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ABSTRACT 

Light bracing composed of a tension plate welded to the web of a 

column or beam section is employed quite often in the design of steel 

structures. Generally, the strength of the web in carrying the tensile 

load is of primary concern . There are two analysis procedures which 

have been suggested for the strength analysis of the web. The first 

is an elastic method suggested by Blodgett, and the second, an ulti

mate strength yield line method proposed by Kapp. 

Experimental tests of these connections have indicated that the 

strength of these connections are, in general, much greater than the 

strength predicted by either the elastic or the yield line theories. 

A post-elastic analysis is conducted in this study using the finite 

element technique to determine the elastic-plastic behavior of this 

type of connection. 

An evaluation of the data generated by a computer model using a 

plate bending element developed in this paper indicates that yielding 

in the web develops in broad regions, and not along narrow yield lines 

as assumed in the yield line theory. In addition, the assumption of 

small deflections is shown to be invalid even at design loads obtained 

from the yield line theory. Experiments have shown that these large 

deflections lead to actual collapse loads two to four times larger 

than the yield line collapse loads. Thus, it is concluded that the 

yield line theory is not applicable for the analysis of this type of 

connection. 
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The main recommendation of this study is that. in cases where 

small deflections are essential. Blodgett's elastic method can be used 

to obtain design loads. However. if deflections are of minor concern. 

Kapp's yield line method can be utilized and leads to conservative 

values of design loads . 

Finally. some suggestions are made for future research. 
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CHAPTER I 

PROBLEM DESCRIPTION 

In the design of steel structures, light bracing of the type 

depicted in Figure 1.1 is frequently employed. When designing this 

type of tensile member, the usual procedure is to size the connection 

and assume the tension transfer. This approach, while appropriate for 

sizing the tension member and weld, neglects the strength of the web. 

Blodgett (1) has suggested an elastic analysis procedure which 

takes into account the capability of the web in carrying the load. 

The method is straightforward, albeit, overly conservative. Abo1itz 

and Warner (2) introduced the yield line concept for the analysis of 

these connections in 1965. Stockwell (3) later extended this theory 

to the analysis of welded beam-to-co1umn connections. Shortly there

after, the technique was refined further by Kapp (4) who, then, 

extended his refinements to the analysis of the bracing connection 

(5). In his work, bounding solutions of ultimate load are determined 

by first assuming the flange-web juncture to simulate a simple-support 

and then assuming full-fixity. It is shown through design examples 

that the web may not be adequate to carry the tensile load within the 

assumptions of the yield line theory (i.e., yielding occurs along 

narrow bands, deflections remain small and the material is e1astic

perfectly plastic) . 

The lack of experimental data concerning the strength of this con

nection group prompted a pilot research program that was conducted at 
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(0) Welded Connection 

(b) Bolted Connection 

(c) Stiffened Bolted Connection 

Figure 1.1. Typical Light Bracing Connections 
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Clemson University (6). Experimental tests indicated that the strength 

of these connections were, in general, much greater than predicted by 

the yield line theory. Moreover, the deflected shape of the web, when 

loaded in the post-elastic range, showed signs of yielding in broad 

bands rather than along narrow yield lines. Based upon these tests, 

it seems that the yield line theory may not be applicab le to this 

class of problems. In fact, none of the previously cited techniques 

appear to accurately predict the development of the yield pattern or 

the load carrying capability of the connections in the plastic range . 

In as much as the ultimate strength design is becoming an inte

gral part of structural engineering, an in-depth understanding of con

nections designed for post-elastic strength capability becomes essen

tial. As such, the motive and objective for this study is to shed 

further insight into the behavior of the aforementioned connection 

group in the plastic range by use of the finite element technique. 

Details about the finite element model, along with the material 

elastic-plastic constitutive relations, yield criteria and solution 

method are presented in Chapter II. The elastic-plastic solutions 

for some typical connections are presented in Chapter III, with an 

evaluation of the data and current design practices given in Chapter 

IV. In Chapter V, conclusions with respect to the appl icability of 

the yield line concept are made in addition to suggestions for further 

research in this area. 

3 
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CHAPTER II 

SOLUTION PROCEDURE 

There are two possible approaches that can be taken when attempt

ing to solve any structural problem. For most situations an exact 

solution is possible (in the form of tables or graphs). However, as 

the level of complexity increases, the ability to formulate and solve 

problems in an exact manner diminishes quickly. It is then that 

approximate (numerical) techniques must be employed. An elastic

plastic analysis generally falls into this category. 

The two major tools available to the analyst are the 'finite 

difference' and 'finite element' methods. The former utilizes a 

technique whereby the governing partial differential equations are 

solved numerically. The later method, first introduced in the mid-

1950's, involves partitioning a continuous system with infinite 

degrees of freedom into a finite number of subdivisions (or elements). 

The governing differential equations are solved exactly within each 

element. For each element, the stiffness is obtained by applying any 

one of a number of variational principles. Superposition of the indi

vidual stiffnesses forms the structural stiffness from which the solu-

tion for displacements, stresses and strains is readily found. 

For this study the finite element technique is employed. The 

primary advantages are the relative ease of its application and the 

diverse nature of the problems which can be readily solved with it. 
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Displacement Method 

The variational principle primarily used in finite element analysis 

is that of Minimum Potential Energy. The principle states that of all 

possible displacement states, the one to which the loaded structure will 

deform is that which yields the smallest value for the potential energy 

and satisfies the differential equations of equilibrium. The Minimum 

Potential Energy Principle is actually a statement of the principle of 

virtual work and shall be used as such in subsequent developments . 

This approach is commonly referred to as the 'displacement' or 

'stiffness' method. The method entails assuming a displacement func

tion which uniquely describes the displacements within the element in 

terms of nodal point displacements. From geometric and material con

stitutive relations, stresses corresponding to the nodal displacements 

are determined. By application of the virtual work principle, nodal 

forces are derived which equilibrate the stresses distributed along 

the element boundaries. Carrying out these operations yields a rela

tionship between nodal point forces and nodal point displacements. 

This relationship is defined by the stiffness matrix for the element. 

The stiffness matrix for the total structure is obtained by a 

sytematic addition of the stiffness matrices of individual elements, 

and yields a set of equilibrium equations for the total structure rela

ting nodal forces to nodal displacements . This assemblage renders 

only an approximation of the actual stiffness of the structure being 

modelled. However, for any finite element, there exist certain require

ments which, when met, will generally guarantee convergence to exact 

solutions with decreasing element size . The mandatory criteria are 

1. The displacement field within an element must be continuous 
(i.e., do not use terms such as l/r, l/x, etc.) . 
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2. The displacement field must be able to model a state of 
constant strain (or curvature, in the case of plate bending). 

3. Rigid body translation must be possible (i.e . , include 
constant terms in the displacement function). 

4. Compatibility of displacements (slopes) should generally 
exist between elements. 

5. The element should have no preferred direction. This can be 
met by using 'complete' polynomials as displacement fields 
within an element. 

Of the above criteria, all must be met except for requirement 4. 

It has been found that this condition for convergence is violated by 

many successful elements. This is believed to be a result of the 

satisfaction of requirement 2. In other words, elements satisfying 

requirement 2 also satisfy requirement 4 in the limit of mesh refine

ment as each element approaches a limit of constant strain (or 

curvature). 

6 

Further, incompatible elements (i.e., those not satisfying require

ment 4) are often found to out-perform related compatible elements when 

working with meshes of practical size. This is due to the fact that 

discrete elements stiffen the system, whereas, non-compatibility of 

displacements makes the system more flexible . Each effect tends to 

cancel each other resulting in a model which closely approximates the 

true situation. 

Elastic Stiffness of a Rectangular Element 

The linear theory which will be employed throughout this develop

ment is commonly referred to as the small deformation theory of thin 

plate bending which assumes, in part 

1. The plate is flat before and after deformation (i . e., 
curvatures « 1). 
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2. The plate thickness is small compared to its other 
dimensions. 

3. The deflections are small compared to the plate thickness 
(on the order of one-third to one-half the plate thickness). 

4. There is no straining of the middle surface of the plate. 

S. Normals to the middle surface remain normal after deforma
tions (transverse shearing is ignored). 

With these limitations in mind, a relatively simple rectangular 

finite element can be developed for the elastic-plastic analysis of 

plate bending problems (Figure 2.1). This particular element was 

first proposed by Zienkiewicz and Cheung (7). 

This element has three degrees of freedom per node that leads to 

a displacement function within the element which requires twelve con

stants. This displacement function can be given by 

2 w = al + a2x + a
3
y + a

4
x 

+ agxy2 + al oY3 + 

+ asxy + a6y2 + a7x3 + aax2y 

3 3 allx y + a12xy (2.1 ) 

Note that this is a complete cubic polynomial with the addition of two 

fourth-order terms to allow the inclusion of the last two coefficients 

all and a12 · These two terms maintain the non-directionality of the 

function so their inclusion is permissible (requirement S of the con

vergence criteria). 

7 

By using nodal values of slopes and displacements only in the 

development of this stiffness matrix, the displacement along any 

boundary of the rectangular element can be uniquely defined. However, 

this does not lead to identical normal slopes for two adjacent elements 

along a given boundary. Consequently, there is no inter-element com-

patibility of normal slope, and the displacement function chosen 

renders a non-compatible plate bending element. Nevertheless, it will 
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9 

be shown later that the constant curvature criterion (requirement 2 of 

the convergence criteria) can be met by Equation (2.1) leading to the 

conclusion that convergence to a correct so l ution is assured. 

The deflection vector for node i, for example, is given by 

{ r. } = 
1 { 

w. 

= (aw/~Y) i 

(- aw/ ax)i 
(2.2) 

Taking the indicated partial derivatives and specializing for each 

node results in the relationship 

{r} = [C] {a} 

where 

1 xi Yi 
2 

xi xiYi 
2 

Yi 
3 

xi 
2 2 3 3 x.y. x.y· Y; xiYi 1 1 1 1 

[C] = 0 0 1 0 xi 2y. 
1 

0 
2 

x; 2xiYi 3/ 
1 

x~ 
1 

0 -1 0 -2x. 0 
2 2 

0 
2 -yo -3x. -2x .Yi - y. -3x.y. 

1 1 1 1 1 1 1 

(same as for node i; permute subscripts i-j-k-l) 

{r} 

(2 .3) 

3 
xiY i 

2 
3xiYi 

3 -yo 
1 

(2.4) 

(2.5) 

(2.6) 

It should be pOinted out that in order to facilitate integration, which 

will be required later, a local coordinate system is used throughout 

this formulation, in which the centroid of the rectangle is taken as 

the origin as shown in Figure 2.1. Solving Equation (2 . 3) for the dis-

placement function coefficients results in 

{ a } = [Cr 1 {r} (2 . 7) 

By geometric and material relationships, it can be shown that the 

moments and curvatures are related by 
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Mx - l w/ a/ 
3 3 

{M} = My = !:t..- [D]e - a2w/ a/ = h [D]e { K} , (2.8) 
12 12 

MXY 2a2w/ axay 

where 

[
1 \I 0 J 
\I 1 0 
o 0 (1- \1)/2 

K = curvature vector, 

h = plate thickness. 

The curvature vector is found by taking the indicated partial deriva

tives of Equation (2.1), which yields 

{K} = [Q] {a } = [Q] [Cr 1 {r } 

In Equation (2.9), [Q] is given by 

[Q] = [[Qo] : [Ql] : [Q2]J 

in which 

[Qo] = a (3x3) null matrix, 

[Q,l "l: : -lJ 

, 

-6x -2y 0 0 -6xy 0 

o 0 -2x -6y 0 -6xy 

o 4x 4y 0 6x2 6y2 

(2.9) 

(2 . 10) 

(2.11) 

(2.12) 

From Equation (2.11), it is seen that the criterion for constant cur-

vature is met (i . e., in the limit of mesh refinement, [Q2] tends to 

zero leaving only [Ql]) · 

Applying the principle of virtual work, which states that the 

work performed by external nodal forces {F} acting through a virtual 
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nodal displacement must equal the internal work of virtual deformations, 

leads to 

area 

Using Equations (2.8) and (2.9), {M} can be expressed as 

and 

which upon substitution in Equation (2.13) leads to 
3 

{F} = ~ [C]-lT f [Q]T [D]e [Q] dA [C]-l 

where 

area 

Equation (2.16) is of the form 

3 
[k]e = ~ [C]-lT f [Q]T [D]e [Q] dA [C]-l 

area 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2 .17) 

which is the elastic stiffness matrix for the rectangular plate bending 

element. An explicit expression for the integral has been derived 

and can be found in Appendix A. 

Elastic-Plastic Constitutive Relationships 

In this study, the material is assumed to be elastic-perfectly 

plastic. To ensure this, three aspects of the material behavior must 

be defined: 

1. The elastic constitutive relations, 

2. The criterion which will determine the transition from the 
elastic to plastic state, 

3. The plastic constitutive relations . 
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Plate bending is a plane stress condition, for which one normal 

stress and two shearing stress components normal to the plane of the 

plate are negligible. Consequently, the stress-strain state can be 

given by the corresponding vectors 

12 

{a} n _ a
y (2.18) 

and 

is 

axy 

{e:} = i:U (2.19) 

Elastic Constitutive Relations 

For the elastic case, the well-known stress-strain relationship 

E 
{a} = -:---2 

l-v ~ 
v 

v 1 

o 0 

(d (2.20) 

for which the moment-curvature relationship is given by Equation (2.8). 

Yield Criterion 

The yield criterion is the condition which defines the limit of 

elasticity for a material under any combination of stresses in addition 

to its post-elastic behavior. The two yield criteria which are 

generally noted in the literature are those of von Mises and Tresca. 

The Tresca yield criterion is based on the assumption that the 

maximum shearing stress governs yielding. A plot of the resulting 

yield locus in plane stress is a hexagon in the (x,y)-plane 
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(Figure 2.2). This criterion has primarily been found to apply in the 

study of non-ductile materials. such as cast iron. 

The von Mises yield criterion is based on the premise that yield

ing begins when the elastic energy of distortion (shearing) reaches 

a critical value. As a result. it can be seen that hydrostatic stress 

states have no effect on the commencement of yielding (8). For most 

ductile materials acted on by moderate hydrostatic stresses. this will 

be found to be fairly accurate. As such. experiments have shown that 

the von Mises yield criterion holds reasonably well for ductile 

materials but overestimates the initiation of yielding in a non

ductile material. For this study. A36 steel (a ductile material) is 

used and. as such. the von Mises criterion shall be assumed in the 

plastic state. 

13 

The von Mises yield criterior can be written for a two-dimensional 

stress s ta te as 

(2.21) 

or 

(2.22) 

where 00 = the yield stress of the material in simple tension. and 01 

and 02 are principal stress components. A plot of Equation (2.21) is 

seen to be an ellipse which encloses the yield loci of the Tresca 

criterion as shown in Figure 2.2 . 

Plastic Constitutive Relations 

Plastic flow takes place once the stresses reach the yield surface. 

This plastic flow is generally taken to be governed by the Prandtl

Reuss theory (8. 9) which states that the rate of change of the plastic 
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strain dC~j' at any instant, is proportional to the instaneous stress 

* deviation 0ij' This can be expressed mathematically as 

15 

dCfj = 0ij dA , (2 .23 ) 

in which dA is a non-negative constant of proportionality. 

Yamada (11) has developed an explicit expression for a plastic 

stress-strain matrix which is derived by inverting the Prandtl-Reuss 

equations in plasticity theory. The matrix is simple, straightforward 

and facilitates the incremental treatment of elastic-plastic problems. 

Assuming a non-strain hardening material, this matrix is given by 

where 

and 

[D]P = I 
1; 

2 
n = 0xy/(l+v), 

SYM. 

c = s2 + 2 s s + s2 .. x x y y 

~ = ~ + 2( 1 - i)n , 
1 

Sx = 3 (2ox - 0y) 

1 Sy = 3 (2oy - ox ) 

-s s + 2\111 
X Y 

1;/[2(1 + v )] 

(2.24) 

*Dubey (10) has proposed a new incremental flow theory which is 
a modification of this classical flow theory. His concept shows 
promise but has yet to be verified. 
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Sandwich Plate vs. E1asto-P1astic Plate Element 

In the literature there are primarily two lines of thought con

cerning the e1astic-to-p1astic phase of the plate analysis problem. 

Some researchers (12, 13) have utilized a simplified model commonly 

referred to as a 'sandwich' plate model, which is shown in Figure 2. 3 

along with the sign convention for moments used in this study. It is 

composed of a core material, which carries all of the transverse 

shear, sandwiched between two thin cover plates, which support only 

membrane stresses, whose middle surfaces are separated by the real 

plate thickness, h. For the purely elastic situation, an exact 

equivalency is possible with the homogeneous thin plate if the cover 

plate thickness is taken as one-sixth the thickness of the true plate . 

The sandwich plate arrangement simplifies the inelastic analysis 

considerably . The cover sheets are composed of an elastic-perfectly 

plastic material that obeys the yield conditions and the plastic flow 

criteria presented in the previous section. In the comp letely plastic 

state, equivalency of an homogeneous plate to a sandwich plate can be 

established by taking the thickness of each cover plate to be equal 

to one-fourth the thickness of the real plate. As such, the plate 

element is taken to be either completely elastic or completely plastic 

with no provision made for a transition from one state to the other. 

A preliminary study conducted with this type of formulation pro

duced ultimate loads that were much smaller than those predicted by 

Kapp's yield line theory (5) which gives an upper-bound solution. 

While the development of the yield patterns were as expected, it was 

found that the sandwich model is too flexible and that a transition 

of some form is required. 

• 
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Other researchers (14, 15) have applied a more exact technique of 

layering the plate into a discrete number of plane stress elements. 

The elastic-plastic state of each layer is determined and numerical 

integration is carried out to form the stiffness of the super element. 

This method, although quite accurate, is nonetheless prohibitive in 

terms of computer storage and execution time requirements. As such, 

another approach which incorporates the simplicity of the sandwich 

model and much of the accuracy of the layered-element model has been 

developed in this study. 

The basic concept of the new model is that the plate element, 

after it reaches the plastic state, is divided into two regions. The 

outermost regions are represented as plastic fibers and the inner 

region is composed of the remaining elastic fibers through the plate 

thickness. The determination of the bending stiffness for the elasto

plastic plate element is explained in the following section. 

Plastic Zone Extent Factor 

For the small deformation theory being used in this study, the 

assumption is made that plane sections remain plane after deformation. 

A direct consequence is that all strains vary linearly along the depth 

of the plate. 

18 

Within the elastic region of the partially plastic section, 

stresses reach a level such that the von Mises yield condition is just 

satisfied. All fibers located at a depth greater than this 'initial 

yield' depth are already plastic. If one defines the equivalent stress 

as 

(2.25) 
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then, aeq is equal to the yield stress ao in the plastic portion and 

less than ao in the elastic portion of the plate cross-section. 

The stresses within the elastic portion of the cross-section may 

be related to the strain by the well-known elastic stress-strain rela

tionships and are given by 

a = X 0* (EX + VEy) 

19 

a = y 0* (Ey + VEx) (2.26) 

axy = 0* (1 - v) Exy 

where 

0* = E/(l - i) 
Substituting Equation (2.26) into Equation (2.25) gives 

in which aeq is less than or equal to ao' 

Expanding and collecting terms leads to 

(1_v+v2)( E2+E2) - (1_4v+v2) E E + 3 
x Y X Y 

in which Eeq = reduced strain = aeq/O*. 

From the von Mises yield criterion it is required that at the 

initial yield fiber depth, aeq be equal to ao' Therefore, 
_ aeq _ ao _ 

Eeq - 0* - 0* - EO 

(2.27) 

(2.28) 

(2.29) 

in which EO = reduced strain at the initial yield fiber depth. There

fore, the depth of yielding at any load level can be determined by 

equating the expression of the reduced strain given by Equation (2.28) 



'f1 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

to EO. It now remains to relate this information in such a way that 

the extent of the plastic zone in the cross-section can be determined . 

From the linearity of the strain variation, the strain at any 

depth, d, can be related to that of the outer fibers by 

20 

(2.30) 

h d where Eij and Eij are the strains at depth hand d, respectively. 

From Equation (2.28), it can be seen that the reduced strain also 

varies linearly . Therefore, Equation (2.30) can be rewritten in terms 

of the reduced strain as 

d 2d h 
Eeq = 11 Eeq (2.31) 

Although the reduced strain, as given by Equation (2.28), is 

valid only in the elastic region of the plate thickness, this expres-

sion may be utilized for determining E~q. The reduced strain at the 

outer fibers of the plate thickness is required in order to find the 

location for which E~q is equal to EO. From Equation (2.31), this 

relationship is seen to be 

(2.32) 

d Rearranging and letting ~ = h ' yields the plastic zone extent factor, 

~ , as 
1 EO 

~ = 2h 
Eeq 

(2.33) 

Stiffness of Elasto-Plastic Element 

In order to find the incremental stiffness relationship for the 

partially plastic plate element, the incremental moment-curvature 
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relationships are needed. The generalized incremental relation is 

given by 

h/2 
f [0] 

-h/2 
(2.34) 

in which {6M} and {6K} are the incremental moment and curvature 

vectors given in Equation (2 .8) and [0] is the generalized incremental 

moment-curvature matrix in the plastic range. The matrix [0] can be 

expanded into elastic and plastic parts as [O]e and [O]p which are 

defined in Equations (2.20) and (2.24), respectively. 

Within the plastic region, the equivalent stress remains uniform 

for the perfectly plastic material, so the moments depend not on a 

variation of z but rather on ~ (refer to Figure 2.4). The contribution 

to the incremental moments from the plastic zone, using strains at the 

mid-depth of the plastic region as an approximation of the strains 

throughout the plastic region, can be given by 

Upon simplification, Equation (2 . 35) yields 

(2.35) 

(2.36) 

The corresponding moment contribution of the elastic part of the section 

is given by 

(2.37) 

The total incremental moment is, then, the sum of Equations (2.36) and 

(2.37) . 

The incremental stiffness matrix for the e1asto-p1astic element 

may be determined in a straightforward manner by simply using these 
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incremental moment-curvature relations in conjunction with Equation 

(2.17). For the plastic part of the element stiffness matrix, the 

incremental plastic constitutive matrix [D]P is substituted for [D]e 
3 

and the rigidity term h /12 replaced by 

23 

1 $$2 3 3 
(g- + "4 - "2" - $ ) h (2 . 38) 

in Equation (2.17).* The elastic portion of the incremental stiffness 

is determined by using the elastic constitutive matrix [D]e as given 

in Equation (2.20) and replacing the rigidity term in Equation (2.17) 

with 

(2 .39) 

The total incremental stiffness matrix is then found by superposition 

of the individual stiffness matrices representing the plastic and 

elastic contributions . 

As can be readily surmised, this development assumes that the 

stresses are the same throughout the depth of the plastic zone. This 

is not strictly true. It is obvious that this apparent discrepancy 

can be minimized by dividing the plastic zone into a series of layers, 

each of which is treated individually as a plane stress case. This 

method would require a large increase in computer storage and execution 

time. This is, of course, undesirable. However, by limiting the 

magnitude of the deflections and corresponding strains within the small 

deformation range, the extent of the plastic zone is not developed 

enough to allow for signifi cant stress variation . The difference 

*Due to the variability of [D]P and $, total stresses and strains 
obtained after a previous load increment are used to evaluate these 
quantities for the succeeding load increment . 

• 
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between the assumed and real stress distribution can, therefore, be 

disregarded. 

Method of Analysis 

The non-linear analysis procedure utilizes a piecewise linear 

incremental technique which uses the Newton-Raphson iteration scheme 

to ensure that the correct load-deflection path is followed. 
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As the elastic part of the solution is linear, a load can be 

applied to the plate which will bring some e1ement(s) in the mesh just 

to the point of initial yield, as determined from Equation (2.22). The 

load which will result in this first yield can be determined as 

follows. Apply an arbitrary load, P, that results in the moments Mx' 

My and Mxy. For a linear-elastic material, a factored load ep will 

resu 1t in the factored moments e Hx' e My and e MXY. 

The von Mises yield condition given by Equation (2.22) may be 

expressed as 

M2 _ M M + M2 + 3M2 = ti 
x x y y xy 0 

(2.40) 

in which Mo = 0oh2/6. The load for which the yield condition is satis

fied is, thus, given by 

e2 [M2 _ M M + M2 + 3M2 ] = M2 
x xy y xy 0 

(2.41 ) 

in which e is the scaling factor. This is a quadratic equation in e, 
the solution for which is given by 

± M 
e = 0 (2.42) 

1M2 - M M + M2 + 3M2 \ 
x x Y Y xy 

The smallest positive value of the scaling factor for all the 

elements in the mesh is used to modify the original arbitrary load, P, 

to obtain the first yield load for the entire system of elements. 
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Once the load which initiates yielding in the plate has been found, 

the incremental load which will cause yielding in the next elastic 

element is determined . Again, an arbitrary incremental load, 6P, is 

applied resulting in the corresponding incremental moments 6Mx' 6My 
and 6Mxy' Note that in applying 6P, all incremental stiffness matrices 

for plastic elements must be derived using Equations (2 . 36) and (2.37), 

and used in the total stiffness matrix. Assuming linearity of incre-

mental load-deflection behavior within the load increment, factoring 

the load by Il will result in the factored incremental moments 1l6t.lx' 

ll 6My and 1l6M
XY

' 

The von Mises yield condition must be satisfied for an elastic 

element to become plasti c which requires that 

(Mx + 1l6Mx)2 - (Mx+1l6Mx) (My"fl611y) + (My+ll6My)2 

+ 3 (M ifl6 M )2 = M2 xy xy 0 
(2.43) 

for each elastic element. Note that in Equation (2 . 43), Mx' My and Mxy 

are the total moments at the end of the previous load increment. 

Equation (2.43) can be expanded into the quadratic form 

(6M;-6Mx 6My"MI;+36M;y) 11
2 + [6Mx (2M

X
-My) + 6My (2My-Mx) 

+ 66M M ] Il + (M2_M M +1,,2+3M2 _M2) = 0 xy xy x x y y xy 0 

which is of the form: all2 + bll + c = O. The solution of this 

equation is given by 

-b ± /b2 -a = 2a 

where 

\ 

4ac 

, 

(2.44) 

quadratic 

(2. 45) 
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c = M2 - M M + M2 + 3M2 _ M 2 
x x y y xy 0 

The smaller positive real root of Equation (2.45) is the scaling factor 

to be applied to fiP in order for the elastic element to become plastic 

in any given load increment. By finding the smallest value of all the 

scaling factors, the load increment for which a previously elastic 

element will just reach the yield point can be determined. 

Once this load increment has been determined and applied, it might 

be found that elements which are already plastic may violate the yield 

criterion upon addition of the incremental stresses to the existing 

total stresses . This exceedance must be corrected . It is for this 

occurrence that the Newton-Raphson iteration technique is employed. 

The procedure is outlined in Appendix B. 

By successively applying incremental loads which initiate yielding 

in elastic elements, the sequential yielding of elements can be cor-

rectly traced. Application of the Newton-Raphson method ensures that 

the yield condition is satisfied by the stresses in the plastic ele

ments, thus, guaranteeing a correct load-deflection path within the 

inelastic range. 

Stability of Solution 

Under a monotonically increasing load, unloading of plastic regions 

does not occur unless the plasticity develops to such an extent that the 

principal stress and plastic-strain increment axes reverse orientation, 

in which case, the plastic work (or more specifically, the work of 

distortion) becomes negative. This work can be expressed as (8) 

(2.46) 
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where 

+ 2 (l-v) 0xy dEXy~ {2.47} 

The terms in Equation (2.47) have been previously defined. 

Ordinarily, when the plastic work becomes negative, the plastic 

element becomes elastic again until such time as Equation (2.46) 

becomes positive and the yield criterion is satisfied. However, for a 

monotonically increasing load, the initiation of unloading is indica

tive of the plastic region expanding to such an extent that large 

plastic strains are possible without significant increase in load 

(i.e., instability). For a non-hardening material, this is visuali-

zed as representing the collapse load which would be obtained by limit 

analysis. This instability can be of a global or local nature. In 

regions of high stress concentration, it is possible for local insta

bility to arise. As indicated in the work of Marcal (16), when Equation 

(2.46) becomes negative, program execution is halted rather than return

ing the unloading plastic element to the elastic state. Indication of 

unloading by a negative value of dA in Equation (2.47), as experienced 

in the examples presented in Chapter III, shows that failure is 

imminent and further increase in load is not possible. The plastic 

regions simply extend very rapidly under an insignificant increase in 

load. 
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CHAPTER II I 

RESULTS OF THE FINITE ELEMENT ANALYSIS 

Description of the Computer ~lodel 

In order that the available experimental data (6) can be utili

zed for a meaningful evaluation of the mathematical model described in 

Chapter II, a connection system consisting of a W10x2l wide-flange 

section of three-foot length with 4"x3/8" and 8"x3/8" tension plates 

is used for the computer analysis as shown in Figure 3.1. 

Due to symmetry, only one-fourth of the connection need be 

modelled. After some preliminary analyses were performed to determine 

the necessary element configurations, the meshes shown in Figures 3.2 

(a) and (b) were selected, which are composed of 210 rectangular plate 

bending elements interconnected by 242 nodes with three degrees of 

freedom per node. 

To simulate the effect of the tension plate width and fillet weld 

(taken to be three-eights of an inch on edge), an effective width of 

one-half inch, over which no rotation of the underlying web elements 

occurs, is assumed in the model. The load is assumed to be distributed 

uniformly to each of the nodal points located under the tension plate . 

The plate bending model, as developed in the previous chapter, is 

capable of only planar analyses . A method whereby the out-of-plane 

flanges of a W1Dx2l section can be modelled in this analysis is neces

sary. Experimental evidence (6) has shown that, as the load is applied 

to the tension plate and the web deflects, the flanges remain plane and 

simply rotate in a rigid body motion. This indicates that plasticity 
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is of minor concern in the flanges and that any flange model need only 

simulate the flanges in an elastic manner. As such. a simple flange 

model consisting of a two-node beam element with torsional capability 

having one displacement and two rotational degrees of freedom per node 

(the same as for the plate element) is proposed. This element is 

widely used and the details of the stiffness formulation are shown in 

Appendix E. 
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An elastic analysis using a W10x21 section and a four inch wide 

tension plate was performed. A comparison made with experimental 

strain gage data at a load of one thousand pounds. as shown in Figure 

3.3. indicates a very close agreement between the measured and calcula

ted strains in the elastic range. thereby. assuring the accuracy of 

the proposed finite element model. 

Sandwich vs. E1asto-P1astic Formulation 

A comparison of the sandwich plate and more exact e1asto-p1astic 

plate models indicates that the development of the yield patterns is 

essentially the same for both models. However. the collapse load for 

the e1asto-p1astic plate model is significantly higher (on the order 

of 25-30%). Table 3.1 gives a listing of the ultimate loads as 

determined by the computer analyses using the sandwich and e1asto

plastic models. 

A more apparent difference between the two computer models can be 

seen in Figure 3.4 in which the deflection curve for the sandwich 

model flattens out very rapidly after plasticity begins to develop. 

The curve for the e1asto-p1astic model shows a much more gradual 

flattening. A slower degradation of the bending stiffness is indica

tive of the inherent strength of the remaining elastic portion of the 
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Table 3.1 . Ultimate Loads Using Sandwich and Elasto-Plastic Models 

Member Tension Flange Ultimate Load (kips) 
Plate Restraint 

Sandwich Elasto-Plastic 
Model Model 

W10x2l 4" None 3.1 4.1 

" " Simulation 4.4 5. 4 

" " Infinite 5.5 7.0 

" 8" None 4.1 5. 0 

" " Simulation N/A 7.1 

" " Infi nite 7.1 9.0 

plate. On the other hand, the moment resisting capacity of the sand

wich plate element is exhausted once the cover plates reach the state 

of initial yield. 
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As the ultimate loads predicted by the sandwich model are signifi

cantly lower than those predicted by the elasto-plastic model, and 

the sandwich model does not adequately represent the load-deformation 

history of a real plate in bending, this model will not be used. 

Instead, the more accurate elasto-plastic element developed earlier will 

be utilized in all subsequent analyses. 

Elastic-Plastic Analyses with Various 
Boundary Restraints 

A series of six computer analyses were carried out with the elasto

plastic element using four and eight inch tension plates in order to 

evaluate the stiffening effect caused by a lengthening of the con-

nection plate. 80unding solutions featuring no flange restraint and 
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infinite flange restraint were obtained in addition to the more 

realistic solution using the flange element. 
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Load versus deflection at the centerline of the tension plate for 

various flange restraints used in the model are shown in Figure 3.5. 

The deflections predicted using the flange simulation model lie between 

those computed by no flange and infinite flange restraint models 

throughout the plastic load history as expected. However. it should 

be noted that the loads predicted with the flange simulation are much 

closer to those calculated without any flange restraint throughout most 

of the loading. As noted earlier in Figure 3.3, the flange simulation 

model yields quite accurate load-deflection behavior. Consequently. 

one could assume no flange restraint for a reasonable estimate of the 

load-deflection behavior. It can be seen in Figure 3.5 that the loads 

predicted by a no flange restraint model are always lower than those 

obtained with flange simulation. 

The development of plastic regions in the web are shown in 

Figures 3.6 through 3.11. Figures 3.6 and 3.9 (no flange restraint) 

and Figures 3.7 and 3.10 (flange simulation) show that the plastic 

regions develop progressively around the tension plate only. The 

incremental solution can be continued without any difficulty until a 

wide area of plasticity has developed around the tension plate. 

Instability of the solution begins to occur once the plastic regions 

have progressed sufficiently far towards the flanges. It should be 

noted that no elastic regions are contained within a closed plastic 

zone at the apparent collapse. 

Figures 3.8 and 3.11 (infinite flange restraint) show that the 

plastic regions develop around the tension plate and along the 
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Yield Zones at Various Loads for a 4" Tension 
Plate and No Flange Restraint 

Py = 1.49 kips 
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web-flange juncture simultaneously . As loading progresses, the two 

areas of plasticity extend towards each other, eventually joining 

together prior to reaching the collapse load. It should be noted 

that these plastic extensions enclose areas of elastic material which 

are located between the tension plate and the flanges. 

Note that plasticity does not develop along narrow lines, as is 

assumed in the yield line theory, rather, the plastic regions extend 
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in broad areas. An examination of the computer output suggests that 

this is due to an interaction of the shearing and large normal stresses 

which develop at the ends of the tension plate. On the other hand, 

along the sides of the tension plate and the web-flange juncture, 

yielding develops in thin bands as assumed in the yield line theory. 

Finally, a comparison of the load-deflection curves for the flange 

simulation cases indicates that a doubling of the tension plate width 

reduces the deflection by only approximately 161. The corresponding 

collapse load increases by 31 1. 
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CHAPTER IV 

COMPARISON OF ANALYTICAL AND 

EXPERIMENTAL RESULTS 

As noted in Chapter I, past design practice has been to simply 

size the tension plate to support the tensile load and assume that 

the member web could transfer the load. However, Csernak (6) has 

shown that, if the web is not stiffened, excessive deformation of the 

web will occur and the flange would undergo large rotation at design 

loads. In addition, it was found that the failure will always occur 

in the web. An analysis technique for stress and deflection calcula-

tions in the web, thus, becomes a necessity. 

There are two design techniques that are currently used in the 

analysis of these web connections. The first is an elastic method 

suggested by Blodgett (1), and the second, a plastic or ultimate 

strength yield line technique proposed by Kapp (5). Both of these 

methods are described and discussed in the following sections. 

Elastic Method 

As shown in Figure 4.1 (b), Blodgett assumes that the tensile 

load, P, produces a uniform stress under the tension plate that dies 

out linearly from the ends of the tension plate at a distance of 

twelve times the web thickness. This produces a force per unit width 

of the web which may be easily computed and is given by 

P 
f = d + 12h (4.1) 
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(a) 

p= fXd+2x ~ XfxI2h 

or 

f = d :12h ~ force per unit width 
of web 

( b) 

Simply ,- ~ ~j 3: unit width of web 
supporte..r-----) I I 
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f - 4Mmox 
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Where Mmax = 0011 S 
( c ) 

Figure 4.1. Elastic Analysis as Proposed by Blodgett 
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By assuming that the flanges provide no restraint, a unit width 

of the web can be analyzed as a simply-supported beam subjected to a 

concentrated load at mid- span . The maximum force, f, can be determined 

by calculating the value of the maximum moment that a unit width of 

the web cross-section can support. This is given by 

(4. 2) 

in which 0all is the allowable stress and S is the section modulus for 

a unit width of the web. Equating Equations (4 . 1) and (4.2) leads to 

the value of the maximum allowable load, P, which is found to be 

P = ~ (d + 12h) h2 
3 L °all . (4.3) 

The bounding solution for infinite flange restraint can be easily 

found by noting that the maximum bending moment for full-fixity is one

half that of the simply-supported case . Therefore, a simple doubling 

of Equation (4.3) will give the allowable load for this connection 

assuming infinite flange restraint. 

Comparison with Computer Solution 

This design procedure has two inherent shortcomings. The first 

concerns the assumed load distribution in the web. Previous finite 

element studies (6) have shown that large stress concentrations exist 

at points A and B in Figure 4.1 (a) . This could be viewed as if con

centrated loads are being applied to the web at points A and B (2) 

which could result in a reduction of the permissible load . However, 

because of the highly localized nature of the stress concentrations, 

rapid dissipation of the large stresses according to St. Venant's 

principle occurs. Therefore, this phenomena of stress concentration 
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can be neglected especially in light of the inherent ductility of the 

connection materials. 

The second shortcoming concerns the simplifying assumption that the 

web can be analyzed as a one-dimensional beam rather than as a two-

dimensional plate. This is a conservative assumption. The beam 

solution approaches the two-dimensional plate solution as the length of 

the connection plate increases. An examination of the last two columns 

of Table 4.1 indicates that as the tension plate length increases, 

the initial yield load predicted by the Blodgett's elastic solution 

approaches the more accurate computer solution. Due to an increase 

in the length of the plate, the load is distributed more uniformly to 

the web and the effect of the stress concentrations at the ends of the 

plate is reduced. Additionally, an increase in the flange restraint 

along the edges of the web, along with an increase in the plate length, 

reduces the amount of web curvature in the longitudinal direction . As 

such, the Poisson effect is reduced and beam bending, rather than plate 

bending, becomes more pronounced. Overall, though, the general result 

of the procedure is an underestimation of the initial yield load. 

Yield Line Method 

The yield line method, as proposed by Kapp (5), is an upper-bound 

limit analysis procedure that depends on a proper yield pattern 

assumption for its accuracy. The yield line pattern assumed for 

this connection is shown in Figure 4.2. By assuming that the parts 

of the web contained within the yield lines rotate as rigid bodies, 

the internal work i s exclusively done along the yield lines and i s 

given for a unit length by the product of the uniform plastic moment 

(Mp = ooh2/4) and the corresponding rotation (as measured normal to the 



I ~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

"-J 
.b 

b c 

e 

L 

Flang 

/ 

b 

Flange 

r---- Web 
~--t-' 

/ 

Figure 4.2 . Yield Line Pattern for t he Light Braci ng Connection 

49 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Table 4.1. Comparison of Ultimate Loads Using Various Solution 
Techniques 

Meniler Tension Flange U1 rli ma:i Load 
kiDS 

Initial Yi~~d Load 
(ki os 

50 

Plate Restraint ~omputer Yleld llne Computer Blodgett' 5 
Solution Solution Solution Elastic 

Solution 

~10x21 4" None 4.1 7.0 1.5 1.0 

" " Simulation 5.4 --- --- ---
" " Infi nite 7.0 10.5 2.3 2.0 

" 8" None 5.0 8.0 1.9 1.6 

" " Simulation 7.1 --- --- ---

" " Infi nite 9.0 12.4 3.2 3.2 

yield lines). From the virtual work principle, summing internal energy 

and equating to the external work done by the collapse load, Pu' 

results in an expression for the value of Pu in terms of the geometry 

of the yield pattern and the geometric and material properties of the 

web. 

Referring to Figure 4.2, and assuming that the flanges provide no 

restraint to the web, summation of the internal energy along the yield 

lines results in 

(4.4) 

in which ~ = 0oh2. The corresponding external work performed by the 

ultimate load, Pu' is given by 

w = P 8 e u (4.5) 
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In Equation (4.4), the internal energy is seen to be a function of a 

variable length, e, along the flanges, as shown in Figure 4.2 . By 

minimizing the work done by the plastic moment along the yield lines, 

a relationship can be determined for the smallest load that will result 

in a failure mechanism of the web. Thus, differentiating Equation 

(4 . 4) with respect to e and equating to zero leads to 

e = b /2 + cN (4.6) 

Equating internal and external energies [Equations (4.4) and (4 . 5)) and 

utilizing Equation (4.6) results in 

p u = 1jJ L/2b + 21jJ(2 + c/b' (4.7) 

By a similar procedure, the ultimate load corresponding to the bounding 

solution for infinite flange restraint can be shown to be given by 

(4.B) 

Because this is an ultimate strength criteria, a reduction in the 

computed load is necessary to obtain the working load. Load reduction 

factors of 1.7 for live and dead loads or 1.3 for these loads acting 

in conjunction with wind loads are the recommended practice (17). 

Comparison with Computer Solution 

The results obtained from the elasto-plastic computer solution for 

various tension plate lengths and boundary restraints are shown in 

Table 4.1 along with the corresponding yield line solutions . It can 

be seen that the yield line theory predicts ultimate loads that are 

much greater than those given by the computer solution. 

The energy approach used in the yield line theory gives an upper-

bound solution whereas the computer solution, which is an equilibrium 
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solution. renders a lower-bound solution (9). Therefore. a difference 

between the results obtained by the two solution schemes is to be 

expected. It may be emphasized that the incremental elastic-plastic 

computer solution using the tangent modulus approach. as presented in 

this study. always satisfies the yield condition due to the utilization 

of the Newton-Raphson iteration technique. In addition. the choice 

of the displacement field in finite elements used in this development 

is such that convergence to a correct solution is guaranteed with 

decreasing mesh size. Therefore. the computer solution. as presented. 

closely approximates the correct behavior within the small deflection 

range. Thus. the discrepancy between the yield line solution and the 

corresponding computer solution is attributable to the errant assump

tion of the fonmation of narrow plastic zones along the yield lines. 

In fact. the plasticity in the web develops in broad areas. as can be 

seen in Figures 3.6 through 3.11. 

Experimental Results 

The discussion above indicates reasons for the discrepancy between 

the yield line theory and the computer results. However. the question 

of why the experimentally obtained values of the collapse loads for 

these connections are much greater than even the upper-bound ultimate 

loads predicted by the yield line theory remains unanswered (6). 

Although the yield line theory assumes that deflections are small. 

application of design loads based upon a yield line analysis can lead 

to relatively large deflection. Large deflections (i.e .• displacements 

greater than one-third to one-half the plate thickness) are known to 

induce tensile membrane stresses which significantly increase the 

strength of a plate made of a ductile material. As an example. the 
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yield 1 ine load of 7.0 kips for a 4" tension plate from Table 4.1 

results in a factored load of 7.0/1.7 = 4.1 kips. For this design load, 

the resulting deflection from Figure 3.5 (a) is found to be approxima

te1yequa1 to 0.16", which is 2/3 the thickness of the web plate 

(0.24"). A consequence of this large deflection is that the web 

experiences an increase in load-carrying capability as a result of 

the induced membrane action, which is much more efficient in support

ing loads than the bending action. 

Csernak (6) has developed an empirical relationship which predicts 

the ultimate strength of the light bracing connection shown in Figure 

3.1. This relationship is given by 

Pu = Doh (0.33L + 0. 30d) (4.9) 

where L is the depth of the wide-flange section and d is the length of 

the tension plate. This equation is based on 20 tests of various wide-

flange sections having 4", 6" and 8" tension plates. The interesting 

aspect of Equation (4.9) concerns the linearity of the ultimate load 

with respect to the web thickness. This indicates that membrane action 

is the principle load transfer mechanism at load levels correspondin9 

to collapse loads. Csernak also observed large deflections at col

lapse loads in his experiments, which justifies the linearity of 

Equation (4.9) with respect to web thickness, h. 

For W10x21 with 4" and 8" tension plate connections, for which 

elastic and yield line solutions have been shown in Table 4.1, ulti

mate loads computed by the empirical Equation (4 .9) are equal to 38 .9 

and 49.2 kips, respectively. These ultimate loads are approximately 

four times 1arger than those given by the yei1d line method, thereby, 
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indicating the additional load-carrying capacity at collapse due to 

membrane action. 

Evaluation and Recommendations 

Based upon the experimental and analytical evidence presented in 

this study, the yield line theory has been shown not to be applicable 

to the connection group studied in this report. Computer results have 

shown that the assumption of narrow yield lines is incorrect . In 

addition, experimental data indicates that membrane rather than bending 

action prevails as the principle means of load transfer, which results 

in limit loads that are significantly higher than those predicted by 

the yield line theory. 

Although the application of the yield line method is seen to 

lead to conservative estimates of the ultimate strength of these con

nections, use of the design loads determined by the yield line theory 

leads to excessively large deflections in the web as shown in the pre-

vious section. This behavior, in conjunction with the resulting large 

flange rotations, could cause local buckling failure of the web. 

Web deflections can be reduced by lengthening the tension plate, 

but this is of dubious value. It has been seen that even a doubling 

of the plate length reduces the deflections by only 16% for the 

W10x2l section. As such, the use of web doubler plates, Tee sections 

or stiffners is highly recommended. 

For connections with unstiffened webs, the design loads must be 

kept at a fairly low level in order to avoid excessive deflections in 

the web. Initial yield loads predicted by the Blodgett's elastic 

method provide reasonably accurate estimates when compared with the 

computer solution and are relatively low in magnitude. Web deflections 
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due to these loads remain within the small deflection range. Conse

quently, loads obtained by the Blodgett's method provide safe and 

conservative values for the design loads in light bracing connections 

of the type discussed in this study. 

It should be emphasized, however, that for those connections 

where excessive deflections are of minor concern, design loads can 

be estimated based on yield line theory . Although relatively large in 

magnitude compared to those calculated by the Blodgett's elastic 

method, these design loads still provide a large margin of safety to 

Ultimate loads determined experimentally. An estimate of the ultimate 

loads can be made by using the experimentally obtained empirical 

Equation (4.9). These loads are approximately two to four times 

larger than the corresponding loads determined by the yield line 

method. It should be noted that web deflections at these loads are 

extremely large due to the ductility of the connection materials. 
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CHAPTER V 

CONCLUSIONS AND SUGGESTIONS 

FOR FURTHER RESEARCH 

Conclusions 

An elastic-plastic finite element analysis of the simple tensile 

connection shown in Figure 3. 1 has been performed using a specially 

formulated elasto-plastic plate bending element. Comparisons of the 

results using sandwich plate elements proposed earlier by other 

researchers (14, 15) indicates that the sandwich element traces the 

development of the plastic regions quite well but significantly under

estimates the collapse load. Therefore, the element developed in this 

study is recommended for correct estimates of the elastic-plastic load 

history in plate bending problems. 

Various tensile connections with different tension plate widths 

were analyzed using the elasto-plastic element developed in this 

study. It is found that yielding develops in broad regions, and not 

along narrow yield lines as assumed in the yield line theory. Conse

quently, the yield line theory is not strictly applicable to this con

nection type. 

The computer results of the various finite element analyses within 

the elastic range were compared against the corresponding results of 

the approximate elastic method proposed by Blodgett (2). In each case, 

it was found that the initial yield loads determined by the two 

methods were reasonably close to each other. Blodgett's method can, 
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therefore, be used to obtain reliable estimates of the initial yield 

load within the small deflection range. 

Experimental data given by Csernak (6) indicates that the deflec

tions for such connections at collapse loads are excessively large 

and are well beyond the range of the small deflection theory. Conse

quently, membrane rather than bending action predominates in the web 

resulting in much higher collapse loads compared to those predicted 

by the yield line method, which is based on the small deflection 

theory. 

Although the yield line method assumes small deformations, col

lapse loads computed with this theory, when applied to the elasto

plastic finite element model, yield deflections that are outside the 

small deformation range. In fact, deflections at even design loads 

(i.e., yield line collapse 10ads/l.7) are large enough to be outside 

the small deflection range. Hence, it can be reiterated that the 

yield line theory is not applicable for the connections considered in 

this study. 

Based upon the aforementioned findings, the following recommenda

tions can be made for the design of these tensile web connections: 

1. Where the deflections must remain within the small deforma
tion range, Blodgett's elastic method can be used to 
obtain safe and reliable design loads. 

2. Where the deflections are of minor concern, Kapp's yield 
line method can be utilized to obtain design loads. 

3. Large deflections at design loads computed by the yield line 
theory can be avoided by using stiffeners, doubler plates 
or Tee sections. 
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4. The actual ultimate loads determined experimentally can be 
predicted by using the empirical Equation (4.9), which gives 
values that are two to four times larger than those obtained 
by the yield line theory. Therefore, a quick and conservative 
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estimate of the yield line collapse load can be achieved 
by dividing the values obtained from Equation (4 .9) by a 
factor of 4. 

Suggestions for Further Research 

58 

The analytical research reported herein represents only an initial 

investigation. Further research should include: 

1. Extension of the work to the large deformation range. 

2. Expansion of the capacity of the existing program to include 
three-dimensional capabilities in order that the effect of 
doubler plates and stiffeners can be evaluated. 

3. Determination of a more realistic and rational basis for 
the analysis of these types of connections. 
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Appendix A 

Rectangular Element Stiffness Matrix 

The rectangular element stiffness matrix can be expressed in 

general form by use of Equation (2.17). This can be written as 

60 

[k] = n [C]-T f [O]T [D] [0] dA [C]-l , (A. 1) 
area 

in which n is the rigidity term that is equal to h3/l2 for the elastic 

element, and is given by Equations (2 . 38) and (2 . 39) for the plastic 

element. Matrix [C] is given by Equation (2.4), so it only remains 

to evaluate the integral in Equation (A.l). By making use of the 

partitioned matrix representation for [0], as given by Equation (2.10), 

and performing the indicated triple matrix multiplication, the integrand 

is expressed as 

[OO]T [D] [0
0

] 

[O]T [D] [0] = [Ol]T [D] [0
0

] 

[02]T [D] [0
0

] 

[OO]T [D] [01] 

[Ol]T [D] [01] 

[02]T [D] [01] 

[OO]T [D] [D2] 

[Ol]T [D] [02] 

[02]T [D] [02] 

(A.2) 

All triple matri x products containing [0
0

] and [Oo]T terms are null 

matrices. Also, because [02]T [D] [01] is the transpose of [Ol]T [D] 

[Q2]' only three of the submatrices need to be evaluated. 

The matrix represented by [Ol]T [D] [01] is a constant matrix and, 

as such, its integration involves only multiplication by the area of 

the element, i.e . , 

~ [Ol]T [D] [01] dA = 4 x Area 
Area 

rll 

~YM. 
For the remaining integrations, the following formulas are required. 

Referring to Figure 2.1, 



I ! 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0> 
a- 61 

Ildxdy = Area = ab , fllydXdy = 0, 

/Ixdxdy = 0 flxidxdy = 0, 

Ilydxdy = 0 flx3dxdy = 0, 
2 a3b flidxdy = 0, Ilx dxdy = 12 

5 
Ilxydxdy = 0 IIx4dxdy = a8~ , 

2 b3 
Ily dxdy = IT- IIy4dxdy = a~O ' 

2 2 a3b3 
flx3ydxdy = 0 , Ilx y dxdy = ~ , 

flxidxdy = 0 (A.4) 

The integration of [Q1]T [0] [Q2]' then, results in 

0 0 0 0 3 -D13a b -D13ab 3 

I[Q1]T [0] [Q2] dA = 0 0 0 0 3 
D33a b D33ab 3 

0 0 0 0 3 -D23a b -D23ab 3 . (A. 5) 

Similarly. performing the indicated triple product [Q2]T [0] [Q2] and 

integrating yields the following 

3 3D]1a bOO o 

1 3 2 3 3 0]1 ab -3 D23a b 

4 3 2 3 
+ 3 D33a b 3" D13ab 

SYMMETRIC 

o o 

o o 

o o 

t D11 a3b3 t D12a3b3 

9 5 +!. 3 
+20 D33a b q D33a b 

1 
4" ° a

3
b

3 
22 

9 5 To D33ab 

(A.6) 
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With these explicit expressions for the integration of the triple 

matrix products of Equation (A.2). the stiffness matrix for the 

rectangular element can be easily calculated. By leaving the constitu

tive matrix in general form. the elastic or incremental elasto-plastic 

stiffness matrices can be determined by simple substitution of the 

appropriate constitutive relationships. 
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Appendix B 

Newton-Raphson Iteration Technique 
for Stress Correction 

63 

The general technique has been well described by Weisgerber (18) 

for the elastic-plastic finite element problem so only a short summary 

of the procedure is presented herein. 

The technique is utilized during each load increment as outlined 

in the following steps . 

1. 

2. 

3. 

4. 

5. 

Calculate incremental element stiffness matrices. For plastic 
elements. determine the element stiffness by using total 
stresses and strains of the previous load increment for cal
culation of the incremental plastic stress-strain relations 
given in Equation (2.24) and the plastic zone extent factor ~ 
given by Equation (2.33). 

Determine the smallest factored load which initiates yielding 
in a previously elastic element(s) . Calculate incremental 
displacements. stresses and moments for each element. For 
plastic elements. determine the incremental moments by using 
Equations (2.36) and (2.37). The incremental stresses in the 
plastic part are found from the incremental curvatures at the 
centroid of the plastic region of the cross-section and are 
given by 

{lIo} = (t + t )h[D]P {lIK} (B.l) 

Add the incremental moments. stresses and displacements to the 
previous total values . For each plastic element. check if the 
stresses exceed the yield criterion. If the equivalent stress 
surpasses the limiting value by more than a prescribed toler
ance. corrective moments and stresses need to be determined 
and applied (see Appendix C for further details on this pro
cedure) . 

Calculate the moment correction for each plastic element. as 
required. by the following matrix relationship 

{M}c = (l-F) h2 (t - ~2) {oJ (B.2) 

as given by Equation (C.6) in Appendix C. 

Modify the total moments by subtractin9 the corresponding 
correction moments. given in Equation (B.2). This results 
in a violation of the equilibrium for each corrected element . 
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6. To restore equilibrium, compute balancing nodal forces for 
each corrected element as outlined in Appendix D. The 
correction loads for each element are summed together to 
yield a total correction force vector. 

Note that this force vector represents an equilibrating body 
force and in no way alters the load which has been applied 
to the system. 

7. Apply the corrective nodal forces and determine the resulting 
displacements, moments and stresses. Add these to the pre
vious values. Return to step 4 and continue the iteration 
until no further stress corrections are required for the 
plastic elements. This completes the iteration sequence. 
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Appendix C 

Determination of Moment Corrections 
for Plastic Elements 
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Once the load increment has been determined and applied in order 

to initiate yielding in a previously elastic element, it might be found 

that the elements that are already plastic may violate the yield cri

terion. This exceedance needs to be corrected as described below. 

The von Mises yield condition is reproduced here as 

2_ 0 ° +i+ 2 2 Ox x Y Y 3 °xy = 0 0 
(C. 1 ) 

where °0 = the yield stress in simple tension. If one defines 

S = 3 0x/oo (C.2) 

y = (ox + 0y)/200 

then, upon squaring and summing, the von Mises yield criterion can be 

expressed as 

which is the equation of a sphere (Figure C-l). If a', S' and y' are 

stresses which represent a stress pOint outside the 'yield sphere', 

multiplication of a ', S' and y' by a correction factor, F, can bring 

the stress point onto the yield surface. This can be expressed mathe-

mati cally as 

(C . 4) 

from which the stress correction factor is calculated as 
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a 

.......... ........ 
--+-------~ ... ~~------r_~/3 o 

----a2+/32+y2 = I 
(von Mises Yield Condition) 

Figure C-l. Correction of Stress Poi nt Lying Outside 
of Yield Sphere 
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The total stresses in the plastic region of the plate cross

section, when multiplied by the stress correction factor, F, will 

lead to final stresses which exactly satisfy the yield condition. 
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(C.S) 

To obtain the correction moments which correspond to stress 

corrections, the following matrix expression can be easily obtained 

from the stress block shown in Figure 2.4 

(C .6) 

where 

{o}c = (l-F) {a} (C .7) 
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Appendix 0 

Correction Loads for Plastic Elements 

As mentioned in step 6 of Appendix B, the correction loads for 

each plastic element may be calculated as follows. 

Using Equations (2.13) and (2.15), the correction load vector can 

be given by 

(0.1 ) 
area 

in which the moment correction vector {M}c, given in Equation (C.6), 

is taken as constant and is evaluated at the centroid of an element . 

Therefore, Equation (0.1) may be written as 

{F}c = [Cr 1T f [Q)T dA {M}c (0 . 2) 
area 

Performi ng the integration on [Q)T results in 

0 0 0 -2A 0 0 0 0 0 0 0 0 

f [Q) T dA = 0 0 0 0 0 -2A 0 0 0 0 0 0 
area 

o ~3b iab3 0 0 0 0 2A 0 0 0 0 

(0.3) 

where A = the area of the element. 

It should be noted that the application of this correction load 

does not constitute an additional load that is applied to the total 

load vector of the system. Rather, equilibrium is simply being 

maintained so that the true load-deflection path may be obtained by 

this iteration technique. 
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Appendix E 

Elastic Stiffness for the Flange 
Simulation Element 

This flange simulation element, as shown in Figure E-l, is a two

node beam element with torsional capability having one displacement 

and two rotational degrees of freedom per node. The stiffness matrix 

relating nodal forces to nodal displacements can be easily derived 

(19) and is given by 

12EI 0 -6El -12EI 
0 

-6El 
7 7 L3 7 

GJ 0 0 -GJ 0 L - L-

4EI 6EI 0 2EI 
T - L-

69 

[K]local = l2 (E.l ) 
12EI 0 6EI 
7 l2 

L'-t'" GJ 0 L 

4El 
L 

in which 1 is the moment of inertia measured about the local y-y axis 

of the element, G is the shear modulus and J is the torsional rigidity 

of the element. 

It should be noticed in Figure E-l that the axes are designated 

as local axes for the member. The transformation of the local stiffness 

matrix given in Equation (E.l) to a global system can be easily per-

formed by using the coordinate transformation expression. 
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F lY 
Wi

i
f/ 8Yi Wj /;;;8yj 

. 8 ' 
, )' 0 

L 
Jo .X.J --2 

I- I I 

Figure E-1. Beam Element Under Combined Bending 
and Tors i on 

8X = 8X COS a + 8y sin a 

8y = - 8;;. sin a + 8ycosa 

Figure E-2 . Transformation from Local to Gl oba l Coordi nates 
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[K] global = [T] T [K] local [T] , (E.2) 

where 

[T] = e] [~J 
1 0 0 

[A] = 0 cosa sina 

0 -sina cosa 

and a is seen in Figure E-2 to be the angle between the global x-
direction to the local x-direction measured counterclockwise. 
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