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ABSTRACT

The purpose of the following research is two-fold:
first, to establish the moment-rotation characteristics of
several common welded double angle framing connections; and
second, to review Weld A and Weld B in the Welded Framed Beam
Connections Design Table IV on pages 4-36 and 4-37 of the

Eighth Edition of the Manual of Steel Construction by the

American Institute of Steel Construction.

The results of this research indicate that the weld sizes
given for Weld A in the AISC manual are adeguate. The weld
sizes given for Weld B, however, are undersized. Weld B is
under-designed because the connection moment was not properly

accounted for in the design of Weld B.



INTRODUCTION

Framed beam connections are used to connect beams to
girders and girders to columns. The design of these con-
nections involves the properties of steel angles which are
given in the AISC manual. These angle connections may be
fastened to the girder web or to the column flange by high
strength bolts, fillet welds, or a combination of bolts in
one leqg of the angle and welds along the other leg. This
research involves framed beam connections that are welded
to the outstanding legs of the angle (Figure 1).

In order to analyze the structural behavior of double
angle connections, the Richard equation (Appendix A) is used
to analytically define the load-deformation characteristics
of double angle framing connections. A typical Richard curve
is defined by four parameters: the elastic stiffness or
initial slope of the curve, the plastic stiffness or final
slope of the curve, the reference load or the intercept of a
line asymptotic to the plastic stiffness with the vertical
axis, and the shape parameter, a dimensionless parameter
that defines the sharpness of transition between the elastic
stiffness and plastic stiffness (Figure 2). This equation,
in short, defines the deformation associated with load for a
given double angle connection. This deformation may be in
the form of a translational displacement associated with a
force, or it may be in the form of a rotation associated with

an applied moment (Figure 3).
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a) Beam web to column flange connection.

p) Deam web to beam web connection.

Figure 1. Typical Framed Beam Connections.
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When the beam shown In Figure 1 is loaded with a glven
loading, a displacement and rotation will occur at the ends
of the beam. Blewitt and Richard [1] used the Richard
equation to describe force-deformation curves for three inch
segments of angle clip connections based on experimental
testing. Hsia and Richard [2) used the force-deformation
characteristics of three inch connection segments to generate
moment-rotation curves for various connection geometries. 1If
the moment-rotation curve for a particular connection is known,
the moment which occurs at the connection can be determined.

In order to determine the restraining moment which
occurs at the connection, the beam line [3] is superimposed on
the moment-rotation curve and the intersection of these two
curves gives the restraining moment and end rotation that occur
at the connection for a beam with a given loading (Figure 4).
With the restraining moment known, the welds at the connection
can be designed for strength and safety.

This research reviews the strength of Weld A and Weld B in

the Welded Framed Beam Connections Design Table IV on pages 4-36

and 4-37 of the Eighth Edition of the Manual of Steel Construction

by the American Institute of Steel Construction (AISC). 1In the
AISC design guide, Weld B was designed for only a vertical

shear force and a torsional moment in a plane normal to the beam
axis which were assumed to act along the interface of the column
flange and the angle clip legs. Weld A, however, is designed
for this shear force and the torsional moment that this force

causes about the centroid of Weld A (see Figure 5).
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This design model does not account for the connection
moment as shown in Figure 6. The shear force acts at an
eccentricity ,e, from the centroid of Weld A, so that both
Weld A and Weld B should be designed for both shear and moment
acting on the welds (Figure 6).

This is accomplished in the following three steps:

1) Force-deformation curves for double framing angle

geometries are generated from physical tests.

2) Moment-rotation curves are then derived from the
force-deformation curves for various connections.

3) The beam line for a given loading condition is then
superimposed on the moment-rotation curve for the
connection under consideration to determine the end
moment.

These welds are designed and compared with those given in the

AISC manual.
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Weld B: Designed for shear force V.

Weld A: Designed for shear force V and torsional
Moment M = V x a

Figure 5. AISC design guide philosophy for design of
Weld A and Weld B.
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Weld A: Designed for shear force V and torsional
moment M = V x e

Wleld B: Designed for shear force V and bending
moment M = V x (a + e)

Figure 6. Research design philosophy for Weld A and Weld B.
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FORCE-DEFORMATION CURVES

The Richard equation (Appendix A) is used to analytically
describe the force-deflection characteristics of a segment of a
welded double framing angle connection. The parameters of this
curve are determined from physical testing of segments of welded
double framing angle connections. Astaneh and McMullin of the
University of Oklahoma performed the physical tests for four
different connection angle geometries:

1) L 4 X 3-1/2 X 1/4 X 3 inch segment
2) L 4 X 3-1/2 X 3/8 X 3 inch segment

3) L 4 X 3-1/2 X 1/2 X 3 inch segment

4) L 5 X 3-1/2 X 5/8 X 3 inch segment
For any one segment of connection, a different Richard

curve ls found for each of the varlous modes of deformation the

connection segment exhibits. There are three modes of i

deformation to consider: 1) displacement caused by a tensile

force; 2) displacement caused by a compressive force; and 3)

displacement caused by a shear force. These three modes of

deformation in relation to a beam to column connection are shown

in Figure 7.

Tension tests

The tension test configuration is shown in Figure 8. 1In
each test, an initial load was applied to the angles to allow
the bolts to slip into bearing against the connecting plate and
angles. Under static loading conditions (approximately ninety

minutes from start to fallure) force and displacement readings
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Tension
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. Shear

—
Compression

Figure 7. The three primary modes of deformation shown
in their respective regions of beam to column
connection.
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were taken at sufficient intervals until failure occurred. 1In
each test, the failure mode was weld fracture. This force and
displacement data is given in Tables 1 through 5.

As explained previously, a Richard curve is defined by the
elastic stiffness of the angles K, the plastic stiffness of the
angles KP, the reference load R, and the shape parameter N.
These values are determined by fitting a least sguares curve to
the experimental data given in Tables 1-5. The values of KP, R,
and N are determined on a trial and error basis using a least
squares criterion. The value of K, the elastic stiffness,
however, must be determined beforehand using principles of
structural mechanics.

To determine the elastic stiffness of the angles, K, the
outstanding leg of the angle with the weld is considered as a
beam fixed at one end and simply supported at the other (Figure
9). The beam has a modulus of elasticity E, a moment of
inertia I, and a length g which is the length of the outstanding
leg L minus the dimension k, a detailing dimension given in the
AISC manual. The dimension k is subtracted from the overall
length because k defines the critical section where the slope of
the outstanding leg becomes zero.

Using the moment-area method of structural mechanics along
with the stiffness method of structural analysis, the elastic
stiffness of the welded double angles is given below (Figure 9).

K = [2] x 3E1/g™®

Using E 30,000 ksi

L - k (inches)

[Ts]
I



TABLE 1 FORCE-DEFORMATION DATA FOR WELDED DOUBLE ANGLE
CONNECTION: 2-L 4 X 3-1/2 X 1/4 X 3 INCH

Load (kips) Displacement (inches)
top angles bottom angles
0.08 0.000 0.000
0.50 0.016 0.014
1.00 0.046 0.041
1.60 0.085 0.079
2.09 0.119 Uazll
250 0.147 0.145
3.01 0.207 0.218
s o | 0.320 0.343
4.06 0.443 0.474
6.50 1l 25 1.063




TABLE 2 FORCE-DEFORMATION DATA FOR WELDED DOUBELE ANGLE

CONNECTION:

oad ips

0.15
0.20
1.00
2.00
4.00
9.15
5.50
6.25
6.25
6.45
8.35

TABLE 3 FORCE-DEFORMATION DATA FOR WELDED DOUBLE ANGLE

CONNECTION:

Load (kips)

10.50

2-L 4 X 3-1/2 X 3/8 X 3 INCH
Displacement (inches)

top angles bottom angles
0.000 0.000
0.002 0,001
0.011 0.022
0.033 0.03%
0.083 0.083
0.183 0.184
0.256 0.236
0.353 0.294
0.423 0.335
0.444 0.355
0.750 0.625

Z2=L 4 X 3=1/2 X 3/8 X 3 .INCH
Displacement (inches)

top angles bottom angles
0.000 0.000
0.002 0.003
0.009 0.011
0.023 0.025
0.036 0.038
0.050 0.053
0.070 0.078
0. 111 0.153
0.220 0.282
0.263 0.330
0.319 0.3%1
0.361 0.437
0.625 0.594

16



TABLE 4 FORCE-DEFORMATION DATA FOR WELDED DOUBLE ANGLE

CONNECTION:

Load (kips)

0.35
1.02
1.50
2.00
3.14
4.08
S 4]
6.04
1.05
8.12
9.05
10.05
11.12
12.07
13.10
13.54
14.08
14.56
15.02
15.65
16.07
16.57
17.00
17.50
17.50

2~L 4§ X' 3=1/2 X 1/2 X 3 INCH

Displacement (inches)

top angles

0.000
0.002
0.004
0.006
0.011
0.017
0.025
0.029
0.036
0.046
0.055
0.067
0.085
0.118
0.167
0.194
0.231
0.269

bottom angles

0.000
0.002
0.004
0.006
0.011
0.015
0.021
0.025
0.033
0.041
0.049
0.059
0.075
0.108
0.156
0.185
0.247
0.284
0.318
0.356
0.383
0.407
0.439
0.514
0.438




TABLE 5

cad

0.00
0.98
1.70
2.00
3.00
4.02
5.02
6.04
7.03
8.05
9.26
10.00
11.04
12.02
12.70
13.00
13.42
14.00
14.51
14.73
15.01
15.25
15.35
15.66
15.99
16.26
16.50
17.00
17.25
17.50
17.99
18.50
21.40

ki

FORCE-DEFORMATION DATA FOR WELDED DOUBLE ANGLE

CONNECTION:

S

2-L 5 X 3-1/2 X 5/8 X 3 INCH

Displacement (inches)

top angles

0.000
0.011
0.013
0.015
0.021
0.028
0.036
0.047
0.057
0.067
0.078
0.086
0.100
0.125
0.168
0.187
0.211
0.241
0.294
0.322
0.378
0.423
0.439
0.498
0.498
0.517
0.534
0.563
0.577
0.591
0.614
0.638
0.750

bottom angles

0.000
0.008
0.012
0.013
0.018
0.024
0.032
0.039
0.045
0.053
0.063
0.069
0.084
0.109
0.132
0.171
0.190
0.220
0.247
0.263
0.273
0.290
0.303
0.379
0.379
0.402
0.428
0.468
0.490
0.509
0.544
0.580
0.750

18




ANGLE LEG IDEALIZED ‘ |
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Figure 9. Elastic stiffness of tension specimens.
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I = (1/12)x(base)x(height)®
= (1/12)%x(3 inch)x(t)=
= [t1=/4
t = angle leg thickness in inches
the elastic stiffness of two welded double angles (3 inch
segments) becomes
K = 45,000 x [t/g]™® (Kips/inch).

The elastic stiffnesses for each of the four tension test
specimens are given in Table 6.

The elastic stiffness along with the data points were
input into the computer program XYPLOT (Williams) for each
tension test. Program XYPLOT contains a subroutine RCFIT
(Gillett and Hormby) which gives the least squares Richard
curve fit and supplies the Richard parameters KP, R, and N.
Figures 10 through 13 give the force-deformation curves for
the four welded double angle specimens in tension.

Compression tests

Physical testing for compression was not necessary since
the four Richard parameters have previously been established
for a three inch segment of double framing angles loaded in
compression. Blewitt and Richard [1] have developed the
following empirical formulas for the four Richard parameters
for a three inch segment of bolted framing angles loaded in

compression.

K = 180,000 x [t/1.75) (Kips/inch)
KPF = 138 x [t./81 (Kips/inch)
R = 142 x [t./81] (Kips)




TABLE 6 ELASTIC STIFFNESS, K, FOR TENSION

TEST SPECIMENS

Angles L k t q K
L-4 x 3-1/2 x 1/4 4 11716 1/4 3.3125 19
L-4 x 3-1/2 x 3/8 “ 13/16 3/8 3.1875 73
Di=hx 3=1)09 % 172 4 15/16 1/2 3.0625 196
L=5 % 3=-1/2 % 58 5 1-1/8 5/8 3.8750 189
L = length of outstanding angle leg in inches
k = AISC dimensioning detail in inches
t = angle thickness in inches
g=>L -k
K = elastic stiffness of 3 inch segment of double angles

loaded in tension (kips/inch)

45,000 x [t/gl=
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N = Jd.2
where
t = angle leg thickness in inches
te = connecting plate thickness
te = critical thickness

= tg or 2t in sixteenths of an inch whichever is smaller.
The fact that the above formulas were developed for

compression specimens with bolts in the outstanding angle legs
and this research involves welds along the outstanding angle
legs is irrelevant. The Richard parameters for compression are
only dependent on bearing considerations of the angles, and not
on any flexural action of the angles, in which case the support
conditions would in fact make a difference in the Richard
parameters. The Richard parameters for the four compression
specimens are given in Table 7.

Shear tests

Hsia and Richard [2] demonstrated that the deformation
caused by shearing forces in a double angle connection are
negligible compared to deformations caused by tensile and
compressive forces. This agrees with an intuitive
understanding of the structural behavior of a double framing
angle connection like that shown in Figure 7. Most of the
deformation results from the tensile and compressive forces at
the connection which are resisting the applied loads,
and very little from the shearing forces caused by the loads.

In summary, the Richard parameters for the three inch

segments of welded double angle connections loaded in tension
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TABLE 7 RICHARD EQUATION PARAMETERS FOR THREE INCH SEGMENTS OF
WELDED DOUBLE ANGLES LOADED IN COMPRESSION

Angles Richard Parameters

L. e lse  Bao e aRSF N,
L~4 & 3=-1/2 x 1/4 1/4 3/4 1/2 525 138 142 1.2
L-4 x 3-1/2 x 3/8 3/8 3/4 3/4 1771 207 213 152
L~4. % 3=1/2 % Y/2 1/2 3/4 3/4 4198 207 213 1.2
L-5 % 3-1/2 % 5/8 5/8 3/4 3/4 8200 207 213 1.2

te

Ke

KPe

nu ]

I

angle leg thickness i1n inches
connecting plate thickness in inches

critical thickness in sixteenths of an inch
te Oor 2t whichever is smaller

180,000 x [t/1.751® 1in kips/inch
138 x [t/81 in kips/inch

142 x [t/8]1 in kips
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d In compression are glven in Table 8. These value

in the next section to develop the moment-rotation

for various connections.
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TABLE 8 RICHARD EQUATION PARAMETERS FOR THREE INCH SPECIMENS

OF WELDED DOUBLE ANGLES LOADED IN TENSION AND IN

COMPRESSION

Angles Tension Parameters Compression Parameters
Ke KF e Fe Ne Ke KP< Re Ne

L-4 x 3-1/2 x 1/4 19 4 2 8.4 525 138 Lkda .2
L-4 x 3-1/2 x 3/8 73 6 S5 38 177y 20F 213 1%
L-4 x 3-1/2 x 1/2 196 13 1% Eel 4198 207 23 @ X2
L=5 % 3=172 % :5/8 189 12 31 2.5 8200 207 213 1.2
Key KPe, Koy, and KFP. are in kips/inch

RQ'

and Ec are 1in kips




30

MOMENT-ROTATION CURVES

The force-deformation curves defined previously establish

the characteristics of a three inch segment of welded double

framing angles. Therefore, by "stacking” several three inch
segments one on top of the other, a connection of any length
can be constructed.

Hsia and Richard [2] used this concept to develop moment-
rotation curves for connections of various lengths. They
idealized the angle clip connection as a series of three inch
rigid bars with a non-linear spring attached to each bar. The
force-deformation characteristics of each spring are given by
the force-deformation curves established earlier. When the
beam is loaded, the ends of the beam will rotate about a point
of rotation. Since the connection angles are an integral part
of the beam, they must also rotate about this rotation point.
This means that some of the non-linear springs used to
model the connection will be acted upon by tensile forces and
some will be acted upon by compressive forces (shearing
deformations are neglected). This concept is illustrated in
Figure 14.

For a given end rotation of the connection, the forces
that are developed in the non-linear springs must obey the laws
of equilibrium. Therefore, by summing moments of forces about
the rotation point, the moment that occurs at the connection for
a specified rotation of the connection or beam end can be

determined. If the end rotation is Increased, dlifferent forces
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will result in the non-linear springs. Repeating this process,
moment-rotation curves are then generated. Using a least
squares fit of the Richard eguation (Appendix A), an analytical
expression for these moment-rotation curves is obtained.

Given in appendix B is a Fortran program called MRCURVE
which was adapted from a similar program developed by Hsia and
Richard [(2]. This program calculates the moment and rotation
data points and also gives the four Richard parameters
associated with the curve passing through these data points.

The numerical procedure outlined above and used in program
MRCURVE was compared by Hsia and Richard [2] to a more advanced
non-linear finite element procedure. The two methods gave
essentially the same results.

Program MRCURVE was used to develop moment-rotation curves

for the following connections.

2 - L4 x 3 x 1/4 x 33 inches
2 - L4 x 3 x1/4 x 30 inches
2 - L4 x 3 x 1/4 x 27 inches (see Figures 15-20)
2 - L4d x 3 x 1/4 x 24 inches
2= 14 x 3 x V4 x 21 inches
2 -~ L4 x 3 x1/4 x 18 inches
2 - L4 x 3 x 3/8 x 33 inches
2 - L4 x 3 x 3/8 x 30 inches
2 - L4 x 3 x 3/8 % 27 inches (see Figures 21-26)
2 - L4 x 3 x 3/8 x 24 inches
2Z=5L4 %3 x 3/8 x 21 inches
2 - L4 x 3 x 3/8 x 18 inches
2 - L4 x 3 x 1/2 x 33 inches
2 - L4d x 3 x 172 x 30 inches
2 - L4 x3 x 1/2 % 27 inches (see Figures 27-32)
2 - L4 x 3 x 1/2 x 24 inches
2 - L4 x 3 x 1/2 x 21 inches
2 - L4dx%x 3 x 1/2 x 18 inches
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(see Figures 33-38)

the actual end rotation and end moment that exists at a

particular

connection.
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BEAM LINE THEORY

The beam line [3] is a linear eguation which for a
particular loading on a beam gives the relationship between the
end rotation and the end restraining moment (Figure 4). The
beam line is developed using the slope-deflection equations
from structural analysis. For the beam shown in Figure 39 and
defining counterclockwise as positive for moments and rotations,
the slope-deflection equations are given below.

Ma = Mra + 4EIBL/L + ZEIB8p/L €1

Mo Mew + 2EIBL/L + 4EIBm/L 2)

According to our counterclockwise notation, the moment at B is
the negative of the moment at A and the rotation at B is the
negative of the rotation at A. Subtracting equation (2) from
equation (1), with the approprlate substitutions, glves

Ma = Mra + 2E1B84/L
Note, however, that according to this sign convention, the
moment and fixed end moment at A are both positive whereas the
rotation at A is negative. Because of the symmetry in loading
and geometry of the beam in Figure 39, the following beam line
equation is valid for either end of the beam and the subscripts
can therefore be eliminated.

M = Mrixeo — ZEIB/L
Thus the beam line gives the moment at the beam end for a given
end rotation.

AISC-1.2 defines three types of connections.

Type 1 - Rigid-frame connection
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Figure 39. Beam line equation development.



60

Type 2 - Simple framing connection

Type 3 - Semi-rigid framing connection
These three connection types are shown with the beam line in
Figure 40 wherein "fixed" connections are seen to have some
small amount of end rotation which results in an end moment
that is slightly smaller than the fixed-end moment., Similarly,
"simple" connections are not truly simple. These are restrained
slightly from rotating and this results in some moment developing
at the connection. The moment that actually exists at the
connection occurs at the intersection of the beam line and the
connection moment-rotation curve. This is true because there
can be only one end rotation for a particular loading, or
looking at it another way, the end rotation must be compatible
with that caused by the loads.

In order to compare Weld A in Table IV of the AISC Manual,
the following procedure was used to achieve lcading situations
that are compatible with those given in Table IV.

1) For a given angle size and angle length and capacity V
of weld A from Table IV (AISC pages 4-36 and 4-37), the
uniform load on a simply supported beam of length L is

w = 2V/L.

2) For a simply supported beam of length L and uniform load
w, the maximum bending moment occurs at the middle of
the beam and is

Mmax = WL=/8
3) Using the maximum bending moment and considering beams

that have full lateral support of the compresslion flange
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(so that the allowable bending stress may be taken as
0.66 times the yield stress of the beam), a beam may be
chosen from the Allowable Stress Design Selection Table
given in the AISC Manual.

4) The two parameters that define the beam line may now be
calculated.

wL=/12

Mz xen
Bairmere = WLP/24E1
In the above procedure, E = 29,000 ksi and L = 20 feet for all
beams. Table 9 gives the values associated with steps 1 through
4 above for all connection geometries considered.

The beam line for the particular loading can now be super-
imposed on the moment-rotation curve for the particular
connection to determine the end rotation and resisting moment at
the connection. Figures 41 through 56 show the beam line with
the moment-rotation curve for each of the connection geometries
and loadings considered in Table 8.

The resisting moment and end rotation, which are
represented graphically by the intersection of the beam line
and the moment-rotation curve, can be determined numerically
using a Newton-Raphson root finding procedure. The Fortran
program NRMRSOL (Newton-Raphson Moment Rotation SOLution)
given in appendix C uses a Newton-Raphson technique to determine
the intersection point of the beam line with the moment-rotation
curve. Using this technigue, the end rotation and resisting
moment for each connection considered are given in Table 10.

With the resisting moment at the connection known, Weld A
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and Weld B can be designed to resist not only the shear but

also the resisting moment that

is developed at the connection.
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TABLE 9 UNIFORM LOAD, BEAM SELECTION, AND BEAM LINE PARAMETERS FOR
WELD "A" COMPARISON

Angle Size & Length Vv w Mpsa x Beam Mrixen Berey

L-4 3 x 1/2 % 32 277 2.30 1380 W36 x 210 11,040 .00346
L4 .3 %'3/8 x 32 221 1.84 1104 w36 x 170 8,832 .00348

& 3 x 2F/2 2 B3O 262 2.18 1308 W36 x 194 10,464 .00358
X 3 x 3/8 x 30 210 1+78 1050 W36 x 160 8,400 .00356

L-4 x 3 x 1/2 x 28 248 2.07 1242 W36 x 182 9,936 .00364
L-4 x 3 x 3/8 x 28 198  1.65 990 w36 x 150 7,920 .00363

=4 x 3 % 3/2 n 26 234 1299 1170 W36 x 182 9,360 .00343
L-4 x 3 x 3/8 x 26 187 1.56 936 W33 x 152 7,488 .00380
L-4 ¥ 3 x 3/2 % 24 218 1.82 1092 W36 x 170 8,736 .00344
L-4 x 3 x 3/8 x 24 174 1.45 870 W36 x 135 6,960 .00369
L-4 x 3 x 1/2 % 22 204 1.70 1020 W36 x 160 8,160 .00346
L-4 x 3 x 3/8 x 22 163 1.36 816 w36 x 135 6,528 .00346
=4 X 3 % lrE Ry 188 1.57 942 W33 x 152 7,536 .00382
L-4 x 3 x 3/8 x 20 151 1.26 756 W33 x 130 6,048 .00373
L=4 x 3 x 3/2 x 18 1l " 2.%3 858 W36 x 135 6,864 .00364
L-4 x 3 x 3/8 x 18 138 1.15 690 W33 x 118 5,520 00387

V is chosen from AISC Table 1V for weld "A" comparison

w = uniform load in kips/inch = 2V/L (L = 20 feet for all beams)
Mmax = maximum bending moment in beam = wL=/8 (kip-ft)

The beams are selected from AISC Beam Selection Tables

Mrixep = fixed end moment = wlL=/12 (kip-inch)

Barmer = simple (pinned) end rotation = wL®/29E]1 (radians)
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TABLE 10 RESISTING MOMENT AND ROTATION AT END CONNECTION FOR
VARIOUS WELDED CONNECTION GEOMETRIES

Connection Resisting Moment End Rotation

Geometry (inch-kips) __(radians)
L4 % 3 % 1/2 x 32 1284 .003058
-4 %X 3 X 3/8 x 32 551 .003264
L4 X 3 % 1/2 x 30 1042 .003222
L=4d X 3 X 378 X 3N 437 .003379
L=4'%x 23 2 1/2 x 28 815 .003340
L-4 x 3 x 3/79 x 28 336 .003471
L~4 X 3 % 1/2 % 26 782 .003141
L~4 X 3 x 3#8 x 26 347 .003621
L=4 x 3 % 1/2 = 24 580 .003214
L-4 x 3 x 3/8 x 24 248 .003561
E~4d % 3.3 1F2 ¥ 22 405 .003291
L-4 x 3 % 3/8 % 22 160 .003378
L=-4 X3 x Y72 x 20 435 .003601
L=4 X 3 % 3/ % .20 170 .003625
=4 % 3 % 1/2 x 18 273 .003496
L-4 x 3 x 3/78 x 18 112 .003793
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WELD DESIGN AND COMPARISON

WELD "A" DESIGN

To design the weld that connects the angle clips to the |
beam web (Weld A), both the shear and the connection moment
must be considered. Instead of considering the shear force
acting at the centroid of the weld together with an applied
moment, the vertical shear may be transferred a distance
e = M/V from the weld centroid (see Figure 57). This gives
a statically equivalent loading and the weld may be designed
by considering eccentric shear (shear and moment).

The allowable stresses for shear on the effective area of
all welds is equal to 0.30 times the electrode tensile strength.
The electrode tensile strength for the welds involved in this
research and for the welds in Table IV of the AISC Manual ls
equal to 70 ksi. The effective area of fillet welds is equal to
the product of the effective throat dimension times the length
of the weld [(4). The effective throat dimension of a fillet
weld is equal to 0.707 times the weld size, "a" [4]. The
allowable shear stress per unit length of weld is therefore
equal to the following.

fatiowanie = (0.30)(70 ksi)(0.707)(a/l1&)
= 0.928a kips/inch
Here, a is the weld size in sixteenths of an inch.

The actual stresses that occur on Weld A of Figure 57 are

caused by shear and by moment. The stress per unit length of

weld caused by the direct shear force V is the following. |




WELD C.G.

Figure 57.

° lv

Shear force transfer

for Weld A design.
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fr = V/(length of weld) kips/inch
The stress per unit length of weld caused by the torsional
moment is the following.

f<r = Tr/d kips/inch

In the above equation, T is the torsional moment and is egual to
the connection moment M. The polar moment of inertia is J, and
r is the radial distance from the weld centroid to the point of
stress computation.

In order to derive useful expressions for the polar moment
of intertia and the location of the centroid of the weld, the
welds are treated as lines ignoring the thickness (weld size
"a") of the welds. For the geometry of Weld A shown in Figure
58, the location of the centroid is given by the following
expression.

Xce.a. = b2/(2b + d)
The polar moment of inertia of the weld geometry shown in Figure
58 is given by the following expression.
J = I, =1, + 1,
= Iux + C(Areal(d,)=® + 1I,, + (Area)(d.)=

J ({B8b® + 6bd= » d™)/12) - b*/(2b + d)

Weld "A" Design Example

Given: W36 x 210 beam with a uniform load of 2.3 kips/inch
L = 20 feet, T = 32-1/8 inch, t(web) = .83 inch

Double angles are 2-L4 x 3 x 1/2 x 32 inches

Solution:
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T

Figure 58.

2 2b + d

Center of gravity and polar moment of
inertia for weld geometry shown.
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V = wL/2 = (2.3 kips/inch) (240 inch)/2 = 276 kips
M = 1284 inch-kips (see Table 10)
e = M/V = 1284/276 = 4.65 inch
J = {B(2.95)3 + 6(2.9)(32)= + (32)9)712
- (2:D0)%/(2(2.5) + 32)
J = 4020 inch®
Xc.a. = (2.9)=27(2(2.9) + 32) = 0.17 inch
fx?Z = O
fo,” = V/(2b + d) = 276/(5 + 32) = 7.5 kips/inch

Sl B 7 o R T =M= 1284 inch—kips

*

x
\
N
]

(12841 (32/2) /4020 = 5.11 kips/inch

-y

X
Y
N
Il

(12841 (2.5 - 0.17)/4020 = 0.74 kips/inch

f = [(f'/ + f“ll)a + (fy/ + fyl!)?]‘l!?

‘*
]

LEO % [.11)2F + (7.8 * 0.74)FJ2 7=

f

]

9.7 kips/inch

This actual stress must be less than or equal to the
allowable stress.

9.7 = 0.928a or a = 10.5 sixteenths

The stress is resisted by two welds, one on either
side of the beam web. Therefore:

a = (10.5/2)/16 = 5,25/16 inch

or Weld size a = 5/16 inch

Check minimum web thickness

Shear stress on base metal shall not exceed 0.40 times
yield stress of base metal:
(0.928)(10) = (0.40)(36 ksi)t

tﬂ-h min — 0.64 inch
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Table 11 compares the sizes of Weld A for different con-
nection geometries obtained by using the procedures outlined in

this research with those given in the AISC Manual in Table IV,

WELD "B" DESIGN

To design the weld that connects the angle clips to the
column flange (Weld B), consider the effects of shear and
moment. Thus Weld B is designed for shear and bending by
considering the shear force V acting at a distance (a + e)
from Weld B (see Figure 6). This requires designing Weld B
for a bending moment M = V x (a + e).

For the purpose of comparison, instead of designing the
size of Weld B and comparing this to the AISC Manual, the
capacity of Weld B for the given weld size is determined and
compared to the capacities given in Table IV of the AISC
Manual (This procedure is used because the beams and loadings
have already been selected for Weld A to compare with AISC
Table 1IV).

The actual stresses that occur on Weld B of Figure 6 are
caused by shear and by bending moment. The stress per unit
length of weld caused by the direct shear forxrce V is the same as
for Weld A.

fr = V/(length of weld) Kips/inch
The stress per unit length of weld caused by the bending moment

i1s determined from the flexure formula.
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T = Mc/l Kips/inch
In the above equation, M is the bending moment which may be
calculated from
M=Vx (a + e)

where V is the capacity of Weld B, "a" is the distance from Weld
B to the centroid of Weld A, and "e" is the eccentricity defined
as the distance from the centroid of Weld A to the point where
the shear force V acts. The moment of inertia of the weld
geometry is I, and "c" is the distance (perpendicular to the
axis of bending) to the point of stress computation.

Again, the welds are treated as lines ignoring the thick-
ness (weld size "a") of the welds. The necessary equations for

the stresses per unit length of weld are given in Figure 59.

weld "B" Design Example

Given: W36 x 210 beam, length = 20 feet, T = 32-1/8 inch,
t(web) = .83 inch, Weld B size = 3/8 inch.

Solution:

f,” = V/2L = V/2(32) = 0.0156 V kips/inch
f”7 = 3Via + e)/L=
e = 4,65 inch (Table 11)
a=3-20.17 = 2.83 inch
L = 32 inch
fu’” = 3V(2.83 + 4.65)/32= = 0.0219 V kips/inch
f = (1,702 « ({,,77)%]r/7=

f = £(0.0156 V)= + (0.0219 V)]s 7=




s
[
L|
T |k _]__
- s
: |
LI @ S Tl
V
WELD B GEOMETRY
"H‘l'T’l
A
o= ¥
2L
£1! = fi where
I
I=2x (1/12) (1) ()3 = 12
6
c =L/2
M=V x (a + e)
= 3 - x (see Figure 58)
e = (see Table 11)
£f'" = 3v(a + e)

LZ

Figure 59. Egquations for computing stresses on Weld B.
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£ = 0.0269 v kips/inch
This stress must be less than or equal to the
allowable stress.

0.0269 V

"

.928(6)

Vv

]

207 kips

In Table 12, the capacities of Weld B given in the AISC
Table IV are compared with the capacities of Weld B determined

using the method outlined in this research.
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l TABLE 11 WELD "A" COMPARISON

I Shear Moment & Connection Weld "A" wWeld "A"
(kip) (in-kip) (inch) Geometry (beam line) (AISC)
276 1284 4.65 d % 3 2152 % 32 5/16 5/16

I 221 551 2.49 4 X 3 X 38 % 32 1/4 1/4
262 1042 3.98 4 %3 % 1L 3D 5/16 5/16
210 437 2.08 i % 3% 378 x,3D 1/4 1/4

I 248 815 3.29 4 3 ¥ 12 % 28 5/16 5/16
198 336 31.748 4% 3 x 3/8 x 28 1/4 1/4

I 234 782 Se ol 4 x 3 x 1/2 x 26 5/16 5/16
187 347 1.86 4 % 3 X 3/8 % 26 1/4 1/4

I 218 580 2.66 4 x 3 x 1/2 x 24 5/16 5/16
174 248 1.83 g R 3 I % 24 1/4 1/4
204 405 1.499 4.3 3 8 Y/ X 22 5/16 5/16
163 160 0.98 4 x 3 x 3/8 x 22 1/4 1/4
188 435 = O 4% 3 x 1752 % 20 5/16 5/16

l 151 170 £ ¥t Be 4 30 358w 20 1/4 1/4
U g 273 159 X 3% 15k X 18 5/16 5/16

l 138 112 0.81 4 x 3 x 3/8 x 18 1/4 1/4
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Capacity (kips)

TABLE 12 WELD "B" COMPARISON
Connection Moment e a Weld B
Geometry (in-kip) (inch) (inch) (Beam line)
4 3 1/2 32 1284 4.65 2.83 207
4 3 3/8 32 993 2.49 2.83 210
B 3 1/2 30 1042 3.98 2.82 198
4 3 3/8 30 437 2.08 2.82 199
4 3 1/2 28 815 3.29 2.81 189
4 3 3/8 28 336 1.70 2.81 187
4 3 1/2 26 782 3.34 2.80 167
4 3 3/8 26 347 1.86 2.80 164
4 3 172 24 580 2.66 2.78 158
4 3 3/8 24 248 1.43 2.78 153
4 3 1/2 22 405 1.99 - i 150
E 3 3/8 22 160 0.98 297 143
B 3 1/2 20 435 2433 2.75 123
4 3 3/8 20 170 1,13 2015 121
4 3 1/2 18 273 1.59 2.73 114
4 3 3/8 18 112 0.81 2.73 108

Weld B
(AISC)

326
271

302
251

278
231

254
211

230
191

206
171

181
152

157
131
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CONCLUSIONS

All of the connections that were tested and reviewed show
no difference in the size of weld A required. This is because
the method used to design Weld A in the AISC Manual accounted
for both direct shear and a moment, and the moment arm for
the calculation of the torsional moment was approximately the
same as the moment arm or eccentricity, e, determined in this
research. Thus, the two methods gave the same weld size since
both had about the same torsional moment.

The capacities of Weld B, however, varied significantly.
This is because the method used to calculate the weld sizes for
Weld B in the AISC Manual assumed that only a shearing force was
transmitted at the interface of the column flange and the
outstanding angle legs, which is not correct. The shear force
is transmitted through the centroid of Weld A, and since there
is a restraining moment being developed in the connection, this
shear force and moment is statically equivalent to a shear force
acting at an eccentric distance, e, away from the Weld A centroid.
Thus, Weld B is not acted upon by only the shear force, but also
a bending moment. As a result, the capacities of Weld B given
in the AISC Manual are too large for the weld sizes stated. Or,
in other words, the sizes of welds given in the AISC Table IV
(Weld B) are undersized and should be larger in order to support
the loads given in the table.

In summary, the design philosophy for Weld A in the AISC

Manual, as well as for Weld B, is incorrect. The sizes of welds
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for Weld A, however, are satisfactory because the torsional
moments used in these designs were approximately equal to those
determined in this research.

Only those angles for which moment-rotation curves could be
generated from adequate test data were compared. Conseqguently,
only angles with an outstanding leg length of four inches and an
angle thickness of either 1/2 or 3/8 inch could be compared.
Angles with an outstanding leg length of four inches but with an
angle thickness of 5/16 inch, and all angles with an outstanding
leg length of three inches could not be compared because of a
lack of adequate test data.

If more test data were available, generalized curves for
the three Richard equation parameters, R, KP, and N, could be
constructed as was done by Blewitt and Richard [1]. These
curves plot either the value of R, the reference load, or the
value of KP, the plastic stiffness, or the value of N, the shape
parameter, for various angle lengths and for various angle
thicknesses. The elastic stiffness, K, can always be determined
if the angle length and thickness are known, and with these four
Richard parameters, the moment-rotation curves can be
constructed.

In further research, different loading situations on
different beams will be examined, and the welds compared to

those given in the AISC Manual.
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Appendix A: The Richard Equation

The Richard Equation, published by Richard and Abbott in
1975, is the equation used to describe the non-linear behavior
of welded connections presented in this research. This
relationship, shown in Figure 2, relates the strength to the
stiffness of a structural system, in this case, welded double
framing angles. The Richard Equation is given below along with

an explanation of the parameters.

(K - KP) x ©

M = - (KP x 8)
1/N
(K - KP) x ©
b S
Re
M = Load (moment or force)
® = Deformation (rotation or displacement)
K = Elastic stiffness or initial slope of the curve

KP

Plastic stiffness or final slope of the curve

N = Shape parameter or the sharpness in transition in slope
from K to KP

Ro = Reference load or the intersection of a line asymptotic

to the curve at a slope equal to KP with the lcocad axis

T E N @ - - R R EE - - - B aE - - - - ..
|
=
_—

: S aath oo e s s oo
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Appendix B: MRCURVE

Program MRCURVE is a Fortran computer program that gives
the moment and rotation data points and the four Richard
equation parameters for the connection under consideration.

The program reads from the input data file, FDINPUT.DAT,
and writes to the output data file, OUTPUT.DAT. The input file

consists of three lines:

Line 1 N,DL

Line 2

TK, TKP, TRO, TN

Line 3

CK,CKP CRO,CN
where N = number of three inch segments that the connection
can be divided into. Suppose the connection is 24
inches long, then N = 24/3 = 8. Suppose the
connection is 22 inches long, however, then N must
be 7 to give a length of 21 inches, and the half
inch lost on either end of the connection is
negligible.
DL = maximum rotation of connection to be considered.
Choose a rotation that is consistent with the type
of connection considered. For welded connections,
let DL = 0.05 to DL = 0.2 radians.
TK = elastic stiffness of three inch segment of
connection loaded in tension
TKP = plastic stiffness of three inch segment of
connection loaded in tension

TRO = reference load for three inch segment of
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connection loaded in tension
TN = shape parameter for three inch segment of

connection loaded in tension

CK = elastic stiffness (compression)
CKP = plastic stiffness (compression)
CRO = reference load (compression)

CN = shape parameter (compression)

After these three lines, which represent one connection, another
three lines of input data representing another connection may be
input, and so on for all connections being considered. After
all connection data, the user must include a final line to stop
the program.

Final line = 0,0 (two zeros)

As for the program itself, the first ten lines are simply
dimensioning arrays, opening input and output files, and reading
input data from the input file. Do loop 100 together with Do
loop 200 determine the point of rotation and the forces
associated with eacth three inch segment of connection by
invoking equilibrium of forces. The resisting moment for that

particular rotation angle is then calculated by summing moments

of forces about the bottom of the connection. This gives one
moment-rotation data point. This process is repeated ten times
(Do loop 100) to give eleven moment-rotation data points.

The program then computes the four Richard equation
parameters that are associated with a least sguares curve
passing through the moment-rotation data points. The elastic

stiffness is computed by calculating the slope of the line
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passing through the origin and the flrst moment-rotation point.
The plastic stiffness is computed by calculating the slope of
the line passing through the last two moment-rotation data
points. The reference load is computed by calculating the
intercept of the line asymptotic to the curve and with a slope
equal to the plastic stiffness with the load axis. The shape
parameter is computed by starting with a value of 0.01 for the
shape parameter and incrementing this value by 0.01 until the
sum of the least square errors between the data points obtalned
earlier and the data points obtained using the incremented value

of the shape parameter is a minimum.
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SAMPLE INPUT FOR PROGRAM MRCURVE

The following input data is for a 30 inch long welded
double framing angle connection with angles that are 2L-4 x 3 x

3/8 inch.

10,0.05
73,6,5,3.4

1771,207,213,1.2

0,0
SAMPLE OUTPUT FOR PROGRAM MRCURVE

The following output is for the above input data.
MOMENT = 1.02 THETA = ,0000
MOMENT = 14.03 THETA = .0001
MOMENT = 28.99 THETA = .0002
MOMENT = 57.98 THETA = .0004
MOMENT = 115.84 THETA = .0008
MOMENT = 229.00 THETA = .001e
MOMENT = 421.53 THETA = .0031
MOMENT = 631.39 THETA = .0063
MOMENT = 804.98 THETA = 2D
MOMENT = 1016.79 THETA = .0250
MOMENT = 1396.06 THETA = .0500
ELASTIC MODULUS K = 143704.38
PLASTIC MODULUS KP = 15171.11
REFERENCE MOMENT MQ = 637.51
SHAPE PARAMETER N = 2.6200



501

S00

250

260

200

300

400

500

100

100

PROGRAM MRCURVE

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

REAL MOMENT

DIMENSION ARM(50),DELTA(50),R(50),MOMENT(50),BM1(50)
OPEN(UNIT=5,FILE='FDINPUT.DAT',STATUS="'0OLD"')
OPEN (UNIT=6,FILE='OUTPUT.DAT', STATUS="NEW')
READ(5,*) N,DL

IF(N.EQ.0) GO TO 999

H=3.%*N-1.5

READ(5,%) TK,TKP,TRO,TN

READ(5,*) CK,CKP,CRO,CN

DO 100 I=1,11

THETA = DL/(2.**(11-1))

X1 = H

X2 = 0.0

X = (X14X2)/2.

DO 200 J=1,N

ARM(J) = (J-1)%*3. + 1.5

DELTA(J) = (ARM(J)-X)*THETA
IF(DELTA(J).GE.0.0) GO TO 250
IF(DELTA(J).LT.0.0) GO TO 260

Tl = (TK-TKP)*DELTA(J)
T2 = (ABS(T1/TRO))**TN
T3 = (1.4T2)%%{(-1./TN)
T4 = TKP*DELTA(J)

R(J) = (T1*T3) + T4
GO TO 200

Tl = (CK-CKP)*DELTA(J)
T2 = (ABS(T1/CRO))**CN
T3 = (1.+T2)%*#%(-1./CN)
T4 = CKP*DELTA(J)

R(J) = (T1*T3) + T4
CONTINUE

SUM = 0.0

DO 300 K=1,N

SUM = SUM + R(K)

IF(ABS(SUM).LT.0.1) GO TO 400

IF(SUM.GT.0.0) X2=X

IF(SUM.LT.0.0) X1=X

IF(SUM.EQ.0.0) GO TO 400

GO TO 900

MOMENT (1)=0.0

DO 500 K=1,N

MOMENT (1) = MOMENT(I) + R(K)*ARM(K)
WRITE(6,7) MOMENT(I),THETA
FORMAT (1X, 'MOMENT = ',1F10.2,5X, 'THETA = ',1F10.4)
CONTINUE

TK = MOMENT(1)/((0.5)**10%DL)

TKP = (MOMENT(11)-MOMENT(10))/(0.5%DL)

TRO = MOMENT(11)-2.0*(MOMENT(11)-MOMENT(10))
WRITE(6,1) TK

FORMAT(//1X, '"ELASTIC MODULUS K = ',1F10.2)

non
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201

301

999

WRITE(6,2) TKP

FORMAT(//1X, 'PLASTIC MODULUS KP = ',1F10.2)
WRITE(6,3) TRO

FORMAT(//1X, 'REFERENCE MOMENT MO = ',1F10.2)
TN1 = 0.0

CHECK2 = 1.0E25

TN1 = TN1 + 0.01
IF(TN1.GT.100.0) GO TO 999
CHECK1 = 0.0

DO 201 I=1,11

THETA = ((0.5)**(11-I))*DL

Tl = (TK-TKP)*THETA

T2 = (ABS(T1/TRO))**TN1
T3 = (1.+T2)%*(-1./TN1)
T4 = TKP*THETA

BM1(I) = (T1*T3) + T4

CHECK1 = CHECK1 + ((MOMENT(I)-BM1(I))**2)*THETA
IF(CHECK1.GT.CHECK2) GO TO 301

CHECK2 = CHECK1

TN2 = TN1

GO TO 101

WRITE(6,6) TN2

GO TO 501

FORMAT(//1X, 'SHAPE PARAMETER N = ',1F10.4)

STOP

END

101
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Appendix C: NRMRSOL

Program NRMRSOL is a fortran computer program that uses a
Newton-Raphson root-finding technigque to determine the
intersection point (moment,rotation) of the beam line and the
moment-rotation curve.

The program is very easy to use. The computer will prompt
the user via the screen three times. The first prompt will ask
for the uniform load in kips/inch on the beam. The second
prompt will ask for the length of the beam in inches and the
moment of inertia of the beam (strong axis bending). Finally,
the third prompt will ask for the four Richard eguation
parameters defining the moment-rotation curve for the connection
under consideration. The input format is free, so decimal
points are not necessary after whole numbers, but commas must
separate entries. The output of the program appears on the
screen and consists of one line. This output line gives the end
rotation in radians and the end moment in inch-kips, the two
coordinates corresponding to the intersection of the beam line
and the moment-rotation curve.

To understand how the computer program works, the theory
behind the Newton-Raphson method must first be explained.
Consider a point x which is not a root of the function f(x) but
is "reasonably close" to a root. The function f£(x) can be

expanded in a Taylor's series expansion about x:

fix) = f(x) + F7(x)C(x — %) + f77(x)(x — XI2/2! + ... +
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Taking only the first two terms in the expansion:

FCx) = f(x) + (x = x)f’(x)

Setting f£(x) = 0 and solving for x gives:

x = x - f(x)/f7(x)

The function is a function of the rotation, theta, and to
obtain this function the expression for the end moment using
the moment-rotation curve must be set egual to the expression

for the end moment using the beam line equation. Doing this

gives:
chnn - Hb--m 1Lins or ”cnnﬂ = nb..ﬂl iine 0 - f{B,
KaiB 2E1
f(B) = ——————mmeemeeeereeeeme 4 Kp@ = Meinea + —=8 = 0
Ki8 [N | 1/N L
e 3 ———
Mo

Using the Newton-Raphson method:

8 = B8, - f(Bl)/17(8.) or

B - B = § = —-1(B)71F7(8.)
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To obtain the derivatives, the Quotient Rule and the Power Rule
of differentiation must be used, and in doing so, the following

expression for the root of the function of theta becomes:

KiBao 2E1
______________________ + erc Mrines + —,
KiBo | N | 1/N L
1+ —
Mo
@ = @, - —————- e
2EI Ka
e e v S —————
L KaBo| N | N+1
1+ -—— -—-
Mo N

The above equation is programmed in NRMRSOL as the
subroutine FUNCTN. The program converges on the solution very
rapidly and stops when the absolute value of delta (§) is less
than a predetermined epsilon or error (= 0.000001). No error
exits have been included in the program in case the method
diverges or does not find a root in a reasonable number of
iterations. The error exits were not necessary because the

function is well defined near the root.
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PROGRAM NRMRSOL

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
WRITE (*,1)
1 FORMAT(1X, 'ENTER UNIFORM LOAD IN KIPS/INCH')
READ (*,*) W
WRITE (*,2)
2 FORMAT (1X, '"ENTER BEAM LENGTH (INCHES), MOMENT OF INERTIA')
READ (*,*) XL,XI
WRITE (*,3)
3 FORMAT (1X, 'ENTER RICHARD PARAMETERS K,KP,R,N')
READ (*,*) TK,TKP,TR,TN
EPS = 0.000001
E = 29000.
THETAO = 0.
CALL FUNCTN (DELTA,TK,TKP,TR,TN,THETAO,W,E,XI,XL)
THETA = THETAO + DELTA
100 CALL FUNCTN (DELTA,TK,TKP,TR,TN,THETA,W,E,XI,XL)
THETA = THETA + DELTA
IF(ABS (DELTA).LT.EPS) GO TO 200
GO TO 100
200 XMOM = (W*(XL**2)/12.)-(2.*E*XI*THETA/XL)
WRITE (*,4) THETA, XMOM
4 FORMAT (1X,'END ROTATION =',1F10.8, 'RADIANS',5X, 'END MOMENT
$ =',1F10.0, ' INCH-KIPS')
STOP
END

SUBROUTINE FUNCTN (DL,TK,TKP,TR,TN,ROT,W,E,XI,XL)
IMPLICIT DOUBLE PRECISION (A-H,0-2)

Tl = TK-TKP

T2 = (ABS(T1*ROT/TR))**TN
T3 = (1 + T2)%%(1./TN)

T4 = (T1*ROT)/T3

FEM = WX (XL**2)/12.

XNUM = T4 + (TKP*ROT) - FEM + (2.*E*XI*ROT/XL)

XDEN = TKP + (2.*E*XI/XL) + (T1/((1 + T2)**((TN + 1.)/TN)))
DL = -1.*XNUM/XDEN

RETURN

END
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