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Chapter 1 

Introduction 

This repon concerns the inelastic lateral buck.ling and post-buckling behavior of shan I-beams sub

jected to cyclically reversing loads . The eccentrically braced frame, used in the eanhquake resistant 

design of building structures, provides an application in which lateral buckling of shan I-beams under 

cyclic loading is relevant. Our main purpose is to establish some benchmarks with which to assess the 

consequences of lateral buck.ling of active link beams in eccentrically braced frames. As such, our goal is 

practical and our scope narrow. We have, however. endeavored to investigate the problem in a manner 

independent of the eccentric bracing context. with the hope of illuminating the general issues of the 

lateral buckling problem. 

While the methods used to investigate the problem mal' seem extravagant, we did not ",sh to be 

encumbered or biased by questionable mechanics when interpreting the complex phenomena inherent to 

the lateral buckling phenomena . The tools which we bring to bear on the problem of lateral buckling of 

shan beams include nonlinear rods theories. cyclic metal plasticity, numerical analysis of systems with 

limit loads, and experimental methods. Each of these topics has its own history of development. each has 

its a"" interest and research challenges, and each has its own literarure . In many of these areas we strive 

to make a new comribution to the Slale of knowledge . However, we have tried to maintain harmony and 

balance In our approach at the risk of failing to excite the specialists in anyone of the topical subjects. 

The ma in contribution of the present work is our synthesis of the topics and the results that issue from the 

synergy . 

The follo,,;n& sections are presented to allow the uninitiated reader to examine the pure strands from 

which the fabric is woven . The introductory comments are largely historical, if not somewhat philosophi

cal . and are offered as an aid in establishing a COntext for the study. We begin by motivat ing the research 

\\.ith a discussion of the eccentric bracing concept. Subsequently we comment on the ongins and issues 

related to lateral buckling of beams. nonlinear rod theories. and the modeling of cyclic metal pla stiCIty . 

Finally. we indicate the scope of the present work and give a brief outline of the content of the chapters 

that folio\\' . 

1.1 Eccentricall y Braced Frames: A Motivation for the Study of Lateral Buckling 

The design of eanhquake resistant systems is philosophically different from traditional design prac

tice . Excursions into the inelastic range are accepted for rare but extreme overloads. and hence must be 

anticipated in the design process. Many of the members of the structure might repeatedly rea ch or 

exceed their limit capacity under cyclically reversing loads . Under these circumstances, the strength , 

stabilit)" and toughness of the energy dissipating members is fundamental to the integrity of the system. 

Roeder and Popov (1978) were the first to demonstrate that eccentrically braced steel frames were well 

suited to meet the difficult demands of an eanhquake environment . 

The economy of the eccentric bracing scheme is achieved by anticipating large local inelastic defor

mations in the eccentric elements, facilitating energy dissipation. and thereby endowing the system ,,;th 
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Eccentrlc Elements (typ . I 

Fig. 1.1 Typical ecce ntricall y braced rrames 

ducti lity and toughness . Several possible configurations of eccentrically braced frames are shown in Fig. 

1.1. The inelastic deformations are forced to occur in shan beam segments (sometimes called aCI;l'e link 

beams) which connect the axial force transmitting members (i. e. braces or columns) . Large amounts of 

energy can be dissipated through inelastic shearing of these shan beams. The shan length of the eccen

tric elements is imponant both to promote a high elastic structural stiffness and to insure that shear 

yielding occurs rather than flexural yielding since shear yielding is considerably more efficient. Integrity 

of the structure is mamtained by providing details which lend the structure ductility (Hjelmstad and 

Papal'. 1983) . The need for lateral bracing of the eccentric elements was recognized in the experiments 

of Manheim (1982) in which lateral buckling of the beams was first observed . All of the recent research 

on eccentrically braced frames has been concerned "'ith laterally braced systems and. for lack of beuer 

information. recommendations for detailing have conservatively required complete lateral bracing atthe 

ends of the active link beam. No research has been done on laterally unbraced or panially braced sys

tems . 

The present research is concerned "ith the nonlinear response of beams. with and without lateral 

suppon. subjected to cyclically reversing loads in the inelastic range . Such conditions occur in eccentri

cally braced frames under eanhquake excitation. Consequently. the topic is Imponant to the under

standing of eccentricall)' braced frames. \Vhile the repon is nOt really about eccentrically braced frames. 

they provide an imponant motivational example . 

1.2 Lateral Buckling or Beams 

Owing to their open thin-walled geometry. I-beams have a relatively low resistance to lateral buck

ling. The tendency for beams to buckle torsionally when subjected to loads in the plane of their strong 

axis has been known for over a hundred years . The need to safely and economically proponion Struc

tures has sustained a steady research elfon armed at better understanding the phenomena associated 

with the lateral buckling of beams. 

The technical literature contains hundreds of papers and books devOted to the subject of lateral 

buckling of beams. An extensive summary of the literature is contained in the works of Bleich (1952). 

Lee (1960) . Chen and Atsuta (1977). and Galambos (1988) . Much of the research reponed in the 
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literature on lateral buckling of beams is tangential to the developments reponed here . Other research 

results are subsumed by the generality of our approach . We cannot hope to give an accurate account of 

the many accomplishments of researchers studying lateral buckling of beams, but we do wish to provide a 

historical context for the present study, if only a modest one. The follOwing paragraphs contain a brief 

account of some of the pivotal developments related to the lateral buckling of beams. 

The formal theoretical study of lateral-torsional buckling began in 1899 when L. Prandtl and A. G. 

M . Michell independently published equations describing the elastic lateral buckling of a thin rectangular 

strip. Over a decade later, S. P. Timoshenko formulated equations governing the elastic lateral-torsional 

buckling of a beam having an I-type cross section, recognizing that a significant amount of torsional 

resistance accrues from the restraint of cross-sectional warping in thin-walled open sections (/oc . cit . 

Bleich, 1952). The literature on lateral buckling is clearly skewed toward elastic beams. Following the 

lead of the founders of the subject, latter-day researchers have focussed on determining the fundamental 

linearized buckling eigenvalue as an estimate of the capacity of the system . 

In 1950, Neal published the first analysis of elastoplastic lateral buckling, treating beams of rectangu 

lar cross section (Neal, 1950). Home (1950) soon followed with the imponant extension to the I-type 

cross section . Since that time, extensive effons have been expended toward the goal of estimating the 

maximum load that an elastoplastic beam can sustain . Most of the analytical studies of inelastic systems 

are based upon some variation of the tangent modulus approach, widely used for axially loaded columns, 

to compute a bifurcation load from a linearized theoryt . The analytical models have been useful in 

identifying the imponam geometric and material propenies which affect the buckling response of beams. 

They have also been used extensively to develop design formulas. 

Most of the published results concern the determination of the linearized bifurcation load for sys

tems with various configurations and propenies . A great deal of attention has been placed upon formulat

ing and solving cenain simple cases such as a simple beam subjected to end moments about its minor axis 

or a cantile"er beam subjected to a single point load at its end . Most of the formulas used in design result 

from the investigation of these simple systems. Some of the problem parameters that have been consid

ered include the relative position of the load with respect to the beam, nexible boundary conditions, 

monosymmetry of the cross section, warping reStraint, residual stresses, initial imperfections and lateral 

bracing. 

Horne (1954) obtained numerical solutions for beams with unequal end moments and developed an 

approach whereby the solution to the problem of buckling under unequal end moments could be ob

tained from that of a beam with equal end moments simply by multiplying the latter by a dimensionless 

function of the moment ratio . The practice of using such functions to account for variations in load form 

is ubiquitous in modem design specifications . Zuk (1956) performed analyses of bracing forces at buck

ling, based upon an assumption about the initial lateral geometric imperfection of the beam. He found 

that a brace strength of 2% of the compression nange capacity would generally be sufficient to resist 

buckling. The so-called "two percent rule" was thus born . Winter (1960) determined the axial stiffness 

of the brace required to prevent simultaneous buckling of the brace and beam. The general issue of 

lateral bracing requirements remains largely unresolved today, panicularly for inelastic buckli ng. 

Galambos (1963) was the first to include the effects of residual stresses on the elastoplastic capacity of 

t To be more specific , the theories generally represent strains up 10 sec.ond order in the generalized kinematic variables 
and the equHibrium equations contain terms linear in the kinematic ... ariables . These Slcond ord" theories lead 10 an 
eigenvalue problem from which the critical load faClor c.an be estimated . 
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beams. and established the imponance of their consideration. Woolcock and Trahair (1974) considered 

the post-buckling behavior of elastic beams and found that they can sustain loads in excess of the linear

Ized bifurcation load . They correctly indicated that the additional capacity would seldom be realized due 

to the onset of yielding. Analysis of the post-buckling response of inelasllc systems has not been found in 

the literature for either monotonic or cyclic loading conditions . 

Considerable effon has been directed toward formulating theories and toward developing methods 

of solution to the governing equations . Most of the theories that have evolved are complicated and do not 

submit to classical solution methods . Various numerical methods have been proposed to deal with such 

cases. including finite difference methods (Vinnakota. 1977). finite integral methods (Brown and Trah

air. 1968). and finite element methods (Barsoum and Gallagher. 1970) . 

A relatively modest number of experimental investigations have been reponed in the literature . The 
o 

first known tests were reponed by A. G. M. Michell in 1899 (loc. cil. Bleich. 1952) . The results of 123 

tests performed in Japan. Great Britain. Australia. and the United States have been summarized and 

analyzed by Hollinger and Mangelsdorf (1981). wherein the original references are cited . 

Experimental results are often difficult to interpret because imponant propenies such as initial im

perfections. end restraints. residual stresses. and material properties are difficult to measure and docu

ment. Consequently. correlation between analysis and experiment has been relatively superficial. Since 

most experimental investigations have been oriented toward verifying the predictions of analytical mod

els. and since mOSt anall~ical models predict only the buck.ling load. reponing of experimental data in the 

pOSt buckling range is scarce. However. some data have been reponed on the post-buckling response of 

monotonically loaded beams (Augusti. 1964; Kitipornchai and Trahair. 1975a.b; Fukumoto. el. al . • 

1980). No cyclic load teStS have been found in the literature. 

1.3 Nonlinear Rod Theories 

While the theories behind the investigations of lateral buckling of beams and the modern theory of 

rods have common roots. the theory of rods has developed almost independently of the research in 

lateral buckling of beams. Lateral buckling research seems to have focussed on the linearized bifurcation 

problem in the quest for formulae to suppon the design of strUctures. almost to the complete exclusion of 

other approaches . Rod theory. on the other hand. is generally viewed as a branch of mathematical 

elasticity theory and has grown more from the inspiration of mathematical aesthetics than for practical 

engineering design needs . 

The foundations of nonlinear rod theories go back to Kirchhoff (circa 1859) who based his theory 

on an essentially kinematic argument (Ioc. cil . Love. 1944) . The kinematic hypothesis. as employed by 

J(jrchhoff. has become firmly established as the fundamental building block of a reduced theory of 

structural mechanics . The classical nonlinear theory of rods. called the Kirchhoff-Love rod model. is 

presented by Love (1944). Extensions of the classical model to include finite extension and shearing are 

due to Reissner (1973). Antman (1974). and Simo (19850). in different contexts. These rod theories 

are often called geomelrically exaCI because the equations of kinematics and equilibrium hold for all 

values of the generalized kinematic variables. 

One of the principal difficulties inherent in three dimensional rod theories is the parameterization of 

the rotation field for numerical computations. Simo and Vu-Quoc (1986) presented a variational formu-

4 

• 
I 
I 
I 
I 

• • 
I 
I 
I 
I 

• 
I 
I 
I 
I 
I 
I 
I 



,z, ..... • . ;; I..> 

I 
I 
I 
I 
I 

• 
I 
I 
I 
I 

• 
I 
I 
I 
I 

• • 
I 

lation of the geometrically exact rod model discussed by Simo (198Sa) . They used quatemions to para

meterize the rotation field. and develop a novel approach to the configuration update based upon the 

exponential map . One of the main contributions of Simo and Vu-Quoc is the recognition that the config

uration space of rotations is 50(3) . rather than the usual linear space, and hence the notion of an 

admissible variation must reflect the structure of SO(3) . Because their model is cast in variational form, it 

is quite suitable for numerical analysis by the finite element method . 

For certain classes of beams. most notably those with thin-walled open cross sections. warping out of 

the plane of the cross section represents an important mode of deformation. a mode precluded by the 

Kirchhoff hypothesis that plane sections remain plane . While the inclusion of warping in thin-walled 

beams goes back much further. Vlazov (1961) is largely responsible for formulating the thin-walled beam 

theory based upon the sectorial areas kinematic hypothesis for torsion . Warping deformations due to 

transverse shearing are important for beams which have a ratio of length to typical cross sectional dimen

sion on the order of unity. Warping deformations can also be important for anisotropic beams with a 

small ratio of shear modulus to Young's modulus . Cowper (1966) incorporated the effects of warping 

deformations in a planar beam through a systematic definition of the so-called shear coefficient , Simo 

(1982 ) extended the idea of Cowper to a geometrically nonlinear beam theory . Hjelmstad and Popov 

(1983) incorporated the effects of warping in problems involving inelastic bending and shearing. Simo 

and Vu-Quoc (1989) extended their earlier model to include the effect of torsional warping deformations 

in a geometrically exact rod model. 

Most of the work done in the theory of rods. as well as in the lateral buckling of beams, has been 

carried out in the context of stress resultants. The concept of the resultant force and resultant bending 

moment acting at a cross section is a natural consequence of the kinematic hypothesis underlying rod 

theories. Although the kinematic hypothesis is not necessary to define the Stress resultants (they can be 

defined as integrals of the Stress field over the cross section) , it motivates the definition in the foll o"i ng 

sense . The generalized displacement quantities do not depend upon the cross sectional coordinates. This 

decoupling allows explicit integration of the internal work over the cross section, leading to the defiOlt ion 

of conjugate stress and strain resultants . The stress and strain resultants can also be viewed as projections 

of the Stress and strain fields on a low order polynomial basis (Hjelmstad , 1987). 

One of the difficulties of operating in stress resultant space is the representation of inelastic constitu

tive behavior (Hjelmstad and Popov. 1983). It is difficult to conStruct a suitable yield surface, let alone 

develop models of strain hardening. for a beam which can experience multi axial states of stress (e.g. 

combined shear and normal stresses). Pinsky and Taylor (1980) formulated a finite deformation elastic 

planar beam theory in which the integration over the cross section is accomplished by numerical quadra

ture rather than by explicit integration . The numerical integration over the cross section allows the theory 

to be expressed in terms of stress and strain components rather than resultants . The kinema tic hypothesis 

provides a constraint on the deformation map and thereby preserves the essence of the rod theory . 

Pinsky. Taylor. and Pister (1980) extended the finite deformation plane beam theory to one with ,ois

coplastic constitution , Simo, Hjelmstad. and Taylor (1984) used this approach again for planar beams in 

which cross sectional warping due to transverse shear is important. Hjelmstad and Popov ( 1983) applied 

the technique to short I-beams undergoing planar deformations (in the major plane of inertia) to over

come the problems associated "oith modeling moment-shear interaction . The real advantage of working 

with a stress component formulation is that any local constitutive model can be used . Much more is 
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k.nown about the behavior of materials at the local level than is k.nown about them at the resultant level. 

The price of representing the constitutive equations locally is computational tedium. 

1. 4 Cyclic Metal Plasticity 

In most research on the inelastic lateral buckling behavior of beams. a highly idealized model of 

constitutive behavior is employed . In particular. the stress state is assumed to be uniaxial. the material is 

assumed elastoplastic with linear strain hardening. and unioading in not allowed . The main motivation 

for using such a model is the prospect of mak.ing analytical progress in solving the linearized buckling 

eigenvalue problem. The simple model is arguably valid for mild steel in the virgin state and has led to 

many useful formulas for the design of steel beams. The simple constitutive models do not manifest the 

complex mechanisms of strain hardening known to exist in metals and hence are not valid for generalized 

loadings . 

Phenomenological models of metal plasticity have been under development since the early work of 

R. von Mises . The origins of the idea of adding isotropic strain hardening (simple expansion of the yield 

surface) to the equations of elastoplasticity go back at least to Hill (1950) and Hodge (1955). While there 

is little experimental evidence supponing the isotropic hardening model. it has proven useful in computa

tions . The kinematic hardening rule proposed by Prager (1956)t represented the first attempt at model

ing the Bauschinger erfect. imponant in metal plasticity. in the context of a continuum model with a 

multiaxial stress state . Prager's model was subsequently modified by Ziegler (1959) and others. but 

retained the basic feature of a single loading surface translating in stress space . 

It has long been known that the simple hardening models do not represent the phenomena inherent 

to cyclic metal plasticity well because they do not allow for a gradual transition from the elastic state to the 

plasllc State . The first attempt to rectify the shoncomings of these models is attributed to Duwe z (1935) 

who proposed the mtChanical sub/a)'er model in which the material is idealized as a parallel arrangement 

of fricllon elements with different slip coefficients . The sublayer concept was extended to multiaxial 

Stress States b)' Iwan (1967) and independently by Mroz (1967) . Both employed a multi-surface model. 

endolling each surface \\;th different propenies as well as an evolutionary rule for its translation . The 

mechanical sublayer model and its progeny are purely phenomenological models and bear little relation 

to the underlying physics . However. these models imitate experimental data well. and have proven useful 

in numerical simulations . More recent developments in phenomenological models include the 

two-surface models of Kreig (1975). Dafalias (1975). and Dafalias and Popov (1975. 1976). Rees 

(1984. 1987) proposed the idea of using a multi-surface model in Strain space to represent hardening. 

EHons have been made to base cyclic metal plasticity models on the dislocation structure and glide 

plane slip mechanisms of the polycrystalline strUcture of the material (Oniz and Popov. 1982). Such 

models have been quite successful in representing the material behavior. but have not achieved the 

popularity of the phenomenological models in computational plasticity. 

Large-scale numerical computations with rate-independent plasticity models are generally carried 

out with return mapping algorithms . At any stage of loading. a trial stress state is computed elastically. If 

the stress state lies outside the yield surface it is returned to an admissible state on the yield surface . The 

t As is typical of Itchnicallileralure, Russian contributions are ohen overlooked in the English literature . We admit 
to nOI bting able to read Russian . howt\!tr, it would appear that the firsl proposal of the idea of kinematic hardening 
is due 10 A . IshUnskii in 1954 (Joc . 'll . Dafalias a.nd Popov, 1975). 
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radial return algorithm, initially proposed by Wilkins (1964), is the mOSt popular of the return mapping 

algorithms . Simo and Taylor (1984, 1985) have recently introduced the concept of the consisttn( (an

gent moduli for plasticity computations carried out with a return mapping. The use of the consistent 

tangent renects the finite steps taken in the numerical integration of the constitutive equations and pre

serves the asymptotic quadratic convergence rate of ewton's method . Modem numerical algorithms 

have not yet been applied to cyclic metal plasticity models . 

1.5 Scope of the Present Stud y 

A significant portion of the work reported here is the development of an analytical model capable of 

analyzing lateral buckling of short I-beams under cyclic loading. A geometrically nonlinear beam model 

is formulated in terms of stress components. Transverse warping and torsional warping deformations are 

included in the model to treat problems involving high shear and torsion . The kinematic constraint 

imposed in this model is appropriate for a thin-walled I-section geometry . The novel kinematic model 

includes a geometrically exact representation of the primary torsional warping as well as secondary warp

ing due to torsion and transverse shear. A new cyclic plasticity model, incorporating many of the most 

compelling features of existing phenomenological models, is developed and implemented with the consis

tent return mapping algorithm developed by Simo and Taylor (1985). The new model represents cyclic 

metal plasticity well and is suitable for large-scale computation. 

The experimental research program comprised five tests of propped cantilever beams subjected to a 

cyclically reversing point load acting near the fixed end . The experiments include both braced and un

braced beams subjected to similar loading histories . The number of specimens tested in the present 

program "'as small relative to the large number of parameters that are important to the complex response 

of these cyclically loaded systems. Therefore. we examine the importance of constitutive parameters. 

residual stresses. load placement. geometric imperfections. nexible boundary conditions, and lateral 

bracing using the anal)1ical model developed earlier . Extensive parameter studies are conducted both to 

assess the performance of the analy1ical model and to gain further insight into the lateral buckling prob

lem . Once validated . the analy1ical model is used to extend. interpret. and generalize the results of the 

experimental investigation through the parameter studies . Most of the parameter studies are carried out 

using the propped cantilever arrangement used in the experiments . 

1. 6 Overview of the Report 

Chapter 2 begins with the development of the kinematic hypothesis used to describe the nonlinear 

deformation of an I-beam . The model includes warping deformations due to transverse shear and tor

sion . The equilibrium equations. cast in terms of stress components. are expressed in weak form and 

renect the kinematic hypothesis developed earlier. The resulting nonlinear equations are treated numeri

ca\ly with Newton's method using a finite element discretization of the spatial domain. 

A cyclic plasticity model is developed in chapter 3. The basic rate equations are presented first. with 

subsequent review of existing hardening rules . Aher past research on cyclic plasticity is reviewed. the new 

cyclic plasticity model is proposed. Numerical aspects related to the treatment of the constitutive equa

tions are then considered . These aspects include the development of a return mapping algorithm with 
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algorithmically consistent tangent moduli. Finally. several examples of the proposed cyclic plasticity 

model are presented in support of the validity of the model. 

In chapter 4. five experiments on lateral buckling of propped cantilever beams are described. giving 

resultS and general observations on cyclic lateral buckling for these elementS. The parameters of the 

analytical model to be used as the control case in the subsequent analytical srudies are presented. A 

cyclic analysis of the control model is done to demonstrate the ability of the theoretical model to repro

duce the imponant phenomena observed in the experimentS. 

Various parameter studies affecting the response of the test specimens are performed in chapters 5. 

6. and 7. The parameters studied in chapter 5 include constitutive parameters. geometric imperfections 

in load placement. geometric dimensions of the test piece. boundary conditions. and residual stresses. 

The effect of flexibility of the fixed end is examined in chapter 6 and the influence of lateral bracing is 

studIed in chapter 7. The Unearized buckling load. the inelastic (post-Urnit) monotonic response . and the 

inelastic C)'clic response are examined to assess the effects of the parameters for each study. The parame

ter studIes are summarized at the end of each chapter. 

Chapter 8 gives a summary and the general conclusions of this study. 
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Chapter 2 

Finite Deformation I-Beam Model 

A large majority of the past research on the inelastic lateral-torsional buckling of I-beams has em

ployed an elastic core type of approach with a second order approximation to the equilibrium equations 

(see. for example. Galambos. 1963 ; Rajasekaran. 1971; Chen and Atsuta. 1977) _ The elastic core ap

proach is generally carried out entirely with stress and Strain resultants . The inelastic constitutive equa

tions for the stress resultants are obtained by using a kinematic hypothesis to directly integrate the local 

tangent modulus of the uniaxial stress-strain curve over the cross-section . Such a process is feasible onl)' 

if the stress state is uniaxial and the loading monotonic since the kinematic hypothesis gives an unambigu

ous siate of stress for these conditions . The results of this type of analysis have been found to agree well 

with experiments and have demonstrated the importance of various effects. such as the effects of residual 

Stresses. on buckling. Unfortunatel)'. this method is not readily applicable to short beams where the 

effects of shear are expected to be important. 

Considerable progress has been made in recent years toward understanding the different ial geometr), 

of finite beam deformations . Simo and Vu-Quoc (1986) have presented a numerical formulation for a 

geometricall), exact. elastic. Stress resultant beam model renecting the Bernoulli-Kirchhoff kinematic 

assumption that plane sections remain plane . Simo and Vu-Quoc (1989) have also extended their model 

to include the effect of torsional warping . The pertinent literature in this area has been cited in the above 

named references. and "ill not be repeated here . Because of the restriction to elastic material . these 

models have not been applied to study the lateral buckling of beams. 

Pre\;ous effons to understand the lateral buckling behavior of beams have concentrated almost 

exclusively on applications involving longer beams subjected to monotonic loading. The particular prob

lems associated with the eccentrically braced frame system have not yet been adequately treated . The 

purpose of the present chapter is to develop an analytical model which is capable of accounting for the 

effects of shear and generalized loading on the inelastic buckling of short beams subjected to c)'chc 

loading. 

The deformation map has often been restricted to a second order approximation of the deforma 

tions . One assumption that has often been used is that the transverse denections of a beam are small 

when compared to the lateral denections . This assumption decouples the transverse equilibrium equation 

for nexure from the lateral bending and twisting equations . Research has shown that the transverse 

denections of short beams in an eccentrically braced frame may be large (Hjelmstad and Popov. 1983). 

Thus. the simplifying assumption is not appropriate for the current application. particularly since our 

main interest is in the post-buckling regime . The model developed here considers finite displacement 

and rotation of the beam with superposed infinitesimal warping deformations . 

It has been demonstrated by many researchers that the effects of residual stresses on the buckling of 

beams is important. Usually. the residual Stresses are taken to approximate the distribution that exists 

after the rolling and cooling processes have been completed . The residual Stress pattern is generall), taken 

to be a polynomial function which satisfies self equilibrium requirements (Kitipornchai and Trahair. 

1975b) . However. a beam subjected to cyclic loading mayor may not buckle on the virgin loading. and 
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inelastic action may alter the residual stress pattern. Hence. the initial distribution may not accurately 

reflect the state of residual stress in a beam with loading history. 

In mOSI of the research into the lateral buckling behavior of beams. a highly idealited constitutive 

assumption is used for the material. Often. a perfect trilinear. uniaxial strain hardening stress-strain 

curve typical of virgin ductile steel is assumed . Under this assumption the stress-strain curve is trilinear 

and only three possible values of tangent modulus can be realized (i.e . the initial elastic value. zero for 

the plastic plateau. and a strain-hardening value) . The main motivation for using such an idealized 

model is to make analytical progress in achieving a solution . For monotonic loadings the ideal behavior is 

often justifted . However. it is well known that under generalized loadings this ideal behavior degenerates 

into nonlinear behavior exhibiting Bauschinger's effect and strain hardening. In our model we implement 

a more general multiaxial cyclic plasticity model. 

The advantage of the computational point of view taken here is that the nonlinear constitutive equa

tions are exactly satisfied at the local level within each global iteration of each time step (Slmo. 

Hjelmstad. and Taylor. 1984) . Hence any general constitutive model can be accommodated . Even 

within the scope of the restricted kinematics. inelastic lateral-torsional problems can accurately be 

solved for difficult cross-sectional geometries like the I-beam. Also. the local treatment of constitutive 

equations completely obviates the need for keeping track of the location of the shear center. which plays 

a fundamental role in the lateral buckling response of stress ,"suit ant models . 

The anal)1ical model is constructed by imposing a kinematic constraint typical of a thin-waUed beam 

theory. but generalized to account for finite deformations . It also includes shearing deformations and 

warping due to transverse shearing (HJelmstad. 1987). A (locally) plane stress condition is assumed for 

the web and flange elements. in the spiri t of the thin-walled beam approximation. and the general inelas

tic constitutive equations reflect this assumption . The equilibrium equations are cast in weak (vinual 

work) form and treated numerically with the fmite element method . Numerical treatment of the problem 

is accomplishtd through an iterative procedure of first linearizing the equilibrium equations about an 

intermedIate configuration and then solving the linear problem for the incremental motions . The up

dated confIguration determines the Stale of strain in a body. for which the correspondmg state of stress 

can be found b)' solving the nonlinear constitutive equations . The implications of the formulations dis

cussed here are examined carefully in chaplers 5. 6 and 7 through a set of numerical simulations which 

represent a thorough parameter study of the experiments presented in chapter 4 . 

1. 1 Kinematic Description 

For an I-beam. the classical torsion warping function. based on sectorial areas (Vlazov. 1961 ). is 

equivalent to a generalized Bernoulli-Kirchhoff (plane sections remain plane) assumption for each of the 

elements in the cross-section . Such an assumption is inadequate to treat problems involving high shear 

since the constant distribution of shear stresses obtained from this hypothesis precludes the possibility of 

a yield zone propagating from the interior of the cross-section . It also violates the condition that shear 

Stresses vanish at the extreme boundaries . 

In this section we discuss the geometry of deformation of the nonlinear beam model. Transverse and 

torsional warping degrees of freedom are introduced to allow better representation of the variation in 

shear strains over the cross-section. The kinematic description is an extension of the formulation of Simo 
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and Vu-Quoc (1986) to account for finite torsional warping deformations superposed with infinitesimal 

transverse and torsional warping deformations due to transverse shearing. Such an extension is possible 

because of the particular cross-sectional geometry of the I-beam. In common with the geometric model 

of Sima and Vu-Quoc. finite extension and finite shearing of the beam are accommodated. even in the 

presence of large rotations . 

A configuration of the beam is described by a vector field giving the position of the current line of 

centroids and a three-dimensional orthogonal moving frame which models the orientation of the cross

section . The configurations of the beam are completely defined by specifying the evolution of an orthogo

nal matrix. the position vector of the line of centroids. and the intensity of warping. 

We will focus our attention here on a beam model with I-type cross-section . The model will treat the 

cross-section as a thin-walled open section . In contrast with classical approaches to thin-walled beams. 

the assumption of vanishing contour shear is not made here. Rather. the k.inematic hypothesis is suitably 

generalized. in the spirit of the Timoshenk.o beam. such that transverse shearing deformations can ac

crue. Such a generalization is important in the present application to short beams because of the pre

dominat ing influence of shear . The geometric assumptions implicit in the present formulation are as 

follows : 

(i) The length of the cross-sectional COntour remains approximately unchanged during defor

mation . The changes in length are of second order and are caused by the linear approxima

tion to the warping effects due to shearing along the contour . The kinematics are formulated 

such that the primary torsion warping deformation does not induce a change in COntour 

length . 

(ii) The shear strain across the thickness of the cross sectional contour is constrained to be zero . 

This assumption is justifiable if the thickness of the cross-section is small in comparison with 

the cross-sectional dimensions . 

(iii) The shear strain along the contour of the section is represented by the average values 

through the plate thickness . St. Venant torsion is introduced by adding a Stress couple wh ich 

is proportional to the rate of t"ist of the beam . The constitutive equation for the St. Venant 

torsion is not coupled "ith the in-plane stress components. 

Notation .- The present development is concerned with an initially straight beam having length Land 

cross-section Q which has a piecewise smooth boundary aQ . Coordinates in the reference configuration 

8 .. (0. L) x Q C IR' . occupied by the beam at time t = O. are designated by (XI) with the standard 

(material) re ference basis {E / } . The spatial coordinate system {x,}. along with the associated basis {e,} . 

is taken as collinear with {X,}. The deformation map is denoted by I/> : 8 C IR ' - IR' and the deforma 

tion gradient by F = al/>/ax . The points X E 8 and x E 1/>(8) will be identified by their position veCtors X 

and x respectively . We adopt the convention that the line of centroids of the cross-sections is initially 

oriented along the XI axis and the principal axes of inertia are oriented along the {X, . X,} axes . For 

nota tional convenience , we will denote the axial coordinate as XI !!!5 S . The summation convention is in 

force throughout. unless explicitly excepted. Latin indices take values in {l.2.3}, while Greek Indices 

take values in {2 . 3}. 
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2.1.1 Kinematic hypothesis 

The kinematic hypothesis represents a restriction on the deformation map. and is central to the 

formulation of a beam theory (or any reduced engmeering theory). In the present case we wish to capture 

fmlle deformation and rOlation of the beam cross-section as well as warping. To develop the kinematics 

whIch accomplish these goals. we will proceed WIth a sequential argument . The development will Slart 

with a Ionematic model proposed by Simo (1985) . The model will then be augmented to account for 

finite warping due to larSlan and infinitesimal warping due 10 transverse shearing. As demonstrated by 

Sima (1985) finile motion and rigid rOlation of the beam cross-section are implicit in the following 

expression for the deformation map 

¢ (X) = ¢.(S) + X.t.(S) (2 .1) 

whtre 

¢.(S) = [S + " (S). v(S). ",(S) ]' (2 .2) 

represenls Ihe position vector of the centrOId of the cross-section . The generahzed displacemenls " (S). 

I·(S). and w(S) represent the components of the displacement of the line of centroids WIth respect to the 

basis {E/ }. 

The orientation of the cross-secllon is represented by the orthonormal mOving basis ( t/ (S)} allached 

to the centroid of a typical cross-section . The vectors are oriented such that t, (S) remains normal to the 

al,.,ag' rOlaled seclion. t, (S) describes Ihe major principal direction. and t,(S) descnbes the mmor 

pnncipal dlrecllon . as shown in FIg. 2.1. The onentation of the moving basis can be expressed in terms 

of the fIXed ba SIS vectors through an orthogonal transformation A (S) = Ave, ® E) such that 

(i.) = I. 2. 3) (2 .3) 

ConsIde r now a w'arplng deformallon from the deformed pOSllion described b) Eq . (2.1) In wh,ch the 

lOp nange rotates ngidl) aboul liS center by an amount Y In the clockwise direction. while the bOllom 

nange rotales ngldly about its center the same amount in the anticlockWlse direction. For later clarity of 

descnption "e refer to this mode of " 'arpmg as primary torsional warping . A new orthogonal frame. 

shown m Fig. 2. 1. can now be defmed for both the top nange and the bOllom nange as 

Top flange Bottom flange 

Y 

Fig. 2.1 Flange rotalion due to primary torsional ",arping 
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i,j E II. 3) (2 .4) 

where the Q"(y) are the components of the orthogonal transformation matrix 

Q (y) = [ c~s Y sin Y ] 
- Sin Y cos Y 

(2 .5) 

The presence of shear stresses along the contour of the cross section tends to cause an out-of-plane 

deformation of the cross section kno\\'Tl as warping. The existence of this warping deformation has been 

recognized for a long time, but waS accounted for only in elasticity approaches to beam problems. The 

justification for neglecting warping due to transverse shear when constructing a beam theory generally 

relies on the argument that shearing deformations are small compared with nexural deformations . Such 

an assumption fails to be valid for short beams (where the depth is on the Same order as the length) or for 

beams with extremely low shear modulus . Cowper (1966), waS among the first to try to systematically 

treat the innuence of warping in beam theory by developing a method for computing the so-called shtar 
cot//icien, which appears in Timoshenko's beam theory . Simo (1982) demonstrated that a kinematic 

assumption could be constructed which lead directly to Cowper's consistent shear coefficient. With an 

explicit expression for the kinematic hYPOlhesis , Simo was able to develop a second order beam theor), 

which consistentl)' accounted for the effect of warping due to transverse shear. Hjelmstad (1987) devel

oped a theory. moti\'ated by this kinematic hypothesis. in which the warping waS allowed to accrue as an 

independent degree-of-freedom . In the sequel we introduce additional warping modes into the kine

matic h),pothesis to account for the warping caused by the nonuniform shear now. These additional 

warping modes are the extension to three dimensions of the ideas implicit in the aforementioned works . 

We now superpose on the previous deformation field a distortional warping deformation which is 

infinitesimal and normal to the primary warped cross-section, as shown in Fig. 2.2. Distortional warping 

deformations will accrue from shearing of the elements caused by transverse resultant shears and torSIOn . 

The intensity of warping ,,; 11 be expressed as an expansion of warping basis functions and generalized 

warping intensities (Hjelmstad, 1987). In the present case, the distortional warping can be expressed in 

the form ",,(X,. X, )P,(S) , ;=1, . .. ,3 . 1'\00e that the summation convention is in effect. 

)'(S) 

Fig. 2.2 Distortiona l wa r ping (bottom flan ge) 

The functions p, (S), P, (S) , and p, (S) represent the intensit), of warping characterized by the warping 

basis functions 1/1, (X,. X,), "" (X, . X,) and "" (X,, X,), respectively . The specific character of the warping 

functions for the I-beam will be discussed later . 
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The deformation map can now be written in terms of the defined objects as follows : 

(2 .6) 

where the curly bracket notation indicates that the tOP component applies to the top flange, the middle 

component applies to the web, and the bottom component applies to the bottom flange . When a term 

does not have a curly bracket it applies to aU three regions. Using the expressions relating the warped 

base vectors to the unwarped base vectors. we can rewrite the above expression in the form 

¢(X) = ¢. + X,t, + X,[h(y)t l +g(y)t,l + 1fJj1,[g(y)t l -h(y)t,l (2 .7) 

The functions g(y) and hey) are defined as 

{
COSY} 

g(y) = 1 
cosy 

{

-Sin y} 
hey) = .0 

Sin Y 

(2.8) 

For convenience in subsequent derivations we will recast the deformation map into the follOwing 

compact form : 

¢(X) = ¢.(S) + o, (X) t,(S) (2 .9) 

where 01 = X,h (y) + If'/3,g (y) , 0, = X" and 0, = X,g (y) - 1/J/3,h (y) can be viewed as the components of 

stretch of the base vectors . 

Remark .- The above kinematic assumption is panicular to the I-beam cross-sectional geometry 

and reflects finite torsional warping. The dlstonional warping terms are needed to obtain a reasonable 

distribution of shearing strains within the cross-section . This is quite imponant for a formulation in which 

local constitutive equations are used. The kinematics used here can be comrasted with those of Sima and 

Vu-Quoc (1 989 ). There the warping is accommodated in a finite deformation context and is geometri

call)' exact. However, the warping function is taken to be the one corresponding with the infinitesimal 

case . Smce theirs is a stress resultant theory, the effect of making this assumptions does not show up in 

the geometry of beam deformation because the stress resultants, panicularly the bishear, can be suitably 

defined so that the stress power of the stress resultants is identical to that of the 3-D continuum . How

ever, the dIfference is implicit in the constitutive equations, which are also motivated by the infinitesimal 

theory . 

2.1.2 Description of finite rotations 

The onhogonal transformation A(S) can be described in several ways . Among these are the Euler 

angles ("'th one of twelve conventions) and the Cayley-Klein parameters (or quaternions). Sima (1985) 

presents a novel parameterization in terms of quaternions "'th an updating procedure based on the 

exponential map to trace the evolution of the moving frame . Here we adopt the Euler angle representa

tion . The well known singularit)' present in this parameterization is not expected to influence the prob

lems of interest here . 
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The orthogonal transformation A (S) can be derived as the product of the three (planar) rotation 

matrices A , (0, (S». A, (0, (S». and A, (0, (S» . where 0,. 0, and 0, are the three Euler angles which we 

will use to parameterize the finite rotation . Following the xyz convention. the rotation matrix takes the 

form 

A (S) = A, (O,(S» A,(O,(S»A,(O,(S» 

=U 
0 

0 ][ C, 
0 SI C' -s, 0] 

c, - s, 0 1 o S, c, 0 
s, c, - s, 0 C 0 o 1 (2 .10) 

[ C,C, s,s,c, - c,s, c,s,c, + S,S, ] 
= c,s, s,s,s, + C,C, C,S,S, - s,c, 

-s, s,c, c,c, 

where the first rotation is the angle 0, about the initial X, axis. the second is the angle 0, about an 

intermediate X, axis. and the third is the angle 0, about the final X, axis. The notation : C, = cos O,(S). 

s, = sinO,(S). i=I.2.3 has been introduced to economize the notation. 

2. 1.3 Secondary warping due 10 lorsion and IranS"erse shearing 

The warping of the cross-section due to torsion is composed of twO parts: (I) a finite but plane 

rotation of Ihe flanges in opposite directions (primary warping). as shown in Fig. 2.1. and (2) a super

posed infinitesimal distortional warping displacement due to shearing of the flanges (secondary warping). 

as sho"." in Fig . 2.2 . The first type of warping is characterized by the rotation angle Y. and is the finite 

deformation counterpart of the classical lorsion warping function based on sectorial areas (Vlazo\,. 

1961 ). The secondary warping is characterized by the warping intensities p, which multiply the warpmg 

functions 1/1, . This mode of deformation is usually ignored in formulating beam theories. However . this 

warping component is important because it allows for a shear strain gradient. enabling the shear strain. 

and thereby shear stress. to vanish at the extreme fibers of the cross section . This mechanism also allows 

for a more realistic representation of the propagation of yielding through the cross-seCllon. Again. this 

mode of warping is important mainly to short beams. 

The secondary warping function associated with torsion is given by 

.. ,GA [ 0 1/1,= - h 
120£1, Isgn(X,)(2 H)[20Xl- 3b'X,] 

in web 

in flange 
(2 .11 ) 

The secondary warping functions due to transverse shearing can be found as in Hjelmstad and Popov 

(1983) and have the explicit expressions: 

.. ,GA [ 0 
1/1, = 120£1, (2 + v) i20xl- 3b'X,] 

in web 
(2 .12) 

in flange 
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in web .:,GA [ (2 + v)l2oxl- 3h'X,Co] 
'/1, = A 

120£1, '2 Sgn (X,) [60(2 + v)XJ- 120(1 + v)b /X,/ + h'C,] in Dange 

where. the constants, Co and C,' are given by 

Co = 2 + 10m(1 - 2n') + v(1 + 5m(1 - 5n'» , 
(I + 3m)(2 + v) 

C, = 4(1 + 15mn') +v(2+75mn') 
(I + 3m) 

(2.13) 

(2 .14) 

and G is the shear modulus, £ is Young's modulus, and v is Poisson's ratio . The function sgn(x) takes 

values sgn(x)=1 if x>O, sgn(x)=-I if x<O, and sgn(x)=O if x=O. The geometric properties of the I-beam 

have been expressed in terms of the dimensionless parameters m, the ratio of gross nange area to web 

area. and n, the ratio of nange "idth to section depth : 

2bl, 
m= t 

hi 
b 

n :-
h 

(2 . 15) 

where h is the distance between the centroids of the nanges. I is the web thickness. b is the nange WIdth. 

and 1/ IS the nange thickness, as sho"" in FIg. 2.3. 

x, 

X,------ h 

b 

Fig. 2.3 Typical I-beam cross-section 

The warpzng functions 1/." and '/1, are quite similar, dIffering ani)' 10 sense (for transverse sheanng 

the warpzng IS symmetric with respect to the origin while for torsion it is antisymmetrlc) and 10 scaling (the 

torsion warpzng function has an additional factor of hl2) . This similarity is a consequence of the symme

try of the section which leads to a simple mode for resisting primary warping torsion wherein the two 

nanges are sheared, as independent beams, in opposite directions. 

For reference. we nOle that the standard cross-sectional properties: area , .A.. minor moment of 

inertia, J, (about the X, axis), and major moment of inenia, J, (about the X, axis), can be expressed in 

terms of m. n. h. and I as 

A = hi (I + m ). 
h'l 

I,=-mrf 12 • 
h'l 

1,=- (1 +3m ) 
12 

The two shear coefficients. K, and K,. were given by Cowper (1966) as follows: 
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10(1 tv) 
«'2- 12+ 11v 
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(2 , 17) 

(2 . 18) 

Note that for zero Poisson's ratio IC, reduces to the familiar value of 5/6 (each flange is a rectangular 

section). The coefficient IC, has the approximate value of Awl A, where Aw is the web area and A is the 

total area. 

2. 1.4 The constrained deformation gradient 

The deformation gradient, reflecting the kinematic hypothesis, can be computed from the relation

ship F = ""I® '£1 ' For the specific deformation map given by Eq . (2.9) the deformation gradient takes 

the form 

F(X) = ["'o' (S) +a,(X)t,'(S)J ® '£1 + a'J(X) t,(S) ® '£, (2 .19) 

where the deri\'ative of the position veCtor of the line of centroids is given by. 

"'o'(S) = (1 +u'(S) , v'(S), w'(S)J' (2 .20) 

and the deri\'ative of the moving basis is given by 

(2 .21 ) 

In the above expressions, a prime denotes differentiation with respect to S, i.e. (.), = d(')ldS , and 

subscripts follo";ng a comma denote differentiation ";th respect the coordinate indicated. i. e. 

(, ) ,' = d( ' ) /dX, . The notation II" indicates the partial derivative with respect to the argument , dllldfJ, . 

The gradient of a(X) is a matrix with components a'J and has the explicit form : 

[ 

X,h'(y) + VJ,[J3,'g (y) +p,g ' (y)J 
Va = 0 

X,g' (y) - ¢,[J3,'h (y) + p,h' (y) J 

VJ,.,jJ,g (y) 

1 

- ¢1. ,jJ,h (y) 

hey) + ~, . ,fJ,g (y) ] 

g(y) - VJ,. ,fJ;h(y) 

The derivatives of the functions g(y) and hey) with respect to S are given by the expressions 

{

Sin
y
} 

g'(y) = - .a y', 

Sin Y 
{

- COSy} 
h'(y) = 0 y' 

cosy 

2.1. 5 Residual stresses 

(2.22 ) 

(2 .23) 

The dIStributions of residual Stress adopted here are typical of steel I-sections fabricated by the h ot 

rolling process . A polynomial expression is assumed as an analytical approximation of the residual stress 

pattern. Since residual stresses in a section are self-equilibrated, they mUSt satisfy the following cond i-
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tions of statics: no resulting axial forces, and no resulling bending moment about two principal axes 

(Kitipornchai and Trahair, 1975b). The residual stress pattern considered here is shown in Fig. 2 .4, 

x, 

+ Tension 

x, - Comptession 

Fig . 2.4 Residual stress distribution for typical rolled section 

wherem the nange tips and the central ponion of the web are presumed in compression . The expressions 

for the residual stresses in the web and in the nange. 0_ and 0" respectively, are given by : 

(2 .24) 

where a is the amplitude of the resIdual stress and 0, is the yield stress. The variations are expressed in 

terms of the normalized coordmates ~ = X,/b, ~ = X,fh, and the constants are given by the following 

relations 

88 - 28mn' + 80m 
Cl = 

(1.5n' + 2)m 

168 - 88mn' + 60n' 
c, = - (1.5n' + 2) 

2. 2 Equilibrium Equations, Weak Form 

22 + 5mn' + 36m 
Cz =-

(I.5n' + 2)m 

c. :. 
58 - 22m,,' + 27n' 

(1.5n' + 2) 

(2.25) 

(2 .26) 

The local form for the static balanct of linear momentum of a non-polar continuum is expresstd by 

the equation (see. for example, Marsden and Hughes, 1983): 

DIV P + (>, B = 0 ; XEB (2 .27) 

whtrt P is the ftrst Piola-Kirchhoff stress tensor, (>, is the density in the referenct conftguration, B is the 

body force, and DIV is the divergence operator with respect to the referenct coordinatts (X,), i.t . the 

d,vergence of a second order tensor is has components [DIV(')], = (')vJ in canesian coordinates. Bal

anct of angular momentum funher imphes the symmetry PF' = FP' . 
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In accordance with standard practice, we denote by aB. that portion of the boundary where the 

deformation map is prescribed and by aB, that portion of the boundary where the traclIons t are pre· 

scribed . The boundary value problem is well posed if aB, u aB. = aB and aB, naB. = II . 

The local form of the equilibrium Eq . (2 .27) can be expressed as a weak statement of equilibrium in 

the following way (Marsden and Hughes, 1983) 

G(rp, TJ ) .. I P : (DF . TJ) dV - I (loB ' TJ dV - I r· TJ d5 = 0 (2.28) 

for any kinematically admissible variation TJ which satisfies the displacement boundary conrutions . The 

variation of the deformation gradient has been denoted by DF . TJ and is computed with the formula for 

the rurectional derivative as 

DF " u(5» . TJ = :£ IF , u + fTJ)J,.o (2 .29) 

where u (5) = {u, v, w, 9" 9
" 

9" y , p" P,. P,} is the vector of generahzed displacements and TJ (5) is the 

variation in u (5) . 

Since the kinematic hypothesis effectively obliterates the contribution of St. Venant torsion. the 

effect must be reintroduced to capture this effect. Formally. we accomplish this by augmenting the weak 

form as follows 

G(rp. TJ) .. G(rp. TJ) + I r,. (Dr,. . TJ) dV (2 .30) 

8 

where r,. is the stress couple associated I<ith St. Venant torsion, r,. is the generalized strain conjugate to 

r" . and Dr,. . TJ is the variation in strain . We note that the above construction is more an expedient than 

an ax.lOmatic necessit), . A more refmed kinematic hypothesis can be written which can tams a quadratic 

vanauon of dIsplacement through the thickness of the contour whIch leads dtreclly 10 a weak form 

contaming Ihe contribution due 10 St. Venant lorsion (see. for example. GjelsVlk. 19 I) . 

The appropriale strain measure for Ihe St. Venant lorsion is one which measures the rate of I"ist of 

the beam relalive 10 Ihe moving frame . To oblain an expression fo r the rale of Iwist consider Ihe general 

expression for the curvalures of a finitely deformed beam (Simo. 1985) : 

n (5) IE [~A (5) ] N(5) = [ I<'~S) 
d5 - 1<,(5) 

- I<,(S) 
o 

1<,(5) 
(2 .31) 

where 1<1 (S) is the lorsional curvalure and I<,(S) and 1<,(5) are the flexural curvatures of the beam. The 

St. Venant lorsional strain will be laken simpl)' as r,. = 1<1 (5). which clearly does nOI depend upon the 

cross seclional coordinales. From Ihe expression for the finile rOlalion malrix, Eq . (2 .10). we can com· 

pute the lorsional curvalure 10 be 
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x, (S) = (cos 8, cos 8,)8,' - (sin 8,)8,' (2.32) 

For configurations near the undeformed state the torsional curvature reduces to the expression 

K, (S) = 8,' in accord with the linear theory . In the numerical implementation of the theory we will as

sume that the linear expression is adequate. For the problems studied here such an assumption is only a 

modest compromise, and is in line with the assumption made on the constitutive equations. 

Since the 51. Venant torsional strain measure does not depend upon the cross sectional coordinates, 

the second term in Eq . (2 .30) can be explicitly integrated to give 

L 

G"(I/!,,,) .. f~" (Dr,,' ,,) dV = f m" (D", . ,,) dS (2 .33) 

o 

where m,,(S) is the 51. Venant torque resultant acting at a cross section . We will, however, assume that 

the stress couple is distributed uniformly along the contour of the section , in accord with the elementary 

theory. and integrate this term numerically over the cross section along with all of the other terms . In 

add'tion. we assume that the stress couple evolves according to an uncoupled constitutive equation and 

always rema ins in the elastic state . As a consequence, the explicit expression for the stress couple is 

~" = GJ" x, (S) • where J" is the diStribution of torsion conStant along the contour in the cross-section and 

is expressed as Ii /3 in the nange and 1'/3 in the web . 

2.2.1 Linearized governing equations 

The hnearizatlon of the weak form of equilibrium equation (2.28) about an intermediate configura

tion . 4> : B - R'. leads to to the expression (Marsden and Hughes, 1983) 

- f as - -L[G]; = (DF' ,,) ; : [s ® 1 + F' aE F]; : (DF . Ill/!); dV + G(I/!,,,) (2 .34) 

• 
where 1 denotes a unit matrix with components 6 •. The subscript 4> designates that the argument is 

evaluated at the configuration 4> : B - R' and Ill/! : B - R' is the incremental motion . The Integral 

term in Eq . (2 .34) gives rise to the tangent stiffness of the system. the first term being the geometric pan 

and the last term being the material pan. The constant term represents the so called out-of-balance 

force at the configuration and has the expression 

G(4).,,) = f(p : DF' ,,). dV - f (." dS 

6 as, 

The linearization of the St. Venant pan of the weak form is carried out similarly: 

L 

f dm" . 
L[G,,]. = (D" , ' ,,). [--]. (Dx, . Ill/!). dS + G"(I/!,,,) 

dx, 
o 

(2 .35) 

(2 .36) 

where the 51. Venant out-of-balance is given directly by Eq . (2.33) . The material tangent for the St. 

Venant pan is dm,,/dK, = GJ" as mentioned previously . Clearly, G(4).,,) vanishes if 4> is an equilibrium 

configuration . 
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We note that the deformation gradient F is completely defined in Eq. (2 . 19), and the directional 

derivative, D F . fl.t/> in Eq. (2 .34), is as folloW! : 

(2.31) 

where fl.t/>o' = [fl.u', fl.v', fl.w ']'. The increment in the onhogonal transformation and its first derivative 

can be computed as M = 1\,. fl.fI. , and M ' = 1\,,,fI"fl.fI, + 1\,.fl.O". The increment in the coefficients a 
(with components a,) take the form : 

tJ.a .. [ 1/J.g(y)6/J, + (X,h'(y) +1/JIJ,g' (y» fl.y, 0, 1/J,h(y)6/J,+ (X,g'(y) -1/JP/I'(y» fl.y ]' (2 .3 ) 

and their derivatives \' a (wilh components a'J) are given by 

[ 

X,M ' • '/J,I(fJ,' a, • p,ti.,') • (J' lI.{J, . ,lI.{J,'ll '/J,. ,(fJN .,lI.{J,) 

a (\'o) = 0 0 

X,a, ' - '/J,i (fJ,'ti.Ir. p,a h') . (h' lI.{J, . hll.{J,'ll - '/J,. ,(fJ,l>h. hll.{J,) 

ah • '/J,.,:N' 'lI.{J')j I 

dt - '/J1. ,(fJ,l>h. hll.{J,) 

(2.39) 

where the incremenl of functions g(y) and h ey) are defined as follows: 

ag ()') = -h' (y)fl.y . ag(y) = g' (y)ay (2 .40) 

and their first derivalives are given b)' 

{
COS Y} { Sin Y} 

ag'(y) = - 0 y' fl.y - 0 fl. )" 
cos )' Sin Y 

{
Sin Y} { - cos Y} 

tJ.h ' (y) = 0 y' fl.y - 0 fl.y 
SInY cosy 

(2.41) 

The directional derivative DF . 'I, In Eq . (2 .34) , is the same as DF . fl.t/> except for the difference in 

directions at/> and '1 . 

1.1.1 Finite element discretization 

Equation (2 .34) has a form that Is suitable for treatment by the finite element method To carry out 

the solution, a knowledge of the current Slate of stress S. and the material tangent [OS/OE] . IS required . 

These langent moduli can be obtained from the constitutive equations, which are discussed In the follow

ing chapter . We will obtain the solution from the equilibrium equations developed above by utilizing the 

fmlte element method. The beam Is discretited intO elements having 10 degrees of freedom at each of 

the 3 nodes of the element, one for each of the generalized variables . 

Follo"~ng standard procedures the generahzed displacements u (S)=[u , v, W, 0
" 

0" 0" P" p" P" 
y]' are Interpolaled from the nodal dISplacements U=[U, V, W, a i, a " a

" 
B

" 
B" B

" 
f] , as 
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N 

U(S) = I h,(S)U, (2 .42) 

,-I 

where h,(S) are the interpolation functions. U, is the vector of nodal displacements at node i. and N is the 

number of nodes associated with each element. Inasmuch as the admissible variations lie in the space 

HI(O. L). CO continuity of interpolation is sufficient (see. for example. Strang and Fix. 1973) . One 

should be aware. however. that the character of the solution for the warping intensities PI. P,. P,. and y is 

one of exponential decay. leading to boundary layer phenomena (i.t . rapid variations of the field vari

ables over small distances) at points of restraint and point loadings . The ramifications of using CO shape 

functions for the warping intensities was considered by Hjelmstad (1987) . 

After introducing the interpolation of the nodal parameters. the expressions for the directional de

rivatives at each node can be put into matrix form as a linear transformation of the increments (or 

vanations) as 

Df . !1¢ = B (X. u (S))!1U. Df'" = B (:\:. u (S» " (2 .43) 

where. the rows of B (X.u(5» are placed in one-to-one correspondence with the components of 

Df . !1¢ . The actual expression for the matrix B is extremely complicated. and hence will not be pre

sented here . It is. however. straightforward to compute from the definitions given previously . 

Using the above results we are lead to the standard discrete problem for the incremental nodal 

displacement II U. 

K,!1U = r, (2. 44 ) 

'o\,'here the tangent stiffness matnx is given by sum over all of the elements t as 

... 
K, = Iff B' [S ® 1 + f 'D"'fJ. B dA dS + KN (2.45) 

, o . 

where K" is the stiffness contribution from the St. Venant pan of the weak form . The out-of-balance 

force has the expression 

... 
f, = f, - Iff B' : p. dA dS - r,. (2 .46) 

, o. 

in which f , is the veClOr of currently applied nodal forces. dA is the element of integration over the 

cross-section. L, is the length of element t. and the arguments of the summation are understood to be 

those quantities appropriate to that element. Again. r,. is the residual force arising from the 5t. Venam 

term. The summation over the elements is taken to infer standard assembly procedures. 

SlOce the stress S. and the compliance [D"'J. generally vary nonlinearly over the cross-section due 

to inelasticity . the X, - X, dependence must be integrated over the cross-section A numerically . For the 

I-beam. the cross-sectional domain is subdivided IOtO five regions : four half flanges and one web . Within 
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each region. Gaussian quadrature is employed and the total integral is taken to be the sum of the integrals 

over the fl\'e subregions . Reduced integration is used m the S direction to prevent shear lockmg effect 

(Hughes. 19 7) . The solution procedure is employed using the algOrithm outlmed in Table 2 I 

Table 2.1 Global solution algorithm 

Inttialize solution at I = 10 

For each load step do 

While I f, I > 10/ 

Form K, • C, as follows: 
For each element l ; 

Compute deformation gradient F strains E 
Compute stresses by return mapping (Table 3. 1) 
Compute element tangent stiffness matrix and residual force 
Assemble element malrices into global malrices 

Solve K, 6U = f, 

Update - U + 6 

Increment load slep I - 1+ tl.r 
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Chapter 3 

A New Model for Cyclic Metal Plasticity 

It is generally agreed that the inelastic beha vior of mild steel can be approximately modeled with the 

classical plasticity theory with an associated flow rule . Finite element analyses of complex inelastic sys

tems are often done with extremel y simple constitutive models because they simplify the development of 

algorithms and they expedite computations . In a monotonic loading environment , material strain hard

ening effects are generally modeled with a simple isotropic hardening rule (expansion of the yield surface 

in stress space) . In a cyclic loading and unloading environment, the anisotropic behavior of the material 

(e .g. Bauschinge r's effect) is often modeled with a simple kinematic hardening rule (rigid translation of 

the yield surface in Stress space), 

It has been kno"'ll for some time that these simple models do not represent real plastic behavior well , 

espeCially in the transient softening stage from the initial elastic unloading stage to the permanent soften

ing stage for reversed loading . The first attempt to overcome the inadequacies of the simple hardening 

models goes back to Duwez (1935) who proposed the mechanical sublayer model wherein the (one 

dimensional) material is idealized as a series of friction elements with different friction coefficients and 

slip values. The basic idea of Duwez wa s subsequentl), extended by Bessieling (1953) and Iwan (1967) . 

Mroz (1967) generalized the subla)'er model to muluaxial states of stress by introducing a multi-surface 

model with fields of work-hardening moduli . Mroz 's multi-surface model was simplified to a two surface 

theor) b) Kneg (1975) and independently by Dafalias (1975) and Dafalias and Popov (1975, 1976) . 

The main Idea behind the twO surface models is that the elastoplastic modulus IS determined from the 

distance of the Stress point from the yield and bounding surfaces. A more refined approach to the bound

ing surface model was proposed b)' Petersson and Popov (1977) and Popov and Petersson (197 ) , 

wherein auxiliary surfaces between the yield and bound surfaces are used to interpolate a more realistic 

variation of the hardening moduli . Rees (1981. 1982, 1983) extended the idea of a kinematic hardening 

rule by expressing it in terms of a field of uniform hardening potentials . More recently, Rees (1984, 

19 7) has proposed the idea of using a multi-surface, equi-strain potential for the hardening. 

While the more recent cyclic plasticity models represent real material behavior quite well, they are 

not well suited for large-scale computation. There is need for a computationally efficient model which 

possesses the advantages of these existing models . Such a model is developed in this chapter . The solu

tion of the nonlinear constitutive equations will employ the consistent return mapping algorithm of Sima 

and Taylor (1985) in conjunction with a new kinematic hardening law which is generated from an iso

tropic hardening field at each stage of the cyclic loading. A monotonic tension or torsion test is all that is 

required to set the parameters of the model. 

The chapter stans by laying the general foundation for the plasticity model. The details of some of 

the models mentioned above are reviewed and useful concepts are collected . The new cyclic plasticit), 

model is then described along with the details of its implementation . Finally, the qualitative performance 

of the model is assessed b)' using it to simulate response for non-proponlonal loading hIStories which 

have been examined experimentally and are published in the literature . 
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3. 1 Basic Framework ror the Constituti ve Equat ions 

The equations of classical plasticity proVlde the basIc framework for the development 01 the cyclic 

plasticlt)' model used here . Assuming that the strains will generally be small. but that the mouons ",II be 

finite. we cast the constitutive equalions In terms 01 the second Piola-Klrchholf Slress tensor and ilS 

conjugate Lagrangian strain tensor. We adopt the fundamental h~'Pothesis that the trains are made up 01 
an elastic pan and an inelastic pan as follows: 

E - f(F'F - 1) - E' + FI (3 .1 ) 

where F is the delormalion gradient. The stresses. S. are given in terms 01 the elaslic pan of the strain 

and the inilial elastic moduli. D. a 

S - DE' - D(E-P) . (3 .2) 

The evolution 01 the inelasuc strains can be expressed In terms 01 a plasuc potential. lor "hlch purpose 

we adopt one 01 the von ~1lses vanety· 

(3.3) 

" 'here ~ = 5 - a'ls the ellective stress. that IS. the difference between the Stress deVlator s = S - tlr(S) t 
and the deviator a' 01 the backStress a . A yield surface can be described b)' the condtuon rp = O. POints 

inside the ),Ield surlace. rp < O. are elasuc and POints outside the yield surface are inadmls tble . The 

radtus 01 the Yield surlace is given by the funcuon ~ -+ K(~) . which de lines an iSOtropic harden ing la'" in 

terms 01 the equivalent plaslic stram: 
r 

r" = f Ii EP : EP] ' ''dl 

• 
(3 4) 

" here EP IS the plastic strain rate With lhese definitions. lhe plasuc strain can be expressed as an equa· 

tlon of evolution as 

(3 .5) 

where ~ is a plastic Lagrange multiplier which can be determined Irom lhe conSIStency condlUon . The 

elastoplastic loading/unloading (consistency) conditions can be expressed in standard Kuhn-Tucker 

form as 

~ s 0, J. 2: O. J.rp = O. (3 .6) 

Taking the rate lorm of Eq . (3 .2). substituung the evoluuon equation lor pia tiC strains. Eq (3.5). 

and enlorclng the conslStenc)' condlUon leads to the lollo",ng rate equations lor the evoluuon of Stres 

S = O (S. EP. al E 
(3.7) 
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where Cl is the fourth order elastoplastic tangent tensor, depending on the current state of stress , the 

plastic strain, and the backstress . The evolution equation for the backstress will be defined differently 

from the classical plasticity for the present cyclic plasticity model and will be described in section 3.4. 

The integralion of the rate constitutive equations plays a central role in the numerical analysis of the 

beam model and will be discussed later . 

3.2 Modeling of Isotropic Harde ning 

A model of nonlinear hardening law with a linear part and an exponential (saturation) part is 

adopted to describe the isotropic hardening in Eq . (3.3) as follows (Sima and Taylor, 1985) . 

K (i"') = K. + Ke + (K. - K.)[ 1 -'"'1 E K. + A (i"') (3 .8) 

where K. is the initial radius of the yield surface, K.is the ultimate radius of the yield surface, K is the rate 

of linear hardening, and i' is the initial rate of exponential hardening . The parameter l is a shifted 

equivalent plastic strain, allowing the modeling of a yield plateau, given by the expression 

[ 
0 

l -
i'" - ~'" 

(3.9) 

where l", is the length of the plastic plateau. The nonlinear isotropic hardening law is shown schematical

I)' for K=O (no linear hardening) in Fig. 3.1 

K(i"') 

KO 1--.._../ 
Initial yield ptateau 

Fig . 3. 1 Nonl inear isotropic strain hard ening model 

Popov and Petersson (1978) performed uniaxial experiments and torsion tests, and compared both 

results by plotting the effective Stress and effective strain for both cases on the same graph . The agree

ment between the twO curves was satisfactory in both the monotonic and cyclic cases . The use of effective 

stress and strain allows the hypothesis of a universal stress-strain curve applicable to any state of stress . 

One can use the stress-strain curve obtained from a monotonic tensile test on the virgin material to 

construct the universal curve. A field of loading surfaces can be constructed from the stress-plastic strain 

curve, taking the radii of the loading surfaces from the ordinates of the universal curve as shown in Fig. 

3.2. Each surface in the stress space is assigned a particular value of equivalent plastic strain, as deter

mined from the universal curve . The radii of the loading surfaces are computed as 
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Fig . 3. 2 Multi -strain potent ial representation (or virgin state 

f, = K(~). (3 .10) 

Figure 3.3 illustrates the concept of equivalence between corresponding stress-plastic strain paths 

and a uniaxial K vs . ? curve in a initial multi-strain potential fie ld under a ra dial Stress path OP in 0 vs . 

13 T space . It is convenient to obtain the uniaxial" - e" curve directly from a monOtonic tension experi-

o o 

Fig . 3 .3 Initial mult i-s train potential fi e ld und er a radi a l stress pa th OP in 
o vs . .(j T space 
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ment because the normal stress and the extensional strain are identical to the effective suess and strain 

for the uniaxial case . 

The next step is to define a rule to describe the inelastic state for the cyclic loading condition . In the 

monotonic loading condition. nonlinear isotropic hardening rules can be employed. while a more intri

cate hardening rule is needed to represent cyclic response . 

3.3 Review of Kinematic Hardening Models for Cyclic Plasticity 

Due to the complexity of nonlinear material behavior. many idealized models have been proposed. 

A combined isotropic-kinematic plasticity model. illustrated in Fig. 3.4. has often been adopted for 

applications in computational plaSlicity . The discrepancy between this simple model and experiments. 

however, is particularly pronounced on load reversal because real materials exhibit a phenomenon 

known as Bauschinger 's effect. The simple kinematic hardening model also does not provide a smooth 

transit ion from the elastic to the fully plastic state. a phenomenon which is observed experimentall)' for 

m OSt materials . 

Many e((ons have been made to improve the representation of cyclic material behavior. An early 

attempt may be traced to the sublayer model of Duwez (1935). with extensions by Bessieling (1953) and 

Iwan (1967) . In this model. the material behavior is represented by some layers in parallel. each layer 

having a different yield strength . The model can replicate the transition softening stage between the 

elastic stage and virgin strain hardening stage for reversed loading much better than a kinematic harden

ing model can . This model has been generalized for multiaxial stress states by Mroz (1967). who intro

duced the concept of a field of work-hardening moduli which was defined by the configurations of 

surfaces "ith constant plastic tangent moduli . The surfaces in Mroz's model correspond to the sublayers 

in the uniaxial case . During plastic flow. the yield surface translates. contacts. and pushes the adjacent 

loading surfaces, The plastic modulus at any instant during plastic flow is the value associated with the 

outermost mO\1ng surface . On load reversal. the surfaces sequentially disengage . as shown in Fig. 3.5. 

D 
H 

F 

o 
0 , 

Loading surface 0, 

B 

f 0 , 

YI8id Sur1800 

E 

KInematic hardenlng 

Fig . 3.4 Idealization of material behavior on load reversal 
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For nonproponionalloading, the surfaces move by some prescribed rule such that the indIvidual surfaces 

do not intersect but continuously contact and push each other . Although this model provides belle, 

representation of cyclic behavior than does the claSSIcal kinematic hardening model , many surfaces must 

be used to obtain the smooth behavior observed experimentally . This model has another difficulty asso· 

clated lIoi th a proper choice for the parameters involved , especiaUy for multia.xial response . These shon· 

commgs notlloithstanding. this model IS the best known of the multi-surface representations of inelaSllc 

deformation . 

L 

a a 
F F 

E' 

L 

Fig. 3.5 Approximation of the stress-strain curve and the correspondin, fields of 
work-hardening moduli for uniaxial cyclic load ing (Mro • . 1967) 

A modlftcauon of Mroz's fIelds of work-hardenm, model was propo ed by Kneg (1975) . Thts modI' 

fled model, called the two-surface plasuclty model. replaces all but twO of the d,screte surfaces of ~lroz's 

model by a continuum of Intermed,ate loadmg surfaces whose distJibutlon is prescnbed . The twO surfaces 

are represented b)' an lOner surface . called the loadm, surface, and an outer surface , termed the limIt 

surface . Both the loadins and hmit surfaces can vary according to a combined ,sotrop'c and kinematic 

hardening behal10r. The motion of the loadmg surface is identical to that of Mroz's model. ThIs theor) 

requires a memory of three vectors and three scalars. a small increase over the tWO vectors required (or 

kmematic hardening alone. Independently. a more comprehensive and satisfymg generalization of the 

concept of a twO surface plasticit), theory was proposed by DaCalias and Popov (1975) . In this theor), the 

concept of a bounding surface is introduced. ThIs model also provides a smooth hardenmg model and 

relatively good computational effIciency, which was demonstrated from the almost exact predIction of 

the expenmental data of cyclic uniaxial stress-strain curve . The yield region Is constrained to move 

always WIthin bounds, as shown in FIg. 3.6, where the bounding region is r.rerred to as the boundmg 

surface In the multiaxial case . The material behavior can be described by considering the plastic modulus 

E! to be a function of tllo'O plastic internal vanables. el and elM' where el IS the d,stance from the actl le 

point on the loading surface to the boundlnS surface, and elM is the initial d,stance al the most recent 

milia lion of YIeld and prolides a memory of the most recent loading history assOCIated ,,'th the prel10US 
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excursion in reverse plastic loading. The expression for the plastic modulus E' suggested by Dafalias and 

Popov (1975, 1976) is 

(3.11 ) 

where e.: is the bounding value of plastic modulus, and h(6M ) is a shape parameter determined from 

experimental data . By projecting on the 0 -axis and then generalizing in multiaxial stress space, the end 

points such as Q' and b' become the yield surface, and the end points If and 0, the bounding surface, as 

shown Fig. 3.6. During the course of plastic defonnation , the two surfaces translate simultaneously in the 

Stress space, and in general. may also defonn . During plastic defonnation, the continually changing 

distance 6 in stress space, between the stress state b' on the yield surface and the corresponding point 0 
on the bounding surface, detennines the value of the generalized plastic modulus in a manner analogous 

to the uniaxial case . 

At the numerical implementation level, the above bounding surface model may give rise to an inac

curate results in some cases . Petersson and Popov (1977) took the unia.xial cyclic loading pattern shown 

in FIg. 3.7 to demonstrate the problem . If the load is reversed before any plastic now occurs. the updat

ing of the parameter OM will be done incorrectly . A number of these events in a cyclic loading history can 

signif,cantl)' bias the plastic moduli . Pete man and Popov (1977) and Popov and Petersson (1978) gener

alized the Dafalias-Popov model b)' introducing intennediate surfaces between the yield and bound 

surfaces based on the experimental data . The intermediate surfaces were used for purposes of interpola

tion, and in principle are not related at all to those of the Mroz model. There is no basic change from the 

Dafalias-Popov model except for the mtroduction of the intennediate surfaces . 

The initial stress-plastic strain curve can be defined with the aid of projections Onto the stress axis 

using a pair of inc~ned bounding lines together with specifIed plastic strain increments, as shown in FIg . 

3.8 (0). The plastic stram increments, t" 1" 1" are chosen for equal stress increments, and the segment 

o Bound 0, 

-- A 
I 

. · .----lh~A' 

A Bound Bound surface 

Fig. 3.6 The bounding surface model in uniaxial and multiaxial stress space 
(Daralias and Popov, 1975) 
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Fig. 3.7 Deficiency or the two-parameter model (Petersson and Popov. 1977) 

AA' on the stress-axis defines the elastic range . For the multiaxlal case, the hardening model Is defmed 

by the yield, bounding, and intermediate surfaces . First load reversal is illustrated in Fig. 3.8(b). OUTIng 

a load reversal. a new stress-plastic strain path is generated by the pointS between the inchned hnes and 

the decreased plastic strain increments. The inclined lines are parallel to the lower boundmg hne. and 

stan from the stress points projected OntO the stress-axis an equal diStance in the opposite sense of plastic 

Stram . A similar procedure is repeated during the subsequent load reversals. as shown in Fig 3,8(c) . 

which brings in the history dependence of the cyclic process at each load reversal. 

Instead of using this procedure for describing the loading surfaces and theIr translations at any stage 

of cychc loading. Petersson and Popov (1977. 1978) made use of twO different stress-stra in curves 

obtamed from uniaxial experiments . The first of these stress-strain curves is determined fr om a 

monotOnic tensile test on the virgin material. and the other is half of a hysteretic loop with halved ordl· 

nates after several loading cycles . The monotOnic hardening function /C,. shown in Fig. 3.9(0). is ob· 

tamed from the '~ rgin tensile stress-stram curve. The cycled hardening function /c •• shown in Fig. 3.9(b). 

can be systematically constructed as shown in F ig. 3. 10 . From the half hysteretic loop. an elastic region 

and the bounding lines can be easily determined . A generic point A on the curve at a horizontal dIStance 

I!.f!' from the origin is distance 2K. above the horizontal axis . Half the values of the quantities 2K and 2". 
are used in the /c. - ~ curve . and the venical distances. 2K . establish the boundmg hnes in the K. - ~ 

curve, as shown in Fig. 3.10(b) . By using the scalar weighting function W. shown In Fig . 3.9(c) . the 

surface size is approximated as 

/C, - W(i")/C.(~) + [1- W(i")JK.(~) (3 . 12) 

where II'IS a function of the total accumulated equivalent plastic strain i" at the current time. whereas /c, 

and /c. are functions of an incremental equivalent plastic strain ~ • accumulated since the last load re,·er· 

sal. The back stress of a loading surface is also assumed to be a function of l;. and each surface is 

associated with an unique value of ~ . The weighting function can be fit to experimental data by a trlal

and-error procedure . Once the sizes of loading surfaces are determined by the above procedure. the ir 

motions are updated during plastic now. A restriction is also imposed to avoid intersections of the sur· 

faces with each other . A numerical procedure is employed in updating the panial derivatives of /C, and a. 

,,"th respect to the equivalent plastic stra in i!' and its increment ~ . Comparisons of theoretICal predlc, 

31 



Bounding surlace a 
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(b) F II'SI load reversal 

) 

t 
2K 2K' 

(e l F'II$! hystet8Sls curve 

Fig. 3.8 Representation of constitutive relations (Petersson and Popov, 1978) 
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Fie. 3.9 Functions for defininc surface sizes (Petersson and Popov. 1977 and 1978) 

tions of hysteresis curves with the experimental ones were made for both the uniaxial testS. as well as for 

the torsional experimental experiments. and good agreement between the theory and experiments were 

found by Petersson and Popov (1977) and Popov and Petersson (1978) . 

Rees (1981. 1982. 1983) presented a combined hardening model for anisotropic materials in which 

the isotropic hardening potential remains tangential at the stress point to a yield surface which ngldly 

translates to the Stress vector OP, as shown in Fig. 3.11. The field potentials. F • . are identical to the 

anisotropic yield loci. f •. only at initial yield (f. = F.) when both enclose the elastic region . ThIS model 

exhibits the Bauschinger effect and linear plastic Strain paths under radially outward loading. Since both 

surfaces contact tangentially at points p., yield loci translate along the vector connecting O. to p • • which 

is Identical to the modified Ziegler (1959) rule. Rees (198 4. 1987) attributed the unrealistic prediction of 

the mechanical hysteresis and cyclic creep behavior to the undefined extent of anisotropy of a combined 

hardening rule. and introduced a multi-surface model which is especially representive of cyclic beha\ior 

under full anisotropic hardening. Another drawback of a combined hardening model might be its charac

terization of a field of isotropic potentials under repeated loading-unloading conditions . Some modifica

tions to this model "ill be presented in the next section . 

Rees' multi-surface model stans from the concept of an equi-strain potential in which each surface 

in Stress space is assigned a panicular value of equivalent plastic Strain l' . The Bauschmger effect and 

stress-strain hysteresis under cyclic loading can be realistically represented by this model. as shov.'Tl1n the 

o 
hall hysteretic loop 

,. ,. 
/ 

,; 
,; 

I \ 
txxJnding lines 

Fig. 3.10 Construction of multicycled hardening curve (Petersson and PoPov. 1978) 
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a, (a,,) r" (a,,) 
p 

Fig. 3.11 Uniform-hardening plane-stress fields (F.) showing anisotropic yield 
loci (f.) for proportionate loading (Rees, 1981 , 1982) 

papers by Rees (l984, 1987) . The unstrained state of the material is assumed to be isotropic, and the 

imtial yield condition conforms to the Yon Mises yield criterion . The isotropic hardening rule, i.e . the 

representation of a multi-surface function, is the same as Eq. (3 .6) . The initial configuration of surfaces 

is continuously altered b)' translation during plastic deformation . The model can also be augmented to 

allow for contraction and rotation, as may be induced by anisotropic deformation . The contraction and 

translation function are scalar valued strain invariants which can be established from simple experimental 

tests in tension or torSIOn . Although the multi-surface model of Rees is powerful, it is difficult to imple

ment in a computer code because the translations of all surfaces have to be traced at each loading step . 

The concept of this model will be used subsequently in the development of the new cyclic plasticity 

model. 

3.4 Proposed Multiaxial Cyclic Plasticity Model 

In the previous section, several cyclic plasticity models were reviewed . In this section a new multi

axial cyclic plasticity model is developed, taking advantage of the previous models . The concept of the 

universal stress-plastic strain curve and its determination from a uniaxial test are taken from the work of 

Petersson and Popov. We modify the procedure making it necessary only to have a uniaxial tension test 

to determine the hardening functions . Rees' idea of a combined hardening model wiU be employed for 

tracing the translation of a yield surface . If load reversal takes place after any plastic flow has occurred in 

the opposite sense, the field of equi-strain potentials will be replaced by new hardening functions, and 

the most recent backstress of the yield surface will be taken as the origin of the new field of equi-strain 

potentials . In each instance, the field of isotropic hardening pOtentials is obtained from the monotonic 

nonlinear isotopic hardening curve , Eq . (3.4), using the concept of Rees' multi-surface model. These 
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concepts will be employed in conjunction with the consistent return mapping algorithm developed by 

Simo and Taylor (1985) to numerically treat the constitutive equations. 

A cyclic hardening function can be systematically obtained from the monotonic isotropic hardening 

curve. using the concept of Rees' multi-surface model as foUows. A concentric configuration of von 

Mises surfaces centered at the stress origin is assumed for the unstrained material. as shown in Fig. 3.2. 

in which equi-strain potentials were chosen in equal stress increments for the equivalent plastic strain . 

We assign an equivalent plastic strain value to the qth equi-strain potential. I, . For convenience. the 

potentials I, are chosen at equal equivalent plastic strain increments rather than the equal stress incre

ments shown in Fig . 3.2. 

The subsequent multi-surface configurations in Fig. 3.12(b) are in the prestressed and prestrained 

state (00.7.;) . There is. of course. no translation of the multi-surface configurations in the stress State on 

the initial yield plateau. The subsequent configurations . I,. are assigned new equivalent plastic strains. 

t..l". The forward and reversed equivalent yield stress points. and respectively. for a surface I,. will be 

obtained by marking off the corresponding strain t..l" on either side of 7.; as shown in FIgs. 3.12(a) . As 

the translation of I, is rigid. it follows that 

75/ -lJ,' = 2K, • (3 . 13) 

where K, is the radius of the surface I, and can be computed as foU ows: 

K, = KO + A (t..l") (3 . 14) 

0/ = KO + A (~ + t..e") (3.15) 

From Eqs . (3. 13). (3.14) and (3. 15) . the reversed equivalent yield Stress point. 75,'. will be as follows: 

K(l") 0 

t.. l" ~I ol 

Initial yield 
l10 plateau 

I 
KOf- -

AI A' K(1) 

I 
I • 
0 O· l" 

C' __ -~~-----------t------------------------~--+----
t..l" ---o,q 

(a ) (b) 

Inittal yield surlace 
after translation 

13r 

Initial yield surlace 
before translation 

Fig. 3.12 Represen tation of initially prestrained material with the equi-strain model 
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(3 .16) 

The predlcuons from Eq. (3 .16) are consistent with Bauschinger's effect, as illustrated in Fig. 3.12 (a). It 

can be seen that the curve of unloading, BB'C', is uniquely defined by the curve of primary loading, 

OAA'C. The segment BB' defines the elastic range in Fig. 3.12(a) which is the radius of the current 

yield surface in the two dimensional stresS space, as shown in Fig . 3. 12(b). The point 0" is the center of 

the current yield surface. Choosing a new coordinate system (" (1),7(1» with the origin at 0" , • new 

hardening curve, O"B'C', can be found, which can be represented by the vertical distance between the 

center of the current initial yield surface, 0", and the reversed equivalent yield stress point , C'. For the 

qth surface I. we have 

" ( I)(~l"') = ~' (O) -K,-l)"'(~l"') = K,+2A(~1"') + A (l"',) -A(l"',+~1"') . (3 .17) 

"here 17l(O) Ln Eq (3. 17) represents the equl\,alent stress at the pomt B m Fig. 3.12(a). Smce the 

equIvalent plastiC Stram is always pOSItiVe, that IS, Il does nOt decrease dunng the plastic deformallon, the 

actual relationship between f1' and 7(1 ) leads to the following: 

7(1 ) (~f1') = f1'(~ + M") (3 .18) 

If the current reversed stress at point B were to continue beyond point B', as shown in Fig 3. 12, a new 

field of isotropic hardening potentials would be created as shown in FIg. 3.13 . The new field of equi

Stram potentials is created according to Eq . (3 .17) , and the new center of this field is the final center of 

the YIeld surface from the preVIOUS cycle . Each cychc loading stage is represented by the sequential 

numbrr m, as shown in FIg . 3.13, where m=O means the initial field of equi-stram potenuals. 

r , r ' 

Fig. 3.13 Hardening plane st ress fields 
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The center of the new field is referred to as the backstress. a • and is constant for each fie ld of 

equi-strain potentials. Note that this definition of backstress is different from the one used "'th lhe 

tradmonal kinemalic hardening model. If the stress path were to reverse again before reaching pOtnt B'. 

the current field of isotropic hardening potentials would be retained: if the stress palh passes point B' . the 

held of isotropic hardening potentials is updated . The current stress point in or on the yield surface is 

constrained to lie in the updated yield surface. throughout the course ofptastit deformation. according to 

the consistent rerum mapping algorithm of Simo and Taylor (1985) . The updated stress point will be 

returned to the subsequent loading surface by a normal projection ontO the yield surface which corre 

sponds to the the mid-step time I •••. as shown in Fig. 3.16. 

The motion of the yield surface 10 the proposed model is shown schematically in Fig. 3. 14 . Some 

restrictions are imposed to avoid the interseclion of the yield surface with the loadtng surface : the Yield 

surface ma y rotate to be tangential to the loadtng surface as they contact each other. however the shape 

and Ihe size of the yield surface are assumed not to be changed during the course of plasuc deformauon 

These surfaces are de fi ned by the equations 

,' ( . - /f" ) - ICo . (3 .19) 

"here IC. is the SIZe of the y,eld surfaces. ,' and f" ' . and K!) and K!' I) are the radii of the load 109 

surfaces P and P+ ' . respectively . Superscript k+1 represents the sequential number of the (k+J ) th 

updated values of things such as the yield surface [," . the loading surface P· ' . the size of loadtng 

.f3 r Common tangent plane 
Ylekj surface 

--- after updabng 1/ ' ) 

~1f"IQ surface 
after updabng (F" ') 

~/ 
Load'ng sur1ace I be"". Updabng (1") ;' 

/ 

---4~--~r-~------------------~~f--------- a 
o -- / 

/ 

fig . 3.14 Translation of yield surface to the subsequent loading surface 
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surface "".'), and the center of the yield surface /P+' ). The backstress a 'M) of the mth field of isotropic 

hardening potentials is constant during the mth cyclic loading stage . When the yield surface contacts to 

the loading surface at point A' from A, the center of the yield surface should move to the point B' along 

the straight line A'C from B. The relationship between the yield surface and the loading surface at the 

updated state is given by 

",,+I) 

s~+ 1 - 0 (",, ) - -- (S,. + I - P+ t}). 
/Co 

From this relation, the updated center of yield surface, P+I), can be computed as follows : 

(3.20) 

(3 .21) 

The updated center of yield surface , ,"'), will be the center of new field of equi-strain potentials, a 'M+ ') ' 

when the reversed stress continues to produce plastic deformation in the opposite sense . 

The reversed yield pointS in the hysteretic loading condition are considered as illustrated in Fig. 

3.15. Reloading occurs at the prestrain origin 7; = t.; tAt.;, which was shifted from t.;, and the reversed 

yield points can be obtained from Eq . (3.16) by replacing Al" by At.; t Ai!" in the unloading state BB 'C . 

The modIfied reversed equivalent yield stress point, C, in the unloading state, BB 'C, in Fig. 3.15 (a), is 

given by 

0," = - KO t A (t.; t At.; tAl") - 2A (At.; tAl") = - KO t A (7; tAl") - 2A (At.; tAl"). (3 .22) 

Similarly, the forward equivalent yield Stress point, C, in the reloading state, OO"O 'C', can be also 

obtamed from Eqs . (3.13), (3 . 14) and (3.22) 

K(l") a 

.f3r 
o o· 

c 

(a) (b) 

Fig. 3.15 Representation of equi-strain model for hysteresis 
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ol = KO + A (t; + t."") - 2A (t.t.; + t."") + 2A (t."") . (3.23) 

Again. choosing a new coordinate system (K(l). ii,» "~th the origin at 0". the curve O'·O·C' can be 

obtained as the venical distance between the forward equivalent yield stress point. C'. of Eq . (3 .23) and 

the center of the current initial yield surface, 0" . 

K(2)(t."") = lfl(MP) - (If,<(O) +Ko) 

= KO + A (f'; + t."") - A (t;) - 2A (t.t.; + t."") + 2A (t."") + 2A (t.t.;). 
(3 .24) 

From Fig . 3.1S. the relationships among the equivalent plastic strains. "". ii. ) and ii,), is 

(3.2S) 

Following the previous procedures. the strain hardening function under the general cyclic loading 

condition can be generalized as follows from the monOtonic nonlinear isotropic hardening funclion . 

K ... ) - K, + (-I)'" A("~_. + t.f") + (- I)''' ' A( .. ~_.) + 2A(t.f") 
",·2 ",.1 _2 (3 .26) 

+ 1)(- 1)"'<'<' 2A(I t.f", + t.f") + (-I)"'" 2A(I t.f",)] . 
,0, '0' ,0, 

where. i"'~_. is the equivalent plastic Strain at the mth reversed loading condiuon. and l>J!"~_. IS the d,s

tance between the equivalent plastic strains .. ~_. and .. ~. and is given by 

(3 .27 ) 

As mentioned before, the subscripl m indicates the sequence number of the reversed loading state The 

value of 0 indIcates no reversed loading condition , thatlS. the initial monotonic isotropic hardening state . 

EqUIvalent plastic strain values ha,ong negative integers of subSCripts m and i have no meaning. 

To implement the above model conveniently. some Internal plastic variables are needed . Thes. 

include the sequence number of the reversed loading state, the value of the equivalent plastic strain. the 

centers of yield surfaces, and the center of the field of isotropic hardening potentials . The mOSt rece nt 

center of yield surface dur ing pre,~ous cycle will be updated to the new center of field of equi-straln 

potenllals . The yield criterion for the mth load reversal can be expressed as 

(3 .2 ) 

where am is the mth deviatoric center of the field of equi-strain potentials and is constant under the mth 

cyclic loading state . 

3. 5 Numerical anal ysis of the constitutive equations 

From a computational standpoint. the elastOplastic problem is treated as strain controlled In the 

sense that the Stress histOry is obtained from the Strain history b)' means of an jmegrauon algonthm 
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(MosS. 1984). An effective integration procedure for the elaSlo-plasuc problem is to emplo)' return 

mapping algorithms (Simo and Taylor, 1984). In what follows, a consistent return mapping algorithm 

(Slmo and Taylor, 1985) will be used for the integration scheme of constitutive equations . 

A locally plane suess condItion in the web and flange elements is assumed. m the spirit of the thin

walled beam approximation, with the concomitant elastic stress-sua in relations. The components of 

elastic stress. strain. and elastic tangent modulus are as follows . 

D = [: ~] (3.29) 

where 5" and E" are the shear stress and strain . respectively. and they depend on the direction at the 

sube lement of I-section. 

S I,(web) = 5". 

E ,,(web) = E". 

S,,(fiange) = Sil. 

E,,(fiang' ) = Ell ' 
(3.30) 

The basic idea of the algorithm used here is to proJect the elastoplastic equations onto the subspace 

defmed by the plane stress condition. and there construct a return mapping algorithm by applying the 

generalIzed midpomt rule as graphically shown in Fig. 3. 16. which illustrates how stresses are updated . 

An essential step in the algorithm is the computation of consistent elastoplastic tangent moduli. which 

preserves the quadratic as),mptotic rate of convergence of Ne,,~on's method (Simo and Taylor. 1985) . 

S;., = S. + DIE •. , - E:J 

_-4L::::::~~.::,-:,:::_-~...,SIl. l ;: 5;.1 - D c: .. 
S'Uel ..... , 

s. 
ElastJe Domain 

, 
\ 

\ 
\ 

4>(5 •. ~n) = 0 \ 
(Initial yield surtace) 

4> (s • • , .~ •• tl =0 
(Updated yield lurtace) 

Fig. 3. 16 Geometric interpretation of the generalized midpoint rule 

A step-by-step Implementation of the consistent returning mapping algorithm Is summaTlzed to· 

gether ,,"th generalIzed kinematic hardenIng rule m Tables 3. 1. 3 .2 and 3.3 . Substitullng Eq . (3.31 ) mto 

the lInearized equallon of equilIbTlum (2 .34) reduces the latter to a system which is now linear in the 

mcremental mOllon 64> and provides a baSIS for an iterative solution procedure . 
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Table 3.1 Consistent return mapping algorithm for plane stress 

(i) Update strain tensor and compute trial elastic stresses . 

E .. ,=E.+VSu. SE=D (E •• ,-Efn). rf=SE_a(m). ~E=SE_P(·)· 

(ii) Check the trial elastic stresses for yielding state under the mth cyclic loading stage 

from Table 3. 2 . 

(iii) Solve ",(J.) = 0 for J.. enforcing consistency condition at t • • , from Table 3. 3. 

(i") Compute modified elastic tangent moduli : E(J.) = [D-I +J. Qr' 
1 [ 2 where. Q = '3 0 

mapping matrix from the plane stress subspace 
to the deviator subspace 

(1') Update stresses. plastic strains and back-stresses of yield surface . 

".-1 = E().) D- ' >{.. , • 

t:. , = t.: + A~(J.) . (¢(J.) from Table 3.3 .) 

Pc •• !) - S - (S - ) ~ - •• , • • 1 a Cm) C" ')· from Eq . (3. 21 ) I( 

(\'i) Compute consistent elasloplastic tangent moduli : 

[ ~~J = E 
no! 

where , 

(3 .31 ) 

Table 3. 2 Check of the trial stresses for yielding state under the mth cyclic loading stage 

(I(Cm) from Eq . (3.26» 

YES: Check the stresses state for the current yield surface . 

11/1"1 = 1 1~E : ~E -+I(~ I S 01 

I 
YES : • Update the current strains and stresses. and QUIT 

1\0 : • Update the center of the new field of isotropic hardening potential 

from the center of the current yield surface. cp~~) - a Cm., ». 

• Set a Cm.' ) = arm). and compute rf = SE - arm). 

• GO TO (iii) in Table 3. 1. 

'0 : GO TO (iii ) in Table 3.1. 
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(a) 

(b) 

(c) 

(d) 

(t) 

Table 3.3 Determination of plastic Lagrange multiplier 

+ 2 (rf,,) , 
(I + 20,!(t» , 

,'(,!(t» = - (l-t IC''!('» _ ...... __ _ 
[ 

-,' E(rf,,)' 

(I +~n(t» ' , 
If I : ' I > 101, then k - k + I and go 10 (a) 

3.6 'umerical examples of proposed cyclic plasticity model 

An appllcalion of the proposed plaslicity model for representing random uniaXIal cyclic loading 

behavior IS shown in Fig. 3. 17. II is assumed Ihat the mechanical propenies of Ihe malerial are alike in 

lension and compression. Curves OABC and OA'B 'C' are monotonic lension and compression curves, 

respectively, In Ihe virgin Slale. The yield plateau. Ihe strain hardening region. and Ihe Bauschinger'S 

effect can be easil)' idenlified . The consideralion of the yiold plaleau seems 10 be very imponant in steel 

structures. as most regions of the structure remain in the elastic State and a substantial pan of Ihe rest IS 

mOT< or less on the yield plateau, even near failure of the Slructure . After yielding. a seTles of load 

reversals and reloadlngs IS randomly applied : the solid curve is the loading process. while the dashed 

curve represents the loading path If loading continues . It can be seen that the dashed curves approach the 

monotonIC tenSion and compT<sslon curves . Curve DD' shows that load reversal takes place before any 

plastic no,,' occurs in the opposite sense and this demonstrates Ihis plasticity modol can exclude unrealis

tic overshooting . '0 point returns to the same place after a complete cycle, but rather undershoots the 

initial pOint 

In addition to the uniaxial cyclic loading behavior as shown in Fig. 3. 17, the behavior of nonpropor

tional loading palh is needed 10 examine Ihe plasticity model. The biaxial strain-stress response can be 

represented by four kinds of diagrams: axial strain vs . shear Strain, axial Stress vs . shear stress, axial strain 

vs . axial stress. and shear strain vs . shear stress, where both the total strain and plastic strain histories are 

considered In the axial Strain vs. shear strain diagram. In Figs . 3.18 and 3. 19, IWO kinds of strain-stress 

histories are presented: One under a 90 degree out-of-phase tension-torsion strain-controlled cycling 

and the other under a square path or Strain-controlled cycling. Experimental results for these cases can 

bo round in the repon by Doong (1989) . The predictions of the analytical plasticity model can be found 

to be very similar to those or experimental results. qualitatively . A major discrepancy between analytical 

predictions and experimental results may come rrom the different material propenles such as the elastic 

and shear moduli, the yield strenglh, and the type of strain hardening, tic . Another nonproponional 

cycliC strain path is applied as shown in Fig. 3.20. Experimental results ror Ihis case can be round in 
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Lamba and Sldebollom (1978). These predICtions of the analytical plasticity model also seem to be 

qualltauvel)' similar to those of experimental results . 

From the overall qualitative similarit)' between the above predictions of analytical plasticity model 

and the experimental results under the uniaxial and biaXlal stram-controlled paths, the current cyclIC 

plasticity model would appear to be reliable . 

o 

-30 

c· --

o 

0.00 

/ 

0.10 
pla.tic axial .train 

, , , 

o· 

Fig . 3. ) 7 Uniaxial random cyclic loadlne behavior 
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Fig . 3.18 Strain-stress history under 90 degree out-or-phase tension-torsion 
strain-controlied cyclic loading behavior (Ooong . 1989) 
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Fig. 3.19 Strain- stress history under one-square path strain-controlled 
cyclic loading behavior (Doong , 1989) 
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Fig . 3. 20 Cyclic nonproportional loading paths behavior (Lamba and Sidebottom , 1978) 
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Chapter 4 

Experiments on the Cyclic Buckling of Short I-beams 

The results of experiments on the cyclic. Inelastic. lateral buckling and poSt-buckling response of 

short beams are presented In this chapter . Experimental tests of five propped cantilever beams subjected 

to a cyclically reversing point load acting near the fixed end were carried out In the laboratory at the 

University of Illinois at Urbana-Champaign . The experiments included both unbtaced and braced sys

tems WIth similar loading histories. The results of the experiments are presented here alone with a de

ta iled analysis of the experimental configuration . 

The experimental program described herein is clearly limited in scope . Consequently. it is dIfficult to 

put the results into proper perspective To ameliorate this condition we provide a thorough analYSIS of the 

expenments using the finite deformation. inelastic beam model developed in earlier chapters . Chapters 

S. 6. and 7 are devoted to various anaiytical parameter studies on the model tested in the laboratory . 

The analyses that follow includmg (a) elasuc hneanted buckltng analyses. (b) inelastic limIt load anal),

ses. and (c) an melastic cyclic load analysis similar to the loading program used in the expenments. The 

parameter studIes should help to provide a frame of reference for evaluating the expenmental results 

The parameter studies are organized around a standard case which was optimized to be a close approXI

mation of the response exhibited by the unbraced test specimens. The standard analyticai model is 

documented at the end of this chapter. 

4. 1 Experimental Procedure 

In the present section " 'e descnbe the details of the experimental program. includmg the testing 

arrangement. the dimenSIOns of the test pieces. and the instrumentation used to measure the response 

Testing conriguration and loading apparatus .- The testing conftguralJon used m these expen

ments IS sho"ll schemaucall)' m FIg 4. 1. Translation. rotation. and warping were remamed at one end 

of the test p,ece (hereafter called the lixtd tnd). Verucal and lateral translation and torSIonal rotation 

were restramed at the other end ,,'hile aXIal extension and flexural rotations were unrestramed . The fIXed 

Load Cell Loading Ram Iwtth load .enl 
, 

( I ~ 

'" :, T - ~ R!lgIO~ W,Ox,2 III " n- II . . ~ -

+3eu.J, ) 

! "- ./ 

82 'n 

Fig. 4. 1 Experimental test configuration 
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end was realized by welding the end o( the test piece to a rigid end plate. bolting that end plate to the end 

plate o( the load cell. and bolting the other end o( the load cell to a massive concrete reaction block . 

Because o( the presence o( the load cell. the (ixed end actually had a (inite flexibility . The suppon 

flexibility was determined (rom elastic level tests and accounted (or in the data analysis phase . 

It is well known that the height o( the load with respect to the shear center o( the beam has a 

significant eCCect on the buckling response o( the system. The point o( load application (or cyclically 

reversing loads depends strongly on the load transfer mechanism. The load transfer mechanism chosen 

(or the tests is shown schematically in Fig. 4.2. The load was applied to the specimen by a hydraulic 

actuator which reacted against an overhead frame . The ram was endowed 'With a universal joint at both 

ends o( its length and hence did not provide restraint to the specimen. The ram load was transferred to 

the specimen through a collar which was prestressed so as to act as a unit with the teSt piece . The integrity 

o( the prestressing was verified (or each o( the tests. The collar received the ram through a universal clevis 

ha\ong a center 4.5 in above the top nange . The e1e\os bearing had a diameter o( 3 in and hence the point 

o( action o( the load was approximate I)' 3 in above the top Clange (or the push direction and 6 in above the 

tOP Clange for the pull direction . 

Loading 
Ram 

! I 
i 

Prestressed 
Rods 

Fig. 4.2 Load transfer mechanism 

In most practical applications. the brace-to-beam connection would be accomplished through a 

gusset plate or similar connection in which the load is transferred directly to the flange where the connec

tion is made . In such a circumstance, the point of load transfer (rom the brace to the beam is always on 

that side o( the beam. While the loading mechanism used in these experiments does not model an)' 

specific detail, it preserves the imponant one-sided nature o( the practical application. 

The tests were carried out under displacement control using the ram extension as the control dis

placement . A complete sweep o( the instruments was made at intervals 0.1 in o( ram extension. 

Specimen properties .- All five o( the test pieces had the same nominal cross-sectional geometry . a 

W I Ox 12 section, and the same nominal material propenies. ASTM A36 steel. Three o( the five speci

mens were CUt (rom one piece. the other twO (rom a second piece . The material propenies o( the twO 

pieces were determined b)' uniaxial tension tests. with twO coupons taken (rom the web and one from 

each of the flanges . The material propenies (designated as A and B) are listed in Table 4.1. One can 
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Table 4.1 Material properties 

Material Set A Material Set B 
Web Flange Web Flange 

Yield Strength (hi) 46.3 47 .5 48 .2 46 .7 
Ultimate Strength (ksi) 68 .3 67 .9 68.4 67 .7 
Ultimate Elongation 0.20 0.20 0.20 0.16 

observe that the Strength of the steel greatly exceeded the nominal value, but the material was highly 

du ctile . 

The cross-sectional dimensions of the test pieces were measured and the values are given in Table 

4.2. Observe that the half flange widths were nOt equal. Although the measured values are within stan

dard mill tolerances, the imperfections caused a measurable torsional response to a loading acting in the 

plane of the web . The measured response indicates that the direction of Initial rotation, and thereby the 

direction of rotational buckling, was determined by the geometry of the nange imperfections . 

The configuration of a typical specimen is shown in Fig. 4. 1. To prevent web buckling due to high 

transverse shear, fitted transverse web stiffeners were placed at approximately 6 in intervals in the region 

of the beam between the load and the fixed end in accordance with the recommendations of Hjelmstad 

and Popov, (1983) . Transverse stiffeners were also placed at the point of load and at the point of suppon 

at the lar end 01 the specimen to prevent web crippling at regions 01 concentrated lorce transler . The 

specimen was welded to the massive end plate with full penetration grove welds. The nanges were pre

pared for welding by beveli ng them at 45 degrees . To insure weld integrity, a fillet weld was made on the 

back side of each nange . The web of each specimen was fillet welded on both sides. directly to the end 

plate . 

Lateral bracing arrangements were of three varieties: (1) No lateral bracing. (2) Lateral braCing near 

the tOP nange, and (3) Lateral bracing near the bottom nange . The lateral bracing method used is sho"" 

in Fig . 4.3. The brace was pinned at both ends, anaching to one of the stiffeners under the load approxi -

Table 4.2 Measured section properties 

Material Location Material 
Set A Set B 

I 2.070 1.880 
Half Flange 2 1.890 2.030 I 2 

Width (in) 3 2.030 2.083 "'""- --' 

4 1.990 2.030 

Half Flange I 0.220 0.212 
2 0. 199 0.227 Thickness (in) 
3 0. 196 0.213 
4 0.210 0.200 3 4 

Depth (in) 9.841 9.851 

Web Thickness (in) 0. 177 0. 179 
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1 Loading 

I In Ram 

I ~ I I 
/I r:a' -
L i 1 

;: _. 
, 

33 ;11 ~ '--

"'- Lower Brace POlltlo" 

Fig. 4.3 Lateral bracing arrangemen t 

mately I in away from the nearest flange . A summary of the distinctive features of each teSI are given in 

Table 4.3. which records the initial sense of Ihe load. the bracing arrangement and the malerial used . 

Response Measu rement.- A load cell capable of measuring axial force, biaxial shear forces, biaxial 

bending moments. and torque resided between the specimen end and the reaction block (Fig. 4. 1). A 

uniaxial load cell located in the loading ram measured the applied force . The force measurements ren

dered the test configuration statically determinate . 

Displacements of cenain points on the specimen were measured with linear variable differential 

transformers (LVDTs) deployed as shown in Fig. 4.4 . The displacement measurements monitored the 

motion of the specimen in the plane normal to the axis of the beam, at the point where the load was 

applied . The motion at the fixed end and the extension of the loading ram were also monitored . The 

L VDTs were connected to rods which were 28 in long and had universal joints on both ends to allow free 

movement. As such, these instruments measured the change in length of a line connecting a point on the 

specimen and a stationar), ground point. 

The experimental data were acquired in digital form using a low speed electronic data acquisition 

system . The scan rate was approximately 25 channels per minute . Care was exercised to ensure that the 

s),stem was steady during each scan. 

Loading prog ram .- Each of the five tests were similar in the sense that the specimen geometry was 

the same and the position of the load was the same . The imponant differences among the tests included 

d ifferences in the character of lateral bracing, and slight differences in the loading histories . 

The loading programs used in these tests consisted of cycles of applied load and was executed by 

controlling the ram extensions . The imposed d isplacement history for each of the five specimens is shown 

schematically in Fig . 4.5. in which each bar represents a continuous movement of the ram head (i .e. one 

Table 4.3 Summary of test configurations 

Specimen Initial Bracing Material 
Loading Arrangement Set 

I pull none A 
2 push none B 
3 push top A 
4 push bolt am A 
5 push top B 
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Ram LVDT 

LVDT ' . 

LVDT's 

Fig. 4.4 Displacement res ponse meas urement at poin t or load 

half cycle) . Notice that specimen I began with a pull (stabilizing) half cycle while the others began with a 

push (destabilizing) half cycle . 

4.2 Experi menta l Results 

Narrat ive descri pti ons of the fi ve tes lS.- The following paragraphs give a narralive account of each 

of the five tests. These descriptions begin by documenting the first observed phenomena (generalized 

buckling, local buckling, malerial yielding, and fracture), and reference these occurrences to a cogent 

graphical representation of the response history. Discussions of each specimen will reference a plOI of 

load versus ram extension and a plot of load versus specimen rotation at the point of load . For simplicit)', 

the ram displacement is called simply vertical displacement, which is approximately true for the point 

where the ram anaches to the loading collar . Vertical displacement of the specimen as a whole has no 

meaning. One should note that the plots of load versus ram displacement have not been corrected in any 

2 

Displacement 0 
( in) 

I 

2 

PULL 

PUSH 1 2 3 4 

Fig. 4 .S Load ing sequ ence for th e fi ve speci mens 

51 

5 



way for suppon nexibility. In their present form, the abscissa and ordinate are conjugates in the sense 

that the area enclosed under the graph represents the energy input to the system. 

In the descriptions of the individual tests the following convention will be employed for describing the 

location of local events such as local buckling of the elements of the beams. To distinguish right from left 

we shall assume that the observer stands at the pinned end of the test piece and looks toward the fixed 

end . Local buckling generally involves a nange which can be located on the right or left; top or bottom of 

the beam; and may occur at the fixed end, at the point of load inside the link region. or at the pOint of 

load outside the link region. When buckling is described as inside or outside the link region it should be 

understood that reference is to regions at the point of load . Typical load point designated (A. B. tIC . ) are 

often indicated in the descriptions of the responses of the specimens . These load points a re defined in 

Fig. 4. 11. and are discussed in the section on general observations on cyclic response . 

Specimen 1.- Specimen 1 was unbraced and the force was applied in the pull direction first. The 

force-deformallon characteristics of Specimen 1 are shown in Fig. 4.6. 

80 80 

40 40 
~ 

~ .., 
0 

.§ 
0 .., 

~ a 
~ 

-40 -40 

-80 -80 
-2 -1 0 2 3 -0.4 -0.3 -0.2 -0.1 0 .0 0 .1 

V.rtical Displacement (in) Rototion (rod) 

Fig . 4.6 Cyclic load respo nse for speci men 1 (Hjelmstad an d Lee, 1990) 

Generalized yielding was evident during the first pull cycle at a load level of approximately SDk . 

Displacement was increased to 1. 15 in in this direction with no evidence of generalized buckling, local 

buckling, or nange yielding. Upon reviewing the data it appears that there was some torsional movement 

due to the fact that the load was not perfectly placed . However, the torsional motion was not discernible 

to the naked eye. 

Flange yielding at the point of load and at the fixed end was noted during the first push excursion . At 

inCipient buckling (load point B) there was a small amount of local nange buckling noticed on the top 

right nange , outside the link region . Dramatic snap-through buckling took place immediately after load 

pOint B was passed. While the venical movement (the control displacement) was on the order of hun

dredths of an inch the top nange moved laterally about 1.25 in while the bottom nange remained essen

tially stationary (lateral bracing would have had little effect if it were placed on the bottom nange). The 

specimen lost more than half of its load carrying capacity after buckling. Forcing in the push direction 

continued ,,;th little change in the load sustained . Loading continued until a venical displacement of 

approximately 1. 25 in was achieved . At maximum push displacement (load point C) only Slight nange 

52 

• • • • • • • • • • • • • • • • • • • 



I 

• • • 
I 

• • 
I 

• • • • • • • • • 
I 

'" 

buckling had occurred , indicating that local buckling was not necessary to accommodate the large lateral 

motions. The initial flange buckle outside of the link region had increased slightly in amplitude . 

The loading was reversed and the specimen was pulled back to a positive displacement of 1. 15 in 
Buckling did not occur in the pull direction, but considerable s!rain hardening accrued and the specimen 

was nearly Straightened. 

The loading was reversed again to push . The specimen buckled again, but was unable to sustain a 

load greater than the post buckling load of the previous push cycle. 

A substantial local flange buckle, accompanied by web buckling. formed in the lower right flange 

outside the link region, and the response curve changed from concave upward to concave downward 

during the second pull excursion. A force in excess of 60k was sustained prior to sUghtlateral buckling of 

the specimen . Buckling in the pull direction was apparent from lateral movement of the specimen; how

ever, the limit point was quite flat and hence little loss of carrying capacity resulted . 

At the end of the test the specimen had substantial local bucking both outSide the Unk region and at 

the flange-end plate connection on the top right side . Coupled flange and web buckling had occurred . 

~'hile amplItudes of local buckling were high. there was no visual evidence of weld distress. 

Specimen 2.- Specimen 2 was also unbraced and the initial loading was in the push direction . The 

response of the specimen to the imposed loads is shown in Fig. 4.7. 
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Fig. 4.7 Cyclic load response for specimen 2 (HJelmstad and Lee, 1990) 

At incipient buckling, lines of loosened mill scale indicated that yielding had taken place, albeit to a 

modest degree, even in the web region . There was no evidence of flange local buckling either inside the 

link region or outSide it. The specimen snapped to a twisted position during the first inelastic excursion in 

the push direction (load point A). The value of the buckling load was observed to be a bit lower than 

Specimen 1 which was yielded in the pull direction before buckling. Several data points were measured 

on the downhill side of the post-buckling curve, giving a good indication of the shape of the post-buck

ling response characteristic . At the extreme push displacement (load point B) only slight bucklIng of the 

top right flange inside the link region was evident. 
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Generalized yielding commenced at a load of about SOk in the first excursion in the pull direction. 

followed by considerable strain hardening. The local buckle in the flange had straightened at maximum 

pull. and a new buckle formed at the top left nange at the fixed end . 

When the specimen buckled again in the second push excursion. the top right [lange buckle had 

reappeared. the nanges at the fixed end had yielded. and the tOP left nange buckle at the fixed end had 

straightened . 

At load point G. significant buckling had occurred at the bottom left Dange outside the link region 

and at the top left nange at the fixed end . Web buckling outside the link region was also evident. At this 

point. the loading collar had rotated about the axis of the loading ram. 

Specimen 3.- Specimen 3 was braced at the tOP nange and initially loaded in the push direction . The 

response of Specimen 3 is shown in Fig. 4.8. 
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Fig. 4.8 Cyclic load response (or specimen 3 (HJelmstad and Lee. 1990) 

0.1 

Generalized yielding and subsequent strain hardening. without local or lateral buckling. took place 

during the first excurSion in the push direction and reversed WIth no apparent distress . Flange yielding 

outside the link region was noted at load pomt B. Two cycles were completed without buckling. 

JUSt prior to load point E. slight local buckling was observed in the top left nange outside the link 

region . Dramatic snap-through buckling of the specimen and the bracing rod occurred simultaneously. 

at load point E. Local buckling of the tOP right nange outside the link region and local buckling of the 

upper half of web in this same region also occurred in conjunction with the lateral-torsional buckling of 

the specimen . 

The specunen was unloaded. the buckled bracing rod was removed. and loading was resumed in the 

pull direction without bracing. 

The specimen exhibited a lImit point in the third pull excursion (jUSt prior to load point G) . As 

expected. the post-buckling loss of load carrying capacity was slight . Anl1symmetric local bucklmg of the 

bottom left and right nanges outSide the link region with compatible local buckling of the adjacent web 

accompanied the post-limit loss of load . Subruntiallocal buckling of the bonom left nange inside the 

link region and the top nange at the fixed end was also noted. 
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Pronounced local buckling of the top flange at the fixed end was observed prior to general lateral 

buckling in the fourth push excursion. Buckling in the fourth pull cycle showed a considerable loss in load 

carrying capacity. 

Specimen 4. - Specimen 4 was braced at the bottom flange and was initially loaded in the push 

direction . The response of Specimen 4 is shown in Fig. 4.9. 
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Fig . 4.9 Cyclic load response for specimen 4 (HJelmstad and Lee . 1990) 

The specimen achieved generalized shear yielding in the first push excursion without buckling. The 

specimen buckled during the second push excursion at a load level greater than its initial yield load . The 

increase in capacity can be attributed to strain hardening accrued during the previous yielding cycles . 

Cpon buckling. the load carrying capacity of the specimen dropped to the asymptotic level of approxI

mately 20 .5k. Subsequent load cycles demonstrated increasing capacity in the pull direction due to strain 

hardening and repeated achievement of the asymptotic buckling capacit)" in the push direction . 

Prior to initial buckling there was no visual evidence of local buckling. but considerable yielding had 

taken place in the top and boltom flanges outside the link region. adjacent to the apphed load . ,,",0 

yielding had taken place inside the link region . Slight local buckling occurred in the tOP flange inSIde the 

link region after generalized lateral buckling had occurred and motion was still in the push direction . 

Local buckling of the top flange at the fixed end occurred as the specimen approached its maximum load 

in the second pull cycle . The amplitude of the local flange buckles increased considerably as the loading 

progressed . It would appear that the flange buckles d id not significantly affect either the maximum pull 

capacity nor the asymptOtic push capacity. 

Specimen S.- Specimen 5 was braced at the top flange and loaded in the push direction first. The 

first cycle covered a 50% greater displacement than the other four specimens. The response of Specimen 

5 is shown in Fig . 4. 10. 

Buckling occurred during the first cycle well after shear yielding and considerable strain hardening of 

the web had taken place. Due to the brace . the d rop in carrying capacity after buckling was not as 

dramatic as in previous tests. Unlike previous tests. the buckling in the second push cycle exhibited a 
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Fig . 4. 10 Cyclic load response (or specimen S (Hjelmstad and Lee . 1990) 

hmll load "1th degradmg post-hmll response . The post-limit response 10 this cycle approached an as

ymptotic buckhng capacity of 28 .5., a value somewhat larger than the unbraced tests. 

There was no evidence of local buckling at Initial lateral buckling. The first nange local buckling 

occurred on both sides of the loadIng collar during the first pull excursion . Flange buckling was accompa

nied b)' web buckling outside the link region . The local buckling of this specimen was more intense than 

In the other specImens because of the restra int provided by the brac<. The local buckles helped to 

accommodate the large specImen rotations at the point of load whereas lateral movement of the section 

had accomphshed the same thing for the unbraced specImens. FaIlure of the specimen to the fourth pull 

c)'cle wa s due to complete fracture of the bottom nange at the ftxed end . 

4.3 General Obsen'ations on Cyclic Lateral-Torsional Buckli ng 

Several qua illallve observalions can be made about the cychc response of shon beams based upon 

these tests . Most of the qualilies of the response are attributable to the effect of geometry of load place

ment With respect to the test piece . Clearly. the response in the pull direction is quite dIfferent from the 

response in the push direction when the load does not act at the shear center. since for either direction of 

lateral motion a pushing force tends to amplify rotational motion. while a pulling force tends to dimintsh 

rotational motion . 

In this secuon we discuss the general aspects of cychc lateral buckling that were observed in the lests . 

The dIscussion will refer to FIg. 4. 11. which represents a t)'Pical cyclic response of a beam like those 

tested in the present program. Load points A through F are identified (or a cycle which includes initial 

buck.hna. subsequent straightening by pulling in the oppOsite direction. followed by a subsequent buck

IJng. 

I nitial Buckling and Post- Buckling .- Smce initial buckling 10 a cyclic test IS like a monotontc 

buckhng test . one would expect that observations made 10 previous research on monotOntc lateral buck

hng would appl)' to the present situation . However. the buck.ling and post-buckling response of shon 

beams is quite different from the response observed in existing lateral buckhng tests of longer beams. 
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Fig. 4.1l Typica l la teral buckl ing response 

Specifically, lateral buckling of shon beams exhibitS a severe limit load with rapidly descending pOst 

buckling degradation . The existence of an asymptotic post-buckling strength is more apparent for shon 

beams than It Is for longer beams. 

One might expect that estimates of the limit load could be made with existing analytical techniques. 

However, several phenomena are imponant to the behavior of cyclically loaded shan beams which are at 

odds with the assumptions generally used in deriving analytical values of lateral buckling loads . Due to 

the cyclic nature of the loads, it is possible to sustain an inelastic loading in the pull direction prior to a 

push loading. Such an occurrence would have several ramifications : (a ) the residual stress pattern would 

be altered from that of a virgin beam, (b) a residual (hogging) deformation would be induced, (e) some 

straightening of initial rotational imperfections would occur, (d) the material would strain-harden from 

itS virgin state, and (e) sohening of the material tangent modulus (Bauschinger's effect) would take 

place . One would expect that effects a, C, and d might act to strengthen the beam against buckling, 

whereas effectS band e might tend to lower buckling resistance . For extremely shon beams (the test 

plOces In the present experiment are arguably such beams), the limit load is very nearly equal to the shear 

yield capacity of the beam. The effect of beam length will be thoroughly investigated anal)'tically in the 

following Chapter 5. 

Comparison of the buckling loads of specimens 1 (pull first) and 2 (push first ) would indicate that the 

favorable factors dominate, and that stra in-hardening has the greatest innuence . It is diffICult to assess 

the extent to which rotational imperfections were stra ightened . However, it should be noted that these 

imperfecuons were relatively large in the test specimens because of the poor tolerances on the roll ing of 

the flanges (see Table 4.2). On the other hand the initial rotational imperfections were quite small as 

compared to those leh by severe lateral buckling. No information was obtained from these testS to quan

tify the effect of residual stresses and Bauschinger's effect. 

Buckling in the push direction was a snapping phenomenon which was difficult to control experimen

tally even under displacement control. Consequently, the post-buckling slopes (shown in Figs . 4.6 

through 4. 10 as dotted lines) represent the straight line between the pre-buckling state and the nearest 

stable post-buckling state, not the actual post-buckling behavior. Specimen 2 gives the best indlcallon of 

the shape of the post-limit response . The response approaches a non-zero asymptotic post- buckling 

capacity, as shown in Fig. 4.11, which is sustainable under repeated cycles of loading. 
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Pull Response .- Four distinct regions of response are exhibited upon reversed loading in the pull 

direction from a push buckled state . The first stage (Be in Fig. 4.11) comprises elastic recovery from 

loading in the opposite direction. The second stage (CD) consists of straightening of residual twist left by 

inelastic buckling . The response curve stiffens during this stage because the initial flexible untwisting gives 

way to stiff planar bending as the residual lateral and torsional deformations diminish . The third stage 

(DE) consists of generalized yielding in the pull direction . 

In the third stage it is possible to experience lateral buckling. However, such buckling is always 

accompanied by severe local buckling and often tearing of the flanges . In these cases some post-buckling 

degradation would occur prior to load point E. Pull buckling did not occur in the tests until late in the 

loading program, usually long after push buckling had shaken down into behavior which did not exhibit a 

limit load . The most important ramification of pull buckling is its association with failure by fracture in 

the flange welds . The local buckling which is invariably associated with pull buckling can lead to low cycle 

fatigue in the regions of high cyclic curvature reversals . When the stresses and strains associated with 

latera l motion accrue. the possibility of material tearing is quite high . While push buckling is also associ

ated with significant local buckling in the lattt< stages, the suStained loads are considerably smaller, 

offenng some prolOction from ultimate failure . 

Buckling in Subsequent Cycles .- A beam reloaded in the push direction, after it has buckled once 

and straightened, suffers from several effects that tend to weaken it: (a) The beam might not be well 

straightened, even with considerable yielding in the pull direction. The residual imperfection decreases 

the magnitude of the limit load in the next push cycle . (b) The pull cycle can leave the beam permanently 

bowed from yielding. Initial camber is known to have an important effect on the lateral-torsional buck

ling capacity of a beam . The situation worsens under cyclic loading because buckling commences earlier 

in each subsequent push cycle, and the torsional motion of buckling does not counteract the residual 

cambers . Consequently, the beam creeps cyclically in the pull direction . (e) Material softening (Baus

chinger's effect) may also weaken the subsequent buckling behavior. 

Subsequent lateral-torsional buckling can demonstrate a lirnitload type of response (load point Fin 

Fig. 4. 11 ). However. the limit load is generally dramatically d iminished from the initial buckling load . In 

the tests reported here, only Specimen 5 exhibited a second limit load which was more than marginally 

greater that the asymptotic post-buckling load . Specimen 5 was braced at the top flange and hence 

post-buckling deformations were controlled to a greater degree than for the other specimens . These 

observations would suggest that the residual deformation is the mOSt important factor affecting subse

quent buckling behavior. 

When the point of loading is closer to the shear center the push and pull responses will tend to look 

more like each other . Therefore . care must be exercised in extrapolating the results of these experiments 

to cases in which the point of loading is closer to the shear center. For the case of loading exactly at the 

shear center, symmetry would indicate the same behavior in both the push and pull directions . Experi

mental evidence is lacking, but one might expect that under a shear center loading, unstable behavior 

would be exhibited in both directions albeit with much less severe post-buckling degradation . 

Table 4 .4 presents a summary of the specimen response features . The table gives initial buckling 

loads, the cycle in which initial buckling occurred . the asymptotic post-buckling capacity, the maximum 

pull load, and the energy dissipated throughout the loading program. The energy dissipation is history 

dependent, and insofar as each specimen underwent a slightly different history. the values are not di-
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Table 4.4 Summa ry or ex peri menta l results 

Specimen Buckling Buckling Asymptotic Push Maximum Pull Energy Dissipation 
Load (k) Cycle Buckling (k) Load (k) (in-k) 

I 57.8 1st 21.4 61.0 260 
2 47 .4 1st 20.5 67.3 225 
3 63 .9 3rd 22.0 64 .7 380 
4 59 .9 2nd 20.5 66.9 350 
5 60 .2 1st 28.5 66.9 420 

recti), comparable. They do. however , provide a qualitative indication of the ductility and toughness of 

the test specimen. 

Influence or Local Buckling.- Local buckling in steel members generally refers to buckling of 

individual plate segments such as a flange or web, and may occur independently Or in conjunction \4;th 

generalized buckling such as lateral-torsional buckling. The kinemauc feature that disungUlshes local 

buckling from generalized buckling is that generalized buckling takes place I4ithout deforming the cross

sectional geometry whereas local buckling deforms only the cross-section . For extremely thin-walled 

members (e .g. as in cold formed steel sections) the coupling between local and generalized buckling IS 

qUlle Imponant and has been the subject of extensive research (VIa so v, 1961 ) ThIS couplmg has been 

largel)' Ignored for the I-sections used in heavier building construction. 

The theoretical models which have been used to stud), lateral-torsional buckling are universall) 

based upon the hypothesis that cross-sectional shape remains invariant as the beam deforms: precluding 

local buckling effects. Lateral buckling experiments have indicated that generalized buckling usuall) 

precedes local buckling in slender beams. even for elastoplastic buckling. The present tests suggest that 

the same IS largel)' true for the push buckling of extremely shon beams: however, shght local buckling of 

the flanges was noted at or prior to buckling in Specimens 1 and 3. Local buckling commenced shonl) 

after generalized buckling in the other teSts . Based upon observations made during the tests. it would 

appear that local flange buck ling is not necossary to accommodate the large rotauons of the beam 

Assuming cross-sectional im'ariance for analytical purposes appears to be reasonable for shon members, 

but the effects of coupled flange buckling and lateral-torsional buckling need funher investigation. As 

mentioned above local buckling is strongly coupled with generalized pull buckling in shon beams (prob

ably longer ones too). 

Local buckling generall)' degrades the performance of structural members in a cyclic load en"ron

ment. Local buckling in a cyclic load environment often leads to tearing of mateTial in the zones where 

local curvatures are high due to cyclic changing of the buckled shape . Consequentl)', local buckling 

directly limits the ductility of steel members under cyclic loading through low cycle fatigue . Documented 

examples of low cycle fatigue caused by local buckling are plentiful. For example , local buckling of the 

wall was found to cause Significant degradation in the axial buckling of tubular struts (Zayas, Popov, and 

Mahin . 1980). Web buckling in shear beams shows limit-load behavior which is arrested by the forma

tion of a tension field . Eventual failure of these beams is caused by teaTing in the high curvature zones of 

the web (Hjelmstad and Popov. 1983). 

Local buckling was observed in all of the test specimens in the current study . Flange buckling With 

linle web deformat ion was the most common mode of local buckling. but in some cases flange buckling 
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was accompanied by significant web buckling. The location of initial local buckling varied. sometimes 

occurring at the fixed end. sometimes at the point of load inside the link region. and sometimes at the 

point of load outside the link region . As the loading program progressed the amplitude of local buckling 

increased dramatically. often becoming as large as the haIr flange width. In the latter ponions of the 

loading program local buckling was generally distributed among all candidate regions (i.t. highly com

pressed flanges and adjacent webs). 

The irnponance of local buckling in the cyclic post-buckling response of the test pieces is difficult to 

determine from these (or any other) experiments. Slight local buckling was present at the point of lateral 

buckling in some. but nOt all. specimens . This observation would suggest that the value of the limit load is 

not strongly affected by local buckling. a hypothesis which can be explored analytically. In some of the 

specimens local buckling was still slight after snapping through to the post-limit asymptotic load. Since 

the asymptotic buckling capacity was achievable under repeated cycling. in which the amplitude of local 

buckling grew dramatically. it would appear that this asymptotic load level. and thus the post-buckling 

response. was not strongl y affected by the amplitude of local buckling. The experimental data also sug

gest that local buckling does not alwa)'s affect the response of the beams in the pull direction. as yielding 

pull loads were repeatable in the presence of considerable local buckling. If deformations are large 

enough. local buckling lIoill generally lead to pull lateral buckling. 

Influence of Lateral Bracing .- One of the main parameters investigated in this series of tests was 

the effect of lateral bracing at the point of loading . An idealized bracing system was configured to restrain 

lateral motion. but not rotation . at either the top nange (load point) or the boltom flange as shown in Fig. 

4.3. Specimens I and 2 had no lateral bracing. Specimens 3 and 5 had top flange bracing. and Specimen 

4 had bottom flange bracing . The effects of lateral bracing are discussed below. 

The most favorable locallon for bracing is the tOP flange . since the top flange is compressed under 

the unstable push loading. HOIlo·e\·er. in cenain applications it might be costly to implement such a bracing 

arrangement . As an example consider the eccentrically braced frames shown in Fig. 1.1 . The links would 

be subjected to a bolt am flange loading. Bracing is often done with joist beams which are more shallow 

than the main beam. Since It is desirable to use these joists to provide a level floor surface. they would 

frame into the main beam at the top flange. providing bracing at the flange opposite the loaded flange . 

Specimen 4 was tested to determine if far-flange braCing is effective in controlling lateral buckling. 

The responses of Specimens 3 and 5 shollo' that near-flange bracing effectively controls, but does not 

preclude. lateral-torsional buckling. Lateral buckling of Specimen 3 did not occur unlllthe thtrd push 

cycle. whereupon the brace buckled simultaneously. Specimen 5 buckled during the first cycle, but 

snap-through was controlled by the lateral bracing allowing a load of 50t to be sustained in the buckled 

configuration . (Specimen 3 had less post-buckling resistance because the brace was buckled . The brace 

was completely removed from Specimen 3 after it buckled) . Specimen 5 showed a limit load of 28 . 5k in 

the second buckling cycle, and the asymptotic buckling capacity was 35% higher than the other speci

mens. 

Specimen 4 did not buckle until the second cycle, indicating that far-flange braCing has some effecl 

on the response of the system . However. the post-buckling characteristics of Specimen 4 were similar to 

the unbraced specimens . One can conclude that far-flange bracing is only marginally effective at improv

ing the response of laterally buckling beams. It is interesting to note that the lateral motion of the bottom 

flange was small [or both of the unbraced specimens in the post-buckling regime, indicating that the 
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center of rotallon during lateral buckling was near the bottom flange. Under these circumstances one 

would expect bottom flange bracing to be lneffective. However. the location of the center of twist ",II be 

different for different cross-sectional geometries. The specimens tested may be a colncidental worSt case 

for far-flange bracing. 

The buckling of the brace in Specimen 3 is particularly significant in that it gives us informallon on 

inadequate lateral bracing. The brace was made of 3/4 in threaded steel rod. was 33 in long. and was 

pinned at both ends . Hence. the ratio of the area of the brace to the area of the compressIon flange is 

approximately 0.45. The brace easily meets the requirements of strength and stiffness proposed by Lay 

and Galambos (1966). The buckling load of the brace was about 5% o( the squash load of the compres

sion flange (i.e . oobt/ . much greater than the 2-2.5% traditionally suggested for such applications) The 

brace buckled simultaneously with the beam and can therefore be considered undersized . 

It would be dIfficult to make specific recommendations about lateral bracing o( short beams based on 

the expenments. however. the (ollowin& observations seem appropriate : 

(a) Smce the beam can adjust ItS center of rotation. single pomt bracing (or any bracmg "hlch 

approXImates it) is far less effective than bracing which also provides rotallonal restramt. If SIngle 

pomt bracing must be used. then bracing of the flange closest to the point of load transfer I 

supenor to any other position . It seems prudent in the case of eccentrically braced frames to 

brace at the pomt of load with full rotational restraint. 

(b) Tradit ional estimates of the required size of the bracing member are inadequate for short beams. 

possibl)' by a factor o( two . However. m tYPIcal applications the size of the brace often far ex

ceeds the mlntmum required to reSIst buckling. 

The important thmg to remember is that short beams represent an extreme case of lateral buckling. and 

that the cyclic load environment presents some fundamentally different phenomena beyond the 

monotonIC loadmg case . The deSIgn of these elements requires due regard of these extremes . 

4. 4 Anal)tical 10del of the Test Specimens 

In order to put the expenments into proper perspecuve. we will further explore the beha\10r of the 

propped cantilever beams by perturbmg the constttutlve and geometnc parameters of the theoretICal 

model. These parameter studIes will be described in the following three chapters . It IS important to 

execute the perturbations about a confIguration of the anal)'lical model which represents the experiments 

well. ThIS standard model was determined by adjusting the parameters (within the constraints of mea

sured values) until reasonable correspondence with the experiments was attained . The standard model 

" ill be the baSIS of all future parameter studIes and is presented In thts section . 

The values of the parameters are gIven in Table 4.5. The total length of the beam. L. IS taken to be 

82 in and the dIstance from the (IXed end of the beam to the point of load. I. is taken to be 20 in. as 

measured in the experiments . The dimensions of the cross section of the beam aT< taken equal to the 

measured values of the test piece. The elastic moduli of the material are set to values generally accepted 

for steel whIle the )1eld Strength and ultimate strength are as measured in the matenal tests The load 

transfer mechanism is Idealized usmg a rigId link as sho"" m FIg. 4. 12. The pomt of load application IS a 

dIStance If above and ~ to the right o( the shear center. The standard value of the load heIght is taken to 

be the dIstance from the shear center to the center of the loadmg cle"s as measured m the experiments . 
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Table 4.S Dimensions and properties of the standard model 

Section dimensions (in) Member properties (in) Material properties (hi) 

Depth. h 9.82 Length, L 82.00 Youngs modulus, E 30,000 
Width, b 4.00 Load position, 1 20.00 Shear modulus, G 12,000 
Web thickness, I 0.18 Height of load, II' 9.41 Yield strength , 00 48 
Flange thickness, I, 0.20 Eccentricity of load, ~ 0.01 Ultimate strength,ou 69 

The rigid link is modeled with a ftnite deformation box-section beam element . The element is made very 

stiff and remains in the elastic state throughout the loading histories. The validity of modeling the load 

position in this manner should be clear . The kinematics of the analytical model are referred to the line of 

centroids, which coincides with the line of elastic shear centers, only for convenience. Because the model 

is formulated in terms of stress components, the constitutive equations are treated locall)', obviating the 

need for keeping track of the instantaneous location of the inelastic shear center. Stress resultant beam 

theories rei), crucially on knowing the location of the shear center, but they do so only to get the constitu

tive equations correct. 

Tn , , 
33 ;n --.: 

'----Shear center 

Fig. 4. 12 Idealized load transfer and bracing mechanism 

The finite nexibility of the fixed end, due to the presence of the load cell, is examined in Chapter 6. 

Since the load cell used in the experiments was a circular tube, its torsional nexibi!ity is negligible in 

comparison "ith that of the test piece I-section . On the other hand, the nexural nexibi!ity of the load cell 

",as on the same order as the test piece . The load cell is modeled with a box section in the anal)1ical 

studtes as sho"n in Fig. 4. 13. The length of load cell is designated as I, . The box section is a reasonable 

model of the load cell because it has a similar ratio of torsional to nexural stiffness and was much easier to 

implement numerically than a circular beam . In Chapter 6, various end nexibilities are examined by 

changing the length and cross-sectional dimensions of the load cell. 

The effects of lateral bracing are examined in Chapter 7. The lateral bracing arrangement was ideal

ized as sho\ln in Fig. 4. 12 . The position of the brace was enforced b), placing a rigid !ink (modeled \lith 

the box section) bet",een the shear center and the brace point as sho"n . The brace was pinned to the 
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Fig . 4. 13 Idealization of test beam with load cell 

rigid link and either pinned or fixed at the suppon. In the parameter sludies the brace elevation li was 

varied while the length of the brace and its lateral position (about 1 in left of the web) were held fIXed . 

In addition to the propenies listed in Table 4 .5. the following constitutive parameter values also 

characterize the standard model : (a ) the equivalent plastic strain at the onset of strain hardenmg. t: = 
0.0235 and (b) the nonlinear Isotropic hardening moduli of the exponential hardening model. K = 0 and 

y = 25 . The values of the constitutive parameters were apprOlomated based on the experimental tensile 

tests. The hardening moduli "ill be the same for all parameter studies . 

The anal)ses " 'ere carned out ",th displacement control at the pomt of load . The vemcal dIsplace

ment and rotauon at the shear center under the point of load are used to characterIZe the dIsplacement 

history in the parameter studIes . 

4.5 Validity of th e Proposed Analyt ical Model 

In thIS section we present the cyclic response of the standard model as eVIdence that it represents the 

phenomena observed 10 the experiments well. In panicular. we note that most of the typical features 

noted 10 the experiments are reproduced faithfully by the analytical model. Onl)' qualitative compansons 

between anal),sis and the experiments are made because the measurements of the movement of the fIXed 

end in the experiments were nOt suffiCIent to produce an accurate model of the end neXlblllt)·. 

The crclic tnelasuc response for the standard model (Wlthout load cell) . under the load hlSlor), of test 

SpecImen 2. Is sho"'Il in FIg . 4 . 14 . Observe that the qualltauve beha\ior IS well represented b) the 

anal)'tical model. pamcularly the initial buckling response. the recovery and yielding in the pull dlfecuon. 

and subsequent push buckhng. 

ince the anal)1ical model is based on a beam-type kinematic hypotheSIS. the analytical model IS 

unable to represent local buckhng of the web or nange elements . In view of the fact that the model 

reproduces nearl), all aspects of the c)'clic load response of shon beam. except possibly the fmal faIlure 

mode. one can conclude that local buckling pla)'s a secondary role in the response of these systems. In 

panicular. the as)'mptOtic post-buckhng capacity is not affected by the local buckling. It would appear 

that proper modeling of the finite rotation of the cross-section is sufficient to accurately capture the 

lateral buckling and post-buckling response of these beams. The excellent quahtat lve correlauon be

tween anal)'Sls and experiment lends credence to the model and to the parameter studies that follow. 
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Chapter 5 

An Analytical Study of the Parameters Affecting 

the General Response of the Test Specimens 

The general cyclic lateral buckling response of the test specimens without end nexibility and lateral 

bracing is examined in this chapter. Parameters studied include constitutive parameters. residual 

Stresses. geometrical imperfections due to the eccentricity of loading. cross-sectional dimensions. total 

length. locations of load. and remote boundary conditions. The response of the systems with perturbed 

parameters are compared with the response of the standard model described in the previous chap,er. 

The configuration of a standard model is shown in Figs. 4.1 3 and 4. 12. and its properties and dimensions 

are listed in Table 4.5. 

5.1 Effect of Constit utive Parameters 

Several constitutive parameters are expected to hal'e an important effect on the buckling resistance 

of beams. Among these are the yield strength. the length of the yield plateau. and the strain hardenmg 

parameters . These parameters are important because yielding tends to reduce the beam's resistance to 

buckling. especially for short beams. The following parameter study is designed to assess the importance 

of these material parameters for both cyclic and monotonic loading conditions . 

The material properties of the standard model are as follows : yield strength (00 or .00) = 48 ksi. 

ultimate strength (0. or .0. ) = 69 ksi. and equivalent plastic strain at the onset of strain harden ing f" = 
0.0235 . Ultimate strengths 69 ksi. 79 hi. and 89 ksi correspond to yield Strengths 48 ksi. 58 hi, and 68 

ksi, respectively (except for the perfectly plastic case), which means the shape of the stra,I" hardening 

cun'e IS the same regardless of the value used for the yield strength . Kinematic hardenmg employed m 

the proposed cyclic plasticity model was automatically included m all cases, except where thIS parameter 

is expllcltl)' studied . Fig 5.1 describes the above mentioned constitutive parameters. 

As expected, the yield strength inOuences the mltial buckling load and post-buckling capacll)' of the 

beams. as shown in Figs. S.2 (a,b) . While the responses of initial-buckling are the same for the stra in 

o 

O"i--------:::::::::::::::==--

Initial yield plateau 

Fig . 5. 1 Descriptio n or the co nsti tut ive parameters 
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hardening case as for the perfectly plastic case at the same yield strength. the post-buckling capacity of 

the strain hardening case is larger than that of the perfectly plastic case for the same yield strength. The 

differences between them are almost the same regardless of the yield strength . The response curves of 

the perfectly plastic case and the strain hardening case in the post-budding regime do not coalesce at 

large deformation because strain hardening has its greatest influence there . Judging from these observa

tions. yield strength has a preponderant influence on the initial-budding load and the post-budding 

behavior. Initial-buclding generally occurs before strain hardening starts and hence strain hardening 

affects only the post-buckling response . Figs . 5.2 (c-fJ show the influence of each yield strength on cyclic 

response . As yield strength increases. pull yield load and asymptotic post-buckling capacity also increase 

notably . 

Differences in the cyclic responses between the strain hardening and the perfectly plastic cases are 

illustrated in Figs . 5 .2(g-/) . The latter case has a slightly smaller pull load and asymptotic post-buck.ling 

capacity than the former one in the first cycle . The difference becomes smaller with additional cycling . 

Observe that yield strength also has an influence on the cyclic response even in the perfectly plastic case 

and the effect of strain hardening on the response to cyclic loading. 

The influence of the length of the initial yield plateau is examined in Figs . 5.3(a.b). The response 

(including strain hardening) without an initial yield plateau has a slightly larger initial buckling load than 

an)' case ,,;th an initial yield plateau . The post-buckling responses are bounded above by the case with 

no plateau and below by the perfectly plastic case (infinite length plateau) for the entire range of 

monotonic behavior. The response curves for various plateau lengths do not converge on each other at 

large deformation probably because of strain hardening. Initial buckling occurs while mOSt of the yielded 

material is on the yield plateau at plastic strains less than e': = 0.01175. as evidenced by the fact that the 

responses for cases having a yield plateau greater than this value are identical at buckling. The effects of 

length of the initial yield plateau on the cyclic response of the test beams are examined in Figs. 5.3 (c.d). 

The standard case (e': = 0.0235) is compared with the case in which there is no yield plateau in Figs . 

5.3(c.d). As noted previously the initial buckling load is Slightly larger than with no plateau . Because 

stra in hardening manifests earlier in this case the pull yield load and subsequent buckling loads also tend 

to be greater than the case that has a yield plateau. The observations are reinforced by comparing the 

other bounding case (perfectly plastic) with the standard case (Figs. 5.2(g.h» . In general. one might 

conclude that the effects of the length of the yield plateau are minor. 

Figures 5.4(a.b) show the influence on the cyclic buckling respome of the kinematic hardening 

model used to simulate cyclic plasticity here . Due to the change in the way Bauschinger 's effect is mod

eled in the absence of kinematic hardening. notable differences in the response during the pull recover), 

[rom buckling can be seen. The response of kinematic hardening reduces the carrying capacity at compa

rable levels of deformation . Kinematic hardening also reduces the subsequent buckling loads . Qualita

tivel)' comparing these results with the cyclic load response of test specimen 2 in the experiments (FIg. 

4.7). one can recognize the importance of kinematic hardening to the model. 

S.2 Erfect of Eccentrically Placed Load 

Systems which exhibit limit loads with unstable post limit behavior are generally senstive to geometric 

imperfections. One of the important geometric imperfections in the propped cantilever test system is 
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eccentricity of the line of action of the load with respect to the shear center (and centroid) of the cross

section (Fig. 5.5) . An eccentrically placed load will promote rotation of the cross-section prior to the 

buckling and will therefore reduce the magnitude of the limit capacity . In this section we examine the 

effect of eccentric placement of load on the monotonic and cyclic response of the teSt syStem . 

Fig . 5.5 Eccentricity of load position 

In general. it is impossible to achieve perfect placement of load in a physical test. although every 

effon was made to do so in the tests reponed here . In nature. even a perfect system will buckle if it passes 

through a bifurcation point . A perfect numerical model will not necessarily do so . In the studies per

formed here values of the eccentricity smaller than 0.01 in gave identical response of the system with 

respect to lateral buckling. Therefore the 0.01 in eccentricity is adopted as the perfect system for the 

anal)~ical model. This value is designated eo in the subsequent study. Comparison of the perfeci anal~i

cal model ,,"th the experiments would indicate that perfect load placement was nearly achieved in the 

experimental syStem . 

The results of initial monotonic buckling with values of eccentricity of '0. 5 eo. 10'0.20'0 and 50'0 

are shown in FIgs. 5.6(a.b). One can observe a considerable reduction in limit capacity for the modest 

eccentricities examined . The sharp hmit response with sudden loss of capacity prevalent at small eccen

tricities begins to disappear at large eccentricities . One could surmise that the limit-type behavior would 

dISappear entirel y for a large enough eccentricity . For all values of eccentricity the post-buckling capac

ity is the same. even though for large eccentricities considerable deformations are required to achieve it. 

The tendency toward the same post-buckling capacity highlights the fundamental imponance of this 

resistance parameter to the general response of these systems. 

The cyclic response of the beams with initial load eccentricities is illustrated in Figs. S.6(c-J). cover

ing eccentricities of to. 10 t, and 50 t o. One can observe that these eccentricities playa minor role in the 

cyclic response . the extent of influence being directly related to the magnitude of the eccentricity. This 

loss of memory of the initial eccentricity is expected for systems like these which experience considerable 

yielding. 

5.3 Effect of the Height of the Load Point 

It is well known that the height of the load with respect to the shear center of the cross-section has a 

significant effect on the linear elastic lateral buckling load . One would also expect it to have an imponant 
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Innuence on the inelastic buckling response. The effect o( the height o( the load on the elastic linearized 

buckling loads (or the test configuration is shown (or both pull and push loading directions in Fig. 5.7. In 

the expenments, the height o( the load, measured (rom the center o( the clevis was approximately 9.4 in . 

This value Is taken as the standard value (or the present parameter study which examines the response 

(or both cyclic and monotonic loading conditions. A rigid link was used to apply the load remote from the 

shear center, as shown in Fig. 4.12. 

'00 

o ~~~~~~--~~~ 
o 5 10 15 20 

.. (m) 

Fig. 5.7 Errect or height or load on lineari.ed buckling load 

The monotonic buckling and post-buckling response curves (or the propped cantilever (or load 

he ights o( 5, 8, 9.4, II and 14 in are sho,,'Tl in FIgs. 5.8(a,b) . As expected. the Iniual-buckling load and 

post-buckhng capacuy mcrease WIth a decrease In In the heIght o( load , and the rate o( loss o( post-buck

ling capacu)' IS lessened as the height o( load decreases . The response curves o( post-buckling do not 

coalesce at large deformauon . Buckling is quite delayed for a load heIght of 5 in . One would thus expecI 

that the beam would be more reluctant to buckle as the load is applied nearer to the shear center. 

Response to loads applied in the pull direction are expected to be stable . 

The effects o( load height on cyclic response are shown in Figs . 5.8(c-1) . The height o( 5 in is 

compared ",th the standard case In (c,d) while the height o( 14 in is compared with the standard case in 

(./) . There is vinuallY no difference in the pull yield load, bUI the asymptotic post-buckling response is 

greatly innuenced by the height of the load . The height o( the load application has a significant innuence 

on the IImuload, the post-buckling response at large deformation, and the response to subsequent cyclic 

loading. 

5.4 ErCect oC the Load Location alon& the Beam Length 

The propensuy o( a beam to buckle laterally is directly related to the distance o( the potentially 

destabIliZing (orce (rom a point where torsional motion is restrained . In design this d,stance is often 

called the laterally unsupport.d length . Qualitatively, the torsional stiffness accrues linearly with length 

(rom 51. Venant reSIStanCe and cubically with length from warping torsion resistance (or an elastic beam . 
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For short beams the warping torsional stiffness becomes so great as to practically preclude buckling. This 

tendency 15 iIIumated in Fig. 5.9 which gives the hnearized buckling load as the position of the load IS 

vaned over the entire length of the propped cantilever beam. Here. the minor length. I. can roughly be 

conSidered the unsupported length of the beam As the point of loading approaches the supportS the 

hneanzed buckling load becomes large. indlcaung less propensity toward buckling. The beam loaded 

remote from the supportS shows a relatively great propensity to buckle . The length of beams examined 

herein lie in the transition range between clearly long beams and short beams which are generally reluc

tant to buckle. 
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Fig. 5.9 Effect of loc.tion of load on linearized buckling load 

The purpose of the present section IS to put the buckling of short beams IntO the wider context of 

lon~er beams "hlch are more common In applicauons and which have been more thoroughl) studied . 

There 15 baSically one Issue at stake here : E"en if a beam 15 able to reach Its fully plastic capacity. might It 

) et buckle and thereby suffer important design consequences . These Issues are examined In the sequel 

both for monotonic and cyclic loading. 

As expected. the location of load along the length of the beam has a great Innuence on the inltial

buckling load and the post-buckling response. as shown in Figs . S. IO(a.b) . The limit pOint can be seen to 

be sharper as the location of the load approaches the middle of beam. and Initial buckling is delayed as 

the location of the load approaches the fixed end. The response curves of post-buckling do not coalesce 

at large deformation . The dot symbols (e ) on the monotonic response curves (Figs . 5.1 O(a .b.g» repre

sent the pOintS where the loading d"ectlon changes from push to pull in the cychc loading histones 

The beam of length 1 = 15 in exhibits a strong reluctance to buckle . However. as shown in Fig . 

5 10(g) e"en this short beam buckles at a vertical displacement of over I in . For the cyclic loading history 

thiS beam sun~ves the first cycle ,,;thout buckling but buckles In the second cycle . demonstrating that 

inelastic cycling greatl), increases the tendency for a beam to buckle . Since a great degree of strain 

hardening had occurred prior to buckling. the subsequent push and pull capacities were greater than the 

compamon beam (/ = 20 in). However. buckhng did have a typicall)' debilitating effect 
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Fig. 5.10 (cont .) Effect of the location of the load along the length of the beam 

The cyclic response of a longer beam (J = 30 in) is compared with the standard (J = 20 in) in Figs. 

5.10 (e J) . While the 30 in beam clearly exhibits inferior behavior. the qualitative aspects of response are 

similar for the two cases. 

5.5 Effect of Cross-Sectional Dimensions 

Resistance to lateral buckling clearly depends upon the geometric propenies of the beam. In panicu

lar, the cross-sectional dimensions are expected to strongly innuence the behavior. The WIOxl2 section 

examined in the experiments is geometrically similar to many of the available· beam" type sections in the 

\\' I g and deeper classes, which are characterized by deep webs with relatively narrow nanges. For shan 

beams a great deal of the resistance to buckling comes from warping resistance which is dominated by the 

major moment of inenia of the nanges and the distance between them. Consequently, beam depth and 

nange "idth can be considered the most imponant geometric propenies of the beam. 

In this section we present a parameter study which is designed to assess the effect of width and height 

of the cross-section both for monotonic and cyclic loading conditions. Since a variation of the cross-sec

tional dimensions with no change of length would give exaggerated results, the total lengths of the 

propped cantilever are chosen to give the same elastic denection at the point of loading as that of the 

standard case. All the dimensions of the beam studied are described in Table 5. 1. ote that for the 

height of beam 1.5 times that of the standard case the height of load application is increased accordingly. 

The dot symbols have the same meaning as those of the previous study. 

The monotonic buckling response for a beam of depth 9.8 in (standard) and width of 4,5 and 6 in 

are given in Figs. 5.11 (a,b,g) . The cyclic response of these cases is given in Figs . 5. 11 (c-f). One can 

observe that initial buckling is delayed by increasing the ratio of width to height of the cross-section 

without a change in the depth . There is a dramatic delay in initial buckling at the width of 5 in, and at the 

width of 6 in the beam does not buckle until well into the strain hardening regime. One remarkable 

feature of the monotonic response is that the load versus rotation curves are nearly parallel for the three 
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Table 5. 1 Descr ipt io n of cross-sectional d imensions 

h (in) b (in) L (In) I (in) Zf (In) 

9.8 4.0 82.0 20 .0 9.4 (standard case) 
9.8 5.0 85 .4 20 .8 9.4 
9.8 6.0 88 .3 21.5 9. 4 

14.7 4.0 114 .6 27.9 11.9 

cases, despite the differences in venical displacements. The asymptotic post-limit capacity also mcreaSeS 

",th the "idth of the beam. 

Contrary 10 the case of variation in the width, changing the depth results in a relatively small change 

in the limit load, as shown in Figs . 5.12(a-d). However, the deeper beam exhibits a much sharper limit 

pOint than the standard case. The post-limit response curves converge right after initial buckling for 

monOionic loading, and the asymptotic post-buckling capacity is almost the same for both . The load - ro

tation curves are nearly identical (or the two cases. 

The cyclic responses of the twO cases are sho,," in Figs . 5 .12(c.d) . A peculiar feature can be noted 

in the first pull yielding region wherein a limit load occurs in the pull direction . Other"i se, the deeper 

section behaves like the shallower beam in the cyclic regime . One might conclude that increasing the 

nange ",dth is an effective way to control buckling whereas increasing depth is not. 

5.6 Effec t of To ta l Len gth and Ra tio of Load Locat ion to Total Beam Length 

The total length of the beam and the location of the load along the length are two other imponant 

geometric parameters . The location of load along the length of the beam has already been dtscussed. but 

It must also be considered in the study of different length beams. The effect of beam length ",II be 

exammed m thIS section . FIgure 5. 13 shows the effect of tOiallength with a constant raUO of the load 

locallon to the total beam length. ilL = 20/82. and the effect of the total length with constant locallon of 

load, 1= 20 In, respectively, on the elasllc hnearized buckling loads . The effect on the hneaflzed buckhng 

load of the load location along the beam length ( .... 'th conStant total length . 82 In) can be found In FI 

5 .9. The buckling load is quite sensitive to these parameters ",th the shoner beams showing a reluctance 

to buckle. The expe rimental values of these pa ra meters, shown on the sketch as dots, are generally In the 

transition region . In this section we study these parameters for both cyclic and monOtonic loadmg cases. 

The hmllload and asymptotic post-limit capacity decrease rapidly with an increase of the total length 

of the beam, at the constant ratio, ilL = 20/82, as sho,," in Figs. 5.14(a,b) . The post- limit degradallon of 

capacity decreases as the total length of beam increases, with nexible beams hardly showing a hmll pomt . 

As shown in Figs. 5 . 14 (c.d), there is a great decrease of pull yield load and and asymptouc post-buckhng 

capacity in cyclic loading response . 

FIgures 5.15(a.b) show the monotonic behavior of the beam for various total lengths but with a 

constant location of load at I = 20.0 In . In contraSt 10 the previous case . initial buckling load and asymp

totic post-buckling capacity do not dec rease very rapidly with an increase in length . Also the limit point 

does nOt get sharper with an increase of the total length . This aspect might be anticipated from Fig. 
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5.13(b ) . where the experimental value of this case is on a less sensitive regIon of the curve than the 

previous stud), . 

The response to cyclic loading is shown in Figs. 5 . 15 (c-f) . While the asymptotic post-buckling ca

pacit y shows no difference from that of the standard case. the pull yield load decreases and the sharpness 

of the hmit point disappears. as the total length of beam increases v,;th constant location of load . From 

these observations the total beam length has a great effect on the illltial-buckling. and the load location 

has the predominant influence on large deformation behaVIor and cyclic response. 

5.7 EffeCl of Residual Stresses 

ReSIdual stresses have long been recognized as having an important influence on the inelastic buck

hng of beams and columns. The beam stiffness is reduced by early yielding due to the presence of 

residual stresses. increasing the propensity to buckle . The pallern of residual stresses is well estabhshed 

for VIrgin sections. but this pattern may be changed by cyclic inelastic straining. Therefore we must 

reexamine our understanding of the effects of residual Stresses for cyclic loading conditions .The pallern 

that exlSIs in the cycle prior to buckling "ill determine the buckling characteristics of the beam for the 

subsequent cycle . A study of the influence of the distribution of residual stresses on beam buckling is 

made for both monotonic and cychc loading condItions . A basic polynomial residual stress pattern is used 

for the analytIcal approximation. as shown in FIg . 2.4. and the maximum values range from a to 00 in 

steps of 0 .2500 v.ithout changing the pallern . 

Since yielding v,;th residual stresses occurs well before initial buckling. the limit capacity decreases 

and the hmit point blunts ,,;th an increase in the maximum value of residual stresses. as shown in Figs. 

5.16 (a.b ). The response curves in the post-buckling range coalesce at large deformation . There is no 

dIfference in the asrmptotic post-buckling capacity and pull yield load on the cyclic load ing response . 
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This feature indicates that the residual stresses have no effect on large deformation behavior. They also 

have little effect on response to cyclic loading as shown in Figs . 5. 16(c-1). Even though there are some 

differences at and after initial buckling, compared with the response of the standard case, the response 

seems to be almost recovered through the straightening of the residual twist left by inelastic buckling , 

Judging from this observation, the effect of the residual stresses is weaker than the influence of the 

residual twist of the beam left by the buckling. 

S.B Effect of Right End Boundary Condition 

The degree of fixity at the boundary remote from the load is imponantto the buckling behavior . The 

clean suppon conditions realizable in an analytical environment are difficult to implement experimental

ly , Consequently, the end conditions in the experiment are unknown and need to be examined . Three 

idealized right end boundary conditions are considered here: simple(translation and torsional rotation 

fixed ), torsional warping (simple plus warping fixed), and/iud(a ll fixed). These ideal conditions should 

give Insight into the boundary conditions that existed in the experiments. A study of the effect of the 

right end boundary conditions is made for both monotonic and cyclic loading conditions. The boundary 

condItion of the standard model is the simple suppon. 

As expected, initial-buckling and subsequent post-buckling capacities increase as right end fixit y is 

increased, as sho\\n in Figs. 5. 17 (aJ) . Torsional warping reStraint delays inttial buckling and increases 

limit capacity . For the fixed suppon, the limit capacity increases much more over the simple suppon than 

does the addition of only torsional warping restraint but initial buckling occurs at almost the same venical 

displacement as the simple case . This difference in buckling behavior could be attributed to the differ

ence in inillal stiffness . The load-rotation curves are nearly parallel and have different asymptotic post

buckling capacities. The pull yield load and asymptotic post-buckling capacity of the fixed suppon are 

much greater than those of the simple suppon condition. However, qualitative aspeclS of response for the 

three cases are similar for cyclic loading. From these observations, it can be recognized that restraint of 

torsional warping helps resist the initial buckling only, while full fixed has an effect on the response 

throughout the cyclic load history. 

5,9 Summary 

The general behavior of the test specimens \\;th respect to various constitutive, topologic , and geo

metric parameters has been examined in this chapter. The main observations are summarized as follows : 

(I) Effect of constitutive parameters.- The effect of material yield strength has a strong impact on 

the limit capacity . However, the limit capacity appears simply to be proponional to the material 

yield strength. Initial buckling generally occurs before the onset of strain hardening for the current 

loading history . Most yielded zones remain on the yield plateau for a little while after initiall), 

buckling, but some points reach strain hardening with increased cycling. The influence of Baus

chinger's effect, as realized through the kinematic hardening parameter of the current cyclic plas

ticity model, was also found to be imponant to cyclic response . 

(2) Effect of eccentrically placed load.- The limit capacity is very sensitive to slight horizontal load 

eccentricities . However, onl)' large initial load eccentricities have an effect on large deformation 

post-buckling behavior and subsequent cyclic response , 
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(3) Effect of the height of load application.-lnitial buckling capacity and asymptotic post-buckling 

capacity is very sensitive to the height of the load. The limit capacity and post-limit capacity 

increase with a decrease of the height of load application . The buckling of the beam is delayed as 

the application of load approaches the shear center of the cross-section of beam in the push 

direction of load . The beam is quite reluctant to buckle when the load is applied near the shear 

center. and is generally stable in the pull direction . 

(4) Effect of the load location along the beam length.- The location of load along the length of 

beam significantly influences the initial-buckling load. the asymptotic post-buckling capacity. and 

pull yield load . Initial buckling is delayed as the location of the load mOves toward the fixed end. 

even to the point of occurrIng affer the first cycle in the cyclic loading condition in the current 

displacement history if the load is close enough to the fixed end . 

(5) Effect of cross-sectional proportions.- The depth of the beam has much less impact on the 

initial buckhng capacity. large deformation post-buckling behavior. and subsequent response to 

cyclic loading than does the flange width . The importance of warping resistance for short beams is 

a plausible explanation for this observation . 

(6) Effect of total length and ratio of load location to total beam length.- Both the total length 

(">lth constant ratio of the location of load to the total length) and the ratio of the distance of the 

load from the fixed end to the total length (with constant location of load) have a large mfluence 

on the limit capacity. The total length (with constant ratio of the location of load to the total 

length) also has a large effect on the as)'mptouc post-buckling behavior under cyclic loading. 

(7) Effect of residual stresses.- The residual Stresses have an influence on the limit capacity of the 

beam. but have no effect on large deformation post-buckling behavior and subsequent response 

to cyclic loading. The influence of the residual stresses is apparently overshadowed by the effects 

of the rtsidual t"ist in the beam left after inelastic buckling. 

(8) Effect of the boundar)' condition at the right end.- The fixit)' of the end remote from the load 

affects the limit capacit)', the pull yield load, and the asymptotic post-buckling capacll)' . Clearl), 

full fixity has a greater effect than does the addition of only torsional warping restraint. However. 

the lalter form of restraint has a surprisingly large amount of influence on initial buckling behavior . 
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Cbapter 6 

An AnalJ1ical Study of tbe Effects of End Flexibility and Pre-yielding 

on the Response of the Test Specimens 

The "fixed" end of the propped cantilever beam in the experiments was actually nexible because of 

the existence of the load cell and the bolted connections between the test piece and reaction block . This 

added nexibilny has an imponant innuence on the response of this type of system . It is. for example. well 

known that the linearized buckling load of elastic systems is reduced by the presence of additional nexi

bility (the proof is in the Rayleigh quotient) . It is also known that camber and pre-buckling denections 

have an effect on the buckling response of a system. Some of the differences in response of the more 

nexible system will come from the presence of greater pre-buckling denections . 

In this chapter we study the effects of end nexibility on the behavior of the test specimens in order to 

make qualnative judgements about the comparison between experiments and theory and to generahze 

the experimental results. The end nexibility is modeled with a beam segment which can have propenles 

different from the test span . The model is reminiscent of the load cell in the tests and thus will be called 

the "load cell" m the sequel. even though there is no need for a load cell in the theoretICal model The 

main dIfference between the load cell and the test span IS the difference in the torsional rigId It)' . An 

element "ith a square tube cross-section (called box-StCIion in the sequel). without warpmg degrees-of

freedom. is used to model the load cell (the road cell in the experiments was a Circular tube) . The 

response will also be compared with that of two beams having load celis of low torsional rigidity. either a 

beam with the same cross-seCtion as the teSt piece or one with one quaner aga in as much depth . The 

cross-sectional dimensions of the model load cells are given in Table 6. 1. The placement of the load cell 

is as sho".., m FIg . 4. 13. and its length will be designated as I, . 

Another Imponant innuence on the buckling behavior of beams IS the hIStory of melasllc deforma

lion . In panicular. the initial buckling reponse of the test specimens seemed to be affected by pre-YIeld

ing from an mitial pull loading. The beam properties which may be innuenced by pre-yielding include the 

residual stresses and the imtial camber of the beam as it enters the initial push buckling cycle . Willie the 

issue of pre-yielding is not directly related to end Oexibilit)'. it is studied here because we wish to examme 

the effect of end nexibility for beams which have no pre-yielding and for beams which do have pre-yield

ing. 

In this chapter. the effect of end nexibility in the fixed end IS examined for monotonic push and pull 

loadmg sequences as well as cyclic loading. varying the length and cross-sectional dimenSIon of the load 

cell. The imponant effeclS of end nexibility are summarized in Seclion 6.4. 

Table 6. 1 Cross-sectional properties of the model load cells 

h b I I, EI GJ 
Section Type 

(in) (in) (in) (in) 106 (in' - k) 10' (In' - k) 

box-secllon 6.0 6.0 0.5 0.5 2.16 1296 
I-secllon 1 9.82 4.0 0. 18 0.2 1.58 0.4 5 

I-section 2 12.3 4.0 0.18 0.2 2.64 0.542 
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6.1 The Effect of End Flexibility on the Linearized Bucklin, Loads of the System 

As before, we will use the elastic linearized buckling analyses as a point of depanure in studying the 

effects of end nexibility on the buckling of the propped cantilever system. The linearized buckling load is 

intereSting because it exhibits the effects of geometry on the eqUilibrium of the system apan from the 

effects of the constitutive model. One can thus learn a great deal about the stability characteristics from 

these analyses even though the system of intereSt exhibits inelastic buckling. lllis same reasoning lies at 

the hean of most design formulas for inelastic buckling. The linearized buckling analyses are useful for 

establishing a context for discussing stability, and become truly useful only when results on inelastic 

buckling are also examined. Inelastic buckling will be treated in the subsequent sections. 

The presence of a load cell at the fixed end of the beam gives rise to essentially two effects: end 

rotation ,,;th concomitant in-plane venical denection from the rotational nexibility and end displace

ment with concomitant in-plane vertical denection from translational nexibility _ While the load cell 

couples these effects. it is instructive to examine them independently first. Figure 6.1 shows the effects of 

500 500 

400 ~k ( 
~- <00 :ow.. 
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~ I ~ 
300 I L. 82 III - 300 ,- • I " " ! ! L. 12 III 
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100 r- __ push - 100 ---------- , 
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3El /kL 12EI /kL' 

10 

Fig. 6.1 Comparison of linearized push and pull buckling loads for end flexibility 

(0) rotational nexibility in the absence of translational nexibility and (b) translational nexibility in the 

absence of of rotational nexibility on the elastic linearized buckling load of the propped cantilever sys

tem. For both of these cases the load is applied at the standard value of 9.4 in above the shear center of 

the cross-section. The length of the beam is L = 82 in. with load positioned at 1= 20 in from the left end . 

The beam has the standard cross-section (WIOxI2) and the simple end resists venical and lateral dis

placement. torsional rotation. and warping. Results are given both for the push (dawn) and pull (up) 

directions, and are expressed in terms of a nondimensional ratio of beam stiffness to spring stiffness . 

The elastic linearized buckling load decreases with increased nexibility of the suppon. as expected. 

in both cases . One can again observe the effect of load height with respect to the shear center in the 

greater buckling loads for pull as opposed to push loading. Note the extreme sensitivity of the pull buck

ling load to end nexibility. For example. the system with a rotational spring has a value of 435 k for the 

rigid case. which decreases to a limiting value of about ISO k as the nexibility increases . The push load 
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case is not nearly so sensitive, going from about 105 k to a limiting value of 76 k. It is interesting to note 

that there is little difference between the push and pull buckling loads for a system with a relatively 

flexible translational spring . It is apparent that the translational flexibility has a much greater influence on 

the buckling load than does the rotational flexib ility. 

The load cell provides a coupled influence of rotational and translational flexibility . In fact, the 

linearized stiffness matrix for the rotational and translational degrees of freedom already defined is given 

by the expression 

(6 .1) 

where I, is the length of the load cell and the moment of inenia, I , is roughly proponional to the depth of 

the load cell cubed . 

The variation of linea rized buckling load with the length , I" and depth , h, of the (box-section ) load 

cell is shown in Fig , 6.2 . The propenies of the test piece and loading are all held fixed at their standard 
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Fig . 6.2 Comparison or linearized push and pull buckling load ror the model load cell 

values as the tWO parameters indicated are varied . In (a) the cross-section of the load cell ha s depth h=6 

in and thickness 1=0. 5 in , while in (b) the length of the load cell is I, =1 2 in . The dots (e) on the curves 

indicate the standard value of the parameter. As in the case of the uncoupled springs, the buckling load 

with the load cell decreases rapidly with increasing flexibility, realized either by increasing the length of 

the load cell or by decreasing its depth . For long load cells it would appear that the translational fle xibility 

controls the buckling behavior. This tendency is expected since the translational flexibility is proportional 

to I: while the rotational flexibility is proportional to I, . For the short load cell (1, =12 in ) the push and 

pull buckling loads remain quite different for all values of h until h approaches zero . In general. the 

buckling load is not very sensitive to the depth of the load cell , particularly in the push direction of 

loading . 
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The differences in the buckling loads for the cases studied so far are due to differences in the planar 

stiffness of the system . Since torsion is the predominant mode of buckling deformation, one might sus

pect that the torsional stiffness of the load cell would have an influence on the buckling behavior . To 

examine the effect of the torsional stiffness of the load cell we consider the three cross-sections de

scribed in Table 6.1: the box-section of the previous studies and two I-sections of different depths. The 

variation in buckling load with the length of the load cell for push loading for these three load cells is 

shown in Fig. 6.3. The curve of I-seclion I represents the response with a load cell with the same 
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Fig. 6.3 Effect of torsional rigidity of the model load cell 
on the elastic linearized buckling load 

cross-sectional dimensions as the test piece, while the curve of I-section 2 represents the response with a 

load cell with an I-section 1.25 times as deep as the test piece . Table 6.1 shows the (in-plane) flexural 

and torsional rigidities of each cross-section . I-sections 1 and 2 have very small torsional rigidities (Gf) 

compared with that of the box-section. but have comparable flexural rigidities (Ef). The flexural rigidity 

of I-stction 2 is even larger than that of the box-section. As expected , the lower is the torsional rigid ity, 

the lesser is the buckling load . However, the torsional stiffness of the load cell appears to have a smaller 

influence on buckling than does in-plane flexibility. For short load cells, the differences in buckling 

loads are much less because of the influence of warping resistance in the I-beams . 

6.2 The Effect of End Flexibility on the Monotonic Inelastic Response of the System 

In the previous section the test piece and load cell were assumed to remain elastic during buckling . 

For the geometric dimensions considered here , elastic buckling will seldom, if ever, occur. Consequent

ly, we must re-examine the buckling behavior In the light of inelastic material behavior. The constitutive 

parameters studied in Chapter 5 will not be as extensively studied here . Rather we will adopt the standard 

values to re-examine the effects of the length and depth of the load cell. In this section we consider the 

monotonic response both for push loading and for pull loading . The subsequent section is devoted to the 

consideration of cyclic loading. 

90 

• • 
• • ~ 

• • , 
• 
I 

• • 
• , 
• 
I , 
• 



I 
I 

• , 
I 
I 

• , 
I 
I 
I 

I 

• 
I 

• 
I , 
• 

... 
6.2.1 Variation or Parameters ror Pull Loading 

We have established from the elastic analyses that pull loading is inherently more stable than push 

loading. One would expect this increased tendency toward stability to carry over to the inelastic case . In 

fact. one can reason that the inelastic case exhibits this characteristic more strongly because of the 

likelihood of generalized yielding intervening before buckling can take place. The relatively large inelas

tic deformations act to camber the beam into an even more favorable position for resisting buckling by 

moving the point of application of load funher from the average line of shear Centers of the system. For 

this reason we will generally consider pull loading to be stable. recognizing that buckling may take place 

at very large deformations . 

The monotonic response of the beamlload cell system is shown in Fig. 6.4 for (a) various lengths. 

from I, =0 (without load cell) to I, =50. and (b) for various depths. from h=2 to h=oo (without load cell). 

of the standard box-section load cell. One can observe generally the same behavior for both parameters. 

'.i' 40 ~ .., 
.§ 

30 'll • 27 "&. .. 
~ 

20 • 
" • 
" • " • 12 

(a) A - lin (bl Ir-G "" 
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Fig . 6.4 Monotonic response for pull load wit h model load cell 

For short load cell lengths and for deep load cell sections the initial stiffness is quite large. giving way to a 

yield plateau on which the resistance remains approximately constant. For parameter values which make 

the s),stem more nexible. greater deformations are required to achieve the full plastic capacity . The limit 

capacit)' for long or shallow load cells is reduced because of yielding of the load cell rather than the beam 

itself. The limit capacity of the system can be reasonably predicted by simple plastic theory to be 

for beam yielding 
(6 .2) 

for load cell yielding 

where V. and M, are the shear and bending capacities of the beam. respectively. M, is the bending 

capacity of the load cell. L is the length of the beam. I is the distance between the end of the beam and 

the point of load . and I, is the length of the load cell. The beam mechanism equations assume that the 

short beam segment yields in pure shear while the load cell mechanism assumes that the load cell yields in 

pure nexure.The capacities taken from Fig . 6.4 (finite element model) are plotted along with the values 
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from Eq . (6 .2) (plastic analysis) in Fig. 6.5 which also shows the two possible collapse mechanisms. The 

parameter value determining which of the two mechanisms controls can be found by equating the two 

expressions in Eq . (6 .2) . For the values used here the transition occurs at I, =18 in and h=5 in . The curve 

is nat for the beam mechanism because the load cell pla ys no role . As one would expect, the capacity 

drops as the length of the load cell increases and as the depth decreases . The pull response for the system 

having an I-section for the model load cell is compared with the box-section load cell of depth h=S in 

Fig. 6.6. The responses are qualitatively similar . 

6.2.2 Variation of Parameters for Push Loading 

Unlike pull loading, push loading is generally unstable, showing a limit load with declining post-limit 

behavior . The main difference between elastic and inelastic buckling is that the latter exhibits a limit load 
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Fig. 6.6 Monotonic response for pull load with I-section load cell 
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with unstable post-buckling behavior whereas the former exhibits stable post-buckling behavior. One 

might expect that the effects of end flexibility for the Inelastic case would be qualitatively similar to the 

elastic one, that is that end flexibility reduces the monotonic limit capacity. We demonstrate through the 

parameter study in this section that such is not the case . 

The monotonic response under push loacling is studied for variations in the length of the model 

(standard box-section) load cell in Fig. 6.7 and for variations in the depth of the model load cell in Fig. 

6.S. Several imponant features can be seen in the study of the variation of end flexibility. For shon load 

cells, the system buckles laterally shonly after yielding initiates. For longer load cells, buckling does not 

take place until considerable yielding has taken place . This behavior can be explained by observing that 

for load cells of length 15 in and shoner the load cell remains elastic and yielding occurs in the beam . 

Loss of torsional stability is then governed by the reduced modulus of the yielded material in the beam. 

Load cells IS in and longer yield before the beam, but since the load cell is a tube the yielding does not 

compromise the torsional resistance of the system to the same degree as the case in which beam yielding 

occurs. As a consequence, the system is able to deform inelastically in the plane of loading longer if the 

load cell yields. Note that for the systems with load cell yielding. buckling occurs with a snap back in 

vertical deflection to accommodate the rotation . The load versus rotation curves are remarkably similar 

for all of the systems for variations in load cell length, with all curves coalescing at a moderate value of the 

rotation . Significant differences in the load-rotation response can be seen for cases in which the depth of 

the load cell is less than 4 in. In these cases, the asymptotic post-limit capacity is strongly affected by the 

cross-sectional dimension of the load cell . 

The influence of torsional rigidity of the load cell can be seen by examining Figs. 6.S(t,}), in which 

the system with I-section (I-section 1) load cell is compared with the system with 5.0.5 in box-section. 

The dimensions of the two sections are such that the in-plane elastic stiffnesses are the same . The length 

of the load cell is 12 in, so yielding of the box-section load cell rather than the beam end is expected . 

Since I-section I is the same as the test piece, yielding is also expected in the load cell . The I-section 

load cell is deeper and thus it yields well in advance of the box section. and has a much smaller limit 

capacit),. Interestingl)', the post-hmit behavior of the two systems is nearly identical. It is eVIdent that the 

torsional stiffness of the load cell has an imponant influence on the monotonic buckling response o( the 

system . 

The limit loads (or the various values of the parameters, taken (rom Figs . 6.7 and 6.S. are ploued 

against the values of the parameters in Fig . 6.9. Remarkably, the limit capacity o( the system initiall), 

increases with an increase in flexibility . One possible explanation (or this anomalous behavior is that. 

while torsional flexibility is reduced with these parameter variations, the main influence is a reduction in 

in-plane flexural stiffness. As the system becomes more flexible in the plane of loading. it can deflect 

more under smaller loads. With the load applied above the shear center, as it is for push loading, the 

in-plane deflection represents movement o( the point o( load application closer to the average line o( 

shear centers o( the system. Such a deflection would be (avorable (rom the point o( view of torsional 

stability . Eventually, the negative e((ect of reduction in torsional stiffness catches up with the positive 

effect produced by vertical deflection, and the limit capacity then decreases with increased flexibility as 

expected . 

The variation of limit capacity with parameter values for pre-yielded beams is also shown in Fig. 6.9. 

The response of pre-yielded beams will be discussed in Section 6.3. Briefly. a pre-yielded beam is one 
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which is first pulled to a prescribed value, generally causing yielding, and then pushed to its limit capacity. 

The difference in buckling response would therefore be a ramification of pre-yielding and might include 

material softening, reSIdual stresses. and residual inelastic camber. The pre-yielded beams show the 

same anomalous tendency to increase strength with increasing end flexibility, but to a greater degree . 

The ,'alue of the parameter giving the maximum capacity is about the same for both virgin and pre

yielded beams . 

6.3 The Effect of End F lexi bility on th e Cyclic Inelastic Response of th e System 

There are several features of the response to cyclic loading which transcend the linearized buckling 

and monotonic response studies . Among these are the hysteretic stability of the response, particularly in 

the pull regime. the rate of recovery from buckling when the load direction is reversed. and the abihty of 

the system to dissipate energy . In this section we study the cyclic response of the propped cantilever beam 

while again varying the length and cross-sectional dimensions of the load cell in an effort to expose their 

influence on cyclic response. The influence of pre-yielding. whereby the cyclic loading program is Slarted 

with an (possibly) inelastic pull half-cycle, is also examined . 

The parameter studies are organized in essentially the same manner as the inelastic monotonic reo 

sponse studies . For each parameter variation, a complete cyclic response history is generated, and 

plotted along with the response history of the standard case . As before, both the vertical displacement 

response and rotation response are presented. The loading programs for all cases are the same, with the 

displacement history specified at the point of load application . Since the vertical displacement is reported 

at the shear center, the loading histories appear different but are not. 

The influence of the length of the load cell on the cyclic response is shown in Fig. 6.10 for values of 

the length 011, = 0 (without load cel/) , 6, 12, 18, 21, 24, 27, 30, 33, 36, 40, and 50 in . Several interestmg 

features of the response can be noted . For small values of the load cell length the increased flexibility is 

readily apparent in the initial buckling response as well as in the elastic unloading from the pull yielded 
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state . On the other hand the response curve for the pull direction of loading remains similar to the case 

\lithout a load cell, panicularly as full yielding develops in the pull direction . As the length of the load cell 

increases beyond 24 in this similarity begins to vanish because the flexible system is less able to reach the 

full yield value as it is still unwinding from the buckled state . Also at a length of 24 in the increased 

flexib illlY causes initial buckling to be delayed until the second cycle . In general, as the flexibility of the 

system increases, the response looks less characteristic of the shan beam (because it is actually no longer 

a shon beam), degenerating more and more to\l'ard flexible elastic response . 

The influence of the cross-sectional dimension of the load cell on the cyclic response is shown III Fig. 

6. 11 for values of the depth of h=8, 5.25, 5, 4, and 2 in . In Figs . 6. 11 (l,l) the cyclic response \lith 

I-section I is compared to the cyclic response without load cell . The variation of the load cell dimensIOns 

has a similar effect to changing the load cell length . Pull yielding remains achievable for large values of 

depth, .... ith degradation due to flexibili ty for depths of 4 in and less. The I-section load cell also shows a 

similar t)'Pe of response. 

If the load is applied in the pull direction first, the system can experience yielding before buckling . 

These loading cases are termed pre-yielding . The previous two parameter studies on end flexibility have 

been repeated for a loading history that includes pre-Yielding and are sho,,'Il in Figs . 6.12 and 6. 13 As 

indicated in the previous section, pre-yielding has a noticeable effect on the subsequent buckling cycle 

because of the alteration of the residual stress pan ern. the presence of residual cambering. and matena l 

softening . These effects generally act to reduce the limit capacity. After the initial buckling cycle. ver)' 

Iinle dIfference from the case without pre-yielding can be seen . This observation is nOl surprising since 

the important effeclS all relate in one way or another to material inelasticity and would tend not to be 

remembered as cycling progresses . 

6. 4 Summary 

The linearized buckling analyses showed that the (elasuc) buckling load of the propped canulever 

beam is quite sensitive to the presence of in-plane end flexibility. exhibiting a sharp drop in CapaCll) for 

small "alues of flexibility. Contrary to our intuition. which is generally based upon the results of Iineanzed 

buck ling analyses . the inelastic limit capacity of the system increases with an increase in the end nexibillt) 

for small values of nexibilllY . The optimal length and depth of load cell for the test pieces examined here 

were around I, =12 .0 in and h=6 .0 in . Buckling is. on the whole. delayed by greater in-plane nexiblltty 

because the deformation demands on the flexible system are less than the rigid system. The presence of 

low torsional flexibility along with low flexural nexibility reduces the improvement obtained from flexural 

nexibility alone . Torsional nexibility at the fixed end greatly innuences the buckling capacity of the 

beam. and has an effect on the large deformation behavior and the response to the cyclic loading. 

Small values of flexibility innuence only the initial buckling cycle of the cyclic loading response to any 

important degree . Subsequent response is quite similar to the rigid end case . The most imponant aspect 

of cyclic loading is that buckling \lill eventually occur at modest deformations if cycled enough times. 

This tendency to buckle may not be apparent from a monotonic analysis . 
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Chapter 7 

An Anal}1ical Study of the Innuence of Lateral Bracing 

on the Lateral Buckling of the Test Specimens 

The primary mode of response of a beam which buck.les lateraUy is lateral motion and rotation of the 

cross-section . If restraints are added to the system to prevent these motions. while at the same time 

al1o,,;ng planar motion . the performance of a torsionally flexible system can be greatly improved. Laural 

bracing . as it is called. has long been used In design practice to enhance the carrying capacity of I-beams 

and other sections which show a propensity toward lateral buckling. While design specifications address 

the issue of lateral bracing. essentially through the artifice of the so-called lallrally unbraCtd ling/h . the 

understanding of what constitutes adequate lateral bracing remains rather primitive . 

Lateral bra clOg can be realized in a variety of ways. either through the anachment of discrete ele

ments with axes perpendicular to the ma in member . or through the continuous attachment of a lateral 

restraming sYStem such as a floor slab . In mOSt practical circumstances the degree of fixity of the bracing 

member to the beam is not well kno"T1 . making an assessment of the effectiveness of bracing difficul t. If 

not impossible . These problems have hampered the development of rauonal design crneria for lateral 

bracing. JUSt as important parameters (such as the height of load action) are often not reflected in deSIgn 

formulae. man)' factors which are critically important to lateral bracing performance do not appear to 

design formulas . Some of these factors will be discussed herein for the apphcatlon to short beams. 

The lateral bracing system is an integral pan of the beamlbracing system . and the response wi ll 

depend upon the interaction of the twO components . While this observation is true for all laterally braced 

systems. it is partlcularl)' important for the application to shon beams because the in-plane forces can be 

qUIte large at Incipient buckling. After buckling, a component of these large forces must be absorbed by 

the bra ClOg system . If the strength of the brace is nOt sufficient to resist compressive buckling. then the 

bracelbeam system buckles simultaneously . If the strength of the brace is sufficient to resist the induced 

forces "~thout buckling. then the beam buckles into a shape which respects the persisting constraint. In 

many cases it ma y nOt be feasible to completely prevent buckling. but it may be imponant to delay it. In 

th IS chapter we examine bracing systems which are in that intermediate range where the brace itself IS 

near ItS critical SIze . We consider only bracing against lateral motion and not against rotation ; so eve n if 

the brace does not buckle . lateral buckling of the system may not be completely prevented . 

A number of studies have been made on the effectiveness of various types of lateral restraint and on 

the strength and stiffness required to inhibit buck.ling of elastic beams. Mutton and Trahair (1973) inves

ugated the stiffness requirements for midspan rotational and translational bracing of perfect. elasuc 

beams acted upon by either top-flange loading or by shear-center loading. Nethercot (1973) also Stu

dIed the effectiveness of translational and torsional restraints on simply supported elastic I-beams. focus

sing on the relationship between the height of the applied load and the geometric placement of the 

bracing system. Kitipomchai. Dux and Ritcher (1983) investigated the influence of the restraint location 

along the length of an elastic cantilever beam. 

Lay and Galambos (1966) treated the problem of laterally bracing beams whIch have a propensit)' to 

buckle inelasticall),. and developed design criteria for cases in which the required plastic Strain IS hIgh . 
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These rules are based on a rotational capacity consistent with the beam unbraced length slenderness 

ratio . They calculated a required cross-sectional area for axial strength where the stiffness of brace must 

be satisfied, and also indicated that flexural strength and stiffness requirements must be satisfied in 

addition to the axial strength and stiffness when the compression flange is braced. 

p 

1 
brace location 

~ 
f 
~ :l 

33 in 
I" 

Fig . 7.1 Geometry of the lateral bracing system 

In this chapter, the effect of adding a discrete translational bracing system, similar to that used in the 

experiments. to the test specimens is examined analytically . Figure 7.1 shows the position of the brace 

with respect to the cross-section and with respect to the beam axial coordinate. The influence of the 

height of the bracing above the shear center of the beam, the location of the brace along the length of the 

beam, and the strength and stiffness of the brace are examined through parameter studies with the 

anal)~ical model. The brace positions examined in this study include li = 4.31 ,3 .8 1, 2.81, 1.81 ,0.0, 

-1. 81, -2 .81, -3.81, and -4 .31 in. The height of 3.81 in (-3.81 in) corresponds roughly with the brace 

position used in the experiments, that is, one inch below (above) the top (bollom) flange . Rectangular 

tube (box) sections, ranging in area from 0.032 in' to 0. 128 in', are used here to anal~icall)' model the 

braces . Table 7.1 lists the properties of the braces examined in the main parameter studies . The braces 

used are quite slender, h3\ing (A/f)" = 24. The location of the brace along the length is varied from I" = 
15 in to 50 in in increments of 5 in. 

Table 7.1 Properties of the lateral bracing members 

t A" El, - El, - O.6GJ 
(in) (in 1) (in' - k) 

0.016 0.032 40 
0.020 0.040 60 
0.032 0.064 80 
0.048 0.096 120 
0.064 0.128 160 

The brace configurations examined here consist of a brace on only one side of the beam. Depending 

upon the geometry of the initial lateral imperfection (which determines the direction of buckling) , the 

brace will be either compressed (brace on the same side as the eccentricity) or tensed (brace on the 

opposite side of the eccentricity). Clearly, the response in these two cases will be different if the com

pressed brace buckles since the tensed brace cannot buckle . The effect of the position of the bracing with 
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respect to the side of the load eccentricity is also studied, using a fully nonlinear model for the brace as 

well as the beam to capture system buckling, 

In the experimentS, the bracing rods were pinned at both ends . Here we consider two brace models: 

one in which the brace is fixed at the end remote from the specimen and pinned to the specimen and the 

other in which the brace is pinned at both ends . In the latter case it is necessary to give the brace initial 

geometric imperfections in order to analytically model brace buckling. In the former case the deforma

tion of the system before buckling causes flexure in the brace making it possible to buckle without initial 

geometric imperfections. Because the amplitude of the initial geometric imperfection of the brace may 

affect the response. the pin-fixed brace is employed for most of the parameter studies in this chapter . 

The two different brace boundary conditions are compared subsequently . 

The main advantage of analytic modeling over experimental analysis is the ease with which different 

geometric configurations can be implemented. The geometric and material propenies of the model 

beams studied in this chapter are the same as those used in the experiments and in the previous analytical 

studies. The fixed end is considered to be rigid for the purposes of these studies and the loading programs 

do not include pre-yielding. Standard values are used for the height and eccentricity of the applied load 

The responses are compared to the (analytic) response of the test beam without bracing wherever possi

ble. 

The parameter study is organized in the following way: FITst the effect of brace location along the 

length of the beam is examined holding the brace size and bracing height fixed . The effect of brace size 

and bracing height are examined for bracing placed at the pOint of loading, first for a brace on the same 

side as the load eccentricity and subsequently for a brace on the oppOsite side of the load eccentncity . 

The effect of different brace cross-sectional types is then examined while holding the area of the brace 

and the location constant . Finally, the effect of end fixity conditions of the brace is examined . In each 

case inelastic monotonic and cyclic responses are considered . 

7. 1 The Errect of Brace Position along the Length of the Beam 

The position of the load along the length of the beam is of fundamental imponance to the buckling 

behavior . There are , of course, many pOSSibilities for bracing arrangements and we will restrict our atten

tion here to a single discrete brace placed somewhere in the span. It is perhaps obvious in the present 

case. "ith a single point loading. that the best brace location "~II be at or near the point of loading. In 

fact. many design specifications require lateral bracing at pOintS of load (or at points where plastic hinges 

are likely to form) as a conservative precaution and in lieu of more rigorous knowledge . In this section we 

demonstrate that the above observation is true and make an effon to quantify the trade-off represented 

b)' other bracing locations. 

The inelastic monotonic responses of the propped cantilever beam with bracing alternatively at I" = 
IS. 20, 25, 30. 35, 40, 45. and 50 in are shown in Fig. 7.2 for the brace having area A" = 0.064 in' and 

bracing elevation Ti = 3.81 in. The response of the beam without lateral bracing is also shown in the figure 

for comparison . One can observe the clear superiorit)' of bracing in the vicinity of the applied load . 

Interesungl),. the response for bracing up to 10 in past the load point is nearl), identical to the response 

for bracing at the load point. This observation makes sense because the load is located so near to the 

fixed end . One can also observ~ that there is vinually no improvement in behavior for bracing locations 
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Fig. 7.2 Effect of the position of the load along the length of the beam 

0.' 

even moderately remOte from the point of loading. In the sequel. the brace will be positioned at the point 

of loading. 

7.2 The Effect of Brace Size and Elevation with Respect to the Shear Center 

The primary parameters studied in this section are the size of the brace and its elevation with respect 

to the shear center of the cross-section . Since push loading is critical with respect to lateral stability. and 

since the top flange is in compression for this sense of loading. it is expected that bracing above the shear 

center will be most effective . We demonstrate the veracity of the previous assertion and make an effort to 

quantify the importance of this effecl. The brace sizes are chosen to bracket the transition from cases 

where the brace remains straight while the beam buckles to cases where the brace and beam buckle 

simultaneously. The parameter domain is covered by alternatively varying brace size and brace dimen

sion ""th results for both monotonic inelastic buckling and cyclic buckling. The responses fo r braces 

placed on the same side as the eccentricity (compression braces) are examined first and then compared 

to those of braces placed on the opposite side as the eccentricity (tension braces) . 

The effect of varying the size of the brace while holding the elevation fixed at3.81 in is shown in Fig. 

7.3. As the brace size increases both the limit capacity and the vert.ical deformation capability increase . 

Braces larger than A" = 0.096 in' allow the achievement of the full plastic capacity of the beam in planar 

bending before buckling. It is noted that for braces smaller than 0.096 in' the brace buckles in the plane 

in which it is bending. while those larger do not buckle . It is clear that this type of point bracing will delay 

but not prevent buckling. The load-rotation relationship is nearly independent of the brace size . The 

response curves for the cyclic loading cases demonstrate that after buckling the system behaves as if it 

had nOt been braced. even for relatively large braces. This same observation was noted in the experi

ments. The dot symbols (e ) on the curves for monotonic loading response represent points of equal 

vertical displacement at the point of load application. and the point were the load direction is reversed in 

the first cycle of the cyclic loading. 

The effect of varying the elevation of the brace while holding the area fixed at 0 .040 in' is shown in 

Fig . 7.4 . In (a ,b) one can observe that the sYStem exhibits higher limit loads and has greater vertical 
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deformation capability the higher the brace is placed above the shear center . The brace elevated to 4.31 

in allows the beam to reach its full planar capacity before buckling. In (c, d) and (t,!) one can observe the 

ineffectiveness of bracing below the shear center . The fact that the response for an elevation of -1.81 in 

is identical to the response for the system without bracing indicates that during buckling the beams rotates 

about that point in the cross-section . It is interesting to note that the center of rotation remains fixed 

even in the presence of progressing inelasticity and large rotations . The cyclic responses again demon

strate the ineffectiveness of bracing in the post-buckling regime . 

The combined effects of brace size and elevation are shown again in Fig. 7.5. In each plot, four 

different bracing sizes (A" = 0.000, 0.048, 0.064, 0.080) are shown for a single value of the elevation . 

Each subsequent plot has a lower brace elevation (li = 4.3 10 2.81, 0 .00, -1. 81, -2.81. -4.31). While this 

figure presents no new information. it helps to more clearly show the trade-off between brace size and 

brace elevation. Again, the ineffectiveness of bracing below the shear center is demonstrated . 

The previous studies were for beams braced on the same side as the load eccentricity. Under these 

conditions, the brace is compressed at the point of buckling and, if it is slender enough, it will buckle too . 

We next examine the behavior of the system with brace buckling precluded by bracing on the opposite 

side of the eccentricity . The previous parameter variations are repeated for the opposite side bracing 

case . The responses of the two configurations are compared for the cyclic loading history. 

Figure 7.6 shows the effect of brace area for a fixed elevation of 3.81 in for the case where the beam 

is braced on the opposite side as the eccentricity. Some important diUerences from the case with bracing 

on the same side as the eccentricity can be seen by comparing Fig. 7.6 with Fig. 7.3. For monotonic 

buckling. the responses for the smaller braces are quite similar to those of the present case . However. the 

tensile braces show a much greater vertical deformation capacity for the larger sized braces . One can also 

observe that the load-rotation curves for the tensile braces clearly depend on the brace size, even at large 

deformations. whereas the curves for the compression braces did not show this dependency. One conse

quence of this behavior is that the tension braced systems do not tend toward the same asymptotic 

post-buckling capacity . Comparing the cyclic responses of the two cases one can see the clear superiority 

of the tension brace . Note that the tension brace exhibits subsequent buckling loads which are grealer 

than the asymptotic post-buckling capacity . This phenomenon was also observed in specimen 5 of the 

experiments . In spite of the better behavior , the tension braced system still shows only marginally better 

performance over the unbraced system in the post buckling range . 

The effect of brace elevation for fixed brace area is shown in Fig. 7.7 for the case of opposite side 

bracing. These results can be compared with eccentric side bracing in Fig. 7.4 . Considerable increases in 

the load carrying capacity and vertical deformation capability are gained by opposite side bracing for 

elevations above the shear center . Virtually no benefit accrues from opposite side bracing below the 

shear center . Again, opposite side bracing has a large effect on the first cycle of loading, but little effect in 

subsequent cycles. Most of the observations on the response carry over from the study on brace size . The 

two parameters are funher studied in Fig. 7 .8, wherein similar observations can be made . It is interesting 

to note that the brace buckles for the elevation of -1.81 in but does not for any other elevation studied . 

7.3 The Effect of Brace Cross-Sectional Geometry 

In the previous study the ratio of brace area to moment of inertia was held fixed . In this section we 

examine braces which have the same cross-sectional area but have different moments of inertia . Three 
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brace cross-sections are considered as outlined in Table 7.2 . The first brace type is the box-section used 

in the previous study, with a depth of 0.5 in and a wall thickness of 0.032 in . The second brace type is an 

I-section with considerably larger major moment of inertia , but smaller minor moment of inertia than the 

box. The third brace type is a smaller box-section with one quaner the moments of inenia of the stan

dard box-section. 

Table 7.2 Properties of alternative brace types with equal same brace area 

type h b I If A" El, EI, GJ 
(in) (in) (in) (in) (in') (in'-k) (in'- k) (in' - k) 

box 0.50 0.50 0.032 0.032 0.064 80 80 48 
I-section 1.60 0.40 0.020 0.040 0.064 819 12.8 0.256 
box 0.25 0.25 0.064 0.064 0.064 20 20 12 

The monotonic buckling responses with the various braces are given for brace elevations of 4.31, 

2.81,0 .00, -1.81, -2 .81, and -4 .31 in in Fig. 7.9. It is evident from this study that the axial stiffness, 

which is the same for all braces, is not an imponant inOuence on the limit capacity and venical deforma

tion capability of the system. Even though the I-section brace had the largest major Oexural moment of 

inenia it buckled the soonest, because buckling in the minor direction occurred even before the beam 

buckled laterally . One can conclude that the limit load of the beam-brace system depends mOst signifi

cantly on the minor moment of inenia of the brace . 

7.4 Effect of Brace End Fixity Conditions 

In this section, we examine the inOuence of the end boundary conditions of the brace . An initial 

imperfection increasing linearly from zero at the ends to maxima of 0.003 in in the major direction and 

0.0005 in in the minor one was used to induce buckling in the pin-pin brace . No imperfection was 

required for the pin-fixed brace because deformations due to bending were sufficient to drive the buck

ling mode . Figure 7.10 shows the inOuence of the two different brace boundary conditions for brace 

elevations of 3.81, -1.81, and -3 .81 in with a (standard) cross-sectional area of A" - 0.064 in' . While 

the initial buckling o( pin-fixed brace is slightly delayed relative to that o( the pin-pin brace for a brace 

elevation of 3.81 in , there is no difference between these two cases for braces below the shear center. 

The twO end conditions lead to the same value of limit capacity and the same value of asymptotic post

buckling capacity. 

Figure 7.11 shows the inOuence o( different brace boundary conditions for various brace areas with 

braces elevated 3.81 in toward the top Oange. The pin-fixed brace still shows an improvement in limit 

capacity of the beam with a small brace size, but the effect is clearly diminished as the size of the brace 

decreases . The pin-fixed brace does not buckle in the minor direction at the brace area of 0.096 in', 

while the pin-pin brace does. 

Figure 7. 11 (fJ) also demonstrates that the response is not sensitive to the magnitude of the initial 

imperfections chosen (or the pin-pin brace . There is no visible difference in the behaviors with various 

(major, minor) initial imperfections of (0.003, 0.0005 in), (0 .003,0.0000 in), (0.002,0.0005 in) and 

(0.001. 0.0005 in) . The response o( the system with a perfectly straight brace is also shown on this figure . 
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As expected. the perfectly straight pin-pin brace does not buckle and therefore provides more restraint 

against lateral buckling. This behavior is an anifact of the numerical model and illustrates the Importance 

of proper analytical modeling in inelastic stability problems . 

7.S Summary 

Lateral bracing is clearly effective in delaying buckling. but it does not necessarily pre vent it and it 

has little impact on the POSt buckling response . In practice . since it is difficult to apply the load on the 

opposite side of the brace by intention. both sides of of the beam should be braced. as high above the 

shear center (lOward the compressed flange) as possible . Lateral braCing below the shear center prOVIded 

no bene fi t for the configuration studied here because the center of rota tion during buckling was about 2 

in below the shear center . 

Minor flexural stiffness of bracing is the size parameter most important to the buckling response 

because simultaneous brace buckling seemed to cause the greatest difference in behavior. The most 

desirable location to brace along the beam is at or near the position of the applied load . The position of 

brace with respect to the side of the load eccentricity has a large effect on the limit capacity and the 

venical deformation capability . It also has an effect on the large deformation behavior and the response 

to the cyclic loading. This difference in behavior can be attributed to the fact that a brace on the opposIte 

side of the eccentricity will be tensed during lateral buckling of the beam and therefore will not buckle 

simultaneously. 
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Chapter 8 

Summary and Conclusions 

The overall objective of this srudy was to develop insight into the lateral-torsional beam buckling 

problem. The specific emphasis of the research was on applications to shon I-beams subjected to cycli

cally reversing loads. The study included five experiments on propped cantilever beams subjected to a 

cyclicall)' reversing load applied near the fixed end. An analytical model was developed to perform 

extensive parameter studies to extend and help interpret the results of the experiments . 

The experiments exposed several fearures typical of the cyclic lateral-torsional buck.ling of shon 

I-beams. Those features include a sharp limit behavior with rapid loss of post-limit capacity loaded in the 

virgin State and an asymptotic post-buckling capacity which persists under cyclic loading. Three distinct 

regions of response in the pull direction were noted . It is presumed that each of these regimes relates to 

the progress in untwisting the inelastically buckled beam. The experiments also demonstrated the effects 

of lateral bracing on the cyclic lateral buck.ling of the test beams. 

A geometricall y nonlinear beam model, capable of tracking fini te displacement, rotation, and cross 

sectiona l warping was de,'eloped and implemented in a general purpose finite element program . The 

beam kinematics mclude infinitesimal warping due to transverse shear and torsion superposed upon a 

finite torsional warping deformation . The primary warping due to torsion is the fmite deformation gener· 

alizat ion of the classical "sectorial areas" hypothesis due to Vlasov . The secondary warping due to trans

verse shearing of the nanges is included to properly represent shearing phenomena imponant to shon 

beams. Numerical treatment of the problem was accomplished through an iterative procedure of first 

ImeaTlzing the eqUilibrIUm equations about an intermediate configuration and then solving the linear 

problem for the mcremental motions. The updated configuration determined the Stra in state in a bod y. 

and the corresponding state of stress was found by solving the nonlinear constitutive equations. The 

essentiall ), three-dimensional formulation was treated as a one-dimensional problem by numerica ll), 

integrat ing the equat ions of motion over the cross-section . In this way one can completely trace loca l 

phenomena such as propagation of yielding through the cross-section . Because the governing equations 

are treated loca lly it is not necessary to luck the location of the inelastic shear center or the elastoplastic 

interface of the beam cross section . In addition, the location of the applied loads are referred to the 

centroid of the cross section, simplifying the analysis of effects due to load position . 

A new multiaxial cyclic plasticit), model, suitable for large scale computation , was developed and 

implemented . The new model is a synthesis and extension of some of the most compelling concepts 

implicit in existing phenomenological cyclic metal plasticity models . One of the novel fea tures of the 

present model is that once the isotropic hardening rule is approximated (f .g. from a monotonic tensile or 

torsion test) the kinematic hardening rule is automatic all)' obtained as a consequence, significantl)' sim

plifying the physical testing needed to determine the model parameters . The proposed model was tested 

v.ith proponional , non-proponional , uniaxial, and multi-axial load paths, for which experimental results 

are available in the literature . The model was found to be credible when compared v.; th those experimen

tal results. The plasticit), model was implemented with a robust numerical scheme, using the consistent 

tangent concept in conjunction with a radial return mapping algOrithm. 
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Comparison of the analytical and experimental results indicates that the analytical model is able to 

reproduce in a qualitative way all of the imponant features of cyclic lateral buckling of short beams. 

Consequently the analytical model was deemed reliable for carrying out the extensive parameter studies 

reported herein . The kinematic constraint imposed in constructing the analytical model precluded local 

buckling of the web and flange elements . Based on the observation that the analytical model qualitatively 

reproduces all aspects of the cyclic buckling response of the beams. we posit that local buckling is rela

lively unimponant to the overall lateral buckling response of short beams. Our one-climensionaI. geo

metrically nonlinear beam model appears to be an eminently suitable framework for modeling the lateral 

buckling of I-beams. 

In chapter 5 the general response of the test beams was examined through various parameter studies 

around a standard (control) configuration. A number of distinct features were found in these studies 

that should be of value in the design against lateral buckling of short beams. The following conclusions 

can be drawn from the general parameter studies: 

(1 ) The yield strength of the material has a great influence on the initial lateral buckling capac

ity. the behavior at large deformation, and the response to cyclic loading. The charactemtics 

of the yield plateau and strain hardening of mild steel strongly influence the post-buckling 

response but not the initial buckling. The details of modeling kinematic hardening were 

found to affect the response Significantly. The current cyclic plasticity model did an ade

quate job of modeling the Bauschinger effect in cyclic response . Residual stresses have an 

influence on the limit capacity of a beam, but have no effect at large deformations nor in the 

response to cyclic loading. Residual stresses are less imponant in cyclic response because the 

residual twist in the beam left by buckling tends to overwhelm the inOuence of the residual 

stresses . 

(2) The mltial horizontal eccentricity of the load with respect to the shear center has a strong 

influence on the limit capacit)' of the beam but has little effect on the post-buckling response 

and the response to cyclic loading. except when the initial eccentricit), 15 quite large . The 

limilioad is very senstive to small load eccentricities , The height of the load with respect to 

the cross-section of the beam has a noticeable effect on both the limit capacity and asymp

totic post-buckling capacit)'. Both capacities increase as the load is placed close to the shear 

center. Furthermore. for loads placed closer to the shear center, buckling is delayed . Pull 

loads (loads on the other side of the shear center) help stabilize the beam . 

(3) The location of load along the length of beam also has a significant effect on the limit capac

ity, the post-buckling capacity, and the deformation at which buckling commences in a 

c)'elie loading program. As the length of beam increases, the buckling capacity decreases . 

The proximity of the load to the fixed end is the most important influence on the lateral 

buckling capacity . 

(4) A wide-section beam is bener at resisting lateral buckling than is a deep-section beam. 

While a deeper beam can slightly improve the limit capacity, a wide-section delays or even 

prevents the lateral buckling of beam, because of the importance of warping resistance . 

Therefore, a wide I-beam would be more useful than a deep one in an application where 

lateral buckling resistance is important . 
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(5) The fixity of the end remote from the load has a great influence on the lateral buckling of the 

beam . Even the addition of torsional warping restraint to the simple suppon condition in

creased the buckling load dramatically. The fully fixed suppon had the highest limit load, 

but because of the increased stiffness, the beam tended to buckle at smaller deformations. 

Unexpected results were obtained in chapter 6 from the parameter study concerning the influence of 

flexibility of the fixed end on the lateral buckling. The studies of the influence of flexibility of the fixed 

end on the lateral buckling of the beam allowed the following observation: 

(6) One would expect that a beam with a perfectly fixed end would not buckle as readily as one 

with additional flexibility . However it was observed that some degree of end flexibility im

proves the lateral buckling limit capacity and delays buckling. A plausible explanation for 

this unexpected behavior is that bifurcation takes place fTom a deformed shape in which the 

applied load is lower than its initial position with respect to the average line of shear centers . 

The flexible end allows the more deflection under the load prior to lateral buckling, thereby 

increasing the buckling load over the fully fixed case . For large enough end f1exibilities, the 

reduction in capacity due to the additional flexibility exceeds the increase gained from pre

buckling venical displacement. This behavior was observed both for beams which were pre

yielded and those which were not. In practice, it might be helpful to increase the flexibility of 

the fIXed end of a shon beam to increase the limit capacity and delaying the buckling. 

It is well known that lateral bracing is the best way to improve or delay lateral buckling of a beam . 

However, few previous investigations had been made into the inelastic lateral buckling of beams with a 

bracing system . Chapter 7 examined the influence of lateral bracing on the lateral buckling of beams. 

The follo"ing conclusions can be drawn from the parameter study on the inelastic lateral buckling " i th 

translational bracing system : 

(7) The best level to place translational bracing in the cross section of beam is near the flange 

that IS compressed by a push loading (the tOP flange in the experiments) . Bracing placed 

below the shear center has little effect on lateral buckling. The center of rotation of the 

beams studied here was near the bottom flange, and remained fixed during lateral buckling, 

as .videnced by the ineffectiveness of bracing placed there . 

(8) Flexural rigidity and axial strength of the bracing is important to the lateral buckling of 

beam. Increasmg the flexural and axial stiffness has a greater etfect on the lateral buckling of 

beam when the level of bracing is near the top flange. 

(9) The 2% rule, traditionally used for the minimum brace size, does not automatically insure 

adequate strength of the brace, as it ohen does in applications involving lateral buckling of 

longer beams. It is clear from these studies that the brace size shOUld, at the very least, 

depend on the position of the load and the position of the braCing in addition to the strength 

and stabilitl' propenies of the the beam. Further research on the lateral bracing problem 

Seems to be warramed . 

(1 0) Another factor which influences the effect of bracing on the buckling of a beam is the man

ner in which the bracing resists lateral motion . Positioning the bracing on the opposite side of 

the eccentricity of the load delays buckling over the case in which the brace is positioned on 

the same side of the eccemricity because the brace is extended in the former case and 

cannot buckle . It is desirable to locate the brace at the point of the applied load or between 
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the applied load and the point of largest deOection . Bracing both sides of the beam may also 

be useful. 
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Appendix A 

Load Cell 

A load cell capable of measuring the six stress resultant quantities was designed for the purposes of 

the tests reponed herein . The load cell. which resided between the specimen end and the reaction block . 

was a circular tube 12 in long. with 9 .6 in outside diameter and 0 .445 In wall thickness . The rube was 

edge prepared and welded to 2 in thick end plates . These end plates were welded to a second set of 2 in 

thick plates which were used for bolting the load cell in place . The 4 in end plate thickness was necessary 

to insure a consistent stress transfer mechanism into the load cell which thereby insured a reliable meas

urement of load . The circular cross section was chosen because . within a thin-wall approximation . the 

circular shape does not experience cross sectional warping due to transverse shearing or twisting. The 

load cell was gaged lI';th 90 degree strain gage rosettes (0 .125 in gage length) placed at the quaner point 

stalions along the length of the cell. At each station four rosettes were placed at 90 degree intervals 

around the CIrcumference . The load cell configuration is shown in Fig. A . I . The response of each gage 

was measured Independently dunng the load cell calibrations and the tests and the data were combined 

in the data reduction phase . 

a 
I 

1: 

d-

c 

I' 

x, 

Fig . A.I 

12 'n _ 
' I 

b 
--------- 3 
a 0 []2 • • 
d --------

Rossette 
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Load Cell Geometry 

Two anal)~ical models of the load cell were used in the calibration phase . FITst . the load cell was 

trealed uSing the exact linear elastic solution to 51. Venant's problem. i.e. a beam subjected to end 

loading (50kolnikoff. 1956). Using this solution . one can write a relat ionship between the strains at a 

cross-section and the stress resultants acting there as follows: 

( = IIR (A.I) 

where (= «(, ... .. (,,) is a vector of the 12 strain measurements at longitudinal station or cross section 

(FIg. A . I ) . R = (T. M,. M,. N. V" V,) is the vector of six stress resultants. and II is the coefficient 

matrIX given by the theory of elasticit)' . The strain gages are numbered clockwise around the circumfer

ence at a station staning with a-1 and ending with d-3 . The nomenclature used for the Stress resultants 
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is : Tis the torque. M, is the flexural moment about the X, axis (horizontal). M, is the flexural moment 

about the X, axis (venical). N is the axial force. V, is the shear along the X, axis. and V, is the shear along 

the X, axis . 

Equation (A . I) is clearly overdetermined . The stress resultants can be determined from the strain 

measurements by a least square projection as 

R = [E ' E r' E ' ( (A .2) 

Interestingly. the coeff,cient matrix E ' E is diagonal. making it possible to write an expliCit formula for 

the stress resultants : 

EJ 
M, = -:--:..,--~,;:- [ ( I+V)«('-( ll) -V«('+('-(IO -(Il )J 

4b (1 + ," ) 

GJ 
\I, = - «(. - fo - f ,o + f ll) 

a 

GJ 
V, = -(-£,+£)+f--f,) 

a 

(A .3) 

(A 4) 

(A .5) 

(A 6) 

(A .?) 

(A ) 

"here E. G. and v are Yount's modulus . the shear modulus. Poisson's ratio respect ivel)'; b IS the outs,de 

radIUS of the cylinder. A is the Cross sectional area . J is the polar moment of inema. and a IS defined 

through the relatlonsh ,p 

(3 t 2v)a' + (1 + 2v)b' 
0= 

2 ( 1 + v) 
(A .9) 

,,'here a is the inside radius of the cylinder . 

Equations (A .3)- (A .8) are Inaccurate because end effects induced b)' welding the tube to the end 

plates. wh,ch precludes changes in the tube d iameter. are important to the recorded stra ins . The SI. 

Venant solution systemaucally ignores these end effects. 

To estimate the end effects the load cell was modeled using shell finne elements to determine nelA 

coefflC,ents. Ii . which account for the end restraint . While the coefficients have different numencal 

values. the form of Ii . (repeated values. zeros. etc .). is nearly identical to the elasticity solution of the SI. 

Venant problem. E . Hence. the St . Venant solution and the finite element solution concur on how to 

combine the information supplied by the gages . but not on the "alues of the gage factors . This observation 

simplif,es the determination of scale factors by calibration in the sense that very few tests are reqUIred . 
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The number of tests can be funher reduced through the symmetry propenies of the load cell. Similar 10 

the elastiCIty solution, the form used for calibration of the stress resultants at a cross section take the 

form : 

(A. 10) 

M, = d(f, - fll) + C(f, + f, - f,o - fll) + b(- f, + f, + f, - f,) (A . II) 

(A . 12) 

N = t(f, + f, + f. + Ell) + /(E, + f, + f, + f, + f, + (. + f,o + fll) (A.13) 

(A . 14) 

v, = g(- f, + f, + ( , - (.) (A.15) 

where a, b, c, d. e, /, and g are the calibration constants . The finite element solution gives some addi

tional relationships among the constants. In parucular it was found that 40b=d, 3c=d, and 3e=/, le3\ing 

four independent constants to be determined by calibration . The constants were found from tWO calibra

tion tem, the first a torque-free cantilever bending test about the horizontal axis (Fig. A .2. load position 

A) and the second a torSion and bending cantilever test about the horizontal axis (Fig . A .2, load position 

B). Ideally, tWO additional tests might have been performed . However, the axial forces In the test pieces 

were expected to be negligible and hence an aXIal calibration was not deemed necessary . Symmetry "'as 

used instead of a bending test about the verucal axis . The coefficients obtained from the horizontal axis 

test were used for bending and shear in the horizontal plane. The cantilever bending test is sufficient :0 

calibrate both moment and shear in a single plane . 

The calibration tests constants were determined by a least square error fit of the calibration data . The 

least square error procedure assumed that both the ordinate and the abSCissa were subject to error . Tho 

unbiased value of the slope o( the line under these conditions is given by 

n (y'y) _ (I'~ ) ' 
m = .:.;..;.,-;-,-:---:,,:=-:,, 

n (x'x) - (I'x)' 
(A .16) 

where x and yare the veClOrs of abscissa and ordinate data respectively, lIs a vector o( ones. and n is the 

number of measurements in the sample . In determining the calibration constants the contributions of 

stations A. 8, and C were averaged before filling the least square line . The excellent correlation present 

in the calibration data is evident in Fig. (A.3), which plots the expected and measured values of the stress 

resultants in the twO calibration teSts. There appears to be greater scatter for the torsion calibration in the 

bending tests . however the values of the torque were small for load position A, due only to imperfection 

in load placement . Similarly. there appears to be greater scatter in the moment and shear values for the 
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Fig. A.2 Load Points for Calibration Tests 

torsion t.St. but the load le"els were much smaller for thIS test than they ~e for tho bending lest The 

\'alues obtained are gi\'en In Table A. I belo"' . 

Table A. I Calibration Constants 

a 152065 in-k 
b 93 in-k 
c 125167 in-k 
d 375500 in-k 
e not caltbrated 
! nOt calibratEd 
8 33945 k 
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