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CHAPTER 1

INTRODUCTION

1.1. Introduction

Recent advances in computational mechanics and nonlinear analysis have provided structural
engineers with general and systematic procedures for modeling and analyzing complicated structures.
Almost any complex structure can be analyzed using a finite element approach considering geometric
and material nonlinearities, under both static and dynamic loads. In spite of the achievements in
analysis, the design procedure has not evolved. Most of today's designs are based on traditional trial
and error procedures wherein a structure is designed, analyzed, and checked for compliance with the
design criteria. If the performance of the structure does not meet the defined design criteria, then the
structure is redesigned. This process of design, analysis, and checking continues until a design is
achieved. The final design is generally not optimal in any sense. The method of trial and error is
especially ineffective for complex designs that are beyond the experience and intuition of the designer.
Furthermore, the designer usually unable to account for global aspects of design such as overall stability,

ductility, and strength.

The objective of this study is to understand and gain knowledge about the nonlinear behavior of
framed structures from analyses and incorporate the knowledge into the framework of an
optimization-based design methodology to enhance the overall stability, ductility, and strength of
framed structures. Traditionally, stability and ductility have played a secondary role in design process or
have been ignored completely. However, these issues are fundamentally important to robust structural

performance and they must be included in the design process.

Many algorithms have been developed to improve the limit strength of structures. In most of
these applications geometrically linear analysis is employed with the consequence that overall strength of
the design is overestimated. Directly optimizing the limit load of the structure would require a full
nonlinear analysis at each iteration which would be prohibitively expensive. The objective of this
research is to develop an algorithm that can improve the limit-load of geometrically nonlinear framed

structures while avoiding the nonlinear analysis.



1.2, Stability

Based on observations made on the limit and post-limit behavior of elasto-plastic frames,
Hjelmstad and Pezeshk (1988) developed an approximate model of the nonlinear behavior of this type
of structure. From the model it can be observed that the overall stability and strength of a structure can
be improved by maximizing its linearized buckling eigenvalues. The design methodology developed in
this study exploits this observation and suggests an optimization-based procedure whose objective
function involves a linear combination of the buckling eigenvalues of the structure. A constant volume
constraint with bounds on the design variables is used in conjunction with an optimality criterion

approach for search.

The design procedure is formulated to improve the overall performances of both planar and
space framed structures using rectangular or I-beam cross sections. Three-dimensional design problems
are computationally more expensive to consider than the planar design problems, but they yield insight
into the real behavior of the structure and can help avoid some of the problems that might appear in

planar design procedure such as the need for out-of-plane buckling constraint.

There are different types of instability that can occur in a structure. Among these are local
buckling of the thin elements (e.g. flange and web) of a member, single member buckling in a complex
structure, and buckling of the structure as a whole. Buckling of a structure depends both upon the
constitution of the structure and on the loading, which has some spatial variation and is either static or
time dependent. In this study we are primarily concerned with the global stability of structures under
static loads. Itis up to the designer to select a representative spatial variation of loads with which to carry
out the design. The resulting structure will be most robust in resisting those loads. We demonstrate, by
way of examples, that in general improving the overall stability characteristics of structure under static

loading also improves the dynamic performance.

The earliest attempt to optimize structures subjected to stability constraint was considered by
Clausen (1851) where he found that for columns whose cross sections are of prescribed shape the
optimal tapering will increase the buckling load by one third over that of a uniform column. Lagrange
(1773) had reated the same problem earlier but arrived at the wrong result due to computational errors.
The result obtained by Clausen was independently found and generalized by Nikolai (1955) for
additional limit on stresses. Keller (1960) found that the strongest column among all columns having a
given length and volume has a cross section in the shape of an equilateral triangle shape. Further,

Tadjbakhsh and Keller (1962) derived the optimal solutions for columns clamped at one end and simply
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supported at the other, and for clamped-clamped columns. The solution in the latter case was obtained
with respect to the first buckling mode. Later on Olhoff and Rasmussen (1976) discovered this solution

was incorrect and a bimodal solution gives the optimal shape.

Keller (1960), Tadjbakhsh and Keller (1962), Keller and Niordson (1966), and Taylor (1967)
developed one-dimensional models with one design variable to maximize the buckling load of a
structure with a volume constraint. The approach was based on continuum theory and not readily

extendible to complex structures such as frames.

A recurrence relation based on a optimality criterion was employed by Simitses, Kamat, and
Smith (1973) to design a column subjected to a distributed load. An exponential recurrence relation
based on an optimality criterion was proposed by Venkayya et al. (1973, 1974), and Khot er al. (1973,
1976) to design portal frames and truss structures. Khot (chapter 3 of Atrek et al. 1984) proposed a
method based on the optimality criterion approach to minimize weight of truss structures under stability
constraints. In this paper the stability constraints were stated with the requirement that the critical
eigenvalues be separated by a specific interval and the critical buckling mode be the preselected one.
Khot and Kamat (1983) discussed an optimization method based on optimality criterion to minimize the
design weight under displacement, system stability, and element stresses for truss structures considering
geometric nonlinear behavior. Kamat and Ruangsilasingha (1985) and Kamat (1987) addressed the
problem of maximization of the critical load of shallow space trusses and shallow truss arches of given
configuration and volume. Levy and Perng (1988) discussed the optimal design of trusses to withstand
nonlinear stability requirements. In a recent paper by Lin and Liu (1989), they discussed the optimal
minimum weight design of linear-elastic truss and beam elements under static loads subjected to size,
stress, displacement and system buckling constraint. Finally, a recent book by Gajeswski and
Zyczkowski (1989) provides a complete review of optimal structural design under stability constraints

with a bibliography having over 2000 entries.

1.3. Multiple Loading Conditions

Multiple loads and load combinations are a fundamental aspect of structural design because the
structure will be expected to survive in a diverse environment. The selection of these loads and the
method used to combine them constitute one of the most important aspects of the design process. One

of the principal novelties of the method presented in this study is that it can efficiently design a structure




with multiple loading conditions. The formulation proposed here weights the various load cases in

accordance with their level of participation in potentially important buckling events.

In recent years there have been only a few papers on the subject of multiple loading cases.
Turner and Raymond (1980) used the optimality criterion approach to design columns and portal
frames under multiple loading conditions. They optimized the structural buckling load for different load
ratios, plotted the result in a loading space, and came up with an envelope which they referred to as the
stability envelope. Chibani (1987) developed a minimum weight optimal design method for truss
structures under alternate loading cases. He used a geometric programming algorithm and developed a

new decomposition method to handle multiple loading cases.

Reliability-based structural optimization under stochastic loads is another approach to
considering multiple loading cases. Work in this area has been done by Wen (1977, 1980a, and
1980b), and Wen and Pearce (1980) where they developed procedures for handling combinations of
loads and load effects. Kim and Wen (1987) developed a method for reliability-based structural
optimization under time varying random loadings with emphasis on realistic modeling of the loadings
and the effect of the uncertainties of loadings on the design. In a recent recent paper, Tada and Seguchi
(1989) formulated a method for the determination of the shape of structures under multiple loading
cases when the direction, the magnitude, and the position of the loads vary with a known probability law.

This method finds the shape which makes the total potential energy stationary under constant volume.

1.4. Optimization Algorithm

The optimization procedure used for this study is based on optimality criteria method (OCM).
The goal of the method is to generate a design that satisfies specified criteria, and in doing so maximize
the objective function. The criteria are based on the nature of the problem and are derived by
differentiating the Lagrangian with respect to the design variables. OCM is an iterative method because
the constraints and the objective are nonlinear in the design variables. In deriving the optimality criteria
and developing the algorithm, full use is made of the knowledge of the behavior of the constraints
imposed on the structure. The algorithms are efficient because the effort is proportional to the number

of constraints not the number of design variables.

Prager (1968, 1971, and 1973), Prager and Prager (1979), Prager and Taylor (1968), Sheu and

Prager (1968), Prager and Shield (1968), Martin (1969, 1970), Chern and Prager (1970, 1971),
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Chern (1971), Chern and Matin (1971) have done extensive work in developing a rigorous optimality
criteria approach for various design problems. Most of these papers are concerned with generalized
compliance constraints. Generalized compliance is defined as the virtual work of a fictitious loading
system when it is subjected to the displacement field of the actual loading. For example, a single
displacement constraint at a point of the structure can be treated as a compliance constraint.
Compliance in this case is the virtual work of a unit load at the point of displacement constraint going
through the actual displacement. When the fictitious loading coincides with the actual loading, the

compliance represents the generalized stiffness of the structure.

Barnett (1961) discussed the optimal design of determinate structures for a given deflection.
The OCM was formulated in terms of virtual strain energy due to a unit dummy load at the point of

prescribed displacement.

Prager (1968) presented a description of the general problem of optimality criteria in structural
design. Prager and Taylor (1968) discussed the specific problems associated with optimal structural
design where they discussed the optimal design for maximum stiffness, maximum fundamental
frequency, and maximum buckling. Sheu and Prager (1968) considered the optimal design of frames
with piecewise constant specific stiffness requirement. Prager (1971 and 1973) discussed the optimal
design of statically determinate beams and trusses with deflection, compliance, and stress constraint.
Prager and Shield (1968) discussed optimal design of a beam-tie with two stiffness requirements.
Optimal design of sandwich beams with compliance requirements under alternative loads was presented
by Chern and Prager (1970). Chern and Prager (1971) developed a procedure for minimum weight
design of statically determinate trusses subject to multiple constraints. Martin (1970) discussed optimal
design of elastic structures for multipurpose loading. Martin (1969) discussed the optimal design of
beams and frames with compliance constraints. Chern (1971) discussed optimal design of beams for
alternative loads and constrains on generalized compliance and bending stiffness. He also established
the necessary and sufficient conditions for global optimality for determinate structures and they can be

used in an iterative fashion for indeterminate beams.

Some of the other discussions on the optimality criteria method can be found in Allwood and
Weaver (1984), Atrek et. al. (1984), Fluery (1983), Khot (1976), Khot, Berke, and Venkayya (1979),
and Khot (1981).

There are two main approaches to solve the structural optimization problem: one is based on the

many rigorous numerical methods of nonlinear mathematical programming (MP) and one is based on



intuitive concepts of the optimality criteria method (OCM). There are advantages and disadvantages
claimed for each method. It is claimed that MP methods are guaranteed convergence properties and
are general in the sense that any type of constraints can be considered. The disadvantage of MP is the
computing time which increases rapidly with the size of the problem whereas in the OCM the computing
time does not increase with the number of the design variables, which makes it very effective method in
solving problems with large number of design variables. The disadvantage of using OCM is the lack of
generality and sound mathematical foundations (Chapter 5 of Morris (1982). Fluery and Sanders
(1977 and 1983) attempted to reconcile MP and OCM and they showed that, based on a primal solution
scheme, a mixed method can be described which permits a continuous transition between a strict
mathematical programming method and a pure optimality criterion technique. The generalized
optimality criterion is shown to be equivalent to a mathematical programming linearization method using

reciprocals of the design variables. In another words MP and OCM can be considered as the two ends

of the same spectrum.

1.5. Report Organization

Chapter 2 starts with the development of design methodology improving the limit and post-limit
performances of two-dimensional frames. The motivation of the study is discussed. The optimization
problem is solved using optimality criteria. A frequency weighting function is introduced and is

formulated for the optimization algorithm.

The strengths and limitations of the optimization design methodology, developed in chapter 2,
are investigated through its application to two building frames in chapter 3. The two design problems are
optimized and then analyzed under various static and dynamic loading cases and the their quality of

performance is examined.

Chapter 4 discusses the development and formulation of a multiple-objective optimal design of
three-dimensional framed structures based on a stability criterion to improve their strength and stability
characteristics. A efficient procedure is developed to handle multiple loading conditions. The

mathematical formulation and the general concepts are presented in detail.

In chapter 5 the applicability of the proposed three-dimensional optimal design procedure with
multiple loading cases is investigated by applying the method developed in chapter 4 to a two-story space

frame structure. Parameter studies are performed on the size of subspace, minimum design variable




sizes, method of formulating the buckling eigenvalue problem, and the number design variables. Detail

discussion of the optimization procedure and a physical interpretation of the results of the optimization

method is given.

In chapter 6 the application of three-dimensional optimization design procedure to an setback
structure is discussed. Parameter studies are performed to investigate the effect of different parameters
on the overall performance of the optimization procedure and optimized designs under single and
multiple loading conditions. The loading cases considered are the equivalent lateral static loads that are

obtained following ATC-3-06 recommendations.

In chapter 7 the three-dimensional optimization procedure is applied to a high-rise building with

15 stories. The performance of the optimization and the optimized design is investigated and discussed.

Chapter 8 gives a summary of the study, conclusions, and recommendations for future research.
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CHAPTER 2

OPTIMAL DESIGN OF PLANAR FRAMED STRUCTURES BASED
ON A STABILITY CRITERION

2.1. Introduction

The present chapter suggests an objective function to use as the basis for a design methodology
for improving the strength and the overall stability characteristics of framed structures whose capaci-
ties are governed by limit-load behavior. Attention is focused on planar structures. The objective
function is a linear combination of the critical buckling eigenvalues of the structure with each eigen-

value weighted by a frequency penalty function. An iterative optimality criterion method is used to

solve the optimization problem.

2.2. Motivation

The choice of the objective function to improve the limit and post-limit behavior of planar framed
structures is motivated by observations on the nonlinear behavior of this type of structure. Hjelmstad
and Pezeshk (1988) have developed an approximate model to demonstrate the effect of geometric
nonlinearities on the performance of framed structures through an approximate relation which gives
the full nonlinear response of a structure in terms of its geometrically linear response. A brief sketch

of the approximation is presented below to justify the subsequent choice of objective function for the

optimization.

Hjelmstad and Pezeshk (1988) considered the general case of a structure subjected to a combina-
tion of proportional (ARy) and non-proportional loads (R,), where 4 is the proportionality factor of

the proportional loads. To facilitate the derivation they introduce an associated buckling eigenvalue

problem

K¢ = uGo (2.1)




where K is the linear structure stiffness matrix, {u, ¢} is the fundamental eigenpair, and G is the

geometric stiffness matrix defined in terms of the two loading cases as
G =G+ %c, (2.2)

in which Gy is the linearized geometric stiffness matrix for the proportional loads with A = 1, and G, is
the linearized geometric stiffness matrix for the non-proportional loads. Assume that the eigenvector
is normalized such that $'G¢ = 1 and let @ = u‘G¢ be a parameter which measures the magnitude of
the displacement vector u. Assuming that first mode behavior dominates the nonlinear response, the

nonlinear load factor can be expressed in terms of the geometrically linear load factor, 4;, as

A(a) = A(@)agn - ay, (2.3)
Qo + ajyo

n
—

where ap = u;G¢ is the value of a for the displacements under proportional loads only with 4

vo = ¢'Gog, and y; = ¢'G¢. From Eq. (2.2) and the above definitions, we note that ¥ +ply, = 1.
Consequently Eq. (2.3) takes the simplified form

1 + ayo/u

where @ = a/ap is a normalized displacement measure. From its definition it is clear that ¥, is a
number in the range {0,1}. The case ¥, — 0 indicates greater relative importance of the dead loading
to the eigenvalue problem, while the case ¥, = 1 indicates greater relative importance of the propor-
tional loading. With a few modest assumptions, the limit load can be approximated by a Rankine-type

estimate as

ApYo (2.5)
ek 1 + Apyo/u

where 1, is the geometrically linear plastic capacity of the structure.

It is clear from Eq. (2.5) that the larger is u, the larger will be the limit capacity of the structure.
In the post-limit regime, the geometrically linear capacity 4.(a) is generally constant or nearly con-

stant. Therefore, the slope of the post-limit response curve is ~ (1 =y + yoAr/u). Thus, the larger u



is, the smaller will be the post-limit loss of carrying capacity. In each case, it is apparent from this

simple model that maximizing the buckling eigenvalue will lead to a more robust structure.

Remark.~ As is shown in the examples in Hjelmstad and Pezeshk (1988) and Appendix C the
buckling mode which dominates the response of the structure is not known a priori. For planar
moment-resisting frames it is likely that the fundamental mode dominates the response, but for eccen-
trically-brace and three-dimensional frames, mode one might not be the dominant one. One can
easily demonstrate that the above argument holds for any eigenpair {u, ¢}. Hence, one must en-
deavor to maximize the eigenvalue corresponding to the dominant mode. Because the dominant mode
is generally not known in advance, one might maximize a weighted sum of eigenvalues. This ap-

proach is adopted in the sequel.

The rest of the present chapter and the following chapters exploit the above ideas and develop
optimization criteria which have the goal of improving the stability characteristics of a structure. The
validity of the observations made on the role of the eigenvalues in improving the limit and post-limit of

structure is investigated through several example applications.

2.3. Formulation

The optimization problem to be solved is a combination of buckling and frequency eigenvalues

as the following:

N
MAXIMIZE . u(x)pj(@(x))
j=i
3 2.6
SUCH THAT 3 A(x) D oL, = T (2.6)

i=1 vel

X € X < X

where u; is the jth elastic critical buckling eigenvalue, @(x) is a vector of vibration frequencies, p;(w)
is a frequency weighting function (some of the p; could be zero and may or may not depend on w ), x
is the vector of design variables, I" is the given weight of the structure, and i/ is the group number
(elements in each group have identical properties). A(x;) is the area of element in group i (these
relationships can be found in appendix 2.A), L, is the length of element v in group /, and @, isthe

mass density of the element v in group i. The ith design variable, x; (moment of inertia in the
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present development) has a minimum permissible value x;, and a maximum permissible value of ¥;.
M is the number of groups, and N is the number of the eigenvalues and eigenvectors considered in the

objective function.
To simplify the formulation we define the specific mass of the group i to be:

Q= ol (2.7)

vel

Using Eqn. (2.6) the Lagrangian functional can be cast as:

M
L(x,§) = zp;p,(w) - 5[2,4(1,-)9,- - I‘] (2.8)
J

where £ is the Lagrange multiplier. It should be pointed out here that the constraints on the size of
the elements given in Eq. (2.6) are not included in deriving Eq. (2.8). Normally, in structural optimi-
zation algorithms, the size constraints can be handled more efficiently by treating them as active/pas-
sive constraints. Whenever an element violates a size constraints, the design variable associated with
that element is set to its limiting value and removed from the active set. A more detailed discussion of

active and passive set strategy is given in section 2.5.3.

Taking the derivative of the Lagrangian with respect to the design variable x; and setting the

corresponding equation to zero results in:

L(x.&) _ <[ ap;(m)]_ QA(X) o _ 2.9
=z - E[axip,(m) v £ = 0 (2.9)

Rearranging Eqn. (2.9) and using chain rule to expand the second term in the brackets gives

the following optimality criteria:

N N
apj < Opj(w) day
.Z [ax; pi(@) + H’; dwy dx;

J=1 (2.10)

9A (x;) Q

¢ ax;

i
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The weighting functions pj(w) introduce information about the vibrational characteristics of
the structure. These functions can be used to avoid undesirable dynamic effects such as resonance by
pushing the structure away from it. The weighting function can be considered as a constraint on the
frequencies of the structure which is introduced in the form of a penalty function in the objective.
The choice of weighting function is dependent on the type of problem considered. Some of the
possible weighting functions are given in Fig. 2.1. If the curve of the inverse of the frequency weight-
ing function has a positive slope then the design is pushed toward having smaller period whereas when
the slope of the weighting function is negative the design is pushed toward having a larger period.
Weighing functions with steeper slopes result in a bigger encouragement to change the frequency of
the design. If the weighting function is flat then there is no encouragement for design to change its

frequency content.

p(@) p()

i ='0.33(sec.)

I
1 L J | 1 1 J

(a) 12" (b) T=2Z

p(w)

]
() T=2% (d) T 2%
w

Fig. 2.1. Possible Weighting Functions: (a) Bell Shaped Response Spectra; (b) Uniform Building
Code; (c) Sinusoidal Response Spectra; (d) Mexico's Federal District Code
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2.4. Sensitivity Analysis

In order to evaluate the optimality criterion given in Eqn. (2.10), one needs to determine the
sensitivities of the buckling loads and vibration frequencies of the structure with respect to the design
variables. To determine the sensitivity of the buckling eigenvalues with respect to the design variables

x;, consider the following eigenvalue problem:

where ¢ and k; represent the jth eigenvector and eigenvalue respectively, K represents the elastic

stiffness, and matrix G is the geometric stiffness.

Differentiating Eqn. (2.11) with respect to design variable x; gives:

dK 9¢; Ay aG a¢;
—— Pont. = o Gl (2.12)
ax; '’ . ax; oax; 9+ B dx; ¥ me ax;

The gradient of the eigenvalue is then given by:

[ 2K E]
o ¢J[axl * e ?; (2.13)
ax, ¢;G¢,

Solving for the second term in parentheses given in Eqn. (2.13) numerically for several exam-
ple problems, it was concluded that this term was negligible compared to the other terms (Appendix D

presents the formulation for computing this term in detail).

The linear elastic structural stiffness K exhibits the following explicit form in terms of cross

sectional properties

K = i[A(x,-) > Kb+ I(x) x:,.:' (2.14)

i=1 mei mei

where K? is the element axial plus shear stiffness matrix, and K} is the element bending stiffness

matrix of group i with either area or the moment of inertia factored out.

Differentiating the structural stiffness matrix (Egn. (2.14)) with respect to the design variable

al(x;)
d

X

x; and by noting that =1 gives:

13




aK aA(x,)
= * Z Kh + D Kh (2.15)

mei

Therefore, Eqn. (2.13) can be computed as:

A (xi) ,]
K+ Kl ¢
ou; = J[ axi MZEI mzel o B (2.16)
ax; 9;Go;

Similarly, the sensitivity of the frequencies with respect to the design variable x; can be deter-

mined by taking the derivative of the frequency eigenvalue problem:

K‘pt = with (2‘17)
where Y& and wx represent the kth mode shape and frequency respectively and M represents the mass
matrix of the structure. Differentiating the characteristic Eqn. (2.17) with respect to design variable

xi and simplifying and collecting terms results in:

dK 9A (x;) KA + K2

s Vi 2.18
.a_w.!_ - Wi ax; - _ 3 [ i mze:u mze:: ( )
ax; 2wy Wika 2w %Mv}g

Note that in deriving Eqn. (2.18) the derivative of the mass matrix with respect to the design
variables is assumed to be zero. This is true because the mass distribution of the structure is often
assumed to be independent of the design variables for framed structures since most of the mass is

associated with non-structural elements.

Having all the sensitivity terms determined, the optimality criterion can be calculated by substi-
tuting Eqn. (2.16) and Eqn. (2.18) into Eqn. (2.10). To simplify notation we write the optimality

criterion as:

Qi

Li (2.19)
§Q,

where
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i=1, ... M (2.20)

2.5. Solution Procedure

The optimum structure must satisfy the optimality criterion and the weight constraint. Since
these equations are nonlinear, they can be solved only by an iterative scheme. The iterative algorithm
suggested here consists of using a set of recurrence relationships based on the optimality criteria. The
recurrence relations are the optimality criteria written in a form that can be used in an iterative
fashion. Repeated use of the recurrence relation will move the initial design toward a design which
satisfies the optimality criteria and the constraints. The iteration is split between two sets of unknowns.
The first set contains the coefficients Q;, and the second set contains the Lagrange multiplier £. The
coefficients Q; can be evaluated by solving the linearized buckling and vibration eigenvalue problems
and determining the sensitivity of the buckling and frequency eigenvalues with respect to the design
variables. The Lagrange multiplier is determined by using the condition that the design lies on the
constraint surface at the end of each iteration. Because of the nonlinearity of the problem, when one
moves the design to satisfy the optimality criteria the constraint surface moves. Conversely, when one
moves the design to satisfy the constraint, the optimality criteria will not be satisfied. This behavior
necessitates a repeated analysis of the structure, evaluation of the flexibility coefficients, determina-
tion of the Lagrange multiplier, and use of the recurrence relations. In the next sections the recur-

rence relations are derived and the method to determine the Lagrange multiplier is discussed.

2.5.1. Recurrence Relations

There have been various forms of recurrence relations developed and used. Berke (1970)
derived a recursion relation based on a virtual strain energy criterion for problems with prescribed
displacements. The recursion relation eliminated the need for determining the Hessian matrix for
nonlinear programming, which is computationally expensive. The same recurrence relation was effec-
tively used by Gellaty and Berke (1971) for a displacement constraint algorithm combined with stress

ratio algorithm for design problems with stress and displacement constraints.

15




Later, Venkayya, Khot, and Berke (1973); Khot, Venkayya, and Berke (1973); and Khot,
Venkayya, and Berke (1976) derived different forms of the recurrence relations for displacement
constraints, stress constraints, and dynamic stiffness requirements as follows: write the optimality

criteria in general form as

ni=1 i=1,...M (2.21)

multiply both sides by the design variable x| and take the rth root. The optimality criterion can now

be written in recurrence form as:

x?ol - X:-(P]:)”’ (222)

where k denotes the iteration number and r is the step size parameter. In Eqn. (2.22) %] is evaluated
at the «th iteration and is used to determine the new design variable x{*'. The Eqn. (2.22) is referred
to as the exponential recurrence relation. At optimum the optimality criterion Eqn. (2.21) will be

satisfied, therefore, the design variables will be unchanged with any additional iterations at optimum.

Egn. (2.22) can be rewritten as:

= X1+ Off - D]V (2.23)

Near the optimum, the term (i - 1) will be small compare to unity, therefore, Eqn. (2.23) can be

expanded by using the binomial theorem. Considering only the linear terms one obtains:

= (e —0f - D) (2.24)

This equation is referred to as the linear recurrence relation for the design variables. In Eqn. (2.24)

the term (yf - 1) is the error in satisfying the optimality criterion and is equal to zero at the optimum.

Khot (1981) showed that the linear recurrence relations and the equations used to estimate
the Lagrange multipliers derived by using the optimality criterion approach can also be obtained using

the projection method of nonlinear programming.

In this study, the optimality criteria are used to modify the design variables. The recurrence

relations proposed by Eqn. (2.24) is used as:
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] = & _1_ &__ ! = 2.25
x| x I:l*'[EQi ]] i=1,...M ( )

where x denotes the iteration number and r is the step size parameter. The convergence behavior
depends on the parameter r. Depending on the behavior of the constraint, it may be necessary to
increase r in order to prevent divergence. If the optimization problem is run in a non-interactive
environment a large value of step length such as r=8 or r=10 is recommended to ensure that there is

no problem with divergence. OIf course, this choice will result in slower convergence.

Another approach to controlling convergence is to generate an intermediate design vector
whenever the objective function starts to deviate from the decreasing or increasing trend in the previ-
ous iterations. The intermediate design vector can be generatcd by taking the average of the variables
in the previous iteration and the present iteration. It can be shown that this averaging process is

equivalent to redoing the last iteration with r doubled.

A parameter study on the magnitude of step length and its effect on the convergence of the

optimization can be found in paper by No and Aguinagalde (1987).

2.5.2. Equation to Determine Lagrange Multiplier

The Lagrange multiplier § must be determined in order to use the recurrence Eqn. (2.25). An

equation to determine the Lagrange multiplier can be obtained by linearizing constraint about the

current iterate.

The weight constraint can be expanded as:

M
Cx)= > Ax)Q - T = 0 (2.26)
=]
Linearizing about the configuration x* one obtains:

ac
L[Clxext = C(x) + za_n(""‘n (2.27)
i=1
where
%o 20, (2.28)
axl aX,'
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Thus the linearized constraint becomes:

M M
D AN - T + z%ﬂn,-(x,--x;) =0 (2.29)

i=1 i=l
In Eqn. (2.29), C(x*) = 0 since the design variables are updated by the recurrence relation-

ship after the Lagrange multiplier is estimated. We estimate the Lagrange multiplier by satisfying the

linearized constraint at the new iterate x**!, Substituting x = x**! into Eqn. (2.29) and solving for the

Lagrange multiplier we get

- A (x°
> 0169 25
- - izl M‘ (2_30}
A (x"
2;%;:;9; - rl;gA(xf)Qg - I‘:|

since the constant weight constraint is an equality, £ can be either positive or negative.

2.5.3. Active/Passive Set Strategies

After each iteration a set of new design variables is obtained. If the design variables are in the
permissible range, they are considered active elements, otherwise, they are considered passive ele-
ments. Allwood and Chung (1984) suggested that in general if a design variable is passive in two

consecutive iterations, it will stay passive until convergence. The method suggest by Allwood and

Chung is implemented here.

It is generally more efficient to keep a passive element passive until the end. The program is
set up so that the designer can change a passive element to an active element or vice versa. Thus, if a
designer's judgment suggests that a design variable should be active, he can turn the passive design set
to active and check its status at every iteration. One benefit of keeping a design variable in the passive

set once it become passive is that this can expedite convergence.

2.5.4. Scaling Procedure

Since the weight constraint is not exactly enforced at each iteration, it is necessary to scale the

design variables to keep the design feasible. The weight of the structure after each iteration can be
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split into two parts: one part is the weight of the members in the active set, WA and the other is the

weight of the members in the passive set, WF
WA + WP =T (231}

In order to scale the weight of a structure after each iteration, the area of each active element is

scaled by ¢ as x;j « x;{ with

L wr (2.32)
wA
Since only the active set is scaled, iteration is necessary only if a variable becomes passive as a conse-

quence of scaling.

2.5.5. Convergence Criterion

The optimization theoretically converges when all the optimality criteria are satisfied. After
each iteration the deviation of the optimality criteria from unity is calculated and if the Euclidean
norm of the deviation is less than a specified tolerance the iteration is terminated. The tolerance is

specified by the designer.
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2.A. APPENDIX

CROSS SECTIONAL PROPERTIES

2.A.1. Overview

Member properties are assumed to be composed of the collection of all regular series wide
flange rolled steel shapes as identified by the American Institute of Steel Construction (AISC). This
set is clearly discrete. Many researchers have tried to come up with continuous models to define the
discrete set of member properties. In general optimization on a continuous domain is more efficient
than optimization on a discrete domain. The continuous relationship between cross sectional area
and moment of inertia used in chapter 2 were obtained from empirical relations derived by Walker

(1977) for economy wide flange steel sections. These relationships are as follows:

For columns with [ < 429 in*
D = 1.470/°-368
A ‘= 2.951% B4

For columns with I> 429 in*

D = 10.510-0836 (2.A.1)
A = 0.0494)0-9993
For girders
D = 2.660/°%
A = 0.61124/°971

Where D is the section depth in inches and A is the area (inches)?. The limits of the model are shown

in Fig. 2.A.2.

The program written for the optimization algorithm is set to select column sections (as is de-

fined in Eqn. (2.A.1)) for column members, and girder sections (as is defined in Eqn. (2.A.1)) for
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girder members. Where depth restrictions do not apply and member instability problem (out-of-plane
buckling) are unlikely to be critical, beam sections may be used with advantage for column members.

Conversely, an option is included in the program whereby one may stipulate column sections for beam

members if desired.

The empirical relationship given by Eqn. (2.A.1) has a discontinuity of slope at a moment of
inertia of 429 in*. This discontinuity can cause difficulty in convergence of the optimization algorithm
if some of the design variables are near 429 in*. To solve this problem a continuous curve was fit
between the two curves proposed by Walker (Eqn.(2.A.1)). The method of matching tangents,
described by Menegotto and Pinto (1973), yields the following relationship

D = 0.000421 + 5.872 + 0.0223771 (2.A.2)

1+4(0.4253 + 0.00162 )'"/7

and the cross section area can be determined as

A (2.A.3)
0.1521D% 08

For comparison purposes, the curves given by Eqn. (2.A.1) and Egn. (2.A.2) are plotted in
Fig. 2.A.1.

Eqn. (2.A.1)

COLUMN DEPTH (D)

———e Ban. (2.A.2)

1 - 1 i 1 . L
3

o 300 600 900 1200 1500
MOMENT OF INERTIA (1)
Fig. 2.A.1. Empirical Relationship Between Moment of Inertia and Column Depth
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Fig. 2.A.2. Empirical Relationship Between Moment of Inertia and Column Depth and the Actual
Members Identified by AISC

22

----------{




It is important to note that the empirical relationship given in (2.A.2) is only good for a certain
range and covers only a small portion of the discrete set as given in AISC. To see where the empirical
relationship of Eqn. (2.A.2) stands in the whole discrete set, Fig. 2.A.2 is presented. From this figure
it is obvious that the continuous function covers a very small and specific range of the discrete mem-
bers. Therefore, it is important to come up with a method that can model the discrete set with more
generality. One way of handling the problem is to use more than one design variable to represent the
cross sectional properties of a member and let the optimization algorithm find the best relationships
among the cross sectional components as needed to achieve an optimal design. In this way, one is not
bounded to the curve given by Eqn. (2.A.2) and can move in the discrete set freely and the optimiza-
tion will assign the necessary relationship. Using more than one design variable in defining the cross
sectional properties makes the problem more complicated to handle but gives more realistic represen-
tation of the optimal cross sectional types. Using more variables to identify a cross section will allow
the optimization to be more flexible and the design need not be chosen from a pre-assigned set. This
freedom is, of course, a blessing to the researcher and a curse to the designer who must, in the end,

select from the discrete set.

The two types of cross sections that are most widely used are rectangular and wide flange

sections as shown in Fig. 2.A.3 below.

Rectangular Cross Section I-beam Cross Section

Fig. 2.A.3. Different Cross Sectional Types

Properties of rectangular cross section can be expressed in terms of width (b) and height (k)
and properties of the wide flange sections can be expressed in terms of the parameters (A, b, 17, tw );

where h is the height, b is the width, ¢, is the web thickness, and fy is the flange thickness. There-
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fore, there are four variables necessary to represent the properties of the I-beam members. One can
observe a relationship between the flange thickness and the web thickness of available (AISC) I-beam
sections. They are very closely related to one another by ty = 1.6¢,,. Fig. 2.A.4 presents a plot of
versus t¢. Thus, there are only three independent variables needed to describe an I-beam cross

section accurately. These three independent parameters can be used as design variables for the

optimization.
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Fig. 2.A.4. Flange Thickness Versus Web Thickness for Wide Flange
Sections Identified by AISC

One must be careful when multiple design variables are used to define the member cross
sectional properties because the objective function may be insensitive to certain unmodeled phenome-
non. Under such circumstances the design variables will generally move toward their extreme permis-
sible sizes. For example, if a planar frame is optimized to maximize the fundamental buckling eigen-
value with a volume constraint, the cross section tends toward having the highest moment of inertia in
the plane of the structure. The cross sections will tend to have the smallest possible width with the

largest possible height. The resulting structure would have no resistance to out-of-plane buckling.
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This problem could be solved in two ways. One way is to put an additional constraint on the design
variables 1o prevent out-of-plane instability if it becomes important. Another way is to consider a
three-dimensional frame in which case the objective will provide the necessary constraint among the
three cross sectional variables. It may be impossible to write an explicit constraint for global out-of-
plane buckling, except for simple cases like single member buckling, hence, the later approach is

more promising than the former, and will be investigated in the sequel.

Another example of an unmodeled phenomenon concerns local buckling of flange and web
elements. Because the analytical model does not include local buckling modes, these will not be
represented in the objective function. One could use a model which incorporates local buckling, but
the interaction between local and global buckling for most structures is small and thus the resulting
algorithm would probably not be robust. On the other hand, since local and global buckling are lightly
coupled, local buckling constraints in the form of width-to-thickness limitation would be relatively

simple to describe and implement.
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CHAPTER 3

APPLICATION OF 2-D OPTIMIZATION TO FRAMED
STRUCTURES

3.1. Introduction

This chapter is devoted to application of the methods developed in previous chapter to two
framed structures. The examples will serve to demonstrate the effectiveness of the design procedure.
Presentation of the examples include three parts: (1) discussion of the initial design method; (2)
discussion of the optimization process, and (3) analyses and discussion of the quality of the initial and

the optimized designs under static and dynamic environment.

To start the chapter it is necessary to discuss some of the analysis procedures employed.

3.2. Analysis Procedure

The approach to analyzing the 2-D frames considered in this study is that proposed by Simo,
Hjelmstad, and Taylor (1983). A finite element discretization of the structure in conjunction with the

standard Newton-Raphson iteration scheme, is employed to solve the nonlinear equations of motion.

The finite element discretization of the frames analyzed throughout this chapter consists of two
elements between each structural joint. Quadratic interpolation was employed for all the elements.
The norm of the local constitutive residual was forced to be within a tolerance of 10-'° at each global
iteration. A global iteration tolerance of 1075 measured as ratio of the the Euclidean norm of the
nodal force unbalance to the Euclidean norm of the initial configuration was used.

Displacement control load incrementing, as described by Batoz and Dhatt (1979), was used
throughout the analyses. Lateral displacement of the top story was used as the control point. Lateral

top displacement is used throughout this study to characterize structural deformation.

3.2.1. Damping Matrix used for Dynamic Analyses

The damping matrix is modeled as a linear combination of the mass and stiffness matrix. This

type of damping matrix is known as Rayleigh damping and has the form
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C=aM+pK (3.1)
Where M is the mass matrix, and K is the stiffness matrix. The multipliers @ and f can be deter-
mined from modal damping with any pair of natural frequencies. For the present study these multipli-
ers are determined from the first and the second natural vibration frequencies (@, and @;). To find
the parameters a and § multiply both sides of Eqn. (3.1) by the eigenvector

viCyi = ¢i(aM+fK)y; = 20 i=1,2 (3.2)
Using the orthonormality of the eigenvector, Eqn. (3.2) can be rewritten as

a + o} = 2w i=1,2 (3.3)
Using this relation for @,, £, and w,, ;. we obtain two equations for a and §

a + ol = 2w and a + fod = 2wk (3.4)

Solving for a and f we get

' z(fzw‘lw; ilw:)wlwl (3.5)
1@y
_ 26 - §r07) 3.6)
S = N

where &, and £, are the percentage of the critical damping of first and second modes. One observa-
tion about Rayleigh damping is that the mass proportional damping term increase the effect of damp-
ing in the lower modes, while the stiffness proportional damping increases the effect of damping in the

higher modes.

In nonlinear analysis, the stiffness matrix is updated after each iteration and may not be con-
stant. Therefore, the initial stiffness matrix or the tangent stiffness matrix can be saved to use in
calculation of the damping matrix. Alternatively, after the damping matrix is determined once, it can

be stored and used throughout the analysis.

27



3.2.2. Time Interval Used for Dynamic Analyses

There are two factors that must be considered in employing an appropriate time steps: (1)
stability of the numerical integration scheme, and (2) proper representation of the input ground mo-
tion function. Using constant-average-acceleration method (i.e., Newmark method with g=0.25) for
a linear system, the first requirement is satisfied automatically, since the method is unconditionally
stable. Ground motions are normally digitized at 0.02 second intervals, therefore, for the linear
analyses of problems a time interval of At=0.02 seconds can be used. For the time interval different
than 0.02 seconds the ground acceleration is obtained by linear interpolation between two coordinate

points.,

Although the numerical integration scheme used is unconditionally stable for linear systems,
the method might become unstable for a nonlinear system if the time step is large (Adeli, et al.,
1978). Unlike conditionally stable methods in linear analysis, for nonlinear analysis a stability crite-
rion to control the time step is not established yet. However, it is apparent that only for a small time
step the implicit procedures are stable (Belytschko er. al., 1976). Time steps of At =0.005 seconds

were used for most of the analyses presented here.

3.2.3. Damage Estimates

Different designs can be compared with respect to the damage sustained during a dynamic
excitation. One of the most widely used damage model was developed by Park and Ang (1985) from
403 tests on reinforced concrete members. The model assumes that the damage may be expressed in
terms of a damage index, D, which is computed from the sum of the normalized maximum deforma-
tion and normalized hysteretic energy dissipated during cyclic loading. The damage index can be

expressed as

- Om p (3.7)
D= 3 + Q,dujdE

where D > 1 signifies complete collapse of the member; dp, is the maximum deformation obtained
during cyclic loading; dE is the incremental absorbed hysteretic energy, Qy is the shear force at first
yielding of the member; &, is the maximum attainable monotonic deformation; and f is a normaliza-
tion parameter. f was determined by evaluating the parameter in Eqn. (3.3) at failure point (D=1)

for 261 cyclically loaded specimens and solving for .
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In the present study we adopt a simplified damage model which is indexed by plastic strain
energy dissipation only. Although this model is simple, it should provide a good qualitative indication

of structural distress. The plastic strain energy dissipation can be computed as

D(t) =Ijaij¢ﬂv (3.8)
Vo

where (f, is the plastic strain rate and oy is the stress and V is the volume of the structure and

numerically can be determined as

D(tns) = D(ta) + [(7=1)0y(tnn) + noy(tn)) [€])(tne) = €f(tn)) (3.9)

where for backward Euler n=1, for forward Euler y=1, and for midpoint formulation = 1/2.

In the following examples the damage statistics for initial and optimized designs under differ-

ent dynamic excitations are determined and the results are discussed.
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3.3. Three Story Frame

3.3.1. Preliminary Design

The first example is a three story frame with topology as given in Fig. 3.1. This frame was

designed based to meet the Uniform Building Code (1979) specification.

L 216 in |
~ i

120 in

120 in

144 in

-

Fig. 3.1. Topology of the 3-Story Frame

The loads on the structure were:

Dead load: 80 psf

Live load: 40 psf for a typical floor
20 psf Jor the roof

Exterior walls 50 Iblft

Lateral loads and their distribution were computed for zone 4 following the code recommen-
dation. A preliminary design was performed using full dead and live load to determine maximum

moments in girder sections.

3.3.1.1. Code Lateral Loads

Ditad loud on BIrderss: «..c.v.vavressvsoysnuranass 77.6 kips
Dead load on columns ....... iaaseaabRsssceRbe 57.6 kips
Dead load of the columns and girders ..... 4.0 kips




3.3.1.2. Base Shear

V= ZIKCSW
S=1 (Coefficient for site-structure resonance)
I=1] (Occupancy importance factor)
Z=u] (High seismicity zone)
K= 0.67 (Moment resisting frame)
CS = - where g = -
JI1 =B + (268%) T

Assume f = 1.5 - CS8=0.78

V = (0.67)(0.78)(139.2) = 72.74 (Kips) Base Shear

3.3.1.3. Code Distribution

The UBC force distribution is given as

Fi = =20 g, - v i=1, .N
D wih (3.10)
J

F;, = 0 for T < 0.7sec.

where F; is the lateral force applied to level i, w; is the portion of total dead load which is located at
or is assigned to level i, F; is the portion of V considered concentrated at the top of the structure.

Using Eqn. (3.9) results in the lateral force distribution given in Fig. 3.2.

® 0.9845 ( k-sec?/ft) P 33.8 kips

® 1.1242 ( k-sec?/ft) 3 25.0 kips

@ 1.1522 ( k-sec?/ft) 3 14.0 kips

Fig. 3.2. Code Shear Distribution for 3-Story Frame
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The AISC specification was used for the design requirements on steel sections. Yield stress
was 36 ksi for all sections and frames. The sections were assumed properly braced against lateral
buckling. For girders the allowable bending stress of Fj = 24ksi was used.

For combination of dead plus live load plus earthquake (D+L+Q) the allowable increase in
working stress of 33% was followed (Section 2303 UBC code). L stands for live loading, D stands for
dead loading, and Q stands for earthquake loading.

Analyses of the preliminary design were done for load combinations (D+L) and 0.75(D+L+Q).

For girders, the maximum moments were used to proportion the sections and then checked for
shear and deflections (due to live load) limitations. For column design, the frame was assumed to be
fully braced in the out-of-plane direction (Y-direction), and K; was computed according to the AISC

procedure.

After checking all the requirements and going through several iteration of design and analysis,

the following members were chosen for the design:

W24X55 -+ Girders
W12X96 - Columns

Lateral deflections were computed under lateral loads from earthquake to check against drift

requirements. No changes were necessary.
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3.3.2. Optimization

The design achieved based on the UBC specification was used as the initial design for the
optimization. The initial design is optimized maximizing the first critical eigenvalue of the structure
under combined lateral and dead loads with no frequency penalty. Six design variables were used:
three design variables for columns and three design variables for girders. The optimization converged
in 35 iterations resulting in an optimized design with the properties given in Table 3.1., which lists the
cross sectional area (A), the bending moment of inertia (/), the axial capacity (Ny). the shear capacity

(Vo). and the flexural capacity of (Mp). The shear coefficient used for of the members was « = 0.33.

Table 3.1. Properties of the Optimized Designs Without
Frequency Penalty

Stiffness Properties Yield Properties
Member

A (in?) I (in*) | No(kips)| Vo(kips) | Mo(kips)
1st story columns 38.2 1500 1376 795 7484
2nd story columns 21.6 807 777 449 4122
3rd story columns 12.3 385 443 256 2143
1st story girders 23.9 2360 859 496 6875
2nd story girders 22.9 2163 825 476 6462
3rd story girders 13.4 698 484 279 2884

The fundamental period and buckling eigenvalues of the both initial and the optimized design
are given in Table 3.2. The fundamental buckling eigenvalue of the design increased from 98.7 to

141.5.

Table 3.2. Frequency and the Buckling Eigenvalue of the Initial and
the Optimized Designs

Design A T(sec)
Initial Design 98.7 0.538
Optimum Design 141.5 0.444
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3.3.3. Analysis

Static Analysis.~ In order to investigate the performance of the optimized design, both the
initial design and the optimized designs were analyzed under statically applied lateral and dead load-
ings. Full nonlinear analyses were performed in order to evaluate the overall stability of the initial and
the optimized designs. Statically applied loads considered herein are not strictly applicable to dynami-
cally applied loads such as occur during an earthquake, but the nonlinear static behavior provides a
reasonably realistic indication of the response of the structures to earthquake loadings and represents
a useful step toward understanding the dynamic response of the structure and gives some insight into
the general integrity of a structure (Galambos and Maxwell, 1965; Bertero and Kamil, 1975). The
results of the analyses are given in Fig. 3.3. One can observe that the load carrying capacity of the
optimized structure was increased by 44% without any increase in the rate of post-limit load degrada-
tion. The conclusion from static analysis is that the optimized design is better than the initial design as

far as overall strength and stability is concerned.
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Fig. 3.3. Static Analysis of 3-Story Frame
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Sinusoidal Base Acceleration.- To demonstrate that the optimized design is better under
dynamically applied loads, both the initial and the optimized designs were analyzed and compared

under sinusoidal base acceleration and earthquake base acceleration.

The performance of the both initial and the optimized designs under sinusoidal base accelera-
tion is given in Fig. 3.4. To make the comparison more fair, the sinusoidal base acceleration was
applied in the two cases with the same frequency but different amplitude. The amplitude of the
applied base acceleration was chosen such that both initial design and the optimized design had the
same elastic dynamic magnification factors. A damping ratio of 3% of critical was used for the first
and the second modes. The base shears obtained from time history analysis and plotted against the
lateral top displacement of the frames in Fig. 3.4. One can see that the initial design tends to drift

cyclically whereas the optimized design does not, making the latter a more attractive design.

Pacoima Dam Earthquake.- Both the initial and the optimized design were analyzed under
the 1971 Pacoima Dam earthquake. The response history and base shear history of both initial and
the optimized designs are given in Fig. 3.5. One can see that the initial design drifts a great deal. The
optimized design has controlled drift even though the base shears are higher. Although no failure is
predicted for the initial design under Pacoima Dam earthquake, the optimized design is more desir-

able because of its ability to control drift.

Maximum Element Damage Statistics.~ Fig. 3.7 shows the maximum element damage sta-
tistics, wherein one can observe that maximum element damage is less for the optimized design than

the initial design. Location of the maximum damage is not under our control.

Average Element Damage Statistics.- Fig. 3.6 represents the average element damage statis-
tics which is obtained by taking the norm of damage in each element during the time history analyses.

Observe that the average damage is less for the optimized design than the initial design.
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3.3.4. Optimization with Frequency Weighting Function

So far nothing has been said about the frequency penalty. The performance of the optimized
3-story frame (opt) was better than the initial design under static and dynamic excitation without
considering any frequency penalties. The structure can also be optimized using a frequency weighting
function. To demonstrate how the weighting function operates on a design, the 3-story frame is
optimized again with a frequency weighting. Suppose that the structure is to be designed to resist a
sinusoidal loading of frequency @ . We will take the frequency weighting function to be the sinusoidal

response spectrum
p@) = [(1-5)" + (285" (3.11)

where § = @/w and the exponent a is an arbitrary parameter. For simplicity, a =1 was used and the
initial design was optimized with the weighting function given above. The properties of the resulting
optimized design (optf) are given in Table 3.3. The first buckling eigenvalue of the optf is 155.6 with
the fundamental period of 0.48 seconds. Fig. 3.8 gives a view of where the fundamental periods of all
the designs are relative to each other. From this figure, one can see that the period of the optfl has
elongated compared to opt because of downhill curve of penalty function. Using a larger number for
a will enhance the effect of the penalty resulting in a larger change of frequency content of the

design. The optf is a compromise between the initial design and the optimized design opt.

Frame optf was analyzed under static loading with the results as shown in Fig. 3.9. The
performance of opt is similar to optf, and both have higher load carrying capacities compared to the

initial design. The post-limit slopes are almost the same as the initial design.

Frame optf was also analyzed under Pacoima Dam earthquake and the resulting base shear
response histories of both initial and the optimized designs are plotted in Fig. 3.10. Again, from this
picture, one can see that both opt behaves similarly to optf and both behave better than the initial

design as far as controlling the drift is concerned.

Table 3.3. Properties of the Optimized Designs with Frequency Penalty

Stiffness Properties Yield Properties
Member

A (in2) | 1 (in*) | No(kips)| Ve(kips) | Mo(kips)
1st Story Column 39.4 1550 1282 740 6947
2nd story columns 31.9 1230 715 413 3774
3rd story columns 12.4 389 465 268 2098
1st story girders 23.6 2311 1048 606 9295
2nd story girders 15.8 992 863 498 6918
3rd story girders Tt 217 427 246 2390

39

|



DYNAMIC MAGNIFICATION FACTOR

LOAD FACTOR

5}
4 -
S r Optimized Design
| Without Frequency Penalty
2r 7 Optimized Design
With Frequency Penalty

-/

Initial Design —————»

0 1 1
0 i 2
PERIOD RATIO
Fig. 3.8. Sinusoidal Response Spectra
3 =4 T T T
c--—-—-—--‘;;_—;—-—-: _______
-_—-—----—-__-_--:
Initial Design
————— Optimized Design without Frequency Penalty (opt)
————— Optimized Design with Frequency Penalty (optf)
1 M 'l A 1 o
10 20 30

TOP DISPLACEMENT (inches)

Fig. 3.9. Static Analyses of the Initial and Optimized Designs With and
Without Frequency Penalty

40




250 Y T v T v T v T v T T T T T ~ T v -
2
£ 125
3
W 0
wv
w
g -125

-250
0

TIME (seconds)

- ™y T u Y T T T T T T T T
- 2 Initial Design
¥ Optimized Design without Frequency Penaity
é Ll —— —— — Optimized Design with Frequency Penaity -
—
&
= 7\
(Y]
g \/
a L.
%,
o
o
O | 1 "
'—
0 1 2

TIME (seconds)

Fig. 3.10. 3-Story Frame under Pacoima Dam 1971 Earthquake Base Acceleration




3.4. Eight Story Frame

3.4.1. Preliminary Design

The 8-story frame with topology given in Fig. 3.11 is a modified version of a design given by
Korn and Galambos (1968). The properties of the structure are given in Table 3.4. This design was

checked with UBC lateral load provisions (1979) and the AISC specification (1978). All the require-

ments were satisfied.

The loading on the structure consisted of:

Dead load:
0.25 kipslin for roof level
0.30 kipslin for typical floor

The lateral force distribution on the structure was obtained following the UBC lateral load
provisions. The calculated lateral force distribution along with the story mass of the structure is given

in Table 3.4.

|120 inl

B8 @120 in

Fig. 3.11. Topology of the 8-Story Frame
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Table 3.4. Properties of the 8-Story Initial Design and
Code Lateral Force Distribution

Story Column Girder (t::::;:'in ) (kf;s )
1 W14X99 W14X38 0.056 0.315
2 W14X99 W14X38 0.056 0.629
3 W14X90 W14X38 0.056 0.943
4 W14X30 W14X38 0.056 1.258
5 W12X79 W14X30 0.056 1.572
6 W12X79 W14X30 0.056 1.888
7 W10X49 W12X26 0.056 2.200
8 W10X49 W12X26 0.045 2.984

3.4.2. Optimization

The 8-story frame was optimized by maximizing the first buckling eigenvalue of the structure
under dead loading only, keeping the volume of the structure constant. There were 16 design vari-
ables: 8 representing the moments of inertia of the columns and 8 representing the moments of inertia

of the girders. The properties of the optimized design is given in Table 3.5.

Table 3.5. Properties of the 8-Story Optimized

Design
Story Column Girder
1 W14X899 W24X76
2 W14X99 W24X76
3 W14X74 W24X76
4 W14X74 W24X76
5 W14X48 W21X57
6 W14X48 W21X57
7 W12X35 W12X35
B W12X35 W12X35
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3.4.3. Analysis

Static Analysis.— The result of the static analyses are given in Fig. 3.12. Observe that the
load carrying capacity of the optimized structure increased from a load factor of 5.0 for the initial
design to 9.8 for the optimized design (an increase of about 100%) with only a very slight increase in
the rate of post-limit load degradation. The conclusion from static analysis is that the optimized

design is better than the initial design as far as overall strength and stability is concerned.
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Fig. 3.12. Static Analysis of 8-Story Frame

Sinusoidal Base Acceleration.- To make the comparison of the initial and optimized designs
fair, each design was analyzed under a sinusoidal base acceleration of the same amplitude at their
respective resonant frequencies. Again, the dynamic magnification factors for both case are the same.
A damping ratio of 5% of critical was used for the first and the second modes. Fig. 3.13 presents the
base shear versus the lateral top displacement under the sinusoidal base acceleration. Observe that

the initial design has tendency to drift whereas the optimized design has stable drift, which making it a

more attractive design.

Pacoima Dam Earthquake.- Both the initial and the optimized design were analyzed under
the 1971 Pacoima Dam earthquake. The response history and base shear history of both initial and

the optimized designs are given in Fig. 3.14. Observe the severe drift of the initial design versus the
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controlled drift of the optimized design. The base shears are higher for the optimized design as

expected due to the fact that the optimized design is stiffer and stronger.

El Centro Earthquake.— Both the initial and the optimized designs were analyzed under the
1940 El Centro earthquake. The response history and base shear history of both initial and the
optimized designs are given in Fig. 3.15. The maximum drift of both the initial design and the
optimized design roughly the same magnitude. It is difficult to distinguish quality of performance

based upon the response history.

Damage Statistics.- Fig. 3.17 represents the maximum element damage statistics. The maxi-
mum element damage is reduced for optimized design under sinusoidal base acceleration but in-
creased under Pacoima Dam and El Centro earthquake. The question is whether the failure of a
single member is thought to cause general failure of the structure, Bear in mind that more damage for
an element does not necessary mean the failure of the element. In general, a single element failure

does not result in general failure of a structure,

The average element damage statistics is given in Fig. 3.16 where one can see that for the

optimized design the average element damage is reduced.
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3.5. Conclusions

The following conclusions can be drawn from the preceding chapter:

® Maximizing the buckling eigenvalue increases the static limit-load of a laterally loaded
structure without degrading the post-limit behavior, increasing overall toughness. The
elastic buckling eigenvalue of 3-story frame was increased, using the optimization
method, from 98.7 to 141.5 and as a result the limit-load of the design was improved by
44%.

e  Slender buildings are particularly well suited to the proposed optimization method. Since
their behavior is more greatly influenced by geometric effects (P-A effect). Thus, stabil-
ity, which is the basis of the optimization methodology, becomes more important. For
example, the B-story frame which is a tall and slender building the optimization method

improved the limit-load of the design by 100%.

®  Starically based optimal design results in an optimized design that behaves well under

limit-load and post-limit slope response of a statically loaded structure but has the conse-

quence of improving the performance of the structure under dynamic loads.

® The frequency penalty function can help control the vibration spectrum and can be

thought of as a flexible constraint imposed on a design. The examples demonstrated that
even without the vibration penalty, the static based design procedure improves dynamic
performance of the structures. Nevertheless the frequency penalty may be important in

some applications.

® Under dynamically applied loads it was noticed that the optimal structure controlled

cyclic drift better than the initial design.

e Based on the few examples optimized one might conclude that the optimal structure
tends toward to having less element damage on average than the initial design. However,

more study needs to be done to substantiate such a claim.
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CHAPTER 4

MULTIPLE OBJECTIVE OPTIMAL DESIGN OF 3-D FRAMED STRUCTURES
BASED ON A STABILITY CRITERION WITH MULTIPLE
LOADING CONDITIONS

4.1. Overview

Much of present design methods are based on experience gained over several decades, largely
using two-dimensional idealization of structures. However, such information may be of little use for
the design of special structures. Three-dimensional design problems are more complicated to carry
out, but they yield insight into the real behavior of the structure. Today with the help of the new
generation of the computer systems and different optimization methodologies one can solve complex
and unprecendented static and dynamic design problems. Although researchers in the field of struc-
tural engineering generally agree that optimum design of three-dimensional building frames especially
in the seismic regions would be beneficial, methods have been slow to emerge. Most of the research

in this area has dealt with the optimization of truss and plane frame structures.

The design methodology to be presented here is a multiple-objective optimization procedure
whose objective functions involve the buckling eigenvalues and eigenvectors of the structure. A con-
stant weight with bounds on the design variables is used in conjunction with an optimality criterion
approach. The method provides a general tool for solving complex design problems and generally

leads to structures with better limit strength and stability.

One of the novelties of the new design methodology is its ability to efficiently model and design
structures under multiple loading conditions. These loading conditions can be different factored loads

or any kind of loads that can be applied to the structure simultaneously or independently.

The following is a short presentation of the multiple objective optimization problem, followed

by the formulation of the optimization algorithm.

4.2. Multicriteria Optimization

In many of structural design problems, there exist several often conflicting criteria to be con-

sidered by the designer. It has been a common practice to cast design problems in the framework of a
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single objective function optimization problem. But, in recent years more attention has been paid to
multiobjective optimization problems. Multiobjective optimization where the objective function is
vector-valued offers a promising method for considering different and mutually conflicting require-
ments in a design problem. Some of the recent work using multicriteria optimization in the area of
structural mechanics can be found in the work of researchers such as Koski (1979) and Koski and
Silvennionen (1982) where they studied multicriteria optimization of trusses by choosing weight and
several displacement criteria as design criteria. A constraint method to solve a structural design
problem was applied by Carmichael (1980). Austin and Pister (1985) applied the multicriteria opti-
mization technique to design earthquake-resistant steel buildings where minimum weight, minimum

story drifts and maximum dissipated energy were used as the objective functions.

Multicriteria optimization has been used by many researchers in such areas as operations re-
search, control theory, water resources, and many others. A comprehensive discussion on the topic
of multicriteria optimization can be found in Cohon (1978), Goicoechea (1982), and Dlesk and

Liebman (1983).

4.2.1. Noninferiority

Some mathematical background and terminology are given here to make the reader familiar

with concepts frequently used in this and future chapters.

Mutliobjective programming deals with optimization problem with two or more objective func-

tions. The general multiobjective optimization is stated as:

Maximize Z(x) (4.1)
Where Z is the multicriteria objective function given by
Z(x) = {Zi(x) Zzy(x) * * * Zm(x)} (4.2)

where Z; is the ith individual objective function. >

In single-objective problems, the goal of solving the optimization problem is to identify an

optimal solution which is feasible and to come up with the best value of the objective function. In the
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case of multiple-objective optimization there exists no unique optimal value which would result in an

optimum for all criteria at the same time.

In the context of multiobjective optimization a new concept called noninferiority serves a simi-
lar purpose as the optimum for a single optimization problem. The idea of noninferiority as defined
by Cohen (1978) is also called nondominance or Pareto optimality by different researchers in differ-

ent fields of research.

Definition: A vector x” € X is called noninferior or Pareto optimal if and only if there exists
no x € Xsuch that Zi(x) = Zi(x") for i=1,2, ..., m with Zj(x) >Zj(x') Jor at least one j. Here X is
the feasible set. The definition of noninferiority simply says that x" is noninferior if there exists no
feasible vector x which would increase some objective functions without causing a simultaneous de-
crease in at least one objective. The corresponding vector Z* = Z(x") in the objective space is called a

noninferior solution.

There are many different generating techniques to determine the noninferior set. A pood
survey of different generating techniques can be found in in chapter 22 of Atrek, et al. (1984) and
Cohon (1975). The most popular generating techniques are weighting methods and constraint meth-
ods. A weighting method is used in this study because it is the most natural way of combining objec-

tive functions when they are of the same type.

The optimization problem considered in this study is atypical of multiobjective optimization
problems because all of the objective functions have the same nature and yet are conflicting. For
example, maximizing one buckling eigenvalue might result in a decrease in another one. Since all the
objective functions are of the same nature, a weighting technique is the best method to produce the
noniferior set. One of the advantages of the formulation developed here is that all the weighting
factors are determined automatically, eliminating the principal difficulty inherent in a general weight-

ing solution technique.

The current formulation developed is an optimization problem consisting of set of objectives
(3, pwa, .... k) The objectives are combined using a weighting technique as Z Z Wi i
where there are infinite number of different combinations of weghting factors that can be used. The
whole noninferior set can be obtained by using all the possible combinations of weighting factors. For
the multiple objective optimization problem concerned here, we as the decision maker can put prefer-

ence on a set of the objective functions based on our knowledge of the structural mechanics by
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choosing the weighting factors accordingly. For example, mode 25 has negligible participation in the

response of the structure and by maximizing it, no advantage is gained. Therefore, the importance of
mode 25 can be put to zero by choosing its weighting factor zero. Usually the first few eigenvalues
dominate and more weight needs to be put on them. Therefore there is no need to obtain the whole
noninferior set. The number of different combination of weighting factors can be reduced to only a

few by knowing the mechanics of the structures and our judgment.

4.3. Formulation and Development

To improve the limit behavior and stability characteristics of the three-dimensional framed
structure under multiple loading cases, one needs to mix several different ingredients to generate an
objective function. Similar to Chapter 2 one should include the buckling eigenvalues in the objective.
To handle multiple loading conditions, we also purpose including the loading conditions directly in the
objective function. We further hypothesize that the loading conditions should become important to
the objective function if they cause displacements similar to a buckling eigenvector which is in the
design subspace. This observation was made clear in development of the approximate method in
appendix C. The proposed formulation then, seeks to maximize buckling eigenvalues of the structure

using the work of the various load cases going through modal displacements as weighting factors.

One natural way to put all these ingredients in the framework of an objective function is to

combine them in a linear form as:

N N
2. 2uilty - ¢il (4.3)
¢ )

or in a quadratic form as:

willj - @i + i * @jlu; (4.9)

>

s-.[\/]z

v

The only shortcoming of using a quadratic form such as Eqn. (4.4) is that the number of the

buckling eigenpairs used in the objective function is not necessary equal to the number of the loading
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conditions. Therefore, to make a compromise it is best to use an alternate form which has quadratic

terms only for some terms such as:

N N
ZZ#:II’;'@IM} (4.5)
i

where IT; is a vector containing a set of index numbers with values in the range [1,N] with one-to-one
correspondence with the buckling eigenvalues. The dimensio;ll of the set is equal to the number of the

loading conditions (NL). For example, IT ={2,3} leads to Z#:[(ﬂ *@ua+ (f2 * dus).
=1

Equation (4.5) can be considered as a quasi-quadratic form with Hn, used to put more empha-
sis and importance on some of the eigenvalues. How to choose TI; will be discussed in the future

chapters where the application of the design procedure is presented.

Choosing Eqn. (4.5) as the objective function, we define the multiple objective optimization

problem to be:

MAXIMIZE
N N
> 2 Hi(x)By )k (x) (4.6)
i=1 Ju]
SUCH THAT
M
ZAr(xi}Ql =T

(4.7)

i=1

where N = number of eigenpairs used; L, = length of ¥th element; N. = number of loading conditions
considered; u; = ith elastic critical buckling eigenvalue; I' = given weight of the structure; A; = area of
group i (elements in each group have identical cross sectional properties); x = total design vector

where x = {x;, X3, .... Xm}: X; = design vector for group i where x; = {xj;, X2, .-, Xin,} where Ny is the

total number of independent design variables; x;; = jth design variable for ith group; x;; = minimum
permissible jth design variable for ith group; X;; = maximum permissible jth design variable for ith
group; M = number of element groups; @, = specific mass of vth element; Q;= Z o.L, = specific

i v vel
mass of group i.

An I-beam can be identified by three independent design variables (Ny=3) such as:

Xmi =bm. Xma=Hhm. Xm3=tm where the three design variables represent width, height, and flange
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thickness of an I-beam cross section respectively. A rectangular cross section can be identified by two
independent design variables (Ny=2) such as: xm; = bm, Xmz = hy where are the two design variables

represent height and width of a rectangular cross section.

The factor Bij = |@: * fj| is the weighted modal participation of the applied loading in which ¢;
is ith elastic buckling mode shape of the structure, and f; is the ith loading case. If an applied
loading does a lot of work going through a certain modal displacement, the factor fi; will dictate the
maximization of that mode. The noninferior set for the multiple-objective optimization problem
(Eqn. (4.6)) is generated using a weighting method that incorporates preferences. The factor fij is a
preference found automatically to determine the importance of each eigenvalue in the chosen sub-
space. For multiple loading cases, one can give preference to the importance of the loading condition
by factoring the loading cases accordingly. Thus, factors used to scale the loading cases can serve as a

weighting factor introduced by the designer.

Note that the form and the number of the objective functions change as the number of the
eigenpairs chosen, or the number of the loading cases, or the load magnification factor change, result-

ing in a multiple objective optimization problem.

Using Eqn. (4.6) and Eqn. (4.7) the Lagrangian functional can be cast as:

N NL M
L) = D > milx)By(x)unx) - e[ZMx.m, - r} (4.8)

izl J=1 1=1

where £ is the Lagrange muiltiplier. It should be pointed out here that the constraints on the size of
the elements given in Eq. (4.7) are not included in deriving Eq. (4.8). Constraint on the permissible
sizes can be handled efficiently by treating them as passive constraints in the sense that whenever an
element violates the size constraints, the design variable associated with that element adopts the mini-
mum or the maximum permissible sizes and is placed in the passive set. A more detailed discussion of

active/passive design set strategy is given in section 2.5.3.

Differentiating Eq. (4.8) with respect to design variable x,, and setting the corresponding

equation to zero results in:

J

N N . 3 .
. 4 9 Hn 3A

=ZZ[ - Bipuny + wig——tn; + piby ‘] -6—Qm =0 (4.9)
fe1jel
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Rearranging Eqn. (4.9) results in the optimality criteria

N N
Wiy B o
Z z [Bx,,,,, ﬁlﬂnj t+ B m Hn; + wifij

n 0Xmn

i=1j=1 L ... M (4.10)

0Am
0Xmn

3 Qm

In Eqn. (4.10) there exist two sensitivity terms: sensitivity of fij, and 4i with respect to the
design variables. The sensitivity of the Bij is a function of sensitivity of eigenvectors. Thus, sensitivi-
ties of both eigenvalues and eigenvectors are needed. Determination of these sensitivities is discussed

in the following section.

4.4. Eigenvalue and Eigenvector Sensitivity Analysis

Evaluation of the optimality conditions require knowledge of the sensitivity, or rate of change,
of the buckling eigenvalues and eigenvectors with respect to the design variables. Procedures for
computing these sensitivities have been known for some time, but efficient methods of computation
continue to be of interest to researchers. A complete and detailed discussion of the problem has been

given recently by Dailey (1989). Some of the basic ideas are outlined below.
Consider the following eigenvalue problem
K¢ = uGo (4.11)

where K is the (positive definite) elastic stiffness matrix and G is the (possibly indefinite) geometric
stiffness matrix. Both of matrices are symmetric and depend on design variables x. If the dimension
of the matrices K and G is N, then Eqn. (4.11) gives rise to solution pairs (&i. ¢i), i=1,..., N. The
eigenvectors are orthogonal and hence span N-dimensional space. Further assume that the eigenve-
ctors are normalized such that ¢}G¢,- =constant. The value of the constant, which may be negative
since matrix G is possibly indefinite, is not important to the present derivation. There exists the
possibility that ¢{G¢; =0, so one must be careful when dividing this constant out in the following
derivations. For practical purposes we can constrain our vectors to be perpendicular to the nullspace

of G to avoid the problem since the infinite eigenvalues are of%io interest in the present setting.

Consider that the matrices K and G depend upon a parameter; possibly, but not necessarily, a

design variable or a linear combination of design variables. The eigenvalues and eigenvectors must
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also depend implicitly upon the same parameter. Differentiating Eqn. (4.11) with respect to the pa-

rameter yields
K¢ + K¢' = u'G¢ + uG'¢ + uG¢' (4.12)
where a prime indicates differentiation with respect to the parameter. Collecting terms gives
[K'-uG'l¢p + [K-4G)¢' - u'Gg = 0 (4.13)

which holds for all pairs of eigenvalues and eigenvectors. The derivative of the ith eigenvector can be

expanded in terms of eigenvectors, which form a basis

N
¢ = me (4.14)

T3 ]

substituting Eqn. (4.14) into Eqn. (4.13) and multiplying by ¢; yields

N
¢ (K -uiG'l¢r + D vie $j[K-uiGlgn - u'igjGéi = 0 (4.15)
k=1

or, noting the orthogonality of the eigenvectors
¢; [K'-uiG'lgi + vy (uj-u)9jGey - u'igjGei = 0 (4.16)

If i=j, the second term disappears and Eqn. (4.16) gives an expression for the derivative of the

eigenvalue

¢! [K' - uiG'] ¢
N —— (4.17)
a5 ¢‘;‘G¢’i

If i = j, Eqn. (4.16) allows the determination of the coefficient yj

t R
¢') [K' = uiG'] i (4.18)

" G- ) 9iGey

The coefficient y;; is obtained by differentiating the normality condition

#Go: + $G¢'s + $iG'¢i = © - .15

Substituting the eigenvector expansion and solving for the only unknown coefficient
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Yii = -lm (4_20)

2 ¢!Go

By placing the coefficients found into Eqn. (4.14), one obtains the sensitivity for the ith eig-

envector and eigenvalue as

l_' Ka_ _Gt "
Fl‘ = ¢II ﬂl ]¢

$iG:
(4.21)
YK -wG'lpi | ¢!G'g;

@i =
j-l

wi-meiGe; ¥~ 7 ¢iGe ¥

Clearly, the parameter with respect to which differentiation is done can be any of the design variables.
Hence, Eqn. (4.21) can be used to compute the rate of change of the eigenproperties with respect to
the design variables. The derivative of the geometric stiffness matrix is usually nearly zero and is
therefore generally neglected in practical computations. Numerical derivation of the geometric stiff-
ness matrix can be found in Appendix D. The matrix G'is identically zero for statically determinate
structures since the distribution of force through the structure does not depend upon the element

rigidities.
The sensitivity of the B is easily computed from the eigenvector sensitivity as

By =¢1f1 (4.22)

The eigenvector sensitivity derived in Eqn. (4.21) is theoretically correct and the derivation is
instructive, but the formula suffers from some practical drawbacks. The expression for the sensitivity
of an eigenvector requires the knowledge of all of the eigenvectors and eigenvalues of the system.
The method becomes prohibitively expensive for large systems since the determination of all N ei-
genpairs becomes practically impossible. The approach followed in solving practical problems in the
present study is to truncate the sum after a finite (small) number of terms. Specifically, the eigenvec-
tor derivatives are determined from Eqn. (4.21) by including only those eigenvectors in the subspace
used to define the objective function. Although using only a Iew'eigenvectors in Eqn. (4.21) does not
give the exact eigenvector derivative, computational experience has shown that the results are ade-

quate for the optimization algorithm.
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Nelson (1976) presented a powerful algorithm for computing eigenvector and eigenvalue de-
rivatives of general matrices with nonrepeated eigenvalues in which the derivatives of any mode re-
quire only the eigenvalue and eigenvector of that mode. Nelson’s method is succinctly derived by
Dailey (1989), and the main features of the method are described below. From Eqn. (4.13) one can

see that the eigenvector derivative can be obtained by solving the following system of equations
[K-uGl¢' = u'Gp - [K'-uG'l¢p (4.23)

where the quantities on the right-hand-side can all be considered known since the derivative of the
eigenvalue is easily obtained from Eqn. (4.17). The coefficient matrix matrix K-u G is one degree
rank deficient (for a distinct eigenvalue), and the nullspace is spanned by the eigenvector ¢. Thus,
the solution the Egn. (4.23) is given by the sum of a particular solution, v, plus a component in the

nullspace as

@ =v +cp (4.24)
The particular solution is found by setting one component of v to zero (usually the one corresponding
to the largest component of ¢) and solving the resulting equations. The constant ¢ is determined from

the normality condition given by Eqn. (4.19). Substituting Eqn. (4.24) into Eqn. (4.19) one gets

(v+cd)'Goi + ¢/G(v+cg) + ¢[G'¢; = 0 (4.25)
Solving for ¢ there results
_120'Gv+¢'G'¢ (4.26)

2 ¢'Go
thereby defining the eigenvector derivative.

Many of the equations derived thus far are valid only for distinct eigenvalues; in particular,
Eqn. (4.21) and Nelson's method. In the last decade there has been a great deal of interest in
systems having repeated eigenvalues since they occur naturally in many symmetric structures. Olhoff
and Rasmussen (1977) and Masur and Mroz (1980) have show'n that in a certain clamped columns,
optimized to maximizing the buckling load, a repeated eigenvalue may occur. Prager and Prager

(1979) used a finite dimensional model to demonstrate that repeated eigenvalue can occur in an
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optimal column. Indeed, many optimization problems lead to symmetric structures which often have

multiple eigenvalues.

The sensitivity properties of the repeated eigenvalue problems have been studied by research-
ers in the disciplines of system identification, structural control, and optimization. Some of the re-
lated work done on the design sensitivity of the repeated eigenvalues can be found in Haug and
Rousselet (1980), Haug and Choi (1986), Zhong and Cheng (1986), and Wardi and Polak (1982).
Ojalvo (1986 and 1987) extended Nelson's algorithm to handle repeated eigenvalues. Recently,
Dailey (1989) found that the method presented by Ojalvo was correct only for certain special cases
and he extended the method to handle general eigenvalue and eigenvector derivative of real symmet-
ric matrices for the case of repeated eigenvalues. Dailey’s method not only leads to an algorithm for
computing the derivatives of eigenvalues and eigenvectors for the degenerate case, but also gives

insight into the difficulties associated with using the information.

An eigenvalue of multiplicity m is characterized by an m-dimensional subspace in which all
vectors are eigenvectors. If the system is perturbed, the multiple eigenvalue splits into up to m distinct
eigenvalues. From this observation it is clear that there are m eigenvalue derivatives (some of which
may come out to be repeated) even though there is only one eigenvalue. For each eigenvalue deriva-
tive there is an eigenvector derivative. The problem arises from the fact that, while the eigenvectors
are not unique, the derivatives are unique (except for repeated eigenvalue derivatives). Put another

way, the derivatives of the eigenvectors only exist in certain directions. Define matrices A and B as
A = O[K -uG')|® B = o'Go (4.27)

where @ = ¢, @2, ....,¢0m] (nxm) is a matrix of the eigenvectors corresponding to the repeated ei-

genvalue. Now consider the following auxiliary eigenvalue problem

The eigenvalues 4,, 4;,....Am of Eqn. (4.28) are the eigenvalue derivatives, u'y, u'y, ..., i'm. of the
original system. The eigenvectors, y, of Eqn. (4.28) determine 121: directions in which the derivatives
of the eigenvectors exist. Let ¥ = [¢,, ¥4, ..., ¥m] (mxm) be a matrix whose columns are the eigenve-
ctors of Eqn. (4.28). The directions in which eigenvector derivatives exist are the columns of the

matrix Z which is given in terms of the eigenvalues of the original system as Z=® W (nxm). Note
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that because W is square and its columns are orthonormal, operation with ¥ represents pure rotation

in m-dimensional space. Thus, the directions in which eigenvector derivatives exist are simply rota-

tions of the original eigenvectors.

The matrix A depends on the derivatives of the matrices K and G. Therefore, the directions
in which eigenvector derivatiﬁs exist will be different for each different design variable, complicating
the evaluation of the eigenvector sensitivities. Repeated eigenvalues in an unfortunately chosen sym-
metric initial design can be easily diagnosed and easily cured. For the optimization problems solved
here the solutions will, at worst, converge to a configuration with a repeated eigenvalue. In those
cases convergence of the optimization algorithm is generally achieved before numerical difficulties set
in. As a consequence of the preceding observations, the implementation used for the computations
presented in subsequent chapters treats the spectrum as completely distinct. Later, through some

examples, the accuracy and validity of that assumption will be examined.

To determine Eqn. (4.22), one needs to find the gradient of the stiffness matrix with respect
to the design variables. The linear elastic structural stiffness K exhibits the following explicit form in

terms of cross sectional area, moment of inertia, and torsional constant

M
K(x) = Z[A,-(x,-) D Kp+ Bx) D KE+ IP0x) D KR+ Ji(x) D K}.:| (4.29)

i=1 pei peEi pei pei

where K, K}', KJ, and K} are respectively, axial plus shear, major axis bending, minor axis bending,

and torsion contributions to stiffness for element p with the relevant cross sectional parameter fac-

tored out.

Differentiating the structural stiffness matrix given in Eqn. (4.29) with respect to design vari-

able xmn results in

M
KA + 2m yu , Om pm | m gy (4.30)

0Xmn 0Xmn Xmn Imn 0Xmn

dK 0A m

where the partials in Eqns. (4.30) can easily be calculated usirﬁ the cross sectional properties. The
relationship between moment of inertias and areas and design variables can be determined based on

the type of the cross section as presented for rectangular and I-beam cross sections in section 4.7.
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Having the partial derivative of K with respect to the design variables, the sensitivity of the fi; with

respect to the design variables can be calculated from Eqn. (4.22).

Note terms such as Kp are extremely sparse, involving non-zero elements only in the slots
associated with degree-of-freedom of element p. Consequently the element contributions ¢3Kp¢;

required in Eqn. (4.21) can efficiently be efficiently computed.

Now all sensitivity terms in the optimality criteria Eqns. (4.10) are determined. To make the

formulation easier to follow Eqn. (4.10) can be simplified as:

an > ] m=l. i M {4»3!}

E ﬂ=l. T Nu

where m represents the group number, n represents the design variable within that group, and Qmn is

given by:
N N.
aui(x) - Py(x) O, (x)
> 2| T Pk ) 4 () “E = (%) + i)y ) — |
_d=1 j=1 (4.32)
e 9A m (X))
il o
0Xmn

The term Qmp is the buckling strain energy density in the group m.

4.5. Recurrence Relations

The optimality criteria are used to modify the design variables in each iteration in terms of

recurrence relations similar to that proposed by Khot et al. [1981]:

o= x:,.,.l:l +—jlr-|:-Q—z,'—'-'~— 1]:| (4.33)

e
where x is the iteration number and r is the step size parameter. The convergence behavior depends

on the parameter r. The method of choosing the step length to speed convergence was explained in

detail in section 2.5.1.
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4.6. Equation to Determine Lagrange Multiplier

In order to be able to use the recurrence Eqn. (4.33), the Lagrange multiplier § has to be
determined. The Lagrange multiplier is determined by using the condition that after each iteration
the design moves on the constraint surface so that the constraint is satisfied. A set of equations to

determine the Lagrange multiplier can be obtained by linearizing the constraint equation about cur-

rent iterate.

The weight constraint can be expanded as:

M
Cx)= Y Am(xm)Qm -~ T = 0 (4.34)
m=1
Linearizing about the configuration x* one obtains:
T
x = 5 - X5 4,
L[Clxexe = C(x) + MZMZI 32— (kmn = Xinn) (4.35)

where the partial derivative of constraint with respect to the design variable Xmn can be evaluated by

taking derivative of Eqn. (4.34):

aA
®. 20 (4.36)

The Lagrange multiplier can be obtained by satisfying the linearized constraint equation at the

new iterate x**'. Substituting Eqn. (4.33) and Eqn. (4.36) into Eqn. (4.35) and solving for Lagrange

multiplier one gets:

M Ny
dA
2 Z = Iananm
0Xmn
E: muelns=il (4‘37)
M Ny 3A v
Z rAm-l-z —Xma Q=T
0Xmn
m=1 n=1

since the constant weight constraint is an equality, € can be either positive or negative.
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4.7. Specia'ization to Specific Cross Sectional Types

The design vector, x;, used in the preceding sections is a vector of independent variables

identifying a cross section for group i. For example, the x; vector for a rectangular cross section

would be

xi = {f,} (4.38)

where b and h are the width and the height of the cross section. The cross sectional properties of

rectangular section are:

1
™M = —pbk

12
™ = —bh h

12 (4.39)
A = bh |,b,|

1

J:%hb’[l - %tanhg—;} where b<h

Fig. 4.1. Rectangular Cross Sectional Properties
For an I-beam cross section the vector x; would be
b
X; = ¢h (4.40)
& |
I

where b, h, and ¢ are the width, height, and the flange thickness respectively. The cross sectional

properties of an I-beam are given below:

A =hty +2bt
1 1 Qf'
-, 2 h) . ’\.:_
I 121, +2br
- S s h
™= -{-E(bnhr..)

J= %(Zbr’ + hty)

Iw = constani " (

Fig. 4.2. I-beam Cross Sectional Properties
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4.8. Convergence Criteria

The optimization problem theoretically is converged when all the optimality criteria as given in
Eqns. (4.10) is satisfied with a specified tolerance. After each iteration the deviation of the optimality
criteria from unity is calculated and if the norm of the deviation is less than the specified tolerance the

iteration is terminated. The tolerance is specified by the designer.

4.9. Scaling Procedure

After each iteration to satisfy the constraint relationship, it is necessary to scale the design
variables to bring the weight of the structure to the level of the assigned weight constraint I'. Scaling is
necessary to insure that the design at each iteration is feasible. The following is a development of the

scaling procedure for rectangular members. The same procedure can be developed for 1-beam cross

sections.

The weight of the structure after each iteration can be divided to three groups depending on

which design variables are passive and which are active. Thus the total weight is given by:

' = W9°% 4+ W9 4+ WFPP (4.41)

where W's are various weights. A superscript “a” indicates an active design variable, superscript “p
indicates a passive design variable, and there is one superscript for each design variable in the group.
Let Mg, be the set of groups with both design variables active, M, be the set of groups with height
passive and width active, Mpa be the set of groups with width passive and height active, and M, be

the set of groups with both height and width passive.

Wee = S bR (4.42)
iﬁMgg
W? = z hfbe,‘ + z h;‘b‘,‘-’Q,- (4.43)
icM'gp :'!MP‘, v
WP = > RO (4.44)
‘EMPP
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The weight of the structure is scaled after each iteration by scaling only the active design

variables. The scaling factor &, such that xj; « xi{ , is determined by the equation:

CIW"‘ + CW‘"P + WPP _ T =0 (4.45)

solving for £ gives:

(4.46)

U
1]

I - weP wer \ wer
wee T \2wee ) T awee

The scaling equation for n design variables per group is an nth order polynomial. Higher order

polynomials can be easily solved by Newtons method.

A graphic presentation of the scaling procedure for a case with two design variables is given in
Fig. 4.3. After each iteration, a design in the design space, such as point A, is achieved. After
scaling the design moves from point A to point B where the weight constraint is satisfied. After each

iteration the design gets closer to the optimum design point C.

optimum
~N
.
~
— e
[ objective fumition] [ weight constraint |
b
-

Fig. 4.3. Scaling of Two Design Variable Design Space
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CHAPTER 5

APPLICATION OF 3-D OPTIMIZATION ALGORITHM
TO FRAMED STRUCTURES

5.1. Overview

To demonstrate the performance and the strength of the proposed optimization methodology
several frames are optimized. Different framed structures, under single and multiple loading
conditions, are optimized and analyzed. Parameter studies are carried out to examine the effect of
the number of eigenpairs used in the objective function, the number of design variables carried,
different choices for the objective function, and different ways of formulating the linearized buckling

eigenvalue problem. The parameter studies show the effect of each parameter on the final optimal

design.

5.2. 3-D Analysis Procedure

The approach employed in the analyses of the 3-D frames of this study is that proposed by
Simo (1984), Simo and Vu-Quoc (1986), and Molhem (1989). The theoretical background related
to this method can be found in Simo (1984) and the computational aspects are treated in Simo and
Vu-Quoc (1986). Simo (1984) introduced the concept of attaching an orthogonal basis to each cross
section and used that basis to develop material and spatial statements of a fully nonlinear 3-D beam
theory. The theory allows the use of incremental rotations of the moving frame as rotational degrees
of freedom. Simo and Vu-Quoc (1986) employed Euler parameters to represent finite rotation to

avoid the singularity typically associated with the use of Euler angles.

The elasto-plastic model used here is a stress resultant model. The yield function, taking into
account isotropic and kinematic hardening considered was such that the yield surface formed an

ellipsoid in stress resultant space. Specifically it had the form

é
Y(z,K) = Z(—z—'—)1 - K(WP) (5.1)

isl Zoi
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where z = { N,V,,V,,T,M,, M5} is the vector of stress resultants including axial force (N), major and
minor axis shear (V,,V;), torque (7), and major and minor bending moments (M, ,M;). The
normalized factors zo are the fully plastic values of the stress resultant. The plastic work WF is

defined as

WP = It'dﬁp (5.2)
0

and the effective stress is

z=q-a (5.3)

where q is the material stress resultant vector, € is the plastic strain vector conjugate to q, and a is
the back stress resultant vector. K is the isotropic hardening function with K(0)=1 which is generally

nonlinear in W7.

The computation scheme uses the return mapping algorithm with a consistent tangent operator

to do rate independent plasticity (Simo and Taylor, 1985; and Molhem, 1989).

5.3. Description of MRF Example Problem

MRF is a two-story, single bay, three-dimensional, moment-resisting frame with tall stories.
Stories were chosen tall to highlight stability as an important design criterion. The topology of the
frame is given in Fig. 5.1 where one can note that the width in both directions is 150 inches and the

total height is 400 inches.

Frame MRF will be designed under one or two different loading conditions. One loading case is
applied in X-direction and one is applied in Z-direction. Each load case models a different
phenomenon such as an earthquake, a wind, or a geometric imperfection. The first load case (load
case 1) consists of proportionally applied triangular shaped load in the X-direction along with a
distributed non-proportional loading applied on the girders and proportional vertical loading applied
at the column levels. Lateral loads are obtained following UBC specifications. The second type of

load case (load case 1) consists of torsional loads applied at e top story level in Z-direction.

Load cases | and I are mutually exclusive loading conditions and not necessarily applied at the

same times. The two types of loadings are shown in Fig. 5.2.
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Fig. 5.1. Topology of the MRF Frame
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For each optimization problem solved, a figure is presented displaying the evolution of the
buckling eigenvalues during the course of optimization. This spectral evolution allows one to easily
observe how the eigenvalues shift and how their magnitudes alter, and gives insight into the behavior
of the structure as the optimization progresses. The mode that has the highest participation or has the
highest f;; factor is singled out with a cross marker. The eigenvalues at each iteration are connected
with lines. If different step sizes are used during the optimization, the step size will be displayed on

this figure also.

Two types of load-deformation curves are presented: one with top displacement in X-direction
and one with top displacement in Z-direction. The one with top displacement in X-direction is
analyzed under loading case I. Similarly, the one with top displacement in Z-direction is analyzed
under load case II. For each figure the load-deformation is given for both the initial design and the

optimal design.

MRF is used as an initial design and is optimized in the subsequent sections. The following is

the discussion of the different optimization procedure and the performance of the optimized designs.

5.3.1. Single Loading

5.3.1.1. Four Design Variables Under Single Loading (2M-1L)

The notation (2M-1L) stands for two material sets and one loading condition. First the MRF

frame is optimized under single loading using the objective function given below:

N
Objective Function WSS Maximize Zn;ﬁ;wl

i=l

Each material set has two design variables: width (b) and height (h) of the rectangular cross
section. For the problems optimized under category (2M-1L), all the columns have identical material
properties; so do the girders. To understand the effect of the number of eigenpairs on the
optimization, three different numbers of eigenpairs (6,8, and*10) were used. The following is a
summary of the optimization procedure and the performance of the optimized designs using different

eigenpairs in the objective function. The properties of the optimized design are given in Table 5.1.
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(1) N=6

The spectral evolution during the optimization for N=6 is given in Fig. 5.3. Although,
optimization continued until iteration 22, it practically converged in 10 iterations. During the initial
iterations the magnitude of each of the eigenvalues changed by large factors until iteration 7 where
one of the girder's design variables became passive. Subsequently, the optimization converged

smoothly.

Mode 3 had the highest participation factor (f;;) at optimum. This behavior was expected
because mode 3 was a sidesway mode. The sidesway mode started as mode 2 and as it was maximized
through optimization it switched place with mode 3 and stayed as mode 3 until convergence. The
initial design and the optimized design were both analyzed under loading case I and the resulting
load-deformation curves are given in the Fig. 5.3, in which one can see that the optimized design had
higher load carrying capacity than the initial design with the same post-limit slope compared to the

initial design.

(2) N=8

The member properties of the final optimized design for N=8 is similar to previous case with
N=6. The spectral evolution and the load-deformation of the initial and the optimum design are given

in Fig. 5.4. The optimization practically converged in 15 iterations.

(3) N=10

The spectral evolution for N=10 (Fig. 5.5) shows a lot of activity until iteration 32 where the
algorithm settles and finds its way toward convergence at iteration 45. Before iteration 27 all the
design variables were active and the algorithm was somewhat aimless. At iteration 27 one of the

girder design variables became passive and was kept passive until convergence.

The algorithm is set to keep design variables passive as once they become passive. The
designer has the option to change the passive design variablegJo active design variables if desired.
Because of the random activity in the first few iterations a design variable might be set to passive

artificially. Therefore, for the case N=10 after each iteration all the design variables are set to active

for first 20 iterations.
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It is worth noting that as the optimization approached convergence, modes 3 and 4 coalesced.
The optimization algorithm had no problem reaching the optimum design even in the presence of the

multiple eigenvalue.

To better compare the three example problems under category (2M-1L), the load deformation
curves found in Fig. 5.3 through Fig. 5.5 are plotted in Fig. 5.6. From this figure, one can see that
the case with N=10 results in a better design than the other two cases. Load-deformation curves for
N=6 and N=8 cases are practically the same. One might conclude that a bigger subspace of eigenpairs

will lead to a better design.

5.3.1.2. Six Design Variables Under Single Loading (3M-1L)

The designation (3M-1L) is short for three material sets under a single loading condition.
Apgain, there are two design variables assigned to each material set making the total number of the
design variables 6. The three material sets consist of first story columns, second story columns, and

all girders grouped.

N
The same objective function.Z#iﬁiml. that was used for case (2M-1L) is also considered

i=1
here. Three different cases are studied here with the number of eigenpairs varied among the numbers
6,8, and 10. The following is the discussion of the results of the optimization of these three cases.

The property of the optimized designs are presented in Table 5.2.

(1) N=6

The spectral evolution and load-deformation for N=6 is given in Fig. 5.7. Optimization starts
with step length r=8 and all the design variables active. After iteration 10 the height of the girders
became passive and adopted the minimum allowable value of 3 inches (h = 3). Starting from iteration
10 the algorithm suffered from zigzagging around the optimum 301ution. To solve this problem the
size of step length parameter was increased from 8 to 20. This solved the zigzag problem and the
algorithm converged quickly. The load-deformation curves given in Fig. 5.7 shows that the optimized

design is a better design than the initial design both in terms of strength and stability.
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(2) N=8

Eight eigenpairs (N=8) were used to optimize the initial design. The result of optimizing is given
in Fig. 5.8. Comparing the result for this case with the N=6 case, one can see that both resulted in
practically identical optimized designs. One can observe that modes 7 and 8 do not participate in the
objective function, and as a result, have no effect on the optimization. In general, a designer can not
decide a priori if the eigenvalues are important to the optimal design because a lot of mode shifting
occurs during the course of optimization. A designer can choose a smaller subspace size to reduce the
final computational time require to reach an optimal design. However, as shown in the next example
(case (3)), a large subspace will often help improve design. Mode shifting will be discussed in more

detail in section 4.3.2.

(3) N=10

The spectral evolution for the case N=10 is shown in Fig. 5.9. One can see that during the first
25 cycles of optimization a lot of mode shifting takes place, with eigenvalues changing size by a large
amount from one iteration to another. The reason for this behavior is that the chosen step length r=6
is too small for this problem. Thus, after iteration 20 the step length was increased to r=20. Using

r=20 caused smaller change in design variables which helped keep the iterates in the feasible region.

At iteration 41 the height of the girders became passive design variables with a value of 3.0
inches (h=3). The optimization converged at iteration 75. After iteration 40, although the
optimality criteria are not exactly unity, the change in objective function is very small. Therefore,
convergence can be assumed prior to a global convergence. What is suggested here is that there are
some convergence tolerances in the program which could be liberalized for some problem to speed up

solution without an important change in the outcome of the optimized design.

5.3.2. Final Observations for Optimization Under One Loading Condition

To better understand the performance of the three optimized structures found under category
(3M-1L), all the load-deformation curves are plotted together in Fig. 5.10. Exactly the same type of

behavior can be observed here as it was observed for case (2M-1L).

e The more eigenpairs used in the objective function, the better was the performance of the

optimized design.
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Using more independent design variables resulted in a better design. For example, the
magnitude of the load factor at the limit points for the case (2M-1L) & N=10 was 37.9 compared
to the magnitude of the limit point for the case (3M-1L) & N=10 which was 45.9, about a 20%
improvement in the strength of design without a significant change in computational time to

achieve the optimized design.

As the optimization progresses a large amount of mode shifting takes place. Therefore, one can
not inspect the eigenvectors of the initial design to choose the number of modes. To show that
this is true, consider Fig. 5.12 where the mode shapes of the optimized design for case (3M-1L)
& N=8 and the initial design are plotted. Looking at the mode shapes of the initial design it
seems that mode 7 (the second mode in direction of loading) will have a high participation in the
objective function. But, when using 8 eigenpairs for optimization, mode 7 of the initial design
shifts to mode 9 of the optimized design which is out of the range initially chosen. Consequently,
mode 7 of the initial design does not participate in the objective function at all. If a designer
desires to have a specific mode of the initial design in the final design, it is recommended to

choose at least several eigenpairs more than the desired eigenvalue for the optimization problem.

The bigger was the magnitude of the dominant eigenvalue of the optimized design, the better the
final optimized design behaved. The eigenvalues of the dominant mode at the optimized design
for the under category (2M-1L) are 455, 541, and 580 for cases of 6, 8 and 10 eigenpairs
respectively. Similarly, the eigenvalues for the case (3M-1L) at the optimized design are 579,
583, and 607 which again agrees with the assumption. The magnitude of the dominant buckling

eigenvalues of the optimum designs (2M-1L) and (3M-1L) are presented in Fig. 5.11.

For some design problems, the optimality criterion can vary from the optimal value of unity while
still providing a small change in the objective function. Therefore, optimization can be

terminated prior to reaching a global convergence.

During course of optimizing a structure, the designer cannot change the number of the eigenpairs
used in the objective function since doing so would change the optimization problem thereby

causing problem with convergence. -
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Table 5.1. Properties of the Optimized Designs for Case (2M-1L)

ONE LOADING CONDITION WITH FOUR DESIGN VARIABLES

PROPERTY 6 EIGENPAIRS 8 EIGENPAIRS 10 EIGENPAIRS
Columns
Width 6.497 (6.388) 6.505 7.079
Height 5.586 (5.494) 5.518 4.976
Area 35.6 (35.7) 35.9 35.2
Strong Moment of Inertia 125.4 (121.5) 126.6 147 .1
Weak Moment of Inertia 89.4 (93.2) 91.1 76.7
Torsion 180.6 (181.9) 183.3 169.5
Girders
Width 7.271 (7.231) 7.158 7.454
Height 3.000 (3.000) 3.000% 3.000
Area 21.8 (21.7) 21.5 22.4
Strong Moment of Inertia 96.1 (94.5) 91.7 103.6
Weak Moment of Inertia 16.4 (16.3) 16.1 16.8
Torsion 49.0 (48.6) 48.0 50.6
| ) Eigenpairs Obtained From the Nonlinear Stiffness Matrix
t Passive Design Variable
Eigenvalue at Optimum Participation at Optimum
M:da No. of Eigenpairs Used No. of Eigenpairs Used
o
6 8 10 6 8 10
1 285(246) 276 230 0 0 0
2 423(327) 416 358 0 0 0
3 455(354) ¥ 457 494 12.8(11.7) 0 0
4 547(448) 541% 495 % 0 13.639 12.619
5 693(634) 679 580 0 0.0897 0.0302
6 695(635) 700 688 0.03(0.09) 0 0
7 - -742 732 < 0.2215 0
8 ® 754 753 . 0 0.1283
9 * " -760 =T . 0
10 . ” -787 : 5 0.0886

1 Dominant Mode at Convergence
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Table 5.2. Properties of the Optimized Designs for Case (3M-1L)

ONE LOADING CONDITION WITH SIX DESIGN VARIABLES

PROPERTY 6 EIGENPAIRS 8 EIGENPAIRS | 10 EIGENPAIRS
First Story Columns
Width 7.763 7.606 8.278
Height 5.509 5.338 5.040
Area 42.8 40.6 41.7
Strong Moment of Inertia 214.7 195.76 238.3
Weak Moment of Inertia 108.1 96.4 88.3
Torsion 250.5 225.03 54.97
Second Story Columns
Width 5.884 5.962 6.376
Height 4.348 4,242 4.080
Area 25.6 25.247 26.0
Strong Moment of Inertia 73.8 74.5 88.1
Weak Moment of Inertia 40.3 37.6 36.1
Torsion 90.7 87.4 21.8
First and Second Story Girders
Width 7.923 8.478 8.089
Height 3.000 3.000 3.000
Area 237 25.4 24.176
Strong Moment of Inertia 124.4 182.3 131.8
Weak Moment of Inertia 17.8 19.1 18.0
Torsion 54.8 59.8 13.8
Eigenvalues at Optimum Participation at Optimum
Mgc;e No. of Eigenpairs Used No. of Eigenpairs Used
6 8 10 6 8 10
1 292 269 250 0 0 0
2 336 319 288 0 0 0
3 444 427 408 0 0 0
4 579 ¥ 5331 582 13.897 13.639 0.0832
5 651 631 o7t | 0.0410 | 0.0807 | 13.508
6 720 729 683 0 0 0
7 B 803 761 8 0.2215 0
8 £ 909 785 - 0 0.4733
9 » = -848 o = = 0
10 - . -863 5 " 0.0724

+ Dominant Mode at Convergence
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5.3.3. Multiple Loading

The following three sections are the application of the optimization methodology to multiple load-

ing conditions.

5.3.3.1. Four Design Variables Under Two Loading Conditions (2ZM-2L) & N=6.

The notation (2M-2L) stands for two material sets and two loading cases. For the following
design problems, different objective functions are considered, the optimization is carried out, and the
results are discussed. All the following example problems are under category (2M-2L) with N=6. Many
of the optimization problems considered use common parameters during the optimization. In order to
prevent repetition, common parameters will be noted and can be assumed the same for each problem

unless otherwise stated.

All the following optimization problems, except case (2) start from the designs that were obtained
under a single loading case instead of starting from the initial design. Since optimized designs under
single loading case are available it is better to use them because they are probably closer to the optimal
design than the initial design under multiple loading condition.. Using the initial design as the starting
design for multiple loading optimization problem will probably reach the same optimal design. The

properties of the optimized design under category (2M-2L) & N=6 is given in Table 5.3.

The two different loading cases considered for this problem are shown in Fig 5.2. One loading
condition is of sidesway type and one is of torsional type. Final optimized designs are analyzed under
both loading conditions and the results are presented and discussed. A minimum allowable design
variable of 3.0 inches is used for both height and width (b = h = 3.0 inches). The eigenvalue problem is

formulated from load case ] unless otherwise mentioned.

Finally, the optimal designs found here are by no means the only possible optimized designs under
the category (2M-2L) with N=6. An infinite number of different optimized designs can be found just by
changing the importance parameters, the number of eigenpairs in the objective function, or the method
of formulating the buckling eigenvalue problem. The examples generated should illustrate these differ-
ent possibilities. In practice it will not be feasible to determigg the whole noninferior optimal set.
Therefore, several different cases are considered to come up with a subset of the whole noninferior
optimized set. Finally, from the determined subset of the noninferior set a design is chosen as the best

design.
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(1) N=6 & M={1,1}

The spectral evolution for the present case (standard case) is given in Fig. 5.13. The algorithm
converged in 25 iterations. Initially, mode 2 had the highest participation factor (until iteration 10).
After iteration 10 mode 3 dominated and again after iteration 13 mode 2 and 3 shifted places and mode
2 remained dominant until convergence. Mode two at convergence is a sidesway buckling mode which
is similar to static deflected shape under applied load case I. It is interesting to note that at the optimum
modes 1 and 2 coalesced as did modes 4 and 5. Mode 1 is torsional mode and mode 2 is sidesway

mode. As it can be seen from the spectral evolution figure, the algorithm had no problem reaching the

optimized design.

The analysis of the resulting optimized design is given in Fig. 5.13. There are two load-deforma-
tion curves presented in this figure: one under load case I and one under load case I1. From these two
plots, it is obvious that the optimized design is a better design under both loading conditions. The
optimized design has a higher load carrying capacity than initial design under both loading conditions.
Post-limit strength degradation is about the same for both initial and the optimized designs under load
case I and it is better for the optimized design compared to the initial design under load case I1. Since
the dominant mode throughout the optimization process was the sidesway mode, in the same direction
and shape as the load condition I, it is expected that the optimized design to perform better under the

load condition 1.

(2) N=6 & I1={1,1}, Alternate Buckling Eigenvalue Problem (NLC=2)

Problem definition for this case is exactly the same as the case (1), except the buckling eigenvalue
problem is formulated differently. For the case of multiple loading cases, it is not clear what loading
conditions to use in formulating the buckling eigenvalue problem, therefore, the same example problem
that was optimized in case (1) is also optimized here by considering a combination of load case I and II
for the buckling eigenvalue problem. Comparison of the results from the present case with case (1) will
give an understanding of the effect of the loading conditions as used in the formulation of the buckling

eigenvalue problem in the overall performance of the optimization.

The spectral evolution and the load-deformation curves fOf the optimized design are presented in
Fig. 5.14. The optimization problem converged in 11 iterations without much changes in the magnitude

of the eigenvalues. The optimized design has distinct eigenvalues, and they are almost uniformly spread.
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The optimized design performed better under both loading conditions than the initial design. The
optimized design for this case had higher load carrying capacity in both direction compared to the
previous optimized design obtained in case (1). The slope of the post-limit curve under lateral loading

case is steeper compared to previous optimized design which makes this design less attractive.

Note that by incorporating the load case II in conjunction with the load case | in the formulation
of the buckling eigenvalue problem improved the performance of the optimized design under load case

I1 and worsened the performance of the optimized design under load case 1 compared to the case (1).

(3) N=6 & T1=(1,2}

The spectral evolution and the load-deformation curves for the present case are given in Fig.
5.15. There is not a significant difference between the design obtained under multiple loading condition
compared to the optimized design under single loading condition. The design starts with a multiple
eigenvalue (mode 1 & 2) which persists until convergence. At optimum, mode 1 and 2 are sidesway
modes and mode 3 is the torsional mode. Looking at the load-deformation curves one can observe the

improvement of the limit-load under both loading conditions.

The final optimized design for this problem and the optimized design obtained in the previous
problem are very similar (see the properties given in Table 5.3). The design obtained here has repeated
eigenvalues whereas the previous example with practically the same properties had distinct eigenvalues.
The difference between these cases is that the eigenvalue problem was formulated differently for the two
cases. In previous case the eigenpairs were obtained using a combination of both load cases while for

the present example only load case 1 was used.

(4) N=6 & I1={2,3}

In the previous case it was noticed that the second buckling eigenvector at optimum was a sides-
way mode and the third buckling eigenvector at optimum was a torsiona! mode. Thus, to improve the
performance of the design under both load cases I and II, which are of sidesway and torsional type, it
was decided to put more importance on mode 2 and 3 by choosi:g an objective function with I1=(2,3}.

Optimization problem with the objective function of N=6, Il={2,3} converged in 19 iterations with

modes 3 and 4 coalescing. At optimum mode 3 is a torsional mode and mode 4 is a sidesway mode.
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Spectral evolution and load-deformation curves for this case are given in Fig. 5.16. As the optimization
progressed, one can observe that the magnitude of all the eigenvalues except mode 3 decreased slightly.
The magnitude of mode 3 increased until it became repeated eigenvalue with mode 4. Looking at the
load-deformation curves, one can observe that the optimized design is much better design than initial
design. In fact, this design is arguably the best design among all the optimized designs found under

multiple loads.

(5) N=6 & I1={1,3}

In previous two cases mode 3 of the optimized designs was found to be a torsional mode, thus, it
was decided to put more importance on mode 3 by using the I1={1,3} for the objective function to

improve the performance of the optimized designs under load case II.

The plots of spectral decomposition and load-deformation curves for the case having N=6 and
I1={1,3} are presented in Fig. 5.17. The optimization problem converged quickly in 9 iterations with
small changes in the magnitude of the eigenvalues without any mode shifting. The dominant mode at

optimum was the torsional mode. The optimization converged with no repeated eigenvalues.

Looking at the load-deformation curves, one can see that the optimized design has a better load
carrying capacity than the initial design under both loading conditions. Under load case 1l the optimized
design is obviously an improvement over the initial design which just shows that by putting more empha-
sis on mode 3 which is a torsional mode helped improving the performance under load case II. Improv-
ing the performance under load case Il resulted in the opposite effect on the performance of the opti-
mized design under load case I compared to the optimized design in case (2) which is expected. The
optimal design has a higher limit load under load case I. The post-limit curve has a steeper slope than

the initial design but it always bounds the initial design from above.
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Table 5.3. Properties of the Optimized Design for Case (2M-2L) & N=6

TWO LOADING CONDITION WITH FOUR
DESIGN VARIABLES

N 2 N N N
Froperties > > wibim Z Zmﬂuﬂ: > wi(Bisgsr + Biasz) > wiBima + Braas) | D wiBiser + Biass)
ielfe1 i=1j=1 i=] j=1 i=1
Columns
Width 5.044 5.870 5.910 6.944 5.591
Height 6.919 5.426 5.426 4.899 5.668
Area 34,9 31.9 32.1 34.0 31.7
Strong Moment of Inertia 139.3 78.1 78.7 68.0 84.8
Weak Moment of Inertia 74.0 91.5 93.3 136.7 82.6
Torsion 168.3 146.5 168.2 142.1
L =]
= Girders
Width 7.598 8.956 8.859 7.992 9.028
Height 3.000 3.000 3.000 3.000 3.000
Area 27.8 26.9 26.6 23.98 271
Strong Moment of Inertia 17.1 20.15 19.9 17.98 20.3
Weak Moment of Inertia 109.7 180.0 173.8 127.6 183.8
Torsion 51.9 64.1 61.4 55.45 64.3
Optimization Parameters
Step Size Parameter 8 8 8 10 8
Method to Formulate EVP 1 2 1 1 1
Number of iterations 25 1 12 19 9

Eigenvalues at Optimum
Mode 1 409.7 280 257.1 219.5 267.8

Mode 2 41701 413t 419.51 355,7 400.7%
Mode 3 572.2 472 422.5 49141 450.5
Mode 4 704.7 533 549.7 493.0 582.1
Mode 5 -709.5 -659 670.0 566.6 715.9
Mode 6 718.1 687 756.9 695.9 755.9

+ Dominant mode at convergence
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5.3.3.2. Six Design Variables Under Two Loading Conditions (3M-2L) & N=6.

The notation (3M-2L), N=6 stands for 3 material sets, 2 loading cases, and 6 eigenpairs. All the
following example problems are in the category (3M-2L) with N=6. All the assumptions made in sections
5.3.3.1 are made here also. Six different design problems are optimized in this section. The six opti-
mized designs all have the same initial design but are optimized with different objective functions and use
different methods for formulating the associated buckling eigenvalue problem. The performance of the
optimization method and the behavior of the optimized designs are discussed below. A summary of

properties of the optimized designs is given in Table 5.4.

(1) N=6, and TT={1,1}

The spectral evolution and load-deformation curves for the case N=6, and TIl={1,1} are given in
Fig. 5.18. The optimization converged in 27 iterations. The dominant mode starts as mode 4; as the
optimization proceeds it swaps with mode 3, an ordering which persists until convergence. At the opti-
mum the width of the second story columns and the height of the girders are passive, meaning that they

have attained the the minimum allowable width of b = 5.0 and height of h = 3.0 inches.

Looking at the load-deformation curves it is obvious that the optimized design is a better design
than the initial design under loading case I and the initial design is a better design that the optimized
design under load case II. Since the dominant mode (mode 3) has the same shape as the linear displace-
ment under load case I, the optimized design is expected to behave better under load case 1. To improve
the design under load case II one should either increase the importance factor associated with the second
load case or use more eigenpairs in the objective function. Choosing more eigenpairs might be helpful if

one the modes in the chosen range is a torsional mode, the same shape as load case II.

Another way of improving the performance of the design for load case 11 would be to choose four
material sets: two for columns and wtwo for girders. This choice would allow a better distribution of
material throughout the structure. The optimized design would bg expected to have collapse mechanism
with hinges forming in the girders, thereby improving the nonlinear performance of the structure under

load case II. This case is studied later.

97



(2) N=6 & I1={1,2}

6
There are two different cases studied under the objective function Z#:(ﬂmm + Piaptz): One with

the minimum allowable design variable for width of b = 5.0 and one with g'; :1.5. The parameter studies
are performed to see the effect of changing the minimum permissible design variables. In a way a limit on
the design variable sizes could be viewed as incorporating unmodeled constraints such as member local
buckling. Because we are concerned with improvement of global buckling characteristics of the designs,

the problem of local buckling can be circumvented by assuming appropriate allowable sizes for the design

variables.

The result of the optimization and the load-deformation curves for these two cases are presented in
Fig. 5.19 and Fig. 5.20. The optimization problem for both cases converged with modes 2 and 3 having
repeated eigenvalues. At optimum, mode 2 was torsional and mode 3 was sidesway for both cases. In
both cases the dominant mode was the sidesway mode in direction of loading I (X-direction). For the
case with smaller allowable width it was necessary to choose a larger step length after the /0th iteration to
achieve convergence. The eigenvalues of the optimized designs were 503 and 530 respectively. The first
case had a much better load carrying capacity compared with the initial design under both loading condi-
tions and overall is a superior design. Using p = 5.0 resulted in better design under both loading cases and
using b = 4.5 resulted in a better design under load case I. The second case also under load case I, had
much higher load carrying capacity had a steeper post-limit slope compared with the initial design. Be-

tween the two designs, the first one is more desirable.

The study on the minimum design variables exposes the fact that minimum column permissible
dimension is important to the post-limit degradation. The study has revealed that the observation is of

fundamental importance.

Notice that the optimization algorithm will change the orientation of the members if it finds them to
improve the stability of the design. Looking at Table 5.4, one can see that the optimization resulted in a

change in the orientation of the first story columns.

(3) N=6 & I1={1,3}

In case (2) it was found that mode 3 was a sidesway mode with the same shape as the displaced

configuration of the design under loading case I. To improve the behavior of the optimized design under
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load case one, the importance of mode 3 was increased by including it in IT with the hope that it will

remain as mode 3.

The spectral evolution and load-deformation curves for the case N=6, and Il=(1,3} are given in Fig.
5.21. The optimization problem converged in 20 iterations with the optimized design having repeated
eigenvalues (modes 3 and 4) at the optimum. The minimum allowable width of b = 5.0 was used for this
problem. Looking at the load-deformation curves under both loading conditions it appears that the opti-
mized design is much better than the initial design, having higher load carrying capacity with the same
post-limit slope as the initial design. Also notice that the performance of the design under load case I

improved compared to the case (1) by choosing I1={1,3} in the objective function.

(4) N=6 & MN=(3,3}

To solve the optimization problem the buckling eigenvalue problem was formulated using a combi-
nation of loading cases I and II. TIT={3,3} was used for the objective function to put emphasis on mode 3
to improve the performance of the design under load case I (from previous cases it was observed that

mode 3 at optimum had been a sidesway mode).

The optimization problem converged in 37 iterations, although, as one can see in Fig. 5.22, the
magnitude of the objective function or the eigenvalues did not change by much after iteration 10. The
optimization resulted in a design with stronger girder and weaker columns compared to the previous four

cases. The optimized design did not have any repeated eigenvalues.

Looking at the load-deformation curves given in Fig. 5.22, one can observe that the optimized
design behaves much better under load case I and is comparable with the initial design under load case 11.
Therefore, putting more importance on mode 3 which was a sidesway mode and stayed as a sidesway

mode until convergence helped improving the performance of the optimized design under load case I.

5.3.3.3. Eight Design Variables Under Two Loading Conditions (4M-2L) & N=6.
v

The notation (4M-2L) & N=6 stands for four material sets, two loading cases, and 6 eigenpairs.
Each material set consists of two design variables: one height and one width of a rectangular cross section

The distribution of the material sets are given in the Fig. 5.25, where there are two material sets allocated
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for the columns and two material sets allocated for the girders. There are two design problems discussed
in this section. All the assumptions made in section 5.3.3 are made here also. Result of optimization
method and the nonlinear behavior of the optimized designs are summarized and discussed. Summary of

properties of the optimized designs is presented in Table 5.5.

(1) N=6 & I1={1,1}

The same objective function used in section 5.3.4-(1) is applied here except that there are four
material sets used instead of three material sets. The optimized design under similar objective function as
was used for the (3M-2L) case did not perform as well as the initial design under loading case II. This

case is considered here to demonstrate that a proper selection of design variables is important in overall

performance of the optimized design.

The result of the load-deformation curves and the spectral evolution for this case is given in Fig.
5.23, The optimization problem converged in 23 iterations with final optimized design having multiple
eigenvalues. Looking at the load-deformation curves, one can observe that the optimized design is a

much better compared to the initial design under loading case I and slightly better under load case II.

To see how the load carrying capacities of the optimized designs of cases (3M-2L) & N=6 and
(4M-2L) & N=6 compare with the initial design let us look at the Fig. 5.26. One can see that the
optimized design using four material sets has a much higher load carrying capacity than the optimized
design (3M-2L) & N=6 or the initial design. The load carrying capacity of the optimized design improved
100% under load case I and improved slightly under load case II. For case of (3M-2L) & N=6 the initial
design was better under load case II, but as is shown here, choosing a better distribution of material allows

a plobal improvement under both loading cases.

(2) N=6 & IT={1,2)

The objective function used for this problem is the same as the optimization problem solved in
section 5.3.4-(2). The reason for the present case study is to show that even though the design with three
material sets resulted in an optimized design with improved perfoffhance, it is possible to achieve better
performance by increasing the number of design variables for the optimization. The minimum allowable

design variable for width is chosen to be b = 5.0 inches. The result of the spectral evolution and the

load-deformation curves are given in Fig. 5.24.
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One can see from the spectral evolution that the optimization problem converged in 40 iteration
with the eigenvalues of modes 5 and 6 coalescing, Again, the optimization algorithm had no problem
reaching an optimal solution with the repeated eigenvalues. Mode 5, a sidesway mode, was the dominant
mode at convergence. The same problem with the same objective function using three material sets
converged with the eigenvalues of modes 2 and 3 coalescing. Mode 3 was the dominant mode. The
magnitude of the dominant mode for this problem is 777 and for the case with three material sets was 503.
Since the magnitude of the dominant eigenvalue for the present optimized design is much higher, it is
expected to behave better. The load-deformation curves given in Fig. 5.24 show that under load case |
the design with four material sets performed much better than the optimized design obtained using three.
Under load case II all three designs: initial design, optimized design (3M-2L) & N=6, and the present

optimized design performed almost the same.
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5.3.4. Final Observation on the Proposed Optimization Technique Under Multiple Loading

® In general, using more design variables will result in a better behaved optimized design. But from

practical point view it makes sense to group elements together to save on labor, detailing, and fabri-

cation costs.

e The larger the magnitude of the dominant eigenvalue of the optimized design (one with maximum

Bij )+ the better the final optimized design will behave.

e The proposed optimization technique is a multiple objective optimization method that is solved using
a weighting method. The weighting parameters f;; are automatically generated from the loading
conditions and the buckling modes . Multiple objective design optimization results in set of opti-
mized designs that are called the noninferior design set. The designer can then choose the best
design from the noninferior design set. This choice is generally made using information which is not
included in the objective function; for example nonlinear and dynamic analyses. The best design
among all the optim;zed; designs found under multiple loading condition would be the optimized
design to maximize z Z,u,—ﬁu;u; given in section 5.3.5 under category (4M-2L) & N=6. This design
improved the load cjar;gimtg capacity of the initial design by a factor of more than two under load case

1 and slightly under load case II.

e If a combination of the loading conditions was used to formulate the eigenvalue problem, the final
modes came out distinct. However, if one loading condition was used to formulate the buckling
eigenvalue problem, then the optimum had multiple eigenvalues. In general, eigenvalues will likely
coalesce when there is equality of the weighting factors, for example if ¢, * f; = ¢2 * f2. The ten-

dency toward repeated eigenvalues in the examples suggests that the occurrence is more than coinci-

dental.

® The optimized designs are interesting in the sense that they almost always have passive girder depth.
The tendency is probably due to the tall story heights; deep girders do not add much to the lateral
stiffness of the structure. Physically, the structure is telling us that the optimum configuration is

similar to a structure having columns tied together with simple beams.
v

® The study of the minimum permissible design variables exposes that fact that the minimum dimension
is important for the post-limit degradation of the structures. The observation reveals the fact that the

post-limit robustness might be sacrificed with a poor choice of the minimum design variables.
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Table 5.4. Properties of the Optimized Designs Using Three Material Sets, Two Loading Cases
and Six Eigenpairs (3M-2L) & N=6

N 2 N N N 1
Properties Z Zp,ﬁqﬂ, Zp,(ﬂ”p. + Biapz) Zu; (Biriay + Piasts) Z Z#(ﬂ:‘jﬂ:
i=1)=1 i=1 i=1 ERVES
1st Story Columns ;
Width 6.159 6.390 | 6.604 7.634 7.898
Height 7.564 6.119 I 5.848 4.954 4,589
Area : 46.6 39.1 | 38.6 37.8 36.2
Strong Moment of Inertia 222.2 122.0 | 110.1 77.3 63.6
Weak Moment of Inertia 147.3 133.1 | 140.4 183.7 188.4
Torsion 300.0 216.1 | 209.4 185.4 162.0
2nd Story Columns |
Width 5.000 5.000 | 4.500 5.000 6.213
Height 4,775 5.596 | 5.723 5.540 4.13
Area 23.9 28.0 | 25.6 27.7 25.7
Strong Moment of Inertia 45.4 73.0 | 70.3 70.8 36.5
Weak Moment of Inertia 49.7 58.3 | 43.5 57.7 82.6
— Torsion 80.1 110.0 | 91.2 107.9 86.0
S Girders |
Width 7.453 8.209 | 8.874 8.560 9.354
Height 3.000 3.000 | 3.000 3.000 3.000
Area 22.4 24.6 | 26.6 25.7 28.1
Strong Moment of Inertia 16.8 18.5 | 20.0 19.3 21.1
Weak Mpment of Inertia 103.5 138.3 | 174.7 156.8 204.6
Torsion 50.1 57.0 | 62.9 601.1 67.0
Properties & Parameters |
Step Size Parameter . 8 |l 8a20 8 & 10 8
Method to Formulate EVP 1 1 I 1 1 2
Number iterations 270 17 : 15 52% 370
b 5. 5.0 4.5 ' i
A 3.0 3.0 : 3.0 3.0 3.0
Eigenvalues at Optimum |
Mode 1 433. 342, | 317. 240, 211,
Mode 2 485, 502. I 530. 433. 301.
Mode 3 523. 5031 | 540.1 585.1 309.
Mode 4 593. 602. | 875. 592, 545,
Mode 5 787. 757 | 783. 639. 620.1
Mode 6 -791. 775 ! 786. 751. 641,

t Dominant Mode at Optimum
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Fig. 5.20. Case (3M-2L) & N=6 with I1={1,2}, and b =4.5, h=3.0
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Table 5.5. Properties of the Optimized Designs Using Four Material Sets,Two Loading
Conditions, and Six Eigenpairs (4M-2L) with N=6

PROPERTIES

N 2
Z > wibij

N
Zm(ﬂaw: +Prapta)

= '.lf =]
1st Story Columns
Width 7.544 7.495
Height 5.459 5.528
Area 41.2 41.5
Strong Moment of Inertia 102.2 105.57
Weak Moment of Inertia 185.3 194.3
Torsion 288.1 232.4
2nd Story Columns
Width 7.627 6.819
Height 3.691 3.882
Area 28.3 26.5
Strong Moment of Inertia 32.1 33.2
Weak Moment of Inertia 138.9 102.6
Torsion 89.9 85.9
1st Story Girders
Width 10.334 9.746
Height 3.000 3.000
Area 31.0 29.2
Strong Moment of Inertia 23.3 21.9
Weak Moment of Inertia 275.9 231.5
Torsion 76.1 62.113
2nd Story Girders
Width 5.000 6.287
Height 3.000 3.000
Area 15.0 18.9
Strong Moment of Inertia 11.25 14.1
Weak Moment of Inertia 31.25 62.1
Torsion 28.2 39.7
Properties:
Step Size Parameter 8 8 &20
Method to Solve for EVP 1 1
Cycles to Convergence 23 40
b 5.0 5.0
h 3.0 3.0
Eigenvalues at Optimum:
Mode 1 282 272
Mode 2 345 287
Mode 3 444 380
Mode 4 700 649
Mode 5 7Y, 774,
Mode 6 -788 777

t Dominant Mode at Optimum
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5.4. Displacement Constraint Optimization

5.4.1. Introduction

The essence of the proposed optimization technique is to enhance the global stability of a framed
structure and consequently to upgrade the structure's performance. In particular, structures having
inelastic material behavior are likely to exhibit a limit load with a loss of load carrying capacity in the
post-limit regime. In the previous sections, through a set of various problems, it was demonstrated that

the proposed optimization technique does result in structures with improved overall stability.

Most currently used optimization methods are set to minimize the volume or the cost of a framed
structure under some displacement and stress constraints. Displacement constraint optimization meth-
ods have been used to limit displacement of a design to minimize damage or perhaps to force a design to
remain in the elastic range. Unfortunately, such an approach does not assure overall structural stability.
Under severe loading or in the presence of imperfections inthe structure, the displacement constrained
optimal structure may not have desirable global stability characteristics. To demonstrate this point, the
initial design from the previous examples was optimized using an optimality criterion optimization
method to minimize the volume subjected to displacement constraints. The detailed formulation of the
displacement constraint optimization algorithm used is given in Appendix A. The achieved optimum
design then was analyzed and the results are discussed and compared with optimized designs found

earlier based on the stability criteria.

5.4.2. Example Problems

The frame MRF was optimized under displacement constraint optimization algorithm with mini-
mizing volume as the objective function. Four design variables were used: two for the columns and two
for the girders. A rectangular cross section was assumed. Three inches was assumed for the minimum
allowable design variables (b =h=3.0). A combination of load case I and 1I were applied to the
structure throughout the course of optimization. The properties of the optimum design is given in

Table 5.6.

v
Using a displacement constraint of 0.25 inches for the top story displacement resulted in an
optimized design with the same volume as the initial design. The optimized design obtained is then

analyzed under both load case I and II.
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So far, we have optimized an initial design with two different approaches and have come up with
two optimized designs. One optimized design was based on displacement control optimization (opt-d)
and one was based on the stability criteria optimization technique (opt-s). The resulting load-deforma-
tion curve for opt-d is given in Fig. 5.28 and the load-deformation curve for opt-s was given in Fig.
5.16. One can see that under load case 1 both optimized designs have a much better load carrying
capacity and the larger area under the load-deformation curve. Under load case II the optimized design
opt-s has better performance than the initial design but the optimized design opt-d has much poorer

performance compared to the initial design.

Looking at performance of the both optimized design opt-d and opt-s one can conclude that
displacement control optimization did not result in a globally stable structure whereas the proposed the

optimization technique did result in a design with a better overall stability characteristics.

5.4.3. Performance of the Optimized Designs Under an Unexpected Loading Condition

Assume that there is an imperfection in the constructed frame or there is an unexpected loading,
for example 0.5 Kips applied at the top of the one of the second story columns (see Fig. 5.27). Neither
of the optimum designs based on displacement constraints or stability criteria are designed for this type

of the loading. This loading is used to see how the optimized designs will behave in such an unexpected

environment.

Both of the optimum designs using the stability criteria opt-s and the optimum design using dis-
placement constraints opt-d are analyzed under load case I plus the loading give in Fig. 5.27. The result
of the load-deformation curves are given in Fig. 5.29. One can see that the optimized design opt-d
shows a higher limit load, and is much stiffer than the initial design and the optimized design opt-s.
However, the optimized design opt-d has a very steep post-limit curve showing that the load-carrying
capacity of structure drops very quickly compared to the iniliaLdesign or the optimized design opt-s.
The same type of behavior is observed for the load versus deformation in both X- and Z-directions. The
optimized design based on the stability criteria has slightly better load-carrying capacity than the initial

design and has the post-limit degradation of about same as the initial design.
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0.5 kips

Fig. 5.27. Imperfection Loading

Consequently, based on the examples described, one might conclude that a design based on
stability criteria shows better overall stability characteristics compared to one based on a displacement
control optimization method, making the former a more attractive design technique. The optimized
design based on the displacement constraint may be better if the design is expected to remain in the

elastic range.

Table 5.6. Properties of the Optimum Design for the Displacement
Constraint Optimization Method

PROPERTY VALUE

Columns

Width (in) 10.085

Height(in) 3.000

Area(in2) 30.256

Strong Moment of Inertia(in*) 22.7

Weak Moment of Inertia(in*) 256.4

Torsion(in4) 74.2
Girders

Width (in) 9.693

Height(in) 3.000

Area(in?) 29.1

Strong Moment of Inertia(/in*) 21.8

Weak Moment of Inertia(in*) 227.5

Torsion 70.6
Parameters v

Number of iterations 9

b 3

h 3
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CHAPTER 6

APPLICATION OF 3-D OPTIMIZATION ALGORITHM TO
IRREGULAR FRAMED STRUCTURES

6.1. Introduction

It is often difficult to identify the design changes necessary to improve the performance of a
structure, especially when the structure is irregular and the response is nonlinear. Trial and error
procedures are usually neither effective nor economical due to the fact that the complexity of the
problem is beyond the intuition of the designer. An optimization methodology can be efficient and
productive for irregular structures. To show the strength and the limitation of the optimization
methodology as applied to irregular structures, a setback building is optimized and the result of the

optimization presented and discussed.

It is important to remind the reader that the proposed optimization procedure is designed to
improve the stability characteristics of a building. The optimization methodology is specially effective
for taller buildings when the geometry effect is important. The SETBACK building optimized here is
not a tall building, yet the optimization procedure improves the overall performance and stability

characteristics of the building.

6.2. Description Of SETBACK Example Problem

SETBACK building considered here is a two-story setback frame with topology as given in
Fig. 6.1. First story of the SETBACK frame has two bays and the second story has one bay. The
topology of the SETBACK frame was picked from a report by Cheng and Truman (1985). Frame

SETBACK is designed based on ATC-3-06 earthquake design recommendation (1978).

The loads on the structure were:

Dead load: 80 psf
Live load: 40 psf

.
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A preliminary design was performed using full dead and live load in all members, using

approximate coefficients to determine maximum moments in girder sections.

Because SETBACK is an irregular structure, a modal analysis procedure was employed to
determine earthquake loads. The building was modeled as a system of masses lumped at the floor
levels. A rigid floor diaphragm is modeled as a rigid plane parallel to the horizontal plane, so that all
the points on any one floor diaphragm can not displace relative to each other in horizontal plane.
Program SAP80 (Wilson and Habibullah, 1984) was used to determine member forces and to
perform the frequency analysis. SAP80 has the capability of modeling rigid floor diaphragm systems
where each floor diaphragm is established by a rigid joint in the plane of the diaphragm called master
joint of the diaphragm. All other joints that exist on the diaphragm connected to the master joint by
rigid links. SETBACK was modeled by space frame beam elements and two master joints. Each

master joint had 3 degrees of freedom. Therefore, a total of 6 frequency eigenpairs can be

calculated.

The mass property of each rigid floor diaphragm was determined and is given Table 6.1.

Table 6.1. Mass Properties

Mass Mass Moment
Floor Level (k. sec? /in) (c:f sl.r;g?ff]
Bottom Story 0.362 16196
Top Story 0.217 5534

6.2.1. Seismic Coefficients

The following seismic coefficients in accordance with ATC-3-06 were used:

Ag = 0.4 (Effective peak acceleration)
Ay = 0.4 (Effective peak velocity-related acceleration)
S; = 1.2 (Soil profile characteristics of site)

R = 4.5 (Reduction factor to account for effects of inelastic behavior)

Seismic Category C
Seismicity Index of 4
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6.2.2. Modal Base Shear

The portion of the base shear contributed by the mth mode, Vp,, according to ATC-3-06 shall

be determined as:

3]

=il 2 m=1,..,N (6.1)

2 Witk

i=1

Vi = Csmwm = Cim

Where W,, is the effective modal gravity load, w; is the portion of total gravity load of the building at
or assigned level i, ¥;m is the displacement amplitude at the ith level of the building when vibrating in
mth mode, and C;, is the modal seismic design coefficient determined according to Eqn. (6.2)

below:

1.2A:8 _ 2.5A,
<

Csm = A S (6.2)
T ORTY R
6.2.3. Modal Forces
The modal force, Fxm, at each level shall be determined as the following:
F.tm = ::LVM m=1.....N
(6.3)
Z Wilim

A computer program was written to perform modal analysis and to calculate earthquake forces

applied to the building according to the Eqn. (6.1) through Eqn. (6.3).

A set of eight combinations of load effects, as recommended by ATC-3-06, was considered:

1.20p + 1.0Q0; + 1.00g
(6.4)

0.80p = 1.00f
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where (Qp is the effect of the dead load, Qg is the effect of live load, and Qf is the effect of the

earthquake load. The critical load effect due to the application of seismic forces on the building are
determined as a combination of prescribed loads: 100 percent of the force for one direction plus 30
percent of the force for the perpendicular direction. Therefore, load Qg consists of a set of two

forces making the total number of the load combinations given in Eqn. (6.4) eight.

The eight different loads were applied to the building and the stresses and the displacements of
each load combination were determined. Members of the building were checked for the worst
loading case and were redesigned if necessary. This procedure of analysis and redesign was carried

out for several iterations until all the requirements were satisfied.

The member properties of the final design were checked against the AISC (1978) specification

and all the requirements were satisfied. The properties of the design are given in Table 6.2.

Table 6.2. Properties of the Final Design

Equivalent Rectangle
Member Section
Width (in) Height (in)
Bottom columns W10X68 5.5 9.5
Top columns W10X68 4.0 8.6
Bottom columns wi12X19 1.7 9.8
Top columns W10X12 1.6 7.5
Braces wWi10Xx12 1.6 7.5

The optimization algorithm for 3-D problem was implemented for rectangular cross sections
with height and width of the cross section as the design variables. Therefore, equivalent rectangular
sections representing the W-sections of the design were determined and are presented in Table 6.2.

Also, Table 6.4 and Table 6.3 give vibration frequency and mode shapes of the final design.

Table 6.3. Mode Shapes of the Final Design

_ﬁ_ ] U2} Y Ws Ve
[ 0.384 0.000 0.000 2.112 0.000 0.000
0.000 0.284 -0.356 0.000 1.541 -1.424

0.000 0.000 0.000 0.000 0.000 0.000
1.635 0.000 0.000 -0.297 0.000 0.000
0.001 1.622 0.282 0.000 -0.228 0.0086
0.000 0.000 0.000 0.000 0.000 0.000
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Table 6.4. Periods of the Final Design

Mode Period (seconds)

0.933
0.800
0.338
0.181
0.167
0.050

O O b W -

An equivalent set of static forces were obtained using a square-root-of the-sum-of-the-square

(SRSS) method resulting in the forces given in Fig. 6.2. and Fig. 6.3.

6.2.4. A Note on Analysis Procedure

The finite element discretization of the initial and the optimized design consisted of two
elements between each structural joints for all the members except for girders with 30 feet length
where three elements were used between each structural joints. C@ quadratic interpolation was used
throughout. 5% isotropic hardening was used for all the material properties. Rigid bars were used to
model rigid floor behavior for the fr. me without changing the overall elastic stiffness properties of the

structure.

Displacement control load incrementing, as described by Batoz and Dhatt (1979), was used
throughout the analyses. One of top story nodes, where the load is applied, was used as the control
point. All the deformation history curves presented in this chapter are given in terms of load factors
versus lateral top displacements. For irregular frames, specially for 3-D structures, is not clear that if
the displacement of a single point would give a good representation of the whole structure displaced
configuration. For the SETBACK frame it was decided that the lateral top displacement of the
structure does present an accurate displaced characteristics of the whole structure by examining the
initial design. As the initial design was analyzed, two sets of information were stored: (1) top
displacement versus load factors and (2) the norm of the nodal displacement versus the load factors.

The norm of all the nodal displacements were calculated using the formula:

lul = uTku (6.5)
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where U is vector of nodal displacements and K is the linear elastic stiffness matrix of the structure.
Since the problem is nonlinear, the stiffness matrix changes after each displacement increment,
therefore, the initial elastic stiffness matrix was stored to be used for the calculation of the norm of
nodal displacements as the deformation progressed. The norm ||U|| is a scalar representing the norm
of the nodal displacement of the whole structure. The plot of the lateral top displacement versus load
factor and the norm of the displacements versus the load factor is given in Fig. 6.4. Observe that
both load-deformation curves present the same behavior. Therefore, for the presentation of

load-deformation curves, a plot of load factor versus top displacements is adopted and used for the

remainder of this chapter.

6.3. Discussion of the Optimization Algorithm as Applied to SETBACK Frame

Six different examples are considered in this section, five under a single loading condition and
one under multiple loading condition. Parameter studies have been performed on the number of
design variables, the number of buckling eigenvalues and eigenvectors, and the minimum and

maximum allowable values of the design variables. Table 6.5 gives a summary of the parameters

studied.

Table 6.5. Parameter Properties of the Example Problems

Case Parameters
(1) 5 4.0 4.0 5 1
(2) 5 4.0 4.0 10 1
(3) 8 4.0 4.0 5 1
(4) 5 1.8 7.5 5 1
(5) 5 1.8 7.5 10 1
(6) 5 1.8 7.5 5 2
Mat = No, of Materlal Sets N = Number of eigenpairs
b = Min. Permissible Width L = Number of Loading Cases
A = Min. Permissible Height
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(1) (5M-1L), N=5, b=4.0, h=4.0

The five design variables used are: bottom story columns, top story columns, bottom story
girders, top story girders, and braces. The spectral evolution for this case is given in Fig. 6.5. The
optimization converged in 41 iterations with the properties of the optimized design summarized in
Table 6.7. About iterations 17 and 18, it appears that optimization is diverging but after iteration 18
the algorithm recovers and works its way toward a smooth convergence. To avoid setting design
variables as passive artificially, for the first 20 iterations all the design variables were set to active after
each iteration. If we had not reactivated the design variables, the algorithm might not have recovered
after iteration 17. There reason for this behavior is that modes 1 and 2 coalesced in iteration 16

resulting in undefined eigenvector sensitivities.

The important conclusion drawn from this example is that the optimization is robust in the
sense that it is independent of the initial design. In another words if one chooses the initial design as
the design found in iteration 17, which is obviously a bad design and far from optimal, the

optimization still can reach the optimal design with no problem.

At optimum the height and width of the first story girders and braces with the width of the
second story girder became passive and adopted the minimum permissible sizes of 4.0 inches. At the

optimum, all the eigenvalues of the structure were distinct and evenly spaced.

Looking at nonlinear static analyses of the optimized design and the initial design, Fig. 6.5,
one can see that the limit-load capacity of the structure has increased and although the post-limit
slope of the optimized design is steeper than the initial design post-limit slope, it always bounds it from

above.

(2) (5M-1L), N=10, b=4.0, h=4.0

The difference between the case (2) and case (1) is in the number of the buckling eigenvalues
and eigenvectors used in the objective function. Ten buckling eigenpairs were used to see how the
result of the optimized design changes compared to the previous case where 5 buckling eigenpairs

were used.

The spectral evolution and the result of the nonlinear static analysis of the optimized design for

case (SM-1L), N=10, b =4.0,h = 4.0 is given in Fig. 6.6. The optimization process converged in 45
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iterations with properties of the optimized design tabulated in Table 6.7. Nonlinear static behavior of
the optimized design is similar to the nonlinear static behavior of the optimized design obtained in
case (1), except that the optimized design here is slightly stiffer elastically. The reason for similar
performances can be explained by investigating the spectral history plot where one can observe that
the participation of the first buckling mode in the overall response of the structure, f;; , for both cases

are almost the same. The participation of the higher modes in the objective function were much

smaller compared to the first mode.

(3) (8M-1L), N=5, b=4.0, h=4.0

The case (8M-1L), N=5, b=4.0,h=4.0 is optimized using 8 different material properties
with a total of 16 design variables. The distribution of the material properties used is shown in
Fig. 6.7. As can be seen from Fig. 6.8 of the spectral evolution, optimization converged in 29
iterationg with the properties of the optimized design given in Table 6.8. The dominant buckling
eigenvalue of the optimized design was mode 1 with the magnitude of 30.0, (150% higher than cases
(1) and (2)). Having a higher dominant buckling eigenvalue, it is expected that the optimized design
to behave better than cases (1) and (2). Looking the nonlinear static analysis of the optimized
design, it is obvious that indeed it does behave better than the optimized designs of cases (1) and (2)
and the initial design. The limit-load capacity of the optimized design was 163% higher than the initial

design limit-load, with post-limit strength degradation about the same as the initial design.

(4) (5M-1L), N=5, b=1.8, h=7.5

Minimum design variables of b = 1.8,k = 7.5 of the cross section were chosen for the case (4)
and the following two cases. Such a selection of minimum permissible design variables has a twofold
purpose: (I) to investigate the effect of different minimum permissible sizes on the outcome of the

optimization, and (II) to have minimum sizes comparable to the initial design.

The spectral evolution and the nonlinear load-deformation curves for the optimized design is
given in Fig. 6.8. Observe that a lot of mode shifting takes place during the optimization with large
changes in the magnitude of the buckling eigenvalues. After iteration 25 the step length was increased
from 10 to 25, where the optimization settled down and finally converged in 45 iterations. The

properties of the optimized design is given in Table 6.9.
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Observe that the limit-load capacity of the optimized structure improved considerably with the
post-limit slope of about the same as the initial design. The performance of the optimized design is an
improvement over the optimized designs found in cases (1) and (2) where the same objective function

was employed with different limits on the size of the design variables.

(5) (5M-1L), N=10, b=1.8, h=17.5

For the case studied here, (SM-1L), N=10, b =1.8,h = 7.5, 10 buckling eigenvalues were
used in the objective function compared to 5 buckling eigenvalues for the case (4). The result of the
spectral evolution and the nonlinear static load-deformation curves are given in Fig. 6.10. The
optimized design performed quite well, with limit-load carrying capacity and improved post-limit
behavior compared to the initial design. Looking at the property table, one can see that the optimized
design for case (4) has about the same properties as case (5) except that the second story girder is
smaller for the present optimized design and the columns are slightly heavier, causing a better
post-limit behavior and slightly smaller load carrying capacity. The dominant mode started as mode 1

and switched to mode 4 at optimum with a magnitude of 41.3 compared to the previous case of 23.6.

(6) (5M-2L), N=5, b=1.8, h=7.5, I={1,1}

Last case studiec}owazs the optimization of the initial design under loading cases (I) and (II).
The objective function z Zp.‘ﬂ.ﬂl was used with b=1.8,h=7.5,1=(1,1}. The two loading cases
considered are not nec;;s;}f;l; expected to act at the same time. The result of optimization is given in
Fig. 6.11 in terms of spectral evolution and nonlinear static load-deformation curve for the design.
Optimization converged in 39 iteration with first mode as the dominant mode and modes 4 and §
coalescing. Properties of the optimized design are given in Table 6.10. Looking at the
load-deformation curve, one can see that optimization improved the performance of the optimized
design under both loading cases. The optimized design has higher load carrying capacity under both
loading conditions compared to the initial design. The post-limit behavior of both designs are about

the same.

To investigate the integrity of the optimized design under dynamic loading conditions it was

decided to excite both the optimized and the initial designs under a sinusoidal base acceleration. To
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make the comparison fair, both initial and the optimized designs were excited under a sinusoidal

ground motion of the same frequency but different amplitudes. The amplitude of the base sinusoidal
acceleration was chosen to give the same dynamic magnification factor for both initial and the
optimized designs. An equivalent of 0.65g base acceleration was considered. Table 6.6 gives the

dynamic properties of the initial and the optimized designs along with the applied sinusoidal base

acceleration.

Table 6.6. Dynamic Properties of the Applied Sinusoidal Loading

Dynamic Magnification Factor

Base acceleration

Ag =2505in(25.131)

Parameters Initial Design Optimized Design
Fundamental Period, T, (sec) 0.78 0.85
Base Acceleration Period, T (sec) 0.50 0.50
Period Ratio: g = % 1.49 1.70
0.82 0.53

Ag = 1615in(25.130)

The response history of the both initial design and the optimized design are give in Fig. 6.12.
Observer that the optimized design has smaller drift and smaller base shear compared to the initial

design. Both designs are stable structures and both behaved well under the applied dynamic

excitation.

6.4. Displacement Constraint Optimization

The initial design was optimized under a displacement constraint with properties of the
optimized design given in Table 6.11. The formulation and discussion on the displacement constraint
optimization can be found in Appendix A. The volume of the structure was minimized under a top
displacement constraint of 1.2 inches. A combination of the load cases I and II was considered as the

applied loading. The optimized obtained under displacement constraint (opt-d) had a volume of

close to the initial design.




The nonlinear response of opt-d design under both loading cases I and II along with the
load-deformation response of the optimized design based on a stability criterion, opt-s, are given in
Fig. 6.13. Observe that under load case I, the design opt-d is stiffer and has higher load carrying
capacity compared to the initial design but has a lower load carrying capacity compared to opt-s
design. The design opt-d has a steeper post-limit slope compared to opt-s. Under load case II, the
opt-d design has much lower load carrying capacity than the initial design whereas opt-s has higher

load carrying capacity compared the initial design.

6.5. General Comments

Through several different example applications, it was shown that the optimization procedure
can efficiently produce designs with improved limit strength, stability, and ductility characteristics.

The method can effectively be used to handle multiple loading cases.

Based on the parameter studies it was concluded that in general: (1) using more design
variables will result in optimized designs with better overall performance; (2) using more eigenpairs in
the objective function will improve the performance of the optimized design if one or more of the
eigenvectors in the range chosen have the same shape as the displaced configuration of the structure
under one of the l ading cases; (3) the performance of the design in the post-limit regime is

dependent on the minimum design variables.
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Table 6.7. Properties of the Optimized Designs for the
Case (SM-1L) & N=5, and b =4.0,h = 4.0 and
Case (SM-1L) & N=10, and b =4.0,h = 4.0

= e ————— —
. —— Case (1) Case (2)
i (5M-1L) & N=5 |(5M-1L) & N=10 l
Eigenvalue
1st Story Columns MNO:G gop;amm: - .
Width 7.029 9.559
Height 5.988 4.000 T
Area 42.11 38.2 1 20.6
Strong Moment of Inertia 125.8 51.0 2 27.3
Weak Moment of Inertia 173.3 291.2 3 31.0 .
Torsion 247.3 150.5 '
4 34.8
2nd Story Columns 5 40.2 I
Width 4.896 7.376
Height 6.208 6.861
Area 30.4 50.6 Case (1)
Strong Moment of Inertia 97.8 188.5 (5M,1L) & N=5 .
Weak Moment of Inertia 60.7 229.5
Torsion 127.1 361.0
1st Story Girders . .
Width 4.000 4.000 Mode Elgam{alues at
Height 4.000 4.000 No. Optimum
Area 16.0 16.0
Strong Moment of Inertia 21.3 21.3 1 21.07 .
Weak Moment of Inertia 21.3 21.3 2 250
Torsion 36.2 36.2 "
3 39.0
2nd Story Girders 4 44.0 .
Width 4.000 4.000 5 47.0
Height 6.636 8.731 ;
Area 26.5 34.9 G 55.0 .
Strong Moment of Inertia 97.4 221.9 7 56.0
Weak Moment of Inertia 35.4 46.6
Torsion 88.6 132.0 8 77.0
9 91.0 '
Braces
Width 4.000 4.000 10 92.0
Height 4.000 4.000
s 16.0 16.0 Case (2) .
Strong Moment of Inertia 21.3 21.3 (5M,1L) & N=10
Weak Moment of Inertia 21.3 21.3
Torsion 36.2 36.2 .
+ Dominant mode at convergence l
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Table 6.8. Properties of the Optimized Design for the

Case (8M-1L) & N=5, and b =4.0,h = 4.0

case (3)
PROPERTY (8M-1L) & N=5
Material Set 1
Width 4.000
Height 4.000
Area 16.0
Strong Moment of Inertia 21.3
Weak Moment of Inertia 21.3
Torsion 36.2
Material Set 2
Width 10.687
Height 4.000
Area 42.7
Strong Moment of Inertia 406.9
Weak Moment of Inertia 57.0
Torsion 175.9
Material Set 3
Width 5.306
Height 13.669
Area 88.4
Strong Moment of Inertia 1129.3
Weak Moment of Inertia 170.2
Torsion 519.5
Material Set 4
Width 5.224
Height 5.472
Area 28.6
Strong Moment of Inertia 65.0
Weak Moment of Inertia 71.3
Torsion
Material Set 5
Width 4,846
Height 7.956
Area 38.6
Strong Moment of Inertia 203.4
Weak Moment of Inertia 75.5
Torsion 158.3
Material Set 6
Width 4.000
Height 4.000
Area 16.0
Strong Moment of Inertia 21.3
Weak Moment of Inertia 21.3
Torsion 38.2
Material Set 7
Width 4.000
Height 6.450
Area 25.8
Strong Moment of Inertia 89.4
Weak Moment of Inertia 34.4
Torsion B6.6
Material Set 8
Width 4.000
Height 4.000
Area 16.0
Strong Moment of Inertia 21.3
Weak Moment of Inertia 213
Torsion 36.2
+ Dominant mode at convergence
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Table 6.9. Properties of the Optimized Designs for the
Case (SM-1L) & N=5, and p = 1.8,h=7.5 and
Case (SM-1L) & N=10, and p=1.8,h=7.5

Case (4) Case (5)
TP (5M-1L) & N=5 [(5M-1L) & N=10
1st Story Columns
Width 5.687 6.919
Height 7.500 7.500
Area 42.6 51.9
Strong Moment of Inertia 200.0 243.3
Weak Moment of Inertia 115.0 207 .1
Torsion 247.0 379.6
2nd Story Columns
Width 5.045 6.145
Height 7.500 7.500
Area 37.8 46.1
Strong Moment of Inertia 177.4 216.0
Weak Moment of Inertia 80.3 145.0
Torsion 188.0 294.5
1st Story Girders
Width 1.800 1.800
Height 7.500 7.500
Area 13.5 13.5
Strong Moment of Inertia 63.3 63.3
Weak Moment of Inertia 3.6 3.6
Torsion 12.0 3.6
2nd Story Girders
Width 3.578 1.800
Height 7.500 7.500
Area 26.8 13.5
Strong Moment of Inertia 125.8 63.3
Weak Moment of Inertia 28.6 3.6
Torsion 80.3 3.6
Braces
Width 1.800 1.800
Height 7.500 7.500
Area 13.5 13.5
Strong Moment of Inertia 63.3 63.3
Weak Moment of Inertia 3.6 3.6
Torsion 12.0 3.6

Mode
No.

Eigenvalues at
Optimum

0 b W N -

23.591
31.50
35.00
37.41
38.23

Case (4)

(5M,1L) & N=5

Mode
No.

Eigenvalues at
Optimum

W o~ s W =

-
o

15.16
15.57
41,07
41.26 "
41.86
41.96
63.33
63.35
79.29 °
94.24

+ Dominant mode at convergence
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Table 6.10. Properties of the Optimized Design for the
Case (5M-2L) & N=5, and b=1.8,h=17.5

Case (6)
PROPERTY (5M-L) & N=5
1st Story Columns
Width 5.619
Height 7.500
Area 421
Strong Moment of Inertia 197.5
Weak Moment of Inertia 110.9
Torsion 241.2
2nd Story Columns
Width 4.141
Height 7.500
Area 31.1 Mode Eigenvalues at
Strong Moment of Inertia 145.6 No. Optimum
Weak Moment of Inertia 44 4
Torsion 116.4 1 2281
1st Story Girders 2 39.2
Width 1.800 3 34.9
Height 7.500 4 37.1
Area 13.5
Strong Moment of Inertia 62.3 B 37.2
Weak Moment of Inertia 3.6
Torsion 12.4
Case (6)
2nd Story Girders (5M,1L) & N=10
Width 4.113
Height 7.500
Area 30.9
Strong Moment of Inertia 144.6
Weak Moment of Inertia 43.5
Torsion 1145
Braces
Width 1.800
Height 7.500
Area 13.5
Strong Moment of Inertia 62.3
Weak Moment of Inertia 3.6
Torsion 12.4

+ Dominant mode at convergence
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Fig. 6.11. Case (6): with (SM-2L) & N=5, IN=[1,1], and b=1.8,h=7.5
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Table 6.11. Properties of the Optimized Design Using a Displacement Constraint

Approach to Minimize Volume under a Top Displacement
Constraint of 1.2 Inches

DISPLACEMENT CONSTRAINT

PROPERTY OPTIMIZATION
1st Story Columns
Width 1.800
Height 19.020
Area 34.2
Strong Moment of Inertia 1302.0
Weak Moment of Inertia 9.2
Torsion 34.8
2nd Story Columns
Width 1.800
Height 11.865
Area 21.4
Strong Moment of Inertia 250.1
Weak Moment of Inertia 5.8
Torsion 20.9
1st Story Girders
Width 1.800
Height 7.500
Area 13.5
Strong Moment of Inertia 62.3
Weak Moment of Inertia 3.6
Torsion 12.4
2nd Story Girders
Width 5.4640
Height 7.500
Area 38.25
Strong Moment of Inertia 156.2
Weak Moment of Inertia 95.2
Torsion 201.6
Braces
Width 1.800
Height 7.500
Area 13.5
Strong Moment of Inertia 62.3
Weak Moment of Inertia 3.6
Torsion 12.4
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CHAPTER 7

APPLICATION OF 3-D OPTIMIZATION ALGORITHM TO
HIGH-RISE FRAMED STRUCTURES

7.1. Overview

The purpose of the design procedure introduced in this study is to improve the overall stability
and strength of structures. The taller is the structure the more important is the role of stability in the
performance of the design. In this chapter, the optimization procedure is applied to a tall framed
structure to show that when stability is important, the design procedure generates optimized designs

with better overall performance.

7.1. Application of the Optimization to KORN Frame

The frame KORN considered here was picked from a paper by Korn and Galambos (1968).
The topology of the frame along with the loading condition applied to the frame is given in Fig. 7.1.
Frame KORN is a fifteen story one bay frame with width in both direction of 12 feet and story height

of 14 feet. The properties of the initial design are given in Table 7.1.

The initial design was optimized under a lateral and vertical loading conditions shown in Fig.
7.1. The optimization converged in 38 iterations with mode three as the dominant mode and the
height of all the girders becoming passive. The properties of the optimized design is given in Table
7.1. A minimum permissible size of 3 inches was chosen for both width and height of the cross
section. The spectral evolution and the nonlinear load-deformation curves for both initial and the
optimized designs are given in Fig. 7.2. Observe that the performance of the optimized design has
improved tremendously compared to the initial design. The limit strength of design improved by a

factor of 12 with post-limit slope of the structure staying the same as the initial design.

Based on parameter studies done on the minimum permissible dimensions in earlier chapters,
it was noticed that the performance of the optimized design can be improved by decreasing the
minimum sizes. Therefore, it is possible to improve the performance of design even more by changing

the permissible sizes on the design variables.
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Fig. 7.1. Topology of KORN Frame and Loading Conditions
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Table 7.1. Properties of the Initial and Optimized Designs
(b =3.0,h=3.0) under Single Loading Case

Initial Design Optimized Design
PROPERTY ; :
Column | Girder Column | Girder
I
1st Story | :
width} | 6.579 : 6.914 13.89 | 3.000
Height’ | 0.762 | 0.852 3.000 : 3.000 Mode Eigenvalue at
2nd Story | I No. Optimum
Width 7.069 | 8.397 11.92 | 9.733
Height | 1.164 | 0.876 3.000 | 3.000 1 0.57
3rd Story : : 2 1.77
Width 8.592 | 8.099 12.32 | 6.800
Height 1.338 | 0.982 3.000 | 3.000 3 3.01
4th Story : |
Width 8.592 | 10.29 11.11 : 7.705 4 3.19
Height 1.338 | 1.031 3.000 | 3.000 s 3.74
5th Story | |
Width 9.966 : 10.29 6.175 | 5.580 6 3.96
Height | 1.184 | 1.031 4.832 | 3.000
6th Story | |
Width 10.58 : 10.28 6.837 | 5.391 Initial Design
Height 1.389 | 1.284 3.960 : 3.000
7th Story | I
Width 10.48 | 11.15 6.115 | 5.259
Height 1.572 | 1.389 4,048 | 3.000
8th Story : :
Width 11.71 | 11.87 5.397 | 5.588
Height 1.528 I 1.508 4.111 : 3.000
9th Story :
width | 12.37 | 11.87 | 4.843 | 58628 o E'g’:.‘;;'ﬁ;"‘
Height | 1.762 | 1.508 4.121 | 3.000 :
10th S!Ofy | | 1 17.27
Width 12.26 | 12.37 4.542 | 5.793
Height | 2.014 | 1.762 3.930 | 3.000 2 19.43
11th Sto =
w.dfé’ 12.63 : 12.00 . | 4.296 I 5.457 3 20.05
Height | 2.589 : 1.909 3.671 | 3.000 4 34.22
12th Story | |
Width 12.63 | 12.26 4.035 | 4.953 5 38.44
Height 2.589 | 2.014 3.364 | 3.000
13th Story II : 6 43.81
Width 12.63 | 13.77 3.680 | 4.273
Height 2.589 | 1.889 3.041 | 3.000 _
14th Story | | Optimized Design
width | 13.131 } 14.70 3.000 : 3.000
Height 2.841 | 1.918 3.000 ; 3.000
15th Story | I
Width 13.37 | 15.31 3.000 | 3.000
Height | 2.992 : 1.842 3.000 : 3.000
| |
t Dominant mode at convergence % measured in inches
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CHAPTER 8

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
FOR FUTURE RESEARCH

8.1. Summary

The overall focus of this study has been centered on the development of a new optimal design
methodology to improve strength, stability, and ductility characteristics of structures under single and

multiple loading cases.

Most existing optimal design procedures are based on an “accepted design philosophy”. The
design procedure studied in this report is novel in the sense that it is based directly on stability
considerations and is motivated by observations made on the real nonlinear behavior of structures.
The design procedure dictates what the “design philosophy” should be in order to improve the

performance of the design, and provides a consistent means for studying different aspects of design.

The development of the optimization procedure for planar structures was presented in Chapter
2. The choice of objective was motivated by observations made on the limit and post-limit behavior of
elasto-plastic frames and was based on an approximate model of the nonlinear behavior of framed
structure. The performance of the optimization algorithm was investigated through two example
problems which showed that the procedure not only improves the static response but also can produce
improved designs for resisting strong ground shaking. The optimized designs were analyzed under a
variety of dynamic excitations to demonstrate that the procedure improves the strength, ductility, and
overall stability of a structure. Also, the concept of frequency penalty, which is a useful tool in

avoiding undesirable dynamic effects such as resonance, was introduced.

The design procedure was extended to handle three-dimensional structures under multiple
loading cases with multiple design variables. Three-dimensional design problems yield insight into the
real behavior of the structure and can help avoiding some of the problems that might appear in planar
design procedure such as the need for an out-of-plane buckling constraint. The design methodology
presented was a multiple-objective optimization procedure whose objective function involved the
applied loading vectors, buckling eigenvalues, and eigenvectors of the structure. The
three-dimensional optimization technique proposed was solved using a weighting method. The

weighting parameters g;; were automatically generated from the loading conditions and the buckling
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modes. Multiple objective design optimization results in set of optimized designs that are referred to
as the noninferior design set. The designer can then choose the best design from the noninferior set.
This choice is generally made using information which is not included in the objective function; for
example nonlinear and dynamic analyses. The formulation of the three-dimensional design
procedure was presented in Chapter 4. Several issues concerning the implementation of the design

procedure were also presented and discussed.

One of the novelties of the procedure presented in Chapter 4 is its ability to efficiently model
and optimize structures under multiple loading conditions. This is a very useful tool for design

engineers that are faced with many different loading conditions in every day design problems.

Chapters 5 through 7 are the application three-dimensional optimization procedure to a
two-story frame, a setback frame, and a fifteen-story high-rise building. These frames were optimized
under different loading conditions and various parameter studies were performed which demonstrated

that optimization methodology is a strong tool in obtaining designs with better overall performance.

8.2. Conclusions

The following conclusions can be drawn from the preceding chapter:

® Maximizing the buckling eigenvalues increases the static limit-load of a structure without

degrading the post-limit behavior, increasing overall toughness.

e The optimization procedure based on stability consideration results in a more robust design

compared to an optimization procedure with displacement constraint.

® The optimization procedure developed here improves the performance of the initial design under

multiple loading conditions.

®  The bigger the magnitude of the dominant eigenvalue (one with maximum g;;) at convergence,

the better the final optimized design will behave.

® In general, using more design variables will result in a better behaved optimized design. From
practical point view, however, it makes sense to group elements together to save on labor,

detailing, and fabrication costs.
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The frequency penalty function can help control the vibration spectrum and can be thought of as
a flexible constraint imposed on a design. The frequency penalty may be important in some

applications.

Statically based optimal design results in an optimized design that behaves well under dynamically
applied loads. The optimization method is directly aimed at improving the limit-load and
post-limit slope response of a statically loaded structure but has the consequence of improving the

performance of the structure under dynamic loads.

Maximizing the buckling modes that have a shape similar to the displaced configuration of the
structure will improve the stability performance of the design. Since a large amount of mode
shifting takes place during the first few iterations, it is not possible to know which modes will be
similar to the displaced configuration from the buckling mode shapes of the initial design. If
there is a specific mode that one needs to maximize, it is recommended that a subspace of size

several modes more than the desired mode be chosen.

In general, the more eigenpairs used in the objective function, the better was the performance of

the optimized design.

If a combination of the loading conditions was used to formulate the eigenvalue problem, the
final modes came out distinct. However, if one loading condition was used to formulate the

buckling eigenvalue problem, then the optimum had multiple eigenvalues.

The optimized space frames were interesting in the sense that they usually have passive girder
depth. The tendency is probably due to the fact that deep girders do not add much to the lateral
stiffness of the structure. Physically, the structure is telling us that the optimum configuration is

like having columns tied together with simple beams.

The study on the minimum permissible design variables exposes the fact that the minimum
dimension is important on the post-limit degradation of the structures. The observation reveals
the fact that the post-limit robustness might be weakened with a poor choice of minimum design

variables.

Slender buildings are particularly well suited to the proposed optimization procedure. Since their
behavior is more greatly influenced by geometric effects (P-A effect). Thus, stability, which is

the basis of the optimization methodology, becomes more important.
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8.3. Recommendations for Future Research

There are two major directions that can be pursued for further research: (1) investigating ways
to improve the optimization algorithm, and (2) investigating the application of the optimization

method to practical problems.

One of the components of the optimization procedure is the solution of the eigenvalue problem
which takes a big portion of the computing time of the whole process. To expedite the optimization
process we need to improve the eigenvalue problem solution technique. One possibility would be to
make use of the new generation of supercomputers and their multiprocessing capabilities by modifying
and implementing the solution of the eigenvalue problem and the other parts of the optimization
procedure for such environment. Other possibility would to develop a new procedure that can use,
instead of the eigenvalues and eigenvectors, some other means which would be computationally less

expensive such as a modified version of Ritz vectors.

To preserve the numerical stability of the optimization algorithm during and after reaching the
optimal design, there is a need for a general procedure that can accurately and efficiently calculate
the derivative of the eigenvectors in the case of the repeated eigenvalue. In literature there have been
some work in this area but there is a need for refinement and generalization of the existing methods to

handle cases that one might encounter during optimization in an efficient and systematic manner.

Other fruitful areas for further investigation will be to develop an optimization procedure that
considers material and geometrical nonlinearites in the optimization phase. The present form of the
optimization procedure considers only linear elastic behavior of the structures with aim at improving
the nonlinear behavior of the design. The present optimization procedure is not always robust in
improving the post-limit strength degradation of the structures. Therefore, an optimization algorithm
that can incorporate geometry nonlinearities and inelasticity in the optimization phase might enhance

the robustness of the method in improving the post-limit behavior.

The second direction of the future investigation could be focused on the application of the

optimization to the practical problems.

So far we have developed a working optimization-based design procedure that can produce
designs with enhanced overall structural stability and strength. This design procedure can be used
effectively as a strong research tool to perform computational experimentation and to conduct

parameter studies on various aspects of design for different types of structures from moment-resisting
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frames to eccentrically braced frames, from regular to irregular, from low-rise to high-rise, from
planar to space frames to possibly come up with ways that some the existing design concepts can be
massaged and perhaps lead to simpler and better design criteria to improve stability, strength, and

ductility characteristics of the design.

The following would be some of the possible investigations that can be pursued:

e  Using different earthquake design codes, find the equivalent static lateral load distributions and
apply them to the structure and optimize. Perfo;'m this task for various structures with different
sizes, shapes, and types. Investigate the effect of the load distribution on the perform.nce of the
optimized designs and possibly come up with recommendations on how the load distribution must

be in order to achieve a design with better strength, stability, and ductility character'stics.

® ATC-3-06 gives a guideline on when to ignore and how to incorporate the effect of large
deformation or the P-A on story shear and moments referred to as the stability coefficient
(equation 4-10 of ATC-3-06). This criterion is very important from stability point of view and
needs more investigation. By using the optimization procedure we can perform parameter studies

on different structures to determine the accuracy of the guideline and possibly improve it.

® Using the multiple loading capability of the developed optimization method the effect of
multicomponent earthquake loads on the structures can be investigated to understand and make
recommendations on how to design structures for multicomponent earthquakes. One of the
areas that needs more investigation is the effect of vertical component of the earthquakes on the
buildings. By using the multiple loading capability of the developed optimization method we can
investigate the effect of vertical earthquake in conjunction with the other earthquake components

on the structures by optimizing and examining different structures.
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APPENDIX A

3-D DISPLACEMENT CONSTRAINT OPTIMIZATION
PROBLEM

A.l. Introduction

The aim of this appendix is to develop a structural optimization algorithm based on optimality
criteria to achieve a minimum weight structure that satisfies the displacement constraint. This formu-
lation is an extension of the work done by Khot er al. (1979) where multiple design variables are
considered for cross sectional properties. Since the optimization problem is a nonlinear problem, an
iterative scheme is needed to obtain an optimal design. The optimization algorithm consists of two
main steps. The first step is to analyze the structure to determine its response to the applied loads.
The second step is to reallocate the material in the members so that the weight of the structure is
reduced. The second step is carried out by using a recurrence relation derived from appropriate
optimality criteria methods. The recurrence relation contains unknown Lagrange multiplier that cor-
responds to the displacement constraint. To be able to use the recurrence relation the Lagrange
multiplier must be determined. The numerical method to determine the Lagrange multiplier is devel-

oped based on the constraint equations.

A.2. Formulation

The minimum weight displacement constraint optimization problem to be solved is

MINIMIZE
M
Ve > An(km)im (A.1)
mz=1
SUCH THAT
D;-D; =0 (A.2)
Imn < Xmn < rm,-; (A3)
where M = number of groups of elements with identical cross sectional properties; n = 1, ..., N,

where N, = the number of the idependent design variables, J = number of displacement con-
straints; D; = nodal displacement for jth constraint; 5,- = assigned jth nodal displacement constraint;
Am = area of elements in group m (elements in each group have identical cross sectional properties);
Ly = length of the mth element; xm,, = nth design variable for mth group; ¥ms = maximum permissi-
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ble height of the ath design variable for mth group; x,, = minimum permissible height of the nth
design variable for mth group.

Similar to Chapter 4 this formulation is given in general form that can be specialized for either

rectangular or I-beam cross sections.

Using Eq. (A.1) and Eq. (A.2) the Lagrangian functional can be cast as:

M ]
Lx&) = > AmGxmlm -  &(D; - D)) (A.4)
ms=1 Jj=1

where £; is the Lagrange multiplier corresponding to the jth constraint. It should be pointed out here
that the constraints on the size of the elements given in Eq. (A.3) are not included in deriving Eq.

(A.4). The size constraints are handled efficiently by treating them as active/passive design variables.

Differentiating Eq. (A.4) with respect to design variable xma and setting the corresponding

equations to zero will result in:

aL IAm S, 8D,
- Lo o ; =0 (A.5)
Xmn X mn ~ 12; ‘E; X mn

To determine the sensitivity of D; with respect to the design variable the pseudo-load tech-

nique is used where:

M
Dj= ) UaKmUn (A.6)
m=1]
where K, is the stiffness matrix of mth element, superscript “t" indicates transpose, U, are the
nodal displacement of mth element under of the action of the applied design loads, and U}, are the
displacements of the same nodes due to the action of a unit load applied at node j in the direction of

Uj. Taking the derivative of the Eq. (A.6) gives:

Xmn dXmn

Substituting Eq. (A.7) in Eq. (A.5) and simplifying will result in the optimality criteria

J
Ufn 0% (/mEj
9xmn & (A.8)
3Am =
Xmn

Lm
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To make the formulation easier to understand, simplify Eq. (A.8) as

J
D By = 1 (A.9)

J=1

where Bmp; is strain energy density defined as

Ul :K"‘ Un
Xmn
Ly

s

In Chapter 4, the sensitivity of the stiffness matrix with respect to the design variables was

derived in general form is used here also.

A.3. Recurrence Relations

The optimality criteria are used to modify the design variables in each iteration in terms of

recurrence relations similar to that used in Chapter 4 as:

1 J
22 - £ 0 - ;
Xmn = xml:l + - (; Bma;{,' 1£| (A.11)

J

where «x is the iteration number and r is the step size parameter. The method of choosing the step

length to help with convergence was explained in detail in section 2.5.1.

A.4. Equations to Determine Lagrange Multipliers

In order to be able to use the recurrence Eqn. (A.9), the Lagrange multipliers £ have to be
determined. The Lagrange multipliers are determined by using the condition that after each iteration
the design moves on the constraint surface so that the constraint is satisfied. A set of equations to

determine the Lagrange multiplier can be obtained by linearizing the constraint equation about cur-
rent iterate.
The displacement constraint can be expanded as:
)

C(x) =Y (Dj-D)) =0 (A.12)
J
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Linearizing about the configuration x* one obtains:

M Ny

]
LIClawt = CX) + 3 > > —<—(xmn = Xinn) (A.13)
J

=l m ntlax"m

where the partial derivative of constraint with respect to the design variable Xma can be evaluated by

taking derivative of Eqn. (A.12):

ﬂ.t mn . 61;’” - axﬂ'ﬂl

D

The Lagrange multiplier can be obtained by satisfying the linearized constraint equation at the
new iterate x**'. Substituting Eqn. (A.14) and Eqn. (A.12) into Eqn. (4.35) and making use of

Eqn. (A.10) one gets:

I 3 M Ny A I M Ny A
E E E&kﬁmn;ank mxmaLm = E anj mmemn
0Xmn _ 0Xmn
Jrikalmeln=1 J=lm=1ln=l

. W (A.15)
= 1 Y (Y UnKnUn-Dj)

J=1 m=1

where the Lagrange multipliers have to be positive, otherwise the corresponding constraints are set as

passive.

A.5. Scaling Procedures

After each iteration to satisfy the constraint relationship, it is necessary to scale the design
variables to bring the displacements that violate the constraint to the level of the assigned displace-

ments( D),

The following is a scaling procedure for rectangular members. The same procedure can be
developed for I-beam cross sections. The scaling factor £, such that x;; < x;{, is determined by the

equation:

(A.16)

SRS

where D is the displacement of the node that the displacement constraint is violated the most and D

is the assigned displacement at that node.

157




APPENDIX B

SOME PRACTICAL IMPLEMENTATION ISSUES NECESSARY TO SOLVE
THE BUCKLING EIGENVALUE PROBLEM

B.1 Introduction

Subspace iteration is a standard tool for solving the eigenvalue problems which occur in vibra-

tion and buckling analysis of structures. The buckling eigenvalue problem is given as

K¥Y = GPA (B.1)

Where K is positive definite elastic stiffness matrix, and G is the (possibly indefinite) geometric stiff-
ness matrix. A is a diagonal matrix containing the buckling eigenvalues, and W is a matrix whose

columns are the eigenvectors.

The goal of this appendix is to present an overall view of the subspace iteration algorithm and
to address some practical implementation issues necessary to solve the buckling eigenvalue problem.

For detailed discussion on the subject of subspace iteration the reader is referred to Bathe (1982).

The basic objective in subspace iteration method is to solve for the lowest p eigenvalues and

the corresponding eigenvectors satisfying Eqn. (B.1).

The first step in subspace iteration is the selection of the initial subspace vectors. Initial sub-
space vectors can be generated from an identity matrix, the diagonals of the G matrix, or from a
Krylov basis. The subspace iteratioﬁ method is used to solve for the eigenpairs to be incorporated into
the optimization algorithm where a combination of the eigenvalues is maximized. As a structure is
being optimized, from one iteration to another the buckling eigenvectors of the previous iteration can

be used as the initial subspace vectors of the current iteration.

As subspace iteration progresses the Ritz vectors tend to lose orthogonality. The loss of or-
thogonality among the Ritz vectors can result in floating point overflows or delay in convergence.
Performing a modified Gram-Schmidt orthogonization on the eigenvectors keeps the subspace vectors
linearly independent and orthogonal. The modified Gram-Schmidt orthogonization algorithm em-

ployed can be found in Dahlquist e al. (1974).
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The vector W can be written in terms of initial subspace starting vectors as
Y=2ZP (B.2)

where Z is the vector storing the p starting vectors, and P is a vector. Substituting Eqn. (B.2) into Eq.

(B.1) and multiplying both sides by transpose of Z results in
ZTKZP = ZTGZPA (B.3)

Eqn. (B.3) is equivalent to an eigenvalue problem of reduced size obtained by projecting K as

K=2ZTKZ and G as G = 2TGZ:
KP = GPA (B.4)

The eigenvalue problem (Egn. (B.4)) must now be transformed to a standard form. Since G
matrix is usually indefinite the Choleski factorization is performed on the reduced stiffness matrix as

K=cCCt
Substitute P = C'U and K = CCT in Eqn. (B.4) and simplify
U=C'GC'UA (B.S5)
Next simplify Eqn. (B.5) by defining Gas

G=C'GCT (B.6)

Substitute Eqn. (B.6) in Eqn. (B.5) and reorder terms

UA™ = GU (B.7)

Equation (B.7) is a standard eigenvalue problem which can be solved, for example, by the QL
method to find eigenvectors U and and eigenvalues A™'. The eigenvectors ¥ can be found from

W =ZP = ZC'U. Eigenvalues are simply found by inverting the matrix A™.

Subspace iteration algorithm is converged when the change in all the eigenvalues from one

iteration to the previous iteration is less than the specified tolerance.
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The recommended size of the subspace to improve the convergence of subspace iteration

algorithm is g=min{2p, p+8}. This recommendation is based on vibration eigenvalue problems.
Through experience in solving the buckling eigenvalue problem, it became apparent that a larger

subspace (such as g = 3p) is needed to promote convergence

After convergence the sign of the eigenvectors are checked. If the work as calculated by
multiplying the applied forces on the structure by the corresponding displaced mode shapes is negative
the sign of the eigenvector is changed. This is important from the optimization point view, because if

the sign of the buckling mode shape is not checked after each iteration it will cause difficulties in

convergence of the optimization problem due to flip-flop of the sign.

Steps for a subspace iteration algorithm as defined above is summarized in Table B.1 below.

Table B.1. Subspace Iteration

Step 1. Compute initial subspace vectors Z
Step 2. Perform Modified Gram-Schmidt orthogonization
on vector Z (if necessary)

Step 3. Project G to form G « 2TGZ
Step 4. Project K to form K « 2TKZ
Step 5. Solve eigenvalue problem gp = GPA

a. Factor K = CCT (Choleski factorization)

b. Project G « C'GCT

c. Solve the standard eigen-problem A-'U = GU

by QL algorithm.
d. Compute U = CTP and A < A (Inver)
Step 6. Compute approximate eigenvectors Y = ZPp

Step 7. Check convergence, if not converged go to Step 2.

B.2 References
Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, Inc., Englewood

Cliffs, 1982.

Dahlquist, A.B., A. Bjorck, and N. Anderson, Numerical Methods, Prentice-Hall, Inc., Englewood

Cliffs, 1974.
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APPENDIX C

APPROXIMATE ANALYSIS OF THE POST-LIMIT
RESPONSE OF FRAMES

C.1. Introduction

Elastoplastic structures subjected to gravity loads generally exhibit a limit point with degrading
post-limit behavior when subjected to overloads. Therefore, geometric effects play a fundamental
role in determining the maximum capacity of a structure and its rate of failure. Recent advances in
computational mechanics have made it possible to carry out fully nonlinear analyses of structures, and
effective algorithms exist for tracing limit points and post-limit behavior. However, these methods

give little qualitative insight into the behavior of complex structures.

The approximate method to be developed in this chapter was inspired and generalizes Horne's
approach (Horne 1963) in estimating the nonlinear response of frames. Also, it is to be shown that
an estimate similar to Horne can be obtained without solving an eigenvalue problem. The approxi-
mate method is also an extension of Horne's method to the case of non-proportional loading for
structures in wind and earthquake environments. The formulation presented here is distinguished by
clear statements of both the approximations involved and the sense in which the method approximates
the exact solution. Qualitative insight into the behavior of framed structures is gained both through

the success of the approximation as well as through a spectral analysis of the results.

This chapter starts with the general ideas and features of the nonlinear equations governing the
response of framed structures. The empirical relationships for estimating nonlinear response of
framed structures from geometrically linear response is then derived from a simple decomposition of
the nonlinear equations in conjunction with a hypothesis about the way the internal forces are distrib-
uted in framed structures. Then the strength and the limitation of the method is tested as it is applied
to several example problems. Finally, from the behavioral observations made on the nonlinear re-
sponse of the structures and the from the empirical relationships derived a conclusion is arrived at in
which it will show how one needs to combine and maximize the buckling eigenvalues of a structure to

achieve better designs.
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C.2. Nonlinear Analysis of Frames

The theory and the background material used for the present development can be found in
references by Simo (1982) where he developed a consistent second order approximation to the fully
nonlinear equations governing the response of plane beams; by Simo, Hjelmstad, and Taylor (1984)
where they extended the formulation of Simo (1982) for the nonlinear response of beam theory to
account for inelasticity; and by Hjelmstad and Popov (1983) where they treated the second order
theory explicitly and developed the constitutive equations form I-beam type members. Some aspects
of the theory as is used explicitly for the development of this chapter is explained in the following

sections.

C.2.1. Equilibrium

The equations governing the equilibrium of a beam can be expressed in their weak or varia-
tional form as a statement of the principle of virtual displacements. Accordingly one can define the

following functional for all the admissible variations 5, of the displacement field as:

G(u,m) = JB'Z(u)R(u)ds - jq'qu = 0 (C.1)
r

T

where u = {u, v, y}' denotes the vector of generalized displacements, B(u) = {1 +u’,v', ¢, ¢} is the
strain displacement operator that acts on real displacements u or their variation %, and R = {N, V, M}
is the vector of the internal stress resultants where N is the axial force, V is the shear force, and M is
the bending moment. q = {p, ¢, m)' is the vector of the applied forces with p being the applied axial
force, g being the applied shear force, and m being the applied moment. =(u) is a matrix of strain
gradient operator which reflects the effect of geometry on the equilibrium of the internal resisting

forces R and is approximated to second order as:

1 (v' - xp) 0 xp
Zw) = | -V 1 0 -(1+u’) (C.2)
0 0 1 0
162




where « is the shear coefficient. Note that prime means differentiation with respect to the
argument, and superscript “t" means the transpose of the argument. The integral in Eqn. (C.1) is
taken over the entire volume, I', of the structure and is generally accomplished by summing the
integrals over each element. Equilibrium is satisfied for any configuration in which G(u,n)=0 for all 1.

Errors in equilibrium are measured in a weak sense by non-zero values of G(u,n).

C.2.2. Constitutive Equations

Constitutive equations for stress resultants are discussed in Simo, Hjelmstad, and Taylor
(1984), where the strain resultants, €, is decomposed into an elastic part, €, and an inelastic part, ¢
(Hodge, (1959)). The elastic strains are then related to the stress resultants through the elastic
moduli R = De*, where D = diag[EA, kGA, EI]. The inelastic part is assumed to evolve according to

rate equations of the form:

¢ = t AR (C.3)

- % 4R

where 9J(R) is the yield potential of the member and § is a scalar multiplier which can be determined
from consistency condition. Constitutive relationships having the form described are capable of repre-
senting generalized yielding due to the interaction of all stress resultants. They can be specialized for

particular cross sections.

C.2.3. Nonlinear Analysis of Structures

The equations of equilibrium can be discretized using the finite element method and can be
solved using an incremental procedure with Newton-Raphson iteration at each step. Ramm (1980)
has presented a general summary of algorithms for tracing the response of a structure, including
passage through limit load points. A displacement control procedure was used to carry out the exact

analysis of the example problems.

C.2.4. Approximation of the Nonlinear Load Factor

The aim of the development in this chapter is to estimate the nonlinear response of a structure

subjected to proportional and non-proportional loads from a geometrically linear response. In short,
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it is attempted to approximate the load factor which gives an estimate of the loads equilibrated by the
nonlinear system. The approximate formulation developed here is based on the observation that each
configuration satisfying the linear equations is close to an associated configuration which satisfies the
nonlinear equations. Hence, as the linear behavior is traced, a series of load factors can be deter-

mined which estimates the true external loads that the structure can take as given by the nonlinear

theory.

C.2.5. Decomposition of the Nonlinear Operator

The strain gradient operator which reflects the geometry on the equilibrium of the internal

resisting forces can be split into a linear and a nonlinear operator: E(u) = Z(0) + =(u).

Therefore, the nonlinear form of the equilibrium equation, expressed by Eqn. (C.1), can be

decomposed into linear part and a nonlinear part as:

G(u,m) = I B'(m[Z + E(u)]R(u)ds - Q(q.7) (C.4)
r
where Q(q.7n) = jrf'qu represents the virtual work associated with the external loading and for sim-

plicity the notation E£(0) = Z, and = = E(u) - £, has been introduced.

A matrix of A, can be defined in terms of forces R as:
g

[ 0 0 0 v ]
0 (1-x)N 0 kN
Ag(R) = (C.5)
0 0 0 0
| -V kN 0 -kN |

where N and V are the axial forces and shear force respectively, and x is the shear coefficient. Now

with these definitions the equilibrium equation can be rewritten as:

G(u,n) =IB'(U)EnR(u)dS + IB'{H}Ag(R(uJ)B(u}dS =400 - Q1 =0 (C.6)
r

[




where the external loading 0=AQ¢+(Q, has been divided into fixed part, 0,=Q(q,.,n), (dead loading)
and a part, Qo=Q(qo,m). which is driven by the proportionality factor . The expression given Egn.
(C.6) is a simple statement of the nonlinear equilibrium equations which is used for the following

developments.

Eqn. (C.6) can be linearized about the initial configuration to yield the associated linear equa-

tion of equilibrium:

js'mzon(a)ds -0 - 0y =0 ©.7

r

where by solving the linear equilibrium equations a sequence of geometrically linear load factors, 4, ,

and the corresponding linear displacement & can be obtained.

Substitute 4, and U into the nonlinear operator, the expression for the residual takes the

form:

Gan = [B@ZRGE + [BmARGBWE - 40 - 0, 8
r

P

The best value of the parameters A is the one that corresponds to the smallest error, i.e.
G(u,n)=0. By setting the Eqn. (C.8) equal zero and by assuming that IB'(q)EuR(ﬁ)ds = A0 + 0

one can obtain: r

@ = 4)00 + j B'(1)Ag(R(8))B(u)ds = 0 (C.9)
r

Eqn. (C.9) simply states that the difference between the load carrying capacity represented by
the linear versus nonlinear operator is given by the term associated with the nonlinear part of the

deformation gradient. This expression is approximate because the linear and nonlinear configurations

are generally not identical.

C.2.6. Derivation of the Approximate Load Factor
For most structures with the exception of triangulated structures, it can be observed that the

distribution of axial forces in a structure does not change appreciably as inelasticity progresses. On
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other hand, the moment field can change considerably as the structure strains inelastically. The key
to the success of the approximation is that the bending moment does not appear in the second term of
the Eqn. (C.9) and thus, the redistribution of moment does not affect the approximation. The inter-
nal shear force will change in accordance with their equilibrium relation to the changing moments.
However, the importance of shear is small for most structures. Even for structures such as eccentri-
cally braced frames, in which shear is important, only few of the members are affected by high shear

and hence the aggregate effect of shear on the structure as whole is small.

Assume that the internal axial and shear forces as designated by R = {N, V} can be approxi-

mately represented in terms of their initial linear values and a proportionality factor as:

R(u) = AR; + R, (C.10)

Where R, is a vector of internal forces in equilibrium with [qo,m); and R, which is vector of
internal forces in equilibrium with [q,,m]. Since Ag is linear in terms of stress resultants N and V, it

too can be decomposed into a part contributing to the dead loading and a part contributing to the

proportional loading as:

Ag = AAg(Ro) + Ag(R)) = AAf + A} (C.11)

Substituting Eqn. (C.11) into Egqn. (C.9) and solving for A, the following estimate of the actual

nonlinear load factor is obtained:

ROs = j B*(7) AL B (B)ds
r (C.12)

Qo - jB’('J}A%B(ﬁ)a‘:
r

The variational form found in Eqn. (C.12) is suitable for computation and can be discretized

with a finite element approximation. Therefore, the discrete representation of Eqn. (C.12) can be

obtained as:




_ AQo - H'G,U

4 s
Qo + H'GoU

(C.13)

where U and H are the discrete nodal displacements and their variations, respectively; and G, and G,
are the geometric stiffness matrices and are obtained in the standard way from element shape func-
tions and direct assembly procedures. Note that Gy is the linearized geometric stiffness resulting from
the action of only the forces (p, whereas G, is the linearized geometric stiffness resulting from the

action of only the forces Q.

It will be convenient to characterize the variation in the displacement field as being propor-
tional 1o some displaced configuration of the structure (H= U). An advantage of making the vari-
ation proportional to a displacement vector is that one can define a natural way of measuring the
displaced configuration of the structure with a scalar quantity, [UR=U'GU. In general G is not guar-
anteed to be positive-definite, and thus [|U|| does not define a true norm. However, it does have the
advantage of treating the displacements in a dimensionally consistent manner, and it has been used as

measure of the deformed state of the structure.

Eqn. (C.13) with H=U provide a formula for computing the nonlinear load factor from the
sequence of linear configurations generated from Eqn. (C.7). The second term in the numerator of

the Eqn. (C.13), H'G,f}. vanishes in the absence of dead loading.

C.2.7. Spectral Analysis

Eqn. (C.13) can be studied through a spectral analysis of the system. One consequence of
performing a spectral analysis is the ready identification of the special case studied by Horne (1963).
In addition, the spectral approach provides a convenient framework for characterizing the behavior of
complex systems. By referring to response of a structure to an associated eigenbasis, it is possible to
follow the progress of a few generalized components of the system, and from this information evaluate

some of the approximations that has been made.

The eigenbasis is determined from considering the buckling eigenvalue problem:

K¢ = uGo (C.14)
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where K is the initial elastic stiffness matrix and G is the geometric stiffness matrix of the system. The
method of finding eigenvalues and eigenvectors are discussed in Appendix B. A discrete system with
n degrees-of-freedom will yield n eigenpairs by solving the Eqn. (C.14). In accordance with standard
practice, the eigenpairs are ordered such that |uy| < [pp] < ... , and the eigenvectors are normalized
such that ¢{Gg¢; = §;; where §;; is the Kronecker delta. Note that since tensile axial forces are positive,

the eigenvalues of Eqn. (C.14) will be negative when forces in the structure are generally compressive.

For proportionally loaded structures there is only one initial geometric stiffness and therefore,
there is only one associated eigenvalue problem. A non-proportionally loaded structure has an associ-
ated eigenvalue problem corresponding to the proportional loads and one corresponding to the dead
loads. A set of non-proportional loads are considered which gives rise to a family of associated
eigenvalue problems with G=yGo+G,, in which y is the parameter of the family. As y - 0 the
eigenvalue problem is governed by dead loads only and as y —» < the eigenvalue problem is governed
by proportional loads only. Through example problems, it will be shown that the specific choice of y

is crucial to the success of some of the approximations.

The displacement vector U can be decomposed into components along the eigenbasis induced

by the eigenvalue problem. The displacements can be expressed in terms of spectral ordinates as:

U = ia‘q)’ {ClS}

where a; is identified as the modal participation factors, measuring the components of the displace-

ment relative to the basis {¢;}. The participation factors can be computed from the displacement U

using the formula:

UG (C.16)

ol #,Go;

If the basis {¢;} is normalized with respect to the matrix G, then the denominator of Eqgn.

(C.16) is unity.

Substituting Eqn. (C.15) into the expression for the nonlinear load factor (C.13), noting that

Qo = U'Ry = U'KUj,, one obtains the following expression:
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1 1:.200105#1 - Zzafam', (€.17)

agiaip; + aapy;

where the ag; are the initial linear participation factors, i.e. Ug = ZGQM. and the u; are the ei-
genvalues of the Eqn. (C.14). Earlier it was noted that the eigenvalue problem has been normalized
such that ¢{Gg;=d;;. However, G need not to be either G, or Gy, and hence the parameters

y,“) = ¢iGo¢; and yj; = $/G1¢; have been introduced in Egn. (C.17).

If the first buckling mode behavior is assumed to dominate the response, i.e..a; = 0,

aj=0, i=2, * * * ,n, then under these restrictions the Eqn. (C.17) simplifies as:
Aoy = A(@)agu - ay (C.18)
Qg + ayp

where the subscripts on @, @;, and u are understood to be one; y =¥}, and y, = yl,. Note also
that an approximation having the form of Eqn. (C.18) can be achieved using any of the eigenvectors
in the expression for the nonlinear load factor. This observation is important because the fundamen-

tal mode will not always dominate the limit response of the frame.

Egn. (C.18) degenerates to the expression given by Horne (1963) if only proportional loads
are considered (y; =0, y;=1). Horne has suggested that Eqn. (C.18) provides lower bound on the
nonlinear load factor for moment-resisting frames. However, as demonstrated in one of the exam-
ples, it is found that lower bound character can be spoiled if the selected mode does not actually

dominate the response.

If the displacement of the structure is approximated as proportional to a constant vector,
U =av (not an eigenvector), the preceding derivations apply, except that u is simply the Rayleigh
quotient and not an eigenvalue. The reason for choosing the vector v is that the initial displaced
configurations of the structure under load (Up) will be examined in the examples later. One might
expect that when the chosen assumed shape is representative of the shape at the limit load, then a
good estimate of the limit load can be achieved. Such approximation has the computational advan-

tage of avoiding the solution of an eigenvalue problem.
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C.2.8. Rankine-Type Formula for Limit Load

The limit load plays a significant role in the limit design of structures, and hence its estimation
is of fundamental importance. Plastic design is predicted based on the knowledge of the “limit" load
without any knowledge of the response history. In this section it will be shown that the limit load can
be estimated from Eqn. (2.18). The success of the estimate depends both on an appropriate choice
of the displaced shape and on the invariance of that shape during the course of deformation. The

validity of the estimate will be investigated by examining the spectral analyses of the example struc-

tures presented later.

The limit load occurs when the slope of the load-defamation curve become zero, 1'=0.

Differentiating Eqn. (2.18) with respect to parameter a and setting the result equal to zero gives:

(age + ap)d'Lla) - whi(a) - n =0 (C.19)

where by solving the expression of Eqn. (C.19) limit displacement (&) can be evaluated. Substituting
the Eqn. (C.19) into Eqn. (C.18) and simplifying the expression, one can arrive at the limit load

expression in terms of the slope of the linear response curve evaluated at the limit displacement:

Ly = %[amx(m - nl (C.20)

For proportional loading cases y, is zero and vy, is one which simplifies the Eqn. (C.20) to

Aer = agud'y(@) (C.21)

which is the formula given by Horne (1963). Thus Eqn. (C.20) generalizes Horne's formula for the

case of non-proportional loading.

For some structures, the transition from elastic to plastic behavior covers a reasonably short
range of displacement values, as shown in Fig C.1. As the structure passes through this region the
slope 4’y changes dramatically from the large elastic slope to a very small post-yield slope. The slope
of the linear response at the limit displacement is certainly contained within these bounds. For these
structures, failure will occur at or near the “knee” of the linear curve, which has an approximately

identifiable displacement ap and load level A, (the linear plastic capacity of the structure).
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Fig C.1 Idealized Structural Behavior for Rankine-Type Estimate

The known values of force and displacements can be substituted into Eqn. (C.19) to solve for

the indeterminate slope A';. Solving for 4’y from Eqn. (C.19) gives

Y1 + Yohp (C.22)
Qolt + YoQp

By noting that @ = aplp, and substituting Eqn. (C.22) into the Eqn. (C.20), one can obtain

an estimate of the limit load as

=7 -
Aoy 08 Ryt (C.23)
- PF + ?D‘lp

If the loading condition is proportional, the Eqn. (C.23) reduces to the so called Merchant-
Rankine load of the structure:

5 (C.24)

1
Ap

s
E ]
" |-

where p is the fundamental linear elastic buckling eigenvalue of the structure and Ag is the Merchant-

Rankine estimate of the limit-load.
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C.3. Application to Framed Structures

The remainder of this chapter is devoted to application of the methods derived previously to a
set of examples. The examples will serve to demonstrate the effectiveness of the approximate meth-
ods of tracing the limit behavior of framed structures and to indicate the limitations of the approxi-
mate formulas. Furthermore, the examples will demonstrate that the approximate methods provide a
useful framework for estimating the limit performance of framed structures in general. From all these

example problems one can get insight into the performance of the method and into the behavior of

framed structures.

Six structures covering a wide range of types including moment-resisting and eccentrically
braced frames, low rise and high-rise buildings, proportionally and non-proportionally loaded struc-
tures are analyzed. For simplicity the designation of MRF is used for moment-resisting frames and
EBF is used for eccentrically braced frames. The properties of the most of members used in example

structures are tabulated in Table C.1.

For each example problem an exact nonlinear analysis is performed using the methodology
and finite elements developed by Simo, Hjelmstad, and Taylor (1984). For each of these “exact”
analyses, the solution has been decomposed along the eigenbasis {¢;}, where the basis vectors are
generated from the eigenvalue problem defined by Eqn. (C.14) with G selected from the family of

initial geometric stiffness matrices. The modal participation factors a; are evaluated according to

Eqn. (C.16).

Evolution of modal participation factors as the nonlinear progresses permits one to estimate
the change in the character of the displaced configuration as the nonlinearites take place. One can
also compare the different bases by observing how the same nonlinear response curve reflects on each
basis. Viewing the results in this manner provides an indication as to why and how the approximate
methods work well in some cases but not in the others. A modal decomposition provides a good

qualitative representation of the progress of the solution.

For each frame, the nonlinear load versus displacement history is presented for several cases:
(1) the actual computed nonlinear response designated as “Exact Nonlinear” in the figures; (2) the
actual computed response without nonlinear geometric effect as designated by “Exact Linear”; (3) an

approximation to the nonlinear response using Eqn. (C.13); and (4) an approximation of the non-

linear response using Eqn. (C.18).




The finite elements used in these analyses were all C° quadratic elements. Each structural
member was discretized using two of these elements. Inelasticity of the elements accure due to the
interaction of shear force, axial force, axial force, and bending moment. The computational model is
a viscoplastic penalty approach to model perfect elastoplasticity. The yield function used in these

computations was:

Y(n,v,m) = Im| + n2(14v2) + v* - 1 (C.25)

where n = N/Ny, n = VIV,, and n = M/M, are the axial force, shear force, bending moment normalized
by their fully plastic values. Each stage of computation is iterated using a Newton-Raphson iteration
scheme to satisfy the equilibrium within a specified tolerance of the Euclidean norm of the out-of-bal-

ance forces. The following is a discussion on the result of the analyses.

MRF-1 is the first frame studied which is a two-story, single bay, moment-resisting frame with
tall stories. The beam members with W14X53 and columns are of type “column”. The frame MRF-1
was proportionally loaded as shown in Fig. C.2 with two vertical loads of 5\ applied to the top story
and one lateral top story load of magnitude A. Fig. C.2 presents the results of various analyses as were

performed on MRF-1 along with the spectral evolution of the exact nonlinear solution.

The linear elastoplastic response of the structure shows a typical multilinear force-deformation
behavior, with the changes in slope corresponding to the formation of plastic zones in the structure.
Because of the heavy vertical loads and slender columns, the actual capacity of the structure is greatly
reduced from the linear “collapse load”. Both Eqn. (2.13) and Eqn. (2.18) gave excellent approxi-
mations of the nonlinear behavior of the frame. Note in particular the accuracy with which the
post-limit behavior of the frame is traced by the approximate methods. From the figure of the spec-
tral evolution of the participation factors, observe that the first buckling mode dominates the response

throughout the analysis.

MRF-2 is a five story, single bay, moment resisting frame with W14X53 beams and W14X48
columns. The loading of the frame was similar to that of frame MRF-1 with the loading applied to the
top level of the building. The response of MRF-2 is shown in Fig 2.3. Again, both approximate
methods worked well. Eqn. (2.13) gave a more accurate estimate of the response near the limit load
than does Eqn. (2.18). Since the columns are not as slender as the ones in MRF-1, the reduction in

load carrying capacity due to geometric effects is not as dramatic as it was for MRF-1. However, the
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slope of the post-limit response curve is steeper indicating poorer post-limit behavior. The initial
response was dominated by the first mode and the second mode contributes more as the structure

settles into its final collapse deformation mode.

MRF-3 is also a moment resisting frame and has the same topology as MRF-1. This frame is
different from the previous frames in that the vertical loads are gravity loads instead of proportional
loads. The lateral loads at the two-story levels were equal and increased monotonically in accordance
with the proportionality factors. Such a loading would be representative of a building structure sub-

jected to earthquake or wind loads.

The response of the structure under the applied loading is shown in Fig 2.4. The initial
displacement is due to presence of the dead loading, while the proportionality factor is still zero. Two
different approximations as applied to the Eqn. (2.13) were considered. Two different approxima-
tions differ only in the choice of the form of the variation in displacements H. In one case, H is taken
to be proportional to the initial displaced configuration U. Both approximations gave good estimate of
exact nonlinear results but demonstrated that the method depends on the choice of the vector repre-

senting the variation in displacements.

The results obtained from Eqn. (2.18) are shown in Fig. C.4(b and c). Three different meth-
ods of calculation were used: (P) a and {u, ¢} were computed using only the proportional part of the
geometric stiffness; (D) a and {u, ¢} were computed using only the dead part of the geometric stiff-
ness; (P+D) a and {u, ¢} were computed using the geometric stiffness G =4.,Go + G;, where A, is the
actual limit load of the structure. Case (P+D) worked well for this problem whereas cases (P) and (D)
did not. The reason that the case (P) and (D) performed so poorly can be seen by examining the
spectral evolution of the modal participation factors. Three different versions of this history are
shown in Fig 2.4(d-f), corresponding to geometric stiffness matrices and associated eigenvectors of
cases (P), (D), and (P+D). The first eigenvector for the case (P) contributes very little to the re-
sponse. The first eigenvector for the case (D) is orthogonal to the displaced configuration of the
structure. Eqn. (2.13) was also tried using mode five for the (P) case and mode six for the (D) case.
The results for the these cases were also poor. It is interesting to observe that, while mode one of the
(P) and (D) cases did not contribute to the response, mode one of the (P+D) case dominated the
response as it passed through the limit load. The obvious shortcoming of the method represented by

case (P+D) is that the limit load is not known in advance. However, it is possible to estimate the limit
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load from the Rankine approximation. The method that uses Eqn. (2.13) does not suffer from
ambiguity that Eqn. (2.18) does and does not require an advance knowledge of the limit load.

One conclusion that can be made is that it is not the vector v that is important to the approxi-
mation, but the matrix G used in computing the norm of the displacements. To verify this conclusion,
the initial displacement v=U, was employed in Eqn. (2.18) with (P+D) geometric stiffness. The
results for this case were found to be indistinguishable for the curve H=U, shown in Fig. C.4(a).

MRF-4 is an eight-story, single bay moment resisting frame similar to the one analyzed by
Korn and Galambos (1968). Similarly to MRF-3, this frame was subjected to both proportional and
non-proportional loads. The member types used are tabulated in Table C.2. The topology and the
loading used along with the response of the structure are shown in Fig. C.5. MRF-4 was subjected to

the same analyses as was MRF-3.

Observe from Fig. C.5(a) that Eqn. (2.13) estimated the true nonlinear solution well. As was
true for MRF-3, Eqn. (2.18) gave meaningful results only for the case (P+D) where the geometric
stiffness matrix has y equal to the limit load of the structure. Contrary to MRF-3, this frame had a
good result for the case (D) in which only dead loads were used for the geometric stiffness. The
reason for this behavior is clear upon observing the modal participation histories for the various cases
as shown in Fig. C.5(d and e). The case (D) showed a history of modal participation factors almost
identical to the (P+D) case. The first mode did not contribute significantly to the response. The
success of case (D) can be considered coincidental. Again the initial displacement v=U, was used in

conjunction with the (P+D) case and was found to give excellent results.

EBF-1 is a three-story, single bay, eccentrically braced frame with an eccentricity of e=22
inches. The frame was subjected to proportional loads at the top level. The topology along with the
various computed response of the frame to the applied loading are shown in Fig. C.6. Both approxi-
mate methods gave a reasonable representation of the actual nonlinear behavior of the structure.
Eqn. (2.13) slightly overestimated the response, while Eqn. (2.18) slightly underestimated the re-
sponse. Both methods accurately reproduce the post-limit slope of the response curve, and give a
correct representation of the rate of loss of carrying capacity of the structure. The method based on
Eqn. (2.18) can be improved by noting that the structure responds predominantly in the third mode.
The result of using the third mode in Eqn. (2.18) is also shown in Fig 2.6.

EBF-2 is a three-story, two bay, eccentrically braced frame having W14X43 beams,

ST8X8X(5/6) braces, and W14X132 columns except for the bottom story interior column which is a
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W14X426 section. The topology of the frame along with the proportion loads and the result of the
different analyses are shown in Fig. C.7. The eccentricity of the frame was e=48 inches. Observe that

Eqn. (2.13) gave good estimate of the exact nonlinear behavior of the structure.

An interesting feature of the response of this structure is that modes four through nine has the
greatest participation to the displacement field. In addition, modes four and five shift in importance
as the deformation passed the limit-point. The computation using Eq. (2.18) were carried using mode
one, four, and nine. It is clear that used of mode one does not give good results, and in fact, violates
the lower-bound character suggested by Horne. Usiné either mode four or mode nine gave a better

representation of the response than mode one.

C.4. Conclusions

An approximate method for tracing the nonlinear behavior of framed structures has been
developed. The validity of the approximate method was shown through several examples with wide
variety of types and properties under proportional and non-proportional loading cases. The approxi-

mate method is an extension and an improvement over the previous work done by Horne (1963).

The approximate method not only can trace the nonlinear behavior of a framed structure
accurately, but also gives an insight into real nonlinear behavior of structures. The approximate
method and the subsequent spectral analyses of the example problems demonstrated the role of geo-

metric stiffness matrix in the nonlinear response and clarified the issue for non-proportional load

case.
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Table C.1. Member Properties

Stiffness Properties (x 10°%)

Yield Properties

Frame
EA xGA El No Vo M,
(k) (k) (k-ft2) (k) (k) (k-ft2)
W14X43 365 183 86.2 449 83 206.3
W14X48 410 205 97.2 510 S0 2333
W14x53 425 266 108.9 560 102 260.4
W14x132 1125 563 308.1 1409 183 71.0
W14X426 3625 1813 1329 4705 610 2726.0
ST8X8X 1200 600 208.3 1650 500 583.3
*Column” 1200 600 208.3 1650 500 583.3
Table C.2. Frame MRF-4 Properties
Story Column Beam

1 W14X99 W14X38

2 W14X90 W14X34

3 W12X79 W14X30

4 W10X49 W12X26

5 W8X35 W12X22

6 wW8ax31 w10Xx22

7 wWg8Xx31 wBXx21

8 wWeXx20 wW8x18
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Table C.3. Summary of Results

Frame

Approximate Acr

Normalized Rankine Estimates
of Limit Loads

Approximate Acr

Exact der Exact Acr
v = Up v=g¢
MRF-1 1.009 1.187 1.164 0.881
MRF-2 1.001 1.041 1.004 1.000
MRF-3 0.997 1.412 1.407 0.942
MRF-4 1.005 1.095 1.064 0.916
EBF-1 1.045 1.123 1.086 1.499
EBF-2 0.984 1.047 0.998 0.929
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APPENDIX D

SENSITIVITY OF GEOMETRIC STIFFNESS MATRIX

D.1. Formulation

The weak form of the equilibrium equations can be expressed as (Simo et al. 1985):

L L
Gu,n) = jR.DA.qu - Iqq;dx - [q,ﬁ],ﬂ (D.1)
0 0

where u = [u, v, 9]’ denotes the vector of generalized displacements, dg denotes those directions at x
= 0 and x = L subject to applied tractions, ¢, is the transversally applied load, #n is a displacement
field satisfying the displacement boundary conditions, and R = [N, V, M]® denotes the stress resul-

tants conjugate to the strain measures 4 = [4n, 4y, 4,])" which is expressed as:

1 1
An = u' + 5(u')1 -~ -ixﬁ‘
Ay =V = (1+u')y (D:2)
=y

where f = v' -y and « is the shear coefficient.

By defining the operator w— B(w) = [u',v', ¥, ¥]" and noting (D.2), the expression for

directional derivative of the strain measures can be written in the explicit form:
Di.n=ZE(u)B(n) (D.3)

where the matrix Z(u) is a matrix of strain gradient operator which reflects the effect of geometry on
the equilibrium of the internal resisting forces R and is approximated to second order and was given in

Eqn. (C.2) of Appendix C.

The geometric stiffness matrix was obtained by linearizing the weak form In Appendix C as:

L
G = [BmARBuE: (D.4)
]
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where A, is given in Egn. (C.5) and can be split into shear and axial parts as:

[ 0 0 0 0o [0 0 0 - ]
. 0 (1-x) 0 X 0 0 0 0
A = AY = (D.5)
0 0 0 0 0 0 0 0
[ 8 X 0 "=« | =" 0 0 g 9

Therefore, the geometric stiffness matrix can be written as:

L L
G = NJB'(q)A;‘B(u}d; + vJ'B'{q)A;’B(u)d.x (D.6)
1]

0
Using a numerical integration scheme the geometric stiffness matrix G can be found as:

NGP

G = 52 NijB'(§)AFB(E) + VyB'(E)AFB(E)|w; (D.7)

J=1
where N;; = axial stress resultant of element / at gauss point j, £; = normalized coordinate at gauss

point j, w; = numerical integration weighting factor, and NGP= the number of gauss points.

Taking the derivative of the geometric stiffness Eqn. (D.7) with respect to the design variables gives:

NGP
360 o LS| NyaB'@ANB@E) + VyaB'E)AYBE)| w (D.8)
axx 2}.3‘ 1B ) 1 e ] ] J

In order to determine the sensitivity of the geometric stiffness with respect to the design variables, we

need to determine the sensitivity of the axial and shear resultant forces (Ny;x and Vj; )

The resultant forces can be written as:

R = DZB(y) (D.9)
where D=diag[EA, kGA, EI] being the elastic compliance matrix. Following the standard finite ele-
ment discretization procedure, the displacement u = [1,v, ¥]’ can be interpolated as:

nel

u(x) = Z haUa

(D.10)
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where nel is the number of the nodes per element, h, (x) are the C? interpolation functions, and
U, = [U,V,¥]" are the nodal displacements. From the interpolation (D.10) the operator B is given

by:

N
B= ) B(U, (D.11)

a=l

where B(x) is given by:

h, 0 0
0 h'a 0
B(x) = (D.12)
0o o0 h'e
| 0 O &, |

Substituting Eqs. (D.11) and (D.10) into (D.9) and taking the derivative gives:

nel nel
Ry = D= > By(x)Up + DE D By(x)Up (D.13)
P P

To determine the derivative of the nodal displacement vector consider the discrete form of

force displacement relationship:

KU = F (D.14)

where K is the elastic stiffness matrix, and F is the nodal force vector. Taking the derivative of Egn.

(D.14) gives:
Ux = K'KU (D.15)

Substituting Eqn. (D.15) into Eqn. (D.13) we can determine the derivative of the stress resultant

forces as:
nel nel
Ry = D_,;EZ Bp(x}UP + DEZI?,(:)(K"K’*U)P (D.16)
P P

where R ¢ = [N, Vi, Mx)'. Having (D.16) the sensitivity of the geometric stiffness matrix can

easily be determined from Eqn. (D.8).
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