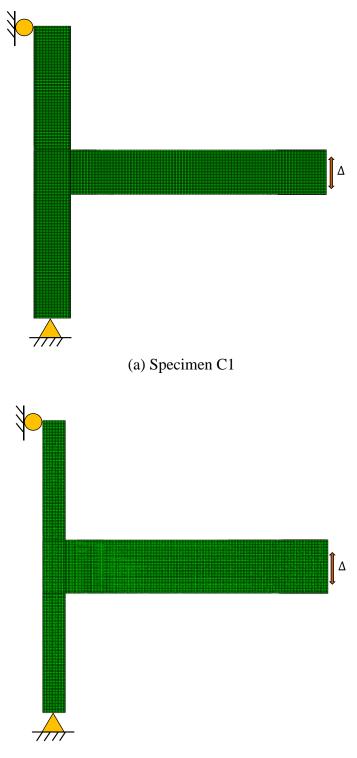



Figure 4.4 Normalized Dissipated Energy

(b) Specimen C2

Figure 4.5 FEM Models

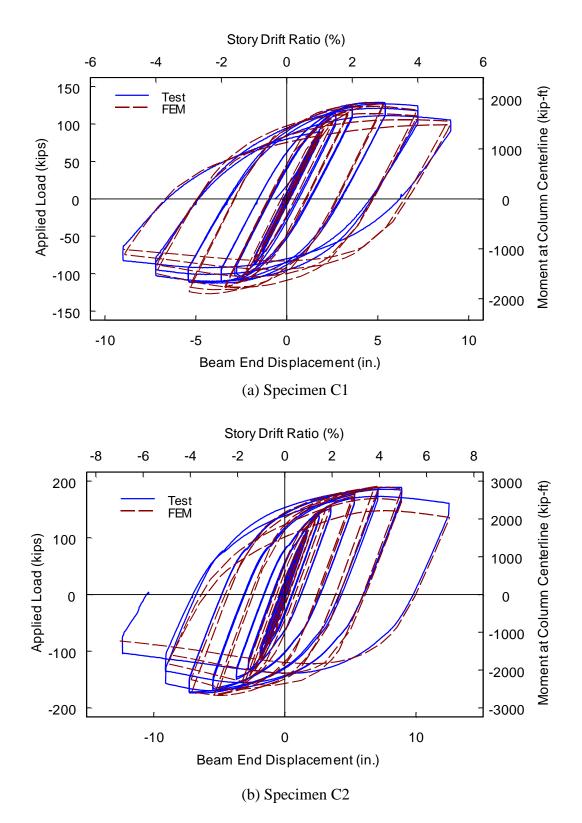
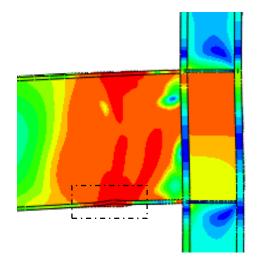



Figure 4.6 Correlation of Global Responses

(a) Specimen C1 (at +4% Drift)

(b) Specimen C2 (at -5% Drift)

Figure 4.7 Correlation of Deformed Configurations

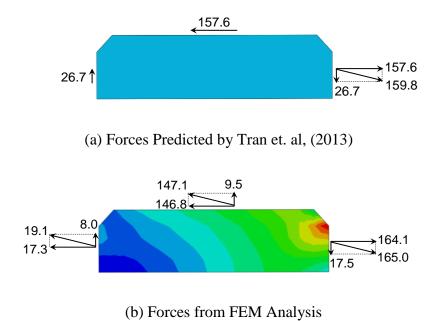
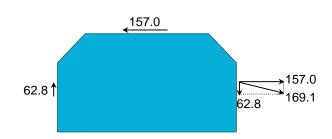
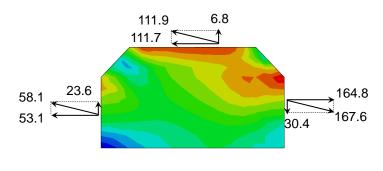




Figure 4.8 Specimen C1 Comparison of Forces Acting on Continuity Plate

(a) Forces Predicted by Tran et. al, (2013)

(b) Forces from FEM Analysis

Figure 4.9 Specimen C2 Comparison of Forces Acting on Continuity Plate

5 SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH NEED

5.1 Summary

Based on a weld detail commonly used in steel moment connection tests conducted in the past, AISC 341 requires that continuity plates in a Special Moment Frame (SMF) be connected to the column flanges by CJP groove welds. This prescriptive requirement, where the calculation of the required forces in the continuity plates is unnecessary, would increase the fabrication cost. As a first step to allowing for other types of weld joints (e.g., fillet welds or partial-point-penetration groove welds) to be used, it is necessary to have a design procedure to quantify the required forces in the continuity plate. Recently, Tran et al. (2013) proposed a procedure that considers the in-plane flexibility (or stiffness) of the continuity plate relative to the out-of-plane flexibility of the column flange being loaded by the beam flange in determining the forces that are transmitted through the continuity plates to the column panel zone.

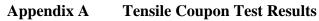
In the procedure proposed by Tran et al., the edges of the continuity plate next to the column flanges were subjected to both normal and shear forces. This procedure was modified to include the moment component created by the normal force and an eccentricity. As a pilot study to experimentally verify this design procedure, two full-scale, one-sided moment connection specimens with a reduced beam section (RBS) were tested. The specimen design followed AISC 341 and 358, except that the continuity plate thickness and welds were sized based on the modified procedure; the design procedure resulted in fillet welds to connect the continuity plates to the columns. One specimen (C1) used a deep (W24) column, and the other one (C2) had a shallow (W14) column. The continuity plates of Specimen C2 were also undersized to evaluate the effect of yielded continuity plates on the connection performance. While still satisfying the code requirement, the demand-capacity ratio of the panel zone strength was high (0.90 and 0.95 for C1 and C2, respectively) such that the effect of column flange kinking at the fillet welds locations could be evaluated. A992 steel was specified for the beams and columns, and A572 Gr. 50 steel was used for the continuity plates. Both specimens were tested cyclically by using the AISC loading protocol.

5.2 Conclusions

Based on the test results and the associated analytical studies, the following conclusions can be made.

- (1) Both specimens performed well and met the 0.04 rad. story drift requirement specified in AISC 341. Using the fillet welds did not affect the performance of the connection; as expected, yielding and buckling in the RBS region as well as shear yielding in the panel zone were observed.
- (2) No damage in the fillet welds connecting the continuity plates to the column was observed, indicating that the AISC 341 prescriptive requirement for expensive CJP groove welds can be conservative and may not be always needed.
- (3) AISC 341 also specifies a prescriptive requirement for the thickness of the continuity plates: half and full thickness of the beam flange for the exterior and interior moment connections, respectively (the full thickness requirement has been changed to three-quarter thickness for the interior connection in the 2016 edition of AISC 341). The proposed design procedure may result in a continuity plate thickness different from that required by AISC 341. Test results showed that such prescriptive requirement may not be needed; the proposed procedure will consider directly the effect of thickness on the required forces in the continuity plates.
- (4) The interface between the continuity plate and the column flanges is subjected to not only normal force but also shear force and moment; the moment is produced by the normal force together with an eccentricity (Figure 1.2 and Figure 1.3). The effect of moment and shear can be significant, especially for continuity plates in shallow columns (Table 2.4). The combined effect of normal force, shear force, and moment needs to be considered in checking the strength of continuity plates (Eq. (1.10)).
- (5) AISC 341 implicitly assumes that continuity plates shall remain essentially elastic per the capacity design principles. The continuity plate thickness of one specimen (C2) was undersized. Testing showed that the connection performance was not affected although the continuity plates had yielded.

5.3 Future Research Need


This pilot test program demonstrated that the prescriptive requirement in AISC 341 that requires a specific continuity plate thickness and expensive CJP groove welds to connect the continuity plates to the column flanges may not always be needed. Only two one-sided moment connections were tested in this research. Before the proposed design procedure can be implemented, only two tests are not enough and additional experimental verification is needed to establish the confidence level. Further testing should include two-sided moment connections, different connection types, inclusion of doubler plates, use of partial-joint-penetration groove welds, etc.

For one-sided connections, AISC 341 has been requiring the continuity plate thickness to be at least one-half of the thickness of the beam flange. For two-sided connections, AISC 341 in its 2016 edition reduces the required thickness from full to three-quarter thickness of the beam flange. Experimental verification is needed since these minimum thickness requirements lack any experimental justification.

6 REFERENCES

- [1] ABAQUS. (2014). ABAQUS Standard User's Manual, Version 6.14, ABAQUS Inc., RI.
- [2] AISC. (2010a). ANSI/AISC 341-10, Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL.
- [3] AISC. (2010b). ANSI/AISC 358-10, Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, American Institute of Steel Construction, Chicago, IL.
- [4] AISC. (2010c). ANSI/AISC 360-10, *Specification for Structural Steel Buildings*, American Institute of Steel Construction, Chicago, IL.
- [5] Astaneh-Asl, A. (1998). "Seismic Behavior and Design of Gusset Plates," *Steel Tips*, Structural Steel Educational Council, December, Lafayette, CA.
- [6] Chaboche, J.L. (1986), "Time-Independent Constitutive Theories for Cyclic Plasticity," International Journal of Plasticity, Vol. 2, No. 2, pp. 149-188.
- [7] Chi, B., Uang, C.M. (2002). "Cyclic Response and Design Recommendations of Reduced Beam Section Moment Connections with Deep Columns," *Journal of Structural Engineering*, Vol. 128, No. 4, pp. 464-473.
- [8] Dowswell, B. (2015). "Plastic Strength of Connection Elements," *Engineering Journal*, First Quarter, 2015, pp. 47-66.
- [9] Neal, B.G. (1961). "The Effect of Shear and Normal Forces on the Fully Plastic Moment of a Beam of Rectangular Cross Section," *Journal of Applied Mechanics*, Vol. 28, pp. 269–274.
- [10] Tran, A.T., Hassett, P.M., Uang, C.M. (2013). "A Flexibility-Based Formulation for the Design of Continuity Plates in Steel Special Moment Frames," *Engineering Journal*, Third Quarter, 2013, pp. 181-200.
- [11] Uang, C.M., and Bondad, D. (1996). "Static Cyclic Testing of Pre-Northridge and Haunch Repaired Steel Moment Connection," *Report No. SSRP-96-02*, Department of Structural Engineering, University of California, San Diego, La Jolla, CA.
- [12] Yu, Q.S., Gilton, C. Uang, C.M. (2000). "Cyclic Response of RBS Moment Connections: Loading Sequence and Lateral Bracing Effects," *Report No. SSRP-*

99/13, Department of Structural Engineering, University of California, San Diego, Jolla, CA.

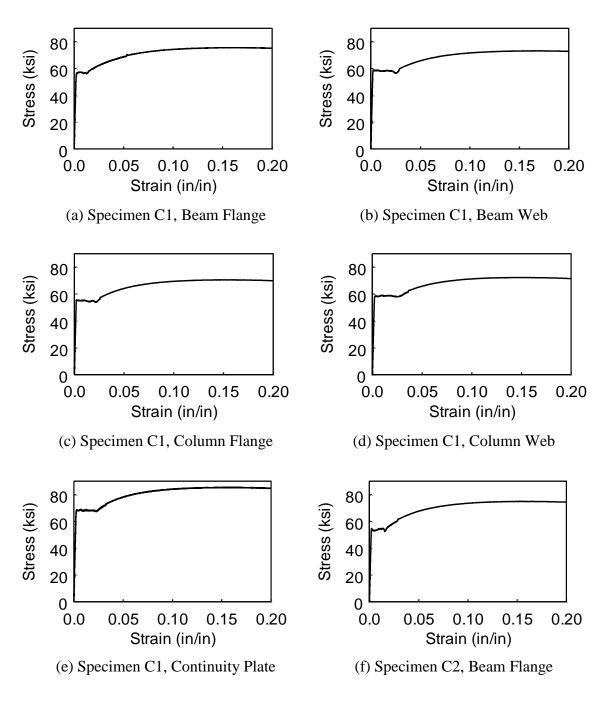


Figure A.1 Tensile Coupon Stress-Strain Relationships

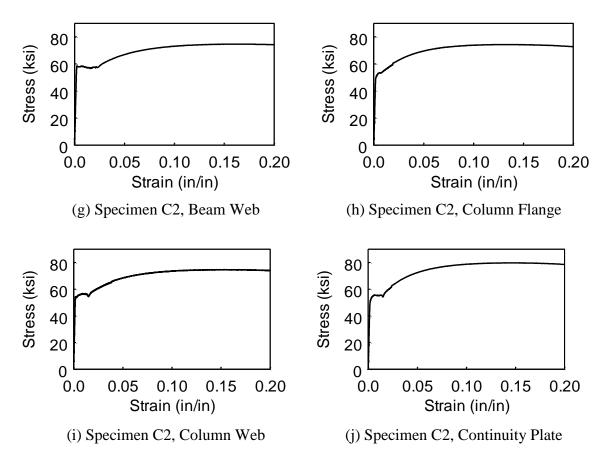


Figure A.1 Tensile Coupon Stress-Strain Relationships (continued)

Appendix B Mill Certificates

8GA-0812	20 CKNER MET	ALS COP		GUALITY AS REPORT OF TEST HPPED -05-15	CAR OR VEHICLE NO. CUSTOMER TRU		and the second se			1
o 2465	W HOUSTO HE JUNCTI	N AVE	85220		APACHE JU	HOUSTON	AVE			
	PAT HEAT NO. NUMBER	e NO.	THICKNESS	SI WIDTH OR C	ZE AND QUANTITY DIA. LENGTH	WEIGHT	YIELD POINT	TENSILE STRENGTH	AF FRAC ELONG	REI
TEST CE	- AASHTO PRAC N ASTM A ERTS ARE EN 102 MFST M GH820- UNLDG LATER	M270-1 0 IMPAC 709-11 PREPARE 04:2004 ILL SER 3657A L	2 GR 50 TS REQU GR 50, A D IN ACC TYPE 3 IAL# & H IFT MAX FT-SIDE	CTURED IN KLD FINE IRED TYPE ASTM A572 CORD WITH .1 PATTERN# 15 TON-S	THE U. S. A. GRAIN 2, -07 GR 50 PROCEDURES O MFST PROC ON IZES & GRADES MATE DELIVERY	SEP		PSI	IN	8 9
x5421080	811K1	2570 1	.625	96	240	4084	59200	84000	8	21
x5421080	811K1	2570 1	.625	96	240	4084	59200	84000	8	21
X5421080		2570 1	.625	96	240	4084	59200	84000	8	21
	813K7	5180) 1	.625	96	240	4084	58600	82300		23
X5421090							56500	82900	8	22
Q-QUENCH TEMPS	ERATURE			T. TEMPER TEM		CHAR	MALIZE TEMPER	ATURE		
Q-QUENCH TEMPS	GRATURE	наво ВНИ	GEND THR		PERATURE DIR TEST ENER 1	CHAR	RMALIZE TEMPER	ATURE	. EXP	22 MILS 2 3
G-QUENCH TEMPI BERIAL NUMBER	PAT HEAT NO. NUMBER	Bần		CKNESS TYPE S HES CHEM		FT LBS	INALIZE TEMPER	10.108E 10.	. EXP	MILS 2 3
BERIAL NUMBER	PAT HEAT NUMBER	<u>В</u> ЙN 22.014	INC 8 SH .004 .2	EXMERS IVPE S HES CHEM S		FT LBS	PY MIPACT SHEAR 1 2 8 1 1,0002	клияе %) (лл 3 1 сь м .002.0	.EXP	MILS 2 3 MGI SAZ 02

SHIPMENT NO.	•	100001120	DATE SHIP		CAR OR VEHICLE NO.				-	CO. CO.
2465	U KNER METALS W HOUSTON AV E JUNCTION A	E	5220	05-15	CUSTOMER TRU KLOECKNEI 2465 WES: APACHE JU	R METALS T HOUSTON	AVE	1,669	GE	2
	AT HEAT	NO. PCS	THICKNESS	WIDTH OR	A CONTRACTOR OF	WEIGHT S POUNI		TENSILE STRENGTH	AF FRA ELONG	
TEST CER	PRAC NO IM ASTM A709-1 RTS ARE PREPA	11 GR	50, A	STM A572	2-07 GR 50	OUT THED	TH EN			
	EN 10204:20 - MFST MILL S GH820-36577 UNLDG FORK LATER	004 T SERIA A LIF	YPE 3. L# & PA T MAX 1 -SIDE 1	l ATTERN# 15 TON-S FOR ULTI	MFST PROC ON SIZES & GRADES MATE DELIVERY 05/08/15	S SEP	IN EN			
	EN 10204:20 - MFST MILL 3 GH820-36577 UNLDG FORK LATER 6976762	DO4 T SERIA A LIF LIFT	YPE 3. L# & P T MAX 1 -SIDE 1 AI	1 ATTERN# 15 TON-S FOR ULTI DDITION	MFST PROC ON SIZES & GRADES (MATE DELIVER) 05/08/15 GH 820-51207	S SEP Y A				
	EN 10204:20 - MFST MILL S GH820-36577 UNLDG FORK LATER	DO4 T SERIA A LIF LIFT	YPE 3. L# & PA T MAX 1 -SIDE 1	l ATTERN# 15 TON-S FOR ULTI	MFST PROC ON SIZES & GRADES MATE DELIVERY 05/08/15	S SEP Y	58600	82300	100.000	23
MFST • CO# APA-6 K54210904	EN 10204:21 - MFST MILL 3 GH820-36577 UNLDG FORK LATER 5976762 813K75180	DO4 T SERIA A LIF LIFT	YPE 3. L# & P T MAX 1 -SIDE 1 AI	1 ATTERN# 15 TON-S FOR ULTI DDITION	MFST PROC ON SIZES & GRADES IMATE DELIVERY 05/08/15 GH 820-51207	S SEP Y A		82300 82900	100.000	23 22
CO# APA-6	EN 10204:21 - MFST MILL 3 GH820-36577 UNLDG FORK LATER 5976762 813K75180	004 T SERIA A LIF LIFT 1	YPE 3. L# & P T MAX 1 -SIDE 1 AI	1 ATTERN# 15 TON-S FOR ULTI DDITION	MFST PROC ON SIZES & GRADES IMATE DELIVERY 05/08/15 GH 820-51207	S SEP Y A	58600		8	
CO# APA-6	EN 10204:21 - MFST MILL 3 GH820-36577 UNLDG FORK LATER 5976762 813K75180 4 813K75180	004 T SERIA A LIF LIFT 1	YPE 3. LL# & PJ T MAX 7 -SIDE 1 AI .625	1 ATTERN# 15 TON-S FOR ULTJ DDITION 96	MFST PROC ON SIZES & GRADES (MATE DELIVER) 05/08/15 GH 820-51207 240	S SEP Y A 4084	58600 56500	82900	8	22
CO# APA-6 (54210904 (54210905	EN 10204:21 - MFST MILL 3 GH820-36573 UNLDG FORK LATER 6976762 813K75180 4 813K75180 5 823K75240	004 T SERIA A LIF LIFT 1	YPE 3. LL# & PJ T MAX 7 -SIDE 1 AI .625	1 ATTERN# 15 TON-S FOR ULTJ DDITION 96	MFST PROC ON SIZES & GRADES (MATE DELIVER) 05/08/15 GH 820-51207 240	S SEP Y A 4084	58600 56500 58600	82900 82300	8 8 8	22
CO# APA-6 (54210904	EN 10204:21 - MFST MILL 3 GH820-36573 UNLDG FORK LATER 6976762 813K75180 4 813K75180 5 823K75240	004 T SERIA A LIF LIFT 1	YPE 3. LL# & PA T MAX 1 -SIDE 1 .625 .625	L ATTERN# 15 TON-5 FOR ULTI DDITION 96 96 96	MFST PROC ON SIZES & GRADES (MATE DELIVER) 05/08/15 GH 820-51207 240 240	S SEP Y 4084 4084	58600 56500 58600 56500	82900 82300 82900	8 8 8	22 23 22

1001000000				Contraction of the						2004-002	CHA	RPY IMPA	CT	1000		(A	
SERIAL NUMBER	PAT NO.	HEAT NUMBER	HARD	BENO	THICKNESS	TYPE	SIZE	DIR TEST	ENERGY	FT I	BS	12/01/02/2	SHEAR(6)	LAT. EX	PM	AILS
AND CAR			BHN	1	INCHES			F	1	2	3	1	2	3	1	2	T

.

						C	IEMICAL /	NALYSIS				131.1				1.12	MQUAI
HEAT NUMBER	С	Мл	Р	s	SI	CU	N	Cı	Mo	v	n	AI	В	Съ	N	Sn	GRAIN SIZE
813K75180	.18	1.22	.013	.004	.279	.024	.01	.04	.005	.056	.002	.028	.0002	.00:	2.004	1.003	3
823K75240	.18	1.24	.014	.003	.297	.014	.01	.03	.005	.066	.002	2.041	0002	.002	2.005	.002	2

I certify that the above results are a true and correct copy of a requirements of the specification cited above. This test report	clual results contained in records maintained by AncelonMittel Burns Harbor and are in full compliance with the connot be allemed and must be transmitted intact with any subsqueet third party test reports. If regulard, D. W. ELWOOD WNK
BHFLTRPT.TIF	SUPV, QUALITY ASSURANCE

posco	000		·	LIIM	es	5	E	Mill Test Certificate/검사 중명서				Certifi Da	cate No te of Is	rtificate No./증명서번호 : 140922-FP01F Date of issue/발행일자 : Oct., 08, 2014	여 다 다 다 다 다 다	1409. Oct.,	22-FP0 08, 20	1PS-0	Certificate No./중명서번호 : 140922-FP01PS-00042-0001 Date of Issue/발행일자 : Oct., 08, 2014	0001
rder No./74	Order No./계약번호 : 01S1297247	7247				٩	O No	PO No./주문번호 : 1500-01034											110	
[Pplier : Gt	Supplier : GS GLOBAL CORP.	ď				0.4	Line and	Commodity : PLATE /퓽명								5	1500 010 X	0/0	K	
ustomer: 5 2객사:5	Customer : SCHUFF STEEL					ගඳ		Spec & Type : ASTM A572-50/A709-50	0											
						Tensi /인징	Tensile Test /인장시험			Cherr	lical Con	npositior	Chemical Composition/화학성분 (%)	년 (%) 글						
Size/치수	Product No. /제출번호	Quantity /수량	Weight /888 (Kg)	Heat No. /제강번호	Position	(%)	TS EL (%)		Division	υ	8	Mn	٩	co	ບັ	ž	õ	Mo	٩X	>
0.5000*x96"x240"	PB60760301-0307	7	10,374	SB15106	-	429 5	574 23			0.1503	0.347	1.377	0.0140	0.0020	0.023		010			0.003
0.5000"x96"x240"	PB60760404-0405	2	2,964	SB15106	4	428 51	568 24		<u>د</u> ۲	0.1437	0.345	1.388	0.0147	0.0019	0.022	800.0	0.010 0	0.003		0.002
0.5000"x96"x240"	PB60760201-0205		7,410	SB15106	4	423 51	564 24		د ـ	0.1437 0.1503	0.345	1.388	0.0147	0.0019	0.022	0.008			0.024	0.002
0.5000"x96"x240"	PB60760101-0107	7	10,374	SB15106	1	428 5	574 22		a – 1	0.1437	0.345	1.388	0.0147	0.0019	0.022	0.008	0.010			0.003
0.5000"x96"x240"	PB60760001-0007	~	10,374	SB15106	F.	431 5	570 25		<u>ا ب</u>	0.1503	0.345	1.368	0.0147	0.0019	0.022	0.008				0.003
0.5000"x96"x240"	PC22358501-8507	4	10,374	SB15303	+	428 57	570 25		I	0.1513	0.345	1.386	0.0132	0.0019	0.028	0.013				0.003
0.5000*x96"x240*	PC22453301-3307	7-	10,374	SF47936	+	433 5	579 22		2 - 1	0.1550	0.350	1.404	0.0108	0.0023	0.023	110.0	0.024	0000		800'0
Sub Tolal (010)	:	42	62,244 (kg)	6					L.	0.1540	70000	1.400	et io'n	1700'0	C20.0	1100				200.0
50"×96"×240"	0.6250'x96"x240" PC22249702-9707	ø	11,112	3815303	-	408 5	565 24			0.1513	0.355	1.376	0.0132	0.0017	0.026	0.013				0.003
0.0250"x96"x240"	PC22249501	-	1,852	SB15303	H-	421 5	574 26		0 1	0.1513	0.355	1.376	0.0138	0.0017	0.026	0.013	0.019			0.003
0.6250"x96"x240"	PC22249901-9907	. ►	12,964	SB15303	ч н	419 5	573 22		a - a	0.1470 0.1513	0.355	1.384	0.0138	0.0017	0.079	0.013		0000'0	0.024	0.003
*** Sub Total (020) ***	:	4	25,928 (kg)	1					L.	0/#1.0	100.0	tor.	oci n'n	110000	2100	210.0				200.0
00"x96"x240"	0.7500"x96"x240" PB60761201-1206	φ	13,332	SB15106		391 5	559 25		<u>، د</u>	0.1503	0.347	1.377	0.0140	070070	620,0	0.008	010,0	0.003		500.0
600"x96"x240"	0.7500"x96"x240" PB60761301-1307	7	15,554	SB15106	T T	409 5	558 25		ייס	0.1503	0.345	1.377	0.0140	0.0020	0.023	0.008			0.024	0.003
sition - T : To nsile Test. Di Method : 0.2 vision - L : Lac pply Condition	 Position - T: Top. M: Middle, B : Bottom Trensile Test. Direction : Transversal, Gauge Length : 200mm(Rectangular), YP Method : 0.2% off-set Division - L: Ladle Analysia, P : Products Analysis Supply Combilion : As-Rolled unless otherwise Heat Treated. 	ttom , Gauge Le Jucts Analy otherwise I	ngth : 200 sis Heat Treat)mm(Rectan ted.	gular).			We hareby certify that the malerial herein has been made in accordance with the order and above specification. This material has been fulled and approves. This material has been fully killed and made by besite process. This material has been fully killed and made by besite oxygen process. This material has been fully killed and made by besite oxygen process. This material has been fully killed and made by besite oxygen process.	the math n made to n fully kill ed accor	erial here by vacuur led and n ding to E	ain has b m degas nade by eN10204	een mat sing pro basic ox	de in acc cess. Th ygen pro	ordance is materi	with the	grained	d above steel.	specific	1	4
								This Mill Test Certificate cannot be copied for any purpose.	te canno	t be copi	ied for a	odund Au	es.							
	Survey	Surveyor To :															K	M.S. JANG	TAN	5
	and the second se																			

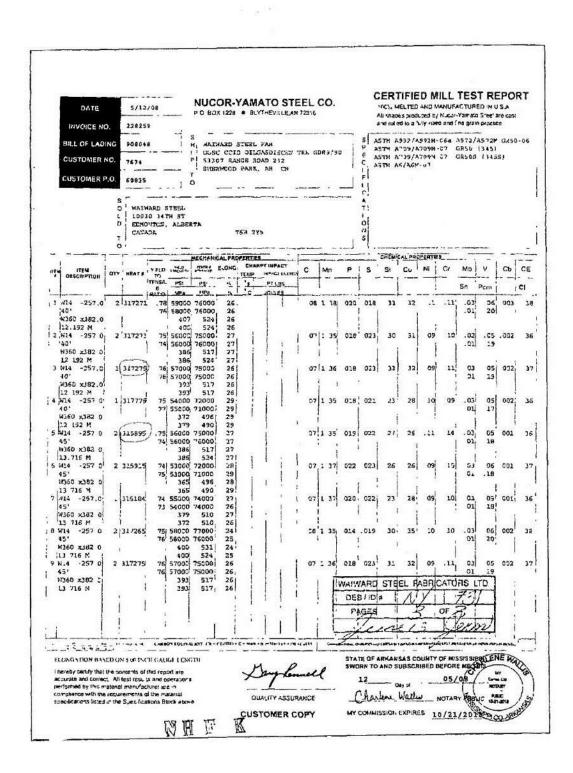
			CERTIFIED M.	CERTIFIED MATERIAL TEST REPORT			/	/ Page 1/1
S) GERDAU		P TO USS STEEL.	CUSTOMER RILL TO BROWN STRAUSS	CUSTOMER BILL TO BROWN STRAUSS STEEL DIVISION O	GRADE A992/A572-50	Nid Wid	SHAPE/SIZE Wide Flange Beam / 36 X 150# / 920 X 223	(150H / 920 X 223
	FONTANA.CA 92337 USA	92337	2495 UKAVAN ST AURORA,CO 8001 USA	24% UKAVAN ST AURORA,CO 80011-3539 USA	120.00		WEIGHT 15,000 LB	HEAT/BATCH 60114091/04
PETERSBURG, VA 23803-8905 USA	SALES ORDER 2485543/00030	~ -	CUSTO	CUSTOMER MATERIAL N"	SPECIFICATION / DATE of REVISION ASTM A6-13A ASTM A709-13A	DATE or REVIS	NON	
CUSTOMER PURCHASE ORDER NUMBER 09127		BILL OF LADING 1330-0000059150		UATYE 09/04/2015	ASTM A992-11, A572-13A CSA G40.21-13 345WM	2-13A M		
CHEMICAL COMPOSITION	\$\$ 0.028	Si 0.23 0	Su 0.38 0.38	လ္က လူ 0.17 0.15	Mo Sn 0.044 0.019		Nb 810:0	& 0.003
CHEMICAL COMPOSITION CEBYA6 0.37								
MIECHANICAL PROPERTIES YS 1976 57300 72 56700 72	ULS 1951 74600 75600	MPa 395 391		UTS MF3 514 521	Y/L,rati 0.768 0.750		G/L Inch 8.000 8.000	
MECHANICAL PROPERTIES EI 200.0 22 200.0 22	Elgue. 27.60 25.10							
COMMENTS / NOTES								
ă.								
						-		
								PMNF
The above figures are ex specified requirements.	criffed chemical and This material, inclu BIAS	al and physical test records including the biflets, was m BHASKAR YALAMANCHILI	as contained in the	The above figures are certified chemical and physical test records as contained in the permanent records of company. We certify that these data are correct and in compliance with specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR compliance with EN 10204 3.1. Instantial and the second second second and manufactured in the USA. CMTR compliance with EN 10204 3.1. Instantial and incompliance with the second se	my. We certify that these data are corrupties with EN 10204 3.1.	ta are correct and	t and in compliance with ALICE PTICIFORD	
Town		QUALITY DIRECTOR			and a ma		QUALITY ASSURANCE MGR.	1
1								

995170-0000 D Ę .16 5 S 5 5 33 Ħ H 610. .021 8 8 8 > Chemical Properties (wt %) ASTM A992/A992M-11 A572/A572M GR5D-13a ASTM A709/A709M-13a GR5D (345) ASTM A709/A709M-13a GR5D (3455) ASTM 46/A6M-14 ASTM 46/A6M-14 W .04 EQ. 9 14 ե Mercury has not been used in the direct manufacturing of this material. 9 9 ĩ All Shapes produced by Nucor-Yamato Steel are cast and rolled to a fully killed and fine grain practice 32 33 5 CARBON EQUIVALENT CE= C+Mn/6+(Cr+Mo+V)/5+(NI+Cu)/15 2 .18 5 Sworn to and subscribed before me .027 .018 -100% Metted and Manufactured in U.S.A CERTIFIED MILL TEST REPORT 110. .016 ٩ **County of Mississippi** 1.10 1.13 ž State of Arkansas 8 89 ų 2015-08-25 P R/R RANCHO CUCAMUNGA, CA FOR TRK ELONG Temp Impact Energy Corrosion Index= 26.01(%Cu)+3.88(%Ni)+1.2(%Cr)+1.49(%Si)+17.28(%P)-7.29(%Cu)(%Ni)-9.10(%Ni)(%P)-33.39(%Cu)^2 Charpy Impact All mechanical testing is performed by the Quality Testing Lab, which is independent of the production departments. ft.lbf C/O KEEP ON TRUCKING BNSF Date BROWN STRAUSS-FONTANA DEL TO FONTANA CA 92335 USA Mechanical Properties щ. U 5 5 * * 88 Tensile Strength NUCOR-YAMATO STEEL CO. MPa 2 496 496 PLZT*1 cm= C+SI/30+Mn/20+Cu/20+NI/60+Cr/20+Ma/15+V/10+5B(B=Approx .0005) P.O. BOX 1228: BLYTHEVILLE, AR 72316 Strength L O • = - a Yield PedW 33 23 23 338 2 correct. All test results and operations performed by this material manufacturer are in compliance with the requirements of the material specifications, and when designated by the purchaser, Yield to Tensile l hereby certify that the contents of this report are accurate and Ratio 0.77 0.79 443484 443654 Heat ELONGATION BASED ON 8.00 INCH GAUGE LENGTH SO 9001:2008 certified (Registration # 0985-07). ę m BROWN STRAUSS STEEL CO. Invoice No. 712366 Bill of Lading 207742 Customer P.O 09064 ustomer Vo. 7603 Item Description AURORA CO B0011 2495 URAVAN ST W30X116.0 50 ft 0 lh W760X173 (15.24 m) W30X116.0 55 ft 0 lh W760X173 (16.76 m) NSA

meet the applicable specifications.

Chief Metallurgist

PUBLIC and the lead of the lade My commission expires on 07/17/2023


92

2

-

mat

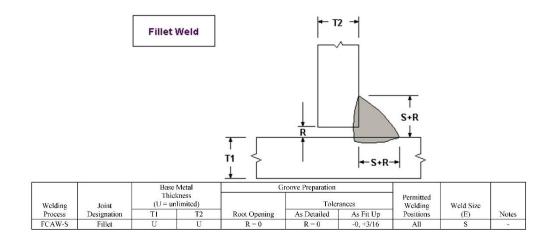
2	Townice No. 707481	JUN-	COR-Y	TAMA	NUCOR-YAMATO STEEL CO.	EL CO.				D	CERTIFIED MILL TEST REPORT	MILL N	TEST RE	PORT			-		1	ĺ			1			
S B	204152 7603	E O E	OX 1228: B	LYTHEVI	P 0 BOX 1228: BLYTHEVILLE, AR 72316	5		1 Shap I Shap	Meltec es prod d fine g	100% Meited and Manufactured in U.S.A All Shapes produced by Nucor-Yamato Steel are cast and rolled to a fully killed and fine grain practice	Nucor-	cture 'amato	d in U. Steel a	.S.A re cast	and rol	led to a	fully									
Ö	Customer P.O 09064								Oate		2015-07-27	27														
2495 AUR	BROWN STRAUSS STEEL CO. 2495 URAVAN ST AURORA CO 80011 USA				NI-1 +0	BROWN STRAUSS-FONTANA C/O KEEP ON TRUCKING BNSF R/R RANCHO CUCAMUNGA, CA FOR TRK BEL TO FONTANA CA 92335	TRAUS ON TRI HO CUC	LFONT JCKING AMUN	ANA BNSF GA, CA 135	FORTRI				ASTM ASTM	ASTM A992/A9921 ASTM A709/A7091 ASTM A709/A7091 CSA 640 21-13 503 ASTM A6/A6M-14	ASTM A092/A992/N-11 A572/A572/M GR50-13a ASTM A709/A709M-13a GR50 (345) ASTM A709/A709M-13a GR505 (3455) GSA G40 21-13 50W/M (345WM) ASTM A6/AGM-14	1 4572/ 1a GR50 1a GR50 (345W1	A572M (345) 5 (3455) 1)	GR50-13	[œ						
Г		F					Mechanical Promerties	opertion									Chemic	al Pron	Chemical Pronecties (wf %)	-					Γ	
				Viald to		F (ELONG		1 6	Charpy Impact			F	\vdash	-	\vdash							F		T	
ten	Item Description	ĥ	Heath	Tensile	IN ISA	_	*	dmai.		Impact energy	ğ	U	чW	٩	5	S S	ž	3	Wo	>	ð	H	\$	Pcm	σ	
				Ratio	edW	MPa	*	···		-	T							_								
Γ	W24X162 0	-			56	73	28		Γ	\vdash		t	1	\vdash	+	-	\vdash		_				T	T	Γ	
	60 ft 0 in W610X241 (18 29 m)		442226	076	386 379	72 503 496	8					8	1 20 (013 0	026	19 8	32 11	1 13	8	8	020	R	8	5		
5	W24X162 D 60 ft 0 in W610X241 (18 29 m)		442228	0.76 0.77	38 S S	510 510 503	27					8	121	013 0	028	21 31	1 12	7	2	8	018	35	8	31	· · · ·	•
	W24X176 0 50 ft 0 in W610X262 V15 74 m)	m	442204	0.75 0.79	52 372 372	5 5 2 2 8 4 96	8 %					8	130 (013 0	810	25 24	4 10	F	8	04	002	36	5	18	[
4	W24X176 0 55 ft 0 in W610X262	m	442208	0.81	85 C5 28	2 F 26 5	28					8	136 (018 0	018 2	21 22	2 10	14	8	90	018	37	5	18		
NG # E OG	(I. I. A. M.) (I. I. A. M.)	GAUGE +Cr/20+ KNI)+1	LENGTH Mo/15+V/ 2(%C/)+1 4	/10+58(B:		29(%Cu)(%	DI 6-(IN)	(ivx)	CARB Merc P)-33 39	CARBON EQUIVALENT CE= C+MAYG+(C+MO+Y)/5+(NH-Cu)/15 Mercury has not been used in the direct manufactuming of this material 33 39(%cu)*2	IVALENT tot been	used in	Mn/6+(Cr+Mo+	M/5+(N ufactum	lit-Cu)/1 ng of th	s mater	- ⊒	4]	1	1	1	7	
and and and	All mechanical resting is performee by the utuality resting Lab, who is independent of the production departments I hereby certify that the contents of this report are accurate and correct all rest results and operations performed by this material	by the this rep ins perfo	Juality les Jort are act irmed by th	curate an his mater							State	State of Arkansas County of Mississippi	Iddissis		A.C.	00	and the second se		-		7					
et et	material specifications, and when designated by the purchaser meet the applicable specifications	esignate	d by the p	urchaser,	X	X Bay K	ž ž	ž			on 20	on 2015-07-27	on 2015-07-27 Julianal Mar	on 2015-07-27 Julieral the feder	W H		M L	PUBLIC	LINAS							

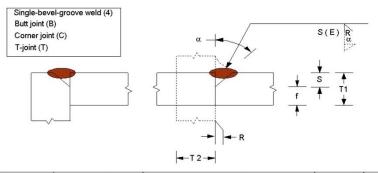
	_		Wel	d Procedu	res for:		
S	S		LICS		Testing		
CHU	FF STEEL		000				
				Project No	o.		
#	SUBMITTAL #	WPS/PRODUCT	REV.	PQR	DESCRIPTION	SHOP	FIEL
		FCAW-G					
	N/A	N/A					-
-							
-			-				-
_							
			_				
-			-				-
	-						
			1			-	_
		SMAW					
	N/A	N/A	1				
		229625					
_							
	N/A	SAW N/A					_
	N/A	N/A	-				
			-				
		FCAW-S	12				
	1	Lincoln Innershield NR232 (FCAW-S)	11		Standard WPS		Х
_		Lincoln Innershield NR232 (FCAW-S)			CofC		Х
-		Lincoln Innershield NR232 (FCAW-S) Lincoln Innershield NR232 (FCAW-S)	-		D1.8 Certificate, 0.072" Dia. Manfuactures Data	-	X
-	2	Lincoln Innershield NR232 (FCAW-S)	0		Skewed T-joint CJP WPS Qualified	-	x
	-	Lincoln Innershield NR232 (FCAW-S)	ō	190	Skewed T-joint CJP PQR		X
		1					
_						-	
			-				
-	1						
			_			1.1	

Appendix C Welding Procedure Specifications

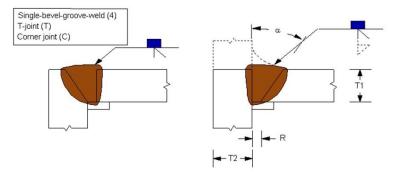
Date 2/10/12

	Mfg / Name:	Lincoln / Innershield NR-232	FM. Diameter(s):	.068", .072", 5/64"	Position(s):	All
-	AWS Class:	E71T-8-H16	Flux/Elect Class:	-	Stringer or Weave:	Either w/in TS limits
SSS	AWS Spec:	Δ5.20	Shielding:	NΛ	Single or Multi-Pass:	Either
LOC	Process:	FCAW-S	Composition:	NA	No. of Electrodes:	1
4	Equipment	Semi-Auto & Auto / CV	Flow Rate:	NA	Electrode Spacing:	N/A
	Polarity:	DCEN	Gas Cup Size:	NA	CTWD:	3/4" to 1 1/4"

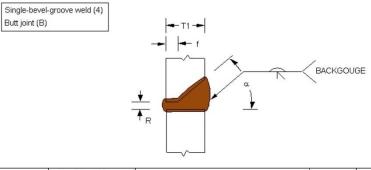

Thickness	Category B (Excludes materials in last column)	Category C (A572-60, 65, A913-65, API 5L X52)
1/8" to 3/4" incl.	32° F (note 1)	50° F (note 1)
Over 3/4" thru 1-1/2" incl.	50° F (note 1)	150° F
Over 1-1/2" thru 2-1/2" incl.	150° F	225° F
Over 2-1/2"	225° F	300° F
Maximum Interpass Temp. :	550° F	550° F


Minimum proheats. Note 1: When the base metal temperature is below 32° F, the base metal shall be preheated to a minimum of 70° F and the minimum interpass temperature shall be maintained during welding.

WELDING PROCEDURE


				WELDI	GINOLEDI	NL .		
Layer / Pass	Process	Material Thickness	WFS (ipm)	Amps (A)	Volts (V)	Travel Speed (ipm)	Heat Input (kJ/in)	Notes / Other
All	1 (.068")	$1/8" \le t \le U$	150	250	20	6.5	46.15	
ΔΠ	1 (.006.)	$1/6 \leq l \leq 0$	135 - 165	225 - 275	19 – 21	5.0-8.0	32.1-69.3	
All	1 (.072")	1/8" < t < U	155	240	20	6.5	44.31	
All	1 (.072.)	1/8 51<0	140 - 170	217.5 - 262.5	19 - 21	5.0-8.0	31.00-66.2	
4.11	1 (5)(42)	1/02 < < < 11	130	285	20	7.0	48.86	
All	1 (5/64")	$1/8$ " $\leq \iota < U$	117.5 - 142.5	257.5 - 312.5	19 - 21	5.5-8.5	34.54 - 71.59	

BASE	METALS	ATTACHED JOINT DETAILS AND TOLERANCES						
BASE MATERIAL I	BASE MATERIAL 2	FILLET & OTHER	PJP	CJP				
⊠ A 29 (Studs) ⊠ A 36 ∑ A 35 Gr. B ⊠ A 106 Gr. B ⊠ A 500 A, B, C ∑ A 520-50, 55 ⊠ A 572-42, 50, 55 ⊠ A 572-42, 50, 55 ⊠ A 572-60, 65 ⊠ A 913-50 ⊠ A 913-65 ⊠ A 913-65 ⊠ A 912 ⊠ API 5L CR. B ⊠ API 5L X42 ⊠ API 5L X52	⊠ A 29 (Studs) ⊠ A 36 ⊠ A 35 Gr. B ⊠ A 106 Gr. B ⊠ A 500 A, B, C ⊠ A 520-50, 55 ⊠ A 572-42, 50, 55 □ A 572-40, 65 ⊠ A 709-36, 50, 50S ⊠ A 913-50 ⊠ A 992 ⊠ API 5L Gr. B ⊠ API 5L X42 ⊠ API 5L X42	Fillet (incl. studs)	□ BC-P2-0F □ B-P3-0F □ BTC-P4-0F □ BTC-P5-0F □ B-P7-0F □ CC-P8-0F □ BC-P8-0F □ BC-P8-0F □ BTC-P9-0F □ BTC-P10-0F □ B-P11-0F	□ B-L1a-GF □ B-L1b-GF □ TC-L1-GF □ B-U2a-GF □ C-U2a-GF □ B-U2-GF □ B-U3-GF □ B-U3-GF □ B-U3-GF □ B-U4a-GF □ B-U4a-GF □ B-U4a-GF	⊠ TC-U4b-GF ⊠ B-U5-GF ⊟ B-U5-GF ⊟ C-U6-GF ⊠ B-U7-GF ⊟ B-U8-GF □ TC-U8a-GF □ TC-U9a-GF			
Pipe / Round Tube Diameter:		PJP: Any diameter; Fillet:	1 11	cations I.A.W 3.9.2, 3.	12.4, 3.13.3)			
Box Tube Section Dimensions:		or applications I.A.W 3.	9.2, 3.12.4, 5.13.3)					
Backing Material (if applicable): 🛛 Steel	Other						
Backgouge Method (if applicab	le): 🛛 Air Carbon Arc	Other						
Interpass Cleaning: Slag rer	noved by manual or pneumatic ha	nd tool Peening:	None required. Not per	mitted on root or cover p	ass.			



Welding Joint Process Designation	Base Metal Thickness (U = unlimited)		Groove Preparation						
			Root Opening Root Face	Tolerances		Permitted Welding	Weld Size		
	T1	T2	Groove Angle	As Detailed	As Fit Up	Positions	(E)	Notes	
				R = 0	+1/16, -0	+1/8, -1/16	F, H	S	
FCAW-S BTC-P4-GF	1/4 min U	$f = 1/8 \min \alpha = 45^{\circ}$	+U, -0 +10°, -0°	$\pm 1/16 + 10^{\circ}, -5^{\circ}$	V, OH	S – 1/8	b, f, g, j, k		

Welding Joint Process Designation		Base Metal Thickness (U = unlimited)		G	roove Preparation	Allowed	Gas		
	Joint	TI	T1 T2	Root Opening Groove Angle	Tolcrances		Welding	Shielding	
	Designation		12		As Detailed	As Fit-Up	Positions	for FCAW	Notes
FCAW-S	TC-U4a-GF	U		R = 1/4 $\alpha = 45^{\circ}$	+1/16, -0 +10°, -0°	+1/4, -1/16 +10°, -5°	All	Not req.	g, j, k
FCAW-5	TC-04a-6F	0	U	R = 3/8 $\alpha = 30^{\circ}$	+1/16, -0 +10°, -0°	+1/4, -1/16 +10°, -5°	F	Not req.	g, j, k

Welding Joint Process Designation	Base Metal Thickness (U = unlimited)		Groove Preparation						
				T2 Root Opening Root Face Groove Angle	Tolerances		Allowed	Gas	
			T2		As Detailed	As Fit-Up	Welding Positions	Shielding for FCAW	Notes
FCAW-S	B-U4b-GF	U	÷	$R = 0 \text{ to } 1/8 \\ f = 0 \text{ to } 1/8 \\ \alpha = 45^{\circ}$	+1/16, -0 +1/16, -0 +10°, -0°	+1/16, -1/8 Not limited +10°, -5°	All	Not req.	c, d, j

Prequalified Figure Notes:

- Not prequalified for gas metal are welding using short circuiting transfer nor GTAW. н:
- b:
- Joint is welded from one side only. Cyclic load application limits these joints to the horizontal welding position. Backgouge root to sound metal before welding second side. C:
- d:
- e:
- f.
- SMAW detailed joints may be used for prequalified GMAW (except GMAW-S) and FCAW. Minimum weld size (E) as shown in Table 3.4. S as specified on drawings. If fillet welds are used in statically loaded structures to reinforce groove welds in comer and T-joints, these shall be equal to 1/4 g: T1, but need not exceed 3/8 in. (10 mm). Groove welds in corner and T-joints of cyclically loaded structures shall be reinforced with fillet welds equal to 1/4 T₁, but need not exceed 3/8 in. (10 mm).
- h: Double-groove welds may have grooves of unequal depth, but the depth of the shallower groove shall be no less than one-fourth of the thickness of the thinner part joined.
- i: Double-groove welds may have grooves of unequal depth, provided these conform to the limitations of Note f. Also the weld size (E) applies individually to each groove.
- The orientation of the two members in the joints may vary from 135° to 180° for butt joints, or 45° to 135° for corner joints, or 45° to 90° for T-joints.
- k: For corner joints, the outside groove preparation may be in either or both members, provided the basic groove configuration is not changed and adequate edge distance is maintained to support the welding operations without excessive edge melting
- Weld size (E) is based on joints welded flush. 1.
- m: For flare-V-groove welds and flare-bevel-groove welds to rectangular tubular sections, r shall be as two times the wall thickness.
- n: For flare-V-groove welds to surfaces with different radii r, the smaller r shall be used.

Prequalified FCAW WPS Requirements in accordance with AWS D1.1:

- Maximum Root Pass Thickness: Flat 3/8", Horizontal 5/16", Vertical 1/2", Overhead 5/16".
- Maximum Fill Pass Thickness: 1/4"
- Maximum single-pass fillet weld: Flat 1/2", Horizontal -3/8", Vertical 1/2", Overhead 5/16".
- Split layers when: .
 - Root opening > 1/2", or
 - The layer width w > 5/8" in the F, H, or OH positions for nontubulars, or
 - The layer width w > 1" in the vertical position for nontubulars or the 5G or 6G for tubulars.
 - Vertical Progression shall be upward.

PWHT:

None required.

Notes:

Rev. I	Date	Summary
11 2/1	10/12	Revised Heat Input calculations to conform with current D1.8 CofC
10 5/31	1/2011	Base Metals (A529, A709) added.
9 9/20	0/2010	Revised Preheat table and Category C preheat added. D1.8 DC clarification. Base Metals added. Revision table added.
8 6/23	3/2010	Updated WPS format. Updated CTWD to new MfgDat. Add Base Metals. Add studs to Fillet. Add BC-P6 & B-U7. Add pipe/tube info.
7 1/6	6/2010	Revised Fillet detail. Removed MfgDat and CofC.
6 12/3	3/2009	Added BC-P6-GF
5 10/2	28/2009	Added Automatic Revised procedure table to match shop format. Changed Current/Volts/TS to bring heat input within ranges shown on D1.8 CuTCs (except 5/64" is based on new NR233 CofC).
4 8/1	2/2009	Format updates, P10 weld size & notes, U4b & U5 As Fit Tolerances,
3 10/3	2/2008	Selected A913 materials in BM1. Added B-U5-GF. Misc formatting.
2 9/18	8/2007	Revised preheat table. Updated B-U4a juint table.
1 9/18	8/2007	Preheat Table Format. Updated BTC-P10. Added Note m to Figure Notes. Added PWHT and Note 1 to notes page.
0 1/24	4/2007	Initial release
0 1/24	4/2007	Initial release

Corrections made solely for typographical and/or non essential variable errors will carry the same revision number with a new date and may not be listed here.

This procedure has been prepared in accordance with AWS D1.1, D1.8 (Demand Critical), manufacturer's recommendations, and project specifications.

Prepared by: Mike Echelberger CWI Certification # 04110721

he Linco 1801 St. Ieveland

CERTIFICATE OF CONFORMANCE (APPLIES ONLY TO U.S. PRODUCTS)

LINCOLN -ELECTRIC THE WELDING EXPERTS* [174ear]

Innershield^a NR^a.232 E717-8-H16 E7175-23-233-H16 AWS A5-36:2005, ASME SFA-5.20 AWS A5-36:2012, ASME SFA-5.36 April 29, 2015 Classification: Product:

Specification:

Date

This is to certify that the product named above and supplied on the referenced order number is of the same classification, manufacturing process, and material requirements as the material which was used for the test that was concluded on the date show. The results which mests required by the specifications shown for classification were performed at the material requirements. It was manufactured and supplied according to the Quality System Program of the Lincoin Electric Company, Cleveland, Ohio, U.S.A., which mest he requirements of ISO8001, NCA3800, AWS A5.01, and other specification and Millitay requirements, as applicable. The Quality System Program has been approved by ASME, ASS, and VaTUV.

Acimic, Abo, alla vullav.				1
Operating Settings	E71T-8-H16 Requirements	RESI	RESULTS	
Electrode Size Polarity Voltane, V Witre Feed Speed, cm/min (in/min) Current, A Average Heat Input, k//mm (k/lin) Contact Tip to Work Distance, mm (in) Peskelaret Temperature, °C (°F) Interpass Temperature, °C (°F) Postweld Heat Temberat	(60 min.) (275 - 325) As-welder	0.068 inch 21 21 483 (190) 315 15 (39) 15 (39) 15 (39) 25 (1) 18/7 18/7 18/7 As-weidach	5/64 inch DC- 20 457 (180) 340 1.9 (49) 25 (1) 25 (1) 25 (1) 26 (13) 26 (32) A5-wele(325) A5-wele(325)	
Mechanical properties of weld deposits				
Tensile Strength, MPa (ksi) Yield Strength, 0.2% Offset, MPa (ksi) Elongation %	(70 - 95) (58 min.) 22 min.	620 (89) 480 (70) 26	610 (89) 490 (71) 27	
Average Impact Energy Joules @ -29 °C (ft-lbs @ -20 °F)	(20 min.)	58 (43) 56,58,59 (41,43,44)	57 (42) 54,57,60 (40,42,44)	
Average Hardness, HRB	Not Required	91	91	
Chemical composition of weld deposits (weight %)				
0 5	0.30 max.	0.19	0.17	
S.	0.60 max.	0.27	0.27	
S	0.03 max.	0.003	0.003	
ď	0.03 max.	0.010	0.012	
c	0.20 max.	0.04	0.04	
N	0.50 max.	0.02	0.03	

0.03 0.01 0.00 0.05 0.7 0.02 0.02 0.03 0.03 0.50 max. 0.30 max. 0.08 max. 0.35 max. 1.8 max. ₹ ⁰ < ^N z

Page 1 of 4

Cert. No. 22320

The Lincoln Electric Compan 22801 St. Clair Avenue Cleveland, Ohio 44117-1199	The Lincoln Electric Company 22801 St. Clart Avenue Cleveland, Ohio 44117-1199	CERTIFICA (APPLIES	CERTIFICATE OF CONFORMANCE (applies only to U.S. products)		LINCOLN. ELECTRIC
Product: Classification:	innershield® NR®-232 E71T-8-H16				
Specification:	EVII 6-4253-110 AWS 45.20:2005, ASME SFA-5.20 AWE SFA-5.36				
iffusible Hydro;	Diffusible Hydrogen (per AWS A4.3)	E71T-8-H16 Requirements	RESULTS	ģ	
Electrode Size Polarity Diffi.isibile Hvdranen ml /100n	on 11000	16.0 max	0.068 inch DC- 10.7	5/64 Inch DC- 6.4	
solute Humidity	Absolute Humidity (grains moisture/lb dry air)		54	54	

Page 2 of 4

Cert. No. 22320

LINCOLN ELECTRIC HE WELDING EXPERTS* [1Year]

The Lincoln Electric Company 22801 St. Clair Avenue Cleveland, Ohio 44117-1199	CERTIFICA (APPLIES	CERTIFICATE OF CONFORMANCE (applies only to U.S. products)	
Product: Innershield [®] Nr [®] -232 Classification: E7113-4116 E7113-42-C53-H16 Specification: AWS A5.201206, ASME SFA-5.20 AWS A5.2012012, ASME SFA-5.30 Date Anol129, 2015			1/1E WC
ng Settings	E71T8-A2-CS3-H16 Reguirements	RESULTS	TS
Electrode Size Polarity. Voltage, V Wite Feed Speed, cm/min (in/min) Wire Feed Speed, cm/min (kJ/m) Average Heat Input, kJ/mm (kJ/m) Average Heat Input, kJ/mm (kJ/m) Presheat Temperature, °C (*F) Presheat Temperature, °C (*F) Posswald Heat Treatment, °C (*F)	(60 min.) (275 - 325) As-welded	0.068 inch DC- DC- 121 315 315 15 (39) 15 (39) 15 (1) 187 187 187 187 187 187 187 187 187 187	5/64 inch DC- 20 3 457 (180) 3 40 1.3 40 1.3 40 2.5 (1) 136 165 165 165 165 165 165 165 165 165 16
Mechanical properties of weld deposits			
Tensile Strength, MPa (ksi) Vield Strength, 0.2% Offset, MPa (ksi) Elongation %	(70 - 95) (58 min.) 22 min.	620 (89) 480 (70) 26	610 (89) 490 (71) 27
Average Impact Energy Joules @ -29 °C (ft-lbs @ -20 °F)	(20 min.)	58 (43) 56,58,59 (41,43,44)	57 (42) 54,57,60 (40,42,44)
Average Hardness, HRB	Not Required	91	91
Chemical composition of weld deposits (weight %)			
υĔ	0.30 max. 1.75 max.	0.19	0.17 0.65
0 v	0.030 max.	0.27	0.003
ن ۵	0.030 max. 0.20 max.	0.010	0.012
N	0.50 max.	0.02	0.03
	0.08 max.	0.00	0.00
n ≥ C	0.35 max. 1.8 max. Not Recruited	0.03 0.6 0.002	0.05 0.7 0.002
Diffusible Hydrogen (per AWS A4.3)	E71T8-A2-CS3-H16 Requirements	RESULTS	
Electrode Size Polarity Diffusible Hydrogen, mL/100g Absolute Humidity (grains motsturelib dry air)	16 шах.	0.088 inch DC- 54	5/64 inch DC- 54

Cert. No. 22320

Page 3 of 4

The Lincoln Electric Company 22801 St Clair Avenue Cleveland, Ohio 44117-1199

Innershield[®] NR[®]-232 E71T8-A2-CS3-H16 E71T-8-H16 Classification: Specification: Product:

AWS A5.20:2005, ASME SFA-5.20 AWS A5.36:2012, ASME SFA-5.36 April 29, 2015

Date

- This certificate complies with the requirements of EN 10204, Type 2.2
 The electrode sizes required to be tested for this classification are 0.068 inch and 5/64 inch. All other sizes manufactured will also meet these requirements of ASTM A38 steel.
 Test assembly constructed of ASTM A38 steel.
 Fillet Weld Test (positions as required): Met requirements.

- Radiographic Inspection. Met requirements.
 The strength and elongation properties reported here were obtained from tensile specimens artificially aged at 105°C (220°F) for 48 hours.
 Results below the detection limits of the instrument or lower than the precision required by the specification are reported as zero.
 Results halves in SI units are reported to the maarest 10 MPa converted from actual data. Preheat and interpass temperature values in SI units are reported to the mearest 50 MPa converted from actual data. Preheat and interpass temperature values in SI units are reported to the mearest 50 MPa converted from actual data.

CERTIFICATE OF CONFORMANCE (APPLIES ONLY TO U.S. PRODUCTS)

April 29, 2015 Date April 29, 2015 Date Toronto Commission Supervisor Dave Fink, Manager, Compliance Engineering, Consumable R&D

Cert. No. 22320

Page 4 of 4

22801 St. Clair Avenue Cleveland, Ohio 44117-1199	(APPL)	(APPLIES ONLY TO U.S. PRODUCTS)	THE WELDING EXPERTS	
Product: Innershield ^e NR ^{e.} 232 Electrode Lot Number: 13891669 Electrode Lot Number: 13891669 Specification: E717-8-H16 Specification: AWS D13:2009 Date August 28, 2014				
This is to certify that the above listed product was manufactured to meet the Class T4 requirement of AWS A5.01 as required by clause 6.3.8.1 of AWS D1.8.2009. The product stated herein was manufactured and supplied in accordance with the Quality System Program of The Lincoln Electic Co. (Tevedand, Ohio, U.S.A. as outlined in our Quality Assurance Manual. The Quality System Program of The Lincoln Electic Co. has been accepted by ASME, ABS and approved by VdTUV, and is certified to ISO 9001:2013 AMS D1.8. AMS D1.8. AMS D1.8. High Heat Input Low Heat Input Low Heat Input Low Heat Input	factured to meet the Class T4 requirement of A1 d in accordance with the Quality System Progra h, has been accepted by ASME, ABS and appro- h, has been accepted by ASME, ABS and appro- demonstration of the ANS D1.8	WS A5 01 as required by clause 6.3.8.1 of AWS an of The Lincoln Elertic Co, Cleveland, Ohio, red by VdTUV, and is certified to ISO 9001.20 High Heat Input	D1.8.2009. U.S.A. as outlined in our Quality Assurance Manual. 3 Low Heat Input Low Heat Input	
Derating Settings Electrode Size Polandy V Vure Feed Speed, cm/min (in/min) Current, A Current, A Contact Tp to Work Distance, mm (in) Travel Speed, cm/min (in/min) Pass/Layers Preheat Temperature, °C (°F) Interpass Temperature, °C (°F)	Requirements	Results 0.072 inch 0.072 inch 22 234 (155) 25 (1) 13 (5) 8.5 25 (1) 13 (5) 8.5 26 (1) 13 (5) 26 (1) 13 (5) 26 (1) 13 (5) 26 (1) 26 (1)	Results 0.072 inch 20 457 (180) 270 1.2 (31) 25 (1) 26 (1) 20 (72) 10 (250) 10 (250)	
Achanical properties of weld deposits				
Tensile Strength, MPa (ksi) Yield Strength, 0.2% Offset, MPa (ksi) Elongation %	(70 min.) (58 min.) 22 min.	590 (85) 410 (59) 28	630 (92) 500 (72) 25	
Average Impact Energy Joules @ 21 °C (ft-lbs @ 70 °F)	(40 min.)	112 (83) 106,113,118 (78,83,87)	97 (71) 91,99,101 (67,73,74)	
Average Impact Energy Joules @ -18 °C (ft-lbs @ 0 °F)	(40 min.)	70 (52) 68,71,72 (50,53,53)	62 (46) 60,62,65 (44,46,48)	
This product satisfies the requirements of AWS D1.8.2009, Annex E, after exposure for 1 week at 80°F / 80% relative humidity. The Charpy V-notch impact values reported at -18 °C (0 °F) are required when the Lowest Anticipated Service Temperature (LAST) is -29 °C (-20 °F). The Charpy V-notch impact values reported at 21 °C (70 °F) are required when the Lowest Anticipated Service Temperature (LAST) is 10 °C (50 °F).	(2009, Annex E, after exposure for 1 week a C (0 "F) are required when the Lowest Antic C (0 "F) are required when the Lowest Antic steel.	t 80°F / 80% relative humidity. pated Service Temperature ipated Service Temperature	Tornto Convertion	August 28, 2014 Date
The strength and elongation properties reported here were obtained from tensile specimens artificially aged at 105°C (220°F) for 48 hours. As hours. Strength values in SI units are reported to the nearest 10 MPa converted from actual data. Preheat and interpass temperature values in SI units are reported to the nearest.	e were obtained from tensile specimens artifi st 10 MPa converted from actual data. Preh. aes.	cially aged at 105°C (220°F) for eat and interpass temperature	Dave Fink, Manager, Compliance Engineering, Consumable R&D	Date

104

Page 1 of 1

Cert. No. 22320

FLUX-CORED SELF-SHIELDED (FCAW-S) WIRE

Mild Steel, All Position • AWS E71T-8

Key Features

- High deposition rates for out-of-position welding
- Penetrating arc
- Fast freezing, easy to remove slag system
- Meets AWS D1.8 seismic lot waiver requirements

Conformances AWS A5.20/A5.20M: 2005 E71T-8-H16 ASME SFA-A5.20: E71T-8-H16 ABS: **3YSA** Lloyd's Register: 3YS H15 **DNV Grade:** III YMS H15 GL: 3YH10S **BV Grade:** SA3YMH CWB/CSA W48-06: E491T-8 H16 DB: EN 758 T42 3 Y N 2 TUV: EN 758 T42 3 Y N 2 MIL-E-24403/1:* MIL-71T-8AS **FEMA 353** AWS D1.8 of ML-71T-8AS for 0.088 in (1.7 mm) and 0.072 in (1.8 mm) dameters only.

Typical Applications

- Structural fabrication, including those subject to seismic requirements
- General plate fabrication
- Hull plate and stiffener welding on ships and barges
- Machinery parts, tanks, hoppers, racks and scaffolding

Welding Positions

AII

96 | THE LINCOLN ELECTRIC COMPANY

FLUX-CORED SELF-SHIELDED (FCAW-S) WIRE

Innershield[®] NR[®]-232 (AWS E71T-8)

DIAMETERS / PACKAGING

Diameter	13.5 lb (6.1 kg) Coil	13.5 lb (6.1 kg) Coil	25 lb (11.3 kg)
in (mm)	54 lb (24.5 kg) Master Carton	54 lb (24.5 kg) Hermetically Sealed Pail	Stael Spool
0.068 (1.7)	ED012518	ED030232	ED030643
0.072 (1.8)	ED012522		ED030644
5/64 (2.0)	ED012525		ED030647
Diameter		.3 kg) Plastic Spool	50 lb (22.7 kg)
in (mm)		m Sealed Foll Bag)	Coll
0.068 (1.7) 0.072 (1.8) 5/64 (2.0)		ED030949	ED012519 ED012523 ED012526

MECHANICAL PROPERTIES⁽¹⁾ – As Required per AWS A5.20/A5.20M: 2005

	Yieid Strength ⁽²⁾ MPa (ksi)	Tensile Strength MPa (ksl)	Elongation %	Hardness Rockwell B	Charpy Y-Notch / J ft•lbf) @ -29°C (-20°F)
Requirements - AWS E71T-8	400 (58) min.	480-655 (70-95)	22 min.	-	27 (20) min.
Typical Results ⁽²⁾ - As-Welded	460-520 (66-75)	575-615 (83-89)	25-31	87-90	47-75 (35-55)

DEPOSIT COMPOSITION⁽¹⁾ – As Required per AWS A5.20/A5.20M: 2005

	%C	%Mn	%Si	%S	%P	%AI
Requirements - AWS E71T-8	0.30 max.	1.75 max.	0.60 max.	0.03 max.	0.03 max.	1.8 max.
Typical Results®	0.16-0.18	0.61-0.72	0.26-0.33	≤0.01	≤0.01	0.5-0.8

TYPICAL OPERATING PROCEDURES

Diameter, Polarity	CTWD® mm (in)	Wire Feed Speed m/min (in/min)		Approx. Current (amps)	Melt-Off Rate kg/hr (lb/hr)	Deposition Rate kg/hr (lb/hr)	Efficiency (%)
		2.8 (110)	18-19	195	2.3 (5.0)	1.8 (3.9)	78
		3.3 (130)	19-21	225	2.8 (6.2)	2.0 (4.6)	74
0.068 in (1.7 mm),	19-32	3.8 (150)	19-21	250	3.2 (7.1)	2.4 (5.3)	75
DC-	(3/4-1 1/4)	4.3 (170)	20-22	270	3.5 (7.8)	2.8 (6.1)	78
	1	5.0 (195)	23-24	300	4.3 (9.4)	3.2 (7.0)	74
		6.4 (250)	23-24	350	5.4 (11.8)	4.0 (9.0)	76
		7.4 (320)	25-27	400	6.9 (15.2)	5.2 (11.4)	75
		2.0 (80)	16-18	130	1.8 (4.0)	1.5 (3.3)	83
		3.5 (140)	18-21	225	3.1 (6.8)	2.5 (5.5)	81
0.072 in (1.8 mm),	19-32	3.9 (155)	19-22	240	3.3 (7.2)	2.7 (6.0)	83
DC-	(3/4-1 1/4)	4.3 (170)	20-23	255	3.6 (8.0)	2.9 (8.5)	81
	a come man	6.4 (250)	22-24	315	5.3 (11.7)	4.3 (9.6)	82
		7.4 (290)	23-25	350	6.2 (13.6)	5.0 (11.0)	81
		1.5 (60)	16-17	145	1.7 (3.7)	1.2 (2.7)	73
5/64 in (2.0 mm),	19-32	2.9 (115)	19-20	260	3.2 (7.0)	2.5 (5.5)	78
DC-	(3/4-1 1/4)	3.0 (120)	19-20	270	3.3 (7.3)	2.6 (5.7)	78
		3.3 (130)	20-21	285	3.5 (7.8)	2.8 (6.2)	79
		4.6 (180)	22-23	365	5.0 (10.9)	3.9 (8.7)	80

Wippkal all weld metal. #Mesaured with 0.2% offsat. #See text results disclaimer below.
NOTE: FEMA 353 and AWS D1.8 structural state selamic supplement text data can be found on this product at www.lincoineischite.com.

WELDING CONSUMABLES CATALOG | 97

Material Safety Data Sheets (MSDS) and Certificates of Conformance are available on our website at www.lincolnelectric.com

TEST RESULTS

Test results for mechanical properties, deposit or electrode composition and diffusible hydrogen levels were obtained from a weld produced and tested according to prescribed standards, and should not be assumed to be the expected results in a particular application or weldment. Actual results will vary depending on many factors, including, but not limited to, weld procedure, plate chemistry and temperature, weldment design and fabrication methods. Users are cautioned to confirm by qualification testing, or other appropriate means, the suitability of any welding consumable and procedure before use in the intended application.

CUSTOMER ASSISTANCE POLICY

The Lincoln Electric Company is manufacturing and selling high quality welding equipment, consumables, and cutting equipment. Our challenge is to meet the needs of our customers and to exceed their expectations. On occasion, purchasers may ask Lincoln Electric for information or advice about their use of our products. Our employees respond to inquiries to the best of their ability based on information provided to them by the customers and the knowledge they may have concerning the application. Our employees respond however, are not in a position to verify the information provided or to evaluate the engineering requirements for the particular weldment. Accordingly, Lincoln Electric does not warrant or guarantee or assume any liability with nespect to such information or advice. Moreover, the provision of such information or advice does not create, expand, or alter any warranty on our products. Any express or implied warranty that might arise from the information or advice, including any implied warranty of merchantability or any warranty of threes for any customers' particular purpose is specifically discialmed.

Lincoln Electric is a responsive manufacturer, but the selection and use of specific products sold by Lincoln Electric is solely within the control of, and remains the sole responsibility of the customer. Many variables beyond the control of Lincoln Electric affect the results obtained in applying these types of fabrication methods and service requirements.

Subject to Change - This Information is accurate to the best of our knowledge at the time of printing. Please refer to www.lincolnelectric.com for any updated information.

THE LINCOLN ELECTRIC COMPANY 22801 St. Clair Avenue • Cleveland, OH • 44117-1199 • U.S.A. Phone: +1.216.481.8100 • www.lincolnelectric.com LINCOLN

ELECTRIC

THE WELDING EXPERTS*

© Lincoln Global, Inc. All Rights Reserved. Issue Date 01/12

QUALIFIED FCAW-S WELDING PROCEDURE SPECIFICATION (WPS)

Lincoln Innershield NR-232, Skewed-T

Rev. 0 Date 9/20/13

Supporting PQR(s): 0190

	Mfg / Name:	Lincoln / Innershield NR-232	FM. Diameter:	.072"	Position(s):	V
-	AWS Class:	E71T-8-H16	Flux/Elect Class:	-	Stringer or Weave:	Either w/in TS limits
8	AWS Spec:	A5.20	Shielding:	NA	Single or Multi-Pass:	Either
1001	Process:	FCAW-S	Composition:	NA	No. of Electrodes:	1
P	Equipment	Semi-Auto & Auto / CV	Flow Rate:	NA	Electrode Spacing:	N/A
	Polarity:	DCEN	Gas Cup Size:	NA	CTWD:	3/4" to 1 1/4"

Thickness	Category B (Excludes materials in last column)	Category C (A572-60, 65, A913-65, AP15L X52)
1/8" to 3/4" incl.	32° F (note 1)	50° F (note 1)
Over 3/4" thru 1-1/2" incl.	50° F (note 1)	150° F
Over 1-1/2" thru 2-1/2" incl.	150° F	225° F
Over 2-1/2"	225° F	300° F
Maximum Interpass Temp. :	550° F	550° F

Note 1: When the base metal temperature is below 32°F, the base metal shall be preheated to a minimum of 70°F and the minimum interpass temperature shall be maintained during welding.

				WELD	ING PROCED	JRE		
Layer / Pass	Process	Material Thickness	WFS (ipm)	Amps (A)	Volts (V)	Travel Speed (ipm)	Heat Input (kJ/in)	Notes / Other
	1 (0700)	1.000	170	261	19	5	59.51	
A11	1 (.072")	$1/8^{\circ} \le t \le U$	152-188	235-287	18-20	3.75-6.25	40.61-91.84	
All	1 (.072")	1/8"≤t≤U	170	261	19	5	59.91	DL 0 DO Jackinston
Au	1 (.072.)	1/8 SI <u< td=""><td>152-188</td><td>235-287</td><td>18-20</td><td>4.5-6.25</td><td>40.61-76.53</td><td>DI.8 DC Applications</td></u<>	152-188	235-287	18-20	4.5-6.25	40.61-76.53	DI.8 DC Applications

BASE N	JETALS	ATTACHED JOINT DETAILS AND TOLERANCES
BASE MATERIAL 1	BASE MATERIAL 2	ATTACHED JOINT DETAILS AND TOLERAINES
A 29 (Studs) A 36 A 53 Gr. B A 50 Gr. B A 500 A, B, C A 530 Gr. B A 500 A, B, C A 529-50, 55 A 572-42, 50, 55 A 572-42, 50, 55 A 572-60, 65 A 709-36, 50, 508 A 913-50 A 913-50 A 913-65 A 992 API 5L Gr. B API 5L X42 API 5L X42	 A 29 (Studs) A 36 A 35 Gr. B A 106 Gr. B A 500 A, B, C A 529-50, 55 A 572-42, 50, 55 A 572-46, 65 A 709-36, 50, 505 A 913-50 A 913-65 A A92 API 51, Gr. B API 51, X42 API 51, X42 API 51, X42 API 51, X42 	⊠ 23° Skew
Pipe / Round Tube Diameter:	NA	
Box Tube Section Dimensions:	NA	
Backing Material (if applicable)	: 🗌 Steel	Other
Backgouge Method (if applicab	le): 🗌 Air Carbon Arc	Other
Interpass Cleaning: Slag ren	noved by manual or pneumatic ha	and tool Peening: None required. Not permitted on root or cover pass.

AASHTO/AWS D1.5/D1.5M:2010

ANNEX N

PROCEDURE QUALIFICATION RECORD WORKSHEET POR NUMBER 23 DEG SKEWED CJP

Velder's N	ame DA	NA KEITH		ID_10	081	Welding	a Test Date	16 AUG	2013		
rocess FC	CAW-S		Position	3G	1					2	المرار عوريون
		esignatio	n LINCOLN N	R-232				Fig. 5.3	Fig. 5.	8 500	ATTACH
WS Elect						Electric	al Stick Ou	ut_3/4*	- •	Contra and	
lux Mfg. L	Designati	on N/A				AWS F	lux Classif	ication _	J/A		
Postweld I-	leat Trea	tment:	Temp. <u>N/A</u>		Hold 1	Time N/A		He	eating/Coo	ling Rate	N/A
											Current
			_ Diam.		Current		WFS*	0 1	Voltage		and Polarity
Ele	ctrode	(1)	.072"		DCEN	. 1	N/A	0.1	AVG:19.23		AVG:261
		(2)									
	n NIA	(3)		- NUA	-			2 J		-	
Shielding (Travel Spe		5 IDM	Dew Poin	ax, 5 PM		Flow R	ate wa		_ Gas (Cup Size	N/A
			d Thickness			Loot N	umber 821	204420			
			and Thickness				umber 821		m.	and Marcala	
Preheat Te			and moun				ss Temp.		2 DEG F	Max 3	98 DEG F
							an randa		ACS ME		
			FILLER			CURR	ENT			TEMP	ERATURE
Pass				Type &	Wire Feed	Contra		Treaml	Stick	1 (010)1	
Number	Layer	Process	Diam.	Polarity	Speed	Amp	Volts	Travel Speed	Out	Preheat	Interpass
ROOT	1	FCAW-S	.072"	DCEN	1	266	19.37	6	3/4"	150	
INTER	2			n		262	18.9	4	u,		248
	3				1. 3	250	19.1	5	"		274
я	4			u	1	262	19.5	5	n		377
н	5			a		272	19.63	5			323
я	6				1	279	19,5	5	n		102
	7	u				258	19.18	5			256
COVER	8		•	7		268	19.6	5		1	354
COVER	9	u	4	.9		247	19.07	5		1	380
COVER	10					255	19.06	5	м		398
COVER	11			•		254	18.8	5	4		389
						AVG 261	AVG 19.23	AVG 5			
			-							-	
		-							-		
			-				-			-	
		ani 4-14			-		-				
					1		E			1	
								2.9.034800			
											-

Page _____ of ____

State/3rd Party Witness N/A

Mfr./Contractor SCHUFF STEEL

Date _

Form N-4

Form N-4-Procedure Qualification Record (PQR) Worksheet

Physical		ha	ROUND)	÷	-}-	 N.D.T. Inspection Spec 	;ialist
CUSTOMER SCHUP	F STEE	L						DATE:	8-21-13	
ADDRESS P.O. BO							CON	ITROL#	DTS-912	
	VIX, AZ.	85095					LOC	ATION:	DTI LAB	
P.O.# VERBA						SP	ECIFIC	ATION:	PER AWS D1.1-10	
PART NAME: PLATE						A	CCEP	ANCE:	PER AWS D1.1-10	
QUANTITY: 1 EA	20								FCAW	
BASE MATERIAL: A572-5									RT-4C REV.B	
FILLER: E-71T-									GROOVE	
WELDER: DANA	KEITH					P		URE #:		
POSITION: 3G							THIC	(NESS:	1° 23°	
BADGE: 1081					PE	RCEN	TTES	TED:	100%	
			ISUAL &					ON		
SERIAL NO.	REJ.		ROCEDU	JRE QU	ALIFIC	TION				
POSITION:			1	1				1		
3G		16		1						
		1		-	+					
								-		
······										
	1				-		lando asi	-		
					-					
								1		
		INT	ERPRET	ATION	LEGEN	D		, 	. SHRINKAGE	
1. SMALL		. LACK			N C	. CRA	CKS	F	. GAS HOLES	
2. MODERATE		LACK				E. INC	LUSIO	NS I.	LINEAR INDICATIONS	
3. EXCESSIVE	C.	UNDER	CUTTING		F. F	OROS	ITY		J	
ILM USAGE : 2 EA 4.5" X	17"									
						-	_			
QUANTITY ACCEPTED: -1-				QUANTI	IY REJ	ECTE	D: -0-			
NOTE: Not responsib	ole for an	y monles	over the	Invoice BRIAN F	am RUNYAn	ount o	f the jo	ь.		

4735 Myrtle Avenue • San Disgo, California 92105 • (619) 285-9006 • FAX (619) 285-9930

Metallurgical Mechanical Physical

CUSTOMER: SCHUFF STEEL ADDRESS:

P.O#: VERBAL QUANTITY: 1 EACH (4 BENDS) MATERIAL: A572-50 DATE: 9-10-13 CONTROL#: DTT-185 SPECIFICATION: PER AWS D1.1 FILLER: E-71T-8 PROCESS: FCAW WELDER: DANA KEITH WELDER I.D.: 1081 -

BEND TEST

1" SKEWED CONNECTION POR

POSITION	TYPE OF TEST	RESULTS
36	(4) SIDE BENDS	ACCEPTED

(3) MACRO TEST = ACCEPTED

NOT RESPONSIBLE FOR ANY MONIES OVER THE INVOICE AMOUNT OF THE JOB.

INSPECTOR:

RECEIVED BY:

SIGNATURE

PRINT

4735 Myrtle Avenue • Son Diego, Colifornio 92105 • (619) 285-9006 • FAX (619) 285-9930

Metallurgical Mechanical Physical

CUSTOMER: SCHUFF STEEL ADDRESS: DATE: 9-10-13 CONTROL#: DTT-185

SPECIFICATION: PER AWS D1.1

PART #: 1" SKEWED CONNECTION PQR FILLER: E-71T-8 PROCESS: FCAW POSITION: 3G WELDER NAME: DANA KEITH

P.O#.: VERBAL QUANTITY: 1 EACH (2 TENSILES) MATERIAL: A572-50

TENSILE TEST

			TENSILE S	TRENGTH	YIELD ST	RENGTH	ELONG	TION	REDU	CTION
.0.	ACTUAL	ACTUAL	ACTUAL LOAD POUNDS	POUNDS PER SQ. IN.	ACTUAL LOAD POUNDS	POUNDS PER SQ. IN.	AT FRAC	TURE %	OF	AREA
#1	.500 X 1.00	.500	41,480	82,960	7	1	1	1	T	1
#2	.500 X 1.00	.500	40,754	81.508	/	1		1		1
	•							-		
									-	
							1			
							1			
							<u> </u>			
1	and the second	1	1							1000

REMARKS : LOCATION OF BREAK = BASE MATERIAL

NOT RESPONSIBLE FOR ANY MONIES OVER THE INVOICE AMOUNT OF THE JOB.

INSPECTOR:

SIGNATURE

PRINT

4735 Myrlle Avenue * San Diego, California 92105 * (619) 285-9006 * FAX (619) 285-9930

	IPMENT NO.	08			DATE SHIPP 03-0	5-13	CAR OR VEHICLE NO. CSS-CHGO-	-UP	TTPX	0818	92 PI	AGE	7
	1011	WA	TEEL L L R RRENVILLE L 60532	The second second	TE 500		FWWR I	STEEL LI DELIVERY 1907 RNE TX	c				
I	SERIAL	PAT	HEAT	NO.	THICKNESS	S WIDTH OR	DIA. LENGT	nh We				ELONG	RED
100	NUMBER JALITY PLATES	NO. ST:	, CSA G40	.21-0	4 GR 50W	URED IN	N THE U.S. FINE		DUNDS	PSI	PSI	IN	% %
100	JALITY	NO. STI -	EEL MELT , CSA G40 GRAIN PRA ASTM A572 (H) L 25 CONTROLLE MFST MILL	ED & .21-0 C, AS -07 G FTLB D FIN SERI	MANUFACT 4 GR 50W TTM A709- R 50, CH AT -20F IISH AL# MFST	URED IN TT KLD F 09A GR I-V A673 PLT	N THE U. S. FINE 50, 3 FREQ F 0048157- 00) A.		PSI	PSI	IN	% %
F	JALITY PLATES MFST	NO. STT: -	EEL MELT , CSA G40 GRAIN PRA ASTM A572 (H) L 25 CONTROLLE MFST MILL	ED & .21-0 C, AS -07 G FTLB D FIN SERI N-GAU ADES	MANUFACT 44 GR 50W 5TM A709- R 50, CH AT -20F 11SH CAL# MFST GES SEP TOGETHER	URED IN TT KLD F 09A GR 1-V A673 PLT PPI (UNLDG (N THE U. S. FINE 50, 3 FREQ F) A.		PSI	PSI	IN	% %

1500-00867

VOUENCE TEMPERATURE	1-TEMPER TEMPERATURE	N-NORMALIZE TEMPERATURE
---------------------	----------------------	-------------------------

											ARPY IMP	ACT				
SERIAL	PAT NO.	HEAT NUMBER	BHN	BEND	THICKNESS INCHES	TYPE	SIZE	DIR TEST	ENERGY	T LBS		SHEAR(94)	LAT. EX	P M	ILS
			BHN		INCHES				-1-	2 3	1	2	3	1	2	3
		821Z044	20		1.000	- V	3/4	L ~20	206	173 18	0					

		2 2	S		2. 2.8	CI	IEMICAL .	ANALYSIS	5		19						MQUAID
HEAT NUMBER	C	Mn	P	s	Si	Cu	NI	Cr	Mo	v	Π	AI	в	Съ	N	Sn	GRAIN
821Z04420	.11	1.50	.011	.004	.344	.285	.18	.03	.004	.002	.002	.033	.0003	.037	.005	.005	

	actusi results contained in records maintained by ArcelorMittal Burns Harbor and are in full compliance with the d connot be eitered and must be transmitted intext with any subsquent third party test reports, if required.		
Tequeenena or the specification cited active. This tear repu	D. W. ELWOOD	DED	WNK
BHPLTRPT.TIF	SUPV. QUALITY ASSURANCE	PER	

The Lincoln Electric Company 22801 St. Clair Avenue Cleveland, Ohio 44117-1199

CERTIFICATE OF CONFORMANCE (APPLIES ONLY TO U.S. PRODUCTS)

 Product:
 Innershield®NR®-232

 Classification:
 E71T8-H16

 E71T8-A2-C\$3-H16
 E71T8-A5.20:2005, ASME SFA-5.20

 Specification:
 AWS A5.36:2012, ASME SFA-5.36

 Date
 May 09, 2013

This is to certify that the product named above and supplied on the referenced order number is of the same classification, manufacturing process, and material requirements as the material which was used for the test that was concluded on the date shown, the results of which are shown below. All tests required by the specifications shown for classification were performed at that time and the material tested met all requirements. It was manufactured and supplied according to the Quality System Program of the Lincohn Electric Company, Cleveland, Ohio, U.S.A., which meets the requirements of ISO9001, NCA3800, AWS A5.01, and other specification and Military requirements, as applicable. The Quality System Program has been approved by ASME, ABS, and VdTUV.

Operating Settings	E71T-8-H16 Regulrements	RES	ULTS
Electrode Size Polarity Voltage, V Wire Feed Speed, cm/min (in/min) Current, A Average Heat Input, kJ/mm (kJ/ln) Contact Tip to Work Distance, mm (in) Pass/Layers Preheat Temperature, *C (*F) Interpass Temperature, *C (*F) Postweld Heat Treatment	(60 min.) (275 - 325) As-welded	0.068 inch DC- 21 483 (190) 270 1.5 (37) 25 (1) 18/7 20 (72) 165 (325) As-welded	5/64 inch DC- 20 340 1.8 (46) 25 (1) 13/6 25 (73) 165 (325) As-welded
echanical properties of weld deposits			
Tensile Strenath. MPa (ksi) Yield Strenath. 0.2% Offset. MPa (ksi) Elongation %	(70 - 95) (58 min.) 22 min.	560 (82) 460 (67) 32	590 (85) 480 (69) 28
Average Impact Energy Joules @ -29 °C (ft-lbs @ -20 °F)	(20 min.)	82 (60) 80.81.84 (59.60.62)	72 (53) 72.72.72 (53.53.53)
Average Hardness, HRB	Not Required	88	89
hemical composition of weld deposits (weight %)			
C Mn Si S P Cr Ni Mo V Cu Al	0.30 max, 1.75 max, 0.60 max, 0.03 max, 0.20 max, 0.50 max, 0.50 max, 0.08 max, 0.35 max, 1.8 max,	0.15 0.66 0.25 0.004 0.006 0.02 0.02 0.02 0.01 0.00 0.02 0.02 0.01 0.00 0.02	0.16 0.68 0.27 0.004 0.010 0.03 0.02 0.01 0.00 0.00 0.02 0.8
Diffusible Hydrogen (per AWS A4.3)	E71T-8-H16 Requirements	RESUL	TS
Electrode Size Polarity Diffusible Hydrogen, mL/100g Absolute Humidity (grains moisture/lb dry air)	16.0 max.	0.068 inch DC- 8.8 42	5/64 inch DC- 7.4 35

Page 1 of 2

Cert. No. 22320

The Lincoln Electric Company 22801 St. Clair Avenue Cleveland, Ohio 44117-1199

CERTIFICATE OF CONFORMANCE (APPLIES ONLY TO U.S. PRODUCTS)

Innershield®NR®-232
E71T-8-H16
E71T8-A2-CS3-H16
AWS A5.20:2005, ASME SFA-5.20
AWS A5.36:2012, ASME SFA-5.36
May 09, 2013

perating Settings	E71T8-A2-CS3-H16 Requirements	RES	ESULTS		
Electrode Size Polarity Voltage, V Wire Feed Speed, cm/min (in/min) Current, A Average Heat Input, kJ/mm (kJ/in) Contact Tip to Work Distance, mm (in) Pass/Lavers Preheat Temperature, °C (°F) Interpass Temperature, °C (°F) Postweld Heat Treatment techanleal properties of weld deposits	(60 min.) (275 - 325) As-welded	0.068 inch DC- 21 483 (190) 270 1.5 (37) 25 (1) 18/7 20 (72) 165 (325) As-welded	5/64 inch DC- 20 457 (180) 340 1.8 (46) 25 (1) 13/6 25 (73) 165 (325) As-welded		
Tensile Strenath. MPa (ksi) Yield Strenath. 0.2% Offset. MPa (ksi) Elonaation %	(70 - 95) (58 min.) 22 min.	560 (82) 460 (67) 32	590 (85) 480 (69) 28		
Average Impact Energy Joules @ -29 °C (ft-lbs @ -20 °F)	(20 min.)	82 (60) 80.81.84 (59.60.62)	72 (53) 72.72.72 (53.53.53)		
Average Hardness, HRB	Not Required	88	89		
Chemical composition of weld deposits (weight %)					
C Mn Si S S P Cr Ni Mo V Cu A B	0.30 max. 1.75 max. 0.60 max. 0.030 max. 0.20 max. 0.50 max. 0.30 max. 0.30 max. 0.38 max. 1.8 max. Not Recuired	0.15 0.66 0.25 0.004 0.026 0.02 0.02 0.02 0.01 0.00 0.02 0.01	0.16 0.68 0.27 0.004 0.010 0.03 0.02 0.01 0.00 0.02 0.8 0.00		
Diffusible Hydrogen (per AWS A4.3)	E71T8-A2-CS3-H16 Requirements	RESUL	TS		
Electrode Size Polarity Diffusible Hydrogen, mL/100g Absolute Hurnidity (grains moisture/lb dry air)	16 max.	0.068 inch DC- 9 42	5/64 inch DC- 7 35		

1. This certificate complies with the requirements of EN 10204, Type 2.2.

2. The electrode sizes required to be tested for this classification are 0.068 inch and 5/64 inch. All other sizes manufactured will also meet these

requirements. 3. Test assembly constructed of ASTM A36 steel. 4. Fillet Weld Test (positions as required): Met requirements.

5. Radiographic Inspection: Met requirements.

 6. The strength and elongation properties reported here were obtained from tensile specimens artificially aged at 105°C (220°F) for 48 hours.
 7. Results below the detection limits of the instrument or lower than the precision required by the specification are reported as zero. Strength values in SI units are reported to the nearest 10 MPa converted from actual data. Preheat and interpass temperature values in SI units are reported to the nearest 5 degrees.

Toronto Cienningham May 09, 2013 Toronto Cunningham, Certification Supervisor Date

Dave Fink, Manager, Compliance Engineering, Consumable R&D

May 09, 2013 Date

Page 2 of 2

Cert. No. 22320

FLUX-CORED SELF-SHIELDED (FCAW-S) WIRE

Innershield NR°-232 Mild Steel, All Position • AWS E71T-8

Key Features

- High deposition rates for out-of-position welding
- Penetrating arc
- Fast freezing, easy to remove slag system
- Meets AWS D1.8 seismic lot waiver requirements

Conformances

AWS A5.20/A5.20M: 2005	E71T-8-H16
ASME SFA-A5.20:	E71T-8-H16
ABS:	3YSA
Lloyd's Register:	3YS H15
DNV Grade:	III YMS H15
GL:	3YH10S
BV Grade:	SA3YMH
CWB/CSA W48-06:	E491T-8 H16
DB:	EN 758 T42 3 Y N 2
TUV:	EN 758 T42 3 Y N 2
MIL-E-24403/1:*	MIL-71T-8AS
FEMA 353	
AWS D1.8 "Mittary Stade Classification of ML, -/IT-BAS for 0.008 in (1.	r nm) and 0.0/2 in (1.8 mm) diameters only.

Typical Applications

- Structural fabrication, including those subject to seismic requirements
- General plate fabrication
- Hull plate and stiffener welding on ships and barges
- Machinery parts, tanks, hoppers, racks and scaffolding

Welding Positions

All

96 | THE LINCOLN ELECTRIC COMPANY

FLUX-CORED SELF-SHIELDED (FCAW-S) WIRE

Innershield[®] NR[®]-232 (AWS E71T-8)

DIAMETERS / PACKAGING

Diameter	13.5 lb (6.1 kg) Coil	13.5 lb (6.1 kg) Coil	25 lb (11.3 kg)
in (mm)	54 lb (24.5 kg) Master Carton	54 lb (24.5 kg) Hermetically Sealed Pail	Steel Spool
0.068 (1.7)	ED012518	ED030232	ED030643
0.072 (1.8)	ED012522		ED030644
5/64 (2.0)	ED012525		ED030647
Diameter in (mm)		25 lb (11.3 kg) Plastic Spool (Yacuum Scaled Foll Bag)	
0.068 (1.7) 0.072 (1.8) 5/64 (2.0)		ED030949	ED012519 ED012523 ED012526

MECHANICAL PROPERTIES⁽¹⁾ – As Required per AWS A5.20/A5.20M: 2005

	Yield Strength ^{®)} MPa (ksl)	Tensile Strength MPa (ksi)	Elongation %	Hardness Rockwell B	Charpy V-Notch / J ft•lbf) @ -29°C (-20°F)
Requirements - AWS E71T-8	400 (58) min.	480-655 (70-95)	22 min.	-	27 (20) min.
Typical Results ⁽³⁾ - As-Welded	460-520 (66-75)	575-615 (83-89)	25-31	87-90	47-75 (35-55)

DEPOSIT COMPOSITION⁽¹⁾ – As Required per AWS A5.20/A5.20M: 2005

	%C	%Mn	%Si	%S	%P	%AI
Requirements - AWS E71T-8	0.30 max.	1.75 max.	0.60 max.	0.03 max.	0.03 max.	1.8 max.
Typical Results ⁽³⁾	0.16-0.18	0.61-0.72	0.26-0.33	≤0.01	≤0.01	0.5-0.8

TYPICAL OPERATING PROCEDURES

Diameter, Polarity	CTWD ^m mm (in)	Wire Feed Speed m/min (in/min)	Voltage ⁽⁷⁾ (volts)	Approx. Current (amps)	Meit-Off Rate kg/hr (lb/hr)	Deposition Rate kg/hr (lb/hr)	Efficiency (%)
		2.8 (110)	18-19	195	2.3 (5.0)	1.8 (3.9)	78
		3.3 (130)	19-21	225	2.8 (6.2)	2.0 (4.6)	74
0.068 in (1.7 mm),	19-32	3.8 (150)	19-21	250	3.2 (7.1)	2.4 (5.3)	75
DC-	(3/4-1 1/4)	4.3 (170)	20-22	270	3.5 (7.8)	2.8 (6.1)	78
	10 - C - C - C - C - C - C - C - C - C -	5.0 (195)	23-24	300	4.3 (9.4)	3.2 (7.0)	74
		6.4 (250)	23-24	350	5.4 (11.8)	4.0 (9.0)	76
		7.4 (320)	25-27	400	6.9 (15.2)	5.2 (11.4)	75
		2.0 (80)	16-18	130	1.8 (4.0)	1.5 (3.3)	83
		3.5 (140)	18-21	225	3.1 (6.8)	2.5 (5.5)	81
0.072 in (1.8 mm), 19-32 DC- (3/4-1 1/4)	19-32	3.9 (155)	19-22	240	3.3 (7.2)	2.7 (6.0)	83
	4.3 (170)	20-23	255	3.6 (8.0)	2.9 (6.5)	81	
		6.4 (250)	22-24	315	5.3 (11.7)	4.3 (9.6)	82
		7.4 (290)	23-25	350	6.2 (13.6)	5.0 (11.0)	81
		1.5 (60)	16-17	145	1.7 (3.7)	1.2 (2.7)	73
5/64 in (2.0 mm),	19-32	2.9 (115)	19-20	260	3.2 (7.0)	2.5 (5.5)	78
DC-	(3/4-1 1/4)	3.0 (120)	19-20	270	3.3 (7.3)	2.6 (5.7)	78
	Contract Contract	3.3 (130)	20-21	285	3.5 (7.8)	2.8 (6.2)	79
		4.6 (180)	22-23	365	5.0 (10.9)	3.9 (8.7)	80

WTpp cal all weld metal. MAssaured with 0.2% officel. #See best results disclaimer below. NOTE: FEMA 353 and AWS 01.8 structural steel selamic supplement teat deat, can be found on this preduct at www.Incoincisotrie.com.

WELDING CONSUMABLES CATALOG | 97

Material Safety Data Sheets (MSDS) and Certificates of Conformance are available on our website at www.lincolnelectric.com

TEST RESULTS

Test results for mechanical properties, deposit or electrode composition and diffusible hydrogen levels were obtained from a weld produced and tested according to prescribed standards, and should not be assumed to be the expected results in a particular application or weldment. Actual results will vary depending on many factors, including, but not limited to, weld procedure, plate chemistry and temperature, weldment design and fabrication methods. Users are cautioned to confirm by qualification testing, or other appropriate means, the suitability of any welding consumable and procedure before use in the Intended application.

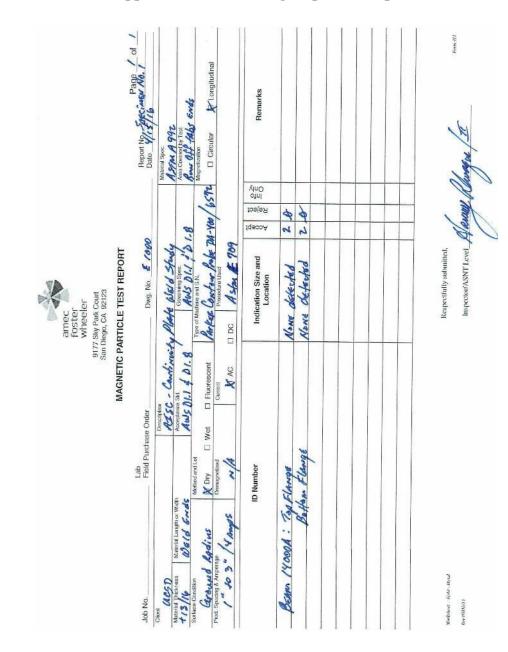
CUSTOMER ASSISTANCE POLICY

The Lincoln Electric Company is manufacturing and selling high quality welding equipment, consumables, and cutting equipment. Our challenge is to meet the needs of our customers and to exceed their expectations. On occasion, purchasers may ask Lincoln Electric for information or advice about their use of our products. Cur employees respond to inquiries to the best of their ability based on information provided to them by the customers and the knowledge they may have concerning the application. Our employees, however, are not in a position to verify the information provided to them by the customers and the knowledge they may have concerning the application. Our employees, warrant or guarantee or assume any liability with respect to such information or advice. Moreover, the provision of such information or advice does not any warranty on our products. Any express or implied warranty that might arise from the information or advice, including any implied warranty that warranty and the information or advice, including any implied warranty that warranty and the information or advice application. Our employees, or any curstomers' particular purpose is specifically discipled.

Lincoln Electric is a responsive manufacturer, but the selection and use of specific products sold by Lincoln Electric is solely within the control of, and remains the sole responsibility of the customer. Many variables beyond the control of Lincoln Electric affect the results obtained in applying these types of fabrication methods and service requirements.

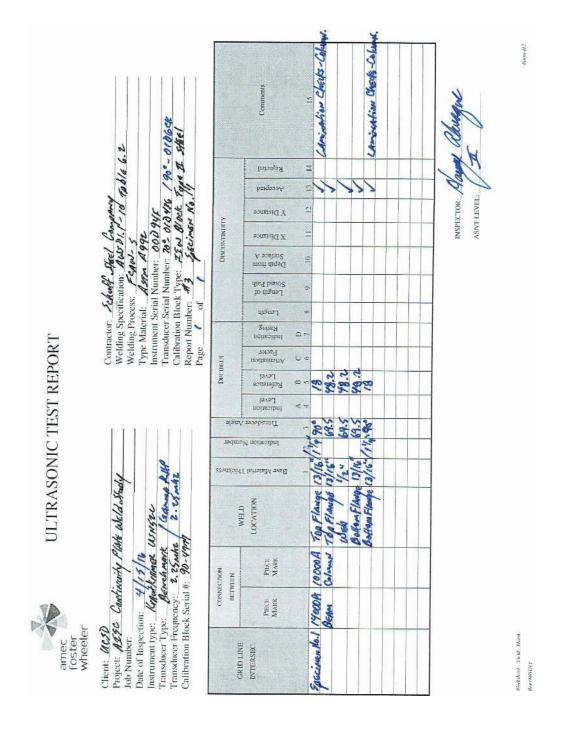
Subject to Change - This Information is accurate to the best of our knowledge at the time of printing. Please refer to www.lincolneiectric.com for any updated information.

THE LINCOLN ELECTRIC COMPANY 22801 St. Clair Avenue • Cleveland, OH • 44117-1199 • U.S.A. Phone: +1.216.481.8100 • www.lincolnelectric.com

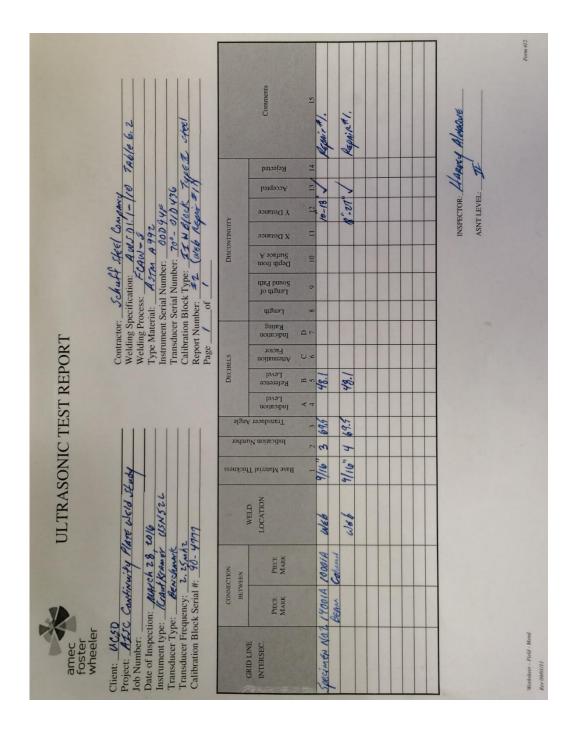

© Lincoln Global, Inc. All Rights Reserved. Issue Date 01/12

			THE WELDING EXPERTS
	to meet the Class T4 requirement of / xdance with the Quality System Prog m accepted by ASME, ABS and appr	This is to certify that the above listed product was manufactured to meet the Class T4 requirement of AWS A5.01 as required by clause 6.3.8.1 of AWS D1.8.2009. The product stated herein was manufactured and supplied in accordance with the Quality System Program of The Lincoln Electric Co., Cleveland, Ohio, U.S.A. as The Quality System Program of The Lincoln Electric Co. has been accepted by ASME, ABS and approved by VdTUV, and is certified to ISO 9001:2012.	This is to certify that the above listed product was manufactured to meet the Class T4 requirement of AWS A5.01 as required by clause 6.3.8.1 of AWS D1.8:2009. The product stated herein was manufactured and supplied in accordance with the Quality System Program of The Lincoln Electric C0., Cleveland, Ohio, U.S.A. as outlined in our Quality Assurance Manuel. The Quality System Program of The Lincoln Electric Co. has been accepted by ASME, ABS and approved by VdTUV, and is certified to ISO 9001.2012
	AWS D1.8 Requirements	High Heat Input Results	Low Heat Input Results
L		0.072 inch	0.072 inch
		21	200
		394 (155) 260	457 (180) 280
		3.1 (78)	1.1 (28)
		25 (1) 10 (4)	25 (1) 28 (11)
		8/5	19/7
		205 (400)	120 (250) 16
		2	2
	(70 min.)	600 (87)	640 (93)
	(58 min.) 22 min.	430 (63) 28	510 (74) 26
	(40 min.)	114 (84) 111,114,117 (82,84,86)	104 (77) 100,106,107 (74,78,79)
	(40 min.)	67 (50)	61 (45)
		66,66,69 (49,49,51)	60,61,62 (44,45,46)
Anney) are (This product satisfies the requirements of AWS D1.8:2009, Annex D, after exposure for 1 week at 80°F / 80% relative humid 2. The Charpy V-notch impact values reported at -18 °C (0 °F) are required when the Lowest Anticipated Service Temperature 2. Access - a non-conservence. 	 This product satisfies the requirements of AWS D1.8:2009, Annex D, after exposure for 1 week at 80°F / 80% relative humidity. The Charpy V-notch impact values reported at -16 °C (0 °F) are required when the Lowest Anticipated Service Temperature 	Toronto Commission
-) ar	(LAS I) is -29 *C (+20 * F). 3. The Cherry V-notch impact values reported at 21 *C (70 *F) are required when the Lowest Anticipated Service Temperature ((AST) is 10 *C (50 *F).	cipated Service Temperature	Toronto Cunningham, Certification Supervisor
4	4. Test assembly contract in 4. Test assembly constructed of ASTM A572 Grade 50 steel. 5. The eteoroth: and eteoroticity monorities reprodud have used physical from taxella scientingian and at 105°C (200°E) for	linially aread at 105°C (230°E) for	David Ruis
		d. The second in a more avoid of the second review of the second se	Dave Fink, Manager, Compliance

119


Page 1 of 1

Appendix D We


Welding Inspection Reports

120

Table 4.3 70-012436 Type II steel		Connerts	Betton Edge to Tap Edges	Vertical Melo. Viers a defects.		LANINGHISN Check-OK.	of lar explusions.	NSPECTOR. HALLNY Alburgut
Tedds.	1	рэгээјай	E	>>	2		the unit	aunys
		Potdoooy	11 3	1.00	1-3	10	should be	R: A
1-40 1-40	2	X Distance	12 0-1%	+ 1/8 1216-18	-3/16 28/14	- b) 1E-0	Sho	INSPECTOR:ASNT LEVEL:
8 Company 15 DI. 1 - 40 15 DI. 1 - 40 194 F 100 D 94 F 2 2 D 0166 K	DISCONTINUTY	S Distance	= \$	¢ - 4			sol le	INSA
1 5 48 6	Disco	Depth from A souther A	10 m		35"		of 1	
ALNIN A		To drgno.1 dnrf bnoo2	8 0 8 11/2 2.14	1000 C	P1. 2 . 19		and Z	
Serial Serial Bloc Bloc		frength	8 14.1	1 1/2	27/8			
ORT Contractor: <u>66</u> Contractor: <u>66</u> Welding Specifical Welding Specifical Process: Type Material: Instrument Serial Dick Calibration Block Report Number: Page of		oodesibal gainsi	0100	4 4	900		Notes	
DRJ Contri Contri Veldi Weldi Weldi Urype Instru Irans Caliby Page	STR	Attenuation	000	~ ~	* *		Annechiers -	
EPO	DECIBILS	Reference	8 5 40 /		48.1	18	hise	
R	2	Indication Lovel	× + + 185		4.1	36	NNE	
ES1	oign	A TroobenunT	3 101		V 52.1	900 3	9	
E	rador	uN notacibul	~ ~	- 2 =			iula.	
2 CONIC	esampa	ff lairstefd szaß	al."	1/10	9/16	9/16	Nurte	
ULTRASONIC TEST REPORT Contraction of the Abild Steeler Contraction of t		WELD	2.9.4	(n)EQ	(Jab	web	the Londed	
1 21 9 14	CONNECTION	Pauch MARK		(columned			a velically	- And
	CONN	PROT		Bergen			2 7	2.4
arnec foster wheeler Client: <u>U.C.D</u> Project: <u>MJC</u> Confire Job Number: Job Number: Job Number: Job Number: Transducer Type: <u>Canadi</u> Transducer Frequency: Calibration Block Serial #:		GRID LINE INTERSEC		Specieven No.2 14001A			1 7.11.	* 14010

	Table 6.3 6 70°-013436 7496 IL 4461		Connerth	15	Lanination Check-ok.	Laperinstriant Okeck-ok.	Lowinship Checks - 20.	y Alicence
	10 Tabl		Patrofox	14				Herry
	Sector 13		Patdassy	0	>>	22		R. R.
	1-10 394 1 3 394 1 3 01 26 02	2	Y Distance	12	21-0	0-10		INSPECTOR-
	1 600 1 - 5 1 - 5	DISCOSTINUTY	X Distance	11				SNI
	41 440 FCAW 45741 1 45741 1 More 9 C	Disco	Depth from A souture	01				
	Contractor: <u>Schuff Teel Compare</u> Welding Specification: <u>Au591.1-1</u> Welding Process: <u>FCAU - S</u> Welding Process: <u>FCAU - S</u> Type Material: <u>ASTAT 9994.1</u> Instrument Serial Number: <u>90-01266</u> Transducer Serial Number: <u>90-01266</u> Transducer Serial Number: <u>90-01266</u> Page 1 Block Type: <u>TTU</u> Block Report Number: <u>51</u> U		In the pure	0				
	Serial Block of of of	100	(culture	30				
-	Contractor: 54 Welding Specific Welding Process Type Material: Instrument Serial Transducer Seria Transducer Seria Calibration Bloc Calibration Bloc Page0f		Indication Raing	91				
DRJ	Contractor: 5.2 Welding Specifica Welding Process: Type Material: Instrument Serial Transducer Serial Calibration Block Calibration Block Page 7 of	813	noitumanA. sotse ³	0.0				
EP(DECIRILS	Reference	m s	48.1	48.1	(8	
TR			Indication	< 7				
IES	TTTTTT	រដ្ឋជា	A resubanat T	m	5.69	69.1	30	
C		mber	uN notesibul	~				
NO	dy and	security	IT laitotal A ota B	-	1/51	15/16	~8/2 /	
ULTRASONIC TEST REPORT	Plate whele she la sta tolo and sta and dish sel		NELD		Top bear	Batton better	Cotained Column	
	to 21 Krown	CINON	PIECE MARK		(0001 A Column	10001A Celemat	Columet	
A	Combine Combine ion: March Combine Com	CONSIGN TO NOTINE	PIECE MARK		14001A Beiden	140014	0100 01	
amec foster wheeler	Client: UCSD Project: MESC Confirminy Job Number: Date of Inspection: March 2 Instrument type: Confirming Transducer Type: Confirming Transducer Frequency: 2.25, Calibration Block Serial #: 2		GRID LINE INTERSEC.		Specimen No. 2			

