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Abstract

According to the U.S. Energy Information Administration, construction and use of buildings
consumed almost half of the total energy used in the United States in 2012. Design for
Deconstruction (DfD) of buildings, first proposed in the 1990s, aims to minimize the
environmental impacts and reduce the pollution and waste produced during construction and
demolition of buildings by reclaiming the materials at the end of the service life of buildings.
Contrary to the conventional material flow in buildings, which starts with the extraction or
recycling of raw materials and ends with the disposal of debris in landfills, DfD attempts to close
this loop by reusing the salvaged materials in future construction projects. As the most
ubiquitous type of structural steel framing for commercial and residential buildings, traditional
steel-concrete composite flooring system makes the most efficient use of the two materials, with
steel being subjected to tension and concrete resisting compression. However, in this system the
concrete slabs are poured integrally with the supporting steel framing systems, inhibiting the
separation and reuse of the structural components.

The objectives of the proposed research are to develop new structural system concepts for
deconstructable steel and steel-concrete composite construction to facilitate DfD coupled with
the use of recycled materials in sustainably optimized construction. The proposed system not
only maintains the benefits offered by composite construction but also enables disassembly and
reuse of the structural components.

This report illustrates the deconstructable composite floor system utilizing clamping connectors.
This floor system is anticipated to be used along with all-bolted construction for the remainder of
the structure to facilitate deconstruction. A solution for connecting all the precast concrete planks
in their plane using threaded rods is also presented. Diaphragm behavior is then briefly
introduced, and computational results are provided to demonstrate the diaphragm response of the
deconstructable composite floor system. The experimental program for investigating the
performance of the system is introduced. Pushout tests are conducted to quantify the strength and
ductility of the clamping connectors and evaluate the influences of the parameters. The test
results along with collaborating analysis results for the pushout tests indicate that the strength of
the ductile clamping connectors is comparable to that of the steel headed stud anchors. In
addition, the behavior of the clamping connectors will be further validated through full-scale
beam tests in which the flexural behavior of the deconstructable composite beams is investigated
comprehensively. This report culminates with conclusions and recommendations for future work.
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1. Introduction

According to the U.S. Energy Information Administration, buildings consumed almost half of
the total energy used in the United States in 2012, while the transportation sector and the
industrial sector accounted for 28% and 23%, respectively. As the leading contributor to CO2
emission, the building sector was also responsible for 45% of all CO2 emission (Energy
Information Administration 2012). Although the embodied energy only amounts to 10-20% of
the total energy of buildings (Ramesh et al. 2010), it will hold a larger proportion in the future, as
technologies are developed to increase the efficiencies of the heating, ventilating and lighting
systems. In addition to the depletion of nonrenewable resources and aggravating climate change,
waste related to building construction and deconstruction is of major concern. Construction and
demolition (C&D) waste totals nearly 160 million tons per year, including debris generated
during demolition (48 percent), renovation (44 percent) and new construction (8 percent) (U.S.
Environmental Protection Agency 2007). Recycling and reusing of C&D waste conserves
landfill, cuts down the expenses for purchasing new materials, and reduces the environmental
impacts.

Hot-rolled structural steel used in the construction of engineered steel building structures and
infrastructure components currently is produced in the U.S. from nearly 100% recycled
materials. A variety of sustainable concrete mixes (e.g., measured by a lowering of the required
carbon footprint to manufacture the concrete) are also being developed worldwide. However, the
manufacture of new building materials, even based on the use of recycled materials, still
currently consumes significant energy derived from non-renewable fossil fuels. Achieving
comprehensive sustainability in the built environment requires significant reduction in and
eventual elimination of the use of most nonrenewable resources, both for construction materials
and for energy consumption.

The need to reduce the energy consumption and material waste related to the construction
industry motivates the exploration of Design for Deconstruction (DfD) of buildings. DfD of
buildings, first proposed in the 1990s (Kibert 2003), aims at resolving these issues by reclaiming
and repurposing the materials at the end of their service life. Contrary to the conventional linear
material flow, which starts with the extraction of raw materials and ends with the disposal of
debris in landfills, DfD could help close this loop by reducing the cost of recovering and reusing
resources.

The benefits of deconstruction could be more rapidly realized if the building service life is much
shorter. Although buildings are commonly designed for a 50-year service life, the actual life of
most buildings is much less. A survey conducted by O’Conner (2004) revealed that demolition
of buildings was rarely due to damage in structural systems and materials, but mainly because of
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the lack of maintenance for non-structural components, changing land values and inability to
meet current owners’ needs.

Structural steel framing systems are particularly conducive to deconstruction at the end of the
service life of a structure, so long as they have not been subjected to extensive permanent
damage from an extreme hazardous event. When structural members are protected from the
environment within a building envelope, as with this system, little deterioration occurs.
Composite construction makes efficient use of the two materials, with concrete being subjected
to compression and steel resisting tension. Steel frames are erected in place, with corrugated
metal deck often laid atop the steel beams and girders, shear connectors shot onto the top flanges
of the steel members, reinforcement laid in place, and a monolithic concrete floor slab cast in
place. However, composite steel-concrete floor systems, by far the most ubiquitous type of
structural steel framing for commercial and residential buildings, are not reusable at end-of-life.
The integration of steel beams and concrete slabs via shear connectors inhibits the separation of
the two materials, making impossible the deconstruction of the composite flooring systems and
reuse of the structural components. Steel beams and shear studs can be recycled after being
extracted from demolition debris, while concrete slabs are crushed for fill or making aggregates
for new concrete. Conventional composite floor systems are therefore not the best choice for
reducing the long-term environmental impacts of building materials.

The aim of this research is to establish fundamental strategies for predicting the behavior of and
designing sustainable steel structures through combining sustainably optimized prefabrication
strategies with DfD, achieving nearly 100% reusability for composite floor framing systems
within the context of reusable bolted steel framing. This research will combine experimental
testing program and finite element analysis to characterize the behavior of the new composite
floor system under gravity loading and lateral loading, including seismic loading.

1.1 Deconstructable composite prototype system

A new decontructable composite floor system is proposed in this project. This system is designed
to maintain the benefits of steel-concrete composite construction, such as enhanced flexural
strength and stiffness, reduced steel beam size and weight, and ease of construction, and enable
sustainable design of composite floor systems in steel building structures, components
disassembly and reuse of the structural components. The deconstrucable composite prototype is
illustrated in Figure 1.1; this concept was first introduced in Webster et al. (2007). The system
consists of precast concrete planks and steel beams connected using clamping connectors.
Frictional forces are generated at the steel-concrete interface to resist required shear flow and
achieve composite action. Cast-in channels are embedded in concrete to provide flexibility for
where the beam intersects the plank and allow for different beam width. Tongue and groove
joints at the concrete plank edge ensure vertical loads transfer between adjacent planks, and offer
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a level and well-matched surface. By untightening the bolts, the clamping connectors enable the
precast concrete planks and the steel beams to be easily disassembled and reconfigured in future
projects.

Mechanical connectors are usually used in conventional precast concrete construction to transfer
in-plane diaphragm forces. In order to achieve deconstructability of the system, grouting the
planks and placing a cast-in place concrete topping, which help to tie all the planks together, are
eliminated. Alternatively, the precast concrete planks are connected using unbonded threaded
rods before being attached to the steel beams, as shown in Figure 1.2, with a pattern of
connections aligned at 4’ on center and the planks staggered to help facilitate transfer of forces
across the diaphragm. Friction, developed by pretensioning the rods, provides the resistance
against joint sliding due to diaphragm shear and joint opening due to diaphragm flexure.

Precast concrete plank
Cast-in channels

e~ 9 C

_/ = 8 n [

Steel beam

Tongue and groove joint

Threaded rods
Bolt
Clamp e - B

Figure 1.1 Deconstructable composite beam

prototype Figure 1.2 Precast concrete plank connections

Preliminary plank dimensions, presented in Figure 1.3 are 20 ft. x 2 ft. x 6 in. This size is
believed to be small enough to facilitate transportation and handling, and promote
reconfiguration in future structures, but large enough to have structural integrity and reduce labor
for construction and deconstruction. Ideally, the planks are stocked in different sizes and
concrete strengths for ready use, comparable to how steel is currently stocked at supply centers.
A typical plan layout for a prototype office building using this system with a staggered plank
configuration, as seen in Figure 1.2, is shown in Figure 1.4,

16



Notes:
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b) Plank parallel to steel girder
Figure 1.3 Precast concrete plank cross section (units: inches)
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1. The dashed lines show the steel framing. The beams are perpendicular to the precast concrete planks, while the
girders are parallel to the planks.
2. Other precast plank patterns are also possible for the DfD system.

1.2

This research investigates the use of Design for Deconstruction for steel building structures,
including buildings having a range of gravity loading (offices, warehouses, etc.,) and lateral
loading that includes both wind loading and seismic loading. A review of previous research on
several subjects is presented in Chapter 2, including DfD, prefabricated structural systems, steel
headed stud anchors and seismic design of diaphragms. Diaphragm behavior is then briefly
introduced, and computational results are provided to demonstrate the diaphragm response of the
deconstructable composite floor system. Chapter 3 covers the design of several prototype
structures that can be used to explore the applicability of the proposed system in an entire class

Figure 1.4 Typical floor plan for deconstructable composite floor system (units: feet)

Research scope and organization
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of buildings. Life cycle assessment of this system is presented in Chapter 4 to highlight the
potential benefits of using deconstructable framing systems. In Chapter 5, results from pushout
tests are presented to demonstrate the strength and ductility of the clamping connectors, load
distribution among the steel beam and the clamps, behavior of the bolts and the channel lips,
formation of cracks, responses of the channel anchors and the reinforcement, etc. Finite element
models are presented that are validated by comparing the analysis predictions with the test
results. To evaluate the clamping connector behavior in a realistic manner and validate the
findings from pushout tests, beam tests are designed and presented in Chapter 6. This report
finishes with conclusions and future work.
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2. Literature Review

This section highlights the key studies and developments on the subjects related to this research,
including Design for Deconstruction (DfD), prefabricated structural systems, life cycle
assessment (LCA), steel headed stud anchors and seismic design of diaphragms.

2.1  Design for Deconstruction

DfD is believed to be beneficial environmentally and economically. Reuse of components is
usually favored compared to recycling of materials, as less refabrication is needed. In DfD,
salvaged materials from old buildings are repurposed in new projects, thus eliminating the costs
of waste disposal and material manufacturing. However, the ability to reclaim materials from
retired buildings depends on how the materials are integrated during building construction. The
lack of practice and research on how to design with reclaimed materials also makes it difficult to
implement for now.

Kibert (2003) believed that deconstruction reserved the embodied energy of the used materials
and reduced the energy input required for reprocessing and remanufacturing the materials. Of the
1.9 billion metric tons of raw materials in 1996, 1.6 billion metric tonnes was related to the
building sector. The huge material flow in the building sector necessitated DfD to reduce the
material extraction and demolition waste. Although the design life of buildings was usually 50 to
100 years, the actual service life was unpredictable due to the degradation of the faster-cycling
components, rendering buildings in disuse and disrepair. DfD, properly implemented, could
mitigate these issues to facilitate material recycle and reuse.

Kilbert (2003) indicated that numerous challenges remained for DfD, such as the lack of tools for
deconstructing buildings, the low disposal cost for demolition waste, the need for building codes
addressing how to design with reused materials, and the inadequacy in establishing the
environmental and economic benefits. Principles of DfD were suggested to address these
challenges. Kilbert (2003) also indicated that the government could play a bigger role in
promoting deconstruction. Increasing the disposal costs and providing tax advantages for
recovered materials would encourage the owners, contractors, architects and engineers to
consider and incorporate DfD into the design of new structures. This work stressed that time was
a significant factor for deconstruction and should be provided in the overall project scheduling.

Durmisevic et al. (2002) argued that traditional design of buildings focused on the short-term
performance, such as the optimization of functions, costs and construction schedules. Likewise,
previous research on sustainable buildings concentrated on designing energy efficient buildings
and using environmental-friendly materials. Because buildings are constantly changing to cater
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to the needs of the owners, Durmisevic (2002) indicated they could be dynamic and flexible
structures with parts that could be disassembled, replaced, recycled or reused.

The authors defined three levels of building composition: building level, system level and
component level. Elements and materials were first assembled to achieve component functions.
The components were then integrated to carry system functions, such as finishing, distributing
and insulation. In the end, the systems were clustered to perform building functions, for example,
load-bearing, enclosure, partitioning and servicing. Building composition, therefore, should be
considered at each level at the beginning of the design stage to enable building disassembly.
When buildings were disassembled, disassembly at the building level could offer reuse of the
systems, spatial adaptation and functional adaptation of the buildings. The authors thus indicated
that disassembly at the system level provided reuse of the components and functional adaptation
of the systems. Disassembly at the component level enabled reuse of elements and materials as
well as functional adaptation of the components. In order to design decomposable structures, the
main characteristics were summarized, including modular parts dry assembled on site,
independence of various systems, application of parallel instead of sequential
assembly/disassembly, use of mechanical connections, etc.

Two case studies were examined by Gorgolewski (2008) to highlight the challenges inherent in
DfD. Gorgolewski (2008) indicated that reuse of the components was more favorable than using
recycled materials in terms of environmental impacts, but designing with reclaimed materials
could add complexity to the design process. Recycled materials, which were manufactured with
the used materials, had almost the same properties as the virgin materials. However, reusing
deconstructed components in a new project required the establishment of their structural
characteristics. Coordinat