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LIST OF SYMBOLS 

The important symbols and notations used in this dissertation are defined where they are first 

appear in the text and given below: 

o· = 
OP = 
AI = 
b = 
B = 
P = 

Pi] = 
C(,,) = 

c = 
D = 
0 = 

Dj = 
15} = 
6m = 
6. = 
£') = 
fjj = 
Fb = 
F, = 
F, = 

fj = 
<p, = 

G.G, .G, = 
r = 
h = 

H = 
K = 

(superscript "a") indicates an active design variable; 

(superscript "p") indicates a passive design variable; 

area of element in group i; 

width of a rectangular cross section; 

strain displacement operator; 

period ratio of the structure to the applied load ing; 

weighted modal participation of the applied loading; 

constraint function ; 

structural damping matrix; 

elastic moduli; 

dead loads; 

nodal displacements for jth constraint; 

jth assigned nodal displacement constraint; 

maximum deformation obtained during cyclic loading; 

maximum attainable monotonic deformation 

strain; 

plastic strain rate; 

allowable bending stress; 

the lateral force applied to level i; 

the portion of V considered concentrated at the tOP of the structure; 

ith applied loading; 

ith buckling mode shape; 

geometric stiffness matrices; 

given volume or initial cost of the structure; 

height of a rectangular cross section; 

variation of discrete nodal displacements: 

structural elastic stiffness matrix; 

xiv 



K~ = axial plus shear contribution 10 stiffness [or elemem p with cross seclional areas 

[aclored OUI; 

KP<. Kp. KJ; = major axis bending. minor axis bending. and IOrsional conlribulion 10 stiffness [or 

elemem P wilh relevam cross sectional properties [aclored OUI; 

I = Occupancy imponance [actor; 

LI = lenglh of ilh element; 

L = live loads; 

L[) x = linearizing aboul the configuration x; 

.I.e = geometrically linear load [aclor; 

M = number of elemenl groups; 

Mo = flexural capacilY; 

M = structural mass matrix; 

m = applied momen! ; 

M aa = set of groups wilh both design variables aClive; 

Map = sel of groups wilh heigh I passive and width active ; 

Mpa = sel of groups with widlh passive and height active; 

Mpp = sel of groups with both heighl and width passive; 

III = ith elastic critical buckling eigenvalue; 

N = axial force; 

No = axial capacilY; 

N = number of eigenpairs used in the objective function ; 

N, = number o[ independenl design variables defining a cross section (Nv=3 for I-beam. 

N.. 

w 

01 

P 

Pj(w) 

OJ 

= 

= 

= 

= 
= 

= 

and Nv =2 [or a rectangular cross seclion); 

number of loading condilions considered; 

vibration frequency; 

specific mass of group i; 

applied axial force; 

vibrational weighling funclion; 

vector containing a sel of index numbers with one-Io-one correspondence wilh the 

bucking eigenvalues; 

q = applied forces ; 

q = applied Iransverse force; 
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= eanhquake Loads; 

= internal shear and ax.ial forces. proponional load, dead load; 

= mass density ; 

= stress; 

= ith vibration mode shape; 

= Coefficient for site-structure resonance; 

= fundamental natural frequency; 

= cross sectional displacements; 

= ax.ial displacements; 

= shear force ; 

= shear capacity; 

= total design vector; 

= design vector for group i; 

= design variable j (rom group i; 

= ith design variable; 

= minimum permissible design variable of the group i; 

= max.imum permissible design variable of the group i; 

= Lagrange multiplier; 

= percentage of the critical damping; 

= strain gradient; 

= yield function; 

= the ponion of total dead load which is located at or is assigned to level i 

= objective function; 

= seismicity zone (Chapter 3); 

= scaling factor . 
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CHAPTER 1 

INTRODUCTION 

1.1. Introduction 

Recent advances in computational mechanics and nonlinear analysis have provided structural 

engineers with general and systematic procedures for modeling and analyzing complicated structures. 

Almost any complex structure can be analyzed using a finite element approach considering geometric 

and material nonlinean ties, under both static and dynamic loads . In spite of the achievements in 

analysis, the design procedure has not evolved . Most of today's designs are based on traditional trial 

and error procedures wherein a structure is designed, analyzed, and checked for compliance with the 

design criteria. If the performance of the structure does not meet the denned design criteria, then the 

structure is redesigned . This process of design, analysis, and checking continues until a design is 

achieved . The final design is generally not optimal in any sense . The method of trial and error is 

especially ineffective for complex designs that are beyond the experience and intuition of the designer. 

Furthermore. the designer usually unable to account for global aspects of design such as overall stability. 

ductility, and strength . 

The objective of this study is to understand and gain knowledge about the nonlinear behavior of 

framed structures from analyses and incorporate the knowledge into the framework of an 

optimization-based design methodology to enhance the overall stability, ductility, and strength of 

framed structures. Traditionally. stability and ductility have played a secondary role in design process or 

have been ignored completely. However, these issues are fundamentally important to robust structural 

performance and they must be included in the design process. 

Many algorithms have been developed to improve the limit strength of structures . In most of 

these applications geometrically linear analysis is employed with the consequence that overall strength of 

the design is overestimated. Directly optimizing the limit load of the structure would require a full 

nonlinear analysis at each iteration which would be prohibitively expensive . The objective of this 

research is to develop an algorithm that can improve the limit-load of geometrically nonlinear framed 

structures while avoiding the nonlinear analysis . 
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1.2. Stability 

Based on observations made on the limit and post-limit behavior of elasto-plastic frames. 

Hjelmstad and Pezeshk (1988) developed an approximate model of the nonlinear behavior of this type 

Of structure. From the model it can be observed that the overall stability and strength of a structure can 

be improved by maximizing its linearized buckling eigenvalues. The design methodology developed in 

this study exploits this observation and suggests an optimization-based procedure whose objective 

function involves a linear combination of the buckling eigenvalues of the structure. A conStant volume 

constraint with bounds on the design variables is used in conjunction with an optimality criterion 

approach for search . 

The design procedure is formulated to improve the overall performances of both planar and 

space framed structures using rectangular or I-beam cross sections. Three-dimensional design problems 

are computationally more expensive to consider than the planar design problems. but they yield insight 

into the real behavior of the struCture and can help avoid some of the problems that might appear in 

planar design procedure such as the need for out-of-plane buckling constraint. 

There are different types of instability that can occur in a struCture . Among these are local 

buckling of the thin elements (e .g. nange and web) of a member. ,;ingle member buckling in a complex 

structure. and buckling of the structure as a whole . Buckling of a structure depends both upon the 

constitution of the structure and on the loadIng. which has some spatial variation and is either static or 

time dependent. In this study we are primarily concerned with the global stability of structures under 

static loads. It is up to the designer to select a representative spatial variation of loads with which to carry 

out the design . The resulting structure will be most robust in resisting those loads. We demonstrate. by 

way of examples. that in general improving the overall stability characteristics of structure under static 

loading also improves the dynamic performance . 

The earliest attempt to optimize structures subjected to stability constraint was considered by 

Clausen (1851) where he found that for columns whose cross sections are of prescribed shape the 

optimal tapering will increase the buckling load by one third over that of a uniform column. Lagrange 

(1773) had treated the same problem earlier but arrived at the wrong result due to computational errors. 

The result obtained by Clausen was independently found and generalized by Nikolai (1955) for 

additional limit on stresses. Keller (1960) found that the strongest column among all columns having a 

given length and volume has a cross section in the shape of an equilateral triangle shape . Further. 

Tadjbakhsh and Keller (1962) derived the optimal solutions for columns clamped at one end and simply 
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supponed at the other. and for c1amped-clamped columns. The solution in the latter case was obtained 

with respect to the first buckling mode. Later on Olhoff and Rasmussen (1976) discovered this solution 

was incorrect and a bimodal solution gives the optimal shape. 

Keller (1960). Tadjbakhsh and Keller (1962). Keller and Niordson (1966). and Taylor (19 67) 

developed one-dimensional models with one design variable to maximize the buckling load of a 

structure with a volume constraint. The approach was based on continuum theory and not readily 

extendible to complex structures such as frames. 

A recurrence relation based on a optimality criterion was employed by Simitses. Kamat. and 

Smith (1973) to design a column subjected to a distributed load. An exponential recurrence relation 

based on an optimality criterion was proposed by Yenkayya .1 al. (1973. 1974) . and Khot et al. (1973. 

1976) to design ponal frames and truss structures . Khot (chapter 3 of Atrek et al . 1984) proposed a 

method based on the optimality criterion approach to minimize weight of trUSs structures under stability 

constraints . In this paper the stability constraints were stated with the requirement that the critical 

eigenvalues be separated by a specific interval and the critical buckling mode be the preselected one. 

Khot and Kamat (1983) discussed an optimization method based on optimality criterion to minimize the 

design weight under displacement. system stability. and element stresses for truss structures considering 

geometric nonlinear behavior. Kamat and Ruangsilasingha (1985) and Kamat (1987) addressed the 

problem of maximization of the critical load of shallow space trusses and shallow truss arches of given 

configuration and volume. Levy and Perng (1988) discussed the optimal design of trusses to withstand 

nonlinear stability requirements. In a recent paper by Lin and Liu (198 9). they discussed the optimal 

mirtimum weight design of linear-elastic truss and beam elements under static loads subjected to size. 

stress . displacement and system buckling constraint. Finally. a recent book by Ga jeswski and 

Zyczkowski (1989) provides a complete review of optimal structural design under stability constraints 

with a bibliography having over 2000 entries. 

1.3 . Multiple Loading Conditions 

Multiple loads and load combinations are a fundamental aspect of structural design because the 

structure will be expected to survive in a diverse environment. The selection of these loads and the 

method used to combine them constitute one of the most imponant aspects of the design process . One 

of the principal novelties of the method presented in this study is that it can efficiently design a structure 
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with multiple loading conditions. The fonnulation proposed here weights the various load cases in 

accordance with their level of participation in potentially imporumt buckling events. 

In recent years there have been only a few papers on the subject of multiple loading cases. 

Turner and Raymond (1980) used the optimality criterion approach to design columns and portal 

frames under multiple loading conditions. They optimized the structural buckling load for different load 

ratios, plotted the result in a loading space, and came up with an envelope which they referred to as the 

stability envelope. Chibani (1987) developed a minimum weight optimal design method for truss 

structures under alternate loading cases. He used a geometric programming algorithm and developed a 

new decomposition method to handle multiple loading cases . 

Reliability-based structural optimization under stochastic loads is another approach to 

considering multiple loading cases. Work in this area has been done by Wen (1977, 1980a. and 

1980b). and Wen and Pearce (1980) where they developed procedures for handling combinations of 

loads and load effects. Kim and Wen (1987) developed a method for reliability-based structural 

optimization under time varying random loadings with emphasis on realistic modeling of the loadings 

and the effect of the uncertainties of loadings on the design . In a recent recent paper. Tada and Seguchi 

(1989) fonnulated a method for the determination of the shape of structures under multiple loading 

cases when the direction. the magnitude. and the position of the loads vary with a known probability law. 

This method finds the shape which makes the total potential energy stationary under constant volume. 

1.4. Optimization Algorithm 

The optimization procedure used for this study is based on optimality criteria method (OCM) . 

The goal of the method is to generate a design that satisfies specified criteria. and in doing so maximize 

the objective function. The criteria are based on the nature of the problem and are derived by 

differentiating the Lagrangian with respect to the design variables. OCM is an iterative method because 

the constraints and the objective are nonlinear in the design variables. In deriving the optimality criteria 

and developing the algorithm. full use is made of the knowledge of the behavior of the constraints 

imposed on the structure. The algOrithms are efficient because the effort is proportional 10 the number 

of constraints not the number of design variables. 

Prager (1968. 1971, and 1973). Prager and Prager (1979). Prager and Taylor (1968). Sheu and 

Prager (1968), Prager and Shield (1968). Martin (1969. 1970). Chern and Prager (1970. 1971). 
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Chern (1971). Chern and Matin (1971) have done extensive work in developing a rigorous optimality 

criteria approach for various design problems. Most of these papers are concerned with generalized 

compliance constraints. Generalized compliance is defined as the virtual work of a fictitious loading 

system when it is subjected to the displacement field of the actual loading. For example. a single 

displacement constraint at a point of the structure can be treated as a compliance constraint . 

Compliance in this case is the virtual work of a unit load at the point of displacement constraint going 

through the actual displacement. When the fictitious loading coincides with the actual loading. the 

compliance represents the generalized stiffness of the structure . 

Barnett (1961) discussed the optimal design of determinate structures for a given deflection . 

The OCM was formulated in terms of vinual strain energy due to a unit dummy load at the point of 

prescribed displacement. 

Prager (1968) presented a description of the general problem of optimality criteria in structural 

design. Prager and Taylor (1968) discussed the specific problems associated with optimal structural 

design where they discussed the optimal design for maximum stiffness. maximum fundamental 

frequency. and maximum buckling. Sheu and Prager (1968) considered the optimal design of frames 

with piecewise constant specific stiffness requirement. Prager (1971 and 1973) discussed the optimal 

design of statically determinate beams and trusses with deflection. compliance. and stress constraint. 

Prager and Shield (1968) discussed optimal design of a beam-tie with two stiffness requirements. 

Optimal design of sandwich beams with compliance requirements under alternative loads was presented 

by Chern and Prager (1970) . Chern and Prager (1971) developed a procedure for minimum weight 

design of statically determinate trusses subject to multiple constraints . Martin (1970) discussed optimal 

design of elastic structures for multipurpose loading. Manin (1969) discussed the optimal design of 

beams and frames with compliance constraints . Chern (1971) discussed optimal design of beams for 

alternative loads and constrains on generalized compliance and bending stiffness. He also established 

the necessary and sufficient conditions for global optimality for determinate structures and they can be 

used in an iterative fashion for indeterminate beams. 

Some of the other discussions on the optimality criteria method can be found in Allwood and 

Weaver (1984). Atrek el. al. (1984). Fluery (1983). Khot (1976). Khot. Berke. and Venkayya (1979). 

and Khot (1981). 

There are two main approaches to solve the structural optimization problem: one is based on the 

many rigorous numerical methods of nonlinear mathematical programming (MP) and one is based on 

5 



intuitive concepts of the optimality criteria method (OCM). There are advantages and disadvantages 

claimed for each method . It is claimed that MP methods are guaranteed convergence properties and 

are general in the sense that any type of constraints can be considered. The disadvantage of MP is the 

computing time which increases rapidly with the size of the problem whereas in the OCM the computing 

time does not increase with the number of the design variables, which makes it very effective method in 

solving problems with large number of design variables. The disadvantage of using OCM is the lack of 

generality and sound mathematical foundations (Chapter 5 of Morris (1982). Fluery and Sanders 

(1977 and 1983) attempted to reconcile MP and OCM and they showed that, based on a primal solution 

scheme, a mixed method can be described which permits a continuous transition between a strict 

mathematical programming method and a pure optimality criterion technique . The generalized 

optimality criterion is shown to be equivalent to a mathematical programming linearization method using 

reciprocals of the design variables. In another words MP and OCM can be considered as the two ends 

of the same spectrum. 

1.5. Report Organization 

Chapter 2 Stans with the development of design methodology improving the limit and post-limit 

performances of two-dimensional (rames. The motivation of the study is discussed . The optimization 

problem is solved using optimality criteria . A frequency weighting function is introduced and is 

formulated for the optimization algorithm. 

The strengths and limitations of the optimization design methodology, developed in chapter 2, 

are investigated through its application to two building frames in chapter 3. The two design problems are 

optimized and then analyzed under various static and dynamic loading cases and the their quality of 

performance is examined. 

Chapter 4 discusses the development and formulation of a multiple-objective optimal design of 

three-dimensional framed structures based on a stability criterion to improve their strength and stability 

characteristics. A efficient procedure is developed to handie multiple loading conditions. The 

mathematical formulation and the general concepts are presented in detail . 

In chapter 5 the applicability of the proposed three-dimensional optimal design procedure with 

multiple loading cases is investigated by applying the method developed in chapter 4 to a two-story space 

frame structure . Parameter studies are performed on the size of subspace. minimum design variable 
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sizes. method of formulating the buckling eigenvalue problem. and the number design variables . Detail 

discussion of the optimization procedure and a physical interpretation of the results of the optimization 

method is given. 

In chapter 6 the application of three-dimensional optimization design procedure to an setback 

structure is discussed . Parameter studies are performed to investigate the effect of different parameters 

on the overall performance of the optimization procedure and optimized designs under single and 

multiple loading conditions. The loading cases considered are the equivalent lateral Slatic loads that are 

obtained following ATC-3-06 recommendations. 

In chapter 7 the three-dimensional optimization procedure is applied to a high-rise building WIth 

15 stories. The performance of the optimization and the optimized design is investigated and discussed . 

Chapter 8 gives a summary of the study. conclusions. and recommendations for future research . 

1.6. Acknowledgments 

This study was supported by the National Science Foundation under grant number ECE 

86-58019 and American Institute of Steel Construction. The support from these organizations 

gratefully acknowledged. The results. opinions. and conclusions expressed in this report are solely those 

of the authors and do not necessarily represent those of the sponsors . 

This report was prepared as a doctoral dissertation by Shahram Pezeshk under the supervision of 

Professor K.D. Hjelmstad. Professors N. Khachaturian. J.P. Murtha. D.A. W. Pecknold . and A.R. 

Robinson are thanked for reviewing the manuscript. 

7 



CHAPTER 2 

OPTIMAL DESIGN OF PLANAR FRAMED STRUCTURES BASED 
ON A STABILITY CRITERION 

2.1. Introd uction 

The present chapter suggests an objective function to use as the basis for a design methodology 

for improving the strength and the overall stability characteristics of framed structures whose capaci­

ties are governed by limit-load behavior. Attention is focused on planar structures. The objective 

function is a linear combination of the critical buckling eigenvalues of the structure with each eigen­

value weighted by a frequency penalty function . An iterative optimality criterion method is used to 

solve the opumization problem. 

2.2. Motivation 

The cho,ce of the objective function to improve the limit and post-limit behavior of planar framed 

structures is motivated by observations on the nonlinear behavior of this type of structure . Hjelmstad 

and Pezeshk (1988) have developed an approximate model to demonstrate the effect of geometric 

nonlinearities on the performance of fra med structures through an approximate relation which gives 

the full nonlinear response of a Structure in terms of its geometrically linear response. A brief sketch 

of the approximation is presented below to justify the subsequent choice of objective fu nction for the 

optimization . 

Hjelmstad and Pezeshk (1988) considered the general case of a Structure subjected to a combina­

tion o( proportional (ARo ) and non-proportional loads (R,). where A is the proponionality (actor of 

the proportional loads. To facilitate the derivation they introduce an associated buckling eigenvalue 

problem 

Krp = p.Grp (2 . 1) 
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where K is the linear structure stiffness matrix, (.u, t/» is the fundamental eigenpair, and G is the 

geometric stiffness matrix defined in terms of the two loading cases as 

1 
G = Go + - G, 

I' 
(2 .2) 

in which Go is the linearized geometric stiffness matrix for the proportionalloacls with)' = I, and G, is 

the linearized geometric stiffness matrix for the non-proportional loads . Assume that the eigenvector 

is normalized such that t/>'Gt/> = I and let a ;: u'Gt/> be a parameter which measures the magnitude of 

the displacement vector u . Assuming that first mode behavior dominates the nonlinear response, the 

nonlinear load factor can be expressed in terms of the geometrically linear load factor, ).L' as 

).(a) = ).L(a}ao,U - ay, 
ao,U + ayo 

(2 .3) 

where ao = u~G¢ is the value of a for the displacements under proportional loads only with). = I , 

)'0 "' ¢'GO¢, and 1', "' ¢'G,¢. From Eq . (2.2) and the above definitions, we note that )'0 +2.1', = 1. 
I' 

Consequently Eq . (2.3) takes the simplified form 

).(a) = 
).L(a} - a(1 - Yo) 

1 + aYo/Jl 
(2 .4) 

where ti == a/ao is a normalized displacement measure . From iLS definition it is clear that Yo is a 

number in the range (O,I). The case Yo --+ 0 indicates greater relative importance of the dead loading 

to the eigenvalue problem, while the case Yo --+ I indicates greater relative importance of the propor­

tionalloading . With a few modest assumptions, the limit load can be approldmated by a Rankine-type 

estimate as 

.t.:r - I + ).p1'o/p 
(2 .5) 

where ).p is the geometrically linear plastic capacity of the structure. 

It is clear from Eq . {2.5} that the larger is Jl, the larger will be the limit capacity of the structure . 

In the post-limit regime, the geometrically linear capacity ).L(a) is generally constant or nearly con­

stant. Therefore, the slope of the post-limit response curve is - (I - Yo + yoJ.JJl). Thus, the larger I' 
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is. the smaller will be the post-limit loss oC carrying capacity . In each case. it is apparent Crom this 

simple model that maximizing the buckling eigenvalue will lead to a more robust structure. 

Remark.- As is shown in the examples in Hjelmstad and Pezeshk (1988) and Appendix C the 

buckling mode which dominates the response oC the structure is not known a priori. For planar 

moment-resisting frames it is likely that the fundamental mode dominates the response. but Cor eccen­

trically-brace and three-dimensional frames. mode one might not be the dominant one. One can 

easily demonstrate that the above argument holds for any eigenpair (P. 4» . Hence. one must en­

deavor to maximize the eigenvalue corresponding to the dominant mode. Because the dominant mode 

is generally not known in advance . one might maximIZe a weighted sum oC eigenvalues . This ap­

proach is adopted in the sequel. 

The reSt of the present chapter and the following chapters exploit the above ideas and develop 

optimization criteria which have the goal of improving the Stability characteristics of a Structure . The 

validity of the observations made on the role oC the eigenvalues in improving the limit and post-limit of 

structure is investigated through several example applications. 

2.3. Formulation 

The optimization problem to be solved is a combination of buckling and frequency eigenvalues 

as the following: 

N 

MAXIMIZE 2.llj(x)Pj(QJ(x» 
j.l 

M 

SUCH THAT 2.A(X;) 2. (!,.l.., = r (2.6) 

1.1 . ffi 

where Ilj is the jth elastic critical buckling eigenvalue. QJ(x) is a vector oC vibration frequencies. Pj(QJ) 

is a frequency weighting function (some of the Pj could be zero and mayor may not depend on QJ ). x 

is the vector of design variables. r is the given weight of the structure. and i is the group number 

(elements in each group have identical properties). A(x;) is the area of element in group i (these 

relationships can be found in appendix 2.A). L. is the length of element v in group i. and e. is the 

mass density of the element v in group i. The ith design variable. XI (moment of inertia in the 
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present development) has a minimum permissible value !j. and a maximum permissible value of Y/. 

M is the number of groups. and N is the number of the eigenvalues and eigenvectors considered in the 

objective function. 

To simplify the formulation we defme the specific mass of the group i to be: 

(2 .7) 

Using Eqn . (2 .6) the Lagrangian functional can be cast as: 

L(x . ~) = ~l'jPj(w) - ~ [IA(X/)Q/ - r] 
J i . 1 

(2 .8) 

where ~ is the Lagrange multiplier. It should be pointed out here that the constraints on the SIze of 

the elements given in Eq . (2 .6) are not included in deriving Eq . (2 .8) . Normally. in structural optimi­

zation algorithms. the size constraints can be handled more ef(iciently by treating them as active/pas­

sive constraints. Whenever an element violates a size constraints. the design variable assocIated with 

that element is set to its limiting value and removed from the active set. A more detailed discussion of 

active and passive set strategy is given in section 2.5 .3. 

Taking the derivative of the Lagrangian with respect to the design variable XI and setting the 

corresponding equation to zero results in: 

aL(x. ~) 

ax/ IN [al'j () apj(w) ] • aA (XI) Q 0 = -PI (J) + 1'1--- - ,--- I = 
I 

aXI ax/ ax/ 
. 1 

(2 .9) 

Rearranging Eqn . (2 .9) and using chain rule to expand the second term in the brackets gives 

the following optimality criteria : 

= 1 
(2.10) 

11 



The weighting functions Pj(w) introduce information about the vibrational characteristics of 

the structure. These functions can be used to avoid undesirable dynamic effects such as resonance by 

pushing the structure away from it. The weighting function can be considered as a constraint on the 

frequencies of the structure which is introduced in the form of a penalty function in the objective . 

The choice of weighting function is dependent on the type of problem considered. Some of the 

possible weighting functions are given in Fig. 2.1. If the curve of the inverse of the frequency weight­

ing function has a positive slope then the design is pushed toward having smaller period whereas when 

the slope of the weighting function is negative the design is pushed toward having a larger period. 

Weighing functions with steeper slopes result in a bigger encouragement to change the frequency of 

the design . If the weighting function is nat then there is no encouragement for design to change its 

frequency content. 

1 

pew) 

1 

pew) 

(a) 

(c) 

2,,­
T=­

w 

T = 2,,­
w 

1 

pew) I-~ 

1 

pew) 

Tv =·0.33(sec.) , 
I 
I 

0.48 

(b) T = 2" 
w 

2,,­
T=­

w 

Fig. 2. 1. Possible Weighting Functions: (a) BeU Shaped Response Spectra; (b) Uniform Building 
Code; (c) Sinusoidal Response Spectra; (d) Mexico's Federal District Code 
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2.4. Sensitivity Analysis 

In order lO evaluate the optimality crilerion given In Eqn. (2.10). one needs to delermine the 

sensitivities of the buckling loads and vibration frequencies of the structure with respect 10 the design 

variables. To determine the sensitivity of the buckling eigenvalues with respect to the desIgn variables 

Xi. consider the following eigenvalue problem: 

(2.11) 

where t/JJ and Ilj represent the jth eigenvector and eigenvalue respectively. K represents the elastic 

stiCCness. and matrix G is the geometric stiCCness. 

Differentiating Eqn. (2 .11) ,,;th respect to design variable X, gives: 

aK 
-t/J. + 
ax, J 

The gradient of the eigenvalue is then given by: 

I [OK aGJ t/J, - + Ilj- t/Jj 
I aXi ax, 

(2. 12) 

(2 .13) 

Solving for the second lerm in parentheses given in Eqn. (2 .13) numerically for several exam­

ple problems. it was concluded that this term was negligible compared to the other terms (Appendix D 

presents the formulation for computing this term in detail) . 

The linear elastic structural stireness K exhibits the following explicit fonn in terms of cross 

sectional propenies 

(2.14) 

where Kf is the element axial plus shear stiffness matrix. and K} is the element bending stiffness 

matrix of group i with either area or the moment of Inenia factored out. 

Differentiating the structural stiffness matrix (Eqn. (2 .14» with respect to the design variable 

. al(Xi) 
Xi and by noting that --= 1 gives : 

ax, 

13 



(2 .15) 

Therefore, Eqn . (2.13) can be computed as: 

¢J [a~~j) I K~ + I K:"l ¢j 
I mel mel J (2.16) 

Similarly, the sensitivity of the frequencies with respect to the design variable XI can be deter­

mined by !alOng the derivative of the frequency eigenvalue problem: 

(2.17) 

where !/I. and 0). represent the kth mode shape and frequency respectively and M represents the mass 

matrix of the structure . Differentiating the characteristic Eqn . (2 . 17) with respect to design variable 

XI and simplifying and collecting terms results in : 

aO). 
ax; 

"'~ [a:~I) I K~ + I Kg] "'. 
_1 i mel mEl 

20). ~M"'. 

(2 . 18) 

Note that in deriving Eqn. (2 . 18) the derivative of the mass matrix with respect to the design 

variables is assumed to be zero. This is true because the mass distribution of the structure is often 

assumed to be independent of the design variables for framed structures since most of the mass is 

associated with non-structural elements . 

Having aU the sensitivity terms determined, the optimality criterion can be calculated by substi­

tuting Eqn. (2.16) and Eqn. (2.18) into Eqn . (2 . 10) . To simplify notation we write the optimality 

criterion as: 

= I ;=1, ... . M (2.19) 

where 
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;=1. . . .. M (2.20) 

2. S. Solution Procedure 

The optimum structure must satisfy the optima1ity criterion and the weight constraint. Since 

these equations are nonlinear. they can be solved only by an iterative scheme. The iterative algorithm 

suggested here consists of using a set of recurrence relationships based on the optimality criteria . The 

recurrence relations are the optimality criteria written in a form that can be used in an ilerative 

fashion. Repeated use of the recurrence relation will move the initial design toward a design which 

satisfies the optimality criteria and the constraints. The iteration is split between two sets of unknowns . 

The firSt set contains the coefficients Q,. and the second set contains the Lagrange multiplier ~ . The 

coefficients Q; can be evaluated by solving the linearized buckling and vibration eigenvalue problems 

and determining the sensitivity of the buckling and frequency eigenvalues with respect to the design 

variables. The Lagrange multiplier is determined by using the condition that the design lies on the 

conStraint surface at the end of each iteration. Because of the nonlinearity of the problem. when one 

moves the design to satisfy the optimality criteria the constraint surface moves. Conversely. when one 

moves the design to satisfy the constraint. the optimality criteria will not be satisfied . This behavior 

necessitates a repeated analysis of the structure. evaluation of the flexibility coefficients. determina­

tion of the Lagrange multiplier. and use of the recurrence relations . In the next sections the recur­

rence relations are derived and the method to determine the Lagrange multiplier is discussed . 

2.5. 1. Recurrence Relations 

There have been various forms of recurrence relations developed and used . Berke (1970) 

derived a recursion relation based on a virtual strain energy criterion (or problems with prescribed 

displacements . The recursion relation eliminated the need (or determining the Hessian matrix (or 

nonlinear programming. which is computationally expensive. The same recurrence relation was effec· 

tively used by Gellaty and Berke (1971) (or a displacement constraint algorithm combined with stress 

ratio algorithm (or design problems with stress and displacement constraints . 
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Later, Venkayya, Khot, and Berke (1973); Khot, Veokayya, and Berke (1973); and Khot, 

Veokayya, and Berke (1976) derived different forms of the recurrence relations for displacement 

constraints, stress constraints, and dynamic stiffness requirements as follows: write the optimality 

criteria in general form as 

'Ii = 1 i = 1 . . ... M (2.21) 

multiply both sides by the design variable xi and take the rth root. The optimality criterion can now 

be written in recurrence form as: 

(2 .22) 

where" denotes the iteration number and r is the step size parameter. In Eqn . (2.22) 'Ii is evaluated 

at the Kth iteration and is used to determine the new design variable xi" . The Eqn. (2 .22) is referred 

to as the exponential recurrence relation. At optimum the optimality criterion Eqn . (2 .21) will be 

satisfied, therefore, the design variables will be unchanged with any additional iterations at optimum . 

Eqn. (2 .22) can be reWTiuen as: 

xi" = xi[1 + ('Ii - l)]' lr (2 .23) 

Near the optimum, the term ('Ii - 1) will be small compare to unity, therefore, Eqn . (2.23) can be 

expanded by using the binomial theorem. Considering only the linear terms one obtains: 

xi" = xi [1 + +('Ii - 1)] (2 .24) 

This equation is referred to as the linear recurrence relation for the design variables . In Eqn. (2 .24) 

the term ('Ii - 1) is the error in satisfying the optimality criterion and is equal to zero at the optimum. 

Khot (1 981) showed that the linear recurrence relations and the equations used to estimate 

the Lagrange multipliers derived by using the optimality criterion approach can also be obtained using 

the projection method of nonlinear programming. 

In this study, the optimality criteria are used to modify the design variables. The recurrence 

relations proposed by Eqn . (2 .24) is used as: 
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i= 1 •.. .• M (2.2S) 

where I( denotes the iteration number and r is the step size parameter. The convergence behavior 

depends on the parameter r . Depending on the behavior of the constraint. it may be necessary to 

increase , in order to prevent divergence. If the optimization problem is run in a non-interactive 

environment a large value of step length such as r=8 or r= lOis recommended to ensure that there is 

no problem with divergence . Of course. this choice will result in slower convergence. 

Another approach to controlling convergence is to generate an intermediate design vector 

whenever the objective function startS to deviate from the decreasing or increasing trend in the previ­

ous iterations. The intermediate design vector can be generated by taking the average of the variables 

in the previous iteration and the present iteration . It can be shown that this averaging process is 

equivalent to redoing the last iteration with r doubled. 

A parameter study on the magnitude of Slep length and its effect on the convergence of the 

optimization can be found in paper by No and Aguinagalde (1987) . 

2.S .2. Equation to Determine Lagrange Multiplier 

The Lagrange multiplier ~ must be determined in order to use the recurrence Eqn. (2.25) . An 

equation to determine the Lagrange multiplier can be obtained by linearizing constraint about the 

current iterate. 

The weight constraint can be expanded as: 

M 

C(x) = 2>(xt}{1/ - r = 0 
/. I 

Linearizing about the configuration x" one obtains: 

where 

= aA(x/) OJ 
aXj 

17 

(2 .26) 

(2.27) 

(2 .28) 



Thus the linearized constraint becomes: 

'" ~ aA(xi) 
IA(Xi)Q/ - r + L---Qj(Xj-xi) = 0 
/ . ax; _I , . 1 

(2.29) 

In Eqn. (2.29), C(x") ... 0 since the design variables are updated by the recurrence relation­

ship after the Lagrange multiplier is estimated. We estimate the Lagrange multiplier by satisfying the 

linearized constraint at the new iterate x"' . Substituting x = ,,"," into Eqn. (2.29) and solving for the 

Lagrange multiplier we get 

I Qj(X") dA (xi) xi 
. aXj e = /., 

I a~~Xi) xiQ/ - r[IA(xilQj - rJ 
, • l' I . 1 

(2 .30) 

since the constant weight constraint is an equality, ~ can be either positive or negative . 

2.5.3. Active/Passive Set Strategies 

After each iteration a set of new design variables is obtained. If the design variables are in the 

permissible range, they are considered active elements, otherwise, they are considered passive ele-

ments. Allwood and Chung (1984) suggested that in general if a design variable is passive in two 

consecutive iterations, it will stay passive until convergence. The method suggest by Allwood and 

Chung is implemented here . 

It is generally more efficient to keep a passive element passive until the end. The program is 

set up so that the designer can change a passive element to an active element or vice versa . Thus, if a 

designer's judgment suggests that a design variable should be active, he can turn the passive design set 

to active and check its status at every iteration. One benefit of keeping a design variable in the passive 

set once it become passive is that this can expedite convergence. 

2.5.4. Scaling Procedure 

Since the weight constraint is not exactly enforced at each iteration, it is necessary to scale the 

design variables to keep the design feasible . The weight of the structure after each iteration can be 
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split into twO pans: one pan is the weight of the members in the active set, WA, and the other is the 

weight of the members in the passive set, W~ 

(2 .31) 

In order to scale the weight of a structure after each iteration, the area of each active element is 

scaled by ~ as Xj +- Xj~ with 

(2.32) 

Since only the active set is scaled. iteration is necessary only if a variable becomes passive as a conse· 

que nee of scaling. 

2.S.S. Convergence Cri terion 

The optimization theoretically converges when all the optimality criteria are satisfied . After 

each iteration the deviation of the optimality criteria from unity is calculated and if the Euclidean 

norm of the deviation is less than a specified tolerance the iteration is terminated . The tolerance is 

specified by the designer. 
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I.A. APPENDIX 

CROSS SECTIONAL PROPERTIES 

I.A.!' Overview 

Member properues are assumed to be compo!ed of the collection of all regular series wide 

flange rolled steel shapes as identified by the American Institute of Steel Construction (AISC) . This 

set is clearly discrete . Many researchers have tried to come up with continuous models to define the 

discrete set of member properties. In general optimization on a continuous domain is more efficient 

than optimization on a discrete domain. The continuous relationship between cross sectional area 

and moment of inerua used in chapter 2 were obtained from empirical relations derived by Walker 

(1977) for economy wide flange steel sections . These relationships are as follows: 

For columns with I s 429 in' 

D = 1.4701"'''' 

A = 2.951" ·'34" 

For columns with I> 429 in' 

D = 10.51"'°'" (2 .A. !) 

A = 0.04941""'" 

For girders 

D = 2.6601"·287 

A = 0 .611241"'"'' 

Where D is the section depth in inches and A is the area (inches)2 . The limits of the model are shown 

in Fig. 2.A.2. 

The program written for the optimization algorithm is set to select column sections (as is de­

fined in Eqn. (2.A.l» for column members, and girder sections (as is defined in Eqn. (2.A. !» for 

20 

I 
I 

• • • • • 
I 

• • • • • • • • • • • 



•• 
• • • • • • • • • • • • • • • • • 
I 

girder members. Where depth restrictions do nOt apply and member instability problem (out-of-plane 

buckling) are unlikely to be critical, beam sections may be used with advantage for column members. 

Conversely, an option is included in the program whereby one may stipulate column sections for beam 

members if desired . 

The empirical relationship given by Eqn. (2 .A. I) has a discontinuity of slope at a moment of 

inenia of 429 in'. This discontinuity can cause difficulty in convergence of the optimization algorithm 

if some of the design variables are near 429 in' . To solve this problem a continuous curve was lit 

between the twO curves proposed by Walker (Eqn. (2.A. I)) . The method of matching tangents, 

described by MenegollO and Pinto (1973), yields the following relationship 

D = 0.00042 I + 
S.872 + 0.022377 I (2 .A.2) 

1 +(0.4253 + 0.00162 1)0m 

and the cross secuon area can be determined as 

A = I 
0.1 S21D"" 

(2 .A.3) 

For comparison purposes, the curves given by Eqn. (2.A.l) and Eqn. (2.A.2) are plotted in 

Fig. 2.A.1. 
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It is imponant to note that the empirical relationship given in (2 .A.2) is only good for a cenain 

range and covers only a small portion of the discrete set as given in AISC. To see where the empirical 

relationship of Eqn. (2.A.2) stands in the whole discrete set, Fig. 2.A.2 is presented. From this figure 

it is obvious that the continuous function covers a very small and specific range of the discrete mem· 

bers . Therefore, it is imponant to come up with a method that can model the discrete set with more 

generality. One way of handling the problem is to use more than one design variable to represent the 

cross sectional properties of a member and let the optimization algorithm find the best relationships 

among the cross sectional components as needed to achieve an optimal design. In this way, one is not 

bounded to the curve given by Eqn. (2 .A.2) and can move in the discrete set freely and the optimiza-

tion will assign the necessary relationship. Using more than one design variable in defining the cross 

sectional properties makes the problem more complicated to handle but gives more realistic represen­

tation of the optimal cross sectional types . Using more variables to identify a cross section will allow 

the optimization to be more flexible and the design need not be chosen from a pre-assigned set. This 

freedom is, of course, a blessing to the researcher and a curse to the designer who must, in the end, 

select from the discrete set. 

The two types of cross sections that are most widely used are rectangular and wide flange 

sections as shown in Fig. 2.A.3 below. 

,10 h 

I • 
b 

, • I 

Rectangular Cross Section I-beam Cross Section 

Fig. 2.A.3. Different Cross Sectional Types 

Properties of rectangular cross section can be expressed in terms of width (b) and height (h) 

and properties of the wide flange sections can be expressed in terms of the parameters (h, b, r/, rw) ; 

where h is the height, b is the width, rw is the web thickness, and tt is the flange thickness. There-

23 



fore. there are four variables necessary to represent the propenies of the I-beam members. One can 

observe a relationship between the flange thickness and the web thickness of available (AISC) I-beam 

sections. They are very closely related to one another by II"" 1.61",. Fig. 2.A.4 presents a plot of I", 

versus 1/. Thus. there are only three independent variables needed to describe an I-beam cross 

section accurately. These three independent parameters can be used as design variables for the 

optimization. 

5 

3 

2 

o 
0.0 0.5 

c .. 
c ... 

1.0 

e 

• 
e 

1.5 

t", 

•• • 

2.0 

• 

• 
• 

2.5 

Fig. 2.A.4. Flange Thickness Versus Web Thickness for Wide Flange 
Sections Identified by AISC 

3 .0 

One must be careful when multiple design variables are used to define the member cross 

sectional properties because the objective function may be insensitive to certain urunodeled phenome­

non . Under such circumstances the design variables will generally move toward their extreme permis­

sible sizes. For example. if a planar frame is optimized to maximize the fundamental buckling eigen­

value with a volume constraint. the cross section tends toward having the highest moment of inenia in 

the plane of the structure . The cross sections will tend to have the smallest possible width with the 

largest possible height. The resulting structure would have no resistance to out-of-plane buckling. 
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This problem could be solved in two ways . One way is to put an additional constraint on the design 

variables to prevent out-of-plane instability if it becomes imponant. Another way is to consider a 

three-dimensional Crame in which case the objective will provide the necessary constraint among the 

three cross sectional variables_ It may be impossible to write an explicit constraint for global out-of­

plane buckling. except for simple cases like single member buckling. hence. the later approach is 

more promising than the former. and will be investigated in the sequel. 

Another example of an unmodeled phenomenon concerns local buckling of flange and web 

elements . Because the analytical model does not include local buckling modes, these will not be 

represented in the objective function _ One could use a model which incorporates local buckling, but 

the interaction between local and global buckling for most structures is small and thus the resulting 

algorithm would probably nOt be robust . On the other hand, since local and global t uckling are lightly 

coupled , local buckling constraints in the form of width-to-thickness limitation would be relatively 

simple to describe and implement. 
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3.1. Introduction 

CHAPTER 3 

APPLICATION OF 2-D OPTIMIZATION TO FRAMED 
STRUCTURES 

This chapter is devoted to application of the methods developed in previous chapter to two 

framed suuctures . The examples will serve to demonstrate the effectiveness of the design procedure . 

Presentation of the examples include three parts: (1) discussion of the initial design method; (2) 

discussion of the optimization process. and (3) analyses and discussion of the quality of the initial and 

the optimized designs under static and dynamic environment. 

To stan the chapter it is necessary to discuss some of the analysis procedures employed. 

3.2. Analysis Procedure 

The approach to analyzing the 2-D frames considered in this study is that proposed by Simo, 

Hjelmstad, and Taylor (1983) . A finite element discretization of the structure in conjunction with the 

standard Newton-Raphson iteration scheme, is employed to solve the nonlinear equations of motion . 

The finite element discretization of the frames analyzed throughout this chapter consists of two 

elements between each structural joint. Quadratic interpolation was employed for all the elements. 

The norm of the local constitutive residual was forced to be within a tolerance of 10-10 at each global 

iteration. A global iteration tolerance of 10-', measured as ratio of the the Euclldean norm of the 

nodal force unbalance to the Euclidean norm of the initial configuration was used . 

Displacement control load incrementing, as described by Batoz and Dhan (1979), was used 

throughout the analyses. Lateral displacement of the top story was used as the control point. Lateral 

top displacement is used throughout this study to characterize structural deformation . 

3.2.1. Damping Matrix used for Dynamic Analyses 

The damping matrix is modeled as a linear combination of the mass and stiffness matrix . This 

type of damping matrix is known as Rayleigh damping and has the form 
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C=aM+pK (3 .1) 

Where M is the mass matrix. and K is the stiffness matrix. The multipliers a and p can be deter­

mined from modal damping with any pair of natural frequencies . For the present study these multipli­

ers are determined from the first and the second natural vibration frequencies (Oll and <1>2) . To fmd 

the parameters a and p multiply both sides of Eqn . (3 . 1) by the eigenvector 

i.cl,2 

Using the orlhonormality of the eigenvector. Eqn . (3.2) can be rewritten as 

; = 1. 2 

Using this relation for Ol" ~, and Ol1. ~,' we obtain two equations for a and p 

a + pOl~ = 2OlI~, 

Solving for a and p we get 

a = _2",( ~",1.::.Ol.:.., ,-.e.~!.:t <l>2T) Ol::.,!.:Ol:.!., 
Ol2 _ Ol2 

I 2 

and 

(3 .2) 

(3 .3) 

(3 .4) 

(3 .5) 

(3 .6) 

where SI and S2 are the percentage of the critical damping of first and second modes. One observa­

tion about Rayleigh damping is that the mass proportional damping term increase the effect of damp­

ing in the lower modes, while the stiffness proportional damping increases the effect of dampmg in the 

higher modes. 

In nonlinear analysis. the stiffness matrix is updated after each iteration and may not be con­

stant. Therefore. the initial stiffness matrix or the tangent stiffness matrix can be saved to use in 

calculation of the damping matrix. Alternatively. after the damping matrix is determined once. it can 

be stored and used throughout the analysis. 
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3.2.2. Time Interval Used for Dynamic Analyses 

There are two factors that must be considered in employing an appropriate time steps: (1) 

stability of the numerical integration scheme, and (2) proper representation of the input ground mo­

tion function . Using constant-average-acceleration method (i.e. , Newmark method with 13=0.25) for 

a linear system, the first requirement is satisfied automatically , since the method is unconditionally 

stable . Ground motions are normally digitized at 0.02 second intervals, therefore, for the linear 

analyses of problems a time interval of t.t=0 .02 seconds can be used . For the time interval different 

than 0.02 seconds the ground acceleration is obtained by linear interpolation between two coordinate 

points. 

Although the numerical integration scheme used is unconditionally stable for linear systems, 

the method might become unstable for a nonlinear system if the time step is large (Adeli, et aI., 

1978). Unlike conditionally stable methods in linear analysis, for nonlinear analysis a stabili ty crite­

rion to control the time step is not established yet. However, it is apparent that only for a small time 

step the implicit procedures are stable (Belytschko 01 . al. , 1976) . Time steps of t.t =0 .005 seconds 

were used for most of the analyses presented here . 

3.2.3. Damage Estimates 

Different designs can be compared with respect to the damage sustained during a dynamic 

excitation. One of the most widely used damage model was developed by Park and Ang (1985) from 

403 tests on reinforced concrete members. The model assumes that the damage may be expressed in 

terms of a damage index, D, which is computed from the sum of the normalized maximum deforma­

tion and normalized hysteretic energy dissipated during cyclic loading. The damage index can be 

expressed as 

D = 6m + -P-fdE 
6. Qy6u 

(3 .7) 

where D > 1 signifies complete collapse of the member; 6m is the maximum deformation obtained 

during cyclic loading; dE is the incremental absorbed hysteretic energy, Qy is the shear force at first 

yielding of the member; 6. is the maximum attainable monotonic deformation; and P is a normaliza­

tion parameter. P was determined by evaluating the parameter in Eqn. (3 .3) at failure point (D=I ) 

for 261 cyclically loaded specimens and solving for p. 

28 

• 
I 

• • 
I 

• 
I 
I 

• • • 
I 
I 
I 
I 
I 

• • • 



• tJ'1 

I 

• • 
iI 
I 

• • 
I 
I 

• • 
I 

• 
I 

• • 
I 
I 

In the present study we adopt a simplified damage model which is indexed by plastic strain 

energy dissipation only. Although this model is simple, it should provide a good qualitative indication 

of structural distress . The plastic strain energy dissipation can be computed as 

I 

D(I) = f f Olj~IV 
Vo 

(3 .8) 

where tV is the plastic scrain rate and Ol} is the stress and V is the volume of the structure and 

numerically can be determined as 

(3.9) 

where for backward Euler '7=1, for forward Euler '7=1, and for midpoint formulation '7 = 1/2. 

In the following examples the damage statistics for initial and optimized designs under differ­

ent dynamic excitations are determined and the results are discussed . 
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3.3. Three Story Frame 

3.3. 1. Preliminary Design 

The fIrst example is a three story frame with topology as given in Fig. 3.1. This frame was 

designed based to meet the Uniform Building Code (1979) specification. 

I· 216 in -I 
-,.-

1 20 in 

- r-

1 20 in 

--: r-

1 44 In 

1'7'::-7 ., 
" 

Fig. 3.1. Topology of the 3-Story Frame 

The loads on the structure were : 

Dead load: 80 psI 

Live load: 40 psI lor a typical/loor 

20 psI lor the rool 

Exttrior walls 50 Ib llt 

Lateral loads and their distribution were computed [or zone 4 [ollowing the code recommen­

dation . A preliminary design was performed using full dead and live load to determine maximum 

moments in girder sections. 

3.3. 1.1. Code Lateral Loads 

Dead load on girders: .... ..... ............. .... 77.6 kips 

Dead load on columns . .............. ... ....... 57.6 kips 

Dead load 01 the columns and girders ..... 4.0 kips 

Total ... .. ... .. ......... .. ......... .. ... ..... . ...... 139.2 kips 
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3.3. 1.2. Base Shear 

v= ZfKCSW 

S = I (Cotflicitnt for site-structurt rtsonance) 

I = I (Occupancy importance factor) 

Z = I (High seismicity zone) 

K = 0.67 (Moment resisting frame) 

1 T 
CS = where p = -/[(1 -P')' + (2PW] T 

Assume {J = 1.5 --+ CS = 0.78 

v = (0 .67)(0.78)(139 .2) = 72.74 (Kips) Sase Shear 

3.3.1.3. Code Distribution 

The USC force distribution is given as 

Fi = wihi (Ft - V) 
IWjhj 

i= 1 . .... N 
(3 . 10) 

/ 
Ft = 0 for T,; 0.7sec. 

where FI IS the lateral force applied to level i. WI is the ponion of total dead load whIch IS located at 

or is assigned to level i. Ft is the portion of V considered concentrated at the top of the structure . 

Using Eqn. (3 .9) results in the lateral force distribution given in Fig. 3.2. 

0.9845 (k-sec'/ft) 33 .8 kips 

1.1242 (k-sec'/ft) 1---. 25 .0 kips 

1.1522 (k-sec'/ft) 14 .0 kIps 

Fig. 3.2. Code Shear Distribution for 3-Story Frame 
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The AISC specification was used for the design requirements on steel sections. Yield stress 

was 36 Itsi for all sections and frames . The sections were assumed properly braced against lateral 

buckling. For girders the allowable bending stress of Fb = 24ltsi was used. 

For combination of dead plus live load plus earthquake (D+L+Q) the allowable increase in 

working Stress of 33% was followed (Section 2303 UBC code). L stands for live loading, D stands for 

dead loading. and Q stands for earthquake loading. 

Analyses of the preliminary design were done for load combinations (D+L) and 0.7S(D+L+Q). 

For girders, the maximum moments were used to proportion the sections and then checked for 

shear and denections (due to live load) limitations. For column design. the frame was assumed to be 

fully braced in the out-of-plane direction (y-direction). and Kx was computed according to the AlSC 

procedure . 

After checking all the requirements and going through several iteration of design and analysis . 

the following members were chosen for the design : 

WUX55 -+ 

W12X96 -+ 

Girders 

Columns 

Lateral denections were computed under lateral loads from earthquake to check against drift 

requirementS. No changes were necessary. 
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3.3.2. Optimization 

The design achieved based on the UBC specification was used as the initial design for the 

optimization. The initial design is optimized maximizing the first critical eigenvalue of the structure 

under combined lateral and dead loads with no frequency penalty. Six design variables were used : 

three design variables for columns and three design variables for girders. The optimization converged 

in 35 iterations resulting in an optimized design with the properties given in Table 3.1.. which lists the 

cross sectional area (A). the bending moment of inertia (I). the axial capacity (No). the shear capacity 

(vo). and the nexural capacity of (Mo) . The shear coefficient used for of the members was /C = 0.33 . 

Table 3.1. Properties of the Optimized Designs Without 
Frequency Penalty 

Stiffness Propenies Yield Properties 
Member 

A (in2) I (in") No (kips) Vo(kips) M o(kips) 

1 st story columns 38.2 1500 1376 795 7484 
2nd story columns 21.6 807 777 449 4122 
3rd story columns 12 .3 385 443 256 2143 

1 st story girders 23.9 2360 859 496 6875 
2nd story girders 22.9 2163 825 476 6462 
3rd story girders 13.4 698 484 279 2884 

The fundamental period and buckling eigenvalues of the both initial and the optimized design 

are given in Table 3.2. The fundamental buckling eigenvalue of the design increased from 98.7 to 

141.5 . 

Table 3.2. Frequency and the Buckling Eigenvalue of the Initial and 
the Optimized Designs 

Design ,t T(sec) 

Initial Design 98.7 0.538 
Optimum Design 141.5 0 .444 
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3.3.3. Analysis 

Static Analysis.- In order to investigate the performance of the optimized design. both the 

initial design and the optimized designs were analyzed under statically applied lateral and dead load­

ings. Full nonlinear analyses were performed in order to evaluate the overall stability of the initial and 

the optimized designs. Statically applied loads considered herein are not strictly applicable to dynami­

cally applied loads such as occur during an eanhquake. but the nonlinear static behavior provides a 

reasonably realistic indication of the response of the structures to eanhquake loadings and represents 

a useful step toward understanding the dynamic response of the structure and gives some insight into 

the general integrity of a structure (Galambos and Maxwell. 1965; Benero and Kamil. 1975) . The 

results of the analyses are given in Fig. 3.3. One can observe that the load carrying capacity of the 

optimized structure was increased by 44% without any increase in the rate of post-limit load degrada­

tion. The conclusion from static analysis is that the optimized design is better than the initial design as 

far as overall strength and stability is concerned . 

3 

2 

o 
o 

/-------------­-----
I ------------___ _ 

------ Optimized Design 

Initial Design 

10 20 30 

TOP DISPLACEMENT (inches) 

Fig. 3.3. Static Analysis of 3-SlOry Frame 
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Sinusoidal Base Acceleration.- To demonstrate that the optimized design is better under 

dynamically applied loads, both the initial and the optimized designs were analyzed and compared 

under sinusoidal base acceleration and earthquake base acceleration . 

The performance of the both initial and the optimized designs under sinusoidal base accelera­

tion is given in Fig. 3.4. To make the comparison more fair, the sinusoidal base acceleration was 

applied in the two cases with the same frequency but different amplitude . The amplitude of the 

applied base acceleration was chosen such that both irtitial design and the optimized design had the 

same elastic dynamic magrtification factors. A damping ratio of 3% of critical was used for the first 

and the second modes . The base shears obtained from time history analysis and plotted against the 

lateral top displacement of the frames in Fig. 3.4. One can see that the initial design tends to drift 

cyclically whereas the optimized design does not, making the latter a more attractive design. 

Pacoima Dam Earthquake. - Both the initial and the optimized design were analyzed under 

the 1971 Pacoima Dam earthquake. The response history and base shear history of both initial and 

the optimized designs are given in Fig. 3.5. One can see that the irtitial design drifts a great deal. The 

optimized design has controlled drift even though the base shears are higher. Although no failure is 

predicted for the initial design under Pacoima Dam earthquake, the optimized design is more desir­

able because of its ability to control drift. 

Maximum Element Damage Statistics. - Fig. 3.7 shows the maximum element damage sta-

tistics, wherein one can observe that maximum element damage is less for the optimized design than 

the initial design. Location of the maximum damage is not under our control. 

Average Element Damage Statistics.- Fig. 3.6 represents the average element damage statis­

tics which is obtained by taking the norm of damage in each element during the time history analyses. 

Observe that the average damage is less for the optimized design than the initial design . 
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Fig. 3.4. Dynamic Analysis of 3-Story Frame Under Sinusoidal Base Acceleration 
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INITIAL DESIGN ~ OPTIMIZED DESIGN 

PACOIMA DAM 1971 SINUSOIDAL 

Fig. 3.6. Average Element Damage Statistics for 3-Story Frame 

INITIAL DESIGN f~ OPTIMIZED DESIGN 

PACOIMA DAM 1971 SINUSOIDAL 

Fig. 3.7. Maximum Element Damage Statistics for 3-Story Frame 
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3.3. 4. Optimization with Frequency Weighting Function 

So far nothing has been said about the frequency penalty. The performance of the optimized 

3-story frame (opt) was bener than the initial design under static and dynamic excitation without 

considering any frequency penalties. The structure can also be optimized using a frequency weighting 

function . To demonstrate how the weighting function operates on a design. the 3- story frame is 

optimized again with a frequency weighting. Suppose that the structure is to be designed to resist a 

sinusoidal loading of frequency ar . We will take the frequency weighting function to be the sinusoidal 

response spectrum 

p(O) = [(I-P')' + (2P~)'l·" (3.11 ) 

where P = arlO) and the exponent a is an arbitrary parameter. For simplicity. a =1 was used and the 

initial design was optimized with the weighting function given above. The properties of the resulting 

optimized design (optC) are given in Table 3.3. The first buckling eigenvalue of the optr is 1 SS .6 with 

the fundamental period of 0.48 seconds . Fig. 3.8 gives a view of where the fundamental periods of a ll 

the designs are relative to each other. From this figure. One can see that the period of the optf has 

elongated compared to opt because of downhill curve of penalty function . Using a larger number for 

a will enhance the effect of the penalty resulting in a larger change of frequen cy content of the 

design . The optC is a compromise between the initial design and the optimized design opt. 

Frame optC was analyzed under static loading with the results as shown in Fig. 3.9. The 

performance of opt is similar to optC. and both have higher load carrying capacities compared to the 

initial design . The post-limit slopes are almost the same as the initial design . 

Frame optC was also analyzed under Pacoima Dam earthquake and the resulting base shear 

response histories of both initial and the optimized designs are plotted in Fig. 3. 10. Again , from thIS 

picture. one can see that both opt behaves similarly to optC and both behave beller than the initial 

design as far as controlling the drift is concerned. 

Table 3.3, Properties of the Optimized Designs with Frequency Penalty 

Stiffness Properties Yield Properties 
Member 

A (in2) I (in') N.(kips) V.(kips) M.(kips) 

1 st Story Column 39.4 1550 1282 740 6947 
2nd story columns 31.9 1230 715 413 3774 
3rd story columns 12.4 389 465 268 2099 

1 st story girders 23.6 2311 1049 606 9295 
2nd story girders 15.8 992 863 498 6918 
3rd story girders 7.7 217 427 246 2390 
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3.4. Eight Story Frame 

3.4.1. Preliminary Design 

The 8-story frame with topology given in Fig. 3.11 is a modified version of a design given by 

Korn and Galambos (1968). The properties of the structure are given in Table 3.4 . This design was 

checked with UBC lateral load provisions (1979) and the AISC specification (1978) . All the require-

ments were satisfied . 

The loading on the structure consisted of: 

Dead load: 

0.25 kips/in lor roo/level 

0.30 kipslin lor typical floor 

The lateral force distribution on the structure was obtained following the UBC lateral load 

provisions . The calculated lateral force distribution along with the story mass of the struCture is given 

in Table 3.4. 

8 @120 in 

, r;-

Fig. 3.11. Topology of the 8-Story Frame 
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3.4.2. Opti mization 

Table 3.4 . Properties of the 8-Story Initial Design and 
Code Lateral Force Distribution 

Column Girder Mass F/ 
(k-sec2lin) (kips) 

W14X99 W14X38 0.056 0.315 

W14X99 W14X38 0.056 0.629 

W14X90 W14X38 0.056 0.943 

W14X90 W14X38 0.056 1.258 

W12X79 W14X30 0.056 1.572 

W12X79 W14X30 0.056 1.888 

Wl0X49 W12X26 0.056 2.200 

Wl0X49 W12X26 0.045 2.984 

The 8-story frame was optimized by maximizing the first buckling eigenvalue of the Structure 

under dead loading only. keeping the volume of the structure constant. There were 16 design vari­

ables: 8 representing the moments of inertia of the columns and 8 representing the moments of menia 

of the girders . The properties of the optimized design is given in Table 3.5. 

Table 3.5. Properties of the 8-Story Optimized 
Design 

Story Column Girder 

1 W14X99 W24X76 

2 W14X99 W24X76 

3 W14X74 W24X76 

4 W14X74 W24X76 

5 W14X48 W21X57 

6 W14X48 W21X57 

7 W12X35 W12X35 

8 W12X35 Wl2X35 
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3.4.3. Analysis 

Static Analysis.- The result of the static analyses are given in Fig. 3.12. Observe that the 

load carrying capacity of the optimized structure increased from a load factor of 5.0 for the initial 

design to 9.8 for the optimized design (an increase of about 100%) with only a very slight increase in 

the rate of post-limit load degradation . The conclusion from static analysis is that the opti.mized 

design is better than the initial design as far as overall strength and stability is concerned. 

12 

9 

6 

J 

o 
o 20 

------. Optimized Design 

Initial Design 

40 60 80 100 
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Fig. 3. 12 . Static Analysis of 8-Story Frame 
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Sinusoidal Base Acceleration.- To make the comparison of the initial and optimized designs 

fair, each design was analyzed under a sinusoidal base acceleration of the same amplitude at their 

respective resonant frequencies . Again, the dynamic magnification factors for both case are the same. 

A damping ratio of 5% of critical was used for the fITst and the second modes. Fig. 3.13 presents the 

base shear versus the lateral top displacement under the sinusoidal base acceleration. Observe that 

the initial design has tendency to drift whereas the optimited design has stable drift, which making it a 

more attractive design. 

Pacoima Dam Eart hq uake. - Both the initial and the optimized design were analyzed under 

the 1971 Pacoima Dam earthquake. The response history and base shear history of both initial and 

the optimized designs are given in Fig. 3.14. Observe the severe drift of the initial design versus the 
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controlled drift of the optimized design. The base shears are higher for the optimized design as 

expected due to the fact that the optimized design is stiffer and stronger. 

EI Centro Earthquake.- Both the initial and the optimized designs were analyzed under the 

1940 EI Centro earthquake. The response history and base shear history of both initial and the 

optimized designs are given in Fig. 3. 15. The maximum drift of both the initial design and the 

optimized design roughly the same magnitude. It is difficult to distinguish quality of performance 

based upon the response history. 

Damage Statistics.- Fig. 3.17 represents the maximum element damage statistics. The maxi­

mum element damage is reduced for optimized design under sinusoidal base acceleration but in­

creased under Pacoima Dam and EI Centro earthquake. The question is whether the failure of a 

single member is thought to cause general failure of the structure. Bear in mind that more damage for 

an element does not necessary mean the failure of the element. In general, a single element failure 

does not result in general failure of a structure. 

The average element damage statistics is given in Fig. 3.16 where one can see that for the 

optimized design the average element damage is reduced . 
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Fig. 3.16. Average Damage Statistics for 8- Story Frame 

D INITIAL DESIGN OPTIMIZED DESIGN 

EL CENTRO 1944 SINUSOIDAL 

Fig. 3.17. Maximum Element Damage Statistics for 8-Story Frame 

49 



3.5. Conclusions 

The following conclusions can be drawn from the preceding chapter: 

• Maximizing the buckling eigenvalue increases the static limit-load of a laterally loaded 

structure without degrading the post-limit behavior. increasing overall toughness . The 

elastic buckling eigenvalue of 3-story frame was increased. using the optimization 

method. from 98 .7 to 141.5 and as a result the limit-load of the design was improved by 

44%. 

• Slender buildings are particularly well suited to the proposed optimization method . Since 

their behavior is more greatly influenced by geometric effects (P-A effect) . Thus. stabil­

ity. which is the basis of the optimization methodology. becomes more imponant. For 

example. the 8-story frame which is a tall and slender building the optimization method 

improved the limit-load of the design by 100%. 

• Statically based optimal design results in an optimized design that behaves well under 

dynamically applied loads. The optimization method is directly aimed at improving the 

limit-load and post-limit slope response of a statically loaded structure but has the conse­

quence of improving the performance of the structure under dynamic loads. 

• The frequency penalty function can help control the vibration spectrum and can be 

thought of as a Clexible constramt imposed on a design. The examples demonstrated that 

even without the vibration penalty. the static based design procedure improves dynamic 

performance of the structures . Nevenheless the frequency penalty may be imponant in 

some applications. 

• Under dynamically applied loads it was noticed that the optimal Structure controlled 

cyclic drift better than the initial design . 

• Based on the few examples optimized one might conclude that the optimal structure 

tends toward to having less element damage on average than the initial design . However. 

more study needs to be done to substantiate such a claim. 
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CHAPTER 4 

MULTIPLE OBJECTIVE OPTIMAL DESIGN OF 3-D FRAMED STRUCTURES 
BASED ON A STABILITY CRITERION WITH MULTIPLE 

LOADING CONDITIONS 

4.1. Overview 

Much of present design methods are based on experience gained over several decades. largely 

using two-dimensional idealization of structures. However. such information may be of little use for 

the design of special structures. Three-dimensional design problems are more complicated to carry 

out. but they yield insight into the real behavior of the struCture . Today with the help of the new 

generation of the computer systems and different optimization methodologies one can solve complex 

and unprecendented static and dynamic design problems. Although researchers in the field of struc­

tural engineering generally agree that optimum design of three-dimensional building frames especially 

in the seismic regions would be beneficial . methods have been slow to emerge . Most of the research 

in this area has dealt with the optimization of truss and plane frame structures. 

The design methodology to be presented here is a multiple-objective optimization procedure 

whose objective functions involve the buckling eigenvalues and eigenvectors of the structure . A con­

stant weight with bounds on the design variables is used in conjunction with an optimality criterion 

approach . The method provides a general tool for solving complex design problems and generally 

leads to struCtures with bener limit Strength and stability. 

One of the novelties of the new design methodology is its ability to efficiently model and design 

structures under multiple loading conditions . These loading conditions can be different factored loads 

or any kind of loads that can be applied to the structure simultaneously or independently. 

The following is a shan presentation of the multiple objective optimization problem. followed 

by the formulation of the optimization algorithm . 

4.2. Multicriteria Optimization .. 
In many of structural design problems, there exist several often conflicting criteria to be con-

sidered by the designer. It has been a common practice to cast design problems in the framework of a 
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single objective function optintization problem. But. in recent years more attention has been paid to 

multiobjective optimization problems. Multiobjective optimization where the objective function is 

vector-valued offers a promising method for considering different and mutuaUy conflicting require­

ments in a design problem. Some of the recent work using multicriteria optimization in the area of 

structural mechanics can be found in the work of researchers such as Koski (1979) and Koski and 

Silvennionen (1982) where they studied multicriteria optintization of truSses by choosing weight and 

several displacement criteria as design criteria . A constraint method to solve a StrUctural design 

problem was applied by Carntichael (1980). Austin and Pister (1985) applied the multicriteria opti­

mization technique to design earthquake-resistant steel buildings where minimum weight. ntinimum 

story drifts and maximum dissipated energy were used as the objective functions . 

Multicriteria optimization has been used by many researchers in such areas as operations re­

search. control theory. water reSOurces. and many others. A comprehensive discussion on the topic 

of multicnteria optimization can be found in Cohon (1978). Goicoechea (1982). and Dlesk and 

Liebman (1983). 

4.2.1. Noninferiority 

Some mathematical background and terminology are given here to make the reader familiar 

with concepts frequently used in this and future chapters. 

Mutliobjective programming deals with optintization problem with two or more objective func­

tions . The general multiobjective optimiution is stated as: 

Maximize Z(x) ( 4. 1) 

Where Z is the multicriteria objective function given by 

Z(x) = (Z, (x) Z, (x) Zm(x)} (4.2) 

where Z/ is the ith individual objective function . .. 
In single-objective problems. the goal of solving the optimization problem is to identify an 

optimal solution which is feasible and to come up with the best value of the objective function . In the 
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case of multiple-objective optimization there exists no unique optimal value which would result in an 

optimum for all criteria at the same time . 

In the context o[ muiLiobj ective optimiz.ation a new concept called nonin!eriority serves a simi­

lar purpose as the optimum for a single optimization problem. The idea of non inferiority as defined 

by Cohen (1978) is also called nondominance or Pareto optimality by different researchers In differ­

ent fields of research . 

Definition: A vector x· E X is called non inferior or Pareto optimal if and only if the,. exisls 

no x E Xsuch that Z/(x) ~ Zj(x") fori=I.2 • ...• m wilh Zj(x) >Zj(x·) for 01 leasl onej. Here X is 

the feasible set. The definition of noninferiority simply says that x· is noninferior if there exists no 

feasible vector x which would increase some objective functions without causing a simultaneous de­

crease in at least one objective . The corresponding vector Z· = Z(x") in the objective space is called a 

noninferior solution. 

There are many different generating techniques to determine the noninferior set. A good 

survey of different generating techniques can be found in in chapter 22 of Atrek. el 01. (1984) and 

Cohon (1975) . The most popular generating techniques are weighting methods and constraint meth­

ods. A weighting method is used in this study because it is the most natural way of combining objec­

tive functions when they are of the same type. 

The optimization problem considered in this study is atypical of multiobjective optimization 

problems because all of the objective functions have the same nature and yet are conOicting. For 

example. maximizing one buckling eigenvalue might result in a decrease in another one . Since all the 

objective functions are of the same nature. a weighting technique is the best method to produce the 

noniferior set. One of the advantages of the formulation developed here is that all the weighting 

factors are determined automatically. eliminating the principal difficulty inherent in a general weight­

ing solution technique . 

The current formulation developed is an optimization problem consisting of set of objectives 

{)l~. "'1/'1. ...• ",~}. The objectives are combined using a weighting technique as L L WjjJ.'lJ.'j 

where there are infinite number of different combinations of weil!llIing factors that can be used . The 

whole non inferior set can be obtained by using all the possible combinations of weighting fa ctors . For 

the multiple objective optimization problem concerned here. we as the decision maker can put prefer­

ence on a set of the objective functions based on our knowledge of the structural mechanics by 

53 



choosing the weighting factors accordingly. For example. mode 25 has negligible participation in the 

response of the structure and by maximizing it. no advantage is gained . Therefore. the imponance of 

mode 25 can be put to zero by choosing iu weighting factor zero. Usually the fll'St few eigenvalues 

dominate and more weight needs to be put on them. Therefore there is no need to obtain the whole 

noninferior set. The number of different combination of weighting factors can be reduced to only a 

few by knowing the mechanics of the structures and our judgment. 

4.3. Formulation and Development 

To improve the limit behavior and stability characteristics of the three-dimensional framed 

structure under multiple loading cases. one needs to mix several different ingredienu to generate an 

objective function. Similar to Chapter 2 one should include the buckling eigenvalues in the objective . 

To handle multiple loading conditions. we also purpose including the loading conditions directly in the 

objective function. We funher hypothesize that the loading conditions should become imponant to 

the objective function if they cause displace menu similar to a buckling eigenvector which is in the 

design subspace . This observation was made clear in development of the approximate melhod in 

appendix C. The proposed formulation then. seeks to maximize buckling eigenvalues of the Slructure 

using the work of the various load cases going through modal displacements as weighting factors. 

One natural way to put all these ingredienu in the framework of an objective function is to 

combine them in a linear form as: 

or in a quadratic form as: 

N ,.., 

I L>ilfj . ~i + fi' ~A}lJ 
i j 

(4.3) 

(4. 4) 

The only shoncoming of using a quadratic form such as Eqn. (4.4) is thal the number of the 

buckling eigenpairs used in the objeclive function is not necessary equal to the number of the loading 
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conditions . Therefore. to make a compromise it is best to use an alternate form which has quadratic 

terms only for some terms such as: 

(4 .5) 

where OJ is a vector containing a set of index numbers with values in the range (! .NJ with one-to-one 

correspondence with the buckling eigenvalues . The dimension of the set is equal to the number of the 
N 

loading conditions (N.) . For example. 0 "'{2.3) leads to II'/[(f , . 4>i)l', + (f, . 4>i)I',J . 
i _ I 

Equation (4 .5) can be considered as a quasi-quadratic form with I'n . used to put more empha­
I 

sis and importance on some of the eigenvalues. How to choose OJ will be discussed in the future 

chapters where the application of the design procedure is presented. 

Choosing Eqn. (4 .5) as the objective function. we define the multiple objective optimization 

problem to be: 

MAXIMIZE 

N N. 

I IIL/(x)IJ;J(x)l'n/x ) 
i z 1 j . 1 

(4.6) 

SUCH THAT 

M 

I Ai(Xi)Qi = r 
I. , (4.7) 

!iJ < XiJ < XiJ 

where N = number of eigenpairs used; L. = length of vth element; N.. = number of loading conditions 

considered; 1'; = ith elastic critical buckling eigenvalue; r = given weight of the structure; Al = area of 

group i (elements in each group have identical cross sectional propenies); x = total design vector 

where x = {x,. x, ... .. XM}; Xi = design vector for group i where XI'" {Xi!. X;, ..... XiN,} where N, is the 

total number of independent design variables; XiJ = jth design variable for ith group; !iJ = minimum 

permissible jth design variable for ith group; Yij = maximum permissible jth design variable for ith 

group; M = number of element groups; Q. = specific mass of v th element; Q; = I Q.L. = specific .. 
mass of group i. 

An I-beam can be identified by three independent design variables (N,;:3) such as: 

Xml = bm • Xml:::; hm • Xm):::; t m where the three design variables represent width, height. and nange 
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thickness of an I-beam cross section respectively. A rectangular cross section can be identified by two 

independent design variables (N,;=2) such as: Xml = bm • Xm l = hm where are the two design variables 

represent height and width of a rectangular cross section . 

The factor PI} = I<pi . f}1 is the weighted modal participation of the applied loading in which <Pi 

is ith elastic buckling mode shape of the structure. and fl is the ith loading case . If an applied 

loading does a lot of work going through a cenain modal displacement. the factor PI} will dictate the 

maximization of that mode. The noninferior set for the multiple-objective optimization problem 

(Eqn. (4.6» is generated using a weighting method that incorporates preferences. The factor PI} is a 

preference found automaticaUy to determine the imponance of each eigenvalue in the chosen sub­

space . For multiple loading cases. one can give preference to the imponance of the loading condition 

by factoring the loading cases accordingly . Thus. factors used to scale the loading cases can serve as a 

weighting factor introduced by the designer. 

Note that the form and the number of the objective functions change as the number of the 

eigenpairs chosen. or the number of the loading cases. or the load magnification factor change. result­

ing in a multiple objective optimization problem. 

Using Eqn . (4.6) and Eqn. (4 .7) the Lagrangian functional can be cast as: 

N 

L(x . ~) = I 
i . 1 

... 
I IlI(X)PI}(X)lln/X) 
j _ t 

(4 .8) 

where ~ is the Lagrange multiplier. It should be pointed out here that the conStraints on the size of 

the elements given in Eq . (4 .7) are not included in deriving Eq. (4 .8) . Constraint on the permissible 

sizes can be handled efficiently by treating them as passive constraints in the sense that whenever an 

element violates the size constraints. the design variable associated with that element adopts the mini­

mum or the maximum permissible sizes and is placed in the passive set. A more detailed discussion of 

activelpassive design set Strategy is given in section 2.5.3 . 

Differentiating Eq. (4 .8) with respect to design variable Xm. and setting the corresponding 

equation to zero results in: 

- = I I -PljlJn 
aL N ... [ alll 

aXmn I . aXmn 'J 
• 1 J • 1 

.. 
apI} 

+ I'I-a--Iln , 
Xmll J 

(4.9) 
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Rearranging Eqn . (4.9) results in the optimality criteria 

= 1 
m = 1, ... . M 
n = I, .... Ny 

(4.10) 

In Eqn . (4.10) there exist two sensitivity terms: sensitivity of Pi}. and PI with respect to the 

design variables. The sensitivity of the Pij is a function of sensitivity of eigenvectors . Thus. sensitivi­

ties of both eigenvalues and eigenvectors are needed. Determination of these sensitivities is discussed 

in the following section. 

4.4. Eigenvalue and Eige nvector Sensitivity Analysis 

Evaluation of the optimality conditions require knowledge of the sensitivity. or rate of change. 

o! the buckling eigenvalues and eigenvectors with respect to the design variables . Procedures for 

computing these sensitivities have been known for some time. but efficient methods of computation 

continue to be of interest to researchers. A complete and detailed discussion of the problem has been 

given recently by Dailey (1989) . Some of the basic ideas are outlined below. 

Consider the following eigenvalue problem 

K</> = pG</> (4 . 11 ) 

where K is the (positive definite) elastic stiffness matrix and G is the (possibly indefinite) geometric 

stiffness matrix. Both of matrices are symmetric and depend on design variables x . If the dimension 

of the matrices K and G is N. then Eqn . (4.11) gives rise to solution pairs (Pi. </>i ). i=1 •...• N. The 

eigenvectors are orthogonal and hence span N-dimensional space. Funher assume that the eigenve­

ctors are normalized such that </>iG</>i = constant. The value of the constant. which may be negative 

since matrix G is possibly indefinite. is not imponant to the present derivation . There exists the 

possibility that </>iG</>i = 0 • so one must be careful when dividing this constant out in the following 

derivations . For practical purposes we can constrain our vectors to be perpendicular to the nullspace 

of G to avoid the problem since the infinite eigenvalues are of 'flo interest in the present setting. 

Consider that the matrices K and G depend upon a parameter; possibly. but not necessarily. a 

design variable or a linear combination of design variables . The eigenvalues and eigenvectors must 
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also depend implicitly upon the same parameter. Differentiating Eqn. (4 .11) with respect to the pa­

rameter yields 

K'~ + K~' = ",'G~ + jJG'~ + jJG~' (4 . 12) 

where a prime indicates differentiation with respect to the parameter. Collecting terms gives 

[K' -jJG'J~ + [K-jJG1~' - jJ'G~ = 0 (4 . 13) 

which holds for all pair.; of eigenvalues and eigenvectors. The derivative of the ith eigenvector can be 

expanded in terms of eigenvectors, which form a basis 

N 

~ ' I = I Yit~k (4 . 14) 

I: _ \ 

substituting Eqn . (4 .14) into Eqn. (4 . 13) and multiplying by ~J yields 

N 

~; [K'- jJiG'J~i + I Yit ~J1K-jJiGJ~k - jJ'I~JG~i = 0 (4 . 15) 

I:a \ 

or, noting the orthogonality of the eigenvectors 

~j [K' - l'iG ' J~i + YiJ (!'r I'M;G~j - l"i~;G~j = 0 (4 . 16) 

If i =j, the second term disappears and Eqn . (4 .16) gives an expression for the derivative of the 

eigenvalue 

p 't = 
~f [K' -l'jG'J~j 

~fG~j 

If i .. j. Eqn. (4 .16) allows the determination of the coefficient Yij 

Ylj = 
~J [K' -l'iG ' J~1 

(!' j -I'MJG~i 

The coefficient Yil is obtained by differentiating the normality condition 

~'rG~, + ~fG¢" + ¢fG'¢, = 0 
... 

Substituting the eigenvector expansion and solving for the only unknown coefficient 
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Yil = 
1 4>IG'4>1 
2 4>IG4>1 

(4.20) 

By placing the coefficients found into Eqn . (4.14), one obtains the sensitivity for the ith eig­

envector and eigenvalue as 

4> '1 
"" 4>jlK' - /lIG']4>; = L 4>} -

} • I Vti - /lMiG4>j 

(4 .21) 

Clearly, the parameter with respect to which differentiation is done can be any of the design variables. 

Hence, Eqn . (4.21) can be used to compute the rate of change of the eigenproperties with respect to 

the design variables . The derivative of the geometric stiCCness matrix is usually nearly zero and is 

therefore generaUy neglected in practical computations. Numerical derivation of the geometric stiff­

ness matrix can be found in Appendix D. The matrix G' is identically zero for statically determinate 

structures since the distribution of lorce through the Structure does nOt depend upon the element 

rigidities. 

The sensitivity 01 the Pi} is easily computed from the eigenvector sensitivity as 

(4.22) 

The eigenvector sensitivity derived in Eqn . (4.21) is theoretically correct and the derivation is 

instructive , but the formula suCCers from some practical drawbacks. The expression for the sensitivity 

of an eigenvector requires the knowledge of all of the e.igenvectors and eigenvalues of the system. 

The method becomes prohibitively expensive for large systems since the determination 01 all N ei­

genpairs becomes practically impossible . The approach fol1owed in solving practical problems in the 

present study is to truncate the sum after a finite (smaU) number 01 terms. SpecificaUy. the eigenvec­

tor derivatives are determined from Eqn. (4 .21) by including only those eigenvectors in the subspace .. 
used to define the objective function . Although using only a few eigenvectors in Eqn . (4 .2 1) does not 

give the exact eigenvector derivative. computational experience has shown that the results are ade­

quate for the optimization algorithm. 
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Nelson (1976) presented a powerful algorithm for computing eigenvector and eigenvalue de­

rivatives of general matrices with nonrepeated eigenvalues in which the derivatives of any mode re­

quire only the eigenvalue and eigenvector of that mode . Nelson's method is succinctly derived by 

Dailey (1989), and the main features of the method are described below. From Eqn. (4 . 13) one can 

see that the eigenvector derivative can be obtained by solving the following system of equations 

[K-pG]t/>' = p'Gt/> - [K'-pG']t/> (4.23) 

where the quantities on the right-hand-side can all be considered known since the derivative of the 

eigenvalue is easily obtained from Eqn. (4.17) . The coefficient matrix matrix K-p G is one degree 

rank deficient (for a distinct eigenvalue), and the nUllspace is spanned by the eigenvector ¢ . Thus, 

the solution the Eqn . (4.23) is given by the sum of a panicular solution, v, plus a component in the 

nullspace as 

t/>' = v + ct/> (4 .24) 

The particular solution is found by setting one component of v to zero (usually the one corresponding 

to the largest component of ¢) and solving the resulting equations . The constant c is determined from 

the normality condition given by Eqn . (4.19) . Substituting Eqn . (4.24) into Eqn . (4. 19) one gets 

(4 .25) 

Solving for c there results 

c = 
1 2t/>'GV+t/>'G ' t/> 
2 t/>'G¢ 

(4.26) 

thereby defining the eigenvector derivative . 

Many of the equations derived thus far are valid only for distinct eigenvalues; in particular, 

Eqn. (4.21) and Nelson's method . In the last decade there has been a great deal of interest in 

systems having repeated eigenvalues since they occur naturally in many symmetric structures . Olhoff ... 
and Rasmussen (1977) and Masur and Mroz (1980) have shown that in a cenain clamped columns, 

optimized to maximizing the buckling load, a repeated eigenvalue may occur. Prager and Prager 

(1979) used a finite dimensional model to demonstrate that repeated eigenvalue can occur in an 
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optimal column. Indeed. many optimization problems lead to symmetric structures which orten have 

multiple eigenvalues. 

The sensitivity properties of the repeated eigenvalue problems have been studied by research­

ers in the disciplines of system Identification. structural control. and optimization. Some of the re­

lated work done on the design sensitivity of the repeated eigenvalues can be found in Haug and 

Rousselet (1980). Haug and Chol (1986). Zhong and Cheng (1986). and Wardi and Polak (1982). 

Ojalvo (1986 and 1987) extended Nelson's algorithm to handle repeated eigenvalues. Recently. 

Dailey (1989) found that the method presented by Ojalvo was correct only for certain special cases 

and he extended the method to handle general eigenvalue and eigenvector derivative of real symmet­

ric matrices for the case of repeated eigenvalues . Dailey's method not only leads to an algorithm for 

computing the derivatives of eigenvalues and eigenvectors for the degenerate case. but also gives 

insight into the difficulties associated with using the information . 

An eigenvalue of multiplicity m is characterized by an m-dimensional subspace in which aU 

vectors are eigenvectors . If the system is penurbed. the multiple eigenvalue splits into up to m distinct 

eigenvalues. From this observation it is clear lhal there are m eigenvalue derivatives (some of which 

may come out to be repeated) even though there is only one eigenvalue. For each eigenvalue deriva­

tive there is an eigenvectOr derivative . The problem arises from the fact that. while the eigenvectors 

are not unique. the derivatives are unique (except for repeated eigenvalue derivatives) . Put another 

way. the derivatives of the eigenvectOrs only exist in certain directions. Define matrices A and B as 

B • CI>'GCI> (4.27) 

where <I> = [.p, • .p, • ... . .pm] (nxm) is a matrix of the eigenvectors corresponding to the repeated ei­

genvalue . Now consider the following auxiliary eigenvalue problem 

(4.28) 

The eigenvalues 1,. 1, . .. .. 1m of Eqn. (4 .28) are the eigenvalue derivatives. 1",. 1", • .... JJ'm. of the 

original system. The eigenvectors. !/I, of Eqn . (4 .28) determine the directions in which the derivatives .. 
of the eigenvectors exist. Let '¥ = [!/I,. 1/12 ... .. !/ImJ (mxm) be a matrix whose columns are the e,genve-

ctors of Eqn. (4 .28) . The directions in which eigenvector derivatives exist are the columns of the 

matrix Z which is given in terms of the eigenvalues of the original system as Z = <I> IJI (nxm) . Note 
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that because IjI is square and its columns are orthonormal. operation with IjI represents pure rotation 

in m-dimensional space. Thus. the directions in which eigenvector derivatives exist are simply rota­

tions of the original eigenvectors. 

The matrix A depends on the derivatives of the matrices K and G. Therefore. the directions 

in which eigenvector derivatives exist wiU be different for each different design variable. complicating 

the evaluation of the eigenvector sensitivities. Repeated eigenvalues in an unfortunately chosen sym­

metric initial design can be easily diagnosed and easily cured. For the optimization problems solved 

here the solutions wiU. at worst. converge to a configuration with a repeated eigenvalue. In those 

cases convergence of the optimization algorithm is generaUy achieved before numerical difficulties set 

in . As a consequence of the preceding observations. the implementation used for the computations 

presented in subsequent chapters treats the spectrum as completely distinct. Later. through some 

examples. the accuracy and validity of that assumption wiU be examined. 

To determine Eqn. (4.22). one needs to find the gradient of the stiffness matrix with respect 

to the design variables. The linear elastic structural stiffness K exhibits the following explicit form in 

terms of cross sectional area. moment of inertia . and torsional constant 

Jr(xil I K~' + 
pEl 

Ij"(Xi) I kp + },(Xi) I K~J 
pei pel 

(4.29) 

where K~. K~. Kp. and Kfo are respectively. axial plus shear. major axis bending. minor axis bending. 

and torsion contributions to stiffness for element p with the relevant cross sectional parameter fac­

tored out. 

Differentiating the structural stiffness matrix given in Eqn . (4.29) with respect to design vari-

able Xmn results in 

aK (4.30) 

where the partials in Eqns. (4.30) can easily be calculated usi~ the cross sectional propenies. The 

relationship between moment of inertias and areas and design variables can be determined based on 

the type of the cross section as presented for rectangular and I-beam cross sections in section 4.7. 
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Having the partial derivative of K with respect to the design variables. the sensitivity of the Pi} with 

respect to the design variables can be calculated from Eqn . (4 .22) . 

Note terms such as K~ are extremely sparse. involving non-zero elements only in the slots 

associated with degree-of-freedom of element p . Consequently the element contributions t/liK~t/li 

required in Eqn . (4.21) can efficiently be efficiently computed . 

Now all sensitivity terms in the optimality criteria Eqns . (4.10) are determined . To make the 

formulation easier to follow Eqn. (4.10) can be simplified as : 

m=1. .... M 
n=l, ... • Ny 

(4.31) 

where m represents the group number. n represents the design variable within that group. and Qmn is 

given by: 

(4.32) 

The term Qmn is the buckling stram energy density in the group m. 

4.5. Recurrence Rela tions 

The optimality criteria are used to modify the design variables in each iteration in terms of 

recurrence relations similar to that proposed by Khot et al. [1981] : 

(4.33) 

.. 
where IC is the iteration number and r is the Slep size parameter. The convergence behaVIor depends 

on the parameter r . The method of choosing the Slep length to speed convergence was explained in 

detail in section 2 .5. 1. 
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4.6. Equation to Determine Lagrange Multiplier 

In order to be able to use the reCUrrence Eqn . (4.33). the Lagrange multiplier ~ has to be 

determined . The Lagrange multiplier is determined by using the condition that after each iteration 

the design moves on the constraint surface so that the constraint is satisfied. A set of equations to 

determine the Lagrange multiplier can be obtained by linearizing the constraint equation about cur-

rent iterate . 

The weight constraint can be expanded as: 

lot 

C(x) = I Am(xm)Qm - r = 0 
ma' 

Linearizing about the configuration x' one obtains : 

L[C] • ••• 
lot N, ac 

= C(x") + I I -- (Xmn - x7nn) 
m _ ln_1 dXmn 

(4 .34) 

(4.35) 

where the partial derivative of constraint with respect to the design variable Xmn can be evaluated by 

taking derivative of Eqn. (4 .34) : 

ac (4 .36) 

The Lagrange multiplier can be obtained by satisfying the linearized constraint equation at the 

new iterate x"'. Substituting Eqn. (4.33) and Eqn . (4.36) into Eqn . (4 .35) and solving for Lagrange 

multiplier one gets: 

(4.37) 

.. [ N, aA l 
m'L:, rAm + n~ ax:' XmnJ Q m - rr 

.. 

since the constant weight constraint is an equality. f can be either positive or negative. 
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4.7. Specialization to Specific Cross Sectiona l Types 

The design veClor, XI, used in the preceding sections is a vector of independent variables 

identifying a cross section for group i. For example, the Xj vector for a rectangular cross seclion 

would be 

(4.38) 

where band h are the width and the heighl of the cross section . The cross sectional prope"ies 01 

rectangular section are: 

['" = _I_bh, 
12 

rn = _I_b'h 
12 

A = bh 

192b 1rhJ 
- tr'h lanh"2b 

h 

b 
where b < h 

Fig. 4.1. Rectangular Cross Sectional Properues 

For an I-beam cross section the vector XI would be 

XI = G} 
I 

(4 .39) 

(4.40) 

where b, h, and I are the width, height, and the nange thickness respectively . The cross sectional 

propenles of an I-beam are given below: 

A =hlw+2bl 
4 

['" = _1_lwh' +2.bl ~ 
12 2 

rn = _1_ (b'l + hi') 12 w 

J = i (2bI' + hi:") 

tw = constanl . t 

'l , 
. 

h 
Iw 

Fig. 4.2. I-beam Cross Sectional Propenies 
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4.8. Convergence Criteria 

The optimization problem theoretically is converged when aU the optimality criteria as given in 

Eqns. (4.10) is satisfied with a specified tolerance. After each iteration the deviation of the optimality 

criteria from unity is calculated and if the norm of the deviation is less than the specified tolerance the 

iteration is terminated . The tolerance is specified by the designer. 

4.9. Scaling Procedure 

After each iteration to satisfy the constraint relationship, it is necessary to scale the design 

variables to bring the weight of the structure to the level of the aSSigned weight constraint r. Scaling is 

necessary to insure that th~ design at each iteration is feasible. The following is a development of the 

scaling procedure for rectangular members. The same procedure can be developed for I-beam cross 

sections. 

The weight of the structure after each iteration can be divided to three groups depending on 

which design variables are passive and which are active . Thus the total weight is given by: 

r = W"" + Wop + "",P (4.41) 

where W's are various weights. A superscript ·on indicates an active design variable, superscript .p" 

indicates a passive design variable, and there is one superscript for each design variable in the group . 

Let M "" be the set of groups with both design variables active, M "P be the set of groups with height 

passive and width active, M p" be the set of groups with width passive and height active, and Mpp be 

the set of groups with both height and width passive. 

W"" = L hfbfOj (4 .42) 
iEMaa 

W"P = L h~b~Qi , , + L h"bPQI I I (4.43) 
I e Map ie.Afpa 

"",P = L h~bPQi , , (4 .44) 
ieMpp 
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The weight of the structure is scaled after each iteration by scaling onJy the active design 

variables. The scaling factor ~, such that Xlj - Xjj~, is detennined by the equation: 

solving for ~ gives: 

t = 
r-wPp 

W". + (~)' -2W'" 

II!"P 

2W'" 

(4 .45) 

(4 .46) 

The scaling equation for n design variables per group is an nth order polynomial. Higher order 

polynomials can be easily solved by Newtons method . 

A graphic presentation of the scaling procedure for a case with two design variables is given in 

Fig. 4.3. After each iteration, a design in the design space, such as point A, is ~chieved . After 

scaling the design moves from point A to point B where the weight constraint is satisfied . After each 

iteration the design gets closer to the optimum design point C. 

h 

~ "''''''' .ow"" ","," ,.,;" I 

optimum 

"­
"-

"--- ,.::-~;=----,--, I weight constraint 

b 

Fig. 4.3. Scaling of Two Design Variable Design Space 
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5.1. Overview 

CHAPTER 5 

APPLICATION OF 3-D OPTIMIZATION ALGORITHM 
TO FRAMED STRUCTURES 

To demonstrate the performance and the strength of the proposed optimization methodology 

several frames are optimized. Different framed structures. under single and multiple loading 

conditions, are optimized and analyzed . Parameter studies are carried out to examine the effect of 

the number of eigenpairs used in the objective function. the number of design variables carried. 

different choices for the objective function, and different ways of formulating the linearized buckling 

eigenvalue problem. The parameter studies show the effect of each parameter on the final optimal 

design . 

5.2. 3-D Analysis Procedure 

The approach employed in the analyses of the 3-0 frames of this study is that proposed by 

Simo (1984). Simo and Vu-Quoc (1986), and Molhem (1989) . The theoretical background related 

to this method can be found in Simo (1984) and the computational aspects are treated in Simo and 

Vu-Quoc (1986). Simo (1984) introduced the concept of auaching an orthogonal basis to each cross 

section and used that basis to develop material and spatial statements of a fully nonlinear 3-0 beam 

theory. The theory allows the use of incremental rotations of the moving frame as rotational degrees 

of freedom . Simo and Vu-Quoc (1986) employed Euler parameters to represent finite rotation to 

avoid the singularity typically associated with the use of Euler angles. 

The elasto-plastic model used here is a stress resultant model. The yield function, taking into 

account isotropic and kinematic hardening considered was such that the yield surface formed an 

ellipsoid in stress resultant space. Specifically it had the form 

.. 
'V (z, K) = ± (~)2 _ K(wP) 

i.1 ZOI 

(5 .1) 
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where 1 = { N. V,. V2• T.M,.M2l is the vector 01 stress resultants including axial lorce (N). major and 

minor axis shear (V,. V2 ). torque (7) . and major and minor bending moments (M ,. M 2). The 

normalized Cactors to are the fully plastic values 01 the stress resultant. The plasuc work \lIP is 

defined as 

• 
\lIP = f 1 . dlf' 

o 

and the elCective stress is 

z = q-a 

(5 .2) 

(5 .3) 

where q is the materi.1 stress result.nt vector. If' is the plastic strain vector conjugate to q. and a IS 

the back stress resultant vector. K is the isotropic hardening function with K(O) =I which IS generally 

nonlinear in \lIP. 

The computation scheme uses the return mapping algorithm with a consistent tangent operator 

to do rate independent pl.sticity (Simo .nd Taylor. 1985; and Molhem. 1989) . 

5.3. Description of MRF Example Problem 

MRF is a two-Story. single bay. three-dimensional. moment-resisting Irame with tall stories. 

Stories were chosen taU to highlight stability as an important design criterion. The topology 01 the 

frame is given in Fig. 5.1 where one can nOte that the width in both directions is 150 inches and the 

total height is 400 inches . 

Frame MRF will be designed under one or twO dilCerent loading conditions . One loading case IS 

applied in X-direction and one is applied in Z-direction. Each load case models a dlllerent 

phenomenon such as an earthquake. a wind. or a geometric imperlection. The first load case (load 

case I) consists oC proportionally applied triangular shaped load in the X-direction along with a 

distributed non-proportional loading applied on the girders and proportional vertical loading applied 

at the column levels. Lateral loads are obtained lollowing USC specifications. The second type 01 

load case (load case 11) consists 01 torsional loads applied at ~e top story level in Z-dJrecuon. 

Load cases 1 and II are mutually exclusive loading conditions and not necessarily appIJed at the 

same times . The two types oC loadings are shown in Fig. 5.2. 
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Fig. 5.1. Topology of the MRF Frame 
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Fig. 5.2. Applied Loading Conditions for MRF Frame 
(Concentrated forces in kips and distributed forces in kips/in) 
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For each optimization problem solved. a figure is presented displaying the evolution of the 

buckling eigenvalues during the course of optimization. This spectral evolution allows one to easily 

observe how the eigenvalues shift and how their magnitudes alter. and gives insight into the behavior 

of the structure as the optimization progresses. The mode that has the highest participation or has the 

highest Pi) factor is singled out with a cross marker. The eigenvalues at each iteration are connected 

with lines. If different step sizes are used during the optimization. the step size will be displayed on 

this figure also. 

Two types of load-deformation curves are presented: one with tOP displacement in X-direction 

and one with top displacement in Z-direction. The one with top displacement in X-direction is 

analyzed under loading case I. Similarly. the one with lOp displacement in Z-direction is analyzed 

under load case Il . For each figure the load-deformation is given for both the initial design and the 

optimal design. 

MRF is used as an initial design and is optimized in the subsequent sections. The follOwing is 

the discussion of the different optimization procedure and the performance of the optimized designs. 

5.3.1. Sing le Loading 

5.3 . 1.1. Four Design Variables Under Single Loading (2M-ILl 

The notation (2M- ILl stands for twO material sets and one loading condItion. First the MRF 

frame is optimized under single loading using the objective function given below: 

N 

Objective Function --•• ~ Maximize LJ,;/Jl lJl l 
I. I 

Each material set has two design variables: width (b) and height (h) of the rectangular cross 

section. For the problems optimized under category (2M- IL). all the columns have identical material 

properties; so do the girders. To understand the effect of the number of eigenpairs On the 

optimization. three different numbers of eigenpairs (6.8. and "' 0) were used . The following is a 

summary of the optimization procedure and the performance of the optimized designs using different 

eigenpairs in the objective function . The properties of the optimized design are given in Table 5.1. 
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(1) N=6 

The spectral evolution during the optimization for N=6 is given in Fig. 5 .3. Although, 

optimi.ation continued until iteration 22, it practically converged in 10 iterations. During the initial 

iterations the magnitude of each of the eigenvalues changed by large factors until iteration 7 where 

one of the girder's design variables became passive. Subsequently, the optimization converged 

smoothly. 

Mode 3 had the highest participation factor <PI}) at optimum. This behavior was expected 

because mode 3 was a sidesway mode. The sidesway mode started as mode 2 and as it was maximi.ed 

through optimization it switched place with mode 3 and stayed as mode 3 until convergence. The 

initial design and the optimi.ed design were both analy.ed under loading case I and the resulting 

load-deformation curves are given in the Fig. 5.3, in which one can see that the optimi .. d design had 

higher load carrying capacity than the initial design with the same post-limit slope compared to the 

initial design . 

(2) N=8 

The member properties of the final optimi .. d design for N=8 is similar to previous case with 

N=6. The spectral evolution and the load-deformation of the initial and the optimum design are given 

In Fig. 5.4. The optimization practically converged in 15 iterations. 

The spectral evolution for N=10 (Fig. 5.5) shows a lot of activity until iteration 32 where the 

algorithm setlles and finds its way tOward convergence at iteration 45 . Before iteration 27 all the 

design variables were active and the algorithm was somewhat aimless. At iteration 27 one of the 

girder design variables became passive and was kept passive until convergence . 

The algorithm is set to keep design variables passive as once they become passive . The 

designer has the option to change the passive design variableyo active design variables if desired . 

Because of the random activity in the first few iterations a design variable might be set to passive 

artificially. Therefore, for the case N=10 after each iteration all the design variables are set to active 

for first 20 iterations. 
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It is wonh noting that as the optimization approached convergence, modes 3 and 4 coalesced . 

The optimization algorithm had no problem reaching the optimum design even in the presence of the 

multiple eigenvalue. 

To better compare the three example problems under category (2M-1L), the load deformation 

curves found in Fig. 5.3 through Fig. 5.5 are ploued in Fig. 5.6. From this figure, one can see that 

the case with N=10 results in a bener design than the other two cases. Load-deformation curves for 

N=6 and N=8 cases are practically the same. One might conclude that a bigger subspace of eigenpairs 

will lead to a better design . 

5.3.1.2. Six Design Variables Under Single Loading (3M-1L) 

The designation (3M-1L) is shon for three material sets under a single loading condition . 

Again, there are two design variables assigned to each material set malting the total number of the 

design variables 6. The three malerial sets consist of first story columns, second story columns, and 

all girders grouped . 

N 

The same objective function, Li'IPilfll, that was used for case (2M-1L) is also considered 
; 1<1 

here. Three different cases are studied here with the number of eigenpairs varied among the numbers 

6,8, and 10. The following is the discussion of the results of the optimization of these three cases. 

The propeny of the optimized designs are presented in Table 5.2. 

(1) N=6 

The spectral evolution and load-deformation for N=6 is given in Fig. 5.7. Optimization stans 

with step length r=8 and all the design variables active. After iteration 10 the height of the girders 

became passive and adopted the minimum allowable value of 3 inches <!J. = 3). Starting from iteration 

10 the algorithm suffered from zigzagging around the optimum solution . To solve this problem the .. 
size of step length parameter was increased from 8 to 20. This solved the zigzag problem and the 

algorithm converged quickJy . The load-deformation curves given in Fig. 5.7 shows that the optimized 

design is a better design than the initial design both in terms of strength and stability. 
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(2) N=8 

Eight eigenpairs (N=8) were used to optimize the initial design . The result of optimizing is given 

in Fig. 5.8. Comparing the result for this case with the N=6 case, one can see that both resulted in 

practically identical optimized designs. One can observe that modes 7 and 8 do not panicipate in the 

objective function, and as a result, have no effect on the optimization. In general, a designer can not 

decide a priori if the eigenvalues are important to the optimal design because a lot of mode shifting 

occurs during the course of optimization. A designer can choose a smaller subspace size to reduce the 

final computational time require to reach an optimal design. However. as shown in the next example 

(case (3)), a large subspace will often help improve design . Mode shifting will be discussed in more 

detail in section 4.3.2. 

(3) N=IO 

The spectral evolution for the case N= 10 is shown in Fig. 5.9. One can see that during the first 

25 cycles of optimization a lot of mode shifting takes place, with eigenvalues changing size by a large 

amount from one iteration to another. The reason for this behavior is that the chosen step length r=6 

is too small for this problem. Thus, after iteration 20 the step length was increased to r=20 . Using 

r=20 caused smaller change in design variables which helped keep the iterates in the feasible region . 

At iteration 41 the height of the girders became passive design variables with a value of 3.0 

inches Ch = 3). The optimization converged at iteration 75. After iteration 40, although the 

optimality criteria are not exactly unity, the change in objeclive function is very small . Therefore, 

convergence can be assumed prior to a global convergence. What is suggested here is that there are 

some convergence tolerances in the program which could be liberalized for some problem to speed up 

solution without an important change in the outcome of the optimized design. 

5.3.2. Final Observalions for Oplimizalion Under One Loading Condilion 

To better understand the performance of the three optimized structures found under category 

(3M-ILl. all the load-deformation curves are plotted together in Fig. 5.10. Exactly the same type of 

behavior can be observed here as it was observed for case (2~-1L). 

• The more eigenpairs used in the objective function , the better was the performance of the 

optimized design. 
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• Using more independent design variables resulted in a betler design. For example. the 

magnitude of the load factor at the limit points for the case (2M-IL) & N=IO was 37.9 compared 

to the magnitude of the limit point for the case (3M-IL) & N=IO which was 45.9. about a 20% 

improvement in the strength of design without a significant change in computational time to 

achieve the optimized design . 

• As the optimization progresses a large amount of mode shifting takes place . Therefore, one can 

not inspect the eigenvectors of the initial design to choose the number of modes. To show that 

this is true. consider Fig. 5.12 where the mode shapes of the optimized design for case (3M-IL) 

& N=8 and the initial design are plotted . Looking at the mode shapes of the initial design it 

seems that mode 7 (the second mode in direction of loading) will have a high participation in the 

objective function. But. when using 8 eigenpairs for optimization. mode 7 of the initial design 

shifts to mode 9 of the optimized design which is out of the range initially chosen . Consequently. 

mode 7 of the initial design does not participate in the objective function at all . If a designer 

desires to have a specific mode of the irtitial design in the final design. it is recommended to 

choose at least several eigenpairs more than the desired eigenvalue for the optimization problem. 

• The bigger was the magnitude of the dominant eigenvalue of the optimized design. the belter the 

final optimized design behaved. The eigenvalues of the dominant mode at the optimized design 

for the under category (2M-IL) are 455. 541. and 580 for cases of 6. 8 and 10 eigenpairs 

respectively. Similarly. the eigenvalues for the case (3M-IL) at the optimized design are 579. 

583. and 607 which again agrees with the assumption. The magnitude of the dominant buckling 

eigenvalues of the optimum designs (2M-IL) and (3M-IL) are presented in Fig. 5.11. 

• For some design problems. the optimality criterion can vary from the optimal value of unity while 

still providing a small change in the objective function . Therefore. optimization can be 

terminated prior to reaching a global convergence. 

• During course of optintizing a structure. the designer cannot change the number of the eigenpairs 

used in the objective function since doing so would change the optimization problem thereby 

causing problem with convergence. .. 
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Table 5.1. Properties of the Optimized Designs for Case (2M-1L) 

ONE LOADING CONDITION WITH FOUR DESIGN VARIABLES 

PROPERTY 6 EIGENPAIRS 8 EIGENPAIRS 10 EIGENPAIRS 

Columns 
Width 6.497 (6.388) 
Height 5.586 (5.494) 
Area 35.6 (35.7) 

Strong Moment of Inenia 125.4 (121.5) 
Weak Moment of Inenia 89.4 (93 .2) 

Torsion 180.6 (181.9) 

Girders 
Width 7.271 (7.231)t 
Height 3.000 (3.000) 
Area 21.8 (21 .7) 

Strong Moment of Inenia 96.1 (94 .5) 
Weak Moment of Inen ia 16.4 (16.3) 

Torsion 49. 0 (48.6) 

I I Eigenpairs Obtained From the Nonlinear Stiffness Matrix 

t Passive Design Variable 

Eigenvalue at Optimum 

Mode No. of Eigenpai rs Used 
No 

6 8 10 

1 285(246) 276 230 

2 423(327) 416 358 

3 455(354) t 457 494 

4 547 (448) 54 1 t 495t 

5 693(634) 679 580 

6 695(635) 700 688 

7 · -742 732 

8 • 754 753 

9 · . -760 

10 · . -787 

i Dominant Mode at Convergence 
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6.505 7.079 
5.5 t 8 4 .976 
35.9 35.2 
126.6 147.1 
91 .1 76.7 
183.3 169 .5 

7.158 7.45~ 
3.000 t 3.000 
21.5 22.4 
91 .7 103.6 
16.1 16.8 
48.0 50.6 

Panicipation at Optimum 

No. of Eigenpairs Used 

6 8 10 

0 0 0 

0 0 0 

12.8(11.7) 0 0 

0 13.639 12.619 

0 0.0897 0.0302 

0.03(0.09) 0 0 

· 0.22 15 0 

· 0 0.1283 
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Table 5.2. Properties of the Optimized Designs for Case (3M-IL) 

ONE LOADING CONDITION WITH SIX DESIGN VARIABLES 

PROPERTY 6 EIGENPAIRS 8 EIGENPAIRS 10 EIGENPAIRS 

First Story Columns 
Width 7.763 7.606 8.278 
Height 5.509 5.338 5.040 
Area 4 2.8 40 .6 41.7 

Strong Moment of Inertia 214.7 195.76 238.3 
Weak Moment of Inertia 108.1 96.4 88.3 

Torsion 250 .5 225.03 54.97 

Second Story Columns 
Width 5.884 5 .962 6.376 
Height 4.348 4 .242 4 .080 
Area 25.6 25.247 26 .0 

Strong Moment of Inertia 73 .8 74.5 88. 1 
Weak Moment of Inertia 40.3 37.6 36. 1 

Torsion 90.7 87.4 21.8 

First and Second Story Girders 
Width 7.923 8 .478 8 .089 
Height 3.000 3.000 3.000 
Area 23.7 25.4 24.176 

Strong Moment of Inertia 124.4 152.3 131 .8 
Weak Moment of Inertia 17 .8 19 .1 18.0 

Torsion 54.8 59.8 13 .8 

Eigenvalues at Optimum Participation at Optimum 

Mode No. of Eigenpairs Used No. of Eigenpairs Used 
No 

6 8 10 6 8 10 

1 292 269 250 0 0 0 

2 336 319 288 0 0 0 

3 444 427 408 0 0 0 

4 579 t 583 t 582 13.897 13.639 0 .0932 

5 651 631 607 t 0.0410 0.0897 13 .508 

6 720 729 683 0 0 0 

7 · 803 761 • 0.2215 0 

8 • 909 785 · 0 0.4733 

9 · . -848 .. · . 0 

10 • • -863 · . 0 .0724 

t DomInant Mode at Convergence 
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5.3.3. Multiple Loading 

The following three sections are the application of the optimization methodology to multiple load­

ing conditions . 

5.3 .3.1. Four Design Variables Under Two Loading Conditions (2M-2L) & N=6. 

The notation (2M-2L) stands for two material sets and two loading cases . For the following 

design problems. different objective functions are considered. the optimization is carried out. and the 

results are discussed. All the following example problems are under category (2M-2L) with N=6. Many 

of the optimization problems considered use common parameters during the optimization . In order to 

prevent repetition. common parameters will be noted and can be assumed the same for each problem 

unless otherwise stated . 

All the following optimization problems. except case (2) Slart from the designs that were obtained 

under a single loading case instead of starting from the initial design . Since optimized designs under 

single loading case are available it is bener to use them because they are probably closer to the optimal 

design than the initial design under multiple loading condition. , Using the initial design as the starting 

design for multiple loading optimization problem will probably reach the same optimal design . The 

properties of the optimized design under category (2M-2L) & N=6 is given in Table 5.3. 

The two different loading cases considered for this problem are shown in Fig 5.2. One loading 

condition is of sidesway type and one is of tOrsional type . Final optimized designs are analyzed under 

both loading conditions and the results are presented and discussed. A minimum allowable design 

variable of 3.0 inches is used for both height and width (11. =!J. = 3.0 inches). The eigenvalue problem is 

formulated from load case I unless otherwise mentioned. 

Finally. the optimal designs found here are by no means the only possible optimized designs under 

the category (2M-2L) with N=6 . An infinite number of different optimized designs can be found just by 

changing the imponance parameters. the number of eigenpairs in the objective function. or the method 

of formulating the buckling eigenvalue problem. The examples generated should illustrate these differ­

ent possibilities . In practice it will not be feasible to determi~ the whole noninferior optimal seL 

Therefore. several different cases are considered to come up with a subset of the whole noninferior 

optimized seL Finally. from the determined subset of the noninrerior set a design is chosen as the best 

design. 
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(1) N=6 & n={l,l} 

The spectral evolution for the present case (standard case) is given in Fig. 5.13. The algorithm 

converged in 25 iterations. Initially, mode 2 had the highest participation [actor (until iteration 10) . 

ACter iteration 10 mode 3 dominated and again aCter iteration 13 mode 2 and 3 shifted places and mode 

2 remained dominant until convergence. Mode two at convergence is a sidesway buckling mode which 

is similar to static deflected shape under applied load case I. It is interesting to note that at the optimum 

modes I and 2 coalesced as did modes 4 and 5. Mode I is torsional mode and mode 2 is sidesway 

mode. As it can be seen from the spectral evolution figure, the algorithm had no problem reaching the 

optimized design . 

The analysis of the resulting optimized design is given in Fig. 5.13. There are two 10ad-deCorma­

tion curves presented in this figure : one under load case 1 and one under load case II . From these two 

plots, it is obvious that the optimized design is a beuer design under both loading conditions. The 

optimized design has a higher load carrying capacity than initial design under both loading conditions . 

Post-limit strength degradation is about the same Cor both initial and the optimized designs under load 

case I and it is better [or the optimized design compared to the initial design under load case II . Since 

the dominant mode throughout the optimization process was the sidesway mode, in the same direction 

and shape as the load condition I, it is expected that the optimized design to perCorm bener under the 

load condition I. 

(2) N=6 & n={I,ll. Alternate Buckling Eigenvalue Problem (NLC=2) 

Problem definition [or this case is exactly the same as the case (I), except the buckling eigenvalue 

problem is formulated differently. For the case of multiple loading cases, it is nOt clear what loading 

conditions to use in [ormulating the buckling eigenvalue problem, thereCore, the same example problem 

that was optimized in case (1) is also optimized here by considering a combination o[ load case 1 and II 

Cor the buckling eigenvalue problem. Comparison oC the results [rom the present case with case (1) will 

give an understanding o[ the efCect o[ the loading conditions as used in the Cormulation of the buckling 

eigenvalue problem in the overall performance oC the optimization. 

The spectral evolution and the 10ad-deCormation curves [o~ the optimized design are presented in 

Fig. 5.14 . The optimization problem converged in II iterations without much changes in the magnitude 

oC the eigenvalues. The optimized design has distinct eigenvalues. and they are almost uniCormly spread . 
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The optimized design performed better under both loading conditions than the initial design . The 

optimized design for this case had higher load carrying capacity in both direction compared to the 

previous optimized design obtained in case (1) . The slope of the post-umit curve under lateral loading 

case is steeper compared to previous optimized design which makes this design less attractive . 

Note that by incorporating the load case II in conjunction with the load case I in the formulation 

of the buckling eigenvalue problem improved the performance of the optimized design under load case 

" and worsened the performance of the optimized design under load case I compared to the case (I) . 

(3) N=6 & IT={1.2} 

The spectral evolution and the load-deformation curves [or the present case are given in Fig. 

5.15. There is not a significant difference between the design obtained under multiple loading condition 

compared to the optimized design under single loading condition. The design StartS with a multiple 

eigenvalue (mode 1 & 2) which persists until convergence. At optimum. mode I and 2 are sidesway 

modes and mode 3 is the torsional mode. Looking at the load-deformation curves one can observe the 

improvement of the limit-load under both loading conditions . 

The final optimized design for this problem and the optimized design obtained in the previous 

problem are very similar (see the properties given in Table 5.3) . The design obtained here has repeated 

eigenvalues whereas the previous example with practically the same properties had distinct eigenvalues. 

The difference between these cases is that the eigenvalue problem was formulated differently for the twO 

cases. In previous case the eigenpairs were obtained using a combination of both load cases while for 

the present example only load case I was used . 

(4) N=6 & IT={2.3} 

In the previous case it was noticed that the second buckling eigenvector at optimum was a sides­

way mode and the third buckling eigenvector at optimum was a torsional mode . Thus. to improve the 

performance of the design under both load cases I and II. which are of sidesway and torsional type. it 
Of 

was decided to put more imponance on mode 2 and 3 by choosing an objective function with n={2.3}. 

Optimization problem with the objective function of N=6. n={2.3} converged in 19 iterations with 

modes 3 and 4 coalescing. At optimum mode 3 is a torsional mode and mode 4 is a sidesway mode . 
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Spectral evolution and load-deformation curves for this case are given in Fig. 5.16. As the optimization 

progressed, one can observe that the magnitude of all the eigenvalues except mode 3 decreased slightly. 

The magnitude of mode 3 increased until it became repeated eigenvalue with mode 4. Looking at the 

load-deformation curves, one can observe that the optimized design is much better design than initial 

design. In fact, this design is arguably the best design among all the optimized designs found under 

multiple loads . 

(5) N=6 & n={l,3) 

In previous two cases mode 3 of the optimized designs was found to be a torsional mode, thus, it 

was deCIded to pUI more importance on mode 3 by using the n={1.3) for the objective function to 

improve the performance of the optimized designs under load case II. 

The plots of spectral decomposition and load-deformalion curves for lhe case having N=6 and 

n={l,3) are presented in Fig. 5.17 . The optimization problem converged quickly in 9 iterations with 

small changes in the magnitude of the eigenvalues withOUI any mode shifting. The dominant mode at 

optimum was the torsional mode. The optimization converged with no repealed eigenvalues. 

Looking al the load-deformation curves, one can see that the optimized design has a bener load 

carrying capacilY than the initial design under both loading conditions . Under load case II the optimized 

design is obviously an improvement over the initial design which just shows that by putting more empha­

sis on mode 3 which is a torsional mode helped improving the performance under load case II . Improv­

ing the performance under load case II resulled in the opposite effecl on the performance of the opti­

mized design under load case I compared to the optimized design in case (2) which is expected . The 

optimal design has a higher limit load under load case I. The post-limit curve has a Sleeper slope than 

the initial design but il always bounds the initial design from above. 

.. 
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Table 5.3 . Properties of the Optimized Design for Case (2M-2L) & N=6 

TWO LOADING CONDITION WITH FOUR 
DESIGN VARIABLES 

N 1 N , N N 
Properties I IlliPijll1 I I IlIPifll1 I III (fJilll I + PllJl,) I III (fJilll, + PilJl,) 

j. I J-l falI-t h.1 f. I 

Columns 
Width 5.044 5.870 5.910 6 .944 
Height 6.919 5.426 5.426 4.899 
Area 34.9 31.9 32.1 34.0 
Strong Moment of Inertia 139.3 78.1 78.7 68.0 
Weak Moment of Inertia 74.0 91.5 93.3 136.7 
Torsion 168.3 146.5 158.2 

Girders 
Width 7.598 8.956 8 .859 7.992 
Height 3.000 3.000 3.000 3.000 
Area 27.8 26.9 26.6 23.98 
Strong Moment of Inertia 17.1 20.15 19.9 17.98 
Weak ~oment of Inertia 109.7 180.0 173.8 127.6 
Torsion 51.9 64 .1 61.4 55.45 

Optimization Parameters 
Step Size Parameter 8 8 8 10 
Method to Formulate EVP 1 2 1 1 
Number of iterations 25 11 12 19 

Eigenvalues at Optimum 
Mode 1 409. 7 t 280 257 .1 219 .5 
Mode 2 417.0 41Jt 419.S t 355.7 t 
Mode 3 572.2 472 422.5 491.4 
Mode 4 704.7 533 549 .7 493.0 
Mode 5 -709.5 -659 670.0 566.6 
Mode 6 718.1 687 756.9 695 .9 

t Dominant mode at converoence 

N 

I III (fJilll I + PilJl,) 
I. I 

5.591 
5.668 
31.7 
84.8 
82.6 
142.1 

9.026 
3.000 
27.1 
20.3 
183.8 
64.3 

8 
1 
9 

267.8
t 400.7 

450.5 
582.1 
715.9 
755 .9 
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5.3.3.2. Six Design Variables Under Two Loading Conditions (3M-2L) & N=6. 

The notation (3M-2L), N=6 stands for 3 material sets. 2 loading cases. and 6 eigenpairs. All the 

following example problems are in the category (3M-2L) with N=6. All the assumptions made in sections 

5.3.3.1 are made here also. Six different design problems are optimized in this section . The six opti­

mized designs all have the same initial design but are optimized with different objective functions and use 

different methods for formulating the associated buc~ng eigenvalue problem. The performance of the 

optimization method and the behavior of the optimized designs are discussed below. A summary of 

propenies of the optimized designs is given in Table 5.4. 

(1) N=6. and n={l.l) 

The spectral evolution and load-deformation curves for the case N=6. and n={l.l) are given in 

Fig. 5.18 . The optimization converged in 27 iterations . The dominant mode stans as mode 4; as the 

optimization proceeds it swaps with mode 3. an ordering which persists until convergence . At the opti­

mum the width of the second story columns and the height of the girders are passive. meaning that they 

have attained the the minimum allowable width of !2. = 5.0 and height of!! = 3.0 inches . 

Looking at the load-deformation curves it is obvious that the optimized design is a belter design 

than the initial design under loading case I and the initial design is a better design that the optimized 

design under load case II. Since the dominant mode (mode 3) has the same shape as the linear displace­

ment under load case I. the optimized design is expected to behave belter under load case I. To improve 

the design under load case II one should either increase the importance factor associated with the second 

load case or use more eigenpairs in the objective function . Choosing more eigenpairs might be helpful if 

one the modes in the chosen range is a torsional mode. the same shape as load case II. 

Another way of improving the performance of the design for load case II would be to choose four 

material Sets : twO for columns and two for girders. This choice would allow a beller distribution of 

material throughout the structure . The optimized design would '- expected to have collapse mechanism 

with hinges forming in the girders. thereby improving the nonlinear performance of the structure under 

load case Il. This case is studied later. 
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(2) N=6 & n={1.2} 

• 
There are two dUferent cases studied under the objective function 2,p.dlJ;1#1 +PI2fll) : One with 

j. 1 

the minimum allowable design variable for width of !2. = 5.0 and one with !2. = 4.5. The parameter studies 

are performed to see the eCCect of changing the minimum permissible design variables. In a way a limit on 

the design variable sizes could be viewed as incorporating unmodeled constraints such as member local 

buckling. Because we are concerned with improvement of global buckling characteristics of the designs. 

the problem of local buckling can be circumvented by assuming appropriate allowable sizes for the design 

variables. 

The result of the optimization and the load·deformation curves for these twO cases are presented in 

Fig. 5 .19 and Fig. 5.20. The optimization problem for both cases converged with modes 2 and 3 having 

repeated eigenvalues . At optimum. mode 2 was torsional and mode 3 was sides way for both cases . In 

both cases the dominant mode was the sidesway mode in direction of loading I (X-direction) . For the 

case with smaller allowable width it was necessary to choose a larger step length alter the 10th iteration to 

achieve convergence . The eigenvalues of the optimized designs were 503 and 530 respectively . The first 

case had a much better load carrying capacity compared with the initial design under both loading condi­

tions and overall is a superior design . Using!2. = 5.0 resulted in better design under both loading cases and 

using k = 4.5 resulted in a better design under load case I. The second case also under load case I. had 

much higher load carrying capacity had a steeper post-limit slope compared with the initial design . Be­

tween the two designs. the fmt one is more desirable . 

The study on the minimum design variables exposes the fact that minimum column permissible 

dimension is important to the post-limit degradation. The study has revealed that the observation is of 

fundamental importance. 

Notice that the optimization algorithm will change the orientation of the members if it finds them to 

improve the stability of the design . Looking at Table 5.4. one can see that the optimization resulted in a 

change in the orientation of the first story columns. 

.. 
(3) N=6 & n={1.3} 

In case (2) it was found that mode 3 was a sidesway mode with the same shape as the displaced 

configuration of the design under loading case I. To improve the behavior of the optimized design under 
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load case one. the imponance of mode 3 was increased by including it in n with the hope that it will 

remain as mode 3. 

The spectral evolution and load-deformation curves for the case N=6. and n =(1 .3} are given in Fig. 

I 5.21. The optimization problem converged in 20 iterations with the optimized design having repeated 

eigenvalues (modes 3 and 4) at the optimum. The minimum allowable width of k = 5.0 was used for this 

I problem. Looking at the load-deformation curves under both loading conditions it appears that the opti­

mized design is much better than the initial design. having higher load carrying capacity with the same 

I post-limit slope as the initial design . Also notice that the performance of the design under load case I 

improved compared to the case (1) by choosing n ={1.3} in the objective function. 

I 
I 
I 
I 

• • • 

(4) N=6 & n={3.3} 

To solve the optimization problem the buckling eigenvalue problem was formulated using a combi­

nation of loading cases I and II . n ={3.3} was used for the objective function to put emphasis on mode 3 

to improve the performance of the design under load case I (from previous cases it was observed that 

mode 3 at optimum had been a sidesway mode) . 

The optimization problem converged in 37 iterations. although. as one can see in Fig. 5.22. the 

magnitude of the objective function or the eigenvalues did not change by much after iteration 10. The 

optimization resulted in a design with stronger girder and weaker columns compared to the previous four 

cases. The optimized design did not have any repeated eigenvalues . 

Looking at the load-deformation curves given in Fig. 5.22. one can observe that the optimized 

design behaves much better under load case I and is comparable with the initial design under load case II. 

I Therefore. putting more imponance on mode 3 which was a sidesway mode and stayed as a sidesway 

mode until convergence helped improving the performance of the optimized design under load case I. 

I 
• 5.3.3.3. Eight Design Variables Under Two Loading Conditions (4M-2L) & N=6 . 

• • 
I 

., 
The notation (4M-2L) & N=6 stands for four material sets. twO loading cases. and 6 eigenpairs. 

Each material set consists of two design variables: one height and one width of a rectangular cross section . 

The distribution of the material sets are given in the Fig. 5.25. where there are two material sets allocated 

99 



for the columns and two material sets allocated for the girders. There are two design problems discussed 

in this section. All the assumptions made in section 5.3.3 are made here also. Result of optimization 

method and the nonlinear behavior of the optimized designs are summarized and discussed. Summary of 

properties of the optimized designs is presented in Table 5.5. 

(1) N=6 & D={l.l} 

The same objective function used in section 5.3.4-(1) is applied here except that there are four 

material seLS used instead of three material sets. The optimized design under similar objective function as 

was used for the (3M-2L) case did not perform as well as the initial design under loading case II. This 

case is considered here to demonstrate that a proper selection of design variables is important in overall 

performance of the optimized design. 

The result of the load-deformation curves and the spectral evolution for this case is given in Fig. 

5.23 . The optimization problem converged in 23 iterations with final optimized design having multiple 

eigenvalues. Looking at the load-deformation curves. one can observe that the optimized design is a 

much better compared to the initial design under loading case I and slightly better under load case II. 

To see how the load carrying capacities of the optimized designs of cases (3M-2L) & N=6 and 

(4M-2L) & N=6 compare with the initial design let us look at the Fig. 5.26. One can see that the 

optimized design using four material sets has a much higher load carrying capacity than the optimized 

design (3M-2L) & N=6 or the initial design . The load carrying capacity of the optimized design improved 

100% under load case I and improved slightly under load case II . For case of (3M-2L) & N=6 the initial 

design was better under load case II. but as is shown here. choosing a better distribution of material allows 

a global improvement under both loading cases. 

(2) N=6 & D={l.2} 

The objective function used for this problem is the same as the optimization problem solved in 

section 5.3.4-(2}. The reason for the present case study is to show that even though the design with three 

material sets resulted in an optimized design with improved perfotlft:tance. it is possible to achieve better 

performance by increasing the number of design variables for the optimization. The minimum allowable 

design variable for width is chosen to be l!. = 5.0 inches. The result of the spectral evolution and the 

load-deformation curves are given in Fig. 5.24 . 
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One can see from the spectral evolution that the optimization problem converged in 40 iteration 

with the eigenvalues of modes 5 and 6 coalescing. Again, the optimization algorithm had no problem 

reaching an optimal solution with the repeated eigenvalues. Mode 5, a sidesway mode, was the dominant 

mode at convergence . The same problem with the same objective function using three material sets 

converged with the eigenvalues of modes 2 and 3 coalescing. Mode 3 was the dominant mode. The 

magnitude of the dominant mode for this problem is 777 and for the case with three material selS was 503. 

Since the magnitude of the dominant eigenvalue for the present optimized design is much higher, it is 

expected to behave better. The load-deformation curves given in Fig. 5.24 show that under load case I 

the design with four material selS performed much better than the optimized design obtained using three . 

Under load case II all three designs: initial design, optimized design (3M-2L) & N=6, and the presem 

optimized design performed almost the same. 

.. 
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5.3.4. Final Observation on the Proposed Optimization Technique Under Multiple Loading 

• In general. using more design variables will result in a better behaved optimized design. But from 

practical point view it makes sense to group elements together to save on labor. detailing. and fabri­

cation costs. 

• The larger the magnitude of the dominant eigenvalue of the optimized design (one with maximum 

PI)' the better the final optimized design will behave . 

• The proposed optimization technique is a multiple objective optimization method that is solved using 

a weighting method . The weighting parameters Plj are automatically generated from the loading 

conditions and the buckling modes. Multiple objective design optimization results in set of opti­

mized designs that are called the noninferior design set. The designer can then choose the best 

design from the noninferior design set. This choice is generally made using information which is not 

included in the objective function; for example nonlinear and dynamic analyses. The best design 

among all the optimized designs found under multiple loading condition would be the optimized 
2 • 

design to maximize I IlJifJ/jIJI given in section 5.3.5 under category (4M-2L) & N=6. This design 

improved the load d"r~i~~ capacity of the initial design by a factor of more than twO under load case 

I and slightly under load case II. 

• If a combination of the loading conditions was used to formulate the eigenvalue problem. the final 

modes came out distinct. However. if one loading condition was used to formulate the buckling 

eigenvalue problem. then the optimum had mUltiple eigenvalues. In general. eigenvalues will likely 

coalesce when there is equality of the weighting factors. for example if tPI . I I = tP, . J.. The ten­

dency toward repeated eigenvalues in the examples suggests that the occurrence is more than coinci-

dental. 

• The optimized designs are interesting in the sense that they almost always have passive girder depth . 

The tendency is probably due to the tall story heights; deep girders do not add much to the lateral 

stiffness of the structure . Physically. the structure is telling us that the optimum configuration is 

similar to a structure having columns tied together with simple beams . 
... 

• The study of the minimum permissible design variables exposes that [act that the minimum dimension 

is imponant for the post-limit degradation of the structures. The observation reveals the fact that the 

post-limit robustness might be sacrificed with a poor choice of the minimum design variables. 
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Table 5.4. Properties of the Optimized Designs Using Three Material Sets, Two Loading Cases 
and Six Eigenpairs (3M-2L) & N=6 

N , N N 
Properties I IllifhilLI I Ili(/hlll I + fJilJl.,) Illi(fJitlll +fJilJl.») 

1= 1j_1 i = I /. I 

1 st Story Colum ns I 

Width 6.159 6.390 6.604 7.634 
Heighl 7.564 6.119 5.848 4.954 
Area 46.6 39 .1 38.6 37.8 
Strong Moment of Inertia 222.2 122.0 110.1 77.3 
Weak Moment of Inertia 147.3 133.1 140 .4 183.7 
Torsion 300.0 216.1 209.4 185.4 

2nd Story Columns 
Width 5.000 5.000 4.500 5.000 
Height 4.775 5.596 5.723 5.540 
Area 23 .9 28.0 25.6 27.7 
Strong Moment of Inertia 45.4 73 .0 70.3 70.8 
Weak Moment of Inertia 49.7 58.3 43.5 57 .7 
Torsion 80.1 110.0 91.2 107.9 

Girders 
Width 7.453 8.209 8 .874 8.560 
Height 3.000 3.000 3.000 3.000 
Area 22.4 24 .6 26.6 25.7 
Strong Moment of Inertia 16.8 18.5 20.0 19 .3 
Weak M.t'ment of Inertia 103 .5 138.3 174.7 156.8 
Torsion 50.1 57 .0 62 .9 601.1 

Propert ies & Parameters 
Step Size Parameter 6 8 8 & 20 8 & 10 
Method to Formulate EVP 1 1 1 1 
Number iterations 27 17 15 20 
!z. 5.0 5.0 4.5 5 .0 
!J. 3.0 3.0 3 .0 3 .0 

Eigenvalues at Optimum 
Mode 1 433. 342. 317. 240. 
Mode 2 485. 502 . 530. 433 . 
Mode 3 523 .t 503.t 540,t 585.t 
Mode 4 593 . 602. I 675. 592. 
Mode 5 787. 757 I 783. 639 . 
Mode 6 -791. 775 ! 786. 751. 

t Dominant Mode at Optimum 

1.(:,;:10 

N , 
I IIl;{J/ill ) 
,. I J. 1 

7.898 
4.589 
36.2 
63.6 
188.4 
162.0 

6.213 
4.13 
25.7 
36 .5 
82.6 
86 .0 

9 .354 
3.000 
28.1 
21.1 
204.6 
67 .0 

8 
2 

37 
5.0 
3.0 

211. 
301. 
309. 
545. 
620.t 
641. 
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Table 5.5. Propenies of the Optimized Designs Using Four Material Sets.Two Loading 
Conditions. and Six Eigenpairs (4M-2L) with N=6 

N , N 
PROPERTIES 

L LPf/JljI1l LPI(fJ,tPl +PI2P,) 
l . t} _ 1 I . I 

1st Story Columns 
Width 7.544 7.499 
Height 5.459 5.528 
Area 41.2 41 .5 
Strong Moment of Inertia 102.2 105.57 
Weak Moment of Inertia 195.3 194.3 
Torsion 288.1 232.4 

2nd Story Columns 
Width 7.627 6.819 
Height 3.691 3.882 
Area 28.3 26.5 
Strong Moment of Inertia 32 .1 33 .2 
Weak Moment of Inertia 138.9 102.6 
Torsion 89 .9 85.9 

1 st Story Girders 
Width 10.334 9.746 
Height 3.000 3.000 
Area 31 .0 29 .2 
Strong Moment of Inertia 23.3 21.9 
Weak Moment of Inertia 275.9 231.5 
Torsion 76.1 62 .113 

2nd Story Girders 
Width 5.000 6.287 
Height 3.000 3.000 
Area 15.0 18.9 
Strong Moment of tnertia 11 .25 14 .1 
Weak Moment of Inertia 31 .25 62 .1 
Torsion 28.2 39 .7 

Properties: 
Step Size Parameter 8 8 &20 
Method to Solve for EVP 1 1 
Cycles to Convergence 23 40 
f2. 5 .0 5.0 

t!. 3.0 3.0 

Eigenvalues at Optimum: 
Mode 1 282 272 
Mode 2 345 287 
Mode 3 444 390 
Mode 4 700 649 
Mode 5 77"t 774

t Mode 6 -788 777 

t OOrrUnant Mode at OptImum 
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5.4. Displacement Constraint Optimization 

5.4.1. Introduction 

The essence of the proposed optimization technique is to enhance the global stability of a framed 

structure and consequently to upgrade the structure's performance. In panicular, structures having 

inelastic material behavior are likely to exhibit a limit load with a loss of load carrying capacity in the 

post-limit regime. In the previous sections, through a set of various problems, it was demonstrated that 

the proposed optimization technique does result in structures with improved overall stability . 

Most currently used optimization methods are set to minimize the volume or the cost of a framed 

structure under some displacement and stress constraints. Displacement constraint optimiz.ation meth­

ods have been used to limit displacement of a design to minimize damage or perhaps to force a design to 

remain in the elastic range . UnfortUnately, such an approach does not assure overall structural stability. 

Under severe loading or in the presence of imperfections in-the structure, the d isplacement constrained 

optimal structure may not have desirable global stability characteristics. To demonstrate this point, the 

initial design from the previous examples was optimized using an optimality criterion optimization 

method to minimize the volume subjected to displacement constraints . The detailed formul ation of the 

displacement constraint optimization algorithm used is given in Appendix A. The achieved optimum 

design then was analyzed and the results are discussed and compared with optimized designs found 

earlier based on the stability criteria. 

5.4.2. Example Problems 

The frame MRF was optimized under displacement constraint optimization algorithm with mini­

mizing volume as the objective function. Four design variables were used : two for the columns and two 

for the girders. A rectangular cross section was assumed . Three inches was assumed for the minimum 

allowable design variables (Q =!:J. = 3.0) . A combination of load case I and II were applied to the 

structure throughout the course of optimization. The propenies of the optimum design is given in 

Table 5.6. .. 
Using a displacement constraint of 0.25 inches for the top story displacement resulted in an 

optimized design with the same volume as the initial design. The optimized design obtained is then 

analyzed under both load case I and " . 
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So far, we have optimized an initial design with two different approaches and have come up with 

two optimized designs. One optimized design was based on displacement control optimization (opt-d) 

and one was based on the stability criteria optimization technique (opt-s) . The resulting load-deforma­

tion curve for opt-d is given in Fig. 5.28 and the load-deformation curve for opt-s was given in Fig. 

5. 16. One can see that under load case I both optimized designs have a much better load carrying 

capacity and the larger area under the load-deformation curve . Under load case II the optimized design 

opt-s has better performance than the initial design but the optimized design opt-d has much poorer 

performance compared to the initial design . 

Looking at performance of the both optimized design opt-d and opt-s one can conclude that 

displacement control optimization did not result in a globally stable structure whereas the proposed the 

optimization technique did result in a design with a better overall stability characteristics. 

5.4.3. Performance of the Optimized Designs Under an Unexpected Loading Condition 

Assume that there is an imperfection in the constructed frame or there is an unexpected loading, 

for example 0.5 kips applied at the top of the one of the second story columns (see Fig. 5.27). Neither 

of the optimum designs based on displacement constraints or stability criteria are designed for this type 

of the loading. This loading is used to see how the optimized designs will behave in such an unexpected 

environment. 

Both of the optimum designs using the stability criteria opt-s and the optimum design using dis­

placement constraints opt-d are analyzed under load case I plus the loading give in Fig. 5.27. The result 

of the load-deformation curves are given in Fig. 5.29 . One can see that the optimized design opt-d 

shows a higher limit load, and is much stiffer than the initial design and the optimized design opt-so 

However, the optimized design opt-d has a very steep post-limit curve showing that the load-carrying 

capacity of structure drops very quickly compared to the initia~design or the optimized design opt-so 

The same type of behavior is observed for the load versus deformation in both X- and Z-directions . The 

optimized design based on the stability criteria has slightly better load-carrying capacity than the initial 

design and has the post-limit degradation of about same as the initial design . 
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Fig. 5.27. Imperfection Loading 

Consequently, based on the examples described, one might conclude that a design based on 

stability criteria shows better overall stability characteristics compared to one based on a displacement 

control optimization method, malting the former a more auractive design technique . The optimized 

design based on the displacement constraint may be better if the design is expected to remain in the 

elastic range . 

Table 5.6. Properties of the Optimum Design for the Displacement 
Constraint Optimization Method 

PROPERTY VALUE 

Columns 
Width (In) 10 .085 
Height(/n) 3.000 
Area (ln2) 30.256 
Strong Moment of Inertia (In') 22.7 
Weak Moment of Inertia (in') 256.4 
Torsion (In') 74.2 

Girders 
Width (I") 9 .693 
Height (In) 3 .000 
Area(ln2) 29.1 
Strong Moment of Inertia (In') 21.8 
Weak Moment of Inertia (In') 227.5 
Torsion 70.6 

Parameters 
.. 

Number of iterations 9 
!z. 3 
!! 3 
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CHAPTER 6 

APPLICATION OF 3-D OPTIMIZATION ALGORITHM TO 
IRREGULAR FRAMED STRUCTURES 

6. 1. Introduction 

It is often difficult to identify the design changes necessary to improve the performance of a 

suuclure, especially when the suucture is irregular and the response is nonlinear. Trial and error 

procedures are usually neither effective nor economical due to the fact that the complexity of the 

problem is beyond the intuition of the designer. An optimization methodology can be efficient and 

productive for irregular structures . To show the strength and the limitation of the optimization 

methodology as appUed to irregular structures, a setback building is optimized and the result of the 

optimization presented and discussed . 

It is important to remind the reader that the proposed optimization procedure is designed to 

improve the stability characteristics of a building. The optimization methodology is specially effective 

for taller buildings when the geometry effect is important. The SETBACK building optimized here is 

not a tall building, yet the optimization procedure improves the overall performance and stability 

characteristics of the building. 

6.2. Description Of SETBACK Example Problem 

SETBACK building considered here is a two-story setback frame with topology as given in 

Fig. 6.1. First story of the SETBACK frame has two bays and the second story has one bay. The 

tOpology of the SETBACK frame was picked from a report by Cheng and Truman (1985). Frame 

SETBACK is designed based on ATC-3-06 earthquake design recommendation (1978). 

The loads on the suucture were: 

Dead load: 

Live load: 

80 psI 
40 psI 

.. 
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Fig. 6.1. Topology of the SETBACK Frame 
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------------------------------.......... ... 
A preliminary design was performed using fuJI dead and live load in all members. using 

approximate coefficients to determine maximum moments in girder sections. 

Because SETBACK is an irregular structure. a modal analysis procedure was employed to 

determine earthquake loads. The building was modeled as a system of masses lumped at the noor 

levels . A rigid noor diaphragm is modeled as a rigid plane parallel to the horizontal plane. so that all 

the points on anyone noor diaphragm can not displace relative to each other in horizontal plane . 

Program SAP80 (Wilson and Habibullah. 1984) was used to determine member forces and to 

perform the frequency analysis. SAP80 has the capability of modeling rigid noor diaphragm systems 

where each noor diaphragm is established by a rigid joint in the plane of the diaphragm called master 

joint of the diaphragm. All other joints that exist on the diaphragm connected to the master joint by 

rigid links. SETBACK was modeled by space frame beam elements and two master joints. Each 

master joint had 3 degrees of freedom. Therefore. a IOta I of 6 frequency eigenpairs can be 

calculated . 

The mass propeny of each rigid noor diaphragm was determined and is given Table 6. I. 

Table 6. 1. Mass Propenies 

Mass Mass Moment 
Floor Level (k . sec' lin ) of Inertia 

(k . sec' in ) 

Bottom Story 0.362 16196 

Top Story 0.217 5534 

6.2.1. Seismic Coefficients 

The following seismic coefficients in accordance with ATC-3-06 were used: 

A. = 0 .4 (Effective peak acceleration) 

A, = 0.4 (Effective peak velocity-related acceleration) 

S, = 1.2 (Soil profile characteristics of site) 

R = 4.5 (Reduction factor to account for effects of inelastic behavior) 

Seismic Category C 

Seismicity Index of 4 
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6.2.2. Modal Base Shear 

The ponion of the base shear contributed by the mth mode. Vm • according to ATC-3-06 shall 

be determined as: 

m= 1 ..... N (6 . 1) 

Where Wm is the effective modal gravity load. WI is the ponion of total gravity load of the building at 

or assigned level i. 1/Ilm is the displacement amplitude at the ith level of the building when vibrating in 

mth mode. and e,m is the modal seismic design coefficient determined according to Eqn . (6 .2) 

below: 

Csm = 1.2AvS 

Rr,!,' 

6.2.3. Modal Forces 

2 .SAQ 
S-R-

The modal force. F xm. at each level shall be determined as the following: 

Fxm = 
Wxt/Jxm V 
n m m = 1. .... N 

I Wil/ljm 
i r: I 

(6 .2) 

(6 .3) 

A computer program was wrillen to perform modal analysis and to calculate eanhquake forces 

applied to the building according to the Eqn. (6.1) through Eqn. (6.3) . 

A set of eight combinations of load effecLS. as recommended by ATC-3-06. was considered: 

{ 

1.2QD + 1.0QL ± 

O.BQD ± 1.0QE 
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where QD is Lhe e(fect of Lhe dead load, QL is the effect of live load, and Q£ is the effect of the 

earthquake load . The critical load effect due to the application of seismic forces on the building are 

determined as a combination of prescribed loads: 100 percent of the force for one direction plus 30 

percent of the force for the perpendicular direction. Therefore, load Q£ consists of a set of two 

forces making the total number of the load combinations given in Eqn. (6.4) eight. 

The eight different loads were applied to the building and the stresses and the displacements of 

each load combination were determined . Members of the building were checked for the worst 

loading case and were redesigned if necessary . This procedure of analysis and redesign was carried 

out for several iterations until all the requirements were satisfied . 

The member properties of the final design were checked against the AISC (1978) specification 

and all the requirements were satisfied . The properties of the design are given in Table 6.2. 

Table 6.2. Propenies of the Final Design 

Equivalent Rectangle 
Member Section 

Width (In) Height (In) 

Bottom columns W10X68 5.5 9.5 
Top columns W10X68 4.0 8.6 

Bottom columns W12X19 1.7 9 .8 
Top columns W10X12 1.6 7.5 

Braces WlOX12 1.6 7.5 

The optimization algorithm for 3-D problem was implemented for rectangular cross sections 

wilh heighl and width of the cross s~ction as the design variables. Therefore, equivalent rectangular 

sections representing the W-sections of the design were delermined and are presented in Table 6.2. 

Also, Table 6.4 and Table 6.3 give vibration frequency and mode shapes of the final design . 

Table 6.3. Mode Shapes of the Final Design 

1/', 1/'2 1/', 1/'. 1/'5 1/'. 

0.384 0.000 0.000 2.112 0.000 0 .000 
0 .000 0.284 -0.356 0 .000 1.541 -1 .424 
0 .000 0.000 0 .000 0.000 0.000 0 .000 
1.635 0 .000 0.000 -0.297 0.000 0 .000 
0.001 1.622 0.282 0 .000 -0.228 0 .006 
0.000 0 .000 0 .000 0.000 0.000 0.000 
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Table 6.4 . Periods o( the Final Design 

Mode Period (seconds) 

1 0.933 

2 0.800 

3 0.338 

4 0 .181 

5 0.167 

6 0.050 

An equivalent set o( static (orces were obtained using a square-root-o( the-sum-o(-the-square 

(SRSS) method resulting in the forces given in Fig. 6.2. and Fig. 6.3 . 

6.2.4. A NOle on Analysis Procedure 

The finile element discretization of the initial and the optimized design consisted of IWO 

elements between each struclural joints for all the members excepl for girders with 30 feel length 

where three elements were used belween each structural joints. CO quadratic interpolation was used 

throughout. 5% isotropic hardening was used for all the material propenies. Rigid bars were used to 

model rigid noar behavior for the fr. me without changing the overall elastic stiffness properues of the 

StrUcture. 

Displacement control load incrementing. as described by Batoz and Dhan (1979). was used 

throughout the analyses . One of tOP story nodes. where the load is applied. was used as the control 

point. AU the deformation hislory ~urves presented in this chapter are given in lermS of load (actors 

versus lateral lOP displacements. For irregular frames. specially for 3-D structures. is not clear that if 

the displacement o( a single point would give a good representation of the whole structure displaced 

configuration. For the SETBACK frame it was decided that the lateral top displacement of the 

struclure does present an accurate displaced characteristics of the whole structure by examining the 

initial design. As the initial design was analyzed. twO sets of information were stored: (1) lOP 

displacement versus load faclors and (2) the norm of the nodal displacement versus the load (actors. 

The norm of aU the nodal displacements were calculated using the formula : 

(6 .5) 
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where U is vector of nodal displacements and K is the linear elastic stiffness matrix of the structure. 

Since the problem is nonlinear, the stiffness matrix changes after each displacement increment, 

therefore, the initial elastic stiffness matrix was stored to be used for the calculation of the norm of 

nodal displacements as the deformation progressed . The norm IIUII is a scalar representing the norm 

of the nodal displacement of the whole structure . The plot of the lateral top displacement versus load 

factor and the norm of the displacements versus the load factor is given in Fig. 6.4. Observe that 

both load-deformation curves present the same behavior. Therefore, for the presentation of 

load-deformation curves , a plot of load factor versus top displacements is adopted and used for the 

remainder of this chapter. 

6.3. Discussion of the Optimization Algorithm as Applied to SETBACK Frame 

Six different examples are considered in this section, five under a single loading condition and 

one under multiple loading condition. Parameter studies have been performed on the number of 

design variables. the number of buckling eigenvalues and eigenvectors. and the minimum and 

maximum allowable values of the design variables. Table 6.5 gives a summary of the parameters 

studied . 

Table 6.5 . Parameter Properties of the Example Problems 

Case 
Studied Mat 

(1) 5 

(2) 5 

(3) 8 

(4) 5 

(5) 5 

(6) 5 

Mat = No . of Material Sets 
ll. II: Min . Permissible Width 
l! "" Min . Permissible Height 

lz. 
4.0 

4.0 

4.0 

1.8 

1.8 

1.8 

Parameters 

!J. N L 

4.0 5 1 

4.0 10 1 

4.0 5 1 

7.5 5 1 

7.5 10 1 

7.5 5 2 

N = Number of elgenpairs 
L :I: Number of Loading Cases 
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(I) (SM-IL), N=S, Q =4.0, h =4.0 

The five design variables used are : bottom story columns, top story columns, bottom story 

girders, top story girders, and braces . The spectral evolution for this case is given in Fig. 6.5. The 

optimization converged in 41 iterations with the properties oC the optimized design summarized in 

Table 6.7. About iterations 17 and 18, it appears that optimization is diverging but after iteration 18 

the algorithm recovers and works its way toward a smooth convergence . To avoid setting design 

variables as passive artificially, Cor the first 20 iterations all the design variables were set to active after 

each iteration . If we had not reactivated the design variables, the algorithm might not have recovered 

after iteration 17 . There reason Cor this behavior is that modes 1 and 2 coalesced in iteration 16 

resulting in undefined eigenvector sensitivities. 

The important conclusion drawn Crom this example is that the optimization is robust in the 

sense that it is independent of the initial design . In another words if one chooses the initial design as 

the design found in iteration 17, which is obviously a bad design and Car from optimal, the 

optimization sti ll can reach the optimal design with no problem. 

At optimum the height and width of the first story girders and braces with the width of the 

second story girder became passive and adopted the minimum permissible sizes oC 4.0 inches. At the 

optimum, all the eigenvalues oC the structure were distinct and evenly spaced. 

Looking at nonlinear static analyses of the optimized design and the initial design , Fig. 6.5, 

one can see that the limit-load capacity oC the structure has increased and although the post-limit 

slope of the optimized design is steeper than the initial design post-limit slope, it always bounds it Crom 

above . 

(2) (SM-IL), N=IO, Q=4.0, h=4.0 

The difference between the case (2) and case (I) is in the number of the buckling eigenvalues 

and eigenvectors used in the objective function. Ten buckling eigenpairs were used to see how the 

result of the optimized design changes compared to the previous case where 5 buckling eigenpairs 

were used . 

The spectral evolution and the result of the nonlinear static analysis oC the optimized design Cor 

case (5M-IL), N=IO, 11. = 4.0,l!. = 4.0 is given in Fig. 6.6. The optimization process converged in 45 
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iterations with properties of the optimized design tabulated in Table 6.7. Nonlinear Static behavior of 

the optimized design is similar to the nonlinear static behavior of the optimized design obtained in 

case (1). except that the optimized design here is slightly stiffer elastically. The reason for similar 

performances can be explained by investigating the spectral history plot where one can observe that 

the participation of the first buckling mode in the overall response of the structure. Pij • for both cases 

are almost the same. The participation of the higher modes in the objective function were much 

smaller compared to the first mode . 

(3) (8M-IL). N=S. Q=4.0. h=4.0 

The case (SM-1L). N=5.!!. = 4.0.h. = 4.0 is optimized using S different material properties 

with a total of 16 design variables. The distribution of the material properties used is shown in 

Fig. 6.7. As can be seen from Fig. 6.S of the spectral evolution. optimization converged in 29 

iterationc. with the properties of the optimized design given in Table 6.S. The dominant buckling 

eigenvalue of the optimized design was mode 1 with the magnitude of 30.0. (150% higher than cases 

(1) and (2)) . Having a higher dominant buckling eigenvalue. it is expected that the optimized design 

to behave better than cases (1) and (2) . Looking the nonlinear static analysis of the optimized 

design. it is obvious that indeed it does behave better than the optimized designs of cases (1) and (2) 

and the initial design . The limit-load capacity of the optimized design was 163% higher than the initial 

design limit-load. with post-limit strength degradation about the same as the initial design . 

(4) (SM-IL). N=S . Q=1.8. h=7.S 

Minimum design variables of !!. = 1.8.h. = 7.5 of the cross section were chosen for the case (4) 

and the following two cases. Such a selection of minimum permissible design variables has a twofold 

purpose: (I) to investigate the effect of different minimum permissible sizes on the outcome of the 

optimization. and (If) to have minimum sizes comparable to the initial design. 

The spectral evolution and the nonlinear load-deformation curves for the optimized design is 

given in Fig. 6.S. Observe that a lot of mode shifting takes place during the optimization with large 

changes in the magnitude of the buckling eigenvalues. After iteration 25 the step length was increased 

from 10 to 25. where the optimization settled down and finally converged in 45 iterations. The 

propenies of the optimized design is given in Table 6.9. 

126 

I 

• • • • 
I 
I 
I 
I 
I 
I 
I 

• • • • 
I 

• • 



• 
I 

• • • • • • 
I 

• 
I 

• 
I 

• 
I 

• 
I 

• • 

Observe that the limit-load capacity of the optimi.ed structure improved considerably with the 

post-limit slope of about the same as the initial design . The performance of the optiml.ed design is an 

Improvement over the optimized designs found in cases (I) and (2) where the same objective function 

was employed with different limits on the si.e of the design variables. 

(5) (5M-IL). N=10. Q=1.8. h=7.5 

For the case studied here. (SM-IL). N=IO. /z.= 1.8.b.= 7.5. 10 bucklmg eigenvalues were 

used in the objective function compared to 5 buckling eigenvalues for the case (4) . The result of the 

spectral evolution and the nonlinear static load-deformation curves are gIven In FIg. 6.10. The 

optimized design performed quite well. with limit-load carrying capacity and improved post-limn 

behavior compared to the initial design. Looking at the propeny table. one can see that the optimi<ed 

design for case (4) has about the same propenies as case (5) except that the second story girder is 

smaller for the present optimized design and the columns are slightly heavier. causIng a beuer 

post-limit behavior and slightly smaller load carrying capacity. The dominant mode staned as mode I 

and switched to mode 4 at optimum with a magnitude of 41.3 compared to the previous case of 23 .6. 

(6) (SM-2L). N=5. Q =1.8 . h =7.5. n={I.I) 

Last case studied was the optimlzation of the initial design under loading cases (I) and (II) . 
I. l 

The objective function L LJl;/J;jlJl was used with /z.= 1.8.!!.= 7.5 .n={I.\) . The two loading cases 
;'1}_1 

considered are not necessarily expected to act at the same time . The result of optimizauon is given in 

Fig. 6.11 in terms of spectral evolution and nonlinear static load-deformation curve for the design . 

Optimlution converged in 39 iteration with first mode as the dominant mode and modes 4 and S 

coalescing. Propenies of the optimlzed design are given in Table 6.10. Looking at the 

load-deformation curve. one can see that optimization improved the performance of the opumized 

design under both loading cases. The optimized design has higher load carrying capacity under both 

loading conditions compared to the initial design . The post-limit behavior of both designs are about 

the same. 

To investigate the integrity of the optimized design under dynamlc loadmg condiuons it was 

decided to excite both the optimized and the initial designs under a sinusoidal base acceleration . To 
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make the comparison fair. both initial and the optimized designs were excited under a sinusoidal 

ground motion of the same frequency but different amplitudes. The amplitude of the base sinusoidal 

acceleration was chosen to give the same dynamic magnification factor for both initial and the 

optimized desigrtS. An equivalent of 0.65g base acceleration was considered. Table 6.6 gives the 

dynamic properues of the initial and the optimized designs along with the applied sinusoidal base 

acceleration . 

Table 6.6. Dynamic Properues of th-e Applied Sinusoidal Loading 

Parameters Initial Design Optimized Design 

Fundamental Period . T ,. (sec) 0.78 0 .85 

8ase Acceleration Period. T (sec) 0.50 0 .50 

P . d Ra · T, eno tlO: P =,. 1.49 1.70 

Dynamic Magnification Factor 0.82 0.53 

Base acceleration A, = 250 sin(25 .131) A, = 161sin(25 .13I) 

The response history of the both initial design and the optimized design are give in FIg. 6. 12. 

Observer that the optimized design has smaller drift and smaller base shear compared to the initial 

design . Both designs are stable structures and both behaved well under the applied dynamic 

excitation . 

6.4. Displacement Constraint Optimization 

The initial design was optimized under a displacement constraint with properues of the 

optimized design given in Table 6.11 . The formulation and discussion on the displacement constraint 

optimization can be found in Appendix A. The volume of the structure was minimized under a top 

displacement constraint of 1.2 inches. A combination of the load cases I and II was considered as the 

applied loading. The optimized obtained under displacement constraint (opt-d) had a volume of 

close to the initial design . 
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The nonlinear response of opt-d design under both loading cases 1 and II along with the 

load-deformation response of the optimized design based on a stability criterion, opt-s, are given in 

Fig. 6.13. Observe that under load case I, the design opt-d is stiffer and has higher load carrying 

capacity compared to the initial design but has a lower load carrying capacity compared to opt-s 

design. The design opt-d has a steeper post-limit slope compared to opt-so Under load case II. the 

opt-d design has much lower load carrying capacity than the initial design whereas opt-s has higher 

load carrying capacity compared the initial design . 

6.5. General Comments 

Through several different example applications, it was shown that the optimization procedure 

can efficiently produce designs with improved limit strength, stability, and ductility characteristics. 

The method can effectively be used to handle multiple loading cases. 

Based on the parameter studies it was concluded that in general : (l) using more design 

variables will result in optimized designs with better overall performance; (2) using more eigenpairs in 

the objective function will improve the performance of the optimized design if one or more of the 

eigenvectors in the range chosen have the same shape as the displaced configuration of the Structure 

under one of the I. ading cases ; (3) the performance of the design in the post-limit regime is 

dependent on the minimum design variables. 
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Table 6.7. Properties of Lhe Optimized Designs for Lhe 
Case (SM-IL) & N=S, and b = 4.0,h = 4.0 and 

Case (SM-IL) & N=10, and k = 4:0, ~ = 4.0 

PROPERTY 
Case (1) Case (2) 

(SM-1L) & N=5 (SM-1L) & N=lO 

Mode Eigenvalues at 
1st Story Columns No. Optimum 

Width 7.029 9.559 
Height 5.9BB 4.000 

20.St Area 42.11 3B.2 1 

Strong Moment of Inertia 125.B 51.0 2 27 .3 
Weak Moment of Inertia 173.3 291 .2 3 31 .0 

Torsion 247.3 150.5 
4 34 .B 

2nd Story Columns 5 40.2 
Width 4.896 7.376 
Height 6.20B 6.B61 
Area 30.4 50.6 Case (1) 

Strong Moment of Inertia 97.6 19B.5 (SM,l L) & N=5 
Weak Moment of Inertia 60.7 229.5 

Torsion 127.1 361.0 

1 st Story Girders 
Mode Eigenvalues at 

Width 4.000 4.000 
Height 4.000 4.000 No. Optimum 

Area 16.0 16.0 
Strong Moment of Inertia 21.3 21.3 1 21.0 t 
Weak Moment of Inertia 21.3 21.3 

Torsion 36.2 36.2 
2 25.0 

3 39 .0 

2nd Story Girders 4 44 .0 
Width 4.000 4 .000 

5 47.0 
Height 6.636 B.731 
Area 26.5 34.9 6 55 .0 

Strong Moment of Inertia 97.4 221.9 7 56.0 
Weak Moment of Inertia 35.4 46.6 

Torsion 88.6 132.0 8 77.0 

9 91 .0 
Braces 10 92 .0 

Width 4.000 4.000 
Height 4.000 4.000 

Case (2) 
Area 16.0 16.0 

Strong Moment of Inertia 21.3 21.3 (5M,l L) & N=10 

Weak Moment of Inertia 21.3 21.3 
Torsion 36.2 36.2 

t Dominant mode at convergence 
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Table 6 .8 . Properties of the Optimi~ed Design for the 
Case (8M- IL) & N=5. and I!. = 4.0.t!. = 4.0 

PROPERTY 
case (3) 

(8M-1L) & N=5 

Material Set 1 
Width 4.000 
Height 4.000 
Area 16.0 

Strong Moment of Inertia 21.3 
Weak Moment of Inertia 21 .3 

Torsion 36.2 
Material Set 2 

Width 10.687 
Height 4 .000 
Area 42 .7 

Strong Moment of Inertia 40S.9 
Weak Moment of Inertia 57 .0 

Torsion 175.9 
Material Set 3 

Width 5.306 
Height 13 .669 
Area 88.4 

Strong Moment of Inertia 1129.3 
Weak Moment of Inertia 170.2 

Torsion 519 .5 
Material Set 4 

Width 5.224 
Height 5.472 
Area 28.6 

Strong Moment of Inertia 65.0 
Weak Moment of Inertia 71.3 

Torsion 
Material Set 5 

Width 4 .846 
Height 7.956 
Area 38.S 

Strong Moment of Inertia 203 .4 
Weak Moment of Inertia 75 .5 

Torsion 158.3 
Material Set 6 

Width 4.000 
Height 4.000 
Area 16.0 

Strong Moment of Inertia 21.3 
Weak Moment of Inertia 21.3 

Torsion 3S.2 
Material Set 7 

Width 4.000 
Height 6.450 
Area 25.8 

Strong Moment of Inertia 89 .4 
Weak Moment of Inertia 34.4 

Torsion 86.S 
Material Set 8 

Width 4.000 
Height 4.000 
Area 16.0 

Strong Moment of Inertia 21 .3 
Weak Moment of Inertia 21 .3 

Torsion 36.2 

t Dominant mode at converQence 
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Fig. 6.7. Distribution of Material Sets 
for (8M-I L) & N=5 

Mode 
No. 

1 

2 

3 

4 

5 

Eigenvalues at 
Optimum 

30.0 t 
21 .5 

31.0 

33 .5 

37 .0 

case (3) 

(8M,1 L) & N=5 
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Table 6.9. Properties of the Optimized Designs for the 
Case (SM-1L) &. N=S, and b = 1.8, h = 7 .S and 

Case (SM-1L) &. N=10, and b = 1~8, h = 7 .S - -

Case (4) 
PROPERTY 

(SM-1L) & N=S 

1 SI Siory Columns 
Width 5.687 
Heighl 7.500 
Area 42.6 

Strong Moment of Inertia 200.0 
Weak Moment of Inertia 115.0 

Torsion 247.0 

2nd Story Columns 
Width 5.045 
Height 7.500 
Area 37.8 

Strong Moment of Inertia 177.4 
Weak Moment of Inertia 80.3 

Torsion 188.0 

1 st Story Girders 
Width 1.800 
Height 7.500 
Area 13.5 

Strong Moment of Inertia 63.3 
Weak Moment of Inertia 3.6 

Torsion 12.0 

2nd Story Girder. 
Width 3.578 
Height 7.500 
Area 26.8 

Strong Moment of Inertia 125.8 
Weak Moment of Inertia 28.6 

Torsion 80.3 

Braces 
Width 1.800 
Heighl 7.500 
Area 13.5 

Strong Moment of Inert ia 63.3 
Weak Moment of Inertia 3.6 

Torsion 12.0 

t Dominant mode 8t convergence 

Case (5) 

(SM-1L) & N=lO 

6.919 
7.500 
51 .9 

243.3 
207 .1 
379 .6 

6.145 
7.500 
46.1 
216.0 
145.0 
294 .5 

1.800 
7.500 
13 .5 
63 .3 
3.6 
3 .6 

1.800 
7.500 
13 .5 
63 .3 
3.6 
3.6 

1.800 
7.500 
13.5 
63.3 
3.6 
3.6 
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Mode Eigenvalues al 
No. Optimum 

1 23.59 t 
2 31.50 
3 35.00 
4 37 .41 
5 38 .23 

Case (4) 

(SM, 1 L) & N=5 

Mode Eigenvalues at 
No. Optimum 

1 15.16 
2 15 .57 

3 41 .07 
4 41.26 t 

5 41.86 

6 41.96 
7 63 .33 

8 63 .35 

9 79 .29 
10 94 .24 

Case (S) 
(SM, 1 L) & N=lO 
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Table 6.10. Properties of the Optimized Design for the 
Case (SM-2L) & N=S, and k = 1.8,ft = 7.S 

PROPERTY 
Case (6) 

(5M-L) '" N=5 

1 st Story Columns 
Width 5.619 
Height 7.500 
Area 42 .1 

Strong Moment of Inertia 197.5 
Weak Moment of Inertia 110.9 

Torsion 241.2 

2nd Story Columns 
Width 4 .141 
Height 7.500 
Area 31.1 

Strong Moment of inertia 145.6 
Weak Moment of inertia 44.4 

Torsion 116.4 

15t Story Girders 
Width 1.800 
Height 7.500 
Area 13.5 

Strong Moment of Inertia 62.3 
Weak Moment of Inertia 3.6 

Torsion 12.4 

2nd Story Girders 
Width 4.113 
Height 7.500 
Area 30.9 

Strong Moment of Inertia 144.6 
Weak Moment of Inertia 43.5 

Torsion 114.5 

Braces 
Width 1.800 
Height 7.500 
Area 13.5 

Strong Moment of Inertia 62 .3 
Weak Moment of Inertia 3.6 

Torsion 12.4 

t Dominant mode at convergence 
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Mode Eigenvalues at 
No. 

1 

2 

3 

4 

5 

Optimum 

22.8 t 
39 .2 

34.9 

37.1 

37.2 

Case (6) 
(SM,1L) '" N=10 
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Table 6.11. Properties of the Optimized Design Using a Displacement Constraint 
Approach to Minimize Volume under a Top Displacement 

Constraint of 1. 2 Inches 

PROPERTY DISPLACEMENT CONSTRAINT 
OPTIMIZATION 

1 st Story Columns 
Width 1.800 
Height 19.020 
Area 34 .2 

Strong Moment of Inertia 1302.0 
Weak Moment of Inertia 9.2 

Torsion 34.8 

2nd Story Columns 
Width t .800 
Height 1 t .865 
Area 21.4 

Strong Moment of Inertia 250.1 
Weak Moment of Inertia 5.8 

Torsion 20.9 

1 st Story Girders 
Width 1.800 
Height 7.500 
Area 13.5 

Strong Moment of Inertia 62 .3 
Weak Moment of Inertia 3.6 

Torsion 12.4 

2nd Story Girders 
Width 5.4&40 
Height 7.500 
Area 38.25 

Strong Moment of Inertia 156.2 
Weak Moment of Inertia 95.2 

Torsion 201.6 

Braces 
Width 1.800 
Height 7.500 
Area 13.5 

Strong Moment of Inertia 62.3 
Weak Moment of Inertia 3.6 

Torsion 12.4 
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7.1. Overview 

CHAPTER 7 

APPLICATION OF 3-D OPTIMIZATION ALGORITHM TO 
HIGH-RISE FRAMED STRUCTURES 

The purpose of the design procedure introduced in this study is to improve the overall stability 

and strength of structures. The taller is the structure the more imPOrtant is the role of stability in the 

performance of the design . In this chapter, the optimization procedure is applied to a tall framed 

structure to show that when stability is important, the design procedure generates optimized designs 

with better overall performance . 

7.1. Application of the Optimization to KORN Frame 

The frame KORN considered here was picked from a paper by Kom and Galambos (1968) . 

The topology of the frame along with the loading condition applied to the frame is given in Fig . 7 . 1. 

Frame KORN is a fifteen story one bay frame with width in both direction of 12 feet and story height 

of 14 feet. The properties of the initial design are given in Table 7. 1. 

The initial design was optimized under a lateral and vertical loading conditions shown in Fig. 

7.1. The optimization converged in 38 iterations with mode three as the dominant mode and the 

height of all the girders becoming passive . The properties of the optimized design is given in Table 

7. 1. A minimum permissible size o{ 3 inches was chosen {or both width and height o{ the cross 

section . The spectral evolution and the nonlinear load-deformation curves for both initial and the 

optimized designs are given in Fig. 7.2 . Observe that the performance of the optimized design has 

improved tremendously compared to the initial design . The limit strength of design improved by a 

factor of 12 with post-limit slope of the structure staying the same as the initial design . 

Based on parameter studies done on the minimum permissible dimensions in earlier chaplers. 

it was noticed that the performance of the optimized design can be improved by decreasing the 

minimum sizes. Therefore, it is possible to improve the performance of design even more by changing 

the permissible sizes on the design variables . 
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PROPERTY 

1st Story ~ 

Width * 
Height 

2nd Story 
Width 
Height 

3rd Story 
Width 
Height 

4th Story 
Width 
Height 

5th Story 
Width 
Height 

6th Story 
Width 
Height 

7th Story 
Width 
Height 

8th Story 
Width 
Height 

9th Story 
Width 
Height 

10th Story 
Width 
Height 

11th Story 
Width 
Height 

12th Story 
Width 
Height 

13th Story 
Width 
Height 

14th Story 
Width 
Height 

15th Story 
Width 
Height 

Table 7. 1. Properties of the Initial and Optimized Designs 
(11. = 3.0. !! = 3.0 ) under Single Loading Case 

Initial Design Optimized Design 

Column I Girder Column I Girder 

i I 

6 .579 I 6 .914 13 .89 3.000 
0 .762 I 0 .852 3 .000 3.000 I 

I 
Mode Eigenvalue at 

No. Optimum 
7.069 I 8 .397 11 .92 9.733 
1.164 I 0 .876 3 .000 3 .000 

I 
1 0 .57 

I 
8 .592 I 8 .099 12.32 6.800 

2 1.77 

1.338 I 0 .982 3.000 3 .000 3 3.01 
I 
I 8 .592 I 10.29 I 1 . I 1 7.705 

1.338 I 1.031 3 .000 3 .000 
I 

4 3. 19 

5 3.74 

9 .966 I 10.29 6 . 175 5 .580 
1.184 I 1.031 4 .832 3 .000 I 

6 3.96 

I 
10 .58 I 10.28 6.837 5.391 
1.389 I 1.284 3 .960 3.000 I 

Initia l Des ign 

I 
10 .48 I I 1. IS 6. I IS 5.259 
1.572 I 1.399 4 .048 3.000 

I 

I 1.71 11.87 5 .397 5.588 
1.528 1.508 4 . I I I 3.000 

12 .37 11.87 4 .843 5.828 
1.762 1.508 4 .121 3 .000 

Mode Eigenvalue at 
No. Optimum 

12 .26 12.37 4 .542 5 .793 
I 17. 27 

2.014 1.762 3 .930 3 .000 2 19 .43 

12 .63 12 .00 . 4.296 5 .457 3 20.05 t 

2.589 1.909 3 .671 3.000 4 34 .22 

12.63 12.26 4 .035 4 .953 5 38 .44 
2.589 2 .014 3 .364 3 .000 

6 43 .81 

12.63 13 .77 3 .680 4 .273 
2.589 1.889 3.041 3 .000 

Optimized Design 

13.131 14 .70 3.000 3 .000 
2 .841 1.918 3 .000 3 .000 

13 .37 15.31 3 .000 3.000 
2.992 1.842 3 .000 3 .000 

i 
t Dominant mode at convergence * measured in inches 
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8.1. Summary 

CHAPTER 8 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 
FOR FUTURE RESEARCH 

The overall focus of this study has been centered on the development of a new optimal design 

methodology to improve strength, stability, and ductility characteristics of structures under single and 

multiple loading cases. 

Most existing optimal design procedures are based on an "accepted design philosophy·. The 

design procedure studied in this report is novel in the sense that it is based directly on stability 

considerations and is motivated by observations made on the real nonlinear behavior of structures. 

The design procedure dictates what the "design philosophy· should be in order to improve the 

performance of the design. and provides a consistent means for studying different aspects of design . 

The development of the optimization procedure for planar structures was presented in Chapter 

2. The choice of objective was motivated by observations made on the limit and post-limit behavior of 

eiasto-plastic frames and was based on an approximate model of the nonlinear behavior of framed 

structure . The performance of the optimization algorithm was investigated through twO example 

problems which showed that the procedure nOt only improves the static response but also can produce 

improved designs for resisting strong ground shaking. The optimized designs were analyzed under a 

variety oC dynamic excitations to demonstrate that the procedure improves the strength, ductility, and 

overall stability of a Structure. Also, the concept of frequency penalty. which is a useful tool in 

avoiding undesirable dynamic effects such as resonance, was introduced . 

The design procedure was extended to handle three-dimensional structures under multiple 

loading cases with multiple design variables. Three-dimensional design problems yield insight into the 

real behavior oC the structure and can help avoiding some of the problems that might appear in planar 

design procedure such as the need for an out-of-plane buckling constraint. The design methodology 

presented was a multiple-objective optimization procedure whose objective function involved the 

applied loading vectors, buckling eigenvalues, and eigenvectors of the structure. The 

three-dimensional optimization technique proposed was solved using a weighting method. The 

weighting parameters Pij were automatically generated from the loading conditions and the buckling 
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modes . Mulliple objective design optimization resullS in sel of optimized designs thaI are referred 10 

as the noninferior design set. The designer can then choose the beSl design from the noninferior set. 

This choice is generaUy made using information which is nOl included in the objective funclion; for 

example nonlinear and dynamic analyses. The formulation of the three-dimensional design 

procedure was presenled in Chapler 4. Several issues concerning the implementation of the design 

procedure were also presented and discussed . 

One of the novelties of the procedure presenled in Chapler 4 is ilS abilily to efficiently model 

and optimize structures under multiple loading conditions. This is a very useful tool for design 

engineers thaI are faced with many different loading conditions in every day design problems. 

Chapters 5 through 7 are the application three-dimensional optimization procedure to a 

two-story trame, a setback frame , and a fifteen-Slory high-rise building. These frames were optimized 

under different loading conditions and various parameter studies were performed which demonstrated 

thaI optimization methodology is a strong 1001 in obtaining designs with bener overall performance. 

8.2. Conclusions 

The following conclusions can be drawn from the preceding chapter: 

• Maximizing the buckling eigenvalues increases the Slatic limit-load of a structure without 

degrading the posl-limit behavior, increasing overaU loughness. 

• The optimization procedure based on stability consideration resullS in a more robust design 

compared 10 an optimization procedure with displacement constraint. 

• The optimization procedure developed here improves the performance of the initial design under 

multiple loading conditions. 

• The bigger the magnitude of the dominanl eigenvalue (one with maximum PI} ) at convergence, 

the better the final optimized design will behave. 

• In general, using more design variables will result in a bener behaved optimized design . From 

practical point view, however, it makes sense 10 group elements logether 10 save on labor, 

delailing, and fabrication COSls. 
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• The frequency penalty function can help control the vibration spectrum and can be thought of as 

a flexible constraint imposed on a design . The frequency penalty may be important in some 

applications. 

• Statically based optimal design results in an optimized design that behaves well under dynamically 

applied loads. The optimization method is directly aimed at improving the limit-load and 

post-limit slope response of a statically loaded structure but has the consequence of improving the 

performance of the structure under dynamic loads . 

• Maximizing the buckling modes that have a shape similar to the d isplaced configuration of the 

StrUcture will improve the stability performance of the design . Since a large amount of mode 

shifting takes place during the ftrst few iterations, it is not possible to know which modes will be 

similar to the displaced conliguration from the buckling mode shapes of the initial design . If 

there is a specilic mode that one needs to maximize, it is recommended that a subspace of size 

several modes more than the desired mode be chosen. 

• In general, the more eigenpairs used in the objective function, the better was the performance of 

the optimized design . 

• If a combination of the loading conditions was used to formulate the eigenvalue problem, the 

I final modes came out distinct. How'!ver. if one loading cond ition was used to formulate the 

buckling eigenvalue problem, then the optimum had multiple eigenvalues. 

• 
I 

• -
• • • • 

• The optimized space frames were interesting in the sense that they usually have passive girder 

depth . The tendency is probably due to the fact that deep girders do not add much to the lateral 

stiffness of the structure. PhysicaUy, the StrUcture is telling us that the optimum configuration is 

like having columns tied together with simple beams. 

• The study on the minimum permissible design variables exposes the fact that the minimum 

dimension is imponant on the post-limit degradation of the structures. The observation reveals 

the fact that the post-limit robustness might be weakened with a poor choice of minimum design 

variables. 

• Slender buildings are particularly well suited to the proposed optimization procedure. Stoce their 

behavior is more greatly influenced by geometric effects (P-l> effect) . Thus, stability, which is 

the basis of the optimization methodology, becomes more imponant. 
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8.3. Recommendations (or Future Research 

There are two major directions that can be pursued for further research : (1) investigating ways 

to improve the optimization algorithm. and (2) investigating the application of the optimization 

method to practical problems. 

One of the components of the optimization procedure is the solution of the eigenvalue problem 

which takes a big portion of the computing time of the whole process. To expedite the optimization 

process we need to improve the eigenvalue problem solution technique. One possibility would be to 

make use of the new generation of supercomputers and their multiprocessing capabilities by modifying 

and implementing the solution of the eigenvalue problem and the other parts of the optimization 

procedure for such environment. Other possibility would to develop a new procedure that can use . 

instead Of the eigenvalues and eigenvectors. some other means which would be computationally less 

expensive such as a modified version of Ritz vectors . 

To preserve the numerical stability of the optimization algorithm during and after reaching the 

optimal design. there is a need for a general procedure that can accurately and elliciently calculate 

the derivative Of the eigenvectors in the case of the repeated eigenvalue . In literature there have been 

some work in this area but there is a need for refinement and generalization of the existing methods to 

handle cases that one might encounter during optimization in an efficient and systematic manner. 

Other fruitful areas for further investigation will be to develop an optimization procedure that 

considers material and geometrical non linea rites in the optimization phase. The present form of the 

optimization procedure considers only linear elastic behavior of the structures with aim at improving 

the nonlinear behavior Of the design . The present optimization procedure is not always robust in 

improving the post-limit strength degradation of the structures . Therefore. an optimization algorithm 

that can incorporate geometry nonlinearities and inelasticity in the optimization phase might enhance 

the robustness of the method in improving the post-limit behavior. 

The second direction of the future investigation could be focused on the application of the 

optimization to the practical problems. 

So far we have developed a working optimization-based design procedure that can produce 

designs with enhanced overall structural stability and strength. This design procedure can be used 

e([ectively as a strong research tool to perform computational experimentation and to conduct 

parameter studies on various aspects of design for different types of structures from moment-resisting 
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frames to eccentrically braced frames, from regular to irregular, from low-rise to high-rise, from 

planar to space frames to possibly come up with ways that some the existing design concepts can be 

massaged and perhaps lead to simpler and bener design criteria to improve stability, strength, and 

ductility characteristics of the design . 

• 

• 

• 

The following would be some of the possible investigations that can be pursued : 

Using different earthquake design codes, find the equivalent static lateral load d istributions and 

apply them to the structure and optimize . Perform this task for various structures with different 

sizes, shapes , and types . Investigate the effect of the load distribution on the performcnce of the 

optimized designs and possibly come up with recommendations on how the load distnbution must 

be in order to achieve a design with better strength, stability, and ductility character:stics. 

ATC-3-06 gives a guideline on when to ignore and how to incorporate the effect of large 

deformation or the Pot. on story shear and moments referred to as the stability coefficient 

(equation 4-10 of ATC-3-06) . This criterion is very important from stability point uf view and 

needs more investigation . By using the optimization procedure we can perform parameter studies 

on different structures to determine the accuracy of the guideline and possibly improve it. 

Using the multiple loading capability of the developed optimization method the effect of 

multi component eanhquake loads on the structures can be investigated to understand and make 

recommendations on how to design Structures for multicomponent earthquakes . One of the 

areas that needs more investigation is the errecl of vertical component of the earthquakes on the 

buildings . By using the multiple loading capability of the developed optimization method we can 

investigate the effect of vertical eanhquake in conjunction with the other eanhquake components 

on the structures by optimizing and examining different structures . 
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A.1. Introduction 

APPENDIX A 

3-D DISPLACEMENT CONSTRAINT OPTIMIZATION 
PROBLEM 

The aim of this appendix is to develop a structural optimization algorithm based on optimality 

criteria to achieve a minimum weight structure that satisfies the displacement constraint. This formu­

lauon is an extension of the work done by Khot et 01. (1979) where multiple design variables are 

considered for cross sectional properties. Since the optimization problem is a nonlinear problem, an 

iterative scheme is needed to obtain an optimal design. The optimization algorithm consists of two 

main steps. The first step is to analyze the structure to determine its response to the applied loads . 

The second step is to reallocate the material in the members so that the weight of the structure is 

reduced . The second step is carried out by using a recurrence relation derived from appropriate 

optimality criteria methods. The recurrence relation contains unknown Lagrange multiplier that cor­

responds to the displacement constraint . To be able to use the recurrence relation the Lagrange 

multiplier mUSt be determined . The numerical method to determine the Lagrange multiplier is devel­

oped based on the constraint equations. 

A.2. Formulation 

The minimum weight displacement constraint optimization problem to be solved is 

MINIMIZE 

M 

V = I Am{xm)Lm 
m., 

SUCH THAT 

!.mn < Xmn < Ymn 

{A. I) 

(A.2) 

(A.3) 

where M = number of groups of elements with identical cross sectional properties; n = I, "' , N. 

where N. = the number of the idependent design variables, J = number of displacement con­

straints; Dj = nodal displacement for jth constraint; 15j = assigned jth nodal displacement constraint; 

Am = area of elements in group m (elements in each group have identical cross sectional properties) ; 

Lm = length of the mth element ; Xmn = nth design variable for mth group; rmn = maximum permissi-
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ble height of the nth design variable for mth group; !Inn = minimum permissible height of the nth 

design variable for mth group. 

Similar to Chapter 4 this formulation is given in general form that can be specialized for either 

rectangular or I-beam cross sections. 

Using Eq. (A.1) and Eq . (A.2) the Lagrangian functional can be cast as: 

... J 

L(x.!;j) = I Am(xm)Lm - I !;j{Dj - T5j) (A.4) 
m o l j:1 

where !;j is the Lagrange multiplier corresponding to the jth constraint. It should be poimed out here 

that the constraints on the size of the elements given in Eq . (A.3) are not included in deriving Eq . 

(A.4) . The size constraints are handled efficiently by treating them as active/passive design variables. 

Differentiating Eq . (A.4) with respect to design variable Xmn and setting the corresponding 

equations to zero will result in: 

(A.S) 

To determine the sensitivity of Dj with respect to the design variable the pseudo-load tech­

nique is used where: 

M 

Dj = I V:"Kmelm (A.6) 
m o l 

where Km is the stiffness matrix of mth element. superscript "t" indicates transpose. Urn are the 

nodal displacement of mth element under of the action of the applied design loa~s . and elm are the 

displacements of the same nodes due to the action of a unit load applied at node j in the direction of 

Vj' Taking the derivative of the Eq. (A.6) gives: 

aDj = 
aXmn 

V
, aKm_J 
m--Vm 

aXmn 

Substituting Eq . (A.?) in Eq. (A.S) and simplifying will result in the optimality criteria 

= 1 
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To make the formulation easier to understand, simplify Eq . (A .8) as 

where 8 mn} is strain energy density defined as 

8 mn} = 
U' 

aKm.J 
m--U'm 

aXmn 

(A.9) 

(A. IO) 

In Chapter 4, the sensitivity of the stiffness matrix with respect to the design variables was 

derived in general (orm is used here also. 

A.3. Recurrence Relations 

The optimality criteria are used to modify the design variables in each iteration in terms of 

recurrence relations similar to that used in Chapter 4 as: 

(A. I I) 

where "is the iteration number and r is the step size parameter. The method of choosing the step 

length to help with convergence was explained in detail in section 2.5 .1. 

A.4. Equations to Determine Lagrange Multipliers 

In order to be able to use the recurrence Eqn. (A . 9), the Lagrange multipliers ~j have to be 

determined. The Lagrange multipliers are determined by using the condition that after each iteration 

the design moves on the constraint surface so that the constraint is satisfied . A set of equations to 

determine the Lagrange multiplier can be obtained by linearizing the constraint equation about cur· 

rent iterate. 

The displacement constraint can be expanded as: 

J 

C(x) = I (Dj -11j) = 0 
j 
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Linearizing about the configuration x« one obtains: 

L( C) xox' = C(x") + 
J M N., ac 
I I I -a -(Xmn -X~n) 
J. J mit. 1 Xmn 

(A. 13) 

where the partial derivative of constraint with respect to the design variable Xmn can be evaluated by 

taking derivative of Eqn. (A.12) : 

ac 
(A. 14) 

aXmn 

The Lagrange multiplier can be obtained by satisfying the linearized constraint equation at the 

new iterate ><, .. 1. Substituting Eqn. (A.14) and Eqn . (A.12) into Eqn . (4.35) and making use of 

Eqn . (A . IO) one gets: 

J M 
(A. IS) 

- r I (I U~KmcJm -~) 
jr:.1 m . l 

where the Lagrange multip!lers have to be positive. otherwise the corresponding constraints are set as 

passive . 

A.S. Scaling Procedures 

After each iteration to satisfy the constraint relationship. it is necessary to scale the design 

variables to bring the displacements that violate the constraint to the level of the assigned displace­

ments(1:) . 

The following is a scaling procedure for rectangular members . The same procedure can be 

developed for I-beam cross sections. The scaling factor ~. such that Xij - Xlj~. is determined by the 

equation: 

(A.16) 

where D is the displacement of the node that the displacement constraint is violated the maS! and 1:) 

is the assigned displacement at that node. 
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APPENDIX B 

SOME PRACTICAL IMPLEMENTATION ISSUES NECESSARY TO SOLVE 
THE BUCKLING EIGENVALUE PROBLEM 

B.l Introduction 

Subspace iteration is a standard tool for solving the eigenvalue problems which occur in vibra-

tion and buckling analysis of structures. The buckling eigenvalue problem is given as 

KIJI = GIJI i\ (B . 1) 

Where K is positive definite elastic stirrness matrix. and G is the (possibly indefinite) geometric stirr-

ness matrix . A is a diagonal matrix conlainjng the buckling eigenvalues. and 'I' is a matrix whose 

columns are the eigenvectors . 

The goal of this appendix is to present an overaU view of the subspace iteration algorithm and 

to address some practical implementation issues necessary to solve the buckling eigenvalue problem. 

For detailed discussion on the subject of subspace iteration the reader is referred to Bathe (1982) . 

The basic objective in subspace iteration method is to solve for the lowest p eigenvalues and 

the corresponding eigenvectors satisfying Eqn . (B. 1) . 

The first step in subspace iteration is the selection of the initial subspace vectors . Initial sub-

space vectors can be generated from an identity matrix, the cliagonals of the G matrix, or from a 

Krylov basis. The subspace iteration method is used to solve for the eigenpairs to be incorporated into 

the optimization algorithm where a combination of the eigenvalues is maximized. As a structure is 

being optimized, from one iteration to another the buckling eigenvectors of the previous iteration can 

be used as the initial subspace vectors of the current iteration . 

As subspace iteration progresses the Ritz vectors tend to lose orthogonality . The loss of or­

thogonality among the Ritz vectors can result in noating point overnows or delay in convergence. 

Performing a modified Gram-Schmidt orthogonization on the eigenvectors keeps the subspace vectors 

linearly independent and orthogonal. The modified Gram-Schmidt orthogonization algorithm em­

ployed can be found in Dahlquist el al. (1974). 
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The vector IJI can be written in terms of initial subspace starting vectors as 

IJI = ZP (B.2) 

where Z is the vector storing the p staning vectors. and P is a vector. Substituting Eqn . (B .2) IntO Eq . 

(B. 1) and multiplying both sides by transpose of Z results in 

(B.3) 

Eqn. (B.3) is equivalent to an eigenvalue problem of reduced size obtained by projecting K as 

K = ZTKZ and G as G = ZTGZ: 

KP = GPA (B.4) 

The eigenvalue problem (Eqn. (B.4» must now be transformed to a standard form. Since G 

matrix is usuaUy indefinite the Choleski factorization is performed on the reduced stiffness matrix as 

K = CC~ 

Substitute P = C-'U and K = CCT in Eqn . (B .4) and simplify 

(B .5) 

Next simplify Eqn . (B.5) by defining Gas 

G = C-1GC-T (B .6) 

Substitute Eqn . (B .6) in Eqn . (B .5) and reorder terms 

(B .7) 

Equation (B .7) is a standard eigenvalue problem which can be solved. for example. by the QL 

method to find eigenvectors U and and eigenvalues A-I. The eigenvectors IJI can be found from 

IJI = ZP = ZC-'U. Eigenvalues are simply found by inverting the matrix A-I. 

Subspace iteration algorithm is converged when the change in all the eigenvalues from one 

iteration to the previous iteration is less than the specified tolerance. 
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The recommended size of the subspace to improve the convergence of subspace iteration 

algorithm is q=min{2p, p+8) . This recommendation is based on vibration eigenvalue problems. 

Through experience in solving the buckling eigenvalue problem, it became apparent that a larger 

subspace (such as q = 3p) is needed to promote convergence 

After convergence the sign of the eigenvectors are checked. If the work as calculated by 

multiplying the applied forces on the structure by the corresponding displaced mode shapes is negative 

the sign of the eigenvector is changed. This is important from the optimization point view, because if 

the sign of the buckling mode shape is not checked after each iteration it will cause difficulties in 

convergence of the optimization problem due to flip-flop of the sign. 

Steps for a subspace iteration algorithm as defined above is summarized in Table B. l below. 

Table B.1. Subspace Iteration 

Step 1. Compute initial subspace vectors Z 

Step 2. Perform Modified Gram-Schmidt onhogonization 

on vector Z (if necessary) 

Step 3. Project G to form G - ZT GZ 

Step 4. Project K to form K _ ZTKZ 

Step 5. Solve eigenvalue problem KP = G PA 

a . Factor K = CCT (Choleski factorization) 

b . Project G - C-IGC-T 

c. Solve the standard eigen-problem A-IU = GU 

by QL algorithm. 

d . Compute U = CTp and A - A-I (Inven) 

Step 6. Compute approximate eigenvectors IjI = ZP 

Step 7. Check convergence, if not converged go to Step 2. 

B.2 References 

Bathe, K.J ., Finite Element Procedures in Engineering Analysis, Prentice-Hall, Inc., Englewood 

Cliffs, 1982. 

Dahlquist, A .B., A. Bjorck, and N. Anderson, Numerical Methods, Prentice-Hall, Inc., Englewood 

Cliffs, 1974. 
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C.l. Introduction 

APPENDIX C 

APPROXIMATE ANALYSIS OF THE POST-LIMIT 
RESPONSE OF FRAMES 

Elastoplastic structures subjected to gravity loads generally exhibit a limit point with degrading 

post-limit behavior when subjected to overloads. Therefore, geometric effects playa fundamental 

role in determining the maximum capacity of a struCture and its rate of failure. Recent advances in 

computational mechanics have made it possible to carry out fully nonlinear analyses of structures, and 

effective algorithms exist for tracing limit points and post-limit behavior. However, these methods 

give little qualitative insight into the behavior of complex structures . 

The approximate method to be developed in this chapter was inspired and generalizes Horne's 

approach (Home 1963) in estimating the nonlinear response of frames . Also, it is to be shown that 

an estimate similar to Horne can be obtained without solving an eigenvalue problem . The approxi­

mate method is also an extension of Horne's method to the case of non-proponional load ing for 

structures in wind and eanhquake environments. The formulation presented here is distinguished by 

clear statements of both the approximations involved and the sense in which the method approximates 

the exaCt solution. Qualitative insight into the behavior of framed structures is gained both through 

the success of the approximation as well as through a spectral analysis of the results . 

This Chapter stans with the general ideas and features of the nonlinear equations governing the 

response of framed structures. The empirical relationships for estimating nonlinear response of 

framed structures from geometrically linear response is then derived from a simple decomposition of 

the nonlinear equations in conjunction with a hypothesis about the way the internal forces are distrib­

uted in framed structures. Then the strength and the limitation of the method is tested as it is applied 

to several example problems. Finally, from the behavioral observations made on the nonlinear re­

sponse of the structures and the from the empirical relationships derived a conclusion is arrived at in 

which it will show how one needs to combine and maximize the buckling eigenvalues of a structure to 

achieve better designs. 
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C.2. Nonlinear Analysis or Frames 

The theory and the background material used for the present development can be found in 

references by Simo (1982) where he developed a consistent second order approximation to the fully 

nonlinear equations governing the response of plane beams; by Simo. Hjelmstad. and Taylor (1984) 

where they extended the formulation of Simo (1982) for the nonlinear response of beam theory to 

account for inelasticity; and by Hjelmstad and Popov (1983) where they treated the second order 

theory explicitly and developed the constitutive equations form I-beam type members . Some aspects 

of the theory as is used explicitly for the development of this chapter is explained in the rollowing 

sections. 

C.2.1. Equilibrium 

The equations governing the eqUilibrium of a beam can be expressed in their weak or varia­

lional form as a statement of the principle of virtual displacements . Accordingly one can define the 

following functional for all the admissible variations I). of the displacement field as : 

G(u. I) = f B':::(u)R(u)ds - f I)'qds = 0 (C. I) 
r r 

where u = (u. y. ",y denotes the vector of generalized displacements. B(u) = {I + u·. v'. ",'. ",}' is the 

strain displacement operator that acts on real displacements u or their variation I). and R = {N. V. M} 

is the vector of the internal stress resultants where N is the axial force. V is the shear force. and M is 

the bending moment. q = {Po q. m}' is the vector of the applied forces with p being the applied axial 

force. q being the applied shear force. and m being the applied moment. :::(u) is a matrix of strain 

gradient operator which renects the effect of geometry on the equilibrium of the internal resisting 

forces R and is approximated to second order as: 

(y' - te{J) o 

:::(u} = - '" 1 o - (I +u') (C.2) 

o o 1 o 
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where" is the shear coefficient. Note that prime means differentiation with respect to the 

argument, and superscript "to means the transpose of the argument. The integral in Eqn. (C . 1) is 

taken over the entire volume, r, of the structure and is generally accomplished by summing the 

integrals over each element. Equilibrium is satisfied for any configuration in which G(u,,,)=O for all " . 

Errors in equilibrium are measured in a weak sense by non-zero values of G(u,,,). 

C. 2. 2. Constitutive Equations 

Constitutive equations for stress resultants are discussed in Simo, Hjelmstad, and Taylor 

(1984), where the strain resultants, E, is decomposed into an elastic pan, C, and an inelastic pan, fI' 

(Hodge, (1959». The elastic strains are then related to the stress resultants through the elastic 

moduli R = Dc, where D = diag[EA, /CGA, EI]. The inelastic pan is assumed to evolve according to 

rate equations of the form: 

fI' = ~il'JJ(R) 
aR 

(C.3) 

where 'Y (R) is the yield potential of the member and 5 is a scalar multiplier which can be determined 

from consistency condition . Constitutive relationships having the form described are capable of repre­

senting generalized yielding due to the interaction of all stress resultants . They can be specialized for 

panicular cross sections. 

C.2.3 . Nonlinear Analysis of Structures 

The equations of equilibrium can be discretized using the finite element method and can be 

solved using an incremental procedure with NeWlon-Raphson iteration at each step . Ramm (1980) 

has presented a general summary of algorithms for tracing the response of a structure, including 

passage through limit load points. A displacement control procedure was used to carry out the exact 

analysis of the example problems. 

C.2.4. Approximation of the Nonlinear Load Factor 

The aim of the development in this chapter is to estimate the nonlinear response of a Structure 

subjected to proportional and non-proportional loads from a geometrically linear response. In shon, 
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it is attempted to approximate the load factor which gives an estimate of the loads equilibrated by the 

nonlinear system. The approximate formulation developed here is based on the observation that each 

configuration satisfying the linear equations is close to an associated configuration which satisfies the 

nonlinear equations. Hence. as the linear behavior is traced. a series of load factors can be deter­

mined which estimates the true external loads that the structure can take as given by the nonlinear 

theory. 

C.2.S. Decomposition of the Nonlinear Operator 

The strain gradient operator which reflects the geometry on the eqUilibrium of the internal 

resisting forces can be split into a linear and a nonlinear operator: :::(u) = :::(0) + ::;:(u) . 

Therefore. the nonlinear form of the equilibrium equation. expressed by Eqn. (C. I). can be 

decomposed into linear part and a nonlinear part as: 

G(u.1]) = J B'(1])[:::, + E(u)]R(u)ds - Q(q.1]) (C.4) 
r 

where Q(q. 1]) = I1]'QdS represents the virtual work associated with the external loading and for sim­

plicity the notation :::(0) = 20 and E = :::(u) -:::, has been introduced. 

A matrix of Ag can be defined in terms of forces R as: 

(C.S) 

where N and V are the axial forces and shear force respectively. and IC is the shear coefficient. Now 

with these defirtitions the equilibrium equation can be rewritten as: 

G(u.1]) = I B'(1])20R(u)ds + I B'('1)Aa(R(u»B(u)ds - .tQo - Q, = 0 (C.6) 

r r 
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where the external loading Q=)..Qo+Q, has been divided into fixed pan. Q,=Q(q,.,,). (dead loading) 

and a pan. Qo=Q(qo."). which is driven by the proponionality factor).. . The expression given Eqn . 

(C .6) is a simple Statement of the nonlinear equilibrium equations which is used for the follOWing 

developments. 

Eqn. (C.6) can be linearized about the initial configuration to yield the associated linear equa­

tion of equilibrium: 

f B'('1)~R(u)ds - ALQ. - Q, = 0 (C .?) 
r 

where by solving the linear eqUilibrium equations a sequence of geometrically linear load factors. AL' 

and the corresponding linear displacement u can be obtained . 

SUbstitute AL and u into the nonlinear operator. the expression for the reSidual takes the 

form : 

= f B'('1)~R (~)ds + f B'('1)A.(R(u»B(u)ds (C .S) 
r r 

The best value of the parameters).. is the one that corresponds to the smallest error. I.e. 

G(u.,, )=O. By setting the Eqn . (C.S) equal zero and by assuming that f B'('1)~R(~)ds =AQ. +QI 
one can obtatn: r 

(A - AWQ. + f B'('1) AII (R (~)) B(u)ds - 0 (C.9) 

r 

Eqn. (C .9) simply states that the difference between the load carrying capacity represented by 

the linear versus nonlinear operator is given by the term associated with the nonlinear pan of the 

deformation gradient. This expression is approximate because the linear and nonlinear configurations 

are generally nOt identical. 

C. 2. 6. Derivation of tbe Approximate Load Factor 

For mOSt structures with the exception of triangulated StrUctures. it can be observed that the 

distribution of axial forces in a structure does not change appreciably as inelasticity progresses. On 
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other hand. the moment field can change considerably as the structure strains inelastically. The key 

to the success of the approximation is that the bending moment does not appear in the second term of 

the Eqn. (C.9) and thus. the redistribution of moment does not affect the approximation . The inter­

nal shear force will change in accordance with their equilibrium relation to the changing moments. 

However. the importance of shear is small for most structures. Even for struCtures such as eccentri­

cally braced frames. in which shear is important. only few of the members are affected by high shear 

and hence the aggregate effect of shear on the struCture as whole is small . 

Assume that the internal axial and shear forces as designated by R = {N. \I} can be approxi­

mately represented in terms of their irtitial linear values and a proportionality factor as : 

R(u) = .tRo + R, (C. 10) 

Where Ro is a vector of internal forces in equilibrium with [qo'-'l); and R, which is vector of 

internal forces in equilibrium with [q ''-'1). Since Aa is linear in terms of stress resultants Nand V. it 

tOO can be decomposed into a part contributing to the dead loading and a part contributing to the 

proportional loading as: 

.tAO + A' I I 
(C. II) 

Substituting Eqn. (C. II) into Eqn. (C.9) and solving for A. the following eSlimate of the actual 

nonlinear load factor is obtained: 

ALQO - f B'('l)A~B(r.)ds 
A r (C .12) = 

Q. - f B'('l)A~B(r.)ds 
r 

The variational form found in Eqn. (C. 12) is suitable for computation and can be discretized 

with a finite element approximation. Therefore. the discrete representation of Eqn . (C . 12) can be 

obtained as: 
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A = 
, . 

ALQ. - H GIU , . 
Q.+H G.U 

(C. l3) 

where U and H are the discrete nodal displacements and their variations, respectively; and G. and G, 

are the geometric stiffness matrices and are obtained in the standard way from element shape func-

tions and direct assembly procedures . Note that Go is the linearized geometric stiffness resulting from 

the action of only the forces Q., whereas G, is the linearized geometric stiffness resulling from the 

action of only the forces Q, . 

It will be convenient to characterize the variation in the displacement field as being propor­

tional to some displaced configuration of the structure (H at U) . An advantage of makmg the van­

ation proportional to a displacement vector is that one can define a natural way of measuring the 

dIsplaced configuration of the structure with a scalar quantity, IIUIP=U'GU. In general G is not guar­

anteed to be positive-definite, and thus IIUII does not define a true norm. However, it does have the 

advantage of treating the displacements in a dimensionally consistent manner, and it has been used as 

measure of the deformed Slate of the Structure . 

Eqn . (C.D) with H=U provide a formula for computing the nonlinear load factor from the 

sequence of linear configurations generated from Eqn . (C. 7) . The second term '" the numerator of 

the Eqn . (C . 13), H'Glll, vanishes in the absence of dead loaeling. 

C.2.7. Spectral Analysis 

Eqn . (C . 13) can be studied through a spectral analysis of the system. One consequence of 

performing a spectral analysis is the ready identification of the special case studied by Home (1963) . 

In addition, the spectral approach provides a convenient framework for characterizing the behavior of 

complex systems. By referring to response of a structure to an associated eigenbasis, it is possible to 

follow the progress of a few generalized components of the system, and from this information evaluate 

some of the apprOlomations that has been made. 

The eigenbasis is determined from considering the buckling eigenvalue problem: 

(C . 14) 
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where K is the initial elastic stiffness matrix and G is the geometric stiffness matrix of the system. The 

method of finding eigenvalues and eigenvectOrs are discussed in Appendix B. A discrete system with 

n degrees-of-freedom will yield n eigenpairs by solving the Eqn . (C.14) . In accordance with standard 

practice. the eigenpairs are ordered such that 111,1 < 11121 < ...• and the eigenvectors are normalized 

such that ¢IG¢} = elij where eli} is the Kronecker delta . Note that since tensile axial forces are positive. 

the eigenvalues of Eqn. (C.14) will be negative when forces in the structure are generally compressive. 

For proportionally loaded structures there is only one initial geometric stiffness and therefore. 

there is only one associated eigenvalue problem. A non-proportionally loaded structure has an associ­

ated eigenvalue problem corresponding to the proportional loads and one corresponding to the dead 

loads. A set of non-proportional loads are considered which gives rise to a family of associated 

eigenvalue problems with G=-yGo+G" in which y is the parameter of the family . As y -+ 0 the 

eigenvalue problem is governed by dead loads only and as y -+ '" the eigenvalue problem is governed 

by proportional loads only . Through example problems. it will be shown that the specific choice of y 

is crucial to the success of some of the approximations. 

The displacement vector U can be decomposed into components along the eigenbasis induced 

by the eigenvalue problem. The displacements can be expressed in terms of spectral ordinates as: 

" 
U = LOi¢1 (C.15) 

I. I 

where O{ is identified as the modal participation factors. measuring the components of the displace­

ment relative to the basis (¢;). The participation factOrs can be computed from the displacement U 

using the formula : 

(C . 16) 

If the basis {¢i} is normalized with respect to the matrix G. then the denominator of Eqn. 

(C.16) is unity. 

Substituting Eqn . (C.15) into the expression for the nonlinear load factor (C .13). noting that 

Qo = U'~ = U'KUo. one obtains the following expression: 
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l = (C. I?) 

where the aOI are the initial linear participation ractors, i.e. Uo = I aol4>" and the PI are the ei­

genvalues of the Eqn. (C.14). Earlier it was noted that the eigenvalue problem has been normalized 

such that 4>!G4>j = ();j . However, G need not to be either Go or G" and hence the parameters 

Yij = 4>;Go4>J and Y)j = 4>;G,4>j have been introduced in Eqn . (C. I?) . 

If the frrst buckling mode behavior is assumed to dominate the response, i.e .. a, .. 0, 

a, = 0. i = 2, . . . ,n, then under these restrictions the Eqn. (C. I?) simplifies as : 

l(a) = ).L(a)anU - ay, 
alii' + ayo 

(C.18) 

where the subscripts on a, ao. and P are understood to be one; Yo = Y'i, and YI = yl, . Note also 

that an approximation having the form of Eqn . (C.18) can be achieved using any of the eigenvectors 

in the expression {or the nonlinear load {actor. This observation is important because the fundamen­

tal mode will not always dominate the limit response of the frame. 

Eqn . (C. IS) degenerates to the expression given by Home (1963) if only proporuonalloads 

are considered (y, = 0. Yo = I) . Home has suggested that Eqn . (C. IS) provides lower bound on the 

nonlinear load {actor {or moment-resisting {rames. However, as demonstrated in one of the exam­

ples, it is found thaI lower bound characler can be spoiled i{ the selected mode does not actually 

dominate the response. 

If the displacement of the structure is approximated as proportional to a constant vector, 

U = av (not an eigenvector), the preceding derivations apply, except that P is simply the Rayleigh 

quotient and not an eigenvalue . The reason {or choosing the vector v is that the initial displaced 

configurations o{ the structure under load (Uo) will be examined in the examples later. One might 

expect that when the chosen assumed shape is representative of the shape at the limit load , then a 

good estimate of the limit load can be achieved . Such approximation has the compulauonal advan­

tage of avoiding the solution of an eigenvalue problem. 
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C.2.S. Rankine-Type Formula for Limit Load 

The limit load plays a significant role in the limit design of structures. and hence its estimation 

is of fundamental importance . Plastic design is predicted based on the knowledge of the "limit" load 

without any knowledge of the response history. In this section it will be shown that the limit load can 

be estimated from Eqn. (2.IS). The success of the estimate depends both on an appropriate choice 

of the displaced shape and on the invariance of that shape during the course of deformation. The 

validity of the estimate will be investigated by examining the spectral analyses of the example struc­

tures presemed later. 

The limit load occurs when the slope of the load-defamation curve become zero. ).' = O. 

Differentiating Eqn. (2 .18) with respect to parameter a and setting the result equal to zero gives : 

(afJII. + arO)l'L{a) - ro.l.L{a) - r, = 0 (C.J9) 

where by solving the expression of Eqn . (C. J9) limit displacement (a) can be evaluated. Substituting 

the Eqn. (C.19) into Eqn. (C.18) and simplifying the expression. one can arrive at the limit load 

expression in terms of the slope of the linear response curve evaluated at the limit displacement: 

(C.20) 

For proportional loading cases "Y, is zero and "Yo is one which simplifies the Eqn. (C.20) to 

(C.21 ) 

which is the formula given by Home (1963). Thus Eqn. (C.20) generalizes Home's formula for the 

case of non-proportional loading. 

For some structures. the transition from elastic to plastic behavior covers a reasonably shon 

range of displacement values. as shown in Fig C.I. As the structure passes through this region the 

slope ).' L changes dramatically from the large elastic slope to a very small post-yield slope . The slope 

of the linear response at the limit displacement is certainly contained within these bounds. For these 

structures. failure will occur at or near the "!tnee" of the linear curve. which has an approximately 

identifiable displacement Qp and load level ).p (the linear plastic capacity of the structure). 
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'---- Structure Fully Plastic 

'---- Structure Elastic 

o 

Fig C.I Idealized Structural Behavior [or Rankine-Type Estimate 

The known values o[ force and displacements can be substituted into Eqn. (C. 19) to solve [or 

the indetenninate slope A\. Solving [or A'L [rom Eqn . (C.19) gives 

"t'L .. (C.22) 

By noting that op = o.,.tp. and substituting Eqn . (C .22) into the Eqn. (C.20) . one can obtaon 

an estimate o[ the limit load as 

(C .23) 

If the loading condition is proportional. the Eqn . (C.23) reduces to the so called Mercham­

Rankine load o[ the structure: 

1 = +-
p Ap 

(C .24) 

where II- is the fundamemal linear elastic buckling eigenvalue o[ the structure and AR is the Mercham-

Rankine estimate o[ the limit-load. 
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C.3. Application to Framed Structures 

The remainder of this chapter is devoted to application of the methods derived previously to a 

set of examples. The examples will serve to demonstrate the effectiveness of the approximate meth­

ods of tracing the limit behavior of framed structures and to indicate the limitations of the approxi­

mate formulas . Furthermore. the examples will demonstrate that the approximate methods provide a 

useful framework for estimating the limit performance of framed structures in general. From all these 

example problems one can get insight into the performance of the method and into the behavior of 

framed structures . 

Six structures covering a wide range of types including moment-resisting and eccentrically 

braced frames. low rise and high-rise buildings. proportionally and non-proportionally loaded struc­

tures are analyzed . For simplicity the designation of MRF is used for moment-resisting frames and 

EBF is used for eccentrically braced frames. The properties of the most of members used in example 

structures are tabulated in Table C.1. 

For each example problem an exact nonlinear analysis is performed using the methodology 

and finite elements developed by Simo. Hjelmstad . and Taylor (1984). For each of these "exact" 

analyses. the solution has been decomposed along the eigenbasis {t/lj). where the basis vectors are 

generated from the eigenvalue problem defined by Eqn . (C. 14) with G selected from the family of 

initial geometric stiffness matrices. The modal participation factors OJ are evaluated according to 

Eqn. (C.16) . 

Evolution of modal participation factors as the nonlinear progresses permits one to estimate 

the change in the character of the displaced configuration as the nonlinearites take place. One can 

also compare the different bases by observing how the same nonlinear response curve reflectS on each 

basis . Viewing the results in this manner provides an indication as to why and how the approximate 

methods work well in some cases but not in the others. A modal decomposition provides a good 

qualitative representation of the progress of the solution . 

For each frame. the nonlinear load ven;us displacement history is presented for several cases: 

(I) the actual computed nonlinear response designated as "Exact Nonlinear" in the figures; (2) the 

actual computed response without nonlinear geometric effect as designated by "Exact Linear"; (3) an 

approximation to the nonlinear response using Eqn. (C . I3); and (4) an approximation of the non­

linear response using Eqn. (C .18) . 
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The finite elements used in these analyses were all CO quadratic elements. Each structural 

member was discretized using two of these elements. Inelasticity of the elements accure due to the 

interaction of shear force. axial force. axial force. and bending moment. The computational model is 

a viscoplastic penalty approach to model perfect elaslOplasticity. The yield function used in these 

computations was: 

'Y(n.v.m) = Iml + n2 (1+v2 ) +.,. - 1 (C.25) 

where n = NINo. n = VIVo. and n = MIMo are the axial force. shear force. bending moment normalized 

by their fully plastic values. Each stage of computation is iterated using a Newton-Raphson iteration 

scheme to satisfy the equilibrium within a specified tolerance of the Euclidean norm of the out-of-bal­

ance forces . The following is a discussion on the result of the analyses . 

MRF- I is the fIrSt frame studied which is a two-story. single bay. moment-resisting frame with 

taU stories. The beam members with WI4X53 and columns are of type "column". The frame MRF-l 

was proponionally loaded as shown in Fig. C.2 with two vertical loads of SA applied to the tOP story 

and one lateral top story load of magnitude A. Fig. C.2 presents the results of various analyses as were 

performed on MRF-I along with the spectral evolution of the exact nonlinear solution . 

The linear elastoplastic response of the structure shows a typical multilinear force-deformation 

behavior. with the changes in slope corresponding to the formation of plastic zones in the structure . 

Because of the heavy vertical loads and slender columns. the actual capacity of the structure is greatly 

reduced from the linear "coUapse load". Both Eqn. (2 .13) and Eqn. (2 .18) gave excellent approXI­

mations of the nonlinear behavior of the frame. Note in panicular the accuracy with which the 

post-limit behavior of the frame is uaced by the approximate methods. From the figure of the spec­

ual evolution of the participation factors. observe that the first buckling mode dominates the response 

throughout the analysis . 

MRF-2 is a five story. single bay. moment resisting frame with WI4X53 beams and Wl4X48 

columns. The loading of the frame was similarto that of (rame MRF-I with the loading applied to the 

top level of the building. The response of MRF-2 is shown in Fig 2.3. Again. both approximate 

methods worked well . Eqn. (2.13) gave a more accurate estimate of the response near the limit load 

than does Eqn. (2 .18). Since the columns are not as slender as the ones in MRF-l, the reduction in 

load carrying capacity due to geometric effects is not as dramatic as it was for MRF-l. However. the 
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slope of the post-limit response curve is steeper indicating poorer post-limit behavior. The initial 

response was dominated by the nrst mode and the second mode contributes mOre as the structure 

settles into its final collapse deformation mode . 

MRF-3 is also a moment resisting frame and has the same topology as MRF-l. This frame is 

different from the previous frames in that the vertical loads are gravity loads instead of proportional 

loads. The lateral loads at the two-story levels were equal and increased monotonically in accordance 

with the proportionality factors. Such a loading would be representative of a building Structure sub­

jected to earthquake or wind loads. 

The response of the structure under the applied loading is shown in Fig 2.4. The initial 

displacement is due to presence of the dead loading. while the proportionality factor is still zero . Two 

diHerent approximations as applied to the Eqn . (2.13) were considered . Two different approxima­

tions differ only in the choice of the form of the variation in displacements H . In one case. H is taken 

to be proportional to the initial displaced configuration U. Both approximations gave good estimate of 

exact nonlinear results but demonstrated that the method depends on the choice of the vector repre­

senting the variation in displacements. 

The results obtained from Eqn . (2.18) are shown in Fig. C.4(b and c). Three different meth­

ods of calculation were used: (P) a and ill. t/I} were computed using only the proportional part of the 

geometric stiHness; (D) a and ill. t/I} were computed using only the dead part of the geometric stiff­

ness; (P+D) a and ill. t/I} were computed using the geometric stiffness G = J.,;,Go + G I • where Ac, is the 

actual limit load of the structure. Case (P+D) worked well for this problem whereas cases (P) and (D) 

did not. The reason that the case (P) and (D) performed so poorly can be seen by examining the 

spectral evolution of the modal participation factors. Three diHerent versions of this hislory are 

shown in Fig 2.4(d-f). corresponding to geometric stiffness matrices and associated eigenvectors of 

cases (P). (D). and (P+D). The first eigenvector [or the case (P) contributes very little to the re­

sponse. The first eigenvector for the case (D) is orthogonal to the displaced configuration of the 

structure. Eqn . (2.13) was also tried using mode five [or the (P) case and mode six for the (D) case . 

The results [or the these cases were also poor. It is interesting to observe that. while mode one of the 

(P) and (D) cases did not contribute to the response. mode one o[ the (P+D) Case dominated the 

response as it passed through the limit load . The obvious shortcoming o[ the method represented by 

case (P+D) is that the limit load is not known in advance. However. it is possible to estimate the limit 
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load from the Rankine approximation. The method that uses Eqn . (2 .13) does nOt suffer from 

ambiguity that Eqn. (2 .18) does and does not require an advance knowledge of the limit load. 

One conclusion that can be made is that it is not the vector v that is imponant to the approxi­

mation, but the matrix G used in computing the norm of the displacements. To verify this conclusion, 

the initial displacement v=Uo was employed in Eqn. (2 ,18) with (P+O) geometric Stiffness. The 

results for this case were found to be indistinguishable for the curve H=Uo shown in Fig. C.4 (a) . 

MRF-4 is an eight-Story, single bay moment resisting frame similar to the one analyzed by 

Korn and Galambos (1968) . Similarly to MRF-3, this frame was subjected to both proportional and 

non-proportional loads. The member types used are tabulated in Table C.2. The topology and the 

loading used along with the response of the Structure are shown in Fig. C.S . MRF-4 was subjected to 

the same analyses as was MRF-3. 

Observe from Fig. C.S(a) that Eqn . (2 .13) estimated the true nonlinear solution well. As was 

true for MRF-3, Eqn . (2 .18) gave meaningful results only for the case (P+O) where the geometric 

stiffness matrix has 'Y equal to the limit load of the structure. Contrary to MRF-3, this frame had a 

good result for the case (D) in which only dead loads were used for the geometric stiffness . The 

reason for this behavior is clear upon observing the modal participation histories for the various cases 

as shown in Fig. C.S (d and e). The case (D) showed a history of modal participation factors almost 

identical to the (P+O) case. The first mode did not contribute significantly to the response . The 

success of case (0) can be considered coincidental. Again the initial displacement v=Uo was used in 

conjunction with the (P+O) case and was found to give excellent results. 

EBF-l is a three-story, single bay, eccentrically braced frame with an eccentricity of e=22 

inches. The (rame was subjected to proportional loads at the tOP level. The topology along with the 

various computed response of the frame to the applied loading are shown in Fig. C.6. Both approxi­

mate methods gave a reasonable representation of the actual nonlinear behavior of the structure . 

Eqn . (2.13) slightly overestimated the response, while Eqn. (2.18) slightly underestimated the re­

sponse. Both methods accurately reproduce the post-limit slope of the response curve, and give a 

correct representation of the rate of loss of carrying capac:ity of the structure. The method based on 

Eqn. (2.18) can be improved by noting that the structure responds predominantly in the third mode . 

The result of using the third mode in Eqn. (2 .18) is also shown in Fig 2.6. 

EBF-2 is a three-Story, twO bay, eccentrically braced frame having W14X43 beams, 

ST8X8X(S/6) braces, and W14XI32 columns except for the bottom Story '"terior column which is a 
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W14X426 section. The topology of the frame along with the proportion loads and the result of the 

different analyses are shown in Fig. C. 7. The eccentricity of the frame was e:48 inches. Observe that 

Eqn . (2.13) gave good estimate of the exact nonlinear behavior of the structure. 

An interesting feature of the response of this structure is that modes four through nine has the 

greatest participation to the displacement field . In addition, modes four and five shift in importance 

as the deformation passed the limit-point. The computation using Eq . (2.18) were carried using mode 

one, four, and nine . It is clear that used of mode one does not give good results, and in fact, violates 

the lower-bound character suggested by Home. Using either mode four or mode nine gave a better 

representation of the response than mode one. 

C.4. Conclusions 

An approximate method for tracing the nonlinear behavior of framed structures has been 

developed . The validity of the approximate method was shown through several examples with wide 

variety of types and properties under proportional and non-proportional loading cases . The approxi­

mate method is an extension and an improvement over the previous work done by Home (1963) . 

The approximate method not only can trace the nonlinear behavior of a framed structure 

accurately, but also gives an insight into real nonlinear behavior of Structures. The approximate 

method and the subsequent spectral analyses of the example problems demonstrated the role of geo­

metric stiffness matrix in the nonlinear response and clarified the issue for non-proportional load 

case . 
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Frame 

W14X43 

W14X48 

W14x53 

W14x132 

W14X426 

ST8X8X 

"Column" 

Story 

1 

2 

3 

4 

5 

6 

7 

8 

Table C. l. Member Properties 

Stiffness Properties (X 10-') Yield Properties 

EA ICGA EI No Vo Mo 
(k) (k) (k-ft2) (k) (k) (k-ft2) 

365 183 86.2 449 83 206.3 

410 205 9-7.2 510 90 233.3 

425 266 108.9 560 102 260.4 

1125 563 308.1 1409 183 71.0 

3625 1813 1329 4705 610 2726.0 

1200 600 208.3 1650 500 583 .3 

1200 600 208.3 1650 500 583.3 

Table C.2. Frame MRF-4 Properties 

Column Beam 

W14X99 W14X38 

W14X90 W14X34 

W12X79 W14X30 

Wl0X49 W12X26 

W8X35 W12X22 

W8X31 Wl0X22 

W8X31 W8X21 

W6X20 waXla 
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Table C.3 . Summary of Resulls 

Normalized Rankine Estimates 

Approximate A", of limit Loads 
Frame 

Exact A", 
v = Uo v = 4', 

MRF-l 1.009 1.187 1.164 

MRF-2 1.001 1.041 1.004 

MRF-3 0.997 1.412 1.407 

MRF-4 1.005 1.095 1.064 

EBF-1 1.045 1.123 1.086 

EBF-2 0.984 1.047 0.998 
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APPENDIX D 

SENSITIVITY OF GEOMETRIC STIFFNESS MATRIX 

D.l. Formulation 

The weak form of the equilibrium equations can be expressed as (Simo el al. 1985) : 

L 

G(u. ,/) = J R.DJ. .,/dx 

o 

L 

J q'/2dx - [,/.R] ·R 
o 

(0. 1) 

where u = [u. v. \II]' denotes the vector of generalized displacements. aR denotes those directions at x 

= 0 and x = L subject to applied tractions. q. is the transversally applied load. '/ is a displacement 

field satisfying the displacement boundary conditions. and R .. [N. V. M]' denotes the stress resul­

tants conjugate to the strain measures J. '" [J.n • .l.,.A-,]' which is expressed as : 

, , 1 ( ,)2 1 p2 .... " = u + - v --K 
2 2 

.l., = v' - (1 + u')\11 (0 .2) 

where p .. v ' - \II and /C is the shear coefficient. 

By defining the operator w - D(w) .. [u'. v'. \II', \II]' and noting (0.2). the expression for 

directional derivative of the strain measures can be wrinen in the explicit form : 

(0.3) 

where the matrix E (u) is a matrix of strain gradient operator which renects the effect of geometry on 

the equilibrium of the internal resisting forces R and is approximated to second order and was given in 

Eqn . (C.2) of Appendix C . 

The geometric stiffness matrix was obtained by linearizing the weak form In Appendix Cas: 

L 

G = J B' (,/) Ag(R) B(u)dx 

o 
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(0.4) 



where A, is given in Eqn . (C.5) and can be split into shear and axial pans as : 

0 0 0 0 0 0 0 -y 

0 (1- j() 0 j( 0 0 0 0 
A~ = A~ = (0 .5) 

0 0 0 0 0 0 0 0 

0 j( 0 -j( -y 0 0 0 

Therefore. the geometric stiffness matrix can be written as : 

L L 

G = N f B'(7])A~B(u)dx + V f B'(7])A~B(u)dx (0.6) 

0 0 

Using a numerical integration scheme the geometric stiffness matrix G can be found as: 

(0.7) 

where Nlj = axial stress resultant of element i at gauss point j. ~j = normalized coordinate at gauss 

point j. Wj = numerical integration weighting factor. and NGP= the number of gauss points. 

Taking the derivative of the geometric stiffness Eqn . (0.7) with respect to the design variables gives: 

(0.8) 

In order to determine the sensitivity of the geometric stiffness with respect to the design variables. we 

need to determine the sensitivity of the axial and shear resultant forces (N/j.t and Vi/.k) 

The resultant forces can be written as: 

R = 0::::8(7]) (0.9) 

where D=diag[EA. j(GA. El] being the elastic compliance matrix. Following the standard finite ele­

ment discretization procedure. the displacement u = [u. y. 1/1)' can be interpolated as: 

.<1 

u(x) = I h.U • (0.10) 

• • I 
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where nel is the number of the nodes per element, h. (x) are the Co interpolation functions, and 

U. = [V, V, 'JIl' are the nodal displacements. From the interpolation (0 . 10) the operator B is given 

by: 

Substituting Eqs. (0.11) and (0 .10) into (0 .9) and tak.ing the derivative gives: 

.<1 

= D,k::::IBp(x)Up + 
p 

.<1 

D:::: I Bp(X)Up,k 
p 

(0. 11) 

(0 .12) 

(D.13) 

To determine the derivative of the nodal displacement vector consider the discrete form of 

force displacement relationship: 

KU = F (D.14) 

where K is the elastic stiffness matrix, and F is the nodal force vector. Tak.ing the derivative of Eqn . 

(0.14) gives: 

(0.15) 

Substituting Eqn . (0. 15) into Eqn. (0 . 13) we can determine the derivative of the stress resultant 

forces as: 

R.k 

.,1 
= D.k:::: I Bp(x)Up + 

p 

.<1 

D:::: I Bp(x)(K-1K.kU)p 
p 

(0 . 16) 

where R.k '" [N.k' V.k.M.kl' . Having (0 .16) the sensitivity of the geometric stiffness matrix can 

easily be determined from Eqn . (0 .8). 
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