

FILLET AND PJP WELDS

FINAL REPORT

Submitted to

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

September 17, 2021

by

Bo Dowswell, P.E., Ph.D. ARC International, LLC Birmingham, AL bo@arcstructural.com

Clayton Cox Auburn University Auburn Alabama rcc0044@auburn.edu

Mohamed S. Gallow, Ph.D., P.E. ICC Evaluation Service, LLC Birmingham, AL mgallow@icc-es.org

Fouad H. Fouad, Ph.D., P.E. Civil and Environmental Engineering Department The University of Alabama at Birmingham Birmingham, AL ffouad@uab.edu

TABLE OF CONTENTS

Chapter	Page
Chapter1: Introduction	1
Chapter 2: Literature Review	3
Chapter 3: Experimental Program	40
Chapter 4: Analysis and Discussion	54
Chapter 5: Summary and Conclusions	83
Symbols	85
References	87
Appendix A: Specimen Shop Drawings	A1
Appendix B: Plate Mill Test Reports	B1
Appendix C: Welding Procedure Specifications	C1
Appendix D: Weld Wire Mill Test Reports	D1
Appendix E: All-Weld-Metal Tension Test Report	E1
Appendix F: Specimen Photographs	F1
Appendix G: Specimen Data	G1
Appendix H: Mathematical Models	H1

CHAPTER 1 INTRODUCTION

This report addresses several design issues related to the strength of fillet welds and partial-joint penetration (PJP) welds.

PROBLEM STATEMENT

Both the AISC *Specification* (AISC, 2016) and AWS D1.1 *Structural Welding Code* (AWS, 2015) permit a 50% directional strength increase for fillet welds loaded perpendicular to the weld axis. This strength increase was established experimentally; however, theoretical analyses using various methods result in smaller transverse-to-longitudinal weld strength ratios.

Of the available experimental data on fillet weld strength, the overwhelming majority is based on short welds. For end-loaded fillet welds with a length greater than 100 times the weld size, AISC *Specification* Section J2.2b(d) considers the detrimental effect by requiring the calculations to use a reduced weld length. This solution addresses the effect of non-uniform relative axial deformation of the connecting elements; however, any potential length effects for shorter welds are not addressed in the *Specification*.

For PJP welds subjected to tension normal to the weld axis, AISC *Specification* Section J2.4(a) specifies a nominal stress equal to 60% of the weld metal strength. Theoretically, the rupture stress at the effective throat is equal to 100% of the weld metal strength. The basis of the 0.6 factor is ambiguous and recent experimental tests have shown that it may be too conservative. According to the Commentary to *Specification* Section J2.4, "The factor of 0.6 on F_{EXX} for the tensile strength of PJP groove welds has been used since the early 1960s to compensate for factors such as the notch effect of the unfused area of the joint and uncertain quality in the root of the weld due to the difficulty in performing nondestructive evaluation. It does not imply that the tensile failure mode is by shear stress on the effective throat, as in fillet welds."

For a large test program on fillet welded specimens by Preece (1968) and Higgins and Preece (1969), all specimens ruptured in the weld metal "even when the mechanical properties of the weld metal exceeded those of the base metal by a substantial amount." Based on this, the strength of fillet welds is calculated using a critical section in the weld metal coinciding with the theoretical effective throat. Calculations for the fusion zone strengths along the weld legs are not required in either the AISC *Specification* or AWS D1.1. Although basic theoretical calculations indicate that the strength of fillet welds with matching filler metals are not controlled by fusion zone rupture, the fusion zone could potentially control the strength of PJP welds. Factors that can potentially result in higher strength in the heat affected zone (HAZ) are constraint from the adjacent base metal and increased material strength caused by the rapid cooling after welding.

AISC *Steel Construction Manual* (AISC, 2017) Tables 8-4 through 8-11 are used to calculate the strength of eccentrically-loaded weld groups. The tables were developed using the instantaneous center of rotation (ICR) method with 70 ksi weld metal strength. For other weld metal strengths,

Table 8-3 provides electrode strength coefficients, C_1 , that are used with Tables 8-4 through 8-11. The values for C_1 are dependent on the filler metal strength; however, they are not proportional to the weld metal tensile strength ratio when $F_{EXX} \ge 80$ ksi. This results in a significant strength reduction for higher-strength welds, which is not required in either the AISC *Specification* or AWS D1.1.

OBJECTIVES

The objectives of this research are:

- 1. Develop a rational explanation of the directional strength increase for fillet welds.
- 2. Determine if length has a significant effect on the strength of fillet welds.
- 3. Investigate the effect of loading angle on the strength of PJP welds.
- 4. Investigate the fusion zone strength of PJP welds.
- 5. Investigate the background of electrode strength coefficient, C_1 , in *Manual* Table 8-3. Determine the accuracy of C_1 and propose new design values if necessary.

SCOPE

To meet the objectives of this research project, the available literature was reviewed, failure theories were used to derive theoretical equations, and experimental specimens with both fillet and PJP welds were tested.

CHAPTER 2 LITERATURE REVIEW

CODES AND SPECIFICATIONS

AISC Specification (AISC, 2016)

The strength of welded joints is defined by Equation J2-3 in AISC *Specification* Section J2.4(a). For each condition, the weld metal nominal stresses, F_{nw} , are listed in Table J2.5 along with the corresponding values for ϕ (LRFD) and Ω (ASD).

$$R_n = F_{nw}A_{we} \qquad (Spec. Eq. J2-3)$$

For PJP welds, $F_{nw} = 0.60F_{EXX}$, with $\phi = 0.75$ and $\Omega = 2.00$ for shear loading and $\phi = 0.80$ and $\Omega = 1.88$ for tension loading normal to the weld axis. The effective area, A_{we} , of groove welds is defined in Section J2.1a as the length times the effective throat, *E*. The effective throat is based on the welding process, the welding position and the groove type according to Table J2.1. For example, for FCAW in the flat (F) or horizontal (H) position with a 45° bevel groove, the effective throat is equal to the groove depth, *S*.

The weld metal nominal stress can be calculated using Equation J2-5, with $\phi = 0.75$ and $\Omega = 2.00$ from Table J2.5. This can be written with Equations 2.1 and 2.2, where the directional strength increase factor, k_{ds} , is calculated separately. The effective area, A_{we} , of fillet welds is defined in Section J2.2a as the effective length times the effective throat, *E*. The effective throat is the shortest distance from the root to the face of the diagrammatic weld.

$$F_{nw} = 0.6F_{EXX} \left(1.0 + 0.50 \sin^{1.5} \theta \right)$$
 (Spec. Eq. J2-5)

$$F_{nw} = 0.6F_{EXX}k_{ds} \tag{2.1}$$

$$k_{ds} = 1.0 + 0.50 \sin^{1.5} \theta \tag{2.2}$$

where

 A_{we} = effective area of the weld, in.²

- E = effective throat of the weld, in.
- F_{EXX} = filler metal classification strength, ksi
- F_{nw} = nominal stress of the weld metal, ksi
- k_{ds} = directional strength increase factor
- w =fillet weld leg size, in.
- w_1 = size of fillet weld Leg 1, in.
- $w_2 = \text{size of fillet weld Leg 2, in.}$

 θ = angle between the line of action of the required force and the weld longitudinal axis as shown in Figure 2.1, degrees

Fig. 2.1. Loading angle for fillet welds.

For equal-leg fillet welds, the effective throat is

$$E = \frac{w}{\sqrt{2}} \tag{2.3}$$

For non-equal-leg fillet welds, the effective throat is

$$E = \frac{w_1 w_2}{\sqrt{w_1^2 + w_2^2}}$$
(2.4)

Design requirements for fillet welds with high l/w ratios are in AISC *Specification* Section J2.2b(d). When $l/w \le 100$, the effective length is equal to the actual length. For end-loaded fillet welds with l/w > 100, the effective length is calculated with Equation J2-1. For end-loaded fillet welds with l/w > 300, the effective length is 180w.

$$\beta = 1.2 - 0.002 \left(\frac{l}{w}\right) \le 1.0$$
 (Spec. Eq. J2-1)

where

l = actual length of end-loaded weld, in. w = weld leg size, in.

AWS D1.1 (2015)

The requirements for PJP and fillet weld strengths in AWS D1.1 (2015) are similar to the ASD portions of the AISC *Specification*. Equations 2.5 through 2.10 are required to calculate the strengths of weld groups according to the Instantaneous Center of Rotation (ICR) method according to AWS D1.1 Section 2.6.4.3.

$$F_{vi} = 0.3F_{EXX} \left(1.0 + 0.50 \sin^{1.5} \theta \right) F(\rho)$$
(2.5)

$$F(\rho) = \left[\rho(1.9 - 0.9\rho)\right]^{0.3}$$
(2.6)

$$\rho = \frac{\Delta_i}{\Delta_m} \tag{2.7}$$

$$\Delta_m = 0.209 w (\theta + 6)^{-0.32}$$
(2.8)

$$\Delta_u = 1.087 w (\theta + 6)^{-0.65} < 0.17 w$$
(2.9)

$$\Delta_i = \Delta_u \frac{r_i}{r_{crit}} \tag{2.10}$$

where

- F_{vi} = allowable stress of the weld metal, ksi
- r_{crit} = distance from the instantaneous center of rotation to the weld element with the minimum Δ_u/r_i ratio, in.
- r_i = distance from the instantaneous center of rotation to element i, in.
- Δ_m = deformation of weld element at maximum stress, in.
- Δ_u = deformation of weld element at ultimate stress (rupture), in.
- Δ_i = deformation of weld element at intermediate stress levels, in.

These equations were developed by Lesik and Kennedy (1990), except that their polynomial function for $F(\rho)$ was replaced by the simpler empirical approximation according to Equation 2.6. Also, an upper limit of 0.17*w* was added to the original equation for Δ_u , resulting in Equation 2.9.

CSA (2014)

The Canadian Standard CSA (2014) specifies Equation 2.11 for the strength of linear concentrically-loaded fillet weld groups. Equation 2.12 defines M_w , which is a coefficient that accounts for any differences in the weld deformation capacity that are caused by their orientation. In the case of a single fillet weld, $M_w = 1.0$.

$$R_n = 0.67 F_{EXX} \left(1.0 + 0.50 \sin^{1.5} \theta \right) A_{we} M_w$$
(2.11)

$$M_{w} = \frac{0.85 + \theta_{1}/600}{0.85 + \theta_{2}/600}$$
(2.12)

where

- $\phi = 0.67$
- θ_1 = angle between the line of action of the required force and the weld longitudinal axis for the weld segment under consideration, degrees
- θ_2 = angle between the line of action of the required force and the weld longitudinal axis for the weld segment in the group that is nearest to 90°

Eurocode 3 (CEN, 2005)

The Eurocode 3 (CEN, 2005) directional method is applicable to both fillet and PJP welds. Both Equation 2.13 and 2.14 must be satisfied.

$$\sqrt{\sigma_T^2 + 3\left(\tau_T^2 + \tau_L^2\right)} \le \frac{F_{EXX}}{\beta_w \gamma_{M2}}$$
(2.13)

$$\sigma_T \le \frac{0.9F_{EXX}}{\gamma_{M2}} \tag{2.14}$$

For the simplified method, which is applicable only to fillet welds, the available stress at the theoretical effective throat is calculated with Equation 2.15.

$$F_{nw} \le \frac{F_{EXX}}{\sqrt{3}\,\beta_w \gamma_{M2}} \tag{2.15}$$

where

 β_w = correlation factor (0.80 for S235 steel, 0.85 for S275 steel, 0.90 for S355 steel and 1.0 for S420 and S460 steel)

 γ_{M2} = partial safety factor, =1.25

 σ_T = normal stress perpendicular to the plane of the throat, ksi.

 τ_L = shear stress in the plane of the throat, parallel to the weld axis, ksi.

 τ_T = shear stress in the plane of the throat, perpendicular to the weld axis, ksi.

The Eurocode 3 design requirements for fillet welds with high l/w ratios are similar to those in AISC *Specification* Section J2.2b(d), except the effective throat is used instead of the weld leg size. For lap joints longer than 150*E*, Equation 2.16 is applicable.

$$\beta = 1.2 - \frac{0.2l}{150E} \le 1.0 \tag{2.16}$$

AIJ (2012)

The Architectural Institute of Japan (AIJ, 2012) specifies Equation 2.17 for the strength of fillet welds. Equations 2.18 and 2.18 are applicable to longitudinal and transverse PJP welds, respectively. Because Equation 2.19 is based on the tensile strength of the base metal, it is valid only when matching or overmatching weld metal is used.

$$F_{nw} = \frac{F_{EXX}}{\sqrt{3}} (1.0 + 0.40\sin\theta)$$
(2.17)

$$F_{nw} = \frac{F_{EXX}}{\sqrt{3}} \tag{2.18}$$

$$F_{nw} = F_u \tag{2.19}$$

where

 F_u = specified minimum tensile stress of the weaker base metal joined, ksi

FILLET WELDS

ABW (1931)

ABW (1931) reported a comprehensive series of experimental tests on many different configurations for both fillet and groove welds. The specified tensile strength of the weld metal was 56 ksi; however, the actual tensile strength was not reported. The average shear rupture strength on the throat of the concentrically-loaded fillet weld specimens was 42.5 ksi and the average strength of butt welds in tension was 49.6 ksi. A conclusion from the tests on joints with combined longitudinal and transverse welds is that failure of the transverse welds always precludes failure of the longitudinal welds at loads that are less than the sum of the independent strengths.

AWS (1937)

The early research on fillet welded connections was primarily concerned with the elastic stress distributions, both along the weld length and in the weld cross section. The available research on fillet-welded joints prior to 1937, consisting of 150 references, was summarized in AWS (1937). The research shows highly nonlinear stresses along the length and in the weld cross section, even for the simplest configurations.

Spraragen and Claussen (1942)

Spraragen and Claussen (1942) reviewed 77 references on fillet welds that were published between 1932 and 1939. For longitudinally-loaded fillet welds, the rupture stress at the throat is between 0.64 and 0.84 times the uniaxial tensile strength. Although longitudinally-loaded fillet welds had high elastic stress concentrations at the end, it was shown that the rupture strength of short welds (l/w between 1.4 and 19), is unaffected by the weld length.

Tests on double-lap specimens with transversely-loaded fillet welds showed that the specimens with tensile loads were approximately 20% higher than for compression-loaded specimens. Also, several research projects showed that the rupture strength of transversely-loaded T-joints varies between 75% and 100% of the strength of double-lap specimens. This effect was caused by the constraint provided by the transverse contact force at the faying surfaces of the double-lap as well as the friction resulting from these forces. A gapped T-joint designed by Kist (1936) to eliminate the transverse force that causes friction at the faying surfaces had only 64% of the strength of a double-lap specimen with similar welds. It was concluded that the rupture stress at the throat of transversely-loaded fillet welds was slightly higher than the uniaxial tensile strength measured with all-weld-metal coupons.

Vreedenburgh (1954)

Vreedenburgh (1954) continued the work of Kist (1936) with supplementary tests and analyses. Although Kist assumed the rupture plane was always defined by the theoretical throat, Vreedenburgh found out that the rupture planes were not always coincident with the theoretical throat. Additionally, Vreedenburgh found that the experimental behavior was not compatible with any of the available failure theories. Because of this, an empirical solution was adopted. As shown in Figure 2.2, the shear strength of the weld was assumed to be 0.75 times the weld metal uniaxial tensile strength, σ_t . For transversely-loaded equal-leg welds, the weld throat is oriented 45° from the load and the strength is $0.84\sigma_t$. Based on this approach, the ratio of the transverse fillet weld strength to longitudinal fillet weld strength is 0.84/0.75 = 1.12. Also, according to Figure 2.2,

welds subjected to compression at the effective throat are 70% stronger than welds subjected to tension at the effective throat.

Compressive Stress in Weld

Fig. 2.2. Fillet weld critical limiting stress according to Vreedenburgh (1954).

Archer et al. (1964)

Archer et al. (1964) compared different failure theories with experimental results to determine which one best represents the actual strength of fillet welds. The failure theories included maximum principal stress, maximum shear stress and von-Mises. The comparisons also included calculations that considered the moments at the weld legs that were caused by the small eccentricity between the load and the resisting force; however, the results were more accurate when these moments were neglected. The authors determined that the maximum shear stress method, while neglecting the moment in the weld, provides the best fit. The predicted orientation angle of the rupture plane compared well with the experimental results. Nevertheless, the calculated weld strength using maximum shear stress slightly underestimated the experimental strength that was determined using double-lap specimens with longitudinal welds.

Douwen and Witteveen (1966)

Douwen and Witteveen (1966) recommended combining the normal and shear stresses on the theoretical effective throat using von Mises equation. Because von Mises yield criterion was found

to be conservative, the resulting effective stress was multiplied by a correlation factor, β , that is dependent on the base metal strength. The authors recommended $\beta = 0.7$ for St 37 steel and 0.85 for St 51 steel. Both the International Institute of Welding (IIW, 1976) and Eurocode 3 (CEN, 2005) adopted this approach later.

Swannell (1968)

To obtain a uniform shear distribution along the weld length, Swannell (1968) subjected circular fillet weld groups to torsional moments. The weld metal uniaxial tensile strength was 64.4 ksi and the mean rupture stress at the throat was 57.0 ksi, resulting in an average shear strength equal to 88.5% of the tensile strength.

Preece (1968), Higgins and Preece (1969)

Preece (1968) and Higgins and Preece (1969) documented 168 tests on double-lap specimens with either longitudinal or transverse fillet welds. The variables were weld size ($\frac{1}{4}$, $\frac{3}{8}$ and $\frac{1}{2}$ -in.), electrode strength (60, 70, 90 and 110 ksi), weld length (1.5, 2, 3 and 4 in.) and base metal (ASTM A36, A441 and A514).

The experimental rupture stress increased slightly with length, however, the increase of 3% was deemed negligible. All specimens ruptured in the weld metal "even when the mechanical properties of the weld metal exceeded those of the base metal by a substantial amount." The transverse welds averaged 1.57 and 1.44 times stronger than longitudinal welds for 70 and 110 ksi electrodes, respectively.

For the ¹/₄-in. fillet welds, the average measured weld size was 20% greater than the specified size. For the ³/₈ and ¹/₂-in. fillet welds, the average measured weld sizes were 13 and 5% greater than the specified sizes, respectively.

Ligtenburg (1968), Strating (1971)

Ligtenburg (1968) compiled the data from a series of experiments where fillet-welded joints were tested in nine different countries. The specimens were double- and single-lap joints with longitudinal, transverse and combined longitudinal/transverse welds. Only the SMAW welding process was used, but the weld sizes and plate material properties varied.

Strating (1971) tested 38 different specimens with three duplicates each for a total of 114 tests. The specimens were similar to Lightenburg's double-lap specimens; however, the FCAW, GMAW and SAW processes were used instead of SMAW. Both self-shielded and gas-shielded (CO₂) FCAW was used. The GMAW shielding gases were CO₂ and Argon/CO₂/O₂.

The authors recommended that the weld rupture strength calculations should be based on the average tensile stress of the base metal and the weld metal. A linear regression analysis showed that the strength of longitudinally- and transversely-loaded welds can be predicted with Equations L1 and L2, respectively. A conclusion from the tests on joints with combined longitudinal and transverse welds is that failure of the transverse welds always precludes failure of the longitudinal welds at loads that are less than the sum of the independent strengths.

$$R_n = 0.83 F_{EXXA_{we}} \tag{2.20}$$

$$R_n = 1.33 F_{EXX} A_{we} \tag{2.21}$$

Butler and Kulak (1971)

Butler and Kulak (1971) measured the load-deformation of fillet welds in double-lap joints. 60 ksi electrodes were specified to deposit $\frac{1}{4}$ in. fillet welds at angles of 0°, 30°, 60° and 90° from the loading direction. The authors found that the strength and ductility is dependent on the loading direction and developed empirical equations 2.22 through 2.26 to describe the load-deformation behavior of the specific welds that were tested. These equations are plotted in Figure 2.3 for $\theta = 0^\circ$, 30°, 60° and 90°. Equation 2.23 results in $k_{ds} = 15.8/10.9 = 1.45$ when $\theta = 90^\circ$.

$$R = R_u \left(1 - e^{-\mu\Delta} \right)^{\lambda} \tag{2.22}$$

$$R_u = \frac{10 + \theta}{0.92 + 0.0603\theta} \tag{2.23}$$

$$\Delta_u = 0.225 \left(\theta + 5\right)^{-0.47} \tag{2.24}$$

$$\mu = 75e^{0.0114\theta} \tag{2.25}$$

$$\lambda = 0.4e^{0.0146\theta} \tag{2.26}$$

Fig. 2.3. Load-deformation curves for ¼ in. E60 fillet welds.

Kato and Morita (1974)

Kato and Morita (1974) calculated the strength of transverse fillet welds using the theory of elasticity and determined that the rupture plane is 22.5° from the loading direction. Based on this critical rupture plane, they developed a directional strength factor of

$$k_{ds} = \frac{1.0 - \pi/4}{\sin^2 (22.5^\circ)}$$

$$= 1.46$$
(2.27)

The authors compared their theoretical findings with experimental and finite element results, which verified the rupture plane orientation. Although the stress distribution along the critical section was shown to be non-uniform, the proposed equations were reasonably accurate.

Higgs (1981), Biggs et al. (1981)

Based on cruciform specimens loaded in both directions as shown in Figure 2.4, Higgs (1981) and Biggs et al. (1981) recommended a circular interaction between the normal stresses and shear stresses on the critical section of fillet welds. Figure 2.5 shows that the orientation of the critical section varies with the load ratio, f_y/f_x . The stress interaction on the critical section is shown in Figure 2.6. Figure 2.7 shows the interaction between x- and y-direction loads, f_x and f_y , respectively. It is interesting to note that f_y increases with an increase in f_x up to approximately $f_x/f_y = 0.6$.

Fig. 2.4. Experimental specimens tested by Higgs. (1981). (from Biggs et al., 1981)

Fig. 2.5. Orientation of the critical section versus the load ratio, f_x/f_y . (from Biggs et al., 1981)

Fig. 2.6. Stress interaction on the critical section. (from Biggs et al., 1981)

Fig. 2.7. Interaction between x- and y-direction loads. (from Biggs et al., 1981)

Kamtekar (1982), Kamtekar (1987)

Based on von Mises yield criterion, Kamtekar (1982) derived equations to calculate the strength of longitudinally- and transversely-loaded fillet welds. The same theory was used by Kamtekar (1987) to derive equation 2.28 for the full range of loading angles ($0^{\circ} < \theta < 90^{\circ}$). The theory predicts that transverse welds rupture along the leg (fusion zone) at a 41% higher load than longitudinal welds.

$$k_{ds} = \sqrt{2 - \cos^2 \theta} \tag{2.28}$$

Pham (1983)

Pham (1983) documented a series of 36 tests on transversely-loaded T-joints connected with fillet welds using the FCAW and SAW welding processes. Macro-etches showed that the theoretical throat increased by 30% for FCAW welds and 50% for SAW welds with a coefficient of variation of 0.20 for both processes. Many of the welds ruptured along the fusion zone; however, the experimental loads exceeded the expected strengths due to oversized welds and overstrength weld metals.

Neis (1985)

Neis (1985) used plasticity theory to derive the ultimate strength and maximum displacement of fillet welds. Although several simplifying assumptions were required, limited comparisons with

experimental results showed "an acceptable fit." The ultimate (rupture) force and deformation is calculated with Equations 2.29 and 2.30 respectively.

$$R_u = \sigma_{tu} w L \sqrt{\frac{1 + 15\sin^2 \alpha_d}{6\left(1 + 7\sin^2 \alpha_d\right)}}$$
(2.29)

$$\delta_u = \varepsilon_u \sqrt{\frac{3}{2\left(1 + 7\sin^2\alpha_d\right)}}$$
(2.30)

The complete load-deformation curve can be plotted with Equations 2.31 through 2.33.

$$R_i = R_u \frac{f_i}{f_u} \tag{2.31}$$

$$f_i = 1 - \frac{e^{-25\delta_i} + e^{-75\delta_i}}{2}$$
(2.32)

$$f_u = 1 - \frac{e^{-25\delta_u} + e^{-75\delta_u}}{2}$$
(2.33)

where

- R_i = strength at deformation Δ_i , kips
- α_d = angle between the weld longitudinal axis and the weld displacement direction
- $\delta_i = \Delta_i / w$
- $\delta_u = \Delta_u / w$
- ε_u = uniaxial engineering tensile rupture strain
- σ_{tu} = true tensile rupture stress, ksi
- σ_{uw} = uniaxial engineering tensile rupture stress, ksi

As a conservative estimate, the authors noted that the true tensile rupture stress can be calculated with Equation 2.34.

$$\sigma_{tu} = \sigma_u \left(1 + 0.75\varepsilon_u \right) \tag{2.34}$$

Equation 2.35 provides an approximate value of the angle between the weld longitudinal axis and the weld displacement direction.

$$\tan \alpha_d = \frac{\tan \theta}{4} \tag{2.35}$$

Kennedy and Kriviak (1985)

Kennedy and Kriviak (1985) discussed Butler and Kulak (1971) Equation 2.22, plotting it as an interaction curve, along with the available experimental data. This led to the surprising conclusion that the strength of a longitudinally-loaded fillet weld increases when a transverse load is added as shown in Figure 2.8. The authors developed Equation 2.36, which provides a more conservative estimate of fillet weld strength compared to Equation 2.22. Equation 2.36 results in $k_{ds} = 1.42$ when $\theta = 90^{\circ}$.

$$1.2\left(\frac{V_T}{V_u}\right)^2 - \frac{V_T}{V_u} + \frac{V_L}{V_u} = 1.0$$
(2.36)

where

 V_L = longitudinal load, kips V_T = transverse load, kips V_u = weld strength at $\theta = 0^\circ$, kips

Fig. 2.8. Interaction of longitudinal and transverse fillet welds. (from Kennedy and Kriviak, 1985)

Faltus (1986)

Early attempts by International Institute of Welding (IIW) committees to develop an accurate design equation resulted in Equation 2.37, which was originally proposed by Van der Eb in 1952. This equation was later adopted by the International Organization for Standardization (ISO).

$$\sqrt{\sigma_T^2 + 1.8\left(\tau_T^2 + \tau_L^2\right)} = F_{EXX}$$
(2.37)

Equation 2.37 results in a shear rupture stress of $0.745F_{EXX}$ when $\theta = 0^{\circ}$ and $k_{ds} = 1.13$ when $\theta = 90^{\circ}$. In 1974, the 1.8 constant was changed to 3, which results in von Mises equation. Because this increased the conservative error compared to the experimental results, the stress was reduced by a correlation factor, β_W , which had values of 0.70 or 0.85 depending on the steel grade. Also, a limit was added to ensure that the normal stress was not greater than the weld metal tensile strength. This resulted in Equations 2.38 and 2.39, which is the basis for the equations in Eurocode 3.

$$\beta_w \sqrt{\sigma_T^2 + 3\left(\tau_T^2 + \tau_L^2\right)} \le F_{EXX}$$
(2.38)

$$\sigma_T \le F_{EXX} \tag{2.39}$$

McClellan (1989)

McClellan (1989) tested 96 double-lap specimens with either longitudinal or transverse fillet welds. The joints were fabricated using the FCAW process with either CO₂ or 75% argon/25% CO₂ shielding gasses. The specified weld sizes were either ¹/₄ or ³/₈ in. and the specified electrode strengths were either 70 or 100 ksi. By evaluating the rupture surfaces and macro-etches, the author concluded that the penetration depth was similar to that of a weld deposited with the SMAW process. The rupture surface for the transverse welds was oriented at approximately 22.5° from the load direction. The transverse welds averaged 1.51 and 1.39 times stronger than longitudinal welds for 70 and 100 ksi electrodes, respectively.

Miazga and Kennedy (1989), Lesik and Kennedy (1990), Kennedy et al. (1990)

Miazga and Kennedy (1989) developed an analytical model to predict the fillet weld strength in double-lap joints as a function of the loading direction. The model includes a variable failure plane angle and restraining conditions at the weld root. They validated their model by testing 42 specimens with varying load angles from 0 to 90° in 15° increments. The fracture was ductile for the cases of longitudinal loading. For transverse loading, the fracture transitioned from brittle at the weld root where the crack initiated to ductile fracture at the crack termination. The area of the rupture surface is

$$A_{\theta} = \frac{wL\sin(45^{\circ})}{\sin(45^{\circ} + \alpha)}$$
(2.40)

Where α is the angle between the loading direction and the rupture surface as shown in Figure 2.9. The normal stress on the rupture surface is

$$\sigma = \frac{P\sin\theta}{A_{\theta}} \left(\sin\alpha + a\cos\alpha\right)$$
(2.41)

The shear stress on the rupture surface is

$$\tau = \frac{P}{A_{\theta}} \sqrt{\left(\sin\theta\cos\alpha + a\sin\theta\sin\alpha\right)^2 + \cos^2\theta}$$
(2.42)

Where *a* is a portion of *P* that defines the transverse force on the weld cross section that is required for equilibrium of the weld free body diagram as shown in Figure 2.9. Due to the nonlinear stresses at the weld cross section, the authors were unable to determine an accurate equation to define *a*; however, the experimental results showed that a constant value of 0.345 is applicable for θ between 45° and 90°. For smaller values of θ , *a* could not be determined due to the scattered test results.

Fig. 2.9. Weld free body diagram. (from Miazga and Kennedy, 1989)

Among the failure theories considered by Miazga and Kennedy (1986), which included von-Mises, maximum normal stress and maximum shear stress (Tresca), the Tresca theory was determined to be the most accurate in determining the ultimate weld strength and rupture plane orientation, α . Setting $d\tau/d\alpha = 0$, results in Equation 2.43.

$$\tan\left(45^\circ + \alpha\right) = \frac{\left(\cos\alpha - a\sin\alpha\right)^2 + \cot^2\theta}{\left(\cos\alpha - a\sin\alpha\right)\left(\sin\alpha + a\cos\alpha\right)}$$
(2.43)

The weld strength, P_{θ} , at a loading angle θ is calculated by setting the maximum shear stress equal to the ultimate shear strength, τ_u . Combining Equations 2.40 and 2.42 results in Equation 2.44.

$$P_{\theta} = \frac{\tau_u w L \sin(45^{\circ})}{\sin(45^{\circ} + \alpha) \sqrt{(\sin\theta\cos\alpha - a\sin\theta\sin\alpha)^2 + \cos^2\theta}}$$
(2.44)

Based on the six experimental specimens with longitudinal fillet welds, τ_u can be estimated as 0.764 of the electrode tensile strength. For a = 0.345, $\alpha = 13.0^\circ$, which results in $k_{ds} = 1.32$ when $\theta = 90^\circ$. The effect of constraint in the plane of the rupture surface was considered by multiplying

Equation 2.44 by a semi-empirical constraint factor, k, which is calculated with Equation 2.45. This results in $k_{ds} = 1.50$ when $\theta = 90^{\circ}$ and an experimental-to-calculated strength ratio of 1.004 with a standard deviation of 0.088. A plot of $k \times P_{\theta}$ and the experimental results are shown in Figure 2.10.

$$k = 1 + 0.141\sin\theta \tag{2.45}$$

The weld strength is determined by calculating the rupture angle with Equation 2.43, substituting this value into Equation 2.44 and multiplying by Equation 2.45. In an effort to simplify the design process, Lesik and Kennedy (1990) developed Equation 2.2 by fitting the curve in Figure 2.10. Equation 2.2 is slightly conservative, with a maximum error of 1.5% at $\theta = 45^{\circ}$.

For lap-joints in compression, the transverse force is not available. Miazga and Kennedy (1989) noted that the welds for these joints can be designed with a = 0, which results in $\alpha = 22.5^{\circ}$ and $k_{ds} = 1.34$ when $\theta = 90^{\circ}$. For this condition, the experimental-to-calculated strength ratio is 0.928 with a standard deviation of 0.065 when compared to the experimental results of Swannell and Skewes (1979). This approach was also recommended for T-joints in both tension and compression. In an effort to simplify the design process, Kennedy et al. (1990) developed Equation 2.46 by fitting a curve developed using Equations 2.43, 2.44 and 2.45 with a = 0.

$$k_{ds} = 1.0 + 0.34 \sin^{1.5} \theta \tag{2.46}$$

For the E48014 electrodes in the Miazga and Kennedy (1989) research, the specified uniaxial tensile strength was 480 MPa and the measured strength was 538 MPa resulting in an overstrength factor of 1.12. Lesik and Kennedy (1988) and Lesik and Kennedy (1990) summarized the electrode strength statistics for four previous projects found in the literature with a total of 672 weld metal tensile tests. For these tests, the average overstrength factor, σ_u/F_{EXX} , was 1.12 with a coefficient of variation of 0.077.

Fig. 2.10. Plot of $k \times P_{\theta}$ compared to the experimental results. (from Miazga and Kennedy, 1989)

Chan and Ogle (1992)

Chan and Ogle (1992) tested a 12.5 mm flat plate that was cut to the geometry of a large transversely-loaded double-lap splice connection. The simulated fillet welds had 100 mm leg sizes. When loaded to 82% of the rupture load, strain gages showed that inelastic stress redistribution resulted in a near constant von Mises stress along planes oriented at both 0° and 22.5° from the load. After significant plastic flow approximately along the 22.5° plane, a crack formed at the root and grew to about 22 mm long in the direction of the plastic band.

Bowman and Quinn (1994)

Bowman and Quinn (1994) experimentally examined the strength and deformation of fillet welds in double-lap joints for three different weld leg sizes ($\frac{1}{4}$, $\frac{3}{8}$, and $\frac{1}{2}$ in.), weld orientations (longitudinal and transverse), and three root gap configurations (0, $\frac{1}{16}$, and $\frac{1}{8}$ in.). Root gaps were fabricated by using spacer bars between the plates to represent distortions or inadequate fitup of plates. Eighteen specimens were prepared using 70 ksi SMAW welds with A572 Grade 50 plates.

The strength ratio between the transverse and longitudinal weld was between 1.3 and 1.7 for specimens with no gaps and 1.2 and 1.4 for gapped specimens. For the same specified weld size, the strength of the gapped specimens did not decrease significantly from non-gapped specimens because of the relatively higher weld penetration in the first, along with the weld flow in the gap.

Iwankiw (1997)

Based on equilibrium on the theoretical effective throat (defined with $\alpha = 45^{\circ}$), Iwankiw (1997) derived Equation 2.47 which produces results within 10% of Equation 2.2. Equation 2.47 results in $k_{ds} = 1.41$ when $\theta = 90^{\circ}$.

$$k_{ds} = \sqrt{\frac{2}{1 + \cos^2 \theta}} \tag{2.47}$$

Mellor et al. (1999)

Using experimental results from the literature and the results of finite element models, Mellor et al. (1999) simplified an empirical equation that predicts the strength of fillet welds, resulting in Equation 2.48.

$$R_n = K_{at} F_c E_p L \tag{2.48}$$

Where E_p is the actual weld throat defined as the penetration depth plus the effective throat according to AISC *Specification* Section J2.2a. F_c is the rupture stress that considers the effect of base metal dilution. The authors developed Equation 2.49 as a simplified expression for F_c .

$$F_c = 0.6F_{EXX} + 0.4F_u \tag{2.49}$$

Where F_u is the tensile strength of the base metal. K_{at} is an empirical coefficient, which can be calculated with Equation 2.50 for transversely-loaded double-lap fillet weld joints.

$$K_{at} = 0.079 + 1.931 \frac{E}{E_p} - 1.084 \left(\frac{E}{E_p}\right)^2$$
(2.50)

The authors found that, for transversely-loaded fillet welds, double-lap joints are stronger than Tjoints. The higher loads were believed to be caused by friction at the faying surfaces in the lap joints, higher stress concentrations in the T-joint, and higher rigidity of the T-joint. Based on the experimental and theoretical results, the range of K_{at} was 0.93-1.04 and 0.82-0.98 for double-lap and T-joints, respectively.

Ng et al. (2002), Ng et al. (2004)

Ng et al. (2002) tested 102 transversely-loaded fillet weld specimens in double-lap and cruciform T-joints. Both the SMAW and FCAW processes were used in the fabrication. The specified weld size for the cruciform specimens was $\frac{1}{4}$ in. For the lapped specimens, two weld sizes were considered: $\frac{1}{4}$ in. and $\frac{1}{2}$ in.

The calculated mean strength, using the measured rupture surface area, was approximately the same for both welding processes. However, the penetration for the FCAW specimens was much higher than for the SMAW specimens, resulting in higher rupture strengths for the FCAW specimens. The measured rupture surface width for the SMAW welds was similar to the theoretical

effective throat dimension. The measured rupture surface width of the FCAW welds was about 1.5 to 2 times the theoretical effective throat dimension.

The tests showed that the rupture stress decreased nonlinearly with an increase in weld size. The average rupture stress for the lapped specimens was 13% higher than that of the cruciform specimens. Also, the lapped specimens were approximately 3.8 times as ductile as the cruciform specimens. Most of the specimens failed by ductile shear rupture at, or near, the weld shear leg ($\alpha = 0^{\circ}$). The test-to-predicted strength ratio ranged from 1.28 to 2.57 compared to the AISC *Specification* equations.

Deng et al. (2003)

Deng et al. (2003) investigated the strength of fillet welds in double-lap joints fabricated with both the SMAW and FCAW processes. The welds were subjected to three loading angles: $\theta = 0^{\circ}$, 45° and 90°. A reliability analysis showed that the AISC *Specification* equations are applicable to welds fabricated with both SMAW and FCAW processes. The FCAW process resulted in higher root penetration than the SMAW process; therefore, the calculations are more conservative for FCAW welds. The average experimental strength for the FCAW specimens was approximately 50% higher than that of SMAW specimens. However, the mean rupture stress calculated with the measured rupture surface area was approximately the same for both welding processes.

Li et al. (2007)

Li et al. (2007) tested 12 transversely-loaded fillet weld specimens in cruciform T-joints. The specimens were welded with the FCAW process. The tests showed that lap-joints are between 0 and 30% stronger than T-joints. A reliability analysis was performed on transversely-loaded fillet welds using 1160 experimental data points from previous and current research. This indicated that, for lap-joints, the safety index is 4.5 and for T-joints, the safety index is 4.3. The authors analyzed 1,706 measurements on weld leg or throat dimensions from 12 research projects and determined that the average measured-to-specified ratio, ρ_G , is 1.08 with a coefficient of variation of 0.142. For the weld uniaxial metal tensile strength, 716 specimens from eight research projects showed that the average measured-to-specified ratio, ρ_{M1} , is 1.13 with a coefficient of variation of 0.080.

Based on the results of 304 specimens from eight research projects, the shear-to-tensile strength ratio of 0.60 in the AISC *Specification* equations is conservative. The average measured-to-specified ratio, ρ_{M2} , is 1.29 with a coefficient of variation of 0.130. This is identical to an average $\tau_u/\sigma_{uw} = 0.774$.

Gomez et al. (2008) and Kanvinde et al. (2009)

The strength in fillet-welded cruciform T-joints was determined theoretically and experimentally, while changing different parameters. The FCAW process was used with two electrodes: E70T-7 (non-toughness rated) and E70T7-K2 (toughness rated), two root notch lengths (plate thickness): 1.25 and 2.5 in., and two weld sizes: ¹/₂ and ⁵/₁₆ in. The experimental program consisted of eight combinations with three specimens each.

The root notch length had an insignificant effect on the weld strength and ductility. Generally, the calculated strength according to the AISC *Specification* was accurate compared to the experimental results. The ductility of the specimens with E70T7-K2 weld material was almost

twice that of the specimens with E70T-7 weld. From the experimental results, the rupture angle of the weld, measured from the tension face, ranged from 20° to 80°. The photomicrograph of the fracture surface showed that the crack was initiated horizontally at the weld root for about 0.06 in. (1.5 mm) as a ductile tension fracture (crack opening fracture mode) then transitioned to the measured fracture angle as a brittle shear fracture.

The authors were able to predict the weld strength using fracture mechanics and finite element models. From the experimental results, a 2D plain-strain model was created to simulate the test specimens. The weld root was modeled as a half circle of 0.004 in. radius, which is acceptable because the anticipated crack tip blunting in the weld root at fracture is about 0.01 in. The size of the elements around the notch tip was 0.002 in. The FEA model was validated and calibrated by comparing the load-deformation curve of the weld with the curves obtained from testing. The critical fracture toughness of the weld root was calculated by integrating the stresses and strains within the 20 mesh contours around the crack tip. This value was used to determine the fracture load of other specimens of the same weld size, yet with different root notch lengths. The specimens were loaded gradually until the fracture toughness of the zone around the crack tip reached the previously calculated critical fracture toughness. This was considered the weld rupture strength. It was found that the strength and fracture ductility of pre-cracked welds are not dependent on the crack length, if it is above 1 in. This can be supported by the fact that the weld yields and exceeds its plastic limit prior to its failure. Smaller root notch lengths (less than 1 in.) were claimed to have higher ductility, but same strength.

Lu et al. (2015)

Both transverse and longitudinal fillet welds were studied by Lu et al. (2015). The objective was to develop a unified shear strength definition for fillet welds that account for the actual stress distribution and rupture plane. Finite element results and the traction stress approach were used to determine the critical fracture plane and the stress concentrations along the weld line of longitudinal fillet welds. The results were verified with 128 experimental tests.

The authors found that the weld strength can be determined from the membrane term and that the bending term can be neglected. Accordingly, the shear stress on the rupture plane of a transverse fillet weld is calculated with Equation 2.51.

$$\tau_T = \frac{P}{EL} \frac{\sqrt{2}}{4} \Big[1 + \sin(2\alpha) + \cos(2\alpha) \Big]$$
(2.51)

Where α is the angle between the loading direction and the rupture plane. Setting $d\tau_T/d\alpha = 0$, results in $\alpha = 22.5^{\circ}$. Substituting this into Equation 2.51 results in Equation 2.52. According to Equation 2.52, $k_{ds} = 1.48$.

$$\tau_T = \frac{P}{EL} \frac{2 + \sqrt{2}}{4} = 0.854 \frac{P}{EL}$$
(2.52)

Lu and Dong (2020)

Based on the shear stresses on the rupture plane, Lu and Dong (2020) derived Equation 2.53.

$$P_{\theta} = \frac{\tau_u wL}{\left(\sin\alpha + \cos\alpha\right) \sqrt{\left(\sin\theta\cos\alpha\right)^2 + \cos^2\theta}}$$
(2.53)

For transversely-loaded welds, the transverse compression force, *a*, that was originally included in the Miazga and Kennedy (1989) derivations, was used to develop Equation 2.54.

$$P_{\theta} = \frac{\tau_u wL}{(\sin \alpha + \cos \alpha)(\cos \alpha - a \sin \alpha)}$$
(2.54)

Setting $d\tau_u/d\alpha = 0$, results the critical angle between the loading direction and the rupture surface according to Equation 2.55.

$$\tan 2\theta = \frac{1-a}{1+a} \tag{2.55}$$

The authors showed that the theoretical value for *a* is approximately 0.3, which results in $\alpha = 14.2^{\circ}$ and $k_{ds} = 1.30$. For a = 0, the directional strength increase factor is calculated using Equation 2.56 with $\alpha = 22.5^{\circ}$, which results in $k_{ds} = 1.17$.

$$k_{ds} = \frac{4}{\sqrt{2}\left(1 + \sin 2\alpha + \cos 2\alpha\right)} \tag{2.56}$$

Luo et al. (2020a)

Luo et al. (2020a) evaluated the limit loads of welded T-joints using both slip-line theory and finite element models. Three different weld types were evaluated: 1. Double fillet welds, 2. PJP doublebevel groove welds with 45° groove angles, 3. Combined fillet/PJP welds. The calculations showed that transverse fillet welds are 41% stronger than longitudinal fillet welds. For longitudinal welds, the theoretical rupture surface angles coincided with the orientation of the effective throat as defined in AISC *Specification* Section J2.2a. According to their theory, the rupture surface angle for transverse fillet welds is 0° from the loading direction.

Luo et al. (2020b)

Luo et al. (2020b) studied the effect of loading angle on both fillet welds and PJP welds using 17 experimental specimens and 21 finite element models. T-joints were used for the fillet welds and both T- and butt-joints were studied for the PJP welds. The PJP welds had double-bevel grooves with a 45% penetration ratio and 45° groove angles. The specimens were fabricated with a 5 mm specified effective throat using the GMAW process with CO₂ shielding.

The research showed that the directional strength increase for fillet welds in equation 2.2 is nonconservative. The strength of fillet welds can be calculated with Equation 2.57, which has a mean test-to-predicted ratio of 1.00 and a standard deviation of 0.036.

$$k_{ds} = 1.0 + 0.34 \sin^{1.5} \theta \tag{2.57}$$

PARTIAL JOINT PENETRATION (PJP) WELDS

Satoh et al. (1974)

Satoh et al. (1974) tested welded T-joints with PJP double-bevel groove welds with several variables including the groove angle, the preparation depth and the size of the reinforcing fillet weld. Matching weld metal was used for all specimens. For the case without reinforcing fillet welds, the nominal stress on the effective throat as defined in AISC *Specification* Section J2.2a can be calculated with Equation 2.58.

$$F_{pjp} = F_{EXX} \sqrt{\frac{1}{3} + \sin^2 \theta_p}$$
(2.58)

Where θ_p is the groove angle measured from the load direction. The specimens ruptured either in the weld metal, in the fusion zone perpendicular to the load, or a combined path forming a bilinear crack through the PJP fusion zone and the fillet weld metal. Based on these ruptures in the fusion zone, the authors recommended that the tensile stress on the fusion zone perpendicular to the load should not exceed the base metal tensile strength.

Lawrence and Cox (1976)

Lawrence and Cox (1976) tested CJP butt-welded plates of A514 steel with matching electrodes and intentional defects of varying length at the center of the weld thickness. Based on a limit analysis of a cracked plate, they determined that reasonable upper- and lower-bound predictions could be based on the von Mises and Tresca criteria, respectively. This results in weld rupture stresses on the net weld cross section between 1.00 and $2/\sqrt{3} = 1.15$ times F_{EXX} .

Popov and Stephen (1977)

Popov and Stephen (1977) tested column splice details with butt-welded flanges subjected to static tension and reversible cyclic loading. The specimens were fabricated using W14x320 (t_f = 2.09) shapes of A572 Grade 50 material with matching (70 ksi) filler metal. The welds "were made using NR311 Inner-Shield welding." For one specimen, the flanges had CJP welds. The six remaining specimens were fabricated with PJP single-bevel groove welds with a 45° groove angle, with specified weld sizes of 3/8, 3/4 and 1 in. The weld rupture stresses increased with decreasing weld sizes, resulting in strength increases of 6% for a 49% penetration ratio, 28% for a 38% penetration ratio and 40% for a 23% penetration ratio. The authors noted that the specimens with PJP welds exhibited "very little ductility."

Similar column splice specimens with penetration ratios between $\frac{1}{4}$ and $\frac{3}{4}$ were subjected to cyclic axial and flexural loads by Yabe et al. (1994). The results showed that the deformation capacity increases with the penetration ratio.

Gagnon and Kennedy (1989)

Gagnon and Kennedy (1989) tested 75 PJP groove weld specimens with five penetration ratios, p (20, 40, 60, 80 and 100%), and two steel strengths. The effect of eccentricity was studied by using both single specimens and paired specimens oriented back-to-back. The specimens had two plates that were welded together with single-bevel butt welds, which had a preparation defined by a 45° groove angle in one of the plates.

The specimens ruptured at or near the fusion zone of the plate with the square preparation. The rupture stresses for all specimens were similar to or greater than the measured uniaxial tensile stress of the weld metal. Table 2.1 shows the effect of the penetration ratio on the rupture stress, where the rupture stress decreases with increasing penetration. This effect, which is caused by the transverse constraint of the weld metal by the base metal, can be calculated with Equation 2.59.

$$F_c = F_{EXX} \left(1.55 - 1.16p + 0.61p^2 \right)$$
(2.59)

where

p = penetration ratio

Table 2.1. Average experimental rupture stresses for each penetration ratio.						
р	20%	40%	60%	80%	100%	
σ_e/σ_{uw}	1.33	1.18	1.13	1.08	1.00	
σ_e = experimental rupture stress, ksi						
σ_{uw} = measured weld metal uniaxial tensile stress, ksi						

Khurshid et al. (2015)

Khurshid et al. (2015) tested CJP and PJP butt welded joints in high-strength steel plates with specified tensile strengths of 750 and 980 MPa. Both matching and undermatching filler metals were used, and specimens with overmatching filler metal were tested for the lower-strength base metal. The CJP preparations were double-V grooves and the PJP welds had single-V grooves. The PJP welds had a 67% penetration ratio and both weld types had a 90° groove angle. All CJP specimens ruptured in the base metal. Rupture in the PJP specimens started at the root and propagated along the fusion zone. The deformation capacity of the CJP specimens was several times that of the PJP specimens. The ductility of overmatching PJP welds was slightly lower than matching welds, but the deformation capacity of the undermatching welds was significantly higher (25% to 53%). The available design strengths were compared to the experimental rupture loads, showing actual safety factors between 2.1 and 3.0 for the AWS D1.1 allowable strength equations.

Ran et al. (2019)

Ran et al. (2019) tested 108 butt-welded high-strength CJP specimens with mismatched tensile strength ratios between 0.696 and 1.27. The results indicated a slight increase in the rupture load (between 4 and 10%) for undermatching welds when the weld length increased from 25 mm to 100 mm. This behavior is caused by the transverse restraint in the width and thickness directions provided by the adjacent plates, which are stressed to a lower portion of the strength. The authors noted that the weld metal yields at a load equal to $(2/\sqrt{3})^{n+1}$ times the yield stress, where *n* is the strain-hardening exponent. This results in a yield load of 1.18 times the uniaxial yield load. Similar behavior can be expected in both matched and mismatched PJP joints.

Luo et al. (2020a)

Luo et al. (2020a) evaluated the limit loads of welded T-joints using both slip-line theory and finite element models. Three different weld types were evaluated: 1. Double fillet welds, 2. PJP double-

bevel groove welds with a 45° groove angle, 3. Combined fillet/PJP welds. The calculations showed that transverse PJP welds are 183% stronger than longitudinal PJP welds. For longitudinal welds, the theoretical rupture surface angles coincided with the orientation of the effective throat as defined in AISC *Specification* Section J2.2a. According to the theory, the rupture surface angle for transverse PJP welds is 36° from the loading direction.

Luo et al. (2020b)

Luo et al. (2020b) studied the effect of loading angle on both fillet welds and PJP welds using 17 experimental specimens and 21 finite element models. T-joints were used for the fillet welds and both T- and butt-joints were studied for the PJP welds. The PJP welds had double-bevel grooves with a 45% penetration ratio and 45° groove angles. The specimens were fabricated with a 5 mm specified effective throat using the GMAW process with CO₂ shielding.

The research showed that the AISC *Specification* equations for PJP welds are over-conservative for $\theta > 0$. Due to the effects of transverse constraint and weld reinforcement (measured dimensions were not reported), the strength of the PJP T-joints were 1.23 times the strength of the butt-joints. The authors proposed Equation 2.60 for PJP T-joints, which has a mean test-to-calculated ratio of 1.00 and a standard deviation of 0.014.

$$k_{ds} = 1.0 + 0.629\theta + 0.068\theta^2 \tag{2.60}$$

They also proposed Equation 2.61 for PJP Butt-joints, which has a mean test-to-calculated ratio of 0.995 and a standard deviation of 0.038.

$$k_{ds} = 1.0 + 0.0350 + 0.2950^2 \tag{2.61}$$

Reynolds et al. (2020)

Reynolds et al. (2020) tested six PJP welds in T-joints with single-bevel 45° groove angles and specified effective throats of 7/8 and 13/4 in. 1- and 2-in. thick A572 Grade 50 plates were welded in the Flat position with FCAW-G 70 ksi matching electrodes. Three specimens were loaded longitudinally and three were loaded transversely. Additionally, 15 specimens with combined PJP/fillet welds were loaded transversely.

All strength calculations used the measured weld geometries and material properties. The longitudinally-loaded specimens ruptured in the weld metal at loads that were accurately predicted with the AISC *Specification* equations. The mean rupture load for the transversely-loaded PJP specimens was 30% higher than the strength calculated with the AISC *Specification* equations. The authors noted that the rupture strength is most accurately predicted using the base metal tensile strength and the fusion zone area at the transverse plate (which is identical to the effective weld area) according to Equation 2.62.

$$R_n = F_u A_{we} \tag{2.62}$$

The mean rupture load for the combined PJP/fillet specimens was 21% higher than the strength calculated with the AISC *Specification* equations. These specimens ruptured along a roughly

bilinear path forming a crack near the PJP fusion zone at the transverse plate and projecting diagonally through the weld metal. This rupture pattern, which is similar to that described by Satoh et al. (1974), is shown in Figure 2.11. The authors noted that the reinforcing fillet welds provided no significant increase in strength for the geometries tested and they recommended that the strength is best calculated by neglecting the reinforcing fillet. However, they noted that this may not be the case where overmatching electrodes are used.

Fig. 2.11. Rupture plane from Reynolds et al. (2020).

HIGH-STRENGTH WELDS

Collin and Johansson (2005)

Collin and Johansson (2005) tested 27 longitudinally- and transversely-loaded fillet welds in highstrength steel joints. The measured uniaxial weld metal tensile strengths were 548 and 758 MPa. The authors noted that the Eurocode 3 (CEN, 2005) directional method is over-conservative for transverse fillet welds. They recommended Equation 2.63, which compared well with the experimental rupture loads and results in $k_{ds} = 1.41$ when $\theta = 90^{\circ}$.

$$\sqrt{\sigma_T^2 + 2\tau_T^2 + 3\tau_L^2} \le F_{EXX} \tag{2.63}$$

Kuhlmann et al. (2008)

Kuhlmann et al. (2008) tested both longitudinally- and transversely-loaded fillet welds as well as PJP welds in high-strength steel joints. Compared to the Eurocode 3 (CEN, 2005) directional method, the authors proposed a less conservative value of $\beta_w = 0.85$ for S460 steel. For the longitudinally-loaded fillet welds, the shear rupture stress was accurately calculated with Equation 2.13.

Rasche and Kuhlmann (2009)

Rasche and Kuhlmann (2009) studied both the strength and ductility of fillet-welded connections in high strength steel using experimental and numerical analyses. The weld electrode was selected to match the base metal in the first part of the study. The objective was to determine a more accurate correlation factor, β_w , for use in Eurocode 3 (CEN, 2005). The authors recommended $\beta_w = 0.79$ for longitudinal fillet welds connecting S460M steel, instead of 1.0 as specified in Eurocode 3.

In investigating different filler metals, overmatching electrodes increased the strength. For tests with S690Q base metals, changing the filler metal from 690 MPa specified strength to 890 MPa increased the weld resistance by 9%; however, the ductility was reduced by almost 50%. Consequently, they concluded that the strength is controlled by the filler metal rather than the base metal.

Bjork et al. (2012)

Bjork et al. (2012) tested 28 fillet welded high-strength steel joints loaded either in the transverse or longitudinal directions. Additionally, six specimens with both longitudinal and transverse welds were tested. The GMAW process was used and the measured uniaxial weld metal tensile strengths were 690, 915 and 1,245 MPa. Both double-lap and cruciform T-joints were tested.

Most of the specimens with transversely-loaded T-joints ruptured along the HAZ or fusion zone and generally, the remaining specimens ruptured in the weld metal. The longitudinally-loaded welds ruptured approximately along the theoretical effective throat, which is defined at a rupture angle of 45°. For the transversely-loaded specimens that ruptured in the weld metal, the rupture angles were approximately 20° from the load direction.

The strength of the longitudinally-loaded specimens with $l/E \le 50$ was accurately predicted with the Eurocode equations. For the specimens with $50 < l/E \le 150$ the strength was approximately 15% less than for the shorter welds.

Bjork et al. (2014)

Bjork et al. (2014) tested three high-strength linear fillet welds subjected only to in-plane moments. Two electrodes were specified with 980 MPa (140 ksi) strength, but different elongation values: 14% and 19%. The specimen with 19% elongation reached the plastic strength according to AISC *Specification* Equation J2-5, including the directional strength factor ($M_n = 0.90F_{EXX}EL^2/4$). However, both specimens with 14% elongation reached only the elastic strength according to AISC *Specification* Equation J2-5, including the directional strength factor ($M_n = 0.90F_{EXX}EL^2/4$). However, both specimens with 14% elongation reached only the elastic strength according to AISC *Specification* Equation J2-5, including the directional strength factor ($M_n = 0.90F_{EXX}EL^2/4$).

Sun et al. (2019)

Sun et al. (2019) tested 44 transversely-loaded fillet welds in high-strength double-lap joints and T-joints. The GMAW process was used and the measured uniaxial weld metal tensile strengths were 627, 727, 771 and 956 MPa. The rupture angles were approximately 20° (13° to 24°) from the load direction for all weld sizes and electrode grades. The average ductility of double-lap joints was similar to that of T-joints. The test-to-predicted ratios were between 1.68 and 2.52 with an average of 2.01 for the Eurocode equations. For the AISC equations, the test-to-predicted ratios were between 1.08 and 1.61 with an average of 1.29.

Of the two joint types, the measured rupture surface area was larger for the T-joints. Due to the penetration and the low rupture surface angle, much of the rupture area for the T-joints was in the HAZ rather than the weld metal. In high-strength welds, metallurgical softening causes the HAZ to be weaker than the base metal. This may explain why, although the measured rupture surface was larger at the T-joints, the rupture load for both joint types was approximately the same. Another factor that was discussed by the authors is the presence of friction at the faying surfaces of the lap-joints which cannot exist in the T-joints.

LONG FILLET WELDS

Although the tests summarized by Spraragen and Claussen (1942) showed that longitudinallyloaded fillet welds had high elastic stress concentrations at the end, it was shown that the rupture strength of short welds (l/w between 1.4 and 19), is unaffected by the weld length. The fillet weld tests by Higgins and Preece (1969), where the weld length varied from 1.5 to 4 in. (l/w between 6 and 16) showed that the experimental rupture stress increased slightly with length, however, the increase of 3% was deemed negligible and subsequent longitudinally-loaded tests had 2-in. long welds. Based on experimental testing by Biggs et al. (1981) on relatively short welds and comparisons with research from the literature, the authors concluded that the strength of long welds "are comparable with those for short welds."

Rosenthal and Levray (1939) tested ten longitudinally-loaded double-lap fillet weld joints. SMAW electrodes with a measured uniaxial tensile strength, σ_{uw} , of 57 ksi were used to connect plates with varying weld lengths. The normalized shear rupture stress, τ_u/σ_{uw} , is plotted against the normalized length, l/E, in Figure 2.12. The data follows a trend of reduced strength with increasing length.

Fig. 2.12. Normalized rupture stress versus normalized length for the longitudinal fillet welds tested by Rosenthal and Levray (1939).

Longitudinally-loaded fillet welds in lap joints have an uneven stress distribution along the weld, potentially causing an unzipping of the connection if the ends rupture. At low loads, when the welds are elastic, the stress distribution along the weld axis is nonuniform with the peak stresses at the weld ends as shown in Figure 2.13. This effect is caused by differential axial deformation of the connected elements. Equations were developed by Troelsch (1932) and Mocanu and Buga (1970) to describe this phenomenon in the elastic range. The stress concentrations are dependent

on the axial stiffness of each connected element, the shear stiffness of the welds and the weld length. At higher loads, inelastic weld deformation allows stress redistribution, causing more uniform stresses.

Fig. 2.13. Experimental stress distribution for end loaded fillet welds. (Redrawn from Moon, 1948).

Khanna (1969) studied long fillet welds theoretically and experimentally, with an emphasis on the ultimate strength. For three longitudinally-welded lap-joints with l/w = 75 (l = 17 in., w = 0.225 in.), the strengths were 3% lower than similar specimens with l/w = 4 (l = 1 in., w = 0.25 in.). However, this slight reduction was attributed to the nonuniform weld size along the length rather than the nonuniform stresses.

Feder (1994) used experimental results and inelastic finite element models to show that the inelastic weld deformations allowed stress redistribution, resulting in a more uniform stress distribution along the weld axis at the rupture load. Experiments by Blackwood (1930, 1931) showed that the plastic deformation of short welds is adequate to allow stress redistribution, so the welds are evenly stressed.

Bjork et al. (2012) tested 12 longitudinally-loaded double-lap fillet weld joints. GMAW electrodes with measured uniaxial tensile strengths, σ_u , of 100, 133 and 181 ksi were used to connect plates with varying weld lengths. The normalized shear rupture stress, τ_u/σ_{uw} , is plotted against the normalized length, l/E, in Figure 2.14. The authors noted that, generally, the rupture strength of the specimens with $l/E \leq 50$ was accurately predicted with the Eurocode equations. For the specimens with $50 < l/E \leq 150$ the strength was approximately 15% less than for the shorter welds.

Fig. 2.14. Normalized rupture stress versus normalized length for the longitudinal fillet welds tested by Bjork et al. (2012).
SHEAR-TO-TENSILE STRENGTH RATIO

According to Brockenbrough and Johnston (1974), the shear rupture strength of structural steel "ranges from 2/3 to 3/4 of the tensile strength." Gaines (1987) noted that a shear-to-tensile strength ratio of 0.75 has been approved for the design of welds in steel Naval ships. Lesik and Kennedy (1988) and Lesik and Kennedy (1990) summarized the weld shear strength data for four previous projects found in the literature with a total of 126 tests on longitudinally-loaded fillet weld joints. They calculated an average shear-to-tensile strength ratio, τ_u/σ_{uw} , of 0.749 with a coefficient of variation of 0.121. Melchers (1999) noted that, for the reliability analysis of longitudinal fillet welds, the ratio of shear strength to tensile strength is 0.84 with a standard deviation of 0.09 and a coefficient of variation of 0.10.

Table 2.2 summarizes the various shear-to-tensile strength ratios discussed in Chapter 2. For the specification provisions, the ratio ranges from 0.577 to 0.75. Generally, these values are conservative compared to the experimental results, which range from 0.64 to 0.885.

Table 2.2. Shear-to-tensile strength ratios, τ_u/σ_{uw} .						
Reference	τιίσιω	Source	Comments			
AISC Specification (AISC, 2016)	0.60	Specification				
AWS D1.1 (2015)	0.60	Specification				
Canadian Standard CSA (2014)	0.67	Specification				
Eurocode 3 (CEN, 2005)	0.722	Specification	$\beta_{W} = 0.80$			
Eurocode 3 (CEN, 2005)	0.679	Specification	$\beta_w = 0.85$			
Eurocode 3 (CEN, 2005)	0.642	Specification	$\beta_{w} = 0.90$			
Eurocode 3 (CEN, 2005)	0.577	Specification	β _w = 1.0			
AIJ (2012)	0.577	Specification				
Naval Ships	0.75	Specification	Gaines (1987)			
International Institute of Welding (IIW)	0.745	Specification	Van der Eb (1952)			
Spraragen and Claussen (1942)	0.64-0.84	Experimental				
Vreedenburgh (1954)	0.75	Experimental				
Swannell (1968)	0.885	Experimental				
Ligtenburg (1968), Strating (1971)	0.83	Experimental				
Brockenbrough and Johnston (1974)	0.67-0.75	Experimental				
Lesik and Kennedy (1988, 1990)	0.749	Experimental				
Miazga and Kennedy (1989)	0.764	Experimental				
Melchers (1999)	0.84	Experimental				
Li et al. (2007)	0.774	Experimental				
τ_u = measured weld metal shear rupture s	stress					
σ_{uw} = measured weld metal uniaxial ten	sile stress					

Krumpen and Jordan (1984) developed equations to estimate the shear strength of weld metal as a function of the tensile strength by curve fitting experimental results from the literature with filler metal classification strengths between 60 and 140 ksi. Equations 2.64 and 2.66 were developed for SMAW and GWAM electrodes, respectively. These equations were divided by the tensile strength, σ_{uw} , resulting in the shear-to-tensile strength ratios according to Equations 2.65 and 2.67.

$$\tau_u = 1.8\sigma_{uw}^{0.80} \tag{2.64}$$

$$\frac{\tau_u}{\sigma_{uw}} = \frac{1.8}{\sigma_{uw}^{0.20}} \tag{2.65}$$

$$\tau_u = 2.5 \sigma_{uw}^{0.75} \tag{2.66}$$

$$\frac{\tau_u}{\sigma_{uw}} = \frac{2.5}{\sigma_{uw}^{0.25}} \tag{2.67}$$

These equations were used to calculate the shear-to-tensile strength ratios in Table 2.3. Comparisons between Table 2.2 and 2.3 indicate that all of the specification ratios in Table 2.2 are over-conservative. Although the Eurocode 3 values are conservative by approximately 1.15 to 1.30, the general trend is captured, where the strength ratio reduces with increasing tensile strength.

Table 2.3. Shear-to-tensile strength ratios calculated with the Krumpen and Jordan (1984) Equations.						
FEXX	τ_u/c	Juw				
ksi	SMAW	GMAW				
60	0.794	0.898				
70	0.770	0.864				
80	0.749	0.836				
90	0.732	0.812				
100	0.717	0.791				
110	0.703	0.772				

DIRECTIONAL STRENGTH INCREASE FOR FILLET WELDS

An increase in the load angle, θ , for fillet welds results in a nonlinear strength increase and a decrease in ductility. Based on 18 experimental tests with loading angles of 0°, 30°, 60° and 90°, Clark (1971) showed that the transversely-loaded welds were approximately 70% stronger than the longitudinally-loaded welds. Gaines (1987) noted that a transverse-to-longitudinal strength ratio of 1.44 has been approved for the design of fillet welds in steel Naval ships.

Table 2.4 summarizes the transverse-to-longitudinal strength ratios found in the literature. The experimental values are between 1.12 and 1.70. The theoretical ratios range from 1.30 to 1.48, with a ratio of 1.50 for the semi-empirical equation developed by Miazga and Kennedy (1989). For the various specifications reviewed, the ratios are between 1.13 and 1.50.

Table 2.4. Fillet weld transverse-to-longitudinal strength ratios, k_{ds} , for θ = 90°.						
Reference	Kds	Source	Comments			
AISC Specification (AISC, 2016)	1.50	Specification				
AWS D1.1 (2015)	1.50	Specification				
Canadian Standard CSA (2014)	1.50	Specification				
Eurocode 3 (CEN, 2005)	1.22	Specification	Directional Method			
AIJ (2012)	1.40	Specification				
Naval Ships	1.44	Specification	Gaines (1987)			
International Institute of Welding (IIW)	1.13	Specification	Van der Eb (1952)			
Vreedenburgh (1954)	1.12	Experimental				
Archer et al. (1959)	1.56	Experimental				
Preece (1968)	1.57	Experimental	<i>F_{EXX}</i> = 70 ksi			
Preece (1968)	1.44	Experimental	<i>F_{EXX}</i> = 110 ksi			
Ligtenburg (1968), Strating (1971)	1.60	Experimental				
Butler and Kulak (1971)	1.45	Experimental				
Clark (1971)	1.70	Experimental				
Kato and Morita (1974)	1.46	Experimental				
Kamtekar (1982), Kamtekar (1987)	1.41	Theoretical				
Kennedy and Kriviak (1985)	1.42	Experimental				
Neis (1985)	1.41	Theoretical				
McClellan (1989)	1.51	Experimental	<i>F_{EXX}</i> = 70 ksi			
McClellan (1989)	1.39	Experimental	<i>F_{EXX}</i> = 100 ksi			
Miazga and Kennedy (1989)	1.50	Semi-empirical				
Bowman and Quinn (1994)	1.20-1.70	Experimental				
Iwankiw (1997)	1.41	Theoretical				
Collin and Johansson (2005)	1.41	Semi-empirical				
Lu et al. (2015)	1.48	Theoretical				
Lu and Dong (2020)	1.30	Theoretical				
Luo et al. (2020a)	1.41	Theoretical				
Luo et al. (2020b)	1.34	Experimental				

FUSION ZONE STRENGTH

Several research projects, including Preece (1968), tested experimental specimens with overmatched weld metal, showing that rupture typically occurs in the weld metal, including the specimens where the weld metal strength exceeded the base metal strength by a substantial amount. Because of this, an evaluation of the strength of fusion zones is not required by the AISC *Specification*.

Rupture at the fusion zone has been reported in experimental specimens for both fillet and PJP welds. Under some conditions, such as single-bevel PJP welds, fusion zone rupture can be expected because the theoretical effective throat coincides with one of the fusion zones. In this case, the theoretical calculations are correct and provide an accurate estimate of the joint strength. However, unexpected fusion zone ruptures, where rupture occurs along a surface that does not coincide with the theoretical effective throat, have also occurred in tests. Unexpected fusion zone ruptures have been documented in only in a small portion of the experimental specimens.

High-Strength Steel

According to Bjork et al. (2018), high-strength base metals, which were defined as materials with $F_y \ge 500$ MPa (72.5 ksi), are more prone to rupture at the fusion zones than lower-strength steels. According to the authors, "due to softening and other metallurgical effects," the fusion zones "may be weaker than the adjacent base material."

Ginn et al. (2011) tested 20 double-lap longitudinal fillet weld specimens. The joints were fabricated using the GMAW process with high-strength inner plates ($F_y = 460$ MPa, $F_u = 720$ MPa) and standard-grade outer plates. The electrodes were selected to match the high-strength plates. The variables were weld size (6, 8 and 10 mm), weld length (50, 85 and 120 mm) and base metal thickness. The specimens ruptured either in the weld metal or along the fusion zone of the high-strength plate. Generally, the specimens that failed in the fusion zone had lower experimental rupture stresses.

Most of the transversely-loaded fillet welded high-strength steel joints tested by Bjork et al. (2012), ruptured along the fusion zone. Generally, the remaining specimens, including the longitudinally-loaded welds, ruptured in the weld metal. For the transversely-loaded specimens that ruptured in the weld metal, the rupture angles were approximately 20° from the load direction.

Tuominen et al. (2018) tested transversely-loaded T-joints with single-sided fillet welds and PJP single-bevel groove welds. There were no fusion zone ruptures for the specimens with base metal yield stresses equal to 400 MPa. However, for the 13 specimens fabricated with S960 material, which had a measured yield stress of 1041 MPa, a measured rupture stress of 1210 MPa and a measured weld metal tensile stress of 980 MPa, three specimens ruptured at the fusion zone, three specimens ruptured in the weld metal and the remaining specimens failed in the base material.

Due to the penetration and the low rupture surface angle, much of the rupture area for the transversely-loaded fillet welded T-joints tested by Sun et al. (2019) was in the HAZ rather than the weld metal. The authors noted that metallurgical softening may have reduced the rupture stresses for these joints.

Fillet Welds

Ales (1990) reported a fusion zone rupture at the top portion of a single-plate shear connection, where double fillet welds were used to connect the plate to the supporting rectangular HSS column.

The fusion zone rupture of a transversely-loaded double fillet weld specimen was documented by Dubina and Stratan (2002). Due to excessive convexity, the shortest distance from the root to the face was along the fusion zone; therefore, this rupture plane would be predicted if the actual weld profile were used in the analysis.

Zhao and Hancock (1995) tested nine specimens with transversely-loaded fillet welds connecting cold-formed rectangular HSS shapes to end plates in T-joints. Eight of the specimens ruptured in the base metal and one failed at the fusion zone of the HSS wall. The experimental rupture strength of the specimen that failed along the fusion zone was only 86% of the average experimental strength of the remaining specimens.

PJP Welds

For the PJP groove weld specimens tested by Gagnon and Kennedy (1989), the primary rupture location was at or near the fusion zone of the plate with the square preparation. The rupture stresses for all specimens were similar to or greater than the measured uniaxial tensile stress of the weld metal.

CHAPTER 3 EXPERIMENTAL PROGRAM

To meet the objectives of this research project, experimental specimens with both fillet and PJP welds were tested. Three different base metal strengths and three different weld metal strengths were specified. A total of 71 specimens were tested, including 18 transverse fillet weld specimens, 15 longitudinal fillet weld specimens, 17 transverse PJP weld specimens, 15 transverse PJP weld specimens and 6 skewed PJP weld specimens. The specimen shop drawings are in Appendix A. All specimens were shop welded using the Flux-Core Arc Welding (FCAW) process with CO2 gas shielding. Welding Procedure Specifications (WPS) for each filler metal classification strength are in Appendix C.

SPECIMEN GEOMETRY

Transverse Fillet Weld Specimens

Compared to lap joints, Ng et al. (2002) reported slightly lower strength and significantly lower ductility for cruciform joints. Therefore, the transverse fillet weld specimens in this project are of the cruciform configuration as shown in Figure 3.1. The specimen variables are listed in Table 3.1. All runoff tabs were removed before testing.

Fig. 3.1. Transverse fillet weld specimens.

Table 3.1. Transverse Fillet Weld Specimen Details.							
Spec.	FEXX	Fy	w	W 1	t	L	
No.	ksi	ksi	in.	in.	in.	in.	
FT1	70	36	1⁄4	5⁄16	1	2	
FT2	70	36	1⁄4	5⁄16	1	4	
FT3	70	36	1⁄4	5⁄16	1	6	
FT4	70	36	3⁄8	1/2	1¼	2	
FT5	70	36	3⁄8	1/2	1¼	4	
FT6	70	36	3⁄8	1/2	1¼	6	
FT7	70	36	1⁄2	5⁄8	1¾	2	
FT8	70	36	1/2	5⁄8	1¾	4	
FT9	70	36	1/2	5⁄8	1¾	6	
FT10	80	65	1⁄4	5⁄16	1	6	
FT11	80	70	3⁄8	1⁄2	1½	6	
FT12	80	70	1⁄2	5⁄8	2	4	
FT13	100	65	1⁄4	5⁄16	1¼	2	
FT14	100	65	1⁄4	5⁄16	1¼	6	
FT15	100	70	3⁄8	1⁄2	1¾	2	
FT16	100	70	3⁄8	1⁄2	1¾	6	
FT17	100	70	1/2	5⁄8	2	2	
FT18	100	70	1⁄2	5⁄8	2	4	
F_{EXX} = filler metal classification strength (specified minimum uniaxial tensile strength)							
$F_v = \text{speci}$	fied minimu	m vield stre	enath of the	plates			

Longitudinal Fillet Weld Specimens

The longitudinal fillet weld specimens are shown in Figure 3.2, and the variables are listed in Table 3.2. The specimens were partially saw-cut at both the specimen mid-length and the runoff tabs, resulting in continuous weld lengths, L. These partial-depth cuts encompassed the entire weld, including the penetration.

Fig. 3.2. Longitudinal fillet weld specimens.

Table 3.2. Longitudinal Fillet Weld Specimen Details.								
Spec.	FEXX	Fy	w	t	<i>t</i> ₁	L	<i>L</i> ₁	
No.	ksi	ksi	in.	in.	in.	in.	in.	
FL1	70	36	1⁄4	1	3⁄4	2	3	
FL2	70	36	1⁄4	1	3⁄4	4	5	
FL3	70	36	1⁄4	1½	1	6	8	
FL4	70	36	3⁄8	1	3⁄4	2	3	
FL5	70	36	3⁄8	1½	1	4	5	
FL6	70	36	3⁄8	1½	1	6	8	
FL7	70	36	1/2	1	3⁄4	2	3	
FL8	70	36	1/2	1½	1	4	5	
FL9	80	70	1⁄4	1½	1	6	8	
FL10	80	70	3⁄8	1½	1	4	5	
FL11	100	65	1⁄4	1	3⁄4	2	3	
FL12	100	70	1⁄4	1½	1	6	8	
FL13	100	65	3⁄8	1	3⁄4	2	3	
FL14	100	70	3⁄8	1½	1	4	5	
FL15	100	65	1/2	1	3⁄4	2	3	
F_{EXX} = fille	er metal clas	sification st	rength (spe	cified minin	num uniaxia	al tensile str	ength)	
$F_y = \text{speci}$	fied minimu	m yield stre	ength of the	plates				

Transverse PJP Weld Specimens

The transverse PJP weld specimens were fabricated using butt joints with double-bevel groove preparations according to prequalified joint designation B-P5. The specimen details are shown in Figure 3.3, with the variables listed in Table 3.3. All runoff tabs were removed before testing.

Section A-A

Fig. 3.3. Transverse PJP weld specimens.

Table 3.3. Transverse PJP Specimen Details.							
Spec.	FEXX	Fy	S	t	%		
No.	ksi	ksi	in.	in.	Fused		
PT1	70	36	1⁄4	3⁄4	67		
PT2	70	36	3⁄8	1	75		
PT3	70	36	5⁄16	1½	42		
PT4	70	36	3⁄8	1½	50		
PT5	70	36	1⁄2	1½	67		
PT6	70	36	1⁄2	2	50		
PT7	70	65	1⁄4	3⁄4	67		
PT8	70	70	3⁄8	1½	50		
PT9	80	36	1⁄4	3⁄4	67		
PT10	80	36	3⁄8	1½	50		
PT11	80	36	1⁄2	1½	67		
PT12	80	65	1⁄4	3⁄4	67		
PT13	80	70	3⁄8	1½	50		
PT14	100	36	1⁄4	3⁄4	67		
PT15	100	36	3⁄8	1½	50		
PT16	100	65	1⁄4	3⁄4	67		
PT17	100	70	3⁄8	1½	50		
F_{EXX} = filler metal classification strength (specified minimum							
uniaxial tensile strength)							
F_{y} = specified minimum yield strength of the plates							
S = specified weld preparation groove depth for each weld							
% Fused =	= theoretica	l value base	ed on the sp	ecified geo	metry		
	= (100%)(2,	S/t)	-	-			

Longitudinal PJP Weld Specimens

The longitudinal PJP weld specimens were fabricated using both corner and T-joints with groove preparations according to prequalified joint designations C-P5 and T-P5, respectively. The specimen details are shown in Figure 3.4, with the variables listed in Table 3.4. The specimens were partially saw-cut at both the specimen mid-length and the runoff tabs, resulting in 4-in. long continuous welds. These partial-depth cuts encompassed the entire weld, including the penetration.

Section A-A (Joint Type B)

Section A-A (Joint Type T)

Fig. 3.4. Longitudinal PJP weld specimens.

Table 3.4. Longitudinal PJP Specimen Details.								
Spec.	FEXX	Fy	S	t 1	t 2	Joint		
No.	ksi	ksi	in.	in.	in.	Туре		
PL1	70	36	1⁄4	1½	3⁄4	В		
PL2	70	36	5⁄16	2	1	В		
PL3	70	36	3⁄8	2½	1¼	В		
PL4	70	36	7⁄16	2½	1¼	В		
PL5	80	36	1⁄4	2	1	В		
PL6	80	36	3⁄8	2½	1¼	В		
PL7	100	36	1⁄4	2	1	В		
PL8	100	36	5⁄16	2½	1¼	В		
PL9	80	65/70	1⁄4	2 (70 ksi)	1 (65 ksi)	В		
PL10	80	65/70	3⁄8	2 (70 ksi)	1 (65 ksi)	В		
PL11	100	65/70	1⁄4	2 (70 ksi)	1 (65 ksi)	В		
PL12	100	65/70	5⁄16	2 (70 ksi)	1 (65 ksi)	В		
PL13	70	36	3⁄8	2½	1	Т		
PL14	80	36	3⁄8	2½	1	Т		
PL15	100	36	5⁄16	2½	1	Т		
<i>F_{EXX}</i> = filler metal classification strength (specified minimum uniaxial tensile strength)								
i y – specili		i yiciu streng	in or the pla	103				

Skewed PJP Weld Specimens

The skewed PJP weld specimens were fabricated using butt joints with double-bevel groove preparations according to prequalified joint designation B-P5. The specimen details are shown in Figure 3.5, with the variables listed in Table 3.5. Specimens PS3 and PS6 were specified with a $\frac{1}{2}$ in. groove depth; however, the measured depth of $\frac{7}{16}$ in. is listed in Table 3.5. All runoff tabs were removed before testing.

Section A-A

Fig.	3.5.	Skewed	PJP	weld	specimens.
------	------	--------	-----	------	------------

Table 3.5. Skewed PJP Specimen Details.							
Spec.	FEXX	Fy	S	t	%		
No.	ksi	ksi	in.	in.	Fused		
PS1	70	36	1⁄4	3⁄4	67		
PS2	70	36	3⁄8	1½	50		
PS3	70	36	7⁄16	1½	67		
PS4	100	36	1⁄4	3⁄4	67		
PS5	100	36	3⁄8	1½	50		
PS6	100	36	7⁄16	1½	67		
<i>F_{EXX}</i> = filler metal classification strength (specified minimum							
uniaxial tensile strength)							
$F_v = \text{speci}$	fied minimu	m vield stre	enath of the	plates			

PROCEDURE

The specimens were tested on a 600 kip Tinius Olsen universal testing machine at a load rate of 20 to 30 kips per minute. A loaded test specimen is shown in Figure 3.6.

Fig. 3.6. Test setup.

Pre-Test Measurements

The weld lengths were measured for each weld. Dimensions of each fillet weld leg were measured at multiple locations along the weld length. As shown in Figures 3.7a and 3.7b, w_L is the measurement parallel to the faying surface and w_T is the measurement perpendicular to the faying surface. For PJP welds, the reinforcement, x, was measured at multiple locations along the weld length. This dimension is shown in Figure 3.7c. The specimen measurements are listed in Appendix G.

a. Transverse fillet welds

b. Longitudinal fillet welds

c. Partial penetration welds

Fig. 3.7. Pre-test weld size measurements.

Post-Test Measurements and Preparation

Figure 3.8 shows the specimens after testing. The length of the rupture surface, L_r , was measured for all specimens and the rupture width, E_r , was measured at multiple locations along the weld length. The rupture angles, γ , were measured from the faying surface as shown in Figure 3.9. Typically, the rupture surfaces were irregular and varied along the length; therefore, the rupture angles were measured at multiple locations along the length. The specimen measurements are listed in Appendix G. Specimens FL5, FL14, PL2, PL4, PL8, PL13, PL14 and PL15 were selected

for cross-sectional macro etching. For these specimens, the weld dimensions that were measured manually were verified with digital measurements. The specimens were sectioned with a band saw, as shown in Figure 3.10. Photographs of the specimens, including the etched cross sections, are in Appendix F.

Fig. 3.8. Specimens after testing.

a. Transverse fillet welds

b. Longitudinal fillet welds

c. Transverse PJP welds

d. Longitudinal and skewed PJP welds

Fig. 3.10. Sectioning a specimen for etching.

RESULTS

Material Properties

Mill Test Reports (MTR) for the plates are in Appendix B. For each material grade and thickness, the measured yield and ultimate stresses from the MTRs are listed in Table 3.6. All of the values met the requirements in the corresponding ASTM standard. An ancillary test on the 2 in. A709 HPS 70WF3 plate revealed upper yield and ultimate stresses that were approximately 3% less than the values reported in the MTR.

Table 3.6. Measured tensile properties from the mill test reports.							
	4	Specified	Minimum	Meas	sured		
ASTM Grade	in.	<i>F_y</i> ksi	<i>F</i> u ksi	σ _{yb} ksi	σ _{ub} ksi		
A36	0.75	36	58	44.0	72.0		
A36	1	36	58	48.5	77.0		
A36	1.25	36	58	42.2	70.5		
A36	1.5	36	58	44.5	71.9		
A36	1.75	36	58	37.2	66.9		
A36	2	36	58	42.1	70.5		
A36	2.5	36	58	42.0	72.0		
A572 Grade 65	0.75	65	80	72.5	94.0		
A572 Grade 65	1	65	80	74.2	94.1		
A572 Grade 65	1.25	65	80	70.5	91.5		
A709 HPS 70W T3ª	1.5	70	85	82.0	99.0		
A709 HPS 70W F3ª	1.75	70	85	80.0	93.0		
A709 HPS 70W F3ª	2	70	85	82.0	95.0		
^a Quenched and tempered							

Mill Test Reports (MTR) for each filler metal classification strength are in Appendix D. All-weldmetal tension tests, according to ASTM A370 (ASTM, 2017), were used to measure the weld metal strength. Tension coupons were machined from standard groove-welded test plates. Three test plates for each weld classification were manufactured according to AWS A5.20. Plate dimensions are shown in Figure 3.11. The same figure shows the location, where the tensile coupons were cut. Tension coupons were prepared according to AWS B4.0 (AWS, 2016) and shaped for the tension test as shown in Figure 3.12. All-weld-metal test reports are in Appendix E and the mean measured tensile strengths are listed in Table 3.7.

Fig. 3.11. Groove-welded test plates for all-weld-metal tension tests.

Fig. 3.12. Tensile specimen geometry for all-weld-metal tension tests.

Table 3.7. Average tensile test results.						
Classification	Reduction in Area %					
E71T	75.8	31.0	69.3			
E81T1	80.8	29.3	70.0			
E101T1	100	23.3	60.0			
σ_{uw} = experimental uniaxial tensile rupture stress based on all-weld-metal specimens, ksi						

Rupture Surfaces

Typically, the rupture surfaces were irregular, with rupture angles that varied along the length. Generally, the specimens ruptured in the weld metal. The section on Fusion Zone Rupture discusses several specimens that ruptured along the fusion zone, either partially or completely.

Weld Strength

The experimental rupture loads for the specimens are listed in Appendix G. Table 3.8 shows the average P_e/P_n , P_e/P_c and f_r/σ_{uw} ratios for the longitudinal fillet weld specimens, where P_e is the experimental rupture load, P_n is the nominal strength calculated with the AISC Specification

equations, P_c is the strength calculated with the measured weld size and the measured weld metal tensile strength, f_r is the rupture stress calculated with the measured rupture surface area and σ_{uw} is the experimental uniaxial tensile rupture stress based on all-weld-metal specimens. Table 3.9 shows the average values for the P_e/P_n , P_e/P_c and f_r/σ_{uw} ratios for the transverse fillet weld specimens.

Table 3.8. Strength ratios for longitudinal fillet welds.							
Emar	Pe / Pn		Pe/ Pc		fr/σ _{uw}		
ksi	Average	Standard Deviation	Average	Standard Deviation	Average	Standard Deviation	
70	2.09	0.266	1.66	0.160	0.857	0.0448	
80	1.95	0.0988	1.83	0.112	0.978	0.0610	
100	1.44	0.153	1.24	0.0906	0.769	0.119	
All Specimens	1.85	0.366	1.54	0.260	0.844	0.103	

Table 3.9. Strength ratios for transverse fillet welds.								
_	Pe/Pn		Pe/Pc		fr/σ _{uw}			
ksi	Average	Standard Deviation	Average	Standard Deviation	rd on Average	Standard Deviation		
70	1.84	0.306	1.51	0.175	0.888	0.100		
80	1.53	0.189	1.42	0.103	0.980	0.0418		
100	1.24	0.102	1.06	0.0730	0.857	0.0770		
All Specimens	1.59	0.360	1.34	0.245	0.893	0.0946		

Tables 3.10, 3.11 and 3.12 show the average values for the P_e/P_n , P_e/P_c and f_r/σ_{uw} ratios for the longitudinal, transverse and skewed PJP weld specimens, respectively. P_c was calculated with an effective throat equal to the groove depth with no consideration of the reinforcement.

Table 3.10. Strength ratios for longitudinal PJP welds.								
Ener	Pe/Pn		Pe/ Pc		fr/σ _{uw}			
ksi	Average	Standard Deviation	Average	Standard Deviation	Average	Standard Deviation		
70	1.48	0.153	1.36	0.142	0.762	0.0704		
80	1.18	0.277	1.17	0.274	0.776	0.106		
100	1.23	0.122	1.23	0.122	0.730	0.0620		
All Specimens	1.31	0.234	1.26	0.205	0.756	0.0831		

Table 3.11. Strength ratios for transverse PJP welds.								
_	Pe/Pn		Pe / Pc		fr/ouw			
ksi	Average	Standard Deviation	Average	Standard Deviation	Average	Standard Deviation		
70	2.33	0.362	2.15	0.334	1.28	0.156		
80	1.71	0.225	1.69	0.223	1.56	0.182		
100	1.56	0.123	1.56	0.123	1.17	0.130		
All Specimens	1.97	0.446	1.88	0.372	1.34	0.219		

Table 3.12. Strength ratios for skewed PJP welds.								
E	Pe/Pn		Pe / Pc		fr/σ _{uw}			
ksi	Average	Standard Deviation	Average	Standard Deviation	Average	Standard Deviation		
70	1.62	0.149	1.50	0.138	1.02	0.0723		
100	1.16	0.0112	1.16	0.0112	0.94	0.0236		
All Specimens	1.39	0.255	1.33	0.196	0.98	0.0689		

CHAPTER 4 ANALYSIS AND DISCUSSION

ELECTRODE STRENGTH COEFFICIENT

Instantaneous Center of Rotation Method

Butler et al (1972) developed the Instantaneous Center of Rotation (ICR) method based on the empirical load-deformation curves from Butler and Kulak (1971), who tested linear fillet welds at angles of 0° , 30° , 60° and 90° from the loading direction. The tests by Butler and Kulak (1971) as well as the tests on eccentrically-loaded weld groups by Butler et al. (1972) used 60 ksi electrodes and $\frac{1}{4}$ in. fillet welds. According to Butler et al (1972), "Because E60 and E70 electrodes have specified ultimate elongations nearly the same, it is felt that these results could be applied to connections made using E70 electrodes by proper consideration of the increase in electrode strength. The method could be used for fillet welds made from electrodes other than E60 and E70 by ascertaining the load-deformation response for these welds."

The ICR equations in AWS D1.1 Section 2.6.4.3 were primarily developed by Lesik and Kennedy (1990). Lesik and Kennedy (1990) used linear regression to develop the load-deformation curves with the data from Miazga and Kennedy (1989), who tested 70 ksi fillet welds with varying load angles from 0 to 90° in 15° increments.

Because the ICR method is iterative, considerable design effort is required to calculate the strength of a weld group using this method. AISC *Manual* Tables 8-4 through 8-11 provide a simpler, non-iterative design method by listing the appropriate ICR coefficients for several different weld group geometries.

Background of the Electrode Strength Coefficient

The values in AISC *Manual* Tables 8-4 through 8-11 were calculated using $F_{EXX} = 70$ ksi. The strength of weld groups with other weld metal strengths can be calculated by adjusting the table coefficients by the electrode strength coefficient, C_1 in *Manual* Table 8-3.

The 6th Edition AISC *Manual* was the first to provide information on eccentrically-loaded weld groups. The elastic method was used to develop design tables with 60 ksi weld metal strength. The weld group strengths for other weld metal strengths were calculated with the weld metal strength ratio, $F_{EXX}/60$ ksi. The 7th Edition *Manual* used elastic design with 70 ksi welds; therefore, the weld group strength for other weld metal strengths was calculated with the weld metal strength ratio, $F_{EXX}/70$ ksi.

The 8th Edition *Manual* was the first to publish design tables that were based on the ICR method. The development of these tables, which were also published in the 9th Edition *Manual*, was discussed by Tide (1980). The table coefficients were calculated with 70 ksi weld metal and C_1 was used to calculate the weld group strength for other weld metal strengths, where $C_1 = F_{EXX}/70$ ksi.

For the 1st Edition LRFD *Manual* and the 13th Edition combined ASD/LRFD *Manual*, as well as all later editions, the tables were based on the ICR method with 70 ksi weld metal. However, the value of C_1 included a reduction factor equal to either 0.90 (for 80 and 90 ksi welds) or 0.85 (for 100 and 110 ksi welds). These values are shown in Table 4.1.

Table 4.1. Electrode strength coefficient, C ₁ .									
F _{EXX}	60	70	80	90	100	110			
C ₁	0.857	1.00	1.03	1.16	1.21	1.34			
F _{EXX} 70 ksi	0.857	1.00	1.14	1.29	1.43	1.57			
$\frac{C_{1}}{\left(\frac{F_{EXX}}{70\text{ksi}}\right)}$	1.00	1.00	0.90	0.90	0.85	0.85			

The background of these reduction factors is ambiguous, and communication with members of past Manual Committees (Thornton, 2020; Tide, 2020) revealed no further information. It is believed that these reductions are recommended in the *Manual* because higher-strength welds are less ductile than E60 and E70 welds. Sufficient ductility of the critical weld segment within the weld group is required for load redistribution without rupture of the critical weld. The lower ductility of high-strength welds combined with the lack of research on eccentrically-loaded high-strength weld groups likely resulted in the 0.90 and 0.85 reduction factors recommended in the *Manual*. Similar factors are not required for designing higher strength welds using the AISC *Specification* or AWS D1.1.

Ductility of High-Strength Welds

To investigate the accuracy of the current electrode strength coefficients, the ductility of highstrength welds will be evaluated. Because transverse fillet welds have much less deformation capacity than longitudinal fillet welds, the ductility of transverse high-strength welds are the primary concern. In weld groups with both longitudinal and transverse welds, the longitudinal weld strength will be limited by the ductility of the transverse weld. According to Equation 2.9, the normalized rupture deformations for longitudinal and transverse welds are $\Delta u/w = 0.17$ and $\Delta u/w = 0.056$, respectively.

Figure 4.1 shows a plot of the weld metal tensile strength versus the normalized rupture deformation, Δ_u/w , of fillet welds. The data are from the 93 experimental tests on high-strength longitudinally- and transversely-loaded fillet welds by Collin and Johansson (2005), Bjork et al. (2012) and Sun et al. (2019). The red x data points represent transverse welds and the blue hollow circles represent longitudinal welds. The red and blue vertical dashed lines represent the AWS normalized rupture deformations for longitudinal and transverse welds, respectively. It can be observed that, for tensile strengths less than 120 ksi, the AWS equations provide conservative estimates of the normalized rupture deformations.

Fig. 4.1. Weld metal tensile strength versus normalized rupture deformation.

The average normalized deformations from this data are listed in Table 4.2. The data for 60 ksi welds from Butler and Kulak (1971) are also listed. A comparison of the rupture deformations shows that, for longitudinal welds, the rupture deformation of high-strength welds is 68% of that of 60 ksi welds; however, the rupture deformation of transverse welds is independent of strength. Because the shape of the load-deformation curves for high-strength welds is similar to that of 60 ksi welds, high-strength longitudinal welds in weld groups will reach a higher proportion of their rupture load compared to 60 ksi welds. The average transverse-to-longitudinal normalized deformation ratio for lap joints is 0.103/0.284 = 0.363, which is similar to the value calculated with AWS D1.1 Equation AWS-5: 0.056/0.17 = 0.33.

Table 4.2. Average normalized deformation.							
loint Typo	<i>F_{EXX}</i> = 60 ksi (Butler and Kulak, 1971)	High Strength Steel ($F_{EXX} \approx 80$ to 180 ks					
Joint Type	Average ∆ _u /w	Number of specimens	Average ∆ _u /w				
Longitudinal	0.420	26	0.284				
Transverse (Total)		67	0.0966				
Transverse lap-joints	0.104	36	0.103				
Transverse T-joints		31	0.0889				

Load-Deformation Curves

An evaluation of the load-deformation curves can provide further information on the behavior of high-strength fillet welds. The equations developed by Neis (1985) explicitly compensate for the effect of reduced weld metal ductility on the behavior.

The elongation requirements for carbon and low-alloy steels for SMAW, GMAW, FCAW and SAW welding processes from AWS A5.1 (AWS, 2012), A5.5 (AWS, 2014), A5.17 (AWS, 2019), A5.18 (AWS, 2017), A5.20 (AWS, 2015), A5.23 (AWS, 2011), A5.28 (AWS, 2020) and A5.29 (AWS, 1998) are summarized in Table 4.3. Generally, weld metals exceed these requirements. For example, the average elongation measurements for the all-weld-metal tensile tests in Table 3.7 of this report are approximately 40 to 50% higher that the required minimum values in Table 4.3. Therefore, the values in Table 4.4 are considered appropriate lower-bounds for analyses with the Neis (1985) equations. The strength ratios, σ_{tu}/F_{EXX} , in Table 4.4 are between 1.11 and 1.17. These values are similar to the constraint factor by Miazga and Kennedy (1989), which is 1.14 when $\theta = 90^{\circ}$.

Table 4.3. Minimum elongation for all-weld-metal tension tests, percent.									
FEXX		Welding Process							
ksi	SMAW	GMAW	FCAW	SAW					
60	17 to 22		22	22					
70	17 to 25	19 to 24	20 to 22	22					
80	17 to 24	17 to 24	19	20					
90	17 to 24	16 to 18	16 to 17	17					
100	16 to 20	16	15 to 18	16					
110	15 to 20	15	15	15					
120	11 to 18	14 to 15	14	14					

Table 4.4. Variables for Neis (1985) equations.								
<i>F_{EXX}</i> ksi	ευ	σ _{tu} ksi	$\sigma_{tu} F_{EXX}$					
70	0.22	81.6	1.17					
80	0.19	91.4	1.14					
90	0.17	101	1.12					
100	0.16	112	1.12					
110	0.15	122	1.11					
120	0.14	133	1.11					

The Butler and Kulak (1971) curves were scaled up from 60 ksi to 70 ksi and plotted in Figures 4.2 and 4.3 for longitudinal and transverse welds, respectively. These normalized load versus normalized deformation curves are for 70 ksi electrodes. The figures also include the AWS and Neis (1985) equations. The curves show that the Neis curves provide a close approximation of the shape of the empirical curves of Butler and Kulak, while also resulting in rupture loads that are similar to the AWS curves. Also, the Neis equations explicitly compensate for the effect of reduced weld metal ductility on the behavior. Therefore, the Neis curves will be used as a baseline to project the behavior of higher-strength weld metals.

Fig. 4.2. Normalized load versus normalized deformation for 70 ksi longitudinal fillet welds.

Fig. 4.3. Normalized load versus normalized deformation for 70 ksi transverse fillet welds.

For both the AWS and Neis (1985) equations, the normalized load versus normalized deformation curves are plotted in Figures 4.4 and 4.5 for 70 ksi and 120 ksi electrodes, respectively. Generally, the AWS curves are higher than the Neis curves for transverse welds and lower than the Neis

curves for longitudinal welds. Because the AWS equations predict a similar, but more conservative, proportion of the longitudinal strength at the transverse rupture load, it can be concluded that the AWS curves are conservative for both 70 ksi and 120 ksi electrodes.

Fig. 4.4. Normalized load versus normalized deformation for 70 ksi fillet welds.

Fig. 4.5. Normalized load versus normalized deformation for 120 ksi fillet welds.

Recommendations

Based on the experimental rupture deformations and the load-deformation curves, it was concluded that the electrode strength coefficient, C_1 in *Manual* Table 8-3 can be based on the direct ratio, $F_{EXX}/70$ ksi, when $F_{EXX} \le 120$ ksi.

EFFECT OF LENGTH ON THE STRENGTH OF FILLET WELDS

The literature review showed that, for relatively short welds, the weld length has no significant effect on the strength. Because longer welds in longitudinally-loaded fillet welded lap joints have an uneven stress distribution along the weld, differential axial deformation of the connected elements can cause a significant reduction in the weld strength.

Figure 4.6 shows the results of the longitudinally-loaded welds tested in this project, where the normalized rupture stresses, τ_u/σ_{uw} , are plotted against the normalized lengths, L_r/E_r . Fillet and PJP welds are represented by the hollow triangles and the x data points, respectively. The different colors represent the different weld metal strengths. For each data set, the clear trend is that the weld strength increases with length.

Fig. 4.6. Normalized rupture stress versus normalized length for longitudinal welds.

Although the experimental results reported in Figure 4.6 show that the weld strength increases with length, these results are applicable only to relatively short welds. For longer welds in longitudinally-loaded fillet welded lap joints, the differential axial deformation of the connected elements can cause a significant reduction in the weld strength. The stress concentrations will decrease when the welds begin to yield, but for long joints, the inelastic deformation will not be adequate to allow the weld to be uniformly stressed along its length. In this section, a reduction factor will be derived using the deformations defined by Equations 2.8 and 2.9.

At full strength, Equation 2.8 results in a deformation of 0.12w for longitudinally-loaded fillet welds. The rupture deformation according to Equation 2.9 is 0.17w. Therefore, the remaining deformation capacity of a fully-loaded weld is

$$\Delta_a = \Delta_u - \Delta_m = 0.17w - 0.12w = 0.05w \tag{4.1}$$

It is assumed that the weld segment at one end of the connecting element will deform 0.12w and the other end will deform 0.17w, resulting in a relative displacement of 0.05w. For uniform loading along the weld, the relative displacement of the connection elements between the weld ends is

$$\Delta = \frac{Pl}{2E_c} \left(\frac{1}{A_1} - \frac{1}{A_2} \right) \tag{4.2}$$

where

 A_1 = sectional area of the smallest connecting element, in.²

 A_2 = sectional area of the largest connecting element, in.²

 E_c = modulus of elasticity of the connecting elements

P = axial force, kips

For double-lap joints, the total area of the outer plates is used for A_1 or A_2 .

Setting Δ equal to Δ_a and solving for w results in the critical fillet weld size

$$w = \frac{10Pl}{E_c} \left(\frac{1}{A_1} - \frac{1}{A_2} \right)$$
(4.3)

Because the connecting elements are assumed to be elastic, the minimum area is $A_1 = P/F_y$. Substituting this into Equation 4.3 and solving for the critical length ratio, l/w, as a function of the area ratio, A_2/A_1 , results in Equation 4.4.

$$\frac{l}{w} = \frac{E_c}{10F_y \left(1 - \frac{1}{A_2 / A_1}\right)}$$
(4.4)

The critical length ratio, can be expressed with Equation 4.5, where k_2 is dependent solely on the area ratio as shown in Table 4.5.

$$\frac{l}{w} = k_2 \frac{E_c}{F_y} \tag{4.5}$$

Table 4.5. Length coefficients for					
various area ratios.					
A ₂ / A ₁	k 2				
1.5	0.30				
2.0	0.20				
2.5	0.17				
3.0	0.15				
3.5	0.14				
4.0	0.13				
8	0.10				

A reasonable worst-case area ratio is 2.5, resulting in the following recommended revisions for AISC *Specification* Section J2.2b(d):

When $F_{EXX} \leq 120$ ksi, the effective length of fillet welds is

- (1) For end-loaded fillet welds with a length up to $0.17E_{cW}/F_{y}$, it is permitted to take the effective length equal to the actual length.
- (2) When the length of the end-loaded fillet weld exceeds $0.17E_{cw}/F_{y}$, the effective length shall be determined by multiplying the actual length by the reduction factor, β , determined as:

$$\beta = 1.2 - \frac{l}{w} \frac{F_y}{E_c} \tag{4.6}$$

where

l = length of a single weld in the loading direction, in. w = weld leg size, in.

(3) When the length of the weld exceeds $0.51E_cw/F_y$, the effective length shall be taken as $0.31E_cw/F_y$

FUSION ZONE STRENGTH

Specimen Fusion Zone Ruptures

All of the longitudinal fillet weld specimens ruptured in the weld metal. This was expected because all of these specimens had σ_{ub}/σ_{uw} ratios between 0.940 and 1.17.

Generally, the longitudinal PJP weld specimens, which had σ_{ub}/σ_{uw} ratios between 0.770 and 1.17, ruptured in the weld metal. Only Weld 4 in Specimen PL4 ruptured at the fusion zone of the outside plate as shown in Figures 4.7a and b. The measured tensile stresses were 70.5 ksi for the outer plates and 75.8 ksi for the weld metal. However, the primary cause of the fusion zone rupture was the weld geometry. The average reinforcement of this weld, shown in Figure 4.7c, was 0.049 in. according to the pre-test measurements. This reinforcement created a condition where, based on digital measurements from the etched section, the shortest distance from the root to the face was along the fusion zone. In this case, the rupture strength was unaffected by the change in rupture location.

a. Ruptured specimen.

b. Ruptured specimen.

c. Etched section.

Fig. 4.7. Specimen PL4 Weld 4.

In all but four specimens, the transverse fillet welds ruptured completely in the weld metal. These specimens had σ_{ub}/σ_{uw} ratios between 0.719 and 1.31. Specimen PT1 had a mixed rupture surface in both the weld and fusion zone as shown in Figure 4.8. The measured tensile stresses were 72.0 ksi for the plates and 75.8 ksi for the weld metal. Specimen PT7 ruptured at the fusion zone of the non-prepared plate as shown in Figure 4.9. This was unexpected because the specimen had

undermatching weld metal with measured tensile stresses of 94.0 ksi for the plates and 75.8 ksi for the weld metal. For Specimen PT14, the bottom weld ruptured in the weld metal; however, the top rupture surface primarily followed the fusion zone in the non-prepared plate as shown in Figure 4.10. This specimen had overmatching weld metal with measured tensile stresses of 72.0 ksi for the plates and 100 ksi for the weld metal. Specimen PT16 ruptured at the fusion zone in the non-prepared plate as shown in Figure 4.11. The measured tensile stresses were 94.0 ksi for the plates and 100 ksi for the weld metal.

Fig. 4.8. Specimen PT1.

Fig. 4.9. Specimen PT7.

Fig. 4.10. Specimen PT14.

Fig. 4.11. Specimen PT16.

Six of the transverse fillet weld specimens ruptured partially of completely in the fusion zone. Generally, for the specimens that ruptured in the weld metal, the rupture angles, γ , were between 50° and 80°. The specimens that ruptured at the fusion zone had rupture angles greater than 80°. These specimens had σ_{ub}/σ_{uw} ratios between 0.883 and 1.23. For Specimen FT1, the fusion zone at the bottom weld ruptured as shown in Figure 4.12. For Specimen FT2, the fusion zone at the top weld ruptured as shown in Figure 4.13. For these Specimens, the measured tensile stresses were 77.0 ksi for the plates and 75.8 ksi for the weld metal. As shown in Figure 4.14, fusion zone rupture in the bottom weld occurred in Specimen FT4, which had measured tensile stresses of 70.5 ksi for the plate and 75.8 ksi for the weld metal. Figure 4.15 shows the fusion zone rupture in the top weld and partially at the bottom weld of Specimen FT8. For this specimen, the measured tensile stresses were 66.9 ksi for the plate and 75.8 ksi for the weld metal. A fusion zone rupture also occurred in the bottom weld of Specimen FT9, which had measured tensile stresses of 66.9 ksi for the plate and 75.8 ksi for the weld metal. The fusion zone sof both the top and bottom welds of Specimen FT11 ruptured. The measured tensile stresses were 99.0 ksi for the plate and 80.8 ksi for the weld metal.

Fig. 4.12. Specimen FT1.

Fig. 4.13. Specimen FT2.

Fig. 4.14. Specimen FT4.

Fig. 4.15. Specimen FT8.

Design Methods

Due to intermixing of the weld metal with the base metal, several researchers have suggested using various proportions of the base metal strength, F_u , and the weld metal strength, F_{EXX} , in the design of welded joints. In a previous section of this report, the experimental results were compared to the strengths calculated with the measured weld metal strength, σ_{uw} . In this section, the experimental results for the specimen groups that ruptured at or near the fusion zone are compared to the strengths calculated with both the average and minimum of the measured weld metal strength

and the measured base metal strength, σ_{ub} . σ_{ua} is the average of σ_{uw} and σ_{ub} . σ_{um} is the minimum of σ_{uw} and σ_{ub} . For the specimens that were fabricated from plates with different tensile strengths, the tensile strength of the plate that was the most likely to rupture in the fusion zone was used in the calculations.

Tables 4.6a and 4.6b show the average values for the P_e/P_n , P_e/P_c and f_r/σ_u ratios for the longitudinal PJP weld specimens using σ_{ua} and σ_{um} , respectively. P_c was calculated with an effective throat equal to the groove depth with no consideration of the reinforcement. Because the inner and outer plates had different measured tensile stresses, the calculations were based on σ_{ub} of the outer plates.

Table 4.6a. Strength ratios for longitudinal PJP welds using σ_{ua} .								
_	Pe / Pn		Pe/Pc		fr/σua			
ksi	Average	Standard Deviation	Average	Standard Deviation	Average	Standard Deviation		
70	1.62	0.168	1.38	0.125	0.775	0.0751		
80	1.28	0.385	1.17	0.319	0.762	0.0989		
100	1.44	0.216	1.34	0.171	0.793	0.0267		
All Specimens	1.46	0.300	1.30	0.235	0.777	0.0744		

Table 4.6b. Strength ratios for longitudinal PJP welds using σ_{um} .								
-	Pe/Pn		Pe / Pc		fr/oum			
ksi	Average	Standard Deviation	Average	Standard Deviation	Average	Standard Deviation		
70	1.78	0.185	1.42	0.118	0.793	0.0797		
80	1.45	0.518	1.24	0.317	0.812	0.1020		
100	1.79	0.439	1.49	0.268	0.875	0.0398		
All Specimens	1.68	0.424	1.38	0.262	0.824	0.0856		

Tables 4.7a and 4.7b show the average values for the P_e/P_n , P_e/P_c and f_r/σ_u ratios for the transverse PJP weld specimens using σ_{ua} and σ_{um} , respectively. P_c was calculated with an effective throat equal to the groove depth with no consideration of the reinforcement.

Table 4.7a. Strength ratios for transverse PJP welds using σ_{ua} .								
	Pe/Pn		Pe/ Pc		fr/o _{ua}			
ksi	Average	Standard Deviation	Average	Standard Deviation	rd on Average	Standard Deviation		
70	2.44	0.385	2.11	0.334	1.26	0.153		
80	1.86	0.274	1.69	0.223	1.56	0.209		
100	1.85	0.212	1.71	0.123	1.27	0.125		
All Specimens	2.13	0.432	1.89	0.372	1.35	0.213		
Tab	ole 4.7b. Stre	ngth ratios f	or transvers	e PJP welds	using σ_{um} .			
---------------	----------------	-----------------------	--------------	-----------------------	-----------------------	-----------------------		
E	Pe	/ P n	Pe	/ P c	fr/c	σum		
ksi	Average	Standard Deviation	Average	Standard Deviation	Average	Standard Deviation		
70	2.68	0.421	2.22	0.325	1.33	0.164		
80	2.09	0.389	1.82	0.245	1.67	0.216		
100	2.30	0.463	1.90	0.333	1.41	0.189		
All Specimens	2.42	0.495	2.03	0.358	1.45	0.240		

Tables 4.8a and 4.8b show the average values for the P_e/P_n , P_e/P_c and f_r/σ_u ratios for the transverse fillet weld specimens using σ_{ua} and σ_{um} , respectively. Because the transverse and longitudinal plates had different measured tensile stresses, the calculations were based on σ_{ub} of the longitudinal plates.

Tab	ole 4.8a. Stre	ngth ratios f	or transvers	e fillet welds	using σ_{ua} .	
E	Pe	/ P _n	Pe	/ P c	fr/	σua
ksi	Average	Standard Deviation	Average	Standard Deviation	Average	Standard Deviation
70	2.01	0.334	1.55	0.144	0.916	0.114
80	1.50	0.201	1.30	0.0912	0.895	0.0299
100	1.35	0.121	1.10	0.0724	0.887	0.0772
All Specimens	1.71	0.404	1.36	0.234	0.903	0.0938

Tab	le 4.8b. Stre	ngth ratios f	or transverse	e fillet welds	using σ _{um} .	
F -max	Pel	' P n	Pel	' P c	f _r /e	5um
ksi	Average	Standard Deviation	Average	Standard Deviation	Average	Standard Deviation
70	2.22	0.369	1.60	0.125	0.951	0.133
80	1.53	0.189	1.42	0.103	0.980	0.0418
100	1.49	0.149	1.14	0.0725	0.920	0.0776
All Specimens	1.86	0.459	1.42	0.234	0.946	0.107

Discussion

For longitudinal PJP welds, the f_r/σ_{ua} ratio for all specimens in Table 4.6a is 0.777 with a standard deviation of 0.0744. This indicates a more accurate solution compared to the 0.756 ratio in Table 3.10, which has a standard deviation of 0.0831. This is caused primarily by the strength of the specimens with overmatching weld metal.

Similar conclusions can be drawn by comparing the ratios in Table 4.7a to those in Table 3.11 for transverse PJP welds. In this case, the values in Table 4.7 show a more uniform level of conservatism, which is caused by the reduction in the calculated strength of the specimens with overmatching weld metal.

Because the fillet welded specimens were fabricated with more closely matched weld metals, comparisons between the strength ratios of Tables 4.8 and 3.9 reveal only slight differences. However, both the P_e/P_c and f_r/σ_{ua} ratios are more uniform, with lower standard deviations.

SHEAR-TO-TENSILE STRENGTH RATIO

Table 4.9 lists the average shear-to-tensile strength ratios, τ_u/σ_{uw} , for each weld strength tested in this report. These values include the results for all longitudinally-loaded fillet and PJP weld specimens. Generally, these FCAW values are between the SMAW and GMAW values in Table 2.3, which were calculated with the equations developed by Krumpen and Jordan (1984). The data also agrees reasonably-well with the statistical analysis by Lesik and Kennedy (1988) and Lesik and Kennedy (1990), who calculated an average shear-to-tensile strength ratio, τ_u/σ_{uw} , of 0.749 with a coefficient of variation of 0.121.

Table 4.9. S	hear-to-tensile str	ength ratios.
	τu	lσuw
ksi	Average	Standard Deviation
70	0.820	0.0725
80	0.843	0.134
100	0.752	0.0996
All Specimens	0.803	0.104

Both the current experimental results and the results discussed in the literature review show that a reasonable design value for F_{nw}/F_{EXX} is 0.70. Although a reliability analysis is required before implementing the increase from 0.60 to 0.70, the current and proposed test-to-predicted ratios, P_e/P_c , are shown in Tables 4.10 and 4.11 for longitudinal fillet welds and longitudinal PJP welds, respectively. Because the effective throat is along the fusion zone of the PJP welds, Table 4.12 provides the strength ratios calculated with $\tau_u/\sigma_{ua} = 0.70$ and $\tau_u/\sigma_{um} = 0.70$, where σ_{ua} and σ_{um} are defined in the section on fusion zone strength.

Table 4.10.	Strength rat	ios for longit	tudinal fillet	welds.
	Pe	/ P c	Pel	P _c
FEXX	(τulσuw	= 0.60)	(τι/σιω	= 0.70)
ksi	Average	Standard Deviation	Average	Standard Deviation
70	1.66	0.160	1.42	0.137
80	1.83	0.112	1.57	0.0962
100	1.24	0.0906	1.06	0.0777
All Specimens	1.54	0.260	1.32	0.222

Table 4.11.	Strength rat	ios for longi	tudinal PJP	welds.
	Pe	/ P c	Pel	P _c
FEXX	(τι/σιω	= 0.60)	(τι/σιω	= 0.70)
ksi	Average	Standard Deviation	Average	Standard Deviation
70	1.36	0.142	1.17	0.121
80	1.17	0.274	1.01	0.235
100	1.23	0.122	1.05	0.105
All Specimens	1.26	0.205	1.08	0.176

Table 4.12.	Strength rat	ios for longi	tudinal PJP	welds.
	Pe	/ P c	Pel	/ P c
FEXX	(τu/σua	= 0.70)	(τu/σum	= 0.70)
ksi	Average	Standard Deviation	Average	Standard Deviation
70	1.19	0.107	1.21	0.101
80	1.00	0.273	1.06	0.272
100	1.15	0.147	1.28	0.229
All Specimens	1.12	0.201	1.19	0.225

DIRECTIONAL STRENGTH INCREASE FOR FILLET WELDS

An increase in the load angle, θ , for fillet welds results in a nonlinear strength increase and a decrease in ductility. AISC *Specification* Equation J2-5 is plotted for $\theta = 0^{\circ}$, 30° , 60° and 90° in Figure 4.16. Figure 4.17 shows an equivalent interaction curve for the AISC nominal weld strength based on vector components at $\theta = 0^{\circ}$ and $\theta = 90^{\circ}$. The curve shows that if a weld is loaded to its rupture strength in longitudinal shear, it can sustain an additional load in the transverse direction of up to 45% of the transverse shear strength without rupture. This is supported by the experimental data reported by Biggs et al. (1981).

Fig. 4.16. AISC strength ratio versus normalized deformation for fillet welds.

Fig. 4.17. Interaction between longitudinal and transverse loading.

Table 2.4 summarizes the transverse-to-longitudinal strength ratios found in the literature. The experimental values are between 1.12 and 1.70. The theoretical ratios range from 1.30 to 1.48, with a ratio of 1.50 for the semi-empirical equation developed by Miazga and Kennedy (1989). For the various specifications reviewed, the ratios are between 1.13 and 1.50. The P_e/P_c ratios in Tables 3.8 and 3.9 indicate that, for the experimental results in this report, the average transverse-to-longitudinal strength ratio is (1.34)(1.50)/(1.54) = 1.30.

Although the plastic flow strength has been used for some limit analysis models, most of the theoretical models for fillet weld strength were developed using failure theories that were intended to predict first yield (maximum principal stress, maximum shear stress, von-Mises effective stress). Clearly, there are difficulties in attempting to predict rupture with these failure criteria.

The AISC *Specification* defines the effective throat as the shortest distance from the root to the face of the diagrammatic weld. However, theoretical calculations and measurements of experimental rupture plane orientations have shown that the rupture angle, α , decreases as the loading angle, θ , increases. The experimental rupture angles were approximately 45° when $\theta = 0^{\circ}$ and 22.5° when $\theta = 90^{\circ}$. This increases the rupture plane width from 0.707*w* when $\alpha = 45^{\circ}$ to 0.765*w* when $\alpha = 22.5^{\circ}$. Also, the state of stress at the rupture plane changes from simple shear when $\theta = 0^{\circ}$ to combined shear and tension when $\theta = 90^{\circ}$.

In Appendix H, three different failure theories were considered in the derivations for the strength of skewed fillet welds: von-Mises, maximum normal stress and maximum shear stress (Tresca). For each model, the surface where maximum stresses are generated was determined for both longitudinal and transverse loading. The location of maximum stress is not necessarily located in the plane of minimum throat. It was determined that the rupture load is highly-dependent on the perpendicular force, F, which is defined as $a \times P$, as shown in Figure 4.18. This strength dependence on a may explain the discrepancies in the experimental research and the reason lap

joints generally perform better than T-joints (Ng et al., 2002).

Fig. 4.18. Skewed T-Joint with double fillet welds.

The Tresca criterion was determined to be the most accurate failure theory to predict the rupture strength of welds. The directional strength increase factor, k_{ds} , was plotted using the theoretical equation that was developed using the Tresca criterion. Equation 4.7 was developed by curve fitting these data points. Both the theoretical data points and the curve-fit equation are plotted in Figure 4.19.

$$k_{ds} = 1.17 + 0.508a - 0.266a^2 \tag{4.7}$$

Fig. 4.19. Transverse-to-longitudinal strength ratio using the Tresca criterion.

Based on experimental results for lap joints, Miazga and Kennedy (1989) showed that a constant value of 0.345 is applicable for θ between 45° and 90°. Lu and Dong (2020) showed that the theoretical value for *a* is approximately 0.3. Gallow (2019) determined that *a* = 0.21 provided the most accurate solution compared to his experimental tests on lap joints. Table 4.13 shows the recommended values of *a* with the corresponding values for *k*_{ds}, which were calculated with Equation 4.7.

Table 4.13. kds fr	om Equation 4.7.
а	Kds
0	1.17
0.21	1.27
0.3	1.30
0.345	1.31
1	1.41

For $k_{ds} = 1.30$, the directional strength increase can be calculated with Equation 4.8. Equation 4.9 is proposed for calculating the nominal weld metal stress for fillet welds, F_{nw} .

$$k_{ds} = 1.0 + 0.30\sin^{1.5}\theta \tag{4.8}$$

$$F_{nw} = 0.7F_{EXX} \left(1.0 + 0.30 \sin^{1.5} \theta \right)$$
(4.9)

Table 4.14 shows the average values of the P_e/P_c ratios for the transverse fillet weld specimens using Equation 4.9. To consider the base metal strength, ratios are shown for $F_{nw} = 0.910\sigma_{uw}$ as well as $F_{nw} = 0.910\sigma_{ua}$ and $F_{nw} = 0.910\sigma_{um}$. For transverse welds, Equation 4.9 produces similar results compared to AISC *Specification* Equation J2-5; therefore, the values in Table 4.14 are similar to those in Tables 3.9, 4.8a and 4.8b.

Table 4.	14. Strength	ratios for tra	ansverse fille	et welds usin	g Equation 4	4.9.
	Pe	/ P c	Pe	/ P c	Pe	/ P c
FEXX	$(F_{nw} = 0$.910σuw)	(<i>F</i> _{nw} = 0	.910σ _{ua})	(<i>F</i> _{nw} = 0	.910σ _{um})
ksi	Average	Standard Deviation	Average	Standard Deviation	Average	Standard Deviation
70	1.49	0.173	1.53	0.143	1.59	0.124
80	1.41	0.102	1.29	0.0902	1.41	0.102
100	1.05	0.0722	1.08	0.0716	1.12	0.0717
All Specimens	1.33	0.243	1.34	0.232	1.40	0.232

The average P_e/P_c ratio in Table 4.14 for $F_{nw} = 0.910\sigma_{ua}$ is 1.34 with a standard deviation of 0.232. These values are similar to those in Table 4.10 for longitudinal fillet welds with $\tau_u/\sigma_{uw} = 0.70$, which had an average of 1.32 and a standard deviation of 0.222. Therefore, it is concluded that Equation 4.9 provides a uniform reliability level for all fillet weld specimens documented in this report.

Similar to the proposals by Van der Eb (Faltus, 1986) and Collin and Johansson (2005), a design equation for fillet welds was developed by modifying von Mises criterion according to Equation 4.10. This equation results in $k_{ds} = 1.29$ when $\theta = 90^{\circ}$.

$$\sqrt{0.8\sigma^2 + 1.6\tau_T^2 + 2\tau_L^2} \le F_{EXX}$$
(4.10)

STRENGTH OF TRANSVERSE PJP WELDS

In the AISC Specification, the transverse-to-longitudinal strength ratio for PJP welds is 1.00. Both the Eurocode 3 (CEN, 2005) and Architectural Institute of Japan (AIJ, 2012) equations result in a transverse-to-longitudinal strength ratio of $\sqrt{3} = 1.73$. Because the strength ratios, P_e/P_c , in Table 3.11 are over-conservative, this section will study the effect of designing transverse PJP welds with $F_{nw} = F_{EXX}$ in lieu of the AISC Specification value of $F_{nw} = 0.60F_{EXX}$. If $0.6\sigma_{uw}$ is replaced by $1.0\sigma_{uw}$, the P_e/P_c ratios in Table 4.15 replace the values shown in Table 3.11. In both cases, P_c was calculated with an effective throat equal to the groove depth with no consideration of the reinforcement. Because the effective throat is along the fusion zone, the strength ratios calculated with σ_{ua} and σ_{um} are also listed in Table 4.15. The most accurate results are for the strengths calculated with $F_{nw} = 1.0\sigma_{ua}$.

Table 4	.15. Strengtl	n ratios for ti	ransverse P.	IP welds usi	ng <i>F_{nw}</i> = 1.0c	Su.
	Pel	1 P c	Pel	/ P c	Pel	/ P c
FEXX	(<i>F_{nw}</i> = 1	.00σuw)	(<i>F_{nw}</i> = 1	1.00σ _{ua})	(<i>F</i> _{nw} = 1	. 00 σum)
ksi	Average	Standard Deviation	Average	Standard Deviation	Average	Standard Deviation
70	1.29	0.201	1.27	0.193	1.33	0.195
80	1.02	0.134	1.01	0.146	1.09	0.147
100	0.94	0.0741	1.02	0.114	1.14	0.200
All Specimens	1.13	0.223	1.14	0.206	1.22	0.215

OTHER COMMENTS

PJP Weld Geometry

The etched PJP specimens showed that, generally, the welds had a significant unfused distance at the root. This is shown in Figures 4.20 and 4.21 for Specimens PL2 and PL15, respectively. These distances, measured digitally, were typically between $\frac{1}{16}$ and $\frac{3}{16}$ in. for the etched PJP specimens.

Longitudinal PJP Specimens PL13, PL14 and PL15 were fabricated with T-joints and the remaining specimens were fabricated with corner joints. For the T-joints, the average measured rupture surface width, E_r , was 1.32 times the depth of preparation, S. This was much larger than for the corner joints, where E_r averaged 0.970 times S. However, the results indicated that the normalized rupture stress calculated with the measured rupture surface area, f_r/σ_{uw} , was similar for all specimens. Therefore, the T-joints were significantly stronger than the corner joints due to the larger effective throat dimensions. The larger effective throats were caused by the differences in reinforcement geometries for each joint type. The average reinforcement was 0.675S and 0.121S for the T-joints and corner joints, respectively. The reinforcement geometries for corner and T-joints are shown in Figures 4.20 and 4.21, respectively.

Fig. 4.20. Specimen PL2 (etched).

Fig. 4.21. Specimen PL15 (etched).

The rupture surface widths for the transverse PJP specimens with $F_{EXX} = 70$ ksi were as expected, with an average value of 1.01 times the depth of preparation, *S*. However, for the specimens with $F_{EXX} = 80$ and 100 ksi, the rupture surface widths averaged only 0.733*S*. This difference was primarily caused by differences in the reinforcement dimensions, which averaged 0.217*S* for the 70 ksi specimens and only 0.0599*S* for the 80 and 100 ksi specimens.

Fillet Weld Geometry

For the fillet weld specimens, the etched sections revealed the expected weld profiles, including appropriate penetration as shown for Specimen FL5 in Figure 4.22. Because the longitudinal specimens had approximately 45° rupture angles, which coincides with the effective throat, the penetration depth can be estimated by subtracting the effective throat based on the measured weld dimensions from the measured rupture surface width. Based on this, the penetration depth varied from approximately $-\frac{1}{16}$ in. to $+\frac{1}{16}$ in., with average values between -0.0332 in. and +0.0621 in. for each specimen. Most of the negative values were for the 100 ksi specimens and the larger positive values were for the 70 ksi specimens.

Fig. 4.22. Specimen FL5 (etched).

Generally, the measured fillet weld leg dimensions, w_m , were larger than the specified weld sizes, w. For the 33 fillet weld specimens, the measured-to-specified leg ratio, $\rho_G = w_m/w$, averaged 1.16 with a coefficient of variation (COV) of 0.101. However, as with the previous research by Li et al. (2007), ρ_G decreases with increasing weld size according to Table 4.16. ρ_G was also calculated with the effective throat ratio, based on the measured unequal leg dimensions, with almost identical results.

Table 4.16. Fillet v	veld measured-to-sp	ecified leg ratios.
W	$\rho_G = w_m / w$	COV
1⁄4	1.23	0.0802
3⁄8	1.19	0.0581
1/2	1.02	0.0542
All Specimens	1.16	0.101

Design of Skewed PJP Welds

Similar to the proposals by Van der Eb (Faltus, 1986) and Collin and Johansson (2005), a design equation for skewed PJP welds was developed by modifying von Mises criterion according to Equation 4.11. Equation 4.11 is conservative compared to the experimental rupture stresses of the skewed PJP specimens, with an average experimental-to-calculated ratio of 1.31 and a standard deviation of 0.0728.

$$\sqrt{\sigma^2 + 2\tau^2} \le F_w \tag{4.11}$$

where

- F_u = specified minimum tensile strength of the base metal, ksi
- $F_w = F_{EXX}$ for joints with matching and undermatching weld metal, ksi
 - $=(F_{EXX}+F_u)/2$ for joints with overmatching weld metal, ksi
- σ = normal stress perpendicular to the plane of the throat, ksi.
- τ = shear stress in the plane of the throat, ksi.

CHAPTER 5 SUMMARY AND CONCLUSIONS

SUMMARY

This report addressed several design issues related to the strength of fillet welds and PJP welds. To meet the objectives of this research project, the available literature was reviewed, failure theories were used to derive theoretical equations, and a total of 71 experimental specimens with both fillet and PJP welds were tested. The objectives of this project included an evaluation of:

- 1. The directional strength increase factor for fillet welds
- 2. The effect of length on the strength of fillet welds
- 3. The strength of PJP welds subjected to tension normal to the weld axis
- 4. The fusion zone strength of PJP welds
- 5. Electrode strength coefficient, C₁, in AISC Manual Table 8-3

DESIGN RECOMMENDATIONS

Equation 4.9 provides a uniform reliability level for all fillet weld specimens documented in this report. Compared to AISC *Specification* Equation J2-5, Equation 4.9 results in a 1% strength increase for transversely-loaded welds and a 17% increase for longitudinally-loaded welds. For short fillet welds, the proposed shear strength of $0.7F_{EXX}$ is conservative, which results in a margin to accommodate the strength variations for joints with low l/w ratios. For longer welds in longitudinally-loaded fillet-welded lap joints, a revised design method was proposed that explicitly considers the effects of yield stress and modulus of elasticity on the weld strength.

PJP welds can be designed using Equation 4.11. Compared to AISC *Specification* Equation J2-3 with $F_{nw} = 0.60F_{EXX}$, Equation 4.11 results in a 67% strength increase for transversely-loaded welds and a 18% increase for longitudinally-loaded welds.

For fillet and PJP joints with matching electrodes, calculation of the fusion zone strength is not required. For fillet and PJP joints with overmatching electrodes, the fusion zone strength can be calculated with the average of the base metal strength, F_u , and the weld metal strength, F_{EXX} .

Based on the experimental rupture deformations and the load-deformation curves, it was concluded that the electrode strength coefficient, C_1 in *Manual* Table 8-3 can be based on the direct ratio, $F_{EXX}/70$ ksi, when $F_{EXX} \le 120$ ksi.

FUTURE RESEARCH

The recommendations in this report should be verified with a reliability analysis that includes the data in this report as well as the extensive data for both fillet and PJP welds in the existing literature. A complete analysis would include longitudinal, transverse and skewed fillet welds, as

well as joints that combine longitudinal and transverse fillet welds. It would also be beneficial to study the reliability of eccentrically-loaded fillet weld joints. For PJP welds, both longitudinal and transverse welds should be evaluated. Where adequate test results are available, high-strength welds should be included in the analysis.

- A_1 = sectional area of the smallest connecting element, in.²
- A_2 = sectional area of the largest connecting element, in.²
- A_{we} = effective area of the weld, in.²
- C_1 = electrode strength coefficient
- E = effective throat of the weld, in.
- E_c = modulus of elasticity of the connecting elements, ksi
- E_p = actual weld throat defined as the penetration depth plus the effective throat according to AISC *Specification* Section J2.2a, in.
- E_r = experimental rupture surface width, in.
- F_c = rupture stress that considers the effect of base metal dilution, ksi
- F_{EXX} = filler metal classification strength (specified minimum uniaxial tensile strength), ksi
- F_{nw} = nominal stress of the weld metal, ksi
- F_u = specified minimum tensile strength of the base metal, ksi
- F_{vi} = allowable stress of the weld metal, ksi
- $F_w = F_{EXX}$ for joints with matching and undermatching weld metal, ksi
 - $= (F_{EXX} + F_u)/2$ for joints with overmatching weld metal, ksi
- F_y = specified minimum yield strength, ksi
- K_{at} = empirical coefficient for transversely-loaded double-lap fillet weld joints
- L = weld length, in.
- L_r = experimental rupture surface length, in.
- M_{W} = coefficient that accounts for differences in the weld deformation capacity.
- P = axial force, kips
- P_e = experimental rupture load, kips
- P_n = nominal strength calculated with the AISC *Specification* equations, kips
- P_c = strength calculated with the measured weld size and the measured weld metal tensile strength, kips
- R_i = strength at deformation Δ_i , kips
- S = PJP weld preparation groove depth, in.
- V_L = longitudinal load, kips
- V_T = transverse load, kips
- V_u = weld strength at $\theta = 0^\circ$, kips
- a = the portion of P that defines the transverse force on the weld cross section
- f_r = experimental rupture stress calculated with the measured rupture surface area, ksi
- k = constraint factor
- $k_2 =$ length coefficient
- k_{ds} = directional strength increase factor
- l = length of a single weld in the loading direction, in.
- n =strain-hardening exponent
- p = penetration ratio
- r_{crit} = distance from the instantaneous center of rotation to the weld element with the minimum Δ_u/r_i ratio, in.
- r_i = distance from the instantaneous center of rotation to element i, in.
- t =thickness, in.

- w =fillet weld leg size, in.
- $w_1 = \text{size of fillet weld Leg 1, in.}$
- $w_2 = \text{size of fillet weld Leg 2, in.}$
- w_L = measured leg dimension parallel to the faying surface, in.
- w_T = measured leg dimension perpendicular to the faying surface, in.
- x = measured reinforcement dimension for PJP welds, in.
- α = angle between the loading direction and the rupture plane, degrees
- α_d = angle between the weld longitudinal axis and the weld displacement direction
- β_w = correlation factor
- Δ = relative displacement of connecting elements between weld ends, in.
- Δ_a = remaining deformation capacity of a weld element at maximum strength, in.
- Δ_m = deformation of weld element at maximum stress, in.
- Δ_u = deformation of weld element at ultimate stress (rupture), in.
- Δ_i = deformation of weld element at intermediate stress levels, in.
- $\delta_i = \Delta_i / w$
- $\delta_u = \Delta_u / w$
- ε_u = uniaxial engineering tensile rupture strain
- γ = experimental angle from the faying surface to the rupture surface, degrees
- γ_{M2} = partial safety factor
- σ = normal stress perpendicular to the plane of the throat, ksi
- σ_e = experimental rupture stress, ksi
- σ_T = normal stress perpendicular to the plane of the throat, ksi.
- σ_{tu} = true tensile rupture stress, ksi
- σ_{ua} = average of σ_{uw} and σ_{ub} , ksi
- σ_{ub} = experimental tensile stress of the base metal, ksi
- σ_{um} = minimum of σ_{uw} and σ_{ub} , ksi
- σ_{uw} = experimental uniaxial tensile rupture stress of the weld metal, ksi
- τ = shear stress in the plane of the throat, ksi.
- τ_L = shear stress in the plane of the throat, parallel to the weld axis, ksi.
- τ_T = shear stress in the plane of the throat, perpendicular to the weld axis, ksi
- τ_u = shear rupture stress, ksi
- θ = angle between the line of action of the required force and the weld longitudinal axis, degrees
- θ_1 = angle between the line of action of the required force and the weld longitudinal axis for the weld segment under consideration, degrees
- θ_2 = angle between the line of action of the required force and the weld longitudinal axis for the weld segment in the group that is nearest to 90°
- θ_p = groove angle measured from the load direction, degrees

REFERENCES

ABW (1931), *Report of Structural Steel Welding Committee*, American Bureau of Welding, American Welding Society.

AIJ (2012), *Recommendations for Design of Connections in Steel Structures*, The Architectural Institute of Japan.

AISC (2017), *Steel Construction Manual*, Fifteenth Edition, May, American Institute of Steel Construction, Chicago, IL.

AISC (2016), *Specification for Structural Steel Buildings*, ANSI/AISC 360-10, July 7, American Institute of Steel Construction, Chicago, IL.

Ales, J.M. (1990), *The Design of Shear Tabs Welded to Tubular Columns*, Master's Thesis, The University of Wisconsin at Milwaukee, December.

Archer, F.E., Fischer, H.K. and Kitchen, E.M. (1959), "Fillet Welds Subjected to Bending and Shear," *Civil Engineering and Public Works Review*, Vol. 54, pp. 455-458.

Archer, F.E., Fischer, H.K. and Kitchen, E.M. (1964), *The Strength of Fillet Welds*, University of New South Wales.

ASTM (2017), *Standard Test Methods and Definitions for Mechanical Testing of Steel Products*, ASTM A370-17, ASTM International, West Conshohocken, PA.

AWS (2020), Specification for Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding, AWS A5.28/A5.28M, American Welding Society, Miami, FL.

AWS (2019), Specification for Carbon Steel Electrodes and Fluxes for Submerged Arc Welding, AWS A5.17/A5.17M, American Welding Society, Miami, FL.

AWS (2017), Specification for Carbon Steel Electrodes and Rods for Gas Shielded Arc Welding, AWS A5.18/A5.18M, American Welding Society, Miami, FL.

AWS (2016), *Standard Methods for Mechanical Testing of Welds*, AWS B4.0:2016, American Welding Society, Miami, FL.

AWS (2015), *Structural Welding Code-Steel*, AWS D1.1:2015, American Welding Society, Miami, FL.

AWS (2015), Specification for Carbon Steel Electrodes for Flux Cored Arc Welding, AWS A5.20/A5.20M, American Welding Society, Miami, FL.

AWS (2014), *Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding*, AWS A5.5/A5.5M, American Welding Society, Miami, FL.

AWS (2012), *Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding*, AWS A5.1/A5.1M, American Welding Society, Miami, FL.

AWS (2011), Specification for Low-Alloy Steel Electrodes and Fluxes for Submerged Arc Welding, AWS A5.23/A5.23M, American Welding Society, Miami, FL.

AWS (1998), *Specification for Low-Alloy Steel Electrodes for Flux Cored Arc Welding*, AWS A5.29/A5.29M, American Welding Society, Miami, FL.

AWS (1937), "Stress Distribution in Fillet Welds," *Welding Research Supplement*, May, American Welding Society, Miami, FL.

Biggs, M.S., Crofts, M.R., Higgs, J.D. Martin, L.H. and Tzogius, A. (1981), "Failure of Fillet Weld Connections Subject to Static Loading," *Joints in Structural Steelwork, Proceedings of the Conference held at Teeside Polytechnic*, Pentech Press, London, England.

Bjork, T., Ahola, A. and Tuominen, N. (2018), "On the Design of Fillet Welds Made of Ultra-High-Strength Steel," *Welding in the World*, Vol. 62.

Bjork, T., Penttila, T. and Nykanen, T. (2014), "Rotation Capacity of Fillet Weld Joints Made of High-Strength Steel," *Welding in the World*, Vol. 58.

Bjork, T., Toivonen, J. and Nykanen, T. (2012), "Capacity of Fillet Welded Joints Made of Ultra High-Strength Steel," *Welding in the World*, Vol. 56.

Blackwood, R.R. (1931), "Strength of Fillet Welds in Structural Mild Steel II," *Commonwealth Engineer*, Vol. 18, No. 3, pp. 89-97.

Blackwood, R.R. (1930), "Strength of Fillet Welds in Structural Mild Steel," Commonwealth Engineer, Vol. 18, No. 2, pp. 50-55.

Bowman, M.D. and Quinn, B.P. (1994), "Examination of Fillet Weld Strength," *Engineering Journal*, American Institute of Steel Construction, Vol. 31, No. 3, pp. 98-108.

Brockenbrough, R.L. and Johnston, B.G. (1974), Steel Design Manual, United States Steel Corporation.

Butler, L.J., and Kulak, G.L. (1971), "Strength of Fillet Welds as a Function of Direction of Load," *Welding Research Supplement*, pp. 231-234.

Butler, L.J., Pal, S. and Kulak, G.L. (1972), "Eccentrically Loaded Welded Connections," *Journal of the Structural Division*, American Society of Civil Engineers, Vol. 98, No. ST5, May.

CEN (2005), Eurocode 3: Design of Steel Structures—Part 1–8: Design of Joints, EN 1993-1-8. Brussels, Belgium.

Chan, S.W.K. and Ogle, M.H. (1992), "Elastic-Plastic Behavior of a Simulated Transverse Fillet-Welded Lap Joint Subjected to In-Plane Tensile Loading," *Low Cycle Fatigue and Elasto-Plastic Behavior of Materials-3*, Elsevier Applied Science.

Clark, P.J. (1971), "Basis of Design for Fillet-Welded Joints Under Static Loading," Conference on Welding Product Design, Cambridge, England.

Collin, P.P. and Johansson, P.B. (2005), "Design of Welds in High Strength Steel," Proceedings of the Fourth European Conference on Steel and Composite Structures.

CSA (2014), *Design of Steel Structures*, S16-14, Canadian Standards Association, Toronto, Canada.

Deng, K.L., Grondin, G.Y. and Driver, R.G. (2003), *Effect of Loading Angle on the Behavior of Fillet Welds*, Structural Engineering Report No. 251, University of Alberta, June.

Dieter, G.E. and Bacon, D.J. (1986), Mechanical Metallurgy, McGraw-hill.

Douwen, A.A.V. and Witteveen, J. (1966), "Proposed Modification of the ISO Formula for the Calculation of Welded Joints," *Lastechniek*, Vol. 32, No. 6.

Dubina, D. and Stratan, A. (2002), "Behavior of Welded Connections of Moment Resisting Frames Beam-to-Column Joints," *Engineering Structures*, Vol. 24.

Faltus, F. (1988), Joints with Fillet Welds, Elsevier.

Feder, D.K. (1994), "Recommendations for the Design of Long Fillet Welds," *Welding in the World*, Vol. 33, No. 5.

Gagnon, D.P. and Kennedy, D.J.L. (1989), "Behavior and Ultimate Tensile Strength of Partial Joint Penetration Groove Welds," *Canadian Journal of Civil Engineering*, Vol. 16.

Gaines, E. (1987), "Reduced Fillet Weld Sizes for Naval Ships," *Journal of Ship Production*, Vol. 3, No. 4, pp. 247-255.

Gallow, M.S. (2019), *Behavior of Fillet Welds in Skewed Joints*, Ph.D. Dissertation, The University of Alabama at Birmingham.

Ginn, M., Pate, M. and Wilkinson, T. (2011), "Fillet Weld Connections to High Strength Steel," *Advances in Steel and Aluminum Structures*, Research Publishing.

Gomez, I.R., Kwan, Y.K. Kanvinde, A.M. and Grondin, G.Y. (2008), *Strength and Ductility of Welded Joints Subjected to Out-of-Plane Bending*, Draft Report, American Institute of Steel Construction, June.

Higgins, T.R. and Preece, F.R. (1969), "Proposed Working Stresses for Fillet Welds," *Engineering Journal*, American Institute of Steel Construction, January.

Higgs, J.D. (1981), "A Failure Criterion for Fillet Welds," Ph.D Dissertation, The University of Aston.

IIW (1976), Design Rules for Arc-Welded Connections in Steel Submitted to Static Loads, International Institute of Welding.

Iwankiw, N.R. (1997), "Rational Basis for Increased Fillet Weld Strength," *Engineering Journal*, Second Quarter, American Institute of Steel Construction.

Kamtekar, A.G. (1987), "The Strength of Inclined Fillet Welds," *Journal of Constructional Steel Research*, Vol. 7.

Kamtekar, A.G. (1982), "A New Analysis of the Strength of Some Simple Fillet Welded Connections," *Journal of Constructional Steel Research*, Vol. 2, No. 2.

Kanvinde, A.M., Gomez, I.R., Roberts, M., Fell, B.V. and Grondin, G.Y. (2009), "Strength and Ductility of Fillet Welds with Transverse Root Notch," *Journal of Constructional Steel Research*, Vol. 65, No. 4, pp. 948-958.

Kato, B. and Morita, K. (1974), "Strength of Transverse Fillet Welded Joints," *Welding Journal*, Vol. 53, No. 2, pp. 59s-64s.

Kennedy, D.J.L. and Kriviak, G.J. (1985), "The Strength of Fillet Welds Under Longitudinal and Transverse Shear: A Paradox," *Canadian Journal of Civil Engineering*, Vol. 12, pp. 226-231.

Kennedy, D.J.L., Miazga, G.S. and Lesik, D.F. (1990), "Discussion of Fillet Weld Shear Strength," *Welding Journal*, May.

Khanna, C.K. (1969), Strength of Long Fillet Welds, Master's Thesis, Nova Scotia Technical College.

Khurshid, M., Barsoum, Z. and Barsoum, I. (2015), "Load Carrying Capacities of Butt Welded Joints in High Strength Steels," *Journal of Engineering Materials and Technology*, Vol. 137, October.

Kist, N.C. (1936), "Berechnung der Schweissnähte unter Berücksichtigung konstanter Gestaltänderungsenergie," Vorbereich 2. Kongress Int. Ver. für Brückenbau und Hochbau.

Krumpen, R.P. and Jordan, C.R. (1984), Updating of Fillet Weld Strength Parameters for

Commercial Shipbuilding, Report No. SSC-323, Ship Structure Committee, April.

Kuhlmann, U., Gunther, H.P. and Rasche, C. (2008), "High-Strength Steel Fillet Welded Connections," *Steel Construction*, Issue 1.

Lawrence, F.V. and Cox, E.P. (1976), "Influence of Inadequate Joint Penetration on Tensile Behavior of A514 Steel Welds," *Welding Research Supplement*, May.

Lesik D.F, and Kennedy, D.J.L. (1990), "Ultimate Strength of Fillet Welded Connections Loaded in Plane," *Canadian Journal of Civil Engineering*, Vol. 17, No 1, pp. 55-67.

Lesik, D.F. and Kennedy, D.J.L. (1988), *Ultimate Strength of Eccentrically Loaded Fillet Welded Connections*, Structural Engineering Report 159, University of Alberta, May.

Li, C., Grondin, G.Y. and Driver, R.G. (2007), *Reliability Analysis of Concentrically Loaded Fillet Welds*, Structural Engineering Report No. 271, University of Alberta, October.

Ligtenburg, F.K. (1968), *International Test Series-Final Report*, IIW Document XV-242-68, International Institute of Welding.

Lu, H. and Dong, P. (2020), "An Analytical Shear Strength Model for Load-Carying Fillet-Welded Connections Incorporating Nonlinear Effects," *Journal of Structural Engineering*, Vol. 146, No. 3.

Lu, H., Dong, P. and Boppudi. S. (2015), "Strength Analysis of Fillet Welds Under Longitudinal and Transverse Shear Conditions," *Marine Structures*, Vol. 43, pp. 87-106.

Luo, P., Asada, H. and Tanaka, T. (2020a), "Limit Analysis for Partial-Joint-Penetration Weld T-Joints with Arbitrary Loading Angles," *Engineering Structures*, Vol. 213.

Luo, P., Asada, H., Uang, C.M., and Tanaka, T. (2020b), "Directionality Effect on Strength of Partial-Joint Penetration Groove Weld Joints," *Journal of Structural Engineering*, Vol. 146, No. 4.

McClellan, R.W. (1989), "Evaluation of Fillet Weld Shear Strength of FCAW Electrodes," *Welding Journal*, August.

Melchers, R.E. (1999), *Structural Reliability Analysis and Prediction*, Second Edition, John Wiley & Sons.

Mellor, B.G., Rainey, R.C.T. and Kirk, N.E. (1999), "The Static Strength of End and T Fillet Weld Connections," *Materials & Design*, Vol. 20, No. 4, pp. 193-205.

Miazga, G.S., and Kennedy, D.J.L. (1989), "Behavior of Fillet Welds as a Function of the Angle of Loading," *Canadian Journal of Civil Engineering*, Vol. 16, No. 4, pp. 583-599.

Miazga, G.S., and Kennedy, D.J.L. (1986), *Behavior of Fillet Welds as a Function of the Angle of Loading*, Structural Engineering Report No. 133, University of Alberta, March.

Mocanu, D. and Buga, M. (1970), "Stress Distribution Along Side Fillet Welds and in the Plates of Lap Joints," *Experimental Stress Analysis*, The Institution of Mechanical Engineers, Paper 42.

Moon, A.R. (1948), The Design of Welded Steel Structures, Isaac Pitman and Sons.

Neis, V.V. (1985), "New Constitutive Law for Equal Leg Fillet Welds," *Journal of Structural Engineering*, Vol. 111, No. 8.

Ng, A.K.F., Driver, R.G. and Grondin, G.Y. (2004), "Behavior of Transverse Fillet Welds: Parametric and Reliability Analysis," *Engineering Journal*, Second Quarter, American Institute of Steel Construction.

Ng, A.K.F., Driver, R.G. and Grondin, G.Y. (2002), *Behavior of Transverse Fillet Welds*, Structural Engineering Report No. 245, The University of Alberta, October.

Pham, L. (1983), "Co-ordinated Testing of Fillet Welds Part 1-Cruciform Specimens-AWRA Contract 94, AWRA Document P6-35-82," *Australian Welding Research*, December.

Popov, E.P. and Stephen, R.M. (1977), "Tensile Capacity of Partial Penetration Groove Welds," *Journal of the Structural Division*, Vol. 103, No. ST9, September.

Preece, F.R. (1968), *AWS-AISC Fillet Weld Study: Longitudinal and Transverse Shear Tests*, Testing Engineers Incorporated, AISC Research Report RR-731, May 31.

Ran, M.M., Sun, F.F., Li, G.Q., Kanvinde, A., Wang, Y.B. and Xiao, R. (2019), "Experimental Study on the Behavior of Mismatched Butt Joints of High-Strength Steel," *Journal of Constructional Steel Research*, Vol. 153.

Rasche, C. and Kuhlmann, U. (2009), "Investigations on Longitudinal Fillet Welded Lap Joints of HSS," Nordic Steel Construction Conference, Malmö, Sweden, September.

Reynolds, M., Huynh, Q., Rafezy, B.and Uang, C.M. (2020), "Strength of Partial-Joint-Penetration Groove Welds as Affected by Root Opening, Reinforcing and Loading Direction," *Journal of Structural Engineering*, Vol. 146, No. 8.

Rosenthal, D. and Levray, P. (1939), The Welding Journal, Vol. 18, No. 4.

Satoh, K., Seo, K., Higuchi, G. and Yatagai, T. (1974), "Experimental Study on the Mechanical Behavior and the Tensile Strength of Partial Penetration Groove Welded Joint," *Transactions of the Japan Welding Society*, Vol. 5, No. 2, September.

Spraragen, W. and Claussen, G.E. (1942), "Static Tests of Fillet and Plug Welds-A Review of Literature from 1932 to January 1, 1940," *Welding Research Supplement*, American Welding Society, April.

Strating, J. (1971), *The Strength of Fillet Welds Made by Automatic and Semi-Automatic Welding Processes*, Stevin Laboratory Report 6-71-6-HL 13, Delft University of Technology, March.

Sun, F.F., Ran, M.M. and Wang, Y.B. (2019), "Mechanical Behavior of Transverse Fillet Welded Joints of High Strength Steel Using Digital Image Correlation Techniques," *Journal of Constructional Steel Research*, Vol. 162.

Swannell, P. and Skewes, I.C. (1979), "The Design of Welded Brackets Loaded In-Plane: Elastic and Ultimate Load Techniques-AWRA Report P6-8-77," *Australian Welding Research*, January.

Swannell, P. (1968), "Deformation of Longitudinal Fillet Welds Subjected to a Uniform Shearing Intensity," *British Welding Journal*, March.

Thornton, W.A. (2020), Personal Communication.

Tide, R.H.R. (2020), Personal Communication.

Tide, R.H.R. (1980), "Eccentrically Loaded Weld Groups-AISC Design Tables," *Engineering Journal*, Fourth Quarter, American Institute of Steel Construction.

Tousignant, K. and Packer, J.A. (2017), "Numerical Investigation of Fillet Welds in HSS-to-Rigid End-Plate Connections," *Journal of Structural Engineering*, Vol. 143, No. 12.

Troelsch, H.W. (1932), "Distribution of Shear in Welded Connections," *Proceedings of the American Society of Civil Engineers*, November.

Tuominen, N., Bjork, T. and Ahola, A. (2018), "Effect of Bending Moment on Capacity of Fillet Weld," *Tubular Structures XVI*, Taylor and Francis.

Vreedenburgh, C.G.J. (1954), "New Principles for the Calculation of Welded Joints," *Welding Journal*, Vol. 33, pp. 743-751.

Wheatley, J.M. and Baker, R.G. (1962), "Mechanical Properties of a Mild Steel Weld Metal Deposited by the Metal-Arc Process," *British Welding Journal*, Vol. 9.

Zhao, X.L. and Hancock, G.J. (1995), "Butt Welds and Transverse Fillet Welds in Thin Cold-Formed RHS Members," *Journal of Structural Engineering*, Vol. 121, No. 11.

Yabe, Y., Sakamoto, S. and Yakushiji, K. (1994), "Structural Behavior of Steel Columns with Partial-Penetration Welded Joints," *Welding in the World*, Vol. 33, No. 5.

APPENDIX A SPECIMEN SHOP DRAWINGS

			BILL	JF MATER	IAL	
		PC 01	٨	LENGTH	STEEL	
0614 10-17	Heat Number	MARK TO1	AL DESCRIPTIO		GRADE	REMARKS
		AT1	3 MISC			
	8502026	AT1	3 PL34×434	0 10	A36	
	8502026	p130	3 PL34×434	0 10	A36	
01						
		_	_			
5 1 5						
۲-45.00° ک						
r						
I I A NUN						
E70XX ELECTRODES	11					
				F < 0		.
					5	
	PROJECT AISC RESEARCH PROJE DN. BY:TMR DATE: 4-10-18 PAIN	CT T: NO PAINT				₽285:I
	REVISIONS NO. DATE DESCRIPTION	PRIN DATE	T RECORD USE COB LLD			DEK NC
						90 I T 1
) 4 L			1919 HAYES ST. MASHVILLE TN, 0FFICE: 615-321-5222 FAX: 615-321-3030	37203	10: ¥ ارونی
						N DNIN
						IA90

			BILL OF	MATERI.	AL	
		0TY		LENGTH	STEEL	
Не	at Number	RK TOTAL	DESCRIPTION		GRADE	REMARKS
	AT2 AF00006		MISC	-	1.0	
p130		יי רי 	PL-V4 X 4 - V4 DI 3:13.	0 0	A3b Anr	
	neid 02020CO		FL-4X4-44	0 10	AJD	
*						
01						
ج-45.00°ج						
Backup bar						
J LUCU AIR						
USE E80XX ELECIRUDES						
				DIAD	Ĺ	
PROJECT AI DN. BY:TMR DA	SC RESEARCH PRDJECT TE: 4-10-18 PAINT: NC) PAINT				₽282:(
NO. DATE	REVISIONS DESCRIPTION	PRINT RE DATE (CORD SE R FAB	PUDDED	CTEE	אסבא אנ
			8			∎ USTA
E E				JFFICE: 615-321-5222 AX: 615-321-3030		:0N 5
Bookesviller. Towesses alors Bookesviller. Towesses alors						NIWAAC

Fillet and PJP Welds

Appendix A

				BILL OF	MATER1/	٨L	
	-	ъ	QTY		LENGTH	STEEL	
	Heat Number	MARK	TOTAL	DESCRIPTION		GRADE	REMARKS
	8502026	AI3 AT3	<u>> u</u>	15C 134×434		73C	
p130	8502026	p130	- <u> </u>	L34X734 L34X434	0 10	A36	
· · ·							
01							
Backup bar							
3 MISCS AT3							
USE E100XX ELECTRODES					RATC	L L	
						-	
	PROJECT AISC RESEARCH PROJE DN. BY:THR DATE: 4-10-18 PAIN DEVIEND	ECT VT: NO PAINT	DINT DECC				₽785:ON
	ND. DATE DESCRIPTION 2 DESCRIPTION 3 3				COOPER ONSTRUCTION OFFICE	STEEL	AT3 ORDER
RIDDLE STRUCTURAL DETAILIN S 733 HEBORY 80 (Harden Detailing) B BODMENTLE, TEMESSEE 380	ING 1 4 4 5 5 6 6 10 11 10 10 10 11 10 10 10 2 8 10				919 HNES ST. NASHVILLE TN, 37203 FICE: 615-321-522 Wr. 615-321-3030		DRAMING NO:

			BILL OF	MATER	RIAL		
	PC	QTY		LENGTH		STEEL	
Heat Number	MARK	TOTAL	DESCRIPTION			GRADE	REMARKS
8502026	BM1	ONE	PL. 34 × 5	0 10	A36		
D5715	BM2	1	PL. 1 × 5	0 10	A36		
7506515	BM3	1	PL. 1 ¹ 4 × 5	0 10	A36		
8501452	BM4	1	PL. 1 ¹ 2 × 5	0 10	A36		
7506393	BM5	1	PL. 134 X 5	0 10	A36		
6502038	BMG	1	PL. 2 × 5	0 10	A36		
8500710	BM7	1	PL. 2 ¹ 2 × 5	0 10	A36		
W7H748	BM8	1	PL. 34 × 5	0 10	A572	-65	
B7X6627	BM9	1	PL. 1 × 5	0 10	A572	-65	
W7H748	BM10	1	PL. 1 ¹ 4 × 5	0 10	A572	i-65	
7507549	BM11	1	PL. 112 × 5	0 10	A572	i-65	
D2044	BM12	1	PL. 134 × 5	0 10	A572	i-65	
D2290	BM13	1	PL. 2 × 5	0 10	A572	-65	

BATCH 1

					BILL OF	MATER	[AL	_
		Heat Number	ARK I	0TY DTAL	DESCRIPTION	LENGTH	STEEL GRADE	REMARKS
			E 8	ONE MI	SC 115	C	JCV	
	/1-PL p53		23	5 6	147.2 142×6	r + +	A36 A36	
	-							
 	<u>,</u> (
							_	
4 - RUNOFF TAB	1							
	,							
4	N							
	Ţ							
S/FS								
E MISC FL8						BAT	Н	~
70XX ELECTRODES		OJECT AISC RESEARCH PROJEC BY:TMR DATE: 4-10-18 PAINT	T : NO PAINT					10:582¢
		L DATE DESCRIPTION	DATI	INT RECOR	85	COOPEI	STEE	8 OKDEK 1
ų						CONSTRUCTION OFFICE 919 HAYES ST. NASHVILLE TN, 3: 0FFICE: 615-321-522 AX: 615-321-3030		
	Image: Structural installation Image: Structural installation Image: Structural installation Image: Structural installati							DRAMING

		BIL	L OF MA	TERIA	 	
	Heat Number	C 0TY DECC		LENGTH	STEEL	DEMADIVE
					פּעאחב	
	B7X6627 p139	2 PL1x412		6 0	A572-65	
,1-PI n138	7507549 p138	2 PL112x6		1 4	A572-65	
4 RUNOFF TAB		-	-	-		
Ī						
/1-PL p139 NS/FS						
NE MISC FL10						
E80XX ELECTRODES			â	ATC	L L	
PROJEC DN. BY:	T AISC RESEARCH PRDJECT THR DATE: 4-10-18 PAINT: N	PAINT C				₹282¢
	REVISIONS TF DESCRIPTION	PRINT RECORD	2			EK NO
		FOR FAB		JPEK	SIEL	10 OKD
			CONSTRUCT 1919 HAYES ST. 0FFICE: 615-32 FAX: 615-321-30	ION OFFICE NASHVILLE TN, 37203 1-5222 330	CERTIFIED CONTRACTOR AMOLECTOR	אס: בר
						DRAWING
T						

Fillet and PJP Welds

Appendix A

Fillet and PJP Welds

					B	CLL OF	MATERI	AL	
				R	QTY		LENGTH	STEEL	
			Heat Number	MARK	TOTAL 1	DESCRIPTION		GRADE	REMARKS
			W7H748	141 a	2 PL34X	41	0 5	A572-65	
		/1-PL p140	B7X6627	p140	2 PL1x6		1 2	A572-65	
	<u>ا</u> ری	9							
	Þ								
	C RUNDFF TAB	1					_		
	3								
		†⁄E							
	/1-PL p141	NS/FS							
F N L									
E MI	SU FLID								
FINNY	Κ ΕΙ ΕΓΤΒΟΠΕς								
							BATC	Ц Т С	
			PROJECT AISC RESEARCH PROJE	ECT					¥28
			DN. BY:TMR DATE: 4-10-18 PAIN	IT: NO PAIN					95:ON
			NO. DATE DESCRIPTION		ATE USE FOR FAB	Ś		STFF	אשםאט
			ი. ი. r			8			
		S RIDDLE STRUCTURAL DETAILING LLC.	+ m œ				FFICE: 615-321-5222 XX: 615-321-3030		:0N 5
		BROWNSVILLE, TEMESSEE 30012							DKAMIN

Fillet and PJP Welds

Appendix A

			ILL OF	MATERIA	<u>ر</u>	
		017		LENGTH	STEEL	
					GKAUE	KEMAKKS
1/4 \	D5715 pl	2 PL1:	x2	1 2	A36	
	D5715	1 PL1	х2	0 4	A36	
5						
1						
MISC FII						
UAA ELEUIRUDES						
				BATC	Т С	
	PROJECT AISC RESEARCH PROJECT					4
	DN. BY:TMR DATE: 4-10-18 PAINT: NO	PAINT				85:C
	REVISIONS	PRINT RECORD	5)N 9.
		LATE USE FOR FAB				JCADE
	2 6		<u>3</u>) [].
				UNITIOUTION UNITION 37203 319 HAYES ST. NASHVILLE TN, 37203 FFICE: 615-321-5222 X: 615-321-3030	CERTIFIED SFARICATOR	J :(
RIDDLE STRUCTURAL DETAILING LLC.	0 2))))))	at seat	אפ אנ
	2					IMAAO

			BILL OF	- MATERIA	Ļ	
	Haat Niimher			LENGTH	STEEL	
			ONE MISC		פעאחב	
	D5715		2 PL1x6	1 2	A36	
	D5715		1 PL1x4	0 6	A36	
1-PL p5						
9	I					
-2]] 1-2						
,1-PI n8						
_						
				BATC	т Т	
	PRDJECT AISC RESEARCH PRDJEC					478
E70XX ELECTRODES	N. BY:TMR LATE: 4-10-18 PAINT: REVISIONS 10. DATE DESCRIPTION	PRIN PRIN DATE	T RECORD USE FOR FAB	CUDFR	STFFI	окрек ио:28
			<u>3</u>	CONSTRUCTION OFFICE CONSTRUCTION OFFICE 0FICE: 615-321-522 FAX: 615-321-3030	CERTIFIED CERTIFIED Association	0: E13
RIDDLE STRUCTURAL DETAILING LLC.	n w n 8)	DRAMING N

			BILL OF	MATERIA	۲L	
	PC PC	QTY		LENGTH	STEEL	
					GKAUE	KEMAKKS
32 Σ	506515 pg		2 PL114x2	1 2	A36	
	D5715 p15		1 PL1x2	0 414	A36	
6 Id-1						
5		-	-	-		
1-2 [] 1-2						
ر ا						
NE MISC FT4						
				RATC	Т Т	
SE E70XX ELECTRODES					-	[
PRDJECT AISC REDN. BY:THR DATE: 4-	SEARCH PRDJECT -10-18 PAINT: ND	PAINT				₽285:C
REVI NO. DATE E	ISIONS JESCRIPTION	PRINT R DATE	L ISE CORD		UT T T	םבא אנ
		-				90 PT
				1911 1911 1911 1911 1911 1911 1911 191	CERTIFIED SFABRICATOR A MORECTOR	H :ON
						DNIMAR
BROWSVILLE, TEMESSEE 38012						Ξ

		VDE REMARKS							~	KDEK NO:5824	
AL	STE	GR/	A 3C	936					Т		
MATERI	LENGTH		-	1 E 0 6					BAT(CONSTRUCTION OFFICE 1919 IANES ST. MARHVILLE TN, 3720 0FFICE: 615-321-5222 FAX: 615-321-3030
BILL OF		DESCRIPTION	ISC 11, v.c	-1 *4 × 0 -1 × 4 lq						S B	3
	QTY	TOTAL								NT PRINT RECOF ATE USE FOR F	
	Ъ	MARK	FT6	p17						ECT NT: NO PAIN	
		Heat Number	7506515	D5715						PRDJECT AISC RESEARCH PRDJ DN. BY:TMR DATE: 4-10-18 PAI NO. DATE REVISIONS NO. I DATE DESCRIPTION	 · · · · · · · · · · · · · · · · · · ·
				, 1–PI , 13		9	 ,	<u>511</u>]] ₁ ,2		RIDDLE STRUCTURAL DETAILING LLC.
			2	80	18 ₂		1 		1-PL p17	MISC FT6	DXX ELECTRODES

			BILL (JF MATERI/	AL	
		PC	TY	LENGTH	STEEL	
	Heat Number	MARK TO	TAL DESCRIPTION		GRADE	REMARKS
	7506393	18	2 PL134x2	1 2	A36	
$\sum c^{1}$	D5715	20	1 PL1x2	0 434	A36	
5						
1-2 1-2						
1-PL p20						
NIE MICC ETJ						
SF FZOXX FLECTRODFS						
				BATC	н Т	
PROJECT DN. BY:T	T AISC RESEARCH PRDJE TMR DATE: 4-10-18 PAIN	CT -: NO PAINT				₽ 285:
	REVISIONS	PRI	VT RECORD			ON 2
	TE DESCRIPTION	DATE	LUSE FOR FAB	CINPFR	STFFI	οκαει
n w 4			\$	CONSTRUCTION OFFICE 1919 HAYES ST. NASHVILLE TN, 37203 0FFICE: 615-321-5222		5T3 :
RIDULE STRUCTURAL DETAILING LLC. Control of Contro of Control of Control of Con				FAX: 615-321-3030		ON ONIM
						AAO

		REMARKS														¢785:0	ОКДЕК И(): FT8	DRAMING NC
	STEEL	GRADE		A36	A36										Н 1		STEEL	CERTIFIED CERTIFIED	
RIA	-			~	434												EB	ICE E TN, 37203	
ATE	LENGTH				0										ZA-			JCTION OFF S ST. NASHVILL 5-321-5222 1-3030	
Σ															Ш			CONSTRU 1919 HAYES OFFICE: 615 FAX: 615-32	
ILL OF		DESCRIPTION		x4													S.	3	
Ē			NE MISC	2 PL 134	1 PL1x4												record USE For FAB		
	QTΥ	TOTAL	5													INT	PRINT DATE		
	S	MARK	FT8	p21	p22											CT T: NO PA			
		mber		6393	5715											RCH PROJE -18 PAIN	ONS CRIPTION		
		at Nui		750	õ											ISC RESEA TE: 4-10-	DESC		
		Не														ECT A	DATE	+++	
																PROJ DN. B		1 w 4 r	<u>ههههها</u> ت ات ا
							-	<u>م</u>											ATLING LLC. (731) 744-4464 (731) 779-3771
							L -	⊥ 	7	1		7.1	11	12,1					RUCTURAL DET
										_ _									O RIDDLE SI S73 KERCER RD S73 MERCER RD
					-	<u>2</u> <u>2</u>										ഗ			
											1-7								
																CTR			
															ິ ໂ ດ				
															$\Sigma \ $	XXC			
											~ ~				щ∥	E7(
						\wedge									$ \leq \ $				

			BILL	OF MATI	ERIA	_	
	-	PC 01	~	TENG	E	STEEL	
		MARK TO	AL DESCRIPT	NOI		GRADE	REMARKS
	7506393	023	2 PL 134×6		~	A36	
¹ ²	D5715	p24	1 PL1x434	0	9	A36	
,1-PI n23	<u> </u>						
9	_	-	-	-			
1-PL p24							
ONE MISC FT9							
IIGF F7NYY FIFTRONFG							
				BA	U U U	Т Т	
	CDJECT AISC RESEARCH PROJE BY:TMR DATE: 4-10-18 PAIN	CT T: ND PAINT					₹285¢
	REVISIONS DATE DESCRIPTION	PRIN DATE	T RECORD USE FOR FAB			CTEEI	100 אסנא
				CONSTRUCTION O CONSTRUCTION O 1919 HAYES SI. NASHV OFFICE: 015-321-5222	DFFICE		0 61 3 3
Image: Structural definition Structural definition				FAX: 615-321-3030			DRAWING NO
						NT ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	

			BI	LL OF	MATERI	AL	
		PC	QTY		LENGTH	STEEL	
		MARK	TOTAL DI ONE MISC	SCRIPTION		GRADE	REMARKS
	7507549	151	2 PL11 _{2×1}		1 2	A572-65	
	B7X6627	152	1 PL1x41	~	0 6	A572-65	
A R C							
A 8r							
/1-PL p151							
9							
-2 [] 1-2							
E MISC FT11							
E E80XX ELECTRODES					ŀ	-	
					BAI	Ľ Ľ	
PROJEC	CT AISC RESEARCH PROJEC V:TMR DATE: 4-10-18 PAINT	:T : NO PAINT					+285:
	REVISIONS DATE DESCRIPTION	P DA	RINT RECORD TE USE	8			IEK NO
			FOR FAB	S	JUUPEH	SIEE	וז סאם
				0104	DNSTRUCTION OFFICE 19 HAYES ST. NASHVILLE TN, 3720 FICE: 615-321-5222 X: 615-321-3030		
							AMING N
BROMSVILLE, TEMESSEE 30012 0 8							ספי

			BI		MATERI	AL	
		PC	0TY		LENGTH	STEEL	
	Heat Number	MARK	TTAL DE	SCRIPTION		GRADE	REMARKS
-		FT12	ONE MISC				
	D2290	p143	2 PL2x4		1 2	A572-65	
	B7X6627	p144	1 PL1x4		0 2	A572-65	
	C						
	0 						
•							
(
1-PL p144							
_							
CNT MICC TIJ							
UNE MIJU FIIC							
UJE EQUAA ELEUIRUDEJ							
					BAT(CH L	
	ROJECT AISC RESEARCH PROJE N. BY:TMR DATE: 4-10-18 PAIN	CT T: NO PAINT					+285:
	REVISIONS DATE DESCRIPTION	PAT	RINT RECORD	8			DEK ИО
	2		FOR FAB	S	LUUPEN		ני ספ
	4				CONSTRUCTION OFFICE 919 HAYES ST. NASHVILLE TN, 372/ FFICE: 615-321-5222 AX: 615-321-3030): E1;
	0 2))))))	AL DOMON	INC NC
	8	+					.WAAQ

			BILL	OF MATERI	AL	
	-	PC 01		LENGTH	STEEL	
Неа		MARK TOT/	NL DESCRIPTIO	-	GRADE	REMARKS
1_{14}	<u>i- </u>	T13	ONE MISC			
	W7H748	153	2 PL114x2	1 2	A572-65	
	B7X6627 <u>p</u>	154	1 PL1x2	0 414	A572-65	
//////////////////////////////////////						
		_				
-2 1-2						
0154 J						
F MIGC FI13						
EIUUAA ELELIKUUEJ						
				DTVD		
PROJECT AISC	C RESEARCH PROJEC					₹
	: 4-10-18 PAINT	: NO PAINT				92:O
	REVISIONS	PRINT	RECORD			IN AI
			FOR FAB			30.8DE
			<u>ð</u>			113
				1919 HAYES ST. NASHVILLE TN, 37203 OFFICE: 615-321-5222 EAX: 615-321-3030): E.
e RIDLE STRUCTURAL DETAILING LLC.					The same	ic nd
			$\overline{\prod}$			1IMA9
O RADMASKITLE TEMESSEE 30012 OI α α						10 10

			BILL OF	- MATERI/	L L	
		PC	IY	LENGTH	STEEL	
	Heat Number	MARK TO	TAL DESCRIPTION		GRADE	REMARKS
، ر		FT15	ONE MISC			
28 ₅	D2044	p157	2 PL134×2	1 2	A572-65	
30	B7X6627	p158	1 PL1x2	0 434	A572-65	
I 158 I						
				BATC	Т Т	
	PRDJECT AISC RESEARCH PRDJE DN. BY:TMR DATE: 4-10-18 NO. DATE NO. DATE 2 DATE 3 DESCRIPTION 4 DESCRIPTION 5 DESCRIPTION 6 DESCRIPTION 7 B	IT: NO PAINT	IT RECORD USE FUR FAB	CONSTRUCTION OFFICE DISP ANCE ST. MSHVILLE TN, 37203 PAX. 615-321-3030	STEE Steerenter	DRAWING NO: FT15 ORDER NO:2824

			BILL OF	MATERIA	_	
		PC QTY		LENGTH	STEEL	
		MARK TOTA	L DESCRIPTION	_	GRADE	REMARKS
-			JNE MISC	-		
			c PLcxc		۲۵-۶/۲۶ ۲۰۰۰	
MISC FT17						
				BATC	T T	
	PROJECT AISC RESEARCH PROJEC IN. BY:THR DATE: 4-10-18 PAINT REVISIONS ND. DATE DESCRIPTION 2 REVISIONS 3 DESCRIPTION 5 F	T PRINT	RECORD USE FOR FAB	CONSTRUCTION OFFICE 1919 HAYES ST. NASHWILLE TN, 37203 0FFICE: 615-321-3030 FAX: 615-321-3030	Sterred Zamenaren Zamenaren	DRAWING NO: FT17 ORDER NO:2874

			BILL OF	MATERI/		
		PC 0T	~	LENGTH	STEEL	
	Heat Number	MARK TOT	AL DESCRIPTION		GRADE	REMARKS
		FT18	ONE MISC			
12	D2290	FT18	1 PL2x4	1 2	A572-65	
	D2290	p143	1 PL2x4	1 2	A572-65	
	B7X6627	p144	1 PL1x4	05	A572-65	
//////////////////////////////////////						
•						
	-	_				
1 1-2 2						
0144 ∕*						
- MIGC FI18						
E100XX ELECTRODES						
				BATC	Н Н	
	PRDJECT AISC RESEARCH PRDJE DN. BY:TMR DATE: 4-10-18 PAIN	CT T: ND PAINT				₽285:
	REVISIONS ND DATE DESCRIPTION	PRIN DATE				ON 83
	<u>i</u> 0		FOR FAB	CUUPER		סאס
	1 m 4		3	CONSTRUCTION OFFICE 1919 HAYES ST. MASHVILLE TN, 37203 OFFICE, SI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CERTIFIED	8113
	. സ ന			FAX: 615-321-3030	AND REFEICH	:ON 9
	D 1~ 00					NIMAAI
	2		-			I

		-	BILL OF	MAIERIA		
	-	PC QTY		LENGTH	STEEL	
	Heat Number	MARK TOTAL	DESCRIPTION		GRADE	REMARKS
		L1 0	NE MISC			
	8501452	L1	1 PL11 _{2×4}	1 5	A36	
	8501452	62	1 PL112x4	1 5	A36	
	8502026	81	2 PL34×4	0 10	A36	
DIMORT TIN						
1-PL p81		<u>у</u> с-Р5				
		(TYP)				
4						
	4					
DNE MISC PL1						
CE EZAVV ELEATDOBEC						
JE E/VÁA ELEVIKUDEJ						
				BATC	Н Н	
	PRDJECT AISC RESEARCH PRDJE DN. BY:TMR DATE: 4-10-18 PAIN	CT : NO PAINT				₽ 785:
	REVISIONS	PRINT	RECORD			ON 8
	NO. DATE DESCRIPTION	DATE	USE FOR FAB	PUNDED	CTEFI	RDEF
	· ~ ~		8			ס זי
				CONSTRUCTION OF TCC 1919 HAYES ST. NASHVILLE TN, 37203 0FFICE: 615-321-3222 FAX: 615-321-3030		J :(
RIDDLE STRUCTURAL DETAILING LLC.	л и и				- i blow	אפ אנ
	2					IMAA(

		-		BILL OF	MATERI	AL	
	Heat Number	MARK TC		DESCRIPTION	LENGTH	STEEL GRADE	REMARKS
		~1	ONE	SC			
	6502038 P	<u>دا</u> ه		2x4 2x4	1 5	A36 A36	
	D5715 Pt	34	· ~	1x4	0 10	A36	
			-		_	_	_
1-PL p84		Γ					
	J J J J J J J J J J J J J J J J J J J	\vdash		:-Р5 ТҮР)			
			, -				
		1					
MISC PL2							
USE E70XX ELECTRODES							
					BAT(С Н С	
PROJECT DN. BY:TT	T AISC RESEARCH PRDJEC TMR DATE: 4-10-18 PAINT	T NO PAINT					₽ 285∶
NO. DAT	REVISIONS TE DESCRIPTION	PRI DATE	NT RECOL USE FOR F	S.	CODFR	STFF	ОКДЕК ИО
				8	ONSTRUCTION OFFICE ONSTRUCTION OFFICE 319 HAYES ST. NASHVILLE TN, 37203 TRICE: 612-321-5222 X. 615-321-3020): PL2
							AMING NC
BROMEVILLE, TEMEESEE 30012 O B							םפ

BILL OF MATERIAL	PC 0TY LENGTH STEEL LENGTH STEEL LENGTH STEEL CONTRACTION CONTRACTOR	B500710 PL3 DNE MISC MANE MANE 8500710 PL3 1 PL2lb2x4 1 5 A36	7506515 p91 2 PLI ¹⁴ x4 0 10 A36		TAB /1-PL p95	C-P5			BATCH 1	PRDJECT AISC RESEARCH PRDJECT DN. BY:TMR DATE: 4-10-18 PAINT: ND PAINT	NO. DATE DESCRIPTION NO. DATE DESCRIPTION DATE USE DATE USE CONSTRUCTION OF DATE USE CONSTR	RIDLE STRUCTURAL LETAILING LLC. 1
					RUNDFF TAB		4ISC PL3	SE E70XX ELECTRODES				RIDDLE STRUCTURAL DETAI RECORD RECTORAL DETAI RECORDER RECORDE

		REMARKS															₽ 282∶	ON 9	≠ 06DE	78 : (N DNIMA	
Ļ	STEEL	GRADE	A36	A36	A36											H H			STEEL	CERTIFIED CERTIFIED)	
MATERIA	LENGTH		1 5	1 5	0 10											BATC			ODER	VSTRUCTION OFFICE 9 HAYES ST. NASHVILLE TN, 37203 CE: 615-321-5222 615-321-3030		
3ILL OF		DESCRIPTION	lb×4		l ₄ ×4													5		1915 OFFIL		
ш	QTY	TOTAL	ONE MIS	1 PL2	2 PL1		_			С-Р5 \(ТҮР)							AINT	PRINT RECORD	LAIE USE FOR FAB			
	Ъ	MARK	PL4	66d C	6 p91					k	-						JJECT INT: NO P					
		Heat Number	8500710	8500710	7506515				91/2	412	91/2 b11	4					PRDJECT AISC RESEARCH PRO. DN. BY:TMR DATE: 4-10-18 PAI	REVISIONS	NO. DATE DESCRIPTION	w 4 r	TC 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
									PL p39				11								RIDDLE STRUCTURAL DETAILING L	BROMNSVILLE, TENNESSEE 38012
								KUNDFF TAB	+ 			4	6	TCC DI A	JXX ELECTRODES							

			B	ILL OF	MATERI/	AL	
		PC	۵TY		LENGTH	STEEL	
			OTAL ONE MTCC	DESCRIPTION		GRADE	REMARKS
	6502038	PL5			1 5	A36	
	6502038	p104	1 PL2x		15	A36	
	D5715	p84	2 PL1x		0 10	A36	
LI-PL p84			-P5 TYP)				
	4						
MISC PL5							
USE E80XX ELECTRODES						-	
					DAIC		
	PROJECT AISC RESEARCH PROJE N. BY:TMR DATE: 4-10-18 PAIN REVISIONS NO. DATE DESCRIPTION	IT: NO PAINT	INT RECORD USE FOR FAB	<u>Š</u>	COOPER	STEEL	-2 OKDEK NO:2824
RIDUE STRUCTURAL DETAILING LLC.	0 3 √ Q Ω 4 M				CONSTRUCTION OFFICE 919 HAYES ST. NASHVILLE TN, 37203 FIFEE.615-321-3030 AX: 615-321-3030		

		BILL OF	MATERIAL		
	- - - - - - - - - - - - - - - - - - -	QTY	LENGTH	STEEL	
	Heat Number	K TOTAL DESCRIPTION		GRADE REMARKS	10
	8500710 PI6	UNE MISU 1 Pl 245×4	1 5 A36		
	8500710 p95	1 PL2 ¹ 2×4	1 5 A36		
	7506515 p91	2 PL14x4	0 10 A36		
DINNEE TAD					
	e BE	4 - 4			
515		TYP)			
	4				
E EBOXX ELECTRODES					
			BATCH	~ ~	
	PRDJECT AISC RESEARCH PRDJECT DN. BY:TMR DATE: 4-10-18 PAINT: ND	PAINT		¥282÷I	
	REVISIONS	PRINT RECORD		נא אכ ווייי	
			CINPFR S1	OKDE	
		3	CONSTRUCTION OFFICE		
S RIDDLE STRUCTURAL DETAILING LLC.			0HICE: 615-321-3230 FAX: 615-321-3030		
	2 ~ 8			ИТМАЯО	
					ĩ

		BILL 0	F MATERI/	Ļ	
	РС	QTY	LENGTH	STEEL	
Heat N	umber MARK	TOTAL DESCRIPTION		GRADE	REMARKS
	PL7	ONE MISC			
65	02038 PL7	1 PL2x4	1 5	A36	
65	02038 p104	1 PL2x4	1 5	A36	
	05715 p ⁸⁴	2 PL1x4	0 10	A36	
			-		
1-PL p84 RUNDFF TAB $1-PL p84$ $-P$ RUNDFF TAB					
	/				
			BATC	Н Н	
					[
PRDJECT AISC RES DN. BY:TMR DATE: 4-	SEARCH PROJECT 10-18 PAINT: NO PA	INT			₽285:C
	SIONS ESCRIPTION	PRINT RECORD			EK N(
					ICKD
3		3			278
			1912 НАТЕЗ 31. NASHVILLE 111, 37200 DFFICE: 615-321-5222 FAX: 615-321-3030		:ON
					IINC.
					NA90

		REMARKS															₽285:(DEK N(90 8 .	1d :	ion di	IMAAD
٦L	STEEL	GRADE	A36	A36	A36										L L	-		UTTT	NIEEL	CERTIFIED		
MATER1/	LENGTH		- -	1 1	0 10										RATC				UUPEN	STRUCTION OFFICE HAYES ST. NASHVILLE TN, 37203 E. 615-321-5222	s15-321-3030	
ILL OF		DESCRIPTION	44	2×4	4×4													8			FAX: (
В	QTY	TOTAL		1 PL21	2 PL11					P5 YP)							AINT	PRINT RECORD DATE USE	FOR FAB			
	- PC	Heat Number	8500710 PI8	8500710 p108	7506515 p ⁹¹				I I I I I I I I I I I I I I I I I I I	515 515	91/g	4					PRDJECT AISC RESEARCH PRDJECT DN. BY:TMR DATE: 4-10-18 PAINT: ND PA	REVISIONS NO. DATE DESCRIPTION	2		ING LLC. 0 6	
								p91				4			EIVVAA ELEVIRUDEJ							

			BIL	L OF	MATERI.	AL	
	1	PC	QTY		LENGTH	STEEL	
	Heat Number	MARK	TOTAL DESCR	RPTION		GRADE	REMARKS
	<u> </u>	PL10	ONE MISC				
	D2290	PL10	1 PL2x4		1 5	A572-65	
	D2290	p149	1 PL2x4		1 5	A572-65	
	B7X6627	p148	2 PL1x4		0 10	A572-65	
,1-Pl n148							
/ I I I P I V PUNDFF TAB							
	8/E						
5				L C (
	8/E) T U			
7 - PL p149				(TYP)			
	4						
		- \					
,							
					R A T C	L L	
	PRDJECT AISC RESEARCH PRDJE DN. BY:TMR DATE: 4-10-18 PAINT	CT T: NO PAIN					₹82¢
	REVISIONS		PRINT RECORD	8			:ON 9
2	NO. DATE DESCRIPTION	DA	TE USE FOR FAB		NDFR	STFFI	οκαει
	νm				STRUCTION OFFICE	CERTIFIED CERTIFIED	6179
	t 10 (OFFI FAX:	E: 615-321-5222 515-321-3030		:ON
	2 2						9NIMA
BROMSVILLE, TEMESSEE 38012	8						Ы

		BILL	OF MATER]	IAL	
	Ъ	QTY	LENGTH	STEEL	
Heat Numb	PL MARK	TOTAL DESCRIPTIC	<u> </u>	GRADE	REMARKS
	ELI1	ONE MISC			
		I PLCX4		دط-2/دA 20 22-1	
	J p14/	I PLEX4	<u>م</u>	63-576A	
B7X662	7 p148	2 PL1x4	0 10	A572-65	
-PL p148RINNFF TAR			-	_	
	Г				
	/ 		У С (Ч)		
		-			
- 					
6 11					
•			T < C		
	ROJECT PAINT: NO PA				₽ 282
					2:ON
NO. DATE DESCRIPT	И	DATE USE		R CTFF	אסבא
3		ð			
			1919 HATES SI, NASHVILLE IN, 37 OFFICE: 615-321-5222 FAX: 615-321-3030		9 :0N
					MINC
					IAAD

			BILL OF	MATERI/	۸L	
		PC	DTY DTY	LENGTH	STEEL	
	Heat Number	MARK T	DTAL DESCRIPTION	-	GRADE	REMARKS
		12	ONE MISC			
	D2290 PL	12	1 PL2x4	1 5	A572-65	
	D2290 p1	50	1 PL2x4	1 5	A572-65	
	B7X6627	48	2 PL1x4	0 10	A572-65	
-PL p148RUNDFF TAB						
	9	Г				
	- Ling -					
			C-F	ГO		
<u> </u>]		(L)		
-	4					
	-	\rightarrow				
				BATC	С Н	
	AISC RESEARCH PROJECT					4
DN. BY:TH	MR DATE: 4-10-18 PAINT:	NO PAINT				285:0
	EVISIONS EDESCRIPTION	PR	INT RECORD	PUDED	CTEE	и яја
			8			ס רוז
				AK: 615-321-3030		I :ON
						ONIMA9(
						I

			RTI I OF	MATFRT		
		DTV				
Heat N	umber MAR	K TOTAL	DESCRIPTION		GRADE	REMARKS
	PL13	NO	E MISC			
85	500710 PLI3		1 PL212×4	1 5	A36	
85	500710 p ⁹⁵		1 PL21 _{2×4}	1 5	A36	
	D5715 p114		2 PL1x6	0 10	A36	
		_	_	_		
, RUNDFF TAB						
	<u>_</u>	<pre></pre>				
, ELELIRUDES				BATC	Ц Ц	
	SEARCH PROTECT					4
DN. BY:THR DATE: 4-	10-18 PAINT: NO	PAINT				282:0
ND. DATE DI	SIONS ESCRIPTION	PRINT R DATE	LECORD USE OR FAB		CTEE	א אםפא א
			8	CONSTRUCTION OFFICE	C CERTIFIE	
KIDDLE STRUCTURAL DETAILING LLC.				DFFICE: 615-321-5222 AX: 615-321-3030		:0N 5
)NIMA9
BROWENTLLE, TEWESSEE 3012 OL D I			_			Ωŀ

	JUDANJC																¢785:0	DEB NC	190 4	114 :(DN ÐNI	МАЯΩ
Ļ	STEEL		A36	A36	A36											Н 1			SIEEL		the second	
MATERI/	LENGTH		1 5	1 5	0 10											BATC			UUPER	ISTRUCTION OFFICE HAYES ST. NASHVILLE TN, 37203 5E. 615-321-5222 エモニョア1-3030		
ILL OF	DECCOTOTION		x4	×4	(0)													8				
Щ	QTY TOTAL		1 PL21	1 PL21	2 PL1x				C-P5									RINT RECORD TE USE	FOR FAB			
	PC MADV	PL14	0 PL14	0 p95	5 p114				×								PROJECT PAINT: NO PAIN	ION DA				
	leat Numbe		850071	850071	D571						1 4						AISC RESEARCH F DATE: 4-10-18	REVISIONS DESCRIPT				
	I							8 ₆	با ل 512	8 <u>8</u>							PROJECT DN. BY:TMR I	NO. DATE	2	с 4 I	۰ ۱ ص ۲	~ 8
								p95														IVANATI EVEL
							TAR	1-PL			Ξ	=	~	⊨								
							,RIINDEF	×		 				, 								
											4	٩		- \	ES							
														イ	TROD							

DRAWING NO: PLIS ORDER NO:2874	NO PAINT PRINT RECORD DATE USE FOR FAB	PRDJECT AISC RESEARCH PRDJECT DN. BY:TMR DATE: 4-10-18 PAINT: NO. DATE DESCRIPTION 1 DESCRIPTION 2 DESCRIPTION 3 DESCRIPTION 6 DESCRIPTION 6 DESCRIPTION 7 DESCRIPTION	
BATCH 1			
			E100XX ELECTRODES
			ISC PL15
			6 6 11
	Sd-T	512	RUNDFF TAB
0 10 A3b	4 C PLIXb		
1 5 A36	8 1 PL2J ₂ x4	8500710 p10	
1 5 A36	5 UNE M15U 5 1 PL21 ₂ x4	8500710	
GRADE REMARKS	ARK TOTAL DESCRIPTION	Heat Number	
LENGTH STEEL	PC 0TY		
MATERIAL	BILL OF		

.

		BILL	DF MATE	ERIAL		
	DC 0	۲	LENG.	Ш C	STEEL	
Heat Number	MARK TO	TAL DESCRIPTIO	_		RADE	REMARKS
8502056	PS1	UNE MISC 1 PI 34×4		6 A36		
8502056	p121	1 PL34×4		6 A36		
₹. 						
I-PL pI2I						
PA 1-4 Section A-A						
XX ELECTRODES			βΔ	НСТ	~	
	E.		5	5	-	╉
DN. BY:THR DATE: 4-10-18 PAI	T: ND PAINT					,282:01
REVISIONS ND. DATE DESCRIPTION	PRII DATE	IT RECORD USE FOR FAB	R R N N	IS RI	19	оврев и
		<u>5</u>	CONSTRUCTION OF 1919 HAYES ST. MASHVI	FICE		ISd :
Image: State Structure State Structure State Structure State Structure State Structure State Structure			FAX: 515-521-5030			ON SNIM
BROMKYLLLE, TEMEESEE 30012 0 8						JR≬

TERIAL	NGTH STEEL	GRADE REMARKS	1 6 A36	1 6 A36						ATCH 1):2874 		V OFFICE SHVILLE TN, 37203 ZZ2222222222222222222222222222222222	DRANING
BILL OF MAT	PC 0TY LE	Heat Number MARK TOTAL DESCRIPTION	8501452 PS2 1 PL1/px4	8501452 p125 1 PL1 ¹ 2×4		چ چ		Section A-A	PS2	B	PROJECT AISC RESEARCH PROJECT DN. BY:TMR DATE: 4-10-18 PAINT: ND PAINT	ND. DATE DESCRIPTION DATE USE 1 FOR FAB	3 Construction 3 919 HAVES ST. W 4 0FFICE. 015-321-55 5 0FFICE. 015-321-55	8 J E
						1-PL p125		1-4	SC PS2	ELECTRODES				

		-	BILL	≥ 	IA I EKI	AL	
		PC	2		LENGTH	STEEL	
	Heat Number	MARK TO	TAL DESCRIP	LION		GRADE	REMARKS
		PS3	ONE MISC		-		
	8501162 8501152	۲۵ <u>۶</u>	1 PL1-2×4		о с 	A3b A3r	
	2041000	picr	1 PL1-2X4		۹ ۱	AJD	
I-PL pick							
	-45.00°						
	` →						
		•					
Z	Section	A-A					
·							
E70XX ELECTRODES					BATC	, H	
	PROJECT AISC RESEARCH PROJ	CT					824
	DN. BY:TMR LATE: 4-10-18 PAIN	IT: NO PAINT					92:OI
	NO. DATE DESCRIPTION	DATE	AT RECORD USE FOR FAB	2		CTEE	אספא ו
	<u>ი</u> ო						ESJ
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			OFFICE: 6 FAX: 615-:	15-321-5222 321-3030		:0N 5
							DNIMA
	LE, TENNESSEE 38012 😋 🛛 🛛 📔						ΩŁ

			BILL OF	MATERI	AL	
	PC	QTY		LENGTH	STEEL	
Heat	Number MARK	TOTAL	DESCRIPTION		GRADE	REMARKS
	3502026 PS4		PL34x4	1 6	A36	
	3502026 p121		PL34x4	16	A36	
, , ,						
1-PL p121						
	-1					
45.000	B-P5					
Section Section	A-A					
MISC PS4						
EIOOXX ELECTRODES				BAT(н Н С	
PROJECT AISC DN. BY:THR DATE:	RESEARCH PROJECT 4-10-18 PAINT: ND P	AINT				4785
	VISIONS DESCRIPTION	PRINT REC DATE US		COOPER	STEEL	24 OKDEK NO:
				19 BAYENCTION OFFICE 19 BAYES TI NASHVILLE TN, 3720 FFICE: 615-321-5222 WK 615-321-3030 WK 615-321-3030	CERTIFIC AMERICAN AMERICAN AMERICAN	DRAWING NO: P

	H H M H M H M H			BILL OF	MATER]		
		MARK	UIAL ONE MIS	DESCRIPTION		GRADE	REMARKS
	8501452 PS	Б	1	lbx4	1 6	A36	
	8501452 p16	25		1l ₂ x4	1 6	A36	
czid J4-1	39 99						
		-1 -1					
	.000	Ý	Д-Р5				
A 1-4			•				
	Section		<				
LYC LYJ							
ELECTRODES					BAT	、 王 〇	
	PRDJECT AISC RESEARCH PRDJECT DN. BY:TMR DATE: 4-10-18 PAINT:	ND PAINT					5874
	REVISIONS NO. DATE DESCRIPTION	PF	LINT RECORI	8			ок ио:
			FOR FAI				BCC OK
	4 LLC. 5 3418 2 2 2 2 3				FFICE: 615-321-522 XX: 615-321-3030		:ON DNIMAS
BROMSVILLE, TEMESSEE 30012		-					Ωt

		REMARKS											+285:	KDEK NO	.0 95 4	:ON 2NIMAS
۲	STEEL	GRADE	A36	A36								Н Н		QTCCI		4 AverBerTOR
MATER1/	LENGTH		1	16								BATC		UDED	TRUCTION OFFICE	: 015-321-3030 :5-321-3030
ILL OF 1		DESCRIPTION	×4	2×4				P5						S		POHICE FAX: 61
р В В В В В В В В В В В В В В В В В В В	DTY	JTAL BUL MTC		1 PL11						A-A				NT RECORD USE FOR FAB		
	2 2	1ARK		2)		NO PAINT	PRIDATE	$\left \right \right $	
		Heat Number	8501452	8501452			ļ	45.00°2		0 9 1	11		PROJECT AISC RESEARCH PRO DN. BY:TMR DATE: 4-10-18 PAI	NO. DATE DESCRIPTION	· ณ m र	CIURAL DETAILING LLC. 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
						1-PL p127		12	1-4	MTSC PS6)))))))	E E100XX ELECTRODES				

			BILL	0F 7	1ATERI	٩L	
	I	PC	1TY		LENGTH	STEEL	
、45°、	Heat Number	MARK T(DESCRIP	NOI.		GRADE	REMARKS
		17	ONE MISC				
	7507549 PI	17	1 PL1 ¹ 2×4		1 3	A572-65	
	7507549 <u>p</u> 1	35	1 PL1 ¹ 2×4		1 3	A572-65	
, 2,							
/[[/2 /2							
-							
▶ ►							
(
IF MISC PT17							
E E 100XX ELECTRODES					BATC	С Н	
	ROJECT AISC RESEARCH PROJEC . BY:TMR DATE: 4-10-18 PAINT:	ND PAINT					5874
	REVISIONS	PRI	NT RECORD	Ç			1:0N 9
	0. DATE DESCRIPTION	DATE	USE FOR FAB	<u>5</u>	DOPER	STEEL	06DE
				CONS 1919 HJ 0FFICE: FAX: 611	FUCTION OFFICE MES ST. NASHVILLE TN, 37203 615-321-5222 -321-3030	CERTIFIED CENTIFIED Association	119 :0
)	MING N
	8						/Ya

APPENDIX B PLATE MILL TEST REPORTS

Appendix B

CERTIFICATE ARCELORMITTAL PLATE LLC TEST PAGE NO: 01 OF 02 SHIP TO: MILL ORDER NO: 4385-15-49 MILL ORDER NO: 16053-002 MELT NO: 05715 KLOECKNER METALS CORP 500 MANCHESTER CT CUSTOMER TRUCK YORK PA 17408-7614 DATE: 03/22/19 SEND TO: SOLD TO: TEST REPORT WITH SHIPMENT KLOECKNER METALS CORPORATION STOCK 500 MANCHESTER CT YORK PA 17406 FOR BOL # 44974 DESCRIPTION DIMENSIONS STEEL PLATE 1 PIECE TOTAL DESCRIPTION WEIGHT QTY GAUGE WIDTH LENGTH 6534# 1 " 96 * 240" RECTANGLE CUSTOMER INFORMATION CUSTOMER PD: YOR-7360338 PART NO. PO LINE ITEM 10 SPECIFICATION (S) THIS MATERIAL HAS BEEN MANUFACTURED AND TESTED IN ACCORDANCE WITH PURCHASE ORDER REQUIREMENTS AND SPECIFICATION(S). AASHT M270-GR36 YR 15 DUAL CERT: ASTM A709 YR:18 GR:36 ASTM A36 YR:14. ASME SA36 17ED THE MANAGEMENT SYSTEMS FOR MANUFACTURE OF THIS PRODUCT ARE CERTIFIED TO ISO 9001:2015 (CERTIFICATE NO. 30130) AND ISO 14001:2015 (CERTIFICATE NO. 49009). CHEMICAL COMPOSITION (WT%) FOR ALL ELEMENTS EXCEPT H (PPM) CR MO MN CU SI NI С S . 91 . 16 .014 .017 .27 . 22 .29 .25 .09 MELT: D5715 CB A .004 .003 .001 MELT: D5715 PROPERTIES TENSILE ELONGATION

		YIELD	TENSILE	AFTER FRACTURE
LOC	DIR	PSI X 1000	PSI X 1000	LGTH %
вот. вот.	TRANS. TRANS.	48 49	77 77	8.00" 20.0 8.00" 18.0

WE HEREBY CERTIFY THAT THE ABOVE INFORMATION IS CORRECT:

ARCELORMITTAL PLATE LLC QUALITY ASSURANCE LABORATORY 139 MODENA ROAD COATESVILLE, PA 19320

SUPERVISOR - TEST REPORTING LOC V. TRAN

-	2
a	
Q	
0	
-	1
of	2
-	4

MILL TEST CERTIFICATE

Tuscalosa, AL 35404-1000 800 800-8204 customerservice@nucortusk.com

NUCOR STEEL TUSCALOOSA, INC.

882

Sources of the second s

(Mal)

Load Number Tally	Mill Order Number	PO NO Line NO	Part Number	Certificate Number	Prepared
T168209 0000000756437	N-158673-003	BIR-7187778 3		S75643701-1	11/16/2017 15:46
Grade		Cust	omer:		
Order Description:		Sold	1 TO:		
Hot Roll Plate A57265T3, 1.0000 IN x 96.000	IN x 480.000 IN	KLOE Shib	ECKNER METALS Bessemer AL		
Quality Plan Description: A572-65 .50 CEV: ASTM A572-65	T3-07	KLOE Sent	ECKNER METALS BESSEMER AL		
Shinned Heat/Slah Co	ntified (Mn p			Ti N2 B Ca	Sn CEV ACT

Item	Shipped	7J2826AA	Shipped Item
By	Certified	B7X6627-03	Heat/S1 Number
Num	Heat/	3 ***	ab
ber	Slab \	B7X6627	Certified By
ksi	'ield	0.21	0
kst	Tensile	1.40	Mn
*	a Y/T	0.013	P
2	ELO	0.004	s
8	NGATIO	0.03	FS
	× *	0.18	£
OK?	iend	0.05	E.
HB	Hard	0.06	ç
Size 1	•	0.023	Мо
nn 1	harpy	0.037	ß
2	Impact	0.054	<
3	s (ft-	0.028	P
Avg	lbs)	0.002	LT.
		0.007	NZ
1		0.0002	₿
2 3	Shear %	0.0015	ନ୍ଦ
A			Sn
νg		0.48	CEV
Temp	Test		ACI

Items: 1 PCS: 1 Weight: 13068 LBS

7J2826AA S7J2826FTT B7X6627-03 *** 74.2

94.1

78.9 31.9

Fillet and PJP Welds

"***' indicates Heats melted and Manufactured in the U.S.A.

Mercury has not come in contact with this product during the manufacturing process nor has any mercury been used by the manufacturing process. Certified in accordance with EN 10204 3.1. No weld repair has been performed on this material. Manufactured to a fully killed fine grain practice. ISO 9001:2015 Registered, PED Certified We hereby certify that the product described above passed all of the tests required by the specifications. 2 ١ m 2 2

Dr. Quilin Yu - Metallurgist

B3

The and I st werds					Appendi	X E
PRODUCED IN / Manufactured to Mercury has not to otherwise noted to viterwise noted to setterwise noted to setterwise noted to Parmi=O+(SI30) Mercura	8501452-01	Plate Serial No	8501452	Heat No	PLATE Vehicle No: Specification: Mark	
ACCOR fully kill a Specia fracture	-	Pie	0.18	C	ding:	
DANCE V bed in the gr filtedion. F filtedion. F filtedion. f d in the gr	4	aces To	0.83	Mn	04/05/2 8294 1.5000 ASTM SA36 2	
ALL	90 T	ns Di	300'0	P	018 " x 96.0(A36-14/	(2
OR-HER water the by Effect skipmen skipmen skipmen (Cr/2014)	47,80 41,20	(psî) Yield	0.00	s	B 00" x 240 ASTM A7 7 AASH	52) 356-3
rFORD Q/ and this may and the Sail Standard Stan Standard Standard Stand Standard Standard Stand Standar	00 72,9 00 70,9	(psi) Tensil	0.0	Si	/L No. : /),000" 709 Grad TO M270	1700
A MANUA ateriat Pr estix@n Marins)+E Mans)+E Mans)+E	88	Elony Elony e % in:	21 [0	499189 le 36-17/ -2017 3(
L REV. 1 but SRI Co		g. Elo 2" % i	0.21	Ľ	AASHT	
7 JUNE 7 s continue s continue (5)+((Cu+	25.2	ng. n 8"	0.20	Nī	O M2700	
33, 2015 33, 2015 19, 2015 19, 2015			70.0	Cr	Load Grade 36	
iscrete prae			0.04	Mo	No. : 507 Sold To MASME	
d on this a the as-rolle			0.020	Al(tot)	7095 5: CH DU	SLI
ntaterial. 10 97/23/E			0.004	<	O ATHAM D2 CHEE RHAM, N	- CP
C 7/2 Ann			0.00	Nb	ur Orde STEEL K RD IC 27704	OIC
We here operatio specific			0.0	1	ND. 11	x 12 x 39
by certify his perform tions, ind			102		55034/3	1
that the contract of the set of t			•	Z	4	
ontents of functional spectral spectra			0040	Ca	Cu:	(25)
this report manufact clication			0,0000	B		2) 356-37
tare accu mer are in			0.008	Sn	r No. : D HATHAN 702 CHE URHAM,	700
inter and complian			0.37	Ceq	W STEEL	
correct. A loce with the			0	Рсп	2	: L /
I test rest te applica			25	1	3 x	113 01
ults and ble					a K	Nature:

All test results and he applicable 12/30/2017 1:16:46 PI	d correct. / ance with t	accurate any re in complia autico	report are a ufacturer an ations.	r specifica	the conter by the mat g custome nt.	ertify that erformed t s, includin 3 Complia	a hereby c erations p ecification 1, Para. 4.	We op sp sp 2 Annex 7 PQA-723	ksi ; gular 97/23/EC 7 97/23/EC 7	on this mat on rectan 09). PED (each to k berformed (screte plate rar (#0985- lity Assurar	r was not j us cast di ucor.com (i)/15) vi)/15) em Regist only, Qua	r weld repai as continuo alesMX(@N))5)+((Cu+h))5)+((Cu+h)Uality Syst	Welding o Produced nents:nhc-S r((Cr+Mo+V B ((Cr+Mo+V B B) B) SRI (D) by SRI	rc Furnace his materia exico shipr - C+(Mn/6) 5)+(V/10)+6 fied (#0109 (2005) corr	y Electric / incluring of t tion. For M fifed. Ceq : 1209+(Mo/1) 2008 certil 10204 3.1), DIN EN	n the direc noted in 2 so therw 2u/20)+(Ni 2	ully killed fi een used ii s otherwise hethod unle (Mn/20)+(C (Mn/20)+(C actured in 1 actured in 1	Manufactured to Mercury has not b pecimens, unless field by 0.5EUL n field and Manuf Meted and Manuf Noted and Manuf	TZTYNZ_
	10mm	-32								2		34	198.0	192.7	203.1	198.2 23 C). P fre	134J@-	9.03	2 3. 25ff-lbs	7507549-06-3 NFCM. T1. T2. 1	- 1
	Size	Temp (°C)	Min	(%) Ave	Shear (%) (%) 3	(%) 2	(%) 1) (mm) Min	harpy Im sion (mm)- n) (mm Ave	C eral Expan 1m) (mr 2 3	Lat (mm) (n	Min	(J) Ave	inergy (J)— (J) 3	Absorbed I (J) 2	-1C	Dir.	0	c Results	Metri	
							74	593	58	907				55.3	683	565	북	9.03	N	7507549-06-3	1 .
							Time (min)	at emper (°C)	Heat Tre Time T min)	C) (C)	Que		Elong.	Elong. E 6 in 2" 9	Tensile (MPa)	Yield (MPa)	Dir.	Tons	Pieces	Plate Serial No	
	10mm	-25										25	146.0	142.0	149.8	146.1	Ŧ	9.96	2	7507549-06-3	٦.
	Size	Temp (°F)	Min	(%) Ave	Shear (%) (%) 3	(%) 2	(%) 1	(in.)	nsion (in.)- 1.) (in.) Ave	in.) (ir 2 3	(in.) (Min	(ft-lbs) Ave	(ft-lbs) 3	(ft-lbs)	(ft-lbs)	Dir.	Tons	Pieces	Plate Serial No	
								pacts	harpy In	0											
							74	1100	58	1665				55.3	99,000	82,000	H-1	9.96	2	7507549-06-3	
							Time (min)	at (°F)	Heat Tre Time T min)	Pr)	Qu		Elong. % in 8"	Sile Test Elong. % in 2"	Tensile (psi)	Yield (psi)	Dir,	Tons	Pieces	Plate Serial No	
1.22	.45 0	011 0.	000 0.0	54 0.00	7 0.00	0.007	0.003	0.002	0.077	0.030	0.02	0.47	0.28	0.28	0.41	0.001	0.013	1.28	0.09	7507549	T
ä	q Po	n Ce	S		Ca	z	=	Nb	<	Al(tot)	Mo	Cr	Ni	Cu	s	s	P	Mn	C	Heat No	
	LD RD A 17602	ASTER,P	LANC LANC				5	08 ,,PA 176	ICASTER	LAN	n /485W	197.6mr IPS 70W	8.4mm x 6 A709-17 H	nm x 243 N ASTM	00" / 38.1 70W/485	" x 244.00 2017 HPS 4500184	96.000 M270-4 2+T 2+T	.5000" x ASHTO 17273 C 170066F		Specification Marl	
RES	14525 TRUCTU	.: 450018 STEEL ST	Order No. HIGH	Cust. (6	967/2 NC	40. : 152 FURES	r Order M	Ou H STEEL)766 : HIG	No. : 500 Sold To	Load		335	No. : 490	B/L	7 17	2/30/201 W 6209		Issuing Date Vehicle No:	
	Ę	Z	River Rd C 27922 56-3700	1505 F ofield, N (252) 3	Q			ort	Repo	age 19	L L C	Mil			17986	.Box 279 ton, NC 2 2) 356-370	P.0 (25;	מ		PLATE	

T. A. Depretis, Metallurgist

12/30/2017 1:16:46 PM

В5

Appendix B

מססקוסיק אין איטרטיקאעריב אווידע אוורסס גופט	7506515-02 2 6.12 T 43.5 T 40,8	Plate Serial Pieces Tons [Dir. Yiel	7506515 0.19 0.84 0.009 0.0	Marking: 35693	Vehicle No: Deloatch D3 Specification: 1.2500" x 72.000" x 24 ASTM A36-14/ASTM A SA36 2013/2015 AASH	Issuing Date : 10/18/2017	P.O.Box 2 Winton, N PLATE MILL
ITFORD QA MANUAL REV. 17 JUNE tothe Arc Furnace. Welding or weld rep	00 70,600 20.6 00 70,300 25.3	Tensile Test (psi) Elong. H Tensile % in 2 ⁿ % in 8 ⁿ	02 0.18 0.25 0.12		0,000" (709 Grade 36-16a/AASHTO M2 (70 M270-2017 36	B/L No. : 485050	279 IC 27986 3700
E 23, 2015 pair was not performed on this material.			0.10 0.03 0.022 0.004	Cr Mo Alfott V	Sold To: CHATHAM S 2702 CHEEH DURHAM,N 70Grade 36/ASME	Load No. : 494060 Ou	Mill Test Repo
We hereby certify that the operations performed by the			0.002 0.002	Nb Ti N	TEEL .RD .27704	r Order No. : 151424/1	ort
contents of this report are accurate and c			0.0027 0.0001 0.011 0.38	Ca B Sn Ceq	Ship To: CHATHAM STEEL 2702 CHEEK RD DURHAM,NC 2770	Cust. Order No, : DVW6008	1505 River Rd Cofield, NC 27922 (252) 356-3700
correct. All test results and ce with the applicable			0.26	Pcm	04		

...

-

KLOECKNE 500 COLON SUITE 500	RMETAL				Cust	omer P.	D.No.:(CLT-7	71902	228	1	Mill Ord	der No.	41-514	1254	4-01	Ship	oing Ma	anifest:	AT249421
SUILE SUU	IIAL CENT	S CORPORATIO ER PARKWAY	N		Prode	uct Desc	iption:/	ASTM	A A 572	2(15) 65/M450)				Sh	hip Date: ert Date:	06 Sep 06 Sep	17 C	Cert No: Page 1 o	081621784 of 1)
ROSWELL																				
GA 30076					Size	1.250	(96.00	0 X 48	480.0	(IN)										
	Tester	Pieces:				Tensiles	:						(harpy	Imp	pact Test	s			
Heat Id	Piece Id	Tested Thickness	Tst Loc	YS (KSI)	UTS (KSI)	%RA	Elong	% T n C	Tst Dir	Hardness	Abs. E	nergy(I 3 /	FTLB) Avg	1 2	% SI 3	hear 3 Avg	Tst Tmp	Tst Dir	Tst Siz (mm)	BDWT Tmp %S
W7H748	C03	1.249 (DISCRT)	L	71 70	91 92		14 16	T												
Heat	<u></u>						Ch	emica	al Ana	lysis										
ld	C	Mn P	S	Si 1	Tot Al	Cu I	i C	r	Mo	Cb		I B	3 N							
MERCUP OF THI MTR EN 100% M WELD H PRODUC W7H) STEEL RY IS NO: S PRODU(I 10204:: MELTED AJ (EPAIRINO TS SHIP) '48	T A METALLURG CT. 2004 INSPECTI ND MANUFACTUR 3 HAS NOT BEE PED: C03	ON CER CON CER ED IN N PERFO P	OMPONE TIFICA THE US ORMED CES:	NT OF TE 3.1 A. 2, LB	THE ST COMPL	LANT 2670	1.0 9.0 NO	04 10 ME	CURY WAS	INTE	NTIONA	ALLY A	DDED	DUR	NING TH	2 MANU	FACTU	RE	
MERCUI OF THJ MTR EL 100% M WELD I PRODUC W7H	STEEL XY IS NO' S PRODU 1 10204: HELTED AJ EPAIRIN TS SHIP 148	T A METALLURG CT. 2004 INSPECTI ND MANUFACTUR 3 HAS NOT BEE PED: C03	NCAL C ON CER ED IN N PERF P	OMPONE TIFICA THE US ORMED CES:	NT OF TE 3.1 A. 2, LB	THE ST COMPL	LANT 2670	I.O	04 10 ME	LO47 [O9	: INTE:	NTIONA	ALLY A	DDED	DUR	RING TH	: MANU	FACTU	RE	
MERCUI OF THI MTR E 100% H WELD I PRODUC W7H) STEEL KY IS NO'. S PRODU I 10204:: HELTED A LEPAIRIN' TTS SHIP! 148	T A METALLURG CT. 2004 INSPECTI ND MANUFACTUR S HAS NOT BEE PED: CO3	CICAL C ON CER ED IN N PERF P	OMPONE TIFICA THE US ORMED CES:	NT OF TE 3.1 A. 2, LB	THE ST COMPL	LINT LANT 2670	1.0 ND NO	04 10 ME	1047 109	INTEN	NTIONA	ALLY A	DDED	DUR	RING TH	: MANU	FACTU	RE	
MERCUI OF TH MTR E 100% W WELD I PRODUC W7H) STEEL KY IS NO'. S PRODU I 10204: HELTED AI LEPALRIN. TTS SHIP! '48	T A METALLURG CT. 2004 INSPECTI ND MANUFACTUR G HAS NOT BEE PED: CO3	DICAL C ON CER ED IN N PERF P	OMPONE TIFICA THE US ORMED CES:	NT OF TE 3.1 A. 2, LB	THE ST COMPL	LINT 2670	IO NO	04 0 ME	1047 109	INTE	VTIONA	ALLY A	DDED	DUR	KINC TH	2 MANU	FACTU	RE	
MERCUI OF THI MTR E 100% W WELD I PRODUC W7H) STEPL KY IS NO'S PRODU 1 10204: ELTED AN KEPAIRIN (TS SHIP) 48	T A METALLURG CT. 2004 INSPECTI ND MANUFACTUR G HAS NOT BEE PED: CO3	EICAL C ON CER ED IN N PERF P	OMPONE TIFICA THE US ORMED CES:	NT OF TE 3.1 A. 2, LB	THE ST COMPL	 ZEEL AN (ANT 2670	IO NO	04	1.047 1.09	INTE	VIIONA	ALLY A	DDED	DUR	RING TH	: MANU	FACTU	RE	

Heat No C Mn	Marking: 36477	Specification: 1.7500' ASTM J SA36 2	Vehicle No: DELOA	Issuing Date : 11/28/2	PLATE MILL	
P S		" x 96.000" x 240.000" A36-14/ASTM A709 Gra 013/2015 AASHTO M2	NTCH D3	017 B/L No.		P.O.Box 279 Winton, NC 27986 (252) 356-3700
Si Cu		ade 36-17/AASHT 70-2017 36		: 488589		
Ni Cr Mo		O M270Grade 36/ASME	Sold To:	Load No. : 49821	Pé	Mill Tes
Al(tot) V Nb Ti N		DURHAM,NC 27704	2702 CHEEK RD	89 Our Order No. : 152825/4	ige 1	st Report
t Ca B Sn Ceq Pcm		DURHAM,NC 27704	Ship to: CRACITANICSTEEL 2702 CHEEK RD	Cust Order No. (DVW6307)		1505 River Rd Coffield, NC 27922 (252) 356-3700 It's Our Name, Control of Con

7506393-05	Plate Sen No		7506393	Heat No
3	al pie		0.23	c
17	ces To		1.10	Mn
.15	SUC		-	
T	Dir.		600'0	P
37,200	(psi) Yield	The second s	0.003	57
66,900	(psi) Tensile	Te	0.20	Si
	Elong. % in 2"	ansile Te	0.19	Cu
26.9	Elong. % in 8"	st	0.09	Nī
			0.06	Cr
			0.01	Мо
			0.035	Al(tot)
			0.004	<
			0.002	Np
			0.003	μ
				z
			0.0040	Ca
			0.0001	B
			0.010	Sn
			0.44	Ceq
			0.30	Pcm

PRODUCED IN ACCORDANCE WITH NUCOR-HERTFORD QA MANUAL REV. 17 JUNE 23, 2015 We hereby certify that the contents of this report are accurate and correct. All test results and operations performed by the material manufacturer are in compliance with the applicable specifications, including customer specifications, f(x) = f(x) + fT. A. Depretis, Metallurgist rulia 11/28/2017 12:47:59 PM

		and the																
SHIP	TEST CERTIFICATE PAGE NO: 01 OF 0 FILE NO: 3571-01 HIGH STEEL STRUCTURES LLC 144 GREENFIELD ROAD LANCESTEP DA 17602 SLAB NO: 12	ArcelorMittal																
SOLE	DATE: 10/18/1	17 01-C																
DOLL	HIGH STEEL STRUCTURES LLC PO BOX 10008 LANCASTER PA 17605-0008																	
S T	EEL PLATE DIMENSIONS / DESCRIPTION																	
	TOTAL PIECE QTY GAUGE WIDTH LENGTH DESCRIPTION WEIGHT																	
	1 1-3/4" 96" 240" RECTANGLE 11435#																	
cυ	STOMER INFORMATION -3																	
	CUSTOMER ITEM NO. 0110 PART NO. 1170066F-06028																	
SP	ECIFICATION (S) THIS MATERIAL HAS BEEN MANUFACTURED AND TESTED IN ACCORDANCE WITH PURCHA ORDER REQUIREMENTS AND SPECIFICATION (S).	ASE																
	AASHT M270-HPS70WF3 YR 15 SILICON KILLED & FINE GRAIN PRACTICE NEW YORK CON MANUAL 3RD ED SECT 9 10/7/13 GR HPS70W & ASTM A709 HPS 16A GRADE 70WF3 THE MANAGEMENT SYSTEMS FOR MANUFACTURE OF THIS PRODUCT ARE CERTIFIED TO ISO 9001:2008 (CERTIFICATE NO. 30130) AND ISO 14001:2004 (CERTIFICATE NO. 49009).																	
CHEM	MICAL COMPOSITION (WT%) FOR ALL ELEMENTS EXCEPT H (PPM)																	
	MELT:D2044 C MN P S CU SI NI CR MC .09 1.23 .006 .004 .31 .41 .32 .56 .0	27																
	MELT:D2044 V AL CB N .050 .019 .002 .0097																	
MA	NUFACTURE																	
	FINELINE - VACUUM DEGASSED - FINE GRAIN PRACTICE																	
ΗE	AT TREAT CONDITION																	
	OR HEAT TREAT NOM HOLD COOL TEST DESCRIPTION TEMP MINS MTHD																	
	PL/TEST HARDEN 1675F 51 W.QUENCH PL/TEST TEMPER 1180F 99 W.QUENCH																	
	WE HEREBY CERTIFY THE ABOVE INFORMATION IS CORRECT:																	
	ARCELORMITTAL PLATE LLC																	
	139 MODENA ROAD SUPERVISOR - TEST REPORTING																	
	COATESVILLE, PA 19320 LOC TRAN																	
Т	Ε	S	Т	С	Е	R	т	I	F	1	С	A	т	E				
---	---	---	---	---	---	----	---	---	----	----	----	----	----	----	-----	-----	-----	----
									PA	G	E	NC):	02	OF	1	02	
									FI	L	E	NC):	35	71-	-0:	1-0	01
					М	IL	L	0	RE)E	R	NC):	84	534	-	00	5
									MF	Ľ	Т	NC):	D2	044			
									SI	A	B	NC):	12				
											DA	TE	::	10	/18	3/	17	

ELONGATION

TENSILE PROPERTIES

S	LAB O. L	OC	DIR	YIELD STRENGT PSI X 10	CH 000	TENSILE STRENGTH PSI X 1000	AFTER I GAGE LGTH	RACTURE
	12 E	BOT.	TRANS.	80		93	2.00"	26.0
CHARPY	V-NOTCH	I IMPACT	RESULTS					
	SLAB	LOC	DIR	TEMP	SIZE	FT. LBS.	NO	BREAK
	12	BOT.	LONG.	-10F	FULL	$141 \ 146 \ 185 \\ 132 \ 135 \ 137$		NB

STRIKER RADIUS 8MM

GENERAL INFORMATION

ALL STEEL HAS BEEN MELTED AND MANUFACTURED IN THE U.S.A. NO WELD REPAIR PERFORMED BY ARCELORMITTAL PLATE LLC. MATERIAL HAS BEEN VACUUM DEGASSED AND CALCIUM TREATED FOR SULFIDE SHAPE CONTROL. FINELINE MOD FOR SULPHUR ALL STEEL HAS BEEN MANUFACTURED IN THE U.S.A. MFST:NYDOT D263452 PHASE 2 REPL OF KOSCIUSZKO BR OVER NEWTOWN CREEK KIGNS & QUEENS COS NY ACID SOLUBLE ALUMINUM FOR MORE INFORMATION AND PROCESSING GUIDELINES, REFER TO WWW.USA.ARCELORMITTAL.COM/PLATE

B/L #23294 PYLE TRANSPORT

WE HEREBY CERTIFY THE ABOVE INFORMATION IS CORRECT:

ARCELORMITTAL PLATE LLC QUALITY ASSURANCE LABORATORY 139 MODENA ROAD COATESVILLE, PA 19320

SUPERVISOR - TEST REPORTING LOC TRAN

ndix B	Appe	A								and PJP Welds	Fillet and P.
PLATE	Issuing Date :	Vehicle No: Specification:		Marki	Heat No	6502038				Manufactured to fi Mercury has not bi otherwise noted in	Manufactured to f Mercury has not bi otherwise noted in Yield by 0.5EUL m Pcm = C+(Si/30)+(Melted and Manufa
				ing :	C	0.17	-	-		ully Kille sen use	ully kill een us Specif lethod Mn/20 kctured
מו	05/03/20	CHATH		36740	Mn	0,86	Diacea			ed practice ed in the dir fication. Fo	ed practice ed in the di- lication. Fo unless othe y+(Cu/20)+(t in the US/
P.O. Wint (252)16	AM 5813 x 96.000 36-14/AS			P	0.015	Tensil		ũ.	by Electric ect manufa	by Electric rect manufa r Mexico st rwise spec Ni/60)+(Cr Ni/60)+(Cr
Box 279 on, NC 2) 356-370	BIL	× 240.00			S	0.003	e Test			Arc Furna locuring of	Arc Furnad acturing of lipments: n fied. Ceq fied. Ceq
7986	No. : 44:	00" Grade			ŝ	0.20	en l			ce. Weldin this mater	ce. Weldir this mater thc-Sales = C+(Mn/ 5)+(V/10)
	3096	36-13a/A	•		Cu	0.25	ner l	and the street		ng or weld rial, Produ	ng or weld rial, Produ MX@Nup %5)+((Cr+N)+58
		ASHTO N			N	0.09	Elanastion			I repair was treed as con	t repair was uced as com or.com //o+////5)+(()
R	5	1270Gra			G	0.11	Flores			inct perfo	not perfoi línuous ca Cu+NIJ/15
IIIT	ad No. :	Sold de-36/ASI			Mo	0.02	tion			med on this	med on this st discrete }
Page	448408	To:			AI(tot)	0.014				s material plate as-re	s material. plate as-n
Re		CHATHAI 2702 CHE DURHAM			<	0.006				olled, unles	olled, unles
port	Our Orde	NC 2770			Nb	0.002	12/01			10	6
	pr No. : 1	4			Ħ	0.002				We here operation	We here operation specifica
	36121/1				z		(%)			by certify the sperform the sperform the sperform the sperific state of the spectrum spe	by certify this perform tions, inclu
-			17		Ca	0.0014	Charp			hat the con ed by the n	hat the con ed by the n ding custo
1505 F Cofield, N (252) 3	Cust.	Ship To:	ある きをきます		8	0.0003	y Impacts			tents of this transferred the second s	tents of this naterial man specific manual man Manual manual manu
tiver Rd C 27922 56-3700	Order No	CHAT 2702 DURH			Sn	0.012				report are unfacturer a	report are utfacturer a ations,
Z	.: DVW3	HAM ST			Ceq	0.37	(%)			accurate : are in comp	accurate : rre in comp
C	563	EEL RD 27704			Pcm	0.25				and correct	and correc pliance with
D								-		t. All test re th the appli	th the appli
							Min			and sults and	results and blicable bl/2016 1:01:49 J

Appendix B

B12

TEST CERTIFICATE PAGE NO: 02 OF 02 FILE NO: 3571-01-01 MILL ORDER NO: 90954-001 MELT NO: D2290 SLAB NO: 7A DATE: 01/19/18

TENSILE PROPERTIES

	SLAB NO.	LOC	DIR	YIELD STRENG PSI X 1	TH 000	TENSILE STRENGTH PSI X 1000	AFTER GAGE LGTH	GATION FRACTURE %
	7A	BOT.	TRANS.	82		95	2.00"	24.0
CHARI	PY V-NOT	CH IMP	ACT RESULTS					
	SLAB	LOC	DIR	TEMP	SIZE	FT. LBS.	NO	BREAK
	7A 7A	BOT TOP	LONG.	-10F -10F	FULL FULL	168 168 1 173 185 1	77 NB 89 NB	NB NB NB NB

STRIKER RADIUS 8MM

GENERAL INFORMATION

ALL STEEL HAS BEEN MELTED AND MANUFACTURED IN THE U.S.A. NO WELD REPAIR PERFORMED BY ARCELORMITTAL PLATE LLC. NO WELD REPAIR PERFORMED BY ARCELORMITTAL PLATE LLC. MATERIAL HAS BEEN VACUUM DEGASSED AND CALCIUM TREATED FOR SULFIDE SHAPE CONTROL. FINELINE MOD FOR SULPHUR ALL STEEL HAS BEEN MANUFACTURED IN THE U.S.A. MFST:NYDOT D263452 PHASE 2 REPL OF KOSCIUSZKO BR OVER NEWTOWN CREEK KIGNS & QUEENS COS NY ACID SOLUBLE ALUMINUM FOR MORE INFORMATION AND PROCESSING GUIDELINES, REFER TO WWW.USA.ARCELORMITTAL.COM/PLATE

B/L #27555 PYLE TRANSPORT

WE HEREBY CERTIFY THE ABOVE INFORMATION IS CORRECT:

ARCELORMITTAL PLATE LLC QUALITY ASSURANCE LABORATORY 139 MODENA ROAD COATESVILLE, PA 19320

SUPERVISOR - TEST REPORTING LOC TRAN

Fillet and PJP Welds RODUCED I elted and Manufactured elted and Ma	8500710-05	Plate St No	8500710	Lbat No M	Append Specificati	
N ACCORE to fully kille to fully kille di been uss di n.Specifi di n.Specifi di n.Specifi	N	aria) Pie	0.18	arking:	on:	
ANCE WF	-* 0	es Ton	0.89	37053 Mo	02/09/2 DELOA 2.5000" ASTM / SA36 20	מ
TIH NUCOP	8 F F	s Dir.	0.010	D I	018 TCH D3 X 96.000 X 96.000 15/2017	P.0 Win (25)
A-HERTFC Arc Furna acturing of pipments:r ippments:r iz008 cer	42,000 42,000	(psi) Yield	0.001	0	B/L " x 240.0 STM A70 AASHTC	.Box 279 Iton, NC 2) 356-37
ORD QA M DRD QA M this mater the Salesh the Salesh = C+(Mnl)	72,000	(psi) Tensile	0.18	2	No. : 49 100" 9 Grade 9 M270-2	27986
ANUAL RI ag or weld lal.Produccio B)+((Cr+M	30.9	Elong. % in 2"	0,16	?	4177 36-17/AA 017 36	
EV. 17 JU EV. 17 JU crepair was bed as con		Elong. % in 8"	0.0	N	SHTO M	
NE 23, 20 NE 23, 20 NE 23, 20 NE 23, 20			6 0.1	2	Lo 270Grad	N N
15 st discrete			1 0.0	8	sold Sold	
s material. plate as-ro			1 0.01	Alfo	504207 To: 0	Page
lied, unless			16 0.00	*	CHATHÁN 2702 CHE DURHAM	Rep
			05 0.0	Nh	Our.Orde A STEEL EK RD NC 2770	port
We here operation specificat			02 0.0	7	ar No. : 1	
y certify th s performe			02	2	54463/10	
at the cont ind by the r			0.0			
ents of this lateral man			036 0.0	3	Cust. Ship To:	(252) ;
report are relations			002 0		Order No CHA 2702 DUR	IC 27922 356-3700
are in com			.008	2 	D.: DVW(THAM ST CHEEK HAM,NC	Z
pliance with			0.37		6476 TEEL RD 27704	Ī
L All test re			0.25			
sulfs and		1		• 8	*	
A Construction of the second s				2.4	*	ASR.

							Арр	
Manufactured to f Mércury has not b cottletwise noted. Craeld by 0.5EUL Metted and Manuf DIN 50049 3.1.8/2	8502026-02	Plate Serial No	8502026	Heat No	Mark	Specification:	Issuing Date : Vehicle No:	PLATE
CCORD CCORD	4	Piec	0.17	0	ing :			
ANCE WI ANCE WI In the did in the did in the did in the did in the USI	9.9	xes Ton	0,86	Ma	DVW65	0.7500" ASTM	04/10/20 TSH 829	ר גר
TH-NUC TH-NUC ect man r Mexico Nivesion-tf Nivesion-tf Nivesion-tf Nivesion-tf Nivesion-tf	0 	s Q	0.007	P	15	x 96.00 36-14/)18 34	(2 × P
OR-HERT OR-HERT Ufacturing shipment shipment Crizola C	43,20 44,70	(psl) Yield	0.00	s	I MOADI	00" x 240	B	0.Box 27 inton, NC 52) 356-3
FORD QA FORD QA of this mat of this mat of SHEVA of SH-VA of SH-VA of SH-VA of SH-VA of SH-VA of SH-VA of SH-VA of SH-VA of SH-VA	0 70,50 0 73,40	(psi) Tensile	1 0.1	Si	C MALO	.000" 09 Grade	L No. : 4	'9 : 27986 : 700 : 우승 글 한
MANUALI MANUALI Instal. Prod stMX@Nuc stMX@Nuc stMX@Nuc	20	Elong. % in 2"	C0 81	Cu	ac 1107-	9 36-17/A	99524	4-1 1
REV. 17 J ing or welching or welching or welching set welching set welching set welching set of ABS contacts and set of the set of t	29 23	est Elong % in 8	27 0.	Ni		ASHTO I		
UNE 23, I repair w nitinuous ((Cu+Ni)	NO		10	~		M270Gr		
2015 2015 cast discr cast discr '15)			60'0	~		ade 36/A	Load No S	
formed of the plate of the plat			0.02	Mo		SME	.: 5088 old To:	Pe
n this mat as-rolled, ps), PED s			0.026	AI(tot)		2702 DURI	79 CHA	age 2
erial unless ale 14 MM			0.004	<		CHEEK HAM,NC	Our THAM S	epo
poly-723			0.002	NP		RD 27704	Order N	Ă
hereby constitutions per confications per			0.002	П			0. : 1550	
arify that the including of the includin				z			34/2	
te content y the mate customer			0.0026	Ca			st	Co
s of this re s of this re trial manuficati T. A. Depr			0.000	Ø		9	Cust. Or tip To:	1505 Riv Teld, NC (252) 356
port are a mature are mature are			1 0.0	Sa		2702 C DURH/	der No. CHATH	/er Rd 27922 5-3700
ocurate an in compli			11 0	Ce		M,NC 2	AM STE	2
d correct ance with			.36	q P		D 7704	Щ 45	C
All test results and the applicable SV32-4470/2018 3-13			0.24	CM				
59 PM								1 A

B15

I WE HEREBY CERTIFY THAT THIS MATERIAL WAS	KILLED STEEL MERCURY IS NOT A METALLURGICAL COMPONENT OF THE STEEL AND NO MERCURY WAS INTENTIONALLY ADDED DURING OF THIS PRODUCT. MTR EN 10204:2004 INSPECTION CERTIFICATE 3.1 COMPLIANT 100% MELTED AND MANUFACTURED IN THE USA. WELD REPAIRING HAS NOT BEEN PERFORMED PRODUCTS SHIPPED: W7H748 C07 PCES: 1, LBS: 9801	Heat Chemical Analysis Id C Mn P S SI Tot AI Cu Ni Cr Mo Cb V Ti B N W7H748 1.16 1.55 .011 .005 .04 .038 .27 .16 .17 .04 .094 .006 .0001 .0093	W7H748 C07 0.751 (DISCRT) L 73 95 18 T T 72 93 17 T T T	Heat Piece Tested Tst YS UTS %RA Elong % Tst Hardness Abs. Energy(FTLB) % Shea Id Id Thickness Loc (KSI) (KSI) 2in 8in Dir 1 2 3 Avg 1 2 3	GA 30076 Size: 0.750 X 96.00 X 480.0 (IN) Charmy Impact	Customer: Customer: <thcustomer:< th=""> <thcustomer:< th=""> <thcustomer:< th=""></thcustomer:<></thcustomer:<></thcustomer:<>	12400 Highway 43 North, Axis, Alabama 36505, US
Justin Ward	ING THE MANUFACI			Avg Tmp D	act Tests	ip Date: 06 Sep 17 rt Date: 06 Sep 17	n TC1: Revision 2: D:
94 000000000000000000000000000000000000	TURE			st Tst B ir Siz Tm		Cert No: 08162 (Page 1 of 1)	ate 23 Apr 2014
		USA		DWTT Ip %Shr		21785	9491

APPENDIX C WELDING PROCEDURE SPECIFICATIONS

Fillet and PJP Welds	ourg Stee	Appandix D4.1:2010						
& Specia	lty Company							
275 Francis Avenue P.O. Box 158 Monroe, V	A 24574 Phone: (434) 929-0951 Fax: (434) 929-2613	AWS						
www.lyn	.lynchburgsteel.com							
	E SPECIFICATION (WPS) Yes	00040821						
PREQUALIFIED Q		CWI						
or PROCEDURE QUAL	FICATION RECORDS (PQR) Yes	V						
	Identification #	2						
	Revision 2 Date 11/07/13	ByJW						
Company Name Lynchburg Steel and Specialty Co.	Authorized by John D. Wright	Date 01/19/01						
Welding Process(es) FCAW	TypeManual 🔽	Semiautomatic 🔽						
Supporting PQR No.(s) N/A	Mechanized 🔽	Automatic 🗖						
JOINT DESIGN USED	POSITION							
Type: Fillet Weld	Position of Groove: N/A	Fillet: 1F, 2F						
Single Double Weld	Vertical Progression: Up 🔲 Dow	/n 🗖						
Backing: Yes 🔲 No 🗖								
Backing Material: N/A	ELECTRICAL CHARACTERISTICS							
Root Opening 0 - 3/16" Root Face Dimension N/A								
Groove Angle N/A Radius (J-U) N/A	Transfer Mode (GMAW) Short-Circuit	iting 🗖						
Back Gouging: Yes 🥅 No 🔲 Method	Globular	Spray 🔽						
	Current: AC 🗖 DCEP 🔽 DCEN 🥅 I	Pulsed 🔲						
BASE METALS	Power Source: CC 🔽 CV 🔽							
Material Spec. Group I - II (see Table 1 on pages 6-8)	Other							
Type or Grade All grades listed in Table 1	Tungsten Electrode (GTAW)							
Thickness: Groove N/A Fillet 1/8" - Unlimited	Size:							
Diameter (Pipe) All diameters welding Pipe to Plate	Туре:							
	TECHNIQUE							
AWS Specification AWS A5 20	Stringer or Weave Bead [.]	ringer or Weave						
AWS Classification F71T-1 F70T-1	Multi-Pass or Single Pass (per side)	Single or Multi						
	Number of Electrodes	1						
SHIELDING	Electrode Spacing Longitudinal	N/A						
Flux N/A Gas CO2	Lateral	N/A						
Composition 100%	Angle	N/A						
Electrode-Flux (Class) Flow Rate 40-45 CFH	Contact Tube to Work Distance	1"						
Gas Cup Size N/A	Peening None							
	Interpass Cleaning: Remove sl	ag, chip or brush						
PREHEAT and INTERPASS TEMPERATURE								
Min for Thicknesses 1/8" - 3/4" (included) 32°F see note*	POST WELD HEAT TREATMENT							
Min for Thicknesses over 3/4" - 1 1/2" (included) 50°F	Temperature N/	Α						
Min for Thicknesses 1 1/2" - 2 1/2" (included) 150°F	Time N/A							
Min for Thicknesses over 2 1/2" 225°F								
Max Interpass Temperature 550°F								
* Note: When base metal is below 32*F, preheat to 70*F and maintai	n during welding.							
WELDIN	G PROCEDURE							
Pass or Filler Metals Curre	nt	Joint Details						
	mps or wire I ravel							

Pass or		Filler	Metals		Current			Joint Details
Weld Layer(s)	Process	Class	Diameter	Type & Polarity	Amps or Wire Feed Speed	Volts	Travel Speed	Fillet Weld
1 - n	FCAW	E71T-1	1/16"	DC+	265a - 325a	26-30	11-15 ipm	/
1 - n	FCAW	E70T-1	3/32"	DC+	360a - 440a	26-30	11-15 ipm	
					G2			
					C2			

COOPER STEEL

275 Francis Avenue, Monroe Virginia 24574

WELDING PROCEDURE SPECIFICATION (WPS) Yes PREQUALIFIED QUALIFIED BY TESTING or PROCEDURE QUALIFICATION RECORDS (PQR) Yes

						Identificatio	on #		1/4 Fi	llet - E	80T1			
						Revision	0	Date	05/24/19	By _	John D. Wright			
Company I	Name	(Cooper Stee	əl		Authorized	by	And	rew Andersor	n _ I	Date 05/24/19			
Welding Pi	rocess(es)		FCA\	N		TypeMar	nual 🖡	~			Semiautomatic 🔽			
Supporting) PQR No.(۱	s)	N	/A		Mechar	nized 🖡				Automatic 🗖			
JOINT DE	ESIGN US	ED				POSITION	N							
Туре:		Fillet	Weld			Position of	Groove	: <u> </u>	N/A	- Fillet	t: 1F, 2F			
Single	Dc	uble Weld				Vertical Progression: Up Down								
Backing:	Yes 🗖	No 🗀		- · .										
	Backin	ig Materiai:	E Dime	N/A	· •	ELECTRICAL CHARACTERISTICS								
Root Upen	ling <u>0-3</u>	3/16" ROOT	Face Dime		/A	Transfer Made (CMANN) Chart Circuiting								
Groove An	gle <u>Vo</u>		dius (J-U)	N/A		Transfer Mode (GMAW) Short-Circuiting								
Back Goug	Jing: rea	3 📋 INO	l wetre	DG		Curront				Dulec	spray M			
						Dowor Sou				Puise				
Material Sr						Other	ice.		6V 💌					
Type or Gr	nec					Tungsten F			٨/١					
Thickness:	· Gro	ove N/A	- Fillet	1/8" - Unlim	ited		Size	e (C i ,	v)					
Diameter (Pine)		N/A	1/0 0111	lica		Tvp	e:		-				
Diamotor (- ipo)		1473	. 1			-							
FILLER M	IETALS					TECHNIQ	ŧUE							
AWS Spec	cification		AWS A5.	.29		Stringer or	Weave	Bead:	<u> </u>	Stringe	r or Weave			
AWS Class	sification		E80T-1	í		Multi-Pass	or Singl	le Pass	(per side)		Single or Multi			
						Number of	Electro	des			1			
SHIELDIN	1G					Electrode S	Spacing	_	Longitudinal		N/A			
Flux	N/A	Ga	.s	CO ₂		Lateral N/A								
		Cor	mposition	100%					Angle		N/A			
Electrode-I	Flux (Class)) Flo	w Rate	45 CFH		Contact Tube to Work Distance 1"								
		Ga	s Cup Size	N/A	۱	Peening			Nor	าย				
						Interpass C	Cleaning	g:	Remove	slag, c	hip or brush			
PREHEA	T and INT	ERPASS 7	FEMPERA	TURE										
Min for Thi	cknesses 1	/8" - 3/4" (ir	ncluded)	32°F see no	ote*	POST WE	ELD HE	EAT TR	EATMENT					
Min for Thi	cknesses o	ver 3/4" - 1	1/2" (includ	led) 50)°F	Temperatu	re		١	√/A				
Min for Thi	cknesses 1	1/2" - 2 1/2	2" (included)) 150	0°F	Time			N/A					
Min for Thi	cknesses o	ver 2 1/2"		225	5°F	.			·· ··· ·					
Max Interp	ass Tempe	rature		550	<u>0°F</u>	Calculate	d Heat	Input	(kJ/in)		47.67			
* Note: Whe	n base meta	l is below 32'	*F, preheat to	o 70*F and m	naintain	during welding	g.							
			AC	TUAL WE		<u>G PARAME</u>	TERS	USED		<u> </u>				
Pass or		Filler	Metals		Current	t		Travel		Joir	nt Details			
Weid Laver(s)	Process	Class	Diameter	I ype & Polarity	CAIII Fe	eed Speed	Volts	Speea (IPM)		Fill€	et Weld			
1	FCAW	E80T-1	1/16"	DC+		330	31.3	13			/			
								-						
			!				1 1							
This W	/PS is only	to show th	ne welding	parameter	s usec	d - NOT for F	PRODU	CTION						
		· · · · · ·	<u>ر</u>	í ,										
				[]						/				
			1	,,										

C3

COOPER STEEL

275 Francis Avenue, Monroe Virginia 24574

WELDING PROCEDURE SPECIFICATION (WPS) Yes PREQUALIFIED QUALIFIED BY TESTING or PROCEDURE QUALIFICATION RECORDS (PQR) Yes

					Identificatio	on #		1/4 Fil	let - E100 ⁻	T1					
					Revision	0	Date	05/24/19	By Jo	ohn D. Wright					
Company Name	C	Cooper Stee	el		Authorized	by	Andı	rew Andersor	n Date	e 05/24/19					
Welding Process(es)		FCA	N		TypeMar	nual	~		Se	emiautomatic 🔽					
Supporting PQR No.(s)	N	/Α		Mechar	nized 🛛				Automatic 🗖					
JOINT DESIGN US	ED				POSITION	N									
Туре:	Fillet	Weld			Position of	Groove	:	N/A	Fillet:	1F, 2F					
Single 🗖 🛛 De	ouble Weld				Vertical Progression: Up 🗖 Down 🗖										
Backing:Yes 🗖	No 🗖														
Backi	ng Material:		N/A		ELECTRICAL CHARACTERISTICS										
Root Opening 0 -	3/16" Root	Face Dime	nsion N	/A											
Groove Angle	Groove Angle N/A Radius (J-U) N/A							Transfer Mode (GMAW) Short-Circuiting							
Back Gouging: Ye	s 🗖 🛛 No	Method	od					Globular	🗌 Spra	ay 🔽					
					Current:	AC 🗖	DCEP	DCEN	Pulsed						
BASE METALS Power Source: CC CV V															
Material Spec.					Other										
Type or Grade					Tungsten E	Electrod	e (GTAV	V)							
Thickness: Gro	ove N/A	Fillet	1/8" - Unlim	ited		Size	e:		_						
Diameter (Pipe)		N/A			Туре:										
					TECUNIO										
AVVC Specification			20				Deed		Ctringer or	Magua					
AVVS Specification		Stringer or	vveave	Beau:	(nor oido)	Stringer or									
AVVS Classification		Number of	or Singi	le Pass (per side)										
						Electro		ongitudinal	I	NI/A					
	Ga		CO.												
	Ca	mocition	100%												
Electrode Elux (Class		N Pato			Contact Tu	bo to W	r Ark Dist			1"					
	Ga		43 CI Π Ν/Δ		Deening			Nor	10	1					
	0a	s oup Size			Internase (leaning	۰.	Pemove	slag chin	or bruch					
DDEHEAT and INT			TIIDE		interpass c	Jeaning	j	Remove	siay, chip						
Min for Thicknesses 1	LINF AGG I		32°E see no	nto*	POST WE			ΕΔΤΜΕΝΤ							
Min for Thicknesses	1/0 = 3/4 (ii)	1/2" (includ	ad) 50		Temperatu				ν/Δ						
Min for Thicknesses 1	1/2" - 2 1/2	" (included)	150 150)°F	Time			N/A	1// (
Min for Thicknesses	ver 2 1/2"	(moladea)	224	5°F				10/7							
Max Internass Tempe	prature		55()°F	Calculate	d Heat	Innut (k.l/in)	4	14 22					
* Note: When base meta	al is below 32'	F preheat to	70*F and m	aintain	during welding	a	. mpar (
						TEPS									
Deep or	Filler	Vetals	IUAL WL	Current			Traval		Joint De	etails					
Weld			Type &	Am	ps or Wire		Speed								
Layer(s) Process	Class	Diameter	Polarity	Fe	ed Speed	Volts	(IPM)		Fillet V	Veld					
1 FCAW	E100T-1	1/16"	DC+		327	29.3	13								
										* ×					
This WPS is only	to show th	e welding	parameter	s used	I - NOT for I	PRODU	CTION			/					
								_		V N					
├ ───															

C4

APPENDIX D WELD WIRE MILL TEST REPORTS

Fillet and PJP Welds

Shipped Production Numbers:

6212D901A1401, 6211D901A1402

Appendix D 600 Enterprise Drive PO Box 259 Fort Loramie, OH 45845 800.341.5215

Diameter: 1/16

Certificate of Conformance

This is to certify that the product stated below is of the same classification, manufacturing process, and material requirements as the electrode used for the testing on the date stated. All tests required by the specifications for classification were performed and the material met all requirements. It was manufactured and supplied according to the quality management system of Select-Arc, Inc., which meets the requirements of ISO 9001 and other applicable specifications. This certificate complies with the requirements of EN 10204, Type 2.2.

Test Completion Date: 2/19/2014 Lot Numbers: (1/16) 8549

Specifications: AWS A5.20:2005

Diameter(s): .045 - 1/16

Classification: E71T-1C-H4, E71T-1M-H4, E71T-9C-H4, E71T-9M-H4

Chemical Analysis (wt%) Diameter 1/16 75% Ar / Shielding Gas CO2 25% CO2 Max Min Results Results С 0.12 0.07 0.05 Si 0.90 0.32 -0.25 Ρ 0.03 0.011 0.007 _ 0.99 Mn 1.75 1.13 0.009 S 0.03 0.012 -

Weld Parameters					
Electrode Diameter:	1/16				
Shielding Gas	75% Ar / 25% CO2	CO2			
Amperage:	261	255			
Arc Voltage:	28.0	28.5			
Current Polarity:	DCEP	DCEP			
CTWD (in):	3/4	1			
No. of Passes/Layers:	17/9	14/7			
Preheat Temperature(°F):	70	70			
Interpass Temperature(°F):	300	300			

... . . _

Radiographic Test: Met Requirement Fillet Weld Test: Met Requirement

Weld Metal Diffusible Hydrogen (ml/100g) per AWS A4.3-93

Diameter:	1/16
Shielding Gas	CO2
Requirements	Results
4	3.8

Mechanical Properties						
Ele	1/	16				
Shielding Gas		75% Ar / 25% CO2	CO2			
Requireme	nts	Results	Results			
Test Condition:	As-Welded	As-Welded				
PWHT Temperature: -		-	-			
Tensile Strength (psi):	70000 - 90000	82000	71000			
Yield Strength (psi):	58000 min	72000	62000			
Elongation (%):	22 min	37	33			
Charpy V-Notch Impacts:		33, 41, 45	62, 53, 74			
ft-lb f @ -20°F	20 avg.	40 avg	63 avg			

The undersigned certifies that the product supplied will meet the requirements of the applicable AWS Filler Metal Specification when tested in accordance with that specification.

Signed By:

Martinellarixo

Martin L. Caruso, Director of Technology

Fillet and PJP Welds

Appendix D 600 Enterprise Drive PO Box 259 Fort Loramie, OH 45845 800.341.5215

Diameter: 1/16

Certificate of Conformance

This is to certify that the product stated below is of the same classification, manufacturing process, and material requirements as the electrode used for the testing on the date stated. All tests required by the specifications for classification were performed and the material met all requirements. It was manufactured and supplied according to the quality management system of Select-Arc, Inc., which meets the requirements of ISO 9001 and other applicable specifications. This certificate complies with the requirements of EN 10204, Type 2.2.

Product: Select 101-K3C

Diameter(s): .045 - 1/16

Specifications: AWS A5.29: 2010

Classification: E101T1-K3C

Chemical Analysis (wt%)

		, .	,
Dian	neter		1/16
Shield	ing Gas		CO2
	Max	Min	Results
Ni	2.60	1.25	1.78
Cr	0.15	-	0.03
Si	0.80	-	0.31
С	0.15	-	0.05
Р	0.030	-	0.007
Mn	2.25	0.75	1.43
Мо	0.65	0.25	0.39
S	0.030	-	0.010
V	0.05	-	0.02

Radiographic Test: Met Requirement Fillet Weld Test: Met Requirement

Electrode Diameter:	1/16
Shielding Gas	CO2
Amperage:	317
Arc Voltage:	28.0
Current Polarity:	DCEP
CTWD (in):	3/4
No. of Passes/Layers:	13/6
Preheat Temperature(°F):	300
Interpass Temperature(°F):	300

Mechanical Properties					
Ele	1/16				
	Shielding Gas	CO2			
Requireme	Results				
Test Condition:	As-Welded	As-Welded			
PWHT Temperature:	-	-			
Tensile Strength (psi): 100000 -		107000			
	120000				
Yield Strength (psi):	88000 min	99000			
Elongation (%):	16 min	19			
Charpy V-Notch Impacts:		65, 69, 65			
ft-lb f @ 0°F	20 avg.	66 avg			

The undersigned certifies that the product supplied will meet the requirements of the applicable AWS Filler Metal Specification when tested in accordance with that specification.

Signed By:

Martinellarixe

Martin L. Caruso, Director of Technology

Test Completion Date: 8/18/2017

Lot Numbers: (1/16) 6366

Appendix D 600 Enterprise Drive PO Box 259 Fort Loramie, OH 45845 800.341.5215

Diameter: 1/16

Certificate of Conformance

This is to certify that the product stated below is of the same classification, manufacturing process, and material requirements as the electrode used for the testing on the date stated. All tests required by the specifications for classification were performed and the material met all requirements. It was manufactured and supplied according to the quality management system of Select-Arc, Inc., which meets the requirements of ISO 9001 and other applicable specifications. This certificate complies with the requirements of EN 10204, Type 2.2.

Product: Select 820-Ni1

Test Completion Date: 5/13/2019

Lot Numbers: (1/16) 1919

Diameter(s): .045 - 1/16

Specifications: AWS A5.29:2010, AWS A5.36:2016

Classification: E81T1-Ni1CJ-H4, E81T1-Ni1MJ-H4, E81T1-M21A4-Ni1-H4, E81T1-C1A4-Ni1-H4

Chemical Analysis (wt%)

Diameter			1/16	
Shielding Gas		75% Ar / 25% CO2	CO2	
	Max	Min	Results	Results
Ni	1.10	0.80	0.95	1.03
С	0.12	-	0.04	0.03
Si	0.80	-	0.53	0.41
Cr	0.15	-	0.06	0.06
Р	0.030	-	0.010	0.010
Mn	1.50	-	1.49	1.21
Мо	0.35	-	0.01	0.01
S	0.030	-	0.009	0.010
v	0.05	-	0.02	0.03

Radiographic Test: Met Requirement Fillet Weld Test: Met Requirement

Weld Metal Diffusible Hydrogen (ml/100g) per AWS A4.3-93

Diameter:	1/16		
Shielding Gas	75% Ar / 25% CO2 CO2		
Requirements	Results	Results	
4	3.8	2.5	

Weld Parameters					
Electrode Diameter: 1/16					
Shielding Gas	75% Ar / 25% CO2	CO2			
Amperage:	286	274			
Arc Voltage:	27.0	28.0			
Current Polarity:	DCEP	DCEP			
CTWD (in):	1	1			
No. of Passes/Layers:	12/6	12/6			
Preheat Temperature(°F):	300	300			
Interpass Temperature(°F):	300	300			

Mechanical Properties

•					
Ele	1/	16			
Shielding Gas		75% Ar /	<u>(0)</u>		
	-	25% CO2	002		
Requireme	nts	Results	Results		
Test Condition:	As-Welded	As-Welded	As-Welded		
PWHT Temperature:	-	-	-		
Tensile Strength (psi):	80000 - 100000	91000	82000		
Yield Strength (psi):	68000 min	80000	72000		
Elongation (%):	22 min	27	29		
Charpy V-Notch Impacts:		65, 81, 52	55, 68, 64		
ft-lb f @ -20°F	20 avg.	66 avg	62 avg		
Charpy V-Notch Impacts:		43, 44, 51	38, 21, 24		
ft-lb f @ -40°F	20 avg.	46 avg	28 avg		

The undersigned certifies that the product supplied will meet the requirements of the applicable AWS Filler Metal Specification when tested in accordance with that specification.

Signed By:

Martinellarixo

Martin L. Caruso, Director of Technology

APPENDIX E

ALL-WELD-METAL TENSION TEST REPORTS

MATERIALS TECHNOLOGY INCORPORATED Appendix E www.TestMetal.com 213 Lyon Lane Birmingham, AL 35211 205.940.9480

ARC International, LLC Attention: Bo Dowswell Suite 116 300 Cahaba Park Circle Birmingham, AL 35242

 Test Date:
 08/01/2019

 Report Date:
 08/01/2019

 Lab Number:
 192488

 P. O. Number:
 192488

Sample Identification: (9) 3/4" Thick Welded Plates (Groove Welds)

		SPECIMEN IDENTIFICATION					
			AT1			AT2	
Properties	Unit	Specimen #1	Specimen #2	Specimen #3	Specimen #1	Specimen #2	Specimen #3
Tensile Properties		•					
Tensile Strength	psi	75,900	76,300	75,100	79,700	82,700	79,900
Yield Strength (0.2 % offset)	psi	62,500	64,700	61,100	69,000	72,000	68,200
Elongation (Gage=4D)	%	32	30	31	30	28	30
Reduction in Area	%	70	69	69	70	70	70

		AT3		
		Specimen #1	Specimen #2	Specimen #3
Tensile Properties				
Tensile Strength	psi	101,000	100,600	98,300
Yield Strength (0.2 % offset)	psi	69,300	66,300	81,700
Elongation (Gage=4D)	%	23	24	23
Reduction in Area	%	59	61	60

Test Method(s): AWS B4.0

Respectfully Submitted, *Materials Technology, Inc.*

aul a Mito

Quality Assurance Representative

Tests and analysis performed in accordance with procedures derived from methods described and approved by the ASTM and other accepted industry practices. This report shall not be reproduced, except in full, without the prior written approval of Materials Technology, Inc.

Testing efforts were in accordance with MTI QA Program, Rev. 7 – *March 16, 2017.*

APPENDIX F SPECIMEN PHOTOGRAPHS

TRANSVERSE FILLET WELD SPECIMENS

Specimen FT1

Specimen FT4

Specimen FT9

Specimen FT10

LONGITUDINAL FILLET WELD SPECIMENS

Specimen FL2

Specimen FL5

Specimen FL11

Specimen FL13

Specimen FL14

TRANSVERSE PJP WELD SPECIMENS

LONGITUDINAL PJP WELD SPECIMENS

Specimen PL2 (etched)

Weld 1

Specimen PL4 (etched)

Specimen PL8 (etched)

Specimen PL11

Specimen PL13

Specimen PL13 (etched)

Specimen PL14 (etched)

Specimen PL15 (etched)
SKEWED PJP WELD SPECIMENS

Specimen PS1

Specimen PS3

Specimen PS4

Specimen PS5

APPENDIX G SPECIMEN DATA

_

Table G1a	. Transver	se fillet w	eld specim	iens: pre-t	est measu	rements.
Specimen	W _{T1}	W ₇₂	W _{B1}	W _{B2}	Lτ	Lв
Number	in.	in.	in.	in.	in.	in.
FT1	0.319	0.315	0.326	0.337	1.74	1.74
FT2	0.256	0.303	0.324	0.343	3.46	3.77
FT3	0.248	0.349	0.260	0.255	5.76	5.70
FT4	0.457	0.489	0.452	0.511	1.78	1.73
FT5	0.402	0.435	0.440	0.444	3.69	3.73
FT6	0.420	0.441	0.372	0.443	5.59	5.60
FT7	0.534	0.592	0.484	0.518	1.81	1.92
FT8	0.460	0.482	0.462	0.489	3.74	3.79
FT9	0.503	0.496	0.478	0.512	4.80	4.62
FT10	0.283	0.308	0.258	0.284	5.82	5.78
FT11	0.368	0.419	0.398	0.424	4.71	4.39
FT12	0.494	0.489	0.473	0.518	3.81	3.77
FT13	0.263	0.385	0.306	0.426	1.79	1.83
FT14	0.299	0.396	0.291	0.354	5.71	5.75
FT15	0.448	0.513	0.461	0.485	1.84	1.79
FT16	0.404	0.414	0.390	0.475	4.76	4.78
FT17	0.424	0.607	0.441	0.667	1.76	1.79
FT18	0.395	0.545	0.561	0.598	3.80	3.76

TRANSVERSE FILLET WELD SPECIMENS

Table G	1b. Transv post-tes	verse fillet st measure	weld spec ments.	imens:
Specimen	E _{r1}	E _{r2}	γ1	γ2
Number	in.	in.	degrees	degrees
FT1	0.394	0.363	70	86
FT2	0.320	0.310	85	72
FT3	0.358	0.382	52	88
FT4	0.518	0.571	48	89
FT5	0.524	0.457	76	64
FT6	0.427	0.398	80	50
FT7	0.428	0.437	67	52
FT8	0.414	0.380	85	78
FT9	0.528	0.571	78	88
FT10	0.291	0.261	82	76
FT11	0.370	0.361	84	82
FT12	0.435	0.432	81	64
FT13	0.259	0.242	65	70
FT14	0.270	0.266	72	72
FT15	0.340	0.350	63	89
FT16	0.381	0.312	88	59
FT17	0.449	0.457	84	58
FT18	0.370	0.380	73	61

specimens: experimental results.	utanaman D		Fusion face rupture in the bottom weld only	Fusion face rupture in the top weld only		Fusion face rupture in the bottom weld only				Fusion face rupture in the top weld and partially at the bottom weld	Welds cut to ≈ 5 in. long before testing. Fusion face rupture in the bottom weld only.		No failure in initial test. Re-test after cutting welds. Fusion face rupture in both welds.					Welds cut to ≈ 5 in. long before testing			
fillet weld	$f_r \sigma_{uw}$		0.801	0.959	0.867	0.740	0.809	0.945	0.982	1.07	0.823	0.975	1.03	0.931	0.825	0.773	0.895	006.0	0.767	0.984	
ransverse	P_e / P_c		1.56	1.63	1.92	1.44	1.46	1.47	1.25	1.39	1.44	1.50	1.49	1.28	1.00	1.00	1.01	1.18	1.03	1.13	
ble G1c. T	PeIP"		2.19	2.15	2.26	1.97	1.82	1.77	1.44	1.43	1.54	1.71	1.60	1.27	1.32	1.30	1.27	1.32	1.04	1.17	
Та	f_r	ksi	2.03	72.7	2'39	56.1	61.3	71.6	74.5	6.08	62.3	78.8	3.5	75.3	82.5	27.3	5.68	0.06	76.7	98.4	
	Pc	kips	54.4	107	150	80.5	154	225	95.2	171	226	168	188	192	76.1	239	110	253	114	248	
	Ρ,	kips	38.8	80.5	128	58.6	124	187	83.0	167	210	148	174	193	57.7	182	87	228	113	240	
	Pe	kips	85.0	174	288	116	225	331	119	239	324	253	279	245	76.4	238	111	300	118	281	
	Specimen	Number	FT1	FT2	FT3	FT4	FT5	FT6	FT7	FT8	FT9	FT10	FT11	FT12	FT13	FT14	FT15	FT16	FT17	FT18	

			Table G2a.	. Longitudi	inal fillet v	reld specir	nens-pre-1	test measu	irements.			
Specimen	W 71	W ₇₂	W ₇₃	W 74	W L1	W L2	W L3	W _{L4}	L 1	L ₂	L 3	L4
Number	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
FL1	0.307	0.262	0.258	0.275	0.301	0.291	0.341	0.291	2.17	2.12	2.16	2.12
FL2	0.297	0.289	0.332	0.288	0.335	0.291	0.322	0.243	4.06	4.03	4.03	4.03
FL3	0.232	0.307	0.267	0.292	0.384	0.380	0.386	0.393	2.94	2.92	3.07	3.02
FL4	0.463	0.417	0.439	0.405	0.497	0.427	0.424	0.402	1.97	2.09	2.03	1.91
FL5	0.506	0.457	0.509	0.464	0.489	0.426	0.448	0.481	3.25	3.22	3.16	3.16
FL6	0.472	0.456	0.471	0.440	0.478	0.429	0.381	0.434	2.92	2.98	2.97	2.99
FL7	0.461	0.481	0.582	0.521	0.445	0.552	0.413	0.492	2.05	2.03	2.08	2.04
FL8	0.750	0.528	0.590	0.510	0.637	0.484	0.545	0.490	2.97	2.94	2.90	2.86
FL9	0.296	0.237	0.289	0.218	0.227	0.330	0.275	0.264	3.39	3.39	3.63	3.60
FL10	0.417	0.405	0.394	0.406	0.389	0.383	0.383	0.431	3.37	3.31	3.41	3.42
FL11	0.250	0.281	0.264	0.277	0.359	0.462	0.442	0.365	2.03	2.03	2.06	2.02
FL12	0.299	0.260	0.293	0.243	0.349	0.397	0.328	0.292	4.46	4.53	4.43	4.27
FL13	0.403	0.380	0.398	0.361	0.508	0.509	0.440	0.486	2.01	2.03	2.08	2.09
FL14	0.443	0.448	0.435	0.458	0.470	0.611	0.452	0.496	3.05	3.09	3.07	2.95
FL15	0.486	0.491	0.484	0.474	0.525	0.479	0.535	0.452	1.72	1.77	1.62	1.63

LONGITUDINAL FILLET WELD SPECIMENS

т	able G2b.	Longitudi	nal fillet w	eld specin	nens-post-	-test meas	urements.	
Specimen	E _{r1}	E _{r2}	E _{r3}	E , 4	γ 1	γ2	γ ₃	γ4
Number	in.	in.	in.	in.	degrees	degrees	degrees	degrees
FL1	0.273	0.276	0.232	0.283	56	56	68	57
FL2	0.278	0.246	0.240	0.277	69	63	60	53
FL3	0.227	0.294	0.210	0.244	64	59	62	64
FL4	0.340	0.349	0.353	0.300	60	51	49	48
FL5	0.319	0.380	0.379	0.315	40	43	25	42
FL6	0.324	0.343	0.366	0.369	48	41	37	46
FL7	0.409	0.371	0.410	0.405	39	41	44	50
FL8	0.470	0.428	0.404	0.397	32	43	39	39
FL9	0.202	0.202	0.214	0.206	54	61	48	55
FL10	0.314	0.337	0.321	0.296	35	50	43	43
FL11	0.158	0.233	0.180	0.248	63	64	61	64
FL12	0.157	0.190	0.168	0.204	45	35	52	45
FL13	0.329	0.301	0.289	0.337	50	50	53	40
FL14	0.298	0.301	0.312	0.311	60	59	66	52
FL15	0.330	0.373	0.336	0.382	44	53	35	42

t weld specimens-experimental results.	Commonte				Test was terminated at 330 kips. Welds were cut to $pprox$ 3 in. long and the specimen was re-tested.		Welds were cut shorter by \approx 3/4 in. before testing	Welds were cut to \approx 3 in. long before testing		Welds were cut to \approx 3 in. long before testing	Welds were cut to $pprox$ 3.5 in. long before testing	Welds were cut to ≈ 3.5 in. long before testing		Welds were cut to $pprox$ 4.5 in. long before testing. Weld rupture and rupture at one lap plate.		Welds were cut to \approx 3 in. long before testing		
ıdinal fillet	$f_r \sigma_{uw}$		0.849	0.935	0.873	0.856	0.878	0.874	0.773	0.814	1.04	0.917	0.752	0.988	0.709	0.764	0.633	
c. Longitı	PeIPc		1.89	1.94	1.59	1.60	1.53	1.68	1.53	1.48	1.94	1.72	1.15	1.40	1.23	1.16	1.24	
Table G2	PelP"		2.35	2.51	2.18	2.00	2.09	2.15	1.62	1.81	2.05	1.86	1.46	1.69	1.39	1.46	1.21	
	f_r	ksi	64.4	70.9	66.2	64.9	66.6	66.2	58.6	61.7	84.0	74.1	75.2	98.8	70.9	76.4	63.3	
	Pc	kips	79.4	155	121	112	194	169	128	212	125	185	109	226	148	243	140	
	Ρ"	kips	63.6	120	88.7	89.2	142	132	122	173	119	172	86.4	188	131	193	143	
	Pe	kips	150	301	193	178	297	284	197	314	244	319	126	317	182	282	173	
	Specimen	Number	FL1	FL2	FL3	FL4	FL5	FL6	FL7	FL8	FL9	FL10	FL11	FL12	FL13	FL14	FL15	

Table G	3a. Transv pre-tes	verse PJP t measurei	weld speci nents.	mens:
Specimen	Xτ	X _B	Lτ	Lв
Number	in.	in.	in.	in.
PT1	0.0725	0.119	3.84	3.92
PT2	0.121	0.0540	3.72	3.71
PT3	0.0850	0.0670	3.75	3.82
PT4	0.0655	0.0360	3.75	3.73
PT5	0.0680	0.0385	3.75	3.77
PT6	0.0325	0.0390	3.81	3.84
PT7	0.0995	0.0955	3.98	3.81
PT8	0.0615	0.0675	3.76	3.77
PT9	-0.00500	0.0165	3.88	3.92
PT10	0.0300	0.0180	3.90	3.85
PT11	0.0290	-0.0130	3.87	3.83
PT12	0.0410	0.0510	3.99	4.00
PT13	0.0130	0.0260	3.72	3.72
PT14	0.0315	0.0285	3.89	3.95
PT15	0.0000	0.0000	3.83	3.81
PT16	-0.00700	0.0455	3.96	3.98
PT17	-0.0340	0.0360	3.83	3.83

TRANSVERSE PJP WELD SPECIMENS

Table G	3b. Transv post-tes	verse PJP st measure	weld speci ments.	imens:
Specimen Number	<i>Ε_r</i> in.	Е _{гв} in.	γ _τ dearees	γ _B degrees
PT1	0.382	0.344		G
PT2	0.509	0.448	40	40
PT3	0.304	0.320	45	44
PT4	0.358	0.365	45	47
PT5	0.298	0.379	55	48
PT6	0.380	0.383	43	45
PT7	0.236	0.260	0	0
PT8	0.399	0.349	49	45
PT9	0.167	0.197		
PT10	0.206	0.259	53	43
PT11	0.327	0.289	40	52
PT12	0.218	0.201		
PT13	0.171	0.230	0	41
PT14	0.184	0.239	0	
PT15	0.331	0.339	43	39
PT16	0.207	0.189	0	0
PT17	0.283	0.268	36	38

Table G3	c. Transve	erse PJP w	eld specimens: experimental results.
$P_e P_n$	P_e/P_c	$f_r \sigma_{uw}$	
			COMMENTS
2.64	1.76	1.03	Mixed rupture at weld and fusion zone
2.53	1.89	1.10	
2.60	1.93	1.41	
2.28	1.86	1.26	
1.63	1.36	1.29	
1.92	1.65	1.37	
2.75	1.83	1.55	Rupture at fusion zone in non-prepared plate
2.27	1.79	1.23	
1.74	1.69	1.48	
1.91	1.78	1.83	
1.38	1.35	1.34	
1.98	1.66	1.44	
1.53	1.44	1.70	

95.8 97.5

107

134 145 189 186 151

99.4

118 158

117

296 258 269

PT1 PT2 PT3

78.0 83.4

f, ksi

> **kips** 122 156

P_n **kips** 81.4

> **kips** 215

Pe

Specimen Number

٩

93.0

104

81.8

225 269

PT7

161

308

258

PT5 PT6

PT4

148

108 117 137

> 115 142

95.9

134

PT13 PT14 PT15 PT16 PT17

140 185

> 256 190 205 203 243

PT11 PT12

120

96.7 150 190

93.6

163 267

PT10

119

РТ8 РТ9 Top weld: rupture at fusion zone in non-prepared plate. Bottom weld: rupture at weld metal.

Rupture at fusion zone in non-prepared plate

1.28 1.21

1.48

1.63 1.48

128 121

128 173

119 172

195 255

1.24 0.949

1.54 1.41 1.52

1.73 1.41

124 94.9

132 172

118 172

	Table G4a	. Longitud	inal PJP w	eld specin	nens: pre-f	test measu	irements.	
Specimen	X ₁	X 2	X 3	X4	L 1	L 2	L ₃	L 4
Number	in.	in.	in.	in.	in.	in.	in.	in.
PL1	0.0250	0.0525	0.0505	0.0845	4.00	4.00	4.11	3.99
PL2	0.131	0.118	0.131	0.100	3.73	3.85	3.88	3.74
PL3	0.108	0.0840	0.0655	0.0715	2.90	2.96	2.89	2.86
PL4	0.0555	0.0030	0.0690	0.0485	2.97	3.06	2.95	3.01
PL5								
PL6	0.0160	0.0470	0.0500	0.0435	2.99	3.02	2.92	3.06
PL7	0.0495	-0.0120	-0.0395	0.0080	2.95	3.01	3.09	3.00
PL8	-0.0240	-0.0660	-0.0180	0.0440	2.66	2.75	2.65	2.67
PL9	0.0545	0.0240	0.0620	0.0350	3.93	4.07	4.09	4.02
PL10	0.0055	-0.0165	0.0100	-0.00800	2.19	2.33	2.16	2.10
PL11	0.0775	-0.0320	0.0080	0.0555	3.94	4.07	4.17	4.05
PL12	0.0180	-0.00600	0.0260	0.0610	2.84	2.74	2.75	2.67
PL13	0.246	0.147	0.240	0.263	2.55	2.43	2.64	2.61
PL14	0.177	0.156	0.256	0.190	3.04	3.09	2.83	3.03
PL15	0.291	0.295	0.291	0.259	2.75	2.98	2.89	2.92

LONGITUDINAL PJP WELD SPECIMENS

r	Fable G4b	. Longitudi	inal PJP w	eld specin	nens: post-	test meas	urements.	
Specimen	E _{r1}	E _{r2}	E _{r3}	E _{r4}	γ1	γ2	γ ₃	γ4
Number	in.	in.	in.	in.	degrees	degrees	degrees	degrees
PL1	0.229	0.226	0.248	0.182	12	30	26	15
PL2	0.405	0.417	0.368	0.309				
PL3	0.402	0.438	0.385	0.376	29	16	21	16
PL4	0.463	0.511	0.404	0.384	0			0
PL5								
PL6	0.384	0.367	0.402	0.375	19	8	9	5
PL7	0.256	0.360	0.226	0.290	8	6	20	4
PL8	0.389	0.346	0.312	0.363	27	14	19	34
PL9	0.198	0.191	0.168	0.202	9	4	4	11
PL10	0.289	0.281	0.176	0.287	2	0	15	0
PL11	0.241	0.256	0.257	0.256	18	3	8	7
PL12	0.219	0.281	0.212	0.270	6	3	2	7
PL13	0.434	0.411	0.560	0.417				
PL14	0.431	0.469	0.408	0.401				
PL15	0.500	0.522	0.490	0.484				

Table G4c. Longitudinal PJP weld specimens: experimental results.	Comments			Rupture in plates after Weld 3 failed	Welds were cut to ≈ 3.5 in. long	Welds cut to \approx 3 in. long. Rupture at Welds 1 and 4 followed by rupture at middle plate. Weld 4 ruptured at the	Specimen did not fail		Welds were cut to ≈ 3 in. long.			Welds were cut to ≈ 2.25 in. long		Welds were cut to ≈ 2.75 in. long	Welds were cut to $pprox$ 3 in. long. Complete rupture at Welds 1 and 2. Large deformation ($pprox$ 0.10 in.) and partial	Welds were cut to ≈ 3 in. long. No failure, but weld rupture was imminent	The welds were cut to approximately 3 in. long. No rupture. Large deformation (»0.08 in.) in the welds.
	f_r / σ_{uw}		0.876	0.675	0.749	0.712		0.715	0.711	0.637	0.936	0.652	0.781	0.792	0.799	0.799	0.580
	P _e / P _c		1.07	0.974	1.11	1.09		1.13	1.34	1.28	0.994	092.0	1.18	0.957	1.01	1.00	0.809
	P_{e}/P_{n}		1.40	1.46	1.47	1.29		1.26	1.35	1.21	1.18	0.763	1.31	1.03	1.76	1.53	1.54
	f_r	ksi	66.4	51.1	56.8	54.0		57.8	71.1	63.7	75.6	52.7	78.1	79.2	60.6	64.6	58.0
	Pc	kips	222	299	241	262		241	182	191	229	159	270	222	279	330	413
	P,	kips	169	199	183	220		216	181	201	193	158	244	206	161	216	216
	Pe	kips	237	291	269	285		272	244	244	228	120.6	319	213	283	331	334
	Specimen	Number	PL1	PL2	PL3	PL4	PL5	PL6	PL7	PL8	PL9	PL10	PL11	PL12	PL13	PL14	PL15

1

 T T T

SKEWED PJP WELD SPECIMENS

Table G5a. Skewed PJP weld specimens: pre-test measurements.									
Specimen	Χ _τ	X _B	L _T	L _B					
Number	in.	in.	in.	in.					
PS1	0.0890	0.0940	5.35	5.29					
PS2	0.122	0.0760	5.40	5.31					
PS3	0.0610	0.0535	5.17	5.32					
PS4	0.0065	0.0650	5.35	5.31					
PS5	-0.0130	0.0350	5.12	5.20					
PS6	-0.0190	-0.0225	5.30	5.31					

Table G5b. Skewed PJP weld specimens: post-test measurements.									
Specimen	E _{rT}	E _{rB}	γτ	Ύв					
Number	in.	in.	degrees	degrees					
PS1									
PS2	0.365	0.389	46	34					
PS3	0.299	0.320	4	1					
PS4									
PS5	0.242	0.275	45	41					
PS6	0.287	0.349	25	34					

weld specimens: experimental results.	Commondo	SUBILITION	upture only in the plate		est was terminated at 330 kips. Weld reinforcement was ground flush and the specimen was re-tested.	upture only in the plate			
kewed PJP	f_r / σ_{uw}			0.951	1.10		0.961	0.914	
ble G5c. SI	P_e / P_c		1.31	1.29	1.20	1.14	1.14	1.21	
Tal	help,		1.93	1.77	1.47	1.30	1.17	1.15	
	f_r	ksi		72.1	83.1		96.1	91.4	
	Pc	kips	165	231	236	183	239	265	
	"d	kips	112	169	193	160	232	279	
	Pe	kips	216	299	284	208	272	320	
	Specimen	Number	PS1	PS2	PS3	PS4	PS5	PS6	

APPENDIX H MATHEMATICAL MODELS

In this Appendix, three different failure theories were considered in the derivations for the strength of skewed fillet welds: von-Mises, maximum normal stress and maximum shear stress (Tresca). The suggested models were based on the following assumptions:

- Failure occurs in the weld metal and not the base metal.
- The weld fracture surface is where the maximum stresses are generated.
- The weld material is homogeneous.
- No weld penetration.
- Stresses in the fracture surface are uniform.

For each model, the surface where maximum stresses are generated was determined for both longitudinal and transverse loading. The location of maximum stress is not necessarily located in the plane of minimum throat. The following calculations show the location of maximum stresses and so the location of failure surface in the weld.

Single Fillet Welds with Transverse Loading

According to the AISC *Specification* and AWS D1.1, the fillet weld design is mainly dependent on the allowable shear stress of the weld. Nevertheless, tensile stresses can be the controlling stresses for failure and not shear. This case is present in high obtuse dihedral of fillet weld. Consequently, the analysis due to transverse loading is conducted with respect to both allowable shear stress and allowable tensile stress of the weld and then both cases were combined to generalize the design of the fillet weld in skewed T-Joints. Figure H.1 shows the connection details in the case of transverse loading.

Fig. H.1. Skewed T-Joint with a single fillet weld.

 $w = b \sin \Psi$ $\alpha = \frac{180 - \Psi}{2} = 90 - \frac{\Psi}{2}$ $\beta = 180 - (\alpha + \gamma) = 180 - 90 + \frac{\Psi}{2} - \gamma = 90 - \left(\gamma - \frac{\Psi}{2}\right)$ $\frac{b}{\sin \beta} = \frac{E_t}{\sin \alpha}$ $E_t = \frac{b \sin \alpha}{\sin \beta} = \frac{w * \sin \left(90 - \frac{\Psi}{2}\right)}{\sin \Psi * \sin \left(90 - \left(\gamma - \frac{\Psi}{2}\right)\right)} = \frac{w * \cos \left(\frac{\Psi}{2}\right)}{2 * \sin \left(\frac{\Psi}{2}\right) * \cos \left(\frac{\Psi}{2}\right) * \cos$

$$= \frac{1}{\sin \beta} = \frac{1}{\sin \psi * \sin \left(90 - \left(\gamma - \frac{\Psi}{2}\right)\right)} = \frac{1}{2 * \sin \left(\frac{\Psi}{2}\right) * \cos \left(\frac{\Psi}{2}\right) * \cos \left(\gamma - \frac{\Psi}{2}\right)}$$
$$= \frac{w}{2 * \sin \left(\frac{\Psi}{2}\right) * \cos \left(\gamma - \frac{\Psi}{2}\right)}$$

$$E_t = \frac{E_d}{\cos\left(\gamma - \frac{\Psi}{2}\right)}$$

where,

 E_d = design effective throat (shortest distance from the root to the face of the weld) E_t = theoretical rupture plane width P = force acting on the fillet weld b = weld leg length w = weld size γ = angle of the fracture plane, measured from the horizontal surface of the base metal

 Ψ = dihedral angle of the skewed joint

Maximum Shear Stress (Tresca)

The Tresca stress or maximum shear stress in the weld is expressed by τ .

$$\tau = \frac{P\cos(\Psi - \gamma)}{E_t \cdot l}$$

where, l is the weld length. Assume the unit length for l.

$$\tau = \frac{P\cos(\Psi - \gamma)}{E_t} = \frac{P\cos(\Psi - \gamma)}{w} * 2 * \sin\left(\frac{\Psi}{2}\right) * \cos\left(\gamma - \frac{\Psi}{2}\right)$$
$$= \frac{2P}{w}\sin\left(\frac{\Psi}{2}\right) * \cos(\Psi - \gamma) * \cos\left(\gamma - \frac{\Psi}{2}\right)$$

To determine the angle of shear failure (γ), where maximum shear stress or Tresca stress is generated, the derivative of the shear stress with respect to the failure angle should be equal to zero.

$$\frac{d\tau}{d\gamma} = 0$$

$$\frac{2P}{w}\sin\left(\frac{\Psi}{2}\right) * \left[\left(\cos(\Psi - \gamma) * -\sin\left(\gamma - \frac{\Psi}{2}\right)\right) + \left(\cos\left(\gamma - \frac{\Psi}{2}\right) * \sin(\Psi - \gamma)\right)\right] = 0$$

$$\left(\cos(\Psi - \gamma) * -\sin\left(\gamma - \frac{\Psi}{2}\right)\right) + \left(\cos\left(\gamma - \frac{\Psi}{2}\right) * \sin(\Psi - \gamma)\right) = 0$$

$$\cos(\Psi - \gamma) * \sin\left(\gamma - \frac{\Psi}{2}\right) = \cos\left(\gamma - \frac{\Psi}{2}\right) * \sin(\Psi - \gamma)$$

$$\tan\left(\gamma - \frac{\Psi}{2}\right) = \tan(\Psi - \gamma)$$

Ψ

$$\begin{split} \gamma - \frac{1}{2} &= \Psi - \gamma \\ \gamma &= 0.75\Psi \\ \tau_{max} &= \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) * \cos(\Psi - 0.75\Psi) * \cos\left(0.75\Psi - \frac{\Psi}{2}\right) = \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) * \cos\left(\frac{\Psi}{4}\right) * \cos\left(\frac{\Psi}{4}\right) \\ &= \frac{2P}{w} * \sin\left(\frac{\Psi}{2}\right) * \cos^{2}\left(\frac{\Psi}{4}\right) \end{split}$$

The allowable transverse joint load for the weld, P, can be calculated accordingly by substituting τ_{max} with the ultimate shear stress of the fillet weld material, τ_u (Miazga and Kennedy, 1989) even though the Tresca theory includes comparing the maximum shear stress with the tensile yield stress divided by 2 (Boresi, Schmidt, and Sidebottom, 1993).

$$P_{UT-S} = \frac{\tau_u \cdot w}{2\sin\left(\frac{\Psi}{2}\right) * \cos^2\left(\frac{\Psi}{4}\right)}$$

Put-s is the ultimate transverse load that can be curried by the weld based on the predicted failure plane and not the weld throat based on the maximum shear stress (Tresca) criterion. The ultimate shear strength of fillet weld is equal to $1/\sqrt{3}$ of the ultimate tensile strength of the weld (Naka and Kato, 1966).

$$\tau_u = \frac{F_{EXX}}{\sqrt{3}} \approx 0.6F_{EXX}$$
$$P_{UT-S} = \frac{F_{EXX}.W}{2\sqrt{3}\sin\left(\frac{\Psi}{2}\right) * \cos^2\left(\frac{\Psi}{4}\right)}$$

If we assumed that the shear failure happens where minimum throat is ($\gamma = 0.5\Psi$), which is inaccurate, the nominal ultimate transverse joint load would be less conservative (higher) than the actual case ($\gamma = 0.75\Psi$).

$$\gamma = \frac{\Psi}{2} \quad and \quad E_d = E_t = \frac{w}{2 * \sin\left(\frac{\Psi}{2}\right)}$$
$$\tau = \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) * \cos(\Psi - \gamma) * \cos\left(\gamma - \frac{\Psi}{2}\right) = \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) * \cos\left(\frac{\Psi}{2}\right) = \frac{P}{w} \sin\Psi$$
$$P_{UTH-S} = \frac{\tau_u \cdot w}{\sin\Psi}$$

P_{UTH-s} is the hypothetical ultimate transverse load carried by the weld based on the maximum shear stress (Tresca) criterion, assuming that the failure plane is at the throat section.

$$\frac{P_{UT-S}}{P_{UTH-S}} = \frac{\sin\Psi}{2\sin\left(\frac{\Psi}{2}\right) * \cos^2\left(\frac{\Psi}{4}\right)} = \frac{\cos\left(\frac{\Psi}{2}\right)}{\cos^2\left(\frac{\Psi}{4}\right)} = \frac{\cos^2\left(\frac{\Psi}{4}\right) - \sin^2\left(\frac{\Psi}{4}\right)}{\cos^2\left(\frac{\Psi}{4}\right)}$$
$$= 1 - \tan^2\left(\frac{\Psi}{4}\right) \quad \dots \dots \quad Always \ less \ than \ 1$$

Maximum Normal Stress

Depending on the skewness of the T-Joint the generated stresses in the fillet weld varies. For instance, the main generated stresses in the fillet weld of an acute angle is shear, while it is tension for the obtuse angle. In this section, the capacity of the fillet weld is determined based on comparing the maximum principal stress in the weld with the ultimate tensile strength of the weld material.

$$\sigma = \frac{P\sin(\Psi - \gamma)}{E_t \cdot l}$$

where, l is the weld length. Assume the unit length for l.

$$\sigma = \frac{P\sin(\Psi - \gamma)}{E_t} = \frac{P\sin(\Psi - \gamma)}{w} * 2 * \sin\left(\frac{\Psi}{2}\right) * \cos\left(\gamma - \frac{\Psi}{2}\right)$$
$$= \frac{2P}{w}\sin\left(\frac{\Psi}{2}\right) * \sin(\Psi - \gamma) * \cos\left(\gamma - \frac{\Psi}{2}\right)$$

To determine the angle of tensile failure (γ), where maximum tensile stress is generated, the derivative of the tensile stress with respect to the failure angle should be equal to zero.

$$\frac{d\sigma}{d\gamma} = 0$$

$$\frac{2P}{w}\sin\left(\frac{\Psi}{2}\right) * \left[\left(-\sin(\Psi - \gamma) * \sin\left(\gamma - \frac{\Psi}{2}\right)\right) + \left(-\cos\left(\gamma - \frac{\Psi}{2}\right) * \cos(\Psi - \gamma)\right)\right] = 0$$

$$\left(\sin(\Psi - \gamma) * \sin\left(\gamma - \frac{\Psi}{2}\right)\right) + \left(\cos\left(\gamma - \frac{\Psi}{2}\right) * \cos(\Psi - \gamma)\right) = 0$$

$$\cos\left(\Psi - \gamma - \gamma + \frac{\Psi}{2}\right) = 0$$

$$1.5\Psi - 2\gamma = 90$$

$$\gamma = 0.75\Psi - 45$$

The above angle of failure (γ) equation is mathematically correct for dihedral angles, Ψ , ranging from 60° to 180°. Nevertheless, this should not be a problem and we should not be concerned about the applicability of maximum principal stress criterion to the case of dihedral angles less than 60°. As shown in the next section, for acute dihedral angles, shear forces in the weld were the ones controlling its failure.

$$\sigma_{max} = \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) * \sin(\Psi - 0.75\Psi + 45) * \cos\left(0.75\Psi - 45 - \frac{\Psi}{2}\right) \\ = \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) * \sin\left(\frac{\Psi}{4} + 45\right) * \cos\left(\frac{\Psi}{4} - 45\right) \\ = \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) * \left(0.707 \sin\left(\frac{\Psi}{4}\right) + 0.707 \cos\left(\frac{\Psi}{4}\right)\right) \\ * \left(0.707 \cos\left(\frac{\Psi}{4}\right) + 0.707 \sin\left(\frac{\Psi}{4}\right)\right) \\ = \frac{P}{w} \sin\left(\frac{\Psi}{2}\right) * \left(\sin^{2}\left(\frac{\Psi}{4}\right) + \cos^{2}\left(\frac{\Psi}{4}\right) + 2\sin\left(\frac{\Psi}{4}\right)\cos\left(\frac{\Psi}{4}\right)\right) \\ = \frac{P}{w} \sin\left(\frac{\Psi}{2}\right) * \left(1 + \sin\left(\frac{\Psi}{2}\right)\right) = \frac{P}{w} \left(\sin\left(\frac{\Psi}{2}\right) + \sin^{2}\left(\frac{\Psi}{2}\right)\right)$$

The allowable transverse joint load for the weld, P, can be calculated accordingly by substituting σ_{max} with the ultimate tensile strength of the fillet weld, F_{EXX} .

$$P_{UT-P} = \frac{F_{EXX}.w}{\sin\left(\frac{\Psi}{2}\right) + \sin^2\left(\frac{\Psi}{2}\right)}$$

P_{UT-P} is the ultimate transverse load carried by the weld that is calculated based on the maximum principal stress criterion and the predicted failure plane. If we assumed that the tensile failure happens where minimum throat is ($\gamma = 0.5\Psi$), which is wrong, the allowable transverse joint load would be less conservative (higher) than the actual case ($\gamma = 0.75\Psi - 45$).

$$\gamma = \frac{\Psi}{2} \quad and \quad E_d = E_t = \frac{w}{2 * \sin\left(\frac{\Psi}{2}\right)}$$

$$\sigma = \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) * \sin(\Psi - \gamma) * \cos\left(\gamma - \frac{\Psi}{2}\right) = \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) * \sin\left(\Psi - \frac{\Psi}{2}\right) * \cos\left(\frac{\Psi}{2} - \frac{\Psi}{2}\right)$$

$$= \frac{2P}{w} \sin^2\left(\frac{\Psi}{2}\right)$$

$$P_{UTH-P} = \frac{F_{EXX}.w}{2\sin^2\left(\frac{\Psi}{2}\right)}$$

P_{UTH-P} is the hypothetical ultimate transverse load carried by the weld and is calculated based on the maximum principal stress criterion assuming the failure plane is located at the throat section.

$$\frac{P_{UTH-P}}{P_{UT-P}} = \frac{\sin\left(\frac{\Psi}{2}\right) + \sin^2\left(\frac{\Psi}{2}\right)}{2\sin^2\left(\frac{\Psi}{2}\right)} = 0.5 + \frac{1}{2\sin\left(\frac{\Psi}{2}\right)}$$

For all values of Ψ between 0 and 180°, the above ratio will always be higher than 1.

Maximum Shear and Maximum Normal Stresses in Design

The allowable transverse load so that the maximum shear stress (Tresca) in the fillet weld will not exceed the ultimate shear strength of the weld material is:

$$P_{UT-S} = \frac{\tau_u \cdot w}{2\sin\left(\frac{\Psi}{2}\right) * \cos^2\left(\frac{\Psi}{4}\right)}$$

The allowable transverse load so that the maximum principal stress in the fillet weld will not exceed the ultimate tensile strength of the weld is:

$$P_{UT-P} = \frac{F_{EXX} \cdot W}{\sin\left(\frac{\Psi}{2}\right) + \sin^2\left(\frac{\Psi}{2}\right)}$$

$$\tau_u = \frac{F_{EXX}}{\sqrt{3}} \approx 0.6F_{EXX}$$

$$\frac{P_{UT-P}}{P_{UT-S}} = \frac{\frac{F_{EXX} \cdot W}{\sin\left(\frac{\Psi}{2}\right) + \sin^2\left(\frac{\Psi}{2}\right)}}{\frac{\tau_u \cdot W}{2\sin\left(\frac{\Psi}{2}\right) * \cos^2\left(\frac{\Psi}{4}\right)}} = \sqrt{3} * \frac{2\sin\left(\frac{\Psi}{2}\right) * \cos^2\left(\frac{\Psi}{4}\right)}{\sin\left(\frac{\Psi}{2}\right) + \sin^2\left(\frac{\Psi}{2}\right)} = \frac{2\sqrt{3}\sin\left(\frac{\Psi}{2}\right) * \cos^2\left(\frac{\Psi}{4}\right)}{\sin\left(\frac{\Psi}{2}\right) + \sin^2\left(\frac{\Psi}{2}\right)}$$

For design purposes, the less allowable transverse load from maximum principal stress criterion and Tresca criterion is the one controlling the weld design. Figure H.2 shows the ratio between both while varying the dihedral angle.

Fig. H.2. Fillet weld design criteria (tension or shear).

Assuming that the ultimate tensile to shear stress ratio is $\sqrt{3}$ and from Figure H.2, we can conclude that if the dihedral angle of the fillet weld is more than or equal to 162°, the fillet weld should be designed based on the maximum principal stress criterion. The surface of maximum principal stress (surface of failure) is 0.25 of the dihedral angle + 45° measured from the transverse force direction ($\gamma = 0.75\Psi - 45^{\circ}$). On the other hand, if the dihedral angle is less than 162°, the fillet weld should be designed based on the Tresca criterion. The surface of maximum shear stress (surface of failure) is 0.25 of the dihedral angle measured from the transverse force direction ($\gamma = 0.75\Psi - 45^{\circ}$).

Maximum von-Mises Stress

In this case, the fracture surface is assumed to be generated in the fillet weld, where the maximum von-Mises effective stress, σ_e , is generated.

$$\sigma = \sigma_{xx} = \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) * \sin(\Psi - \gamma) * \cos\left(\gamma - \frac{\Psi}{2}\right)$$
$$\tau = \tau_{xy} = \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) * \cos(\Psi - \gamma) * \cos\left(\gamma - \frac{\Psi}{2}\right)$$

$$\begin{split} \sigma_{e} &= \sqrt{\frac{1}{2} \left[\left(\sigma_{xx} - \sigma_{yy} \right)^{2} + \left(\sigma_{yy} - \sigma_{zz} \right)^{2} + \left(\sigma_{zz} - \sigma_{xx} \right)^{2} \right] + 3 \left(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2} \right) = \sqrt{\sigma_{xx}^{2} + 3\tau_{xy}^{2}} \\ &= \sqrt{\frac{4P^{2}}{w^{2}} \sin^{2} \left(\frac{\Psi}{2} \right) * \sin^{2} (\Psi - \gamma) * \cos^{2} \left(\gamma - \frac{\Psi}{2} \right) + \frac{12P^{2}}{w^{2}} \sin^{2} \left(\frac{\Psi}{2} \right) * \cos^{2} (\Psi - \gamma) * \cos^{2} \left(\gamma - \frac{\Psi}{2} \right) \\ &= \sqrt{\frac{4P^{2}}{w^{2}} \sin^{2} \left(\frac{\Psi}{2} \right) * \cos^{2} \left(\gamma - \frac{\Psi}{2} \right) \left[\sin^{2} (\Psi - \gamma) + 3 \cos^{2} (\Psi - \gamma) \right] \\ &= \frac{2P}{w} \sin \left(\frac{\Psi}{2} \right) * \cos \left(\gamma - \frac{\Psi}{2} \right) \sqrt{\left[1 + 2 \cos^{2} (\Psi - \gamma) \right]} \\ &= \frac{P}{w} [\sin \gamma + \sin (\Psi - \gamma)] \sqrt{\left[1 + 2 \cos^{2} (\Psi - \gamma) \right]} \end{split}$$

To determine the angle of fracture surface (γ), where maximum von-Mises stress is generated, the derivative of the von-Mises stress with respect to the failure angle should be equal to zero.

$$\begin{aligned} \frac{d\sigma_e}{d\gamma} &= 0\\ \frac{d\sigma_e}{d\gamma} &= \frac{P}{w} \Biggl[\Biggl(\frac{(\sin\gamma + \sin(\Psi - \gamma)) * 0.5}{\sqrt{[1 + 2\cos^2(\Psi - \gamma)]}} * 4 * \cos(\Psi - \gamma) * (-\sin(\Psi - \gamma)) * (-1) \Biggr) \\ &+ \Biggl(\sqrt{[1 + 2\cos^2(\Psi - \gamma)]} * (\cos\gamma - \cos(\Psi - \gamma)) \Biggr) \Biggr] \end{aligned}$$

$$\frac{P}{w} \left[\left(\frac{2(\sin \gamma + \sin(\Psi - \gamma))}{\sqrt{[1 + 2\cos^2(\Psi - \gamma)]}} * \cos(\Psi - \gamma) * \sin(\Psi - \gamma) \right) + \left(\sqrt{[1 + 2\cos^2(\Psi - \gamma)]} * (\cos \gamma - \cos(\Psi - \gamma)) \right) \right] = 0$$

$$\begin{pmatrix} \frac{2(\sin\gamma + \sin(\Psi - \gamma))}{\sqrt{[1 + 2\cos^2(\Psi - \gamma)]}} * \cos(\Psi - \gamma) * \sin(\Psi - \gamma) \\ + \left(\sqrt{[1 + 2\cos^2(\Psi - \gamma)]} * (\cos\gamma - \cos(\Psi - \gamma))\right) = 0$$

The relation between γ and Ψ was drawn based on the above equation as shown in Figure H.3. A fitted line was drawn to reflect the mathematical relation between them.

Fig. H.3. Fracture surface angle using von-Mises approach.

 $\gamma \approx 0.68 \Psi$

$$\sigma_{e-max} = \frac{P}{w} [\sin \gamma + \sin(\Psi - \gamma)] \sqrt{[1 + 2\cos^2(\Psi - \gamma)]}$$

= $\frac{P}{w} [\sin(0.68\Psi) + \sin(\Psi - 0.68\Psi)] \sqrt{[1 + 2\cos^2(\Psi - 0.68\Psi)]}$
= $\frac{P}{w} [\sin(0.68\Psi) + \sin(0.32\Psi)] \sqrt{[1 + 2\cos^2(0.32\Psi)]}$
= $\frac{P}{w} [\sin(0.68\Psi) + \sin(0.32\Psi)] \sqrt{2 + \cos(0.64\Psi)}$

According to IIW (1976) and CEN (2005), the maximum calculated stresses based on von-Mises were compared to the ultimate tensile strength. Thus, to find the design load for the joint, P_{UT-V} , the maximum von-Mises stress is set equal to the nominal tensile strength of the weld metal, F_{EXX} .

 $\sigma_{e-max} = F_{EXX}$ $F_{EXX} = \frac{P_{UT-V}}{w} [\sin(0.68\Psi) + \sin(0.32\Psi)] \sqrt{2 + \cos(0.64\Psi)}$ $P_{UT-V} = \frac{w F_{EXX}}{[\sin(0.68\Psi) + \sin(0.32\Psi)] \sqrt{2 + \cos(0.64\Psi)}}$

P_{UT-V} is the ultimate transverse load carried by the weld based on the maximum von-Mises stress criterion at the predicted failure plane. If we assumed that the fracture happens where minimum

throat is ($\gamma = 0.5\Psi$), which is wrong, the allowable transverse joint load, using von-Mises approach, would be less conservative (higher) than the actual case, where $\gamma = 0.68\Psi$.

$$\gamma = \frac{\Psi}{2} \quad and \quad E_d = E_t = \frac{w}{2 * \sin\left(\frac{\Psi}{2}\right)}$$

$$\sigma_{e-at\ throat} = \frac{P}{w} \left[\sin\frac{\Psi}{2} + \sin\left(\Psi - \frac{\Psi}{2}\right) \right] \sqrt{\left[1 + 2\cos^2\left(\Psi - \frac{\Psi}{2}\right) \right]} = \frac{2P}{w} \sin\frac{\Psi}{2} \sqrt{\left[2 + \cos\Psi \right]}$$

$$P_{UTH-V} = \frac{w.F_{EXX}}{2\sin\frac{\Psi}{2}\sqrt{\left[2 + \cos\Psi \right]}}$$

P_{UTH-V} is the hypothetical ultimate transverse carried by the weld using the von-Mises stress criterion and assuming the failure plane is at the throat section.

$$\frac{P_{UTH-V}}{P_{UT-V}} = \frac{[\sin(0.68\Psi) + \sin(0.32\Psi)]\sqrt{2 + \cos(0.64\Psi)}}{2\sin\frac{\Psi}{2}\sqrt{[2 + \cos\Psi]}} = \text{Range of } 1 - 1.15$$

Longitudinal Loading

The load is acting in the direction parallel to the axis of the fillet weld. The internal forces in the weld due to longitudinal loading are mainly shear forces. The maximum shear stresses are located in the weld plane where the weld throat is minimum and this is where the failure plane in the weld is located.

$$\gamma = \frac{\Psi}{2}$$
 and $E_d = E_t$
 $\tau_{max} = \frac{P}{E_d \cdot l}$

where, E_d is the minimum weld throat and l is the weld length. Assume the unit length for l.

$$\tau_{max} = \frac{P}{E_d \cdot l} = \frac{2P * \sin\left(\frac{\Psi}{2}\right)}{w}$$
$$P_{UL} = \frac{\tau_u \cdot w}{2\sin\left(\frac{\Psi}{2}\right)}$$

PUL is the ultimate longitudinal load carried by the weld.

$$\tau_u = \frac{F_{EXX}}{\sqrt{3}} \approx 0.6F_{EXX}$$

$$P_{UL} = \frac{F_{EXX} \cdot W}{2\sqrt{3}\sin\left(\frac{\Psi}{2}\right)}$$

Transverse versus Longitudinal Loading

Based on the above calculations, for the same nominal tensile strength of the fillet weld (F_{EXX}) and the same size (w), the load capacity of fillet weld is dependent on the skewness of the base plates (dihedral angle). Figure H.4 shows a comparison between the weld capacity in case of longitudinal and transverse loading for the same weld size depending on dihedral angle (Ψ).

Fig. H.4. Capacity of fillet weld (same size).

The maximum normal stress approach was not presented in Figure H.4 because it was found that the maximum shear stress (Tresca) approach was more dominant in controlling the ultimate load, when the dihedral angle is less than 162° . If we considered the same minimum weld throat (*E*_d), the weld capacity equations will change as follows:

$$E_d = \frac{w}{2\sin\left(\frac{\Psi}{2}\right)}$$
$$P_{UT-S} = \frac{F_{EXX}.w}{2\sqrt{3}\sin\left(\frac{\Psi}{2}\right) * \cos^2\left(\frac{\Psi}{4}\right)} = \frac{F_{EXX}.E_d}{\sqrt{3} * \cos^2\left(\frac{\Psi}{4}\right)}$$

$$P_{UT-V} = \frac{F_{EXX}.w}{[\sin(0.68\Psi) + \sin(0.32\Psi)]\sqrt{2 + \cos(0.64\Psi)}}$$
$$= \frac{F_{EXX}.E_d * 2\sin\left(\frac{\Psi}{2}\right)}{[\sin(0.68\Psi) + \sin(0.32\Psi)]\sqrt{2 + \cos(0.64\Psi)}}$$
$$P_{UL} = \frac{F_{EXX}.w}{2\sqrt{3}\sin\left(\frac{\Psi}{2}\right)} = \frac{F_{EXX}.E_d}{\sqrt{3}}$$

Accordingly, Figure H.4 can be represented as shown in Figure H.5, which shows a comparison between the weld capacity load in case of longitudinal and transverse loading for the same weld throat (E_d). The transverse loading curve in the same figure also represents the ratio between the fillet weld capacity in case of transverse loading and in case of longitudinal loading based on both Tresca stress criterion and maximum von-Mises stress criterion.

Fig. H.5. Capacity of fillet weld (same throat).

All the above calculations are for beveled plates where there is no gap between the plates. If the skewed plate in the skewed T-joint was square cut, a gap, R_n^* , will be created between this plate and the main plate. Similar steps as before should apply except that the gap should be subtracted from the weld size on the obtuse side. The weld throat, E_d , should be modified as shown.

$$w_{new} = w - R_n^*$$

$$R_n^* = t^{"} \sin(\Psi - 90)$$

$$E_d = \frac{w_{new}}{2\sin\left(\frac{\Psi}{2}\right)} = \frac{w - t^{"} \sin(\Psi - 90)}{2\sin\left(\frac{\Psi}{2}\right)}$$

where, t'' is the thickness of the skewed plate. Figure H.5 is applicable to the square cut plate condition, if the weld throat, E_d , in the ordinate was modified to exclude the gap generated from dihedral angles above 90°. Similarly, Figure H.4 is applicable to the square cut plate condition, if the weld leg size, w, in the ordinate was replaced with the effective weld size, w_{new} , for dihedral angles above 90°.

Skewed Welds in Lap-Joints

Even though the restraining is different, the same mathematical derivations made for the skewed T-Joint are applicable to the fillet weld in double-lap spliced joints with skewed angles except for minor differences. The angles in the skewed T-Joints were measured from the based plate surface. The equations would have been exactly the same in the lap-splice joint as in the skewed T-joint if the angles were measured from the beveled surface in the lap-splice joints as shown in Figure H.6.

Fig. H. Fillet weld analysis for Skewed T-Joint versus beveled lap-splice joint.

Consequently, the same equation derived above shall apply, when the angle γ is replaced with $\Psi - \gamma$, where γ is the fracture angle of fillet weld measured from the base plate surface in the lap-splice joint.

Summary for Single Fillet Welds

Transverse Loading

• Tresca Stress

$$\tau = \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) * \cos(\gamma) * \cos\left(\frac{\Psi}{2} - \gamma\right)$$
$$\gamma = 0.25\Psi$$
$$\tau_{max} = \frac{2P}{w} * \sin\left(\frac{\Psi}{2}\right) * \cos^{2}\left(\frac{\Psi}{4}\right)$$
$$P_{UT-S} = \frac{F_{EXX} \cdot W}{2\sqrt{3}\sin\left(\frac{\Psi}{2}\right) * \cos^{2}\left(\frac{\Psi}{4}\right)}$$

• Maximum Normal Stress

$$\sigma = \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) * \sin(\gamma) * \cos\left(\frac{\Psi}{2} - \gamma\right)$$
$$\gamma = 0.25\Psi + 45$$
$$\sigma_{max} = \frac{P}{w} \left(\sin\left(\frac{\Psi}{2}\right) + \sin^2\left(\frac{\Psi}{2}\right)\right)$$
$$P_{UT-P} = \frac{F_{EXX}.w}{\sin\left(\frac{\Psi}{2}\right) + \sin^2\left(\frac{\Psi}{2}\right)}$$

• Maximum von-Mises Stress

$$\sigma_e = \frac{P}{w} [\sin \gamma + \sin(\Psi - \gamma)] \sqrt{[1 + 2\cos^2(\gamma)]}$$
$$\gamma = 0.32\Psi$$
$$\sigma_{e-max} = \frac{P}{w} [\sin(0.32\Psi) + \sin(0.68\Psi)] \sqrt{2 + \cos(0.64\Psi)}$$

$$P_{UT-V} = \frac{w.F_{EXX}}{[\sin(0.68\Psi) + \sin(0.32\Psi)]\sqrt{2 + \cos(0.64\Psi)}}$$

Longitudinal Loading

$$\gamma = \frac{\Psi}{2}$$
$$\tau_{max} = \frac{2P * \sin\left(\frac{\Psi}{2}\right)}{w}$$
$$P_{UL} = \frac{F_{EXX} \cdot w}{2\sqrt{3}\sin\left(\frac{\Psi}{2}\right)}$$

Double Fillet Welds with Transverse Loading

For this model an additional force was considered in the analysis. When a tensile load is applied to the plate, the plate tries to deform in the perpendicular direction. Because the weld restrains the plate, transverse internal forces are generated within the plate thickness, which provide an additional tensile load, F, on the weld as shown in Figure H.7. The resulting force, F, is a ratio, a, of the main load, P.

Fig. H.7. Skewed T-Joint with double fillet welds.

Maximum Shear Stress (Tresca) Criterion

$$\tau = \frac{P\cos(\Psi - \gamma) - P.a\sin(\Psi - \gamma)}{E_t \cdot l}$$

where, l is the weld length. Assume the unit length for l.

$$\tau = \frac{P[\cos(\Psi - \gamma) - a\sin(\Psi - \gamma)]}{\frac{E_t}{w}} = \frac{2P}{w} * [\cos(\Psi - \gamma) - a\sin(\Psi - \gamma)] * \sin\left(\frac{\Psi}{2}\right) * \cos\left(\gamma - \frac{\Psi}{2}\right)$$

To determine the angle of shear failure (γ), where maximum shear stress or Tresca stress is generated, the derivative of the shear stress with respect to the failure angle should be equal to zero.

$$\begin{aligned} \frac{d\tau}{d\gamma} &= 0 \\ \frac{-2P}{w} [\cos(\Psi - \gamma) - a\sin(\Psi - \gamma)] * \sin\left(\frac{\Psi}{2}\right) * \sin\left(\gamma - \frac{\Psi}{2}\right) + \frac{2P}{w} [\sin(\Psi - \gamma) + a\cos(\Psi - \gamma)] \\ &\quad * \sin\left(\frac{\Psi}{2}\right) * \cos\left(\gamma - \frac{\Psi}{2}\right) = 0 \\ -\cos(\Psi - \gamma)\sin\left(\gamma - \frac{\Psi}{2}\right) + a\sin(\Psi - \gamma)\sin\left(\gamma - \frac{\Psi}{2}\right) + \sin(\Psi - \gamma)\cos\left(\gamma - \frac{\Psi}{2}\right) \\ &\quad + a\cos(\Psi - \gamma)\cos\left(\gamma - \frac{\Psi}{2}\right) = 0 \\ \left[\sin(\Psi - \gamma)\cos\left(\gamma - \frac{\Psi}{2}\right) - \cos(\Psi - \gamma)\sin\left(\gamma - \frac{\Psi}{2}\right)\right] \\ &\quad + a\left[\cos(\Psi - \gamma)\cos\left(\gamma - \frac{\Psi}{2}\right) + \sin(\Psi - \gamma)\sin\left(\gamma - \frac{\Psi}{2}\right)\right] = 0 \\ \sin\left(\Psi - \gamma - \gamma + \frac{\Psi}{2}\right) + a.\cos\left(\Psi - \gamma - \gamma + \frac{\Psi}{2}\right) = 0 \\ a = -\tan(1.5\Psi - 2\gamma) \\ 1.5\Psi - 2\gamma = \tan^{-1}(-a) \\ \gamma = 0.75\Psi - 0.5\tan^{-1}(-a) \\ \gamma = 0.75\Psi + 0.5\tan^{-1}(a) \end{aligned}$$

$$\begin{split} E_d &= \frac{w}{2 * \sin\left(\frac{\Psi}{2}\right)} \\ \tau_{max} &= \frac{2P[\cos(\Psi - 0.75\Psi - 0.5\tan^{-1}(a)) - a\sin(\Psi - 0.75\Psi - 0.5\tan^{-1}(a))]}{* \cos\left(0.75\Psi + 0.5\tan^{-1}(a) - \frac{\Psi}{2}\right)} \\ &= \frac{2P[\cos(0.25\Psi + 0.5\tan^{-1}(a)) - a\sin(0.25\Psi - 0.5\tan^{-1}(a))]}{* \sin\left(\frac{\Psi}{2}\right)} \\ &= \frac{2P[\cos(0.25\Psi + 0.5\tan^{-1}(a)) - a\sin(0.25\Psi - 0.5\tan^{-1}(a))]}{* 2E_d * \sin\left(\frac{\Psi}{2}\right)} \\ &* \cos(0.25\Psi + 0.5\tan^{-1}(a)) \end{split}$$

$$\tau_{max}(\text{transverse}) = \frac{P}{E_d} * \left[\cos(0.25\Psi - 0.5\tan^{-1}(a)) - a\sin(0.25\Psi - 0.5\tan^{-1}(a)) \right] \\ * \cos(0.25\Psi + 0.5\tan^{-1}(a))$$

For longitudinal loading, the failure angle will be in the center of the dihedral angle and the maximum shear stress is:

$$\tau_{max}(\text{longitudinal}) = \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) = \frac{P}{E_d}$$

$$\frac{P_{UT-S}}{P_{UL}}$$

$$= \frac{1}{[\cos(0.25\Psi - 0.5\tan^{-1}(a)) - a\sin(0.25\Psi - 0.5\tan^{-1}(a))] * \cos(0.25\Psi + 0.5\tan^{-1}(a))}$$
For normal fillet weld, where Ψ is 90°

For normal fillet weld, where Ψ is 90°,

$$\frac{P_{UT-S}}{P_{UL}} = \frac{1}{\left[\cos(22.5 - 0.5\tan^{-1}(a)) - a\sin(22.5 - 0.5\tan^{-1}(a))\right] * \cos(22.5 + 0.5\tan^{-1}(a))}$$

This relation can be drawn as shown in Figure H.8 and so it can be rewritten as:

$$\frac{P_{UT-S}}{P_{UL}} \approx -0.266 \ a^2 + 0.508 \ a + 1.171$$

Fig. H.8. Transverse-to-longitudinal strength ratio using the Tresca criterion.

Maximum Principal Stress Criterion

$$\sigma = \frac{P\sin(\Psi - \gamma) + P.a\cos(\Psi - \gamma)}{E_t \cdot l}$$

where, l is the weld length. Assume the unit length for l.

$$\sigma = \frac{P(\sin(\Psi - \gamma) + a\cos(\Psi - \gamma))}{E_t}$$
$$= \frac{P(\sin(\Psi - \gamma) + a\cos(\Psi - \gamma))}{W} * 2 * \sin\left(\frac{\Psi}{2}\right) * \cos\left(\gamma - \frac{\Psi}{2}\right)$$
$$= \frac{2P}{W} * (\sin(\Psi - \gamma) + a\cos(\Psi - \gamma)) * \sin\left(\frac{\Psi}{2}\right) * \cos\left(\gamma - \frac{\Psi}{2}\right)$$

To determine the angle of tensile failure (γ), where maximum tensile stress is generated, the derivative of the tensile stress with respect to the failure angle should be equal to zero.

$$\frac{d\sigma}{d\gamma} = 0$$

$$\frac{-2P}{w} * (\sin(\Psi - \gamma) + a\cos(\Psi - \gamma)) * \sin\left(\frac{\Psi}{2}\right) * \sin\left(\gamma - \frac{\Psi}{2}\right) + \frac{2P}{w}$$

$$* (-\cos(\Psi - \gamma) + a\sin(\Psi - \gamma)) * \sin\left(\frac{\Psi}{2}\right) * \cos\left(\gamma - \frac{\Psi}{2}\right) = 0$$

$$\begin{aligned} -(\sin(\Psi - \gamma) + a\cos(\Psi - \gamma)) * \sin\left(\gamma - \frac{\Psi}{2}\right) + (-\cos(\Psi - \gamma) + a\sin(\Psi - \gamma)) \\ & *\cos\left(\gamma - \frac{\Psi}{2}\right) = 0 \\ -\sin(\Psi - \gamma)\sin\left(\gamma - \frac{\Psi}{2}\right) - a\cos(\Psi - \gamma)\sin\left(\gamma - \frac{\Psi}{2}\right) - \cos(\Psi - \gamma)\cos\left(\gamma - \frac{\Psi}{2}\right) \\ & + a\sin(\Psi - \gamma)\cos\left(\gamma - \frac{\Psi}{2}\right) = 0 \\ a\left\{\sin(\Psi - \gamma)\cos\left(\gamma - \frac{\Psi}{2}\right) - \cos(\Psi - \gamma)\sin\left(\gamma - \frac{\Psi}{2}\right)\right\} \\ & -\left\{\sin(\Psi - \gamma)\sin\left(\gamma - \frac{\Psi}{2}\right) + \cos(\Psi - \gamma)\cos\left(\gamma - \frac{\Psi}{2}\right)\right\} = 0 \\ a\sin\left(\Psi - \gamma - \gamma + \frac{\Psi}{2}\right) - \cos\left(\Psi - \gamma - \gamma + \frac{\Psi}{2}\right) = 0 \\ a = \frac{1}{\tan(1.5\Psi - 2\gamma)} \\ 1.5\Psi - 2\gamma = \tan^{-1}\left(\frac{1}{a}\right) \\ \gamma = 0.75\Psi - 0.5\tan^{-1}\left(\frac{1}{a}\right) \\ \gamma = 0.75\Psi - 0.5\tan^{-1}\left(\frac{1}{a}\right) \\ x\sin\left(\frac{\Psi}{2}\right) * \cos\left(0.75\Psi - 0.5\tan^{-1}\left(\frac{1}{a}\right)\right) + a\cos\left(\Psi - 0.75\Psi + 0.5\tan^{-1}\left(\frac{1}{a}\right)\right) \\ & *\sin\left(\frac{\Psi}{2}\right) * \cos\left(0.75\Psi - 0.5\tan^{-1}\left(\frac{1}{a}\right)\right) \\ = \frac{P}{E_{a}} * \left(\sin\left(0.25\Psi + 0.5\tan^{-1}\left(\frac{1}{a}\right)\right) + a\cos\left(0.25\Psi + 0.5\tan^{-1}\left(\frac{1}{a}\right)\right) \right) \\ & *\cos\left(0.25\Psi - 0.5\tan^{-1}\left(\frac{1}{a}\right)\right) \\ & *\cos\left(0.25\Psi - 0.5\tan^{-1}\left(\frac{1}{a}\right)\right) \\ \end{array}$$
Maximum von-Mises Criterion

$$\begin{split} \sigma_e &= \sqrt{\sigma^2 + 3\tau^2} = \sqrt{\left(\frac{2P}{w}\left(\sin(\Psi - \gamma) + a\cos(\Psi - \gamma)\right)\sin\left(\frac{\Psi}{2}\right)\cos\left(\gamma - \frac{\Psi}{2}\right)\right)^2} + \\ &+ 3\left(\frac{2P}{w}\left[\cos(\Psi - \gamma) - a\sin(\Psi - \gamma)\right]\sin\left(\frac{\Psi}{2}\right) * \cos\left(\gamma - \frac{\Psi}{2}\right)\right)^2 \\ &= \frac{2P}{w}\sin\left(\frac{\Psi}{2}\right)\cos\left(\gamma - \frac{\Psi}{2}\right)\sqrt{\frac{\left(\sin(\Psi - \gamma) + a\cos(\Psi - \gamma)\right)^2 + + 3\left(\cos(\Psi - \gamma) - a\sin(\Psi - \gamma)\right)^2}{2}} \\ &= \frac{2P}{w}\sin\left(\frac{\Psi}{2}\right)\cos\left(\gamma - \frac{\Psi}{2}\right)\sqrt{\frac{\sin^2(\Psi - \gamma) + a^2\cos^2(\Psi - \gamma) + 2a\sin(\Psi - \gamma)\cos(\Psi - \gamma) + 3a^2\sin^2(\Psi - \gamma) + 3a^2\sin^2(\Psi - \gamma) + 3a^2\sin(\Psi - \gamma)\cos(\Psi - \gamma)}{-6a\sin(\Psi - \gamma)\cos(\Psi - \gamma)}} \\ &= \frac{2P}{w}\sin\left(\frac{\Psi}{2}\right)\cos\left(\gamma - \frac{\Psi}{2}\right)\sqrt{\frac{(1 + 3a^2)\sin^2(\Psi - \gamma)}{+(3 + a^2)\cos^2(\Psi - \gamma) - 2a\sin(2\Psi - 2\gamma)}}} \end{split}$$

To determine the angle of fracture surface (γ), where maximum von-Mises stress is generated, the derivative of the von-Mises stress with respect to the failure angle should be equal to zero.

$$\frac{d\sigma_e}{d\gamma} = 0$$

$$\frac{\frac{P}{w}\sin\left(\frac{\Psi}{2}\right)\cos\left(\gamma - \frac{\Psi}{2}\right)}{\sqrt{(1+3a^2)\sin^2(\Psi-\gamma) + (3+a^2)\cos^2(\Psi-\gamma) - 2a\sin(2\Psi-2\gamma)}} * \\ \left\{ \begin{array}{c} -2(1+3a^2)\sin(\Psi-\gamma)\cos(\Psi-\gamma) + \\ +2(3+a^2)\cos(\Psi-\gamma)\sin(\Psi-\gamma) + 4a\cos(2\Psi-2\gamma) \end{array} \right\} \\ -\frac{2P}{w}\sin\left(\frac{\Psi}{2}\right)\sin\left(\gamma - \frac{\Psi}{2}\right)\sqrt{(1+3a^2)\sin^2(\Psi-\gamma) + \\ (3+a^2)\cos^2(\Psi-\gamma) - 2a\sin(2\Psi-2\gamma)} = 0 \end{array}$$

$$\frac{\cos\left(\gamma - \frac{\Psi}{2}\right)}{\sqrt{(1+3a^2)\sin^2(\Psi-\gamma) + (3+a^2)\cos^2(\Psi-\gamma) - 2a\sin(2\Psi-2\gamma)}} * \\ \left\{ \begin{array}{c} -2(1+3a^2)\sin(\Psi-\gamma)\cos(\Psi-\gamma) + \\ +2(3+a^2)\cos(\Psi-\gamma)\sin(\Psi-\gamma) + 4a\cos(2\Psi-2\gamma) \end{array} \right\} \\ \left\{ \begin{array}{c} -2(1+3a^2)\sin(\Psi-\gamma)\cos(\Psi-\gamma) + \\ +2(3+a^2)\cos(\Psi-\gamma)\sin(\Psi-\gamma) + 4a\cos(2\Psi-2\gamma) \end{array} \right\} \\ \left\{ \begin{array}{c} -2(1+3a^2)\sin(\Psi-\gamma)\cos(\Psi-\gamma) + \\ +2(3+a^2)\cos(\Psi-\gamma)\sin(\Psi-\gamma) + 4a\cos(2\Psi-2\gamma) \end{array} \right\} \\ \left\{ \begin{array}{c} -\Psi_{1} & -2(1+3a^2)\sin(\Psi-\gamma)\cos(\Psi-\gamma) + \\ -2(1+3a^2)\sin(\Psi-\gamma)\cos(\Psi-\gamma) + \\ -2(1+3a^2)\sin(\Psi-\gamma)\cos(\Psi-\gamma) + \\ \end{array} \right\}$$

$$-2\sin\left(\gamma - \frac{1}{2}\right) \sqrt{(1 + 3a)\sin((4 - \gamma)) + (1 + 3a$$

$$\frac{\cos\left(\gamma - \frac{\Psi}{2}\right)}{\sqrt{(1+3a^2)\sin^2(\Psi-\gamma) + (3+a^2)\cos^2(\Psi-\gamma) - 2a\sin(2\Psi-2\gamma)}} * \\ * \begin{cases} -2(1+3a^2)\sin(\Psi-\gamma)\cos(\Psi-\gamma) + \\ +2(3+a^2)\cos(\Psi-\gamma)\sin(\Psi-\gamma) + 4a\cos(2\Psi-2\gamma) \end{cases}} \\ - 2\sin\left(\gamma - \frac{\Psi}{2}\right)\sqrt{(1+3a^2)\sin^2(\Psi-\gamma) + \\ (3+a^2)\cos^2(\Psi-\gamma) - 2a\sin(2\Psi-2\gamma)}} = 0 \\ \frac{\cos\left(\gamma - \frac{\Psi}{2}\right)}{\sqrt{(1+3a^2)\sin^2(\Psi-\gamma) + (3+a^2)\cos^2(\Psi-\gamma) - 2a\sin(2\Psi-2\gamma)}} * \\ * \begin{cases} -(1+3a^2)\sin(2\Psi-2\gamma) + \\ +(3+a^2)\sin(2\Psi-2\gamma) + 4a\cos(2\Psi-2\gamma) \end{cases}} \\ - 2\sin\left(\gamma - \frac{\Psi}{2}\right)\sqrt{(1+3a^2)\sin^2(\Psi-\gamma) + 2a\sin(2\Psi-2\gamma)}} = 0 \end{cases}$$

$$\frac{\cos\left(\gamma - \frac{\Psi}{2}\right) * \left\{2(1 - a^2)\sin(2\Psi - 2\gamma) + 4a\cos(2\Psi - 2\gamma)\right\}}{\sqrt{(1 + 3a^2)\sin^2(\Psi - \gamma) + (3 + a^2)\cos^2(\Psi - \gamma) - 2a\sin(2\Psi - 2\gamma)}} - 2\sin\left(\gamma - \frac{\Psi}{2}\right)\sqrt{\frac{(1 + 3a^2)\sin^2(\Psi - \gamma) + (3 + a^2)\cos^2(\Psi - \gamma) - 2a\sin(2\Psi - 2\gamma)}{(3 + a^2)\cos^2(\Psi - \gamma) - 2a\sin(2\Psi - 2\gamma)}} = 0$$

The angle of failure is dependent on both factor a and the dihedral angle, Ψ . To simplify the above derivative equation, different a values were selected and accordingly a relation was drawn between the failure angle in the weld, γ , and the dihedral angle, Ψ . For instance, when a = 0 and $\Psi = 110^{\circ}$, the failure angle, γ , was 76.21° as shown in Figure H.9. The failure angle was determined from the intersection of the curve with the horizontal axis (where the derivation is zero). Other cases resulted in multiple failure angles, as shown in Figure H.10. At a = 0.2 and $\Psi = 150^{\circ}$, the failure angle had three values: 45.4°, 67.5°, 104.8°. Using the same concept, the failure angles for different values of factor a and different dihedral angles in the range between 30° and 150° are summarized in Table H.1.

Fig. H.9. Determining the failure angle $(a = 0 \text{ and } \Psi = 110^{\circ})$.

Fig. H.10. Determining the failure angle (a = 0.2 and $\Psi = 150^{\circ}$).

Table H.1. Failure angle, γ , for different values of a and Ψ (degrees).											
		a									
		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0
	30	21.0	23.3	25.5	27.6	29.5	31.3	33.0	34.4	35.7	37.9
	40	28.0	30.2	32.4	34.5	36.4	38.2	39.8	41.2	42.5	44.6
	50	34.9	37.2	39.3	41.4	43.3	45.0	46.6	47.9	49.1	51.1
	60	41.9	44.1	46.2	48.2	50.1	51.8	53.3	54.6	55.7	57.5
	70	48.8	51.0	53.1	55.0	56.8	58.5	59.9	61.1	62.2	63.7
											10.8
	80	55.7	57.9	59.9	61.8	63.5	65.1	66.4	67.5	68.4	29.6
											69.6
										16.5	15.0
	90	62.6	64.7	66.7	68.5	70.1	71.6	72.8	73.7	31.5	45.0
										74.4	75.0
									20.8	20.0	20.4
	100	69.4	71.5	73.4	75.1	76.6	77.9	78.9	39.6	47.4	60.4
									79.6	80.0	79.2
	110	76.2	78.2	80.0	81.6	83.0	29.2	25.4	25.0	25.2	
Ψ							35.0	46.8	55.0	64.5	26.3
							84.0	84.7	85.0	84.6	
	120	82.9 8		84.8 86.5	87.9	33.5	30.4	30.0	30.4	31.0	32.5
			84.8			41.0	53.0	61.9	70.3	81.4	
						89.1	89.8	90.0	89.2	85.0	
	100	00.6	01.2	0 0 0	38.8	35.3	35.0	35.5	262	27.2	20.0
	130	89.6	91.3	92.8	45.5	58.6	68.1	77.6	36.3	37.2	38.9
				45.0	94.1	94.9	94.9	93.8			
				45.2	40.3	40.1	40.7				
	140	96.1	97.7	48.8	63.3	73.6	84.1	41.5	42.5	43.5	45.4
			100.	99.8	99.9	98.4					
					15.0	15 7					
		102	103	45.4 67.5	45.0 78 5	4J.7 80.8		477			
	150	5	Q	104	105	103	46.6		48.9	50.0	52.1
		5	,	8	0	2		5			

In order to exclude the multiple values of the failure angle that are present for some cases, the maximum von-Mises stress was calculated as a function of the external ultimate load, P, divided by the weld throat, E_d .

$$\sigma_{e} = \frac{2P}{w} \sin\left(\frac{\Psi}{2}\right) \cos\left(\gamma - \frac{\Psi}{2}\right) \sqrt{\begin{array}{c} (1 + 3a^{2})\sin^{2}(\Psi - \gamma) \\ + (3 + a^{2})\cos^{2}(\Psi - \gamma) - 2a\sin(2\Psi - 2\gamma) \end{array}}$$
$$= \frac{P}{E_{d}} \cos\left(\gamma - \frac{\Psi}{2}\right) \sqrt{\begin{array}{c} (1 + 3a^{2})\sin^{2}(\Psi - \gamma) \\ + (3 + a^{2})\cos^{2}(\Psi - \gamma) - 2a\sin(2\Psi - 2\gamma) \end{array}}$$

The failure angles that resulted in highest stress were the correct ones among the three values. The correct values are shaded in Table H.1. Only two conditions had two failure angles where the maximum von-Mises stress was the same. They are the cases for a = 0.7 and $\Psi = 110^{\circ}$ and for a = 1.0 and $\Psi = 90^{\circ}$. The maximum von-Mises stress for the cases in Table H.1 are shown in Table H.2 in the form of factor $1/\eta$. The factor η is called herein after as the weld capacity factor.

Table H.2. Maximum von-Mises stress, $1/\eta$, for different values of a and Ψ .												
		a										
		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	
Ψ	30	1.708	1.696	1.693	1.701	1.717	1.742	1.775	1.814	1.859	1.964	
	40	1.690	1.672	1.664	1.665	1.676	1.696	1.723	1.756	1.796	1.890	
	50	1.667	1.643	1.630	1.626	1.631	1.645	1.667	1.695	1.729	1.813	
	60	1.639	1.610	1.591	1.582	1.582	1.591	1.608	1.631	1.661	1.735	
	70	1.607	1.573	1.549	1.535	1.530	1.534	1.546	1.565	1.590	1.656	
	80	1.570	1.532	1.503	1.485	1.476	1.475	1.483	1.498	1.519	1.577	
	90	1.530	1.487	1.454	1.431	1.418	1.414	1.418	1.429	1.447	1.500	
	100	1.486	1.439	1.402	1.376	1.360	1.352	1.353	1.361	1.377	1.577	
	110	1.439	1.388	1.348	1.319	1.300	1.290	1.288	1.295	1.409	1.656	
	120	1.389	1.335	1.293	1.261	1.239	1.228	1.249	1.361	1.480	1.735	
	130	1.336	1.281	1.236	1.203	1.180	1.205	1.313	1.429	1.552	1.813	
	140	1.282	1.225	1.179	1.145	1.163	1.266	1.378	1.497	1.623	1.890	
	150	1.227	1.169	1.123	1.126	1.223	1.329	1.443	1.565	1.693	1.964	

According to the results shown in Table H.2, for the same effective throat of the weld, E_d and for the same failure stress ($\sigma_{e-max} = F_{EXX}$), increasing the dihedral angle increases the weld capacity, *P*. Additionally, having tensile forces on the shear face of the weld (F = a.P) affects the weld strength. The values in Table H.2 were used to draw the graph in Figure H.11. For the unit length of weld line (l = 1), the weld capacity, *P*, was calculated as a function of the ultimate von-Mises stress that can be carried by the weld, which was substituted with the ultimate tensile strength of the weld material, F_{EXX} , and weld's effective throat.

$$\frac{\sigma_{e-max}}{\left(\frac{P}{E_d}\right)} = \frac{F_{EXX}}{\left(\frac{P}{E_d}\right)} = \frac{1}{\eta}$$

 $P = \eta. F_{EXX}. E_d$

Fig. H.11. Weld capacity factor.

For the case of right dihedral angle ($\Psi = 90^{\circ}$), the weld capacity factor, η , is changing within a very small range of 0.65 to 0.71 for all values of factor *a*. Consequently, η can be a constant of 0.68. To compare the obtained results in Figure H.11 with the current AISC *Specification* equations, the weld capacity was modified as follows:

$$R_n = 0.60F_{EXX}(1.0 + 0.50\sin^{1.5}\theta) * A_{we} = 0.60F_{EXX}(1.0 + 0.50\sin^{1.5}90) * [E_d * (l = 1)]$$

= 0.60 * 1.5 * $F_{EXX} * E_d = 0.90F_{EXX}E_d$

To match the weld capacity of a normal T-Joint, using the von-Mises approach, with the weld capacity, using the *Specification*, the weld capacity factor should be modified from 0.68 to 0.90. Nevertheless, this can result in very conservative designs.

$$\eta^* = \frac{0.90}{0.68} \ \eta = 1.32 \ \eta$$

where, η^* is the modified capacity factor.

$$P = \eta^* . F_{EXX} . E_d$$

The modified weld capacity factor, η^* , as a function of the factor *a* is shown in Figure H.12.

Fig. H.12. Modified weld capacity factor.

Further Analysis of the Maximum Shear Stress Model

For transversely-loaded fillet welds, the optimum mathematical model among those investigated is the maximum shear stress model. The maximum shear stress criterion is:

$$\tau_{max} = \frac{P}{E_d} * \left[\cos(0.25\Psi - 0.5\tan^{-1}(a)) - a\sin(0.25\Psi - 0.5\tan^{-1}(a)) \right] \\ * \cos(0.25\Psi + 0.5\tan^{-1}(a))$$

Theis equation can be rewritten as:

$$\frac{P}{A_w} = \frac{\tau_u}{\left[\cos(0.25\Psi - 0.5\tan^{-1}(a)) - a\sin(0.25\Psi - 0.5\tan^{-1}(a))\right]} \\ * \frac{1}{\cos(0.25\Psi + 0.5\tan^{-1}(a))}$$

Where τ_u is the weld metal shear rupture strength. The nominal value in the AISC *Specification* is 0.6*F*_{EXX}. However, for the maximum shear stress criterion to match the experimental results in Gallow (2019), the shear strength should be $0.8F_{EXX}$. Using $\tau_u = 0.8F_{EXX}$, results in:

$$\frac{P}{A_w} = \frac{0.8F_{EXX}}{\left[\cos(0.25\Psi - 0.5\tan^{-1}(a)) - a\sin(0.25\Psi - 0.5\tan^{-1}(a))\right]} \\ * \frac{1}{\cos(0.25\Psi + 0.5\tan^{-1}(a))}$$

The plots of this equation in Figure H.13 show that a value of a = 0.21 provides results similar to the experimental values. With a = 0.21, the maximum difference between the proposed equation and the experimental results is less than 7%.

Fig. H.13. Maximum shear stress model versus FEA and experimental results.