

STRUCTURAL SYSTEMS RESEARCH PROJECT

Alternative Weld Details and Design for **Continuity Plates and Doubler Plates for Applications in Special and Intermediate Moment Frames**

by

MATHEW REYNOLDS CHIA-MING UANG

Final Report Submitted to AISC

November 2019

Department of Structural Engineering University of California, San Diego La Jolla, California 92093-0085

University of California, San Diego Department of Structural Engineering Structural Systems Research Project

Final Report

Alternative Weld Details and Design for Continuity Plates and Doubler Plates for Applications in Special and Intermediate Moment Frames

by

Mathew Reynolds

Graduate Student Researcher

Chia-Ming Uang

Professor of Structural Engineering

Final Report Submitted AISC

Department of Structural Engineering University of California, San Diego La Jolla, California 92093-0085

ABSTRACT

Cyclic testing of ten full-scale steel moment frame connections was conducted to evaluate the efficacy of economized continuity plate and doubler plate weld details. Phase 1 of the testing included six one-sided RBS connections tested in the upright position. Phase 2 of the testing included two-sided WUF-W connections tested in the horizontal position. The rolled shapes were of A992 steel and the plate material was A572 Gr. 50 steel. The testing was performed in displacement control to impose a prescribed drift according to the AISC 341-16 cyclic loading sequence.

The Phase 1 specimens were carefully designed to investigate the applicable column limit states of Flange Local Bending (FLB) and Web Local Yielding (WLY). Three of these specimens were designed to directly challenge a criterion in AISC 341-16, which imposes a minimum thickness of an unstiffened column flange to be equal to the adjacent beam flange width divided by 6. One specimen was designed to use a doubler plate to reinforce the column for the WLY limit state. This doubler plate was designed using a proposed methodology to design the vertical welds in lieu of the stringent requirement imposed by AISC 314-16. One specimen was a nominally identical specimen that was hot-dipped galvanized prior to the simulated field welding of the beam flange CJP welds. The Phase 2 specimens were designed to subject the continuity plates to a higher level of force that is realized by the WUF-W connection and investigate the effect of a continuity plate stiffening of two-sided connections. All of the Phase 1 and 2 specimens that used continuity plate used two-sided fillet welds to attach the continuity plate to the column flange and column web. Most of these specimens (7 of 9) used the proposed fillet weld size of (3/4)t, where *t* is the continuity plate thickness.

All of the specimens passed the AISC Acceptance Criteria for Special Moment Frame applications. The Phase 1 specimens failed either through low-cycle fatigue of the beam in the reduced beam section (Specimens C4, C6-G, and C7) or through fracture of the beam top flange CJP weld (Specimens C3, C5, and C6). After passing the Acceptance Criteria, all Phase 2 specimens all failed eventually through fracture of the beam top flange CJP weld root, where the root of the weld met the backing bar.

ACKNOWLEDGMENTS

This project was sponsored by the American Institute of Steel Construction (AISC). The Herrick Corporation donated the fabrication of the specimens and the Smith & Emery Company donated inspection services. The authors also would like to acknowledge the advice from the Advisory Committee composed of Tim Fraser, Tom Kuznik, Kim Roddis, Subhash Goel, and Brian Volpe with James Malley as the Chair.

ABS	STRA	C T		i
AC	KNOV	VLEDG	MENTS	ii
TAI	BLE O	F CON	TENTS	iii
LIS	T OF '	TABLE	S	vii
LIS	TOF	FIGUR	ES	viii
1	INTR	RODUC	TION	1
	1.1	Introdu	action	1
	1.2	Resear	ch Objective and Scope	4
	1.3	Literat	ure Review	5
		1.3.1	The Pre-Northridge Connection	5
		1.3.2	The Northridge Earthquake Damage	6
		1.3.3	The Post-Northridge Connection	7
		1.3.4	Development of Fracture Mechanics to Simulate Bea	am-to-Column
		Fractur	re	10
		1.3.5	Continuity Plate and Doubler Plate Research	13
	1.4	Flexib	ility-Based Formulation	20
	1.5	Histori	ical Review of AISC Requirements on Continuity Plate	e and Doubler
Plate Design		22		
		1.5.1	Lehigh Criterion	24
		1.5.2	Development of Column Stiffening Limit States	26
	1.6	Summ	ary	30
2	SPEC	CIMEN	DESIGN	38
	2.1	Genera	al	
	2.2	Design	n Philosophy	39
		2.2.1	Continuity Plate Design	39
		2.2.2	Continuity Plate Weld Design	39
		2.2.3	Doubler Plate Vertical Weld Design	43
	2.3	Specin	nen Design and Details	44
3	TEST	r proc	GRAM	54

TABLE OF CONTENTS

	3.1	Genera	al	54
	3.2	Test S	etup	55
	3.3	Specin	nen Sizes and Test Order	56
	3.4	Specin	nen Construction and Inspection	56
	3.5	Materi	al Properties	56
	3.6	Instrur	nentation	57
	3.7	Data R	Reduction	58
	3.8	Loadir	ng Sequence	60
	3.9	Accept	tance Criteria	60
4	TEST	Г RESU	ILTS	
	4.1	Genera	al	
	4.2	Specin	nen C3	
		4.2.1	General	92
		4.2.2	Observed Performance	
		4.2.3	Recorded Response	93
	4.3	Specin	nen C4	112
		4.3.1	General	112
		4.3.2	Observed Performance	112
		4.3.3	Recorded Response	113
	4.4	Specin	nen C5	134
		4.4.1	General	134
		4.4.2	Observed Performance	134
		4.4.3	Recorded Response	135
	4.5	Specin	nen C6	159
		4.5.1	General	159
		4.5.2	Observed Performance	159
		4.5.3	Recorded Response	
	4.6	Specin	nen C6-G	
		4.6.1	General	
		4.6.2	Observed Performance	
		4.6.3	Recorded Response	

4.7	Specin	nen C7	198
	4.7.1	General	198
	4.7.2	Observed Performance	198
	4.7.3	Recorded Response	199
4.8	Specin	nen W1	222
	4.8.1	General	222
	4.8.2	Observed Performance	222
	4.8.3	Recorded Response	223
4.9	Specin	nen W2	254
	4.9.1	General	254
	4.9.2	Observed Performance	254
	4.9.3	Recorded Response	255
4.10	Specin	nen W3	
	4.10.1	General	
	4.10.2	Observed Performance	
	4.10.3	Recorded Response	
4.11	Specin	nen W4	
	4.11.1	General	
	4.11.2	Observed Performance	
	4.11.3	Recorded Response	
4.12	Specin	nen Macroetching	
4.13	Latera	l Bracing Force	
DISC	CUSSIO	N OF TEST RESULTS	357
5.1	Genera	al	357
5.2	Observ	ved Response and Governing Failure Modes	
5.3	Effect	of Galvanization	
5.4	Contin	uuity Plate Response	
5.5	Double	er Plate Response	
5.6	Colum	nn Limit States	
	5.6.1	Web Local Yielding (WLY)	
	5.6.2	Flange Local Bending (FLB)	

5

	5.7	RBS Lateral Bracing Force	364
6	SUM	MARY AND CONCLUSIONS	379
	6.1	Summary	379
	6.2	Conclusions	381
REF	TEREN	ICES	385
APP	ENDI	X A: DESIGN DRAWINGS	391
APP	ENDI	X B: WELD INSPECTION REPORTS	400
APP	ENDI	X C: CERTIFIED MILL TEST REPORTS	415
APP	ENDI	X D: TENSION COUPON TESTING	441
APP	ENDI	X E: WELDING PROCEDURE SPECIFICATIONS	454

LIST OF TABLES

Table 1.1 Limit State Matrix (W14 Column and W36 Beam; One-Sided RBS)	
Connection)	
Table 2.1 Research Objective Matrix	
Table 2.2 Phase 1 Specimen RBS Dimensions	49
Table 2.3 Continuity Plate Design Metric	50
Table 2.4 Doubler Plate Design Metric	51
Table 3.1 Phase 1 Exterior RBS Connection Test Matrix	
Table 3.2 Phase Two Interior WUF-W Connection Test Matrix	
Table 3.3 Member Cross-Sectional Dimensions	63
Table 3.4 Base Metal Mechanical Properties	65
Table 3.5 Chemical Compositions for Components from Mill Certificates	69
Table 3.6 Weld Metal Charpy V-Notch Test Results	71
Table 4.1 Specimen C3: Lateral Bracing Force	
Table 4.2 Specimen C4: Lateral Bracing Force	
Table 4.3 Specimen C5: Lateral Bracing Force	355
Table 4.4 Specimen C6: Lateral Bracing Force	
Table 4.5 Specimen C6-G: Lateral Bracing Force	
Table 5.1 Specimen Performance Comparison	
Table 5.2 Continuity Plate Design and Experimentally Determined Forces	
Table 5.3 Doubler Plate Design and Experimentally Determined Forces	
Table 5.4 Specimen Lateral Bracing Force Comparison	

LIST OF FIGURES

Figure 1.1 Pre-Northridge Connection (Hamburger et al. 2016)	33
Figure 1.2 Fracture at Beam Bottom Flange Backing Bar (Hamburger et al. 2016)	33
Figure 1.3 Prequalified Moment Connections (Hamburger et al. 2016)	34
Figure 1.4 Plastic Strain versus Triaxiality Ratio (Ricles et al. 2000)	34
Figure 1.5 Net-Section Failure of Beam Flange (Ricles et al. 2000)	35
Figure 1.6 Continuity Plate Free Body Diagram (Mashayekh 2017)	35
Figure 1.7 Flexibility Method Verification (Mashayekh and Uang 2018)	35
Figure 1.8 WLY Limit State (Carter 1999)	36
Figure 1.9 FLB Limit State (Tran et al. 2013)	36
Figure 1.10 Yield Line Mechanism	36
Figure 1.11 Flange Local Bending Comparison	37
Figure 2.1 Continuity Plate Force Prediction	52
Figure 2.2 Continuity Plate Diagrams	52
Figure 2.3 Continuity Plate Weld DCR Including Shear	52
Figure 2.4 Doubler Plate Free Body Diagram	53
Figure 2.5 Doubler Plate Vertical Fillet Welds	53
Figure 3.1 Exterior Moment Connection Test Setup (Phase 1)	72
Figure 3.2 Column Support (Phase 1)	73
Figure 3.3 Lateral Bracing at Loading End (Phase 1)	73
Figure 3.4 Top Flange Intermediate Lateral Restraint (Specimens C3 and C5)	74
Figure 3.5 Top Flange Intermediate Lateral Restraint (Specimens C4, C6, C6-G, and C	27)
	74
Figure 3.6 Interior Moment Connection Test Setup (Phase 2)	75
Figure 3.7 Test Setup (Phase 2)	76
Figure 3.8 Column Supports (Phase 2)	76
Figure 3.9 Beam Lateral Restraint and Loading End (Phase 2)	77
Figure 3.10 Beam Bottom Flange and Web CJP Weld Preparation (Specimen C5)	78
Figure 3.11 Beam Top Flange CJP Weld Preparation (Specimen C5)	78
Figure 3.12 Beam Flange CJP Weld during Groove Welding (Specimen C5)	79

Figure 3.13 Beam Bottom Flange Underside CJP Weld Treatment (Specimen C5) 80
Figure 3.14 Beam Top Flange Underside CJP Weld Treatment (Specimen C5)
Figure 3.15 Beam Web Weld (Specimen C5)
Figure 3.16 Continuity Plate Fillet Welds (Specimen C5)
Figure 3.17 Exterior Moment Connection (Specimens C3 to C7) Transducer Layout 82
Figure 3.18 Interior Moment Connection (Specimens W1 to W4) Transducer Layout 83
Figure 3.19 Specimen C3: Instrumentation
Figure 3.20 Specimen C4: Instrumentation
Figure 3.21 Specimen C5: Instrumentation
Figure 3.22 Specimen C6: Instrumentation
Figure 3.23 Specimen C6-G: Instrumentation
Figure 3.24 Specimen C7: Instrumentation
Figure 3.25 Interior Frame (Specimen W1 to W4): Instrumentation
Figure 3.26 AISC Loading Protocol91
Figure 4.1 Specimen C3: Specimen before Testing
Figure 4.2 Specimen C3: East Side of Connection
Figure 4.3 Specimen C3: Beam Top Flange Weld Tearing
Figure 4.4 Specimen C3: Beam Web Buckling
Figure 4.5 Specimen C3: Beam Top Flange Fracture
Figure 4.6 Specimen C3: Connection at End of Test 100
Figure 4.7 Specimen C3: Beam Lateral-Torsional Buckling (End of Test) 101
Figure 4.8 Specimen C3: Beam Top Flange CJP Weld Fracture (End of Test) 101
Figure 4.9 Specimen C3: Recorded Loading Sequence 102
Figure 4.10 Specimen C3: Applied Load versus Beam End Displacement Response 102
Figure 4.11 Specimen C3: Moment at Column Face versus Story Drift Response 103
Figure 4.12 Specimen C3: Moment at Column Face versus Plastic Rotation 103
Figure 4.13 Specimen C3: Panel Zone Shear Deformation 104
Figure 4.14 Specimen C3: Column Rotation 104
Figure 4.15 Specimen C3: Energy Dissipation 105
Figure 4.16 Specimen C3: Topside of Beam Top Flange Strain Profile 106
Figure 4.17 Specimen C3: Underside of Beam Bottom Flange Strain Profile 107

Figure 4.18 Specimen C3: Column Flange Warping	. 108
Figure 4.19 Specimen C3: Panel Zone Response	. 109
Figure 4.20 Specimen C3: Column Flange Strain Profile	. 111
Figure 4.21 Specimen C4: Specimen before Testing	. 116
Figure 4.22 Specimen C4: East Side of Connection	. 117
Figure 4.23 Specimen C4: Beam Bottom Flange Yielding and Buckling	. 118
Figure 4.24 Specimen C4: Beam Web Yielding at +0.02 rad (2 nd Cycle)	. 119
Figure 4.25 Specimen C4: Beam Top Flange at -0.04 rad (1 st Cycle)	. 119
Figure 4.26 Specimen C4: Beam Flange and Web Yielding at -0.04 rad (1st Cycle)	. 120
Figure 4.27 Specimen C4: Beam Web Buckling at -0.04 rad (1 st Cycle)	. 120
Figure 4.28 Specimen C4: Beam Bottom Flange Fracture after one cycle at 0.06 rad .	. 121
Figure 4.29 Specimen C4: Beam Top Flange at -0.06 rad (2 nd Cycle)	. 121
Figure 4.30 Specimen C4: Connection at End of Test	. 122
Figure 4.31 Specimen C4: Beam Bottom Flange Fracture (End of Test)	. 123
Figure 4.32 Specimen C4: Column Flange (End of Test)	. 123
Figure 4.33 Specimen C4: Recorded Loading Sequence	. 124
Figure 4.34 Specimen C4: Applied Load versus Beam End Displacement Response	. 124
Figure 4.35 Specimen C4: Moment at Column Face versus Story Drift Response	. 125
Figure 4.36 Specimen C4: Moment at Column Face versus Plastic Rotation	. 125
Figure 4.37 Specimen C4: Panel Zone Shear Deformation	. 126
Figure 4.38 Specimen C4: Column Rotation	. 126
Figure 4.39 Specimen C4: Energy Dissipation	. 127
Figure 4.40 Specimen C4: Topside of Beam Top Flange Strain Profile	. 128
Figure 4.41 Specimen C4: Underside of Beam Bottom Flange Strain Profile	. 129
Figure 4.42 Specimen C4: Column Flange Warping	. 130
Figure 4.43 Specimen C4: Column Panel Zone Response	. 131
Figure 4.44 Specimen C4: Column Web Strain Profiles	. 132
Figure 4.45 Specimen C4: Column Flange Strain Profiles	. 133
Figure 4.46 Specimen C5: Specimen before Testing	. 139
Figure 4.47 Specimen C5: East Side of Connection	. 140
Figure 4.48 Specimen C5: Beam Top Flange	. 141

Figure 4.49 Specimen C5: Beam Top Flange CJP Weld Fracture Progression	142
Figure 4.50 Specimen C5: Column Kinking due to Panel Zone Deformation	143
Figure 4.51 Specimen C5: Beam Web Buckling (End of Test)	144
Figure 4.52 Specimen C5: Beam Lateral-Torsional Buckling (End of Test)	144
Figure 4.53 Specimen C5: Continuity Plate (End of Test)	145
Figure 4.54 Specimen C5: Recorded Loading Sequence	146
Figure 4.55 Specimen C5: Applied Load versus Beam End Displacement Response	146
Figure 4.56 Specimen C5: Moment at Column Face versus Story Drift Response	147
Figure 4.57 Specimen C5: Moment at Column Face versus Plastic Rotation	147
Figure 4.58 Specimen C5: Panel Zone Shear Deformation	148
Figure 4.59 Specimen C5: Column Rotation	148
Figure 4.60 Specimen C5: Energy Dissipation	149
Figure 4.61 Specimen C5: Topside of Beam Top Flange Strain Profile	150
Figure 4.62 Specimen C5: Underside of Beam Bottom Flange Strain Profile	151
Figure 4.63 Specimen C5: Column Flange Warping	152
Figure 4.64 Specimen C5: Panel Zone Response	153
Figure 4.65 Specimen C5: Continuity Plate at Column Flange Edge Strain Profile	154
Figure 4.66 Specimen C5: Continuity Plate at Column Flange Edge Shear Strain Profil	le
	155
Figure 4.67 Specimen C5: Continuity Plate Strain Gauge Rosette R09 Response	156
Figure 4.68 Specimen C5: Continuity Plate at Column Web Edge Shear Strain Profile	157
Figure 4.69 Specimen C5: Bottom Continuity Plate Bending	158
Figure 4.70 Specimen C6: Specimen before Testing	163
Figure 4.71 Specimen C6: East Side of Connection	164
Figure 4.72 Specimen C6: Beam Top Flange	165
Figure 4.73 Specimen C6: Beam Top Flange CJP Weld Fracture Progression	166
Figure 4.74 Specimen C6: Beam Bottom Flange Yielding	167
Figure 4.75 Specimen C6: Panel Zone Yielding	168
Figure 4.76 Specimen C6: Beam Web and Flange Local Buckling at $+0.04$ rad (2 nd	
Cycle)	168
Figure 4.77 Specimen C6: Connection at End of Test	169

Figure 4.78 Specimen C6: Continuity Plate (End of Test)	. 170
Figure 4.79 Specimen C6: Recorded Loading Sequence	. 171
Figure 4.80 Specimen C6: Applied Load versus Beam End Displacement Response	. 171
Figure 4.81 Specimen C6: Moment at Column Face versus Story Drift Response	. 172
Figure 4.82 Specimen C6: Moment at Column Face versus Plastic Rotation	. 172
Figure 4.83 Specimen C6: Panel Zone Shear Deformation	. 173
Figure 4.84 Specimen C6: Column Rotation	. 173
Figure 4.85 Specimen C6: Energy Dissipation	. 174
Figure 4.86 Specimen C6: Topside of Beam Top Flange Strain Profile	. 175
Figure 4.87 Specimen C6: Underside of Beam Bottom Flange Strain Profile	. 176
Figure 4.88 Specimen C6: Column Flange Warping	. 177
Figure 4.89 Specimen C6: Panel Zone Response	. 178
Figure 4.90 Specimen C6: Continuity Plate at Column Flange Edge Strain Profile	. 179
Figure 4.91 Specimen C6: Continuity Plate at Column Flange Edge Shear Strain Prof	ile
	. 180
Figure 4.92 Specimen C6: Continuity Plate Strain Gauge Rosette R09 Response	. 181
Figure 4.93 Specimen C6: Continuity Plate at Column Web Edge Shear Strain Profile	182
Figure 4.94 Specimen C6: Bottom Continuity Plate Bending	. 183
Figure 4.95 Specimen C6-G: Specimen before Testing	. 187
Figure 4.96 Specimen C6-G: East Side of Connection	188
Figure 4.97 Specimen C6-G: Cracks in Galvanization Coating	. 189
Figure 4.98 Specimen C6-G: Hairline Crack at Beam Top Flange CJP Weld	. 189
Figure 4.99 Specimen C6-G: Flange Local Buckling	. 190
Figure 4.100 Specimen C6-G: Web Local Buckling	. 191
Figure 4.101 Specimen C6-G: Beam Flange Partial Fracture at -0.06 rad (1st Cycle)	. 191
Figure 4.102 Specimen C6-G: Complete Beam Fracture at -0.06 rad (1st Cycle)	. 192
Figure 4.103 Specimen C6-G: East Side of Connection at End of Test	. 193
Figure 4.104 Specimen C6-G: Continuity Plate Welds at End of Test	. 193
Figure 4.105 Specimen C6-G: Recorded Loading Sequence	. 194
Figure 4.106 Specimen C6-G: Applied Load versus Beam End Displacement Respon	se
	194

Figure 4.107 Specimen C6-G: Moment at Column Face versus Story Drift Response . 195
Figure 4.108 Specimen C6-G: Moment at Column Face versus Plastic Rotation 195
Figure 4.109 Specimen C6-G: Panel Zone Shear Deformation 196
Figure 4.110 Specimen C6-G: Column Rotation 196
Figure 4.111 Specimen C6-G: Energy Dissipation 197
Figure 4.112 Specimen C7: Specimen before Testing 202
Figure 4.113 Specimen C7: East Side of Connection
Figure 4.114 Specimen C7: Beam Bottom Flange Yielding 204
Figure 4.115 Specimen C7: Beam Top Flange Yielding at -0.015 rad (2 nd Cycle) 205
Figure 4.116 Specimen C7: Beam Top Flange Yielding at -0.02 rad (2 nd Cycle) 205
Figure 4.117 Specimen C7: Colum WLY at Beam Top Flange Level 205
Figure 4.118 Specimen C7: Colum WLY at End of Test
Figure 4.119 Specimen C7: Beam Flange Local Bucking 206
Figure 4.120 Specimen C7: Connection at End of Test
Figure 4.121 Specimen C7: Beam Flange Partial Fracture 208
Figure 4.122 Specimen C7: Column Yielding (End of Test) 209
Figure 4.123 Specimen C7: Doubler Plate at End of Test
Figure 4.124 Specimen C7: Recorded Loading Sequence
Figure 4.125 Specimen C7: Applied Load versus Beam End Displacement Response. 211
Figure 4.126 Specimen C7: Moment at Column Face versus Story Drift Response 212
Figure 4.127 Specimen C7: Moment at Column Face versus Plastic Rotation 212
Figure 4.128 Specimen C7: Panel Zone Shear Deformation 213
Figure 4.129 Specimen C7: Column Rotation
Figure 4.130 Specimen C7: Energy Dissipation 214
Figure 4.131 Specimen C7: Topside of Beam Top Flange Strain Profile
Figure 4.132 Specimen C7: Underside of Beam Bottom Flange Strain Profile 216
Figure 4.133 Specimen C7: Column Flange Warping 217
Figure 4.134 Specimen C7: Panel Zone Response
Figure 4.135 Specimen C7: Column Web Strain Profiles
Figure 4.136 Specimen C7: Doubler Plate Response
Figure 4.137 Specimen C7: Column Flange Response

Figure 4.138 Specimen W1: Connection before Testing	226
Figure 4.139 Specimen W1: Connection during Testing	227
Figure 4.140 Specimen W1: East Beam Bottom Flange Yielding	228
Figure 4.141 Specimen W1: West Beam Bottom Flange Yielding	228
Figure 4.142 Specimen W1: East Beam Bottom Flange Local Buckling	229
Figure 4.143 Specimen W1: Panel Zone Yielding at +0.03 rad (2 nd Cycle)	229
Figure 4.144 Specimen W1: Lateral-Torsional Buckling	230
Figure 4.145 Specimen W1: East Beam Top Flange CJP Weld Fracture at -0.04 rad (2 ^r	ıd
Cycle)	231
Figure 4.146 Specimen W1: East Beam Top Flange CJP Weld Fracture Progression2	232
Figure 4.147 Specimen W1: East Beam Top Flange CJP Weld Fracture Surface	233
Figure 4.148 Specimen W1: Connection at End of Test	234
Figure 4.149 Specimen W1: Top Flange Continuity Plate (End of Test)	234
Figure 4.150 Specimen W1: Bottom Flange Continuity Plate (End of Test)	235
Figure 4.151 Specimen W1: Underside Continuity Plates (End of Test)	235
Figure 4.152 Specimen W1: Recorded Loading Sequence	236
Figure 4.153 Specimen W1: Column Shear versus Story Drift Angle	236
Figure 4.154 Specimen W1: Applied Load versus Beam End Displacement Response	237
Figure 4.155 Specimen W1: Moment at Column Face versus Story Drift Response	238
Figure 4.156 Specimen W1: Moment at Column Face versus Plastic Rotation	239
Figure 4.157 Specimen W1: Panel Zone Shear Deformation	240
Figure 4.158 Specimen W1: Column Rotation	240
Figure 4.159 Specimen W1: Energy Dissipation	241
Figure 4.160 Specimen W1: Topside of East Beam Top Flange Strain Profile	242
Figure 4.161 Specimen W1: Underside of East Beam Bottom Flange Strain Profile	243
Figure 4.162 Specimen W1: Topside of West Beam Top Flange Strain Profile	244
Figure 4.163 Specimen W1: Underside of West Beam Bottom Flange Strain Profile 2	245
Figure 4.164 Specimen W1: Column Flange Warping	246
Figure 4.165 Specimen W1: Panel Zone Strain Profile	247
Figure 4.166 Specimen W1: Panel Zone Shear Strain Profile	248
Figure 4.167 Specimen W1: Continuity Plate at Column Flange Edge Strain Profile	249

Figure 4.168 Specimen W1: Continuity Plate at Column Flange Edge Shear Strain Profi	le
	50
Figure 4.169 Specimen W1: Continuity Plate Strain Gauge Rosette Response	51
Figure 4.170 Specimen W1: Continuity Plate at Column Web Edge Shear Strain Profile	
	52
Figure 4.171 Specimen W1: Beam Shear Response	53
Figure 4.172 Specimen W2: Connection before Testing	58
Figure 4.173 Specimen W2: Connection during Testing	59
Figure 4.174 Specimen W2: East Beam Bottom Flange Yielding	50
Figure 4.175 Specimen W2: West Beam Bottom Flange Yielding	50
Figure 4.176 Specimen W2: East Beam Top Flange Local Buckling	51
Figure 4.177 Specimen W2: East Beam Top Flange CJP Weld Tear at -0.03 rad (2 nd	
Cycle)	51
Figure 4.178 Specimen W2: East Beam Top Flange CJP Weld Tear Progression	52
Figure 4.179 Specimen W2: West Beam Bottom Flange CJP Weld Fracture at: -0.05 rad	l
2 nd Cycle)	52
Figure 4.180 Specimen W2: East Beam Bottom Flange CJP Weld Fracture at: +0.06 rad	
(1 st Cycle)	53
Figure 4.181 Specimen W2: East Beam Bottom Flange Lateral-Torsional Bucking	
at: -0.06 rad (1 st Cycle)	53
Figure 4.182 Specimen W2: East Beam Top Flange Partial Fracture during Excursion	
o -0.06 rad (2 nd Cycle)	54
Figure 4.183 Specimen W2: East Beam Top Flange Weld Access Hole Tear at -0.06 rad	
	54
Figure 4.184 Specimen W2: West Beam Bottom Flange Fracture during Excursion	
o -0.06 rad (2 nd Cycle)	55
Figure 4.185 Specimen W2: Connection at End of Test	55
Figure 4.186 Specimen W2: Panel Zone (End of Test)	56
Figure 4.187 Specimen W2: Continuity Plate Fillet Welds (End of Test)	56
Figure 4.188 Specimen W2: Recorded Loading Sequence	57
Figure 4.189 Specimen W2: Column Shear versus Story Drift Angle	57

Figure 4.190 Specimen V	W2: Applied Load versus Beam End Displacement Response 268
Figure 4.191 Specimen V	W2: Moment at Column Face versus Story Drift Response 269
Figure 4.192 Specimen V	V2: Moment at Column Face versus Plastic Rotation
Figure 4.193 Specimen V	V2: Panel Zone Shear Deformation
Figure 4.194 Specimen V	V2: Column Rotation
Figure 4.195 Specimen V	V2: Energy Dissipation
Figure 4.196 Specimen V	V2: Topside of East Beam Top Flange Strain Profile 273
Figure 4.197 Specimen V	V2: Underside of East Beam Bottom Flange Strain Profile 274
Figure 4.198 Specimen V	V2: Topside of West Beam Top Flange Strain Profile
Figure 4.199 Specimen V	W2: Underside of West Beam Bottom Flange Strain Profile 276
Figure 4.200 Specimen V	V2: Column Flange Warping 277
Figure 4.201 Specimen V	V2: Panel Zone Strain Profile
Figure 4.202 Specimen V	V2: Panel Zone Shear Strain Profile
Figure 4.203 Specimen V	V2: Continuity Plate at Column Flange Edge Strain Profile 280
Figure 4.204 Specimen V	W2: Continuity Plate at Column Flange Edge Shear Strain Profile
Figure 4.205 Specimen V	V2: Continuity Plate Strain Gauge Rosette Response
Figure 4.206 Specimen V	W2: Continuity Plate at Column Web Edge Shear Strain Profile
Figure 4.207 Specimen V	V2: Beam Shear Response
Figure 4.208 Specimen V	V3: Connection before Testing
Figure 4.209 Specimen V	V3: Connection during Testing
Figure 4.210 Specimen V	V3: East Beam Bottom Flange Yielding 291
Figure 4.211 Specimen V	V3: West Beam Bottom Flange Yielding 291
Figure 4.212 Specimen V	V3: East Beam Top Flange Local Buckling 292
Figure 4.213 Specimen V	V3: East Beam Top Flange Weld Access Hole Tearing
at -0.05 rad (1 st Cycle)	
Figure 4.214 Specimen V	W3: Web Local Buckling at +0.05 rad (1 st Cycle)
Figure 4.215 Specimen V	W3: Flange Local Buckling at -0.05 rad (1 st Cycle)
Figure 4.216 Specimen V	W3: East Beam Top Flange CJP Weld Tear Progression 294
Figure 4.217 Specimen V	W3: East Beam Top Flange Weld Access Hole Tear

Figure 4.218 Specimen W3: East Beam Top Flange Fracture at +0.06 rad (1 st Cycle).	. 295
Figure 4.219 Specimen W3: East Beam Top Flange Fracture	. 295
Figure 4.220 Specimen W3: Connection at End of Test	. 296
Figure 4.221 Specimen W3: West Beam Top Flange (End of Test)	. 296
Figure 4.222 Specimen W3: Top Flange Continuity Plate (End of Test)	. 297
Figure 4.223 Specimen W3: Bottom Flange Continuity Plate (End of Test)	. 297
Figure 4.224 Specimen W3: Continuity Plate Fillet Welds (End of Test)	. 298
Figure 4.225 Specimen W3: Recorded Loading Sequence	. 299
Figure 4.226 Specimen W3: Column Shear versus Story Drift Angle	. 299
Figure 4.227 Specimen W3: Applied Load versus Beam End Displacement Response	: 300
Figure 4.228 Specimen W3: Moment at Column Face versus Story Drift Response	. 301
Figure 4.229 Specimen W3: Moment at Column Face versus Plastic Rotation	. 302
Figure 4.230 Specimen W3: Panel Zone Shear Deformation	. 303
Figure 4.231 Specimen W3: Column Rotation	. 303
Figure 4.232 Specimen W3: Energy Dissipation	. 304
Figure 4.233 Specimen W3: Topside of East Beam Top Flange Strain Profile	. 305
Figure 4.234 Specimen W3: Underside of East Beam Bottom Flange Strain Profile	. 306
Figure 4.235 Specimen W3: Topside of West Beam Top Flange Strain Profile	. 307
Figure 4.236 Specimen W3: Underside of West Beam Bottom Flange Strain Profile	. 308
Figure 4.237 Specimen W3: Column Flange Warping	. 309
Figure 4.238 Specimen W3: Panel Zone Strain Profile	. 310
Figure 4.239 Specimen W3: Panel Zone Shear Strain Profile	. 311
Figure 4.240 Specimen W3: Continuity Plate at Column Flange Edge Strain Profile	. 312
Figure 4.241 Specimen W3: Continuity Plate at Column Flange Edge Shear Strain Pr	ofile
	. 313
Figure 4.242 Specimen W3: Continuity Plate Strain Gauge Rosette Response	. 314
Figure 4.243 Specimen W3: Continuity Plate at Column Web Edge Shear Strain Prof	ile
	. 315
Figure 4.244 Specimen W3: Beam Shear Response	. 316
Figure 4.245 Specimen W4: Connection before Testing	. 321
Figure 4.246 Specimen W4: Connection during Testing	. 322

Figure 4.247 Specimen W4: East Beam Bottom Flange Yielding	323
Figure 4.248 Specimen W4: West Beam Bottom Flange Yielding	323
Figure 4.249 Specimen W4: West Beam Bottom Flange Local Buckling	324
Figure 4.250 Specimen W4: West Beam Web Buckling at +0.04 rad (1st Cycle)	324
Figure 4.251 Specimen W4: East Beam Top Flange CJP Weld Fracture at -0.04 rad (2	2 nd
Cycle)	325
Figure 4.252 Specimen W4: West Beam Top Flange CJP Weld Tear at +0.05 rad (1st	
Cycle)	325
Figure 4.253 Specimen W4: East Beam Lateral-Torsional Buckling at +0.05 rad (1 st	
Cycle)	326
Figure 4.254 Specimen W4: East Beam Top Flange Fracture during First Excursion	
of -0.05 rad	326
Figure 4.255 Specimen W4: East Beam Top Flange Weld Access Hole Fracture during	ıg
First of -0.05 rad	327
Figure 4.256 Specimen W4: West Beam Top Flange Fracture (End of Test)	327
Figure 4.257 Specimen W4: East Beam Top Flange Fracture	328
Figure 4.258 Specimen W4: Connection at End of Testing	328
Figure 4.259 Specimen W4: Continuity Plates (End of Test)	329
Figure 4.260 Specimen W4: Panel Zone (End of Test)	329
Figure 4.261 Specimen W4: Recorded Loading Sequence	330
Figure 4.262 Specimen W4: Column Shear versus Story Drift Angle	330
Figure 4.263 Specimen W4: Applied Load versus Beam End Displacement Response	331
Figure 4.264 Specimen W4: Moment at Column Face versus Story Drift Response	332
Figure 4.265 Specimen W4: Moment at Column Face versus Plastic Rotation	333
Figure 4.266 Specimen W4: Panel Zone Shear Deformation	334
Figure 4.267 Specimen W4: Column Rotation	334
Figure 4.268 Specimen W4: Energy Dissipation	335
Figure 4.269 Specimen W4: Topside of East Beam Top Flange Strain Profile	336
Figure 4.270 Specimen W4: Underside of East Beam Bottom Flange Strain Profile	337
Figure 4.271 Specimen W4: Topside of West Beam Top Flange Strain Profile	338
Figure 4.272 Specimen W4: Underside of West Beam Bottom Flange Strain Profile	339

Figure 4.273 Specimen W4: Column Flange Warping	340
Figure 4.274 Specimen W4: Panel Zone Strain Profile	341
Figure 4.275 Specimen W4: Panel Zone Shear Strain Profile	342
Figure 4.276 Specimen W4: Continuity Plate at Column Flange Edge Strain Profi	le 343
Figure 4.277 Specimen W4: Continuity Plate at Column Flange Edge Shear Strain	n Profile
	344
Figure 4.278 Specimen W4: Continuity Plate Strain Gauge Rosette Response	345
Figure 4.279 Specimen W4: Continuity Plate at Column Web Edge Shear Strain F	rofile
	346
Figure 4.280 Specimen W4: Beam Shear Response	347
Figure 4.281 Macroetch of Specimen C3 Beam Bottom Flange CJP Weld	349
Figure 4.282 Macroetch of Specimen C5 Welds	349
Figure 4.283 Macroetch of Specimen C6 Welds	350
Figure 4.284 Macroetch of Specimen W1 Welds (East Beam)	351
Figure 4.285 Macroetch of Specimen C7 Welds	352
Figure 5.1 Summary of Specimen Story Drift Capacity	369
Figure 5.2 Summary of Measured Peak Connection Strength Factor, Cpr	369
Figure 5.3 Summary of Normalized Energy Dissipation Capacity	370
Figure 5.4 Summary of Reserve Energy Ratio	370
Figure 5.5 Summary of Beam Clear Span-to-Depth Ratio	371
Figure 5.6 Comparison of Specimens C6 and C6-G Responses	371
Figure 5.7 Continuity Plate Principal Strains	372
Figure 5.8 Doubler Plate Shear Strain Profiles (Positive Drift)	373
Figure 5.9 Specimen C4: Column Web Strain Profiles	374
Figure 5.10 Specimen C7: Comparison of Column Web and Doubler Plate Strains	375
Figure 5.11 Specimen W4: Panel Zone Strain Profile	376
Figure 5.12 Specimen W4: Continuity Plate at Column Flange Edge Strain Profile	e 377
Figure 5.13 Specimen C4: Observed Column Flange Localized Yielding (End of 7	Гest)
	378
Figure 5.14 Recorded Column Flange Response (Positive Drift)	378

1 INTRODUCTION

1.1 Introduction

Steel moment frames are a common Seismic Force-Resisting System (SFRS) because of the architectural freedom they offer. Moment frames permit open bays and eliminate the need for braced frames or shear walls. These systems develop plastic hinging through the plastification of the beams and the base of the first story-column. The use of relatively stocky width-to-thickness ratios prevents undesirable levels of strength degradation due to local buckling of the flange or web of the beam. Stable hysteretic behavior of the frames is encouraged by providing lateral bracing of the beams, which prevents lateral-torsional instability. These SFRS have excellent levels of ductility which allow designers significant reductions of the required elastic seismic design forces. However, after the 1994 Northridge Earthquake, significant damage to steel moment frames was observed at drift levels far below their assumed capacity. The observed damage instigated a significant research effort, which made significant changes to the detailing of steel moment frames.

The magnitude 6.7 Northridge Earthquake (1994) in the San Fernando Valley resulted in numerous fractures at the complete-joint-penetration (CJP) groove weld between the beam flanges and column flange of a steel moment frame connection. Similar fractures were also observed in steel moment frame buildings following the magnitude 6.9 Kobe Earthquake (1995) in Japan. An after-earthquake survey of the damage found nearly 1000 weld fractures. Following this, a consortium of associations and researchers known as the SAC Joint Venture initiated an 6-year research program to investigate the source of the fractures. They found that a combination of low fracture toughness weld metals, a lack of control of base metal properties, and connection geometries susceptible to high localized strain conditions were the main cause of the fractures. After the findings of the SAC Joint Venture, strict control of the use of steel moment frames has been imposed through AISC 341, the Seismic Provisions for Structural Steel Buildings (AISC 2016b), AISC 358, the Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications (AISC 2016c), and AWS D1.8 the Structural Welding Code-Seismic Supplement (AWS 2016).

These controls involve mandatory use of notch-tough weld electrodes for welds designated as Demand Critical (DC), modified access hole geometries, and weld root

treatments to minimize sharp discontinuities. However, the most important provision requires that Special Moment Frames (SMF) and Intermediate Moment Frames (IMF) match the dimensions and detailing of previously qualified connections. For example, the Seismic Provisions stipulate that Special Moment Frames (designated as special due to their 'special' detailing requirements) must complete one cycle of 0.04 radian (rad) drift without significant strength degradation. The imposed drift follows a standard loading protocol, which gradually ramps up the imposed displacement. Due to their high ductility, SMF enjoys a high Response Modification Factor, *R*, and have no height limits for any Seismic Design Category tabulated in ASCE 7-16 (ASCE 2016).

The Prequalified Connections document (AISC 358) summarizes the geometry limitations and detailing requirements of prequalified connections since connection testing would be prohibitively expensive to perform on a project basis. A number of these connections are proprietary, wherein the intellectual property is licensed during the design phase. Two standard non-proprietary connections are the Reduced Beam Section (RBS) and the Welded Unreinforced Flange with Welded Web (WUF-W). When the prescriptive detailing requirements are adhered to, these two connections demonstrate the ability to satisfy the ductility requirements of SMF. Some of the prescriptive detailing requirements enacted after the Northridge Earthquake are recognized to be conservative. Specifically, the welding requirements of continuity plates and doubler plates for SMF and IMF. These plates are installed between the column flanges to stiffen the connection and ensure the desired inelastic behavior of the frame. The stiffening elements accomplish this by preventing excessive column flange deformation which would otherwise lead to premature failure of the connection, and by reinforcing the high shear panel zone such that plastic hinging occurs in the beam.

The Seismic Provisions have two requirements dictating when a continuity plate shall be used in a connection. They are: (1) when the available strength of the column as computed for the Web Local Yielding (WLY) or the Flange Local Bending (FLB) limit states of Section J10 of the Specification for Structural Steel Buildings (AISC 2016) are insufficient to resist the flange force from the moment connection, and (2) when the column flange thickness is less than the beam flange width divided by 6. The latter requirement is referred to as the 'Lehigh' Criterion herein for the institution of the founding study. When either of these requirements dictates the use of a continuity plate, the plate thickness shall be 50% of the adjacent beam flange thickness for exterior (one-sided) connections or 75% of the thicker adjacent beam flange for interior (two-sided) connections. The current requirement of the weld between the continuity plate and the column flange is shall be a CJP groove weld; the use of a CJP weld rather than a fillet weld has significant economic implications. These welds require additional fabrication to bevel the edge of the plates and install a backing bar, additional weld volume, and more stringent inspection requirements. As per Section N of the AISC Specifications, CJP welds in Risk Category III or IV (as defined in ASCE 7-16) require 100% Ultrasonic Testing (UT). This inspection requirement for CJP welds significantly increases the cost of fabricating the continuity plates—an increase so significant that some designers prefer to increase the size of the column to mitigate the need for additional stiffening elements (Carter 1999).

Adequately designing the fillet welds for continuity plates would require the reconciliation of the flow of forces through the joints. A CJP weld does not possess this requirement as the weld develops the strength of adjacent plates—implying that failure of the plate would occur before the weld. Intimately linked to the continuity plate is the doubler plate. When present, this plate acts to double up the web to resist the high shear forces that develop within the panel zone of the moment connection. The high shear force is a result of the concentrated flange forces which resolve the beam moment as a force-couple. These flange forces flow through the column flanges into the continuity plates before ultimately loading the panel zone in shear. According to the Seismic Provisions, vertical weldments of the doubler plates to the column flanges are required to develop the shear strength of the plate—irrespective of the demand that may exist for the plate.

A pilot study that used a flexibility design method (Tran et al. 2013) tested two exterior RBS connections with fillet welded continuity plates (Mashayekh and Uang 2018). The flexibility design methodology was developed under the assumption that the continuity plates remain elastic. However, intentional under sizing of a continuity plate demonstrated excellent performance when continuity plates are permitted to yield. The inception of this testing program occurred after the preliminary success of the pilot study.

1.2 Research Objective and Scope

The objective of the research project was to conduct full-scale testing to explore more efficient design methodologies for the welding of the column stiffening. The physical testing forms the phenomenological evidence to adopt a plastic methodology in the design of continuity plates, and the weldments of continuity and doubler plates. Included in this are vertical doubler plate welds that do not develop the strength of the plate and fillet welds for the continuity plate to column connection. Two types of prequalified connections tested in interior and exterior configurations are used to explore these two objectives. Phase 1 of the research includes RBS exterior connections (only one beam attached to the column) using both shallow and deep columns. Phase 2 of the research includes WUF-W interior connections (two beams attached to the column). For Phase 2, shallow columns were not considered as the AISC 341 requirement of Strong Column Weak Beam (SCWB) to prevent soft story mechanisms force thick flanges that do not require stiffening. The specimens with continuity plates were designed using a plastic methodology similar to that which exists in AISC 360-16 §J10. The ultimate continuity plate strength is verified by using a plastic interaction equation. These specimens used fillet welds to join the continuity plates to the column flanges using a simple fillet weld design rule.

The Phase 1 specimens are also designed to explore the current limit states of column stiffening (FLB and WLY) by omitting continuity plates in three specimens. The omission of the continuity plates in these specimens violates the Lehigh Criterion. This criterion is found to be the only code provision that requires the use of a continuity plate for these specimens (i.e., the strength limit state of FLB does not require a stiffening plate). For one of these specimens, the WLY limit state shows that the column web alone is insufficient for the concentrated flange force. A doubler plate instead of the convention of using a continuity plate was used to reinforce the column web. A new procedure was used to design vertical welds that do not develop the shear strength of the doubler plate. The Phase 2 specimens endeavored to test fillet welded continuity plates in WUF-W connections. These connections typically see much higher flange forces than an RBS connection, thereby challenging the continuity plate welds. Table 2.1 shows the test matrix for both phases of the testing.

1.3 Literature Review

1.3.1 The Pre-Northridge Connection

Before exploring the changes that occurred after 1994, a brief history of steel moment frames is provided. The use of steel moment frames for lateral force-resisting systems has been in everyday use since the turn of the 20th century. Construction of the first moment frames used built-up 'H' shapes made from riveting four angles to a plate that formed the web. Connections were stiffened using gusset plates at the connection to provide a fully-restrained connection. Concrete encasement of the steel framing in these structures was standard for added fire protection of the steel skeleton. The 1906 San Francisco Earthquake and devastating fires demonstrated the excellent ductility of steel moment frames—some of the only surviving buildings in the downtown core were steel buildings. However, it is possible this was primarily due to the internal redundancy of these steel frames due to the riveted connections and built-up shapes, and the concrete encasement providing superior fire resistance (Hamburger et al. 2016).

After World War II, the predominant architectural style began to change with a transition to the use of glass curtain walls. This transition saw the robust gusseted connection replaced with smaller angles and 'T' sections to form the connection. In the 1960s, there was a preferential use of steel moment frames over other systems due to their previously demonstrated excellent performance and lack of height of limits governing their use; nearly every tall building constructed in this era on the west coast of the United States employed steel moment frames. Innovative research at this time focusing on several different configurations of field welded moment connections demonstrated sufficient ductility (Popov and Pinkney 1969). In the 1970s, riveting fell out of everyday use, which led to using high-strength bolted shear tabs and CJP welds on each beam flange. Shielded Metal Arc Welded (SMAW) was the welding process of choice for field welding as tanks of inert gas were not required when performing the field welding.

During the 1980s, a sharp increase in the cost of labor resulted in engineers attempting to minimize the amount of welding. Concentrating the lateral force-resisting system into a limited number of bays was a common measure to decrease the cost of construction. Decreasing the number of moment frames in a building decreases the systemlevel redundancy. In 1988 the Uniform Building Code (UBC) codified the prequalified bolted web-welded flange moment connection, this connection has become known as the "pre-Northridge" moment connection (UBC 1988). Additionally, during this time, fabricators transitioned to using a self-shielded variety of Flux-Core Arc Welding (FCAW). This welding process has high deposition rates and does not require the welder to interrupt welding to reinsert a new stick electrode. Figure 1.1 shows a typical pre-Northridge Connection. Prior to events of 1994 there was little indication that the modern moment frame connection would develop less ductility than expected. The only known indication came in 1993 with a testing program which demonstrated significant variability in ductility capacity when using common FCAW welding electrodes and bolted shear tabs (Englehardt and Hussan 1993).

1.3.2 The Northridge Earthquake Damage

The 1994 magnitude 6.7 Northridge Earthquake saw many steel moment frame structures with brittle fractures in the connection region. Figure 1.2 shows an example of one of the fractures observed after the earthquake. Many of these fractures occurred after being subjected to rotations not more than 0.01 rad (Englehart and Sabol 1997). The damage due to the earthquake was immediately apparent as several of the buildings which experienced fractured connections were under construction, and as such, the steel frame was easily accessible. Similar fractures were observed in Japan after the 1995 magnitude 6.9 Kobe Earthquake.

The Northridge Earthquake caused an estimated 30 billion dollars of damage in Southern California (FEMA 2000e). Although damage to structures, especially older structures, was not peculiar, extensive damage to steel moment frames, once thought invulnerable, troubled the engineering community. Steel structures had performed well in previous earthquakes, which had precipitated significant changes in seismic detailing of other building materials. For example, the 1971 San Fernando Earthquake is seen as an incipient event for prescriptive ductile detailing of concrete in the United States (Hamburger 2006). These previous earthquakes did not demonstrate the steel fractures observed in 1994 since relatively few steel buildings were present in the areas affected by the most severe ground motions. After the Northridge earthquake, a significant inspection effort revealed fractures in moment frames in the San Francisco Bay area that were believed the result of the 1989 Loma Prieta Earthquake (FEMA 2000e). In response to the

unanticipated damage, the Federal Emergency Management Agency (FEMA), with coordinated efforts from the National Science Foundation (NSF) and the National Institute of Standards and Technology (NIST), sponsored the SAC Joint Venture to investigate the fractures. The SAC Joint Venture consisted of the Structural Engineers Association of California (SEAOC), the Applied Technology Council (ATC), and California Universities for Research in Earthquake Engineering (CUREe) made up of eight academic institutions in California at the time.

1.3.3 The Post-Northridge Connection

Over the 6 years following the Northridge Earthquake, the findings of the SAC Joint Venture were published in over 50 reports. The results from the SAC reports are distilled in a series of reports published by FEMA:

- FEMA 350–Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings (FEMA 2000a).
- FEMA 351–Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment Frame Buildings (FEMA 2000b).
- FEMA 352–Recommended Postearthquake Evaluation and Repair Criteria for Welded Steel Moment-Frame Buildings (FEMA 2000c).
- FEMA 353–Recommended Specifications and Quality Assurance for Steel Moment Frame Construction for Seismic Applications (FEMA 2000d).
- FEMA 354–A Policy Guide to Steel Moment Frame Construction (FEMA 2000e).

The first four reports are abridged recommendations, with the fifth report, FEMA 354, provided as a non-technical guide to explain the inherent risk and mitigation strategies. Detailed reports which show the basis of the first four reports are published as reports FEMA 355A through FEMA 355F (FEMA 2000f).

The organized research effort looked critically at the standard pre-Northridge connection fabricated during the 1970s and 1980s. It became apparent as the steel moment frames evolved with emerging technologies and were influenced by the higher cost of labor that their behavior drifted from the earlier demonstrably ductile steel frames. Some of the fundamental underlying causes and resulting modifications which define a post-Northridge connection are as follows:

- The most common weld electrodes in the pre-Northridge era were either E70T-4 or E70T-7 using the self-shielded FCAW process (Engelhardt and Sabol 1997). Although these electrodes realize the minimum specified strength of 70 ksi, they typically have poor toughness, achieving a Charpy V-Notch (CVN) Toughness of 5 to 10 ft-lbs at room temperature. Experimental testing of SMF connections with weld electrodes that realize a higher notch toughness (E70TG-K2 or E70T-6) demonstrates significantly higher inelastic drift capabilities (Johnson et al. 2000). A Post-Northridge connection classifies the CJP welds adjoining the beam-to-column as Demand Critical (DC). AWS D1.8 stipulates that DC welds must achieve a CVN toughness of 20 ft-lbs at 0°F and 70 ft-lbs at 70°F (AWS 2016).
- The use of bolted shear tabs and welded beam flanges was found not to be conducive to the intended behavior transmitting the beam shear through the web. Experimental testing demonstrated that bolted shear tabs permit relative slip at the faying surface. This slip has two consequences: (1) flexural forces are carried almost entirely through the beam flanges, and (2) the web does not carry the shear of the section as assumed. Carrying the beam shear through the flanges results in high secondary bending stresses, which exacerbate the strain condition at the extreme fiber of the flange. Most post-Northridge connections use field welded beam webs to prevent slip. Field welding of the beam web is readily accomplished by using the shear tab with bolts to frame and plumb the structure as before but also act as a backing bar for a vertically orientated CJP weld to fasten the web of the beam to the column web. In some connection types, it is also required to supplement this weld with a perimeter weld around the shear tab to stiffen the web of the section. The welding of the beam weld has not eliminated the issue of secondary stresses due to a complicated stress pattern in the beam adjacent to a moment connection. Goel et al. (1997) showed that classical beam theory fails to capture the behavior in this region and that a modest portion of shear transfers through the flanges regardless of the welded beam web.

A survey of the damage following the Northridge Earthquake revealed that a significant portion of the damage originated at the bottom flange backing bar and propagated through the column flange or beam flange. The column fractures either propagated transversely through the column or by taking a divot out of the column face (Engelhardt and Sabol 1997). Backing bars are required in most CJP welds to catch the molten weld metal during the initial passes of the weld. These backing bars would commonly be left in place as their presence was not believed to greatly influence the performance of the connection. However, research has shown that the discontinuity between fused and unfused portions of metal at the weld root results in a notch-like condition, increasing the fracture potential (Chi et al. 1997). This imperfection is impossible to detect visually, and UT testing has a low sensitivity to flaw detection at the root (Paret 2000). This notch-like condition is the most critical at the beam bottom flange where it exists at the extreme fiber. A post-Northridge connection requires removal of the bottom flange backing bar after welding the CJP weld. A reinforcing fillet weld is added after the removal of the backing bar to reinforce the root of the CJP. A concession is made at the top flange, wherein the backing bar can remain, but a reinforcing fillet must be made to underside of the backing bar.

The most significant impact on the steel moment frame construction following the Northridge Earthquake is the requirement that connections intended for use in Special or Intermediate Moment Frames must be shown to demonstrate an adequate level of ductility through full-scale testing. For SMF, the drift requirement is 0.04 rad, while for IMF, the drift requirement is 0.02 rad in AISC 341 (AISC 2016b). The Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications (AISC 358) was released to assist engineers in selecting an appropriate connection (AISC 2016c). These connections adopt one of two strategies to improve the ductility of steel moment frames: they may reinforce the connection at the face of the column, or they may weaken the beam. In either strategy, the goal is to force the plastic hinge to occur away from the face of the column to limit the strain demand on the beam-to-column CJP welds. There are limitations to these connections based on the geometry of the connections that have successfully

demonstrated adequate performance through testing. The prequalification requirement has spawned several proprietary connections that have been developed by private enterprises. All SMF and IMF connections are reviewed by a standards committee, the Connection Prequalification Review Panel (CPRP) of AISC. Figure 1.3 shows examples of prequalified RBS and WUF-W connections.

During the experimental testing of the SAC Joint Venture, most of the moment connections utilized continuity plates with CJP welds—a response to the surveyed damage of the Northridge Earthquake, revealing that more damage occurred in frames that did not have continuity plates (Tremblay et al. 1998). Since the initial development of the prequalified connections, several relaxations have been made to the provisions. These concessions are: (1) the CJP weld fastening the continuity plate to the column flange may have its backing bar in place, and (2) the weld fastening the continuity plate the column web (or doubler plate) may be any weld that develops the strength of the plate.

1.3.4 Development of Fracture Mechanics to Simulate Beam-to-Column Fracture

The beam-to-column moment connection is a highly restrained location subjected to large scale cyclic strains. Traditional fracture mechanics, either Linear Elastic Fracture Mechanics (LEFM) or Elastic-Plastic Fracture Mechanics (EPFM), are based on the nature of the stress field around a pre-existing flaw and are valid only in situations where the stress fields in the vicinity of the crack behave in a bijective manner. For example, the critical stress intensity, K_{IC} , or the critical value of the J-integral, J_{IC} , must resemble the singularity stress field derived using Elasticity in their respective regions (Kanvinde 2017). Generally, this is true under small-scale yielding, where the plastic region around a crack tip is small. When the stress fields lose their uniqueness in a significant region during large scale plastic flow, or when a pre-existing flaw is not present, these methods fail to provide a reliable fracture metric. In these situations, local fracture models can characterize the fracture potential. To build local fracture models, researchers have turned to work done by Rice and Tracy (1969), which solved for the rate of growth of a spherical microvoid in a stress field or the Gurson-Tvergaard-Needleman (GTN) metal plasticity model which models the metal as a softening porous medium (Anderson 2017). The drawback to these local models is that a high-fidelity finite element simulation with calibrated plasticity models must be used to track the related indices.

These ductile fracture models attempt to fracture as the nucleation, growth, and coalescence of microvoids. The nucleation of these microvoids is due to plastic flow around material inclusion or dislocation pileups at grain boundaries. The growth of microvoids occurs due to the localization of strain around the void. Ductile fracture propagates as the plastic strain localizes across a dominate plane of voids. Rice and Tracy derived the growth rate of a spherical void in the stress field as a function of the triaxiality of the stress state (see Eq. 1.1).

$$\frac{dR}{dR_0} = 0.283 \ d\bar{\epsilon}^p e^{1.5T} \tag{1.1}$$

where *R* and *R*₀ are the current and original radius of a void and *T* is the triaxiality ratio, expressed as the ratio of hydrostatic stress, σ_H , to von Mises stress, σ_{vm} :

$$T = \frac{\sigma_H}{\sigma_{vm}} \tag{1.2}$$

The hydrostatic stress is related to the Cauchy stress tensor as $\sigma_H = \sigma_{\alpha\alpha}/3$, and the von Mises stress is given as $\sigma_{\nu m} = \sqrt{\frac{3}{2}\sigma'_{ij}\sigma'_{ij}}$ where σ'_{ij} are the deviatoric components of the Cauchy stress tensor. Finally, $d\bar{e}^p$ is an increment of effective plastic strain (*PEEQ*):

$$\bar{\epsilon}^p = \sqrt{\frac{2}{3}} \epsilon'_{ij} \epsilon'_{ij} \tag{1.3}$$

Hancock and Mackenzie (1976) postulated that the plastic strain at failure is inversely proportional to the rate of void growth:

$$\bar{\epsilon}^f = \alpha e^{-1.5T} \tag{1.4}$$

where α is a material property typically between 1 and 3 for plain steel. Hancock and Mackenzie demonstrated reasonable predictions of ductile fracture using this approach. They were also able to demonstrate a significantly lower failure strain of a hot-rolled material when loaded through-thickness rather than parallel to the direction of rolling. The interpretation of Rice and Tracey's work to generate a failure strain by Hancock and Mackenzie forms the foundation of the Stress Modified Critical Strain (SMCS) model to predict fracture. Using triaxiality ratio allows the characterization of the stress state into high ($T \ge 1.5$), moderate ($0.75 \le T < 1.5$), and low (T < 0.75). The connection region of a SMF demonstrates high triaxiality—resulting in a low plastic strain at fracture. Several researchers leveraged ductile fracture mechanics by using indices rooted from the work of Rice and Tracy. For Example, Ricles et al. (2003) used the *PEEQ* Index (Eq. 1.5) and detailed finite element analysis to compare differences in the detailing of the weld access holes in WUF-W connections.

$$PEEQ_I = \frac{\bar{\epsilon}^p}{\epsilon_y} \tag{1.5}$$

El-Tawil et al. (2000) used the rupture index to investigate the required thickness of continuity plates and the size of weld access holes:

$$RI = \frac{\frac{\bar{\epsilon}^p}{\epsilon_y}}{e^{-1.5T}} \tag{1.6}$$

A key unknown in using these fracture metrics to determine the point of fracture is a characteristic length in which the metric has a positive indication (Hancock and Cowling 1980, and El-Tawil et al. 1999). The characteristic length is a well-known issue, as ductile fracture occurs only when an associated finite volume of material has reached a critical void growth rate (Kanvinde 2017). Using a representative characteristic length avoids erroneous conclusions that occur due to strain localizations that occur near strain risers in a finite element model. The suggested characteristic length is 2-10 times the material grain size; for mild steel, the characteristic length is suggested to be 0.005 in. The work done by Ricles and El-Tawil used either $PEEQ_I$ or RI as a relative metric to compare details without trying to predict the instance of fracture. Han et al. (2017) calibrated the RI from observed fractures of WUF-W specimens to determine a critical value of RI as 1,150 for the E71TG-1C notch-tough electrode. It was not cited what the characteristic length was used to determine this value.

Modern local fracture models that can capture the low-cycle fatigue condition at the beam-to-column interface are the Cyclic Void Growth Model (CVGM) discussed by Kanvinde and Deierlein (2004), and more recently the Stress-Weighted Damage Model (SWDM) discussed by Smith et al. (2014). These two methods have shown viability in predicting ductile fracture in the high inelastic strain regions of SMF subjected to accidental defects (Abbas 2015). These modern methods integrate separately the plastic strain histories of tension and compression strain cycles. This separate is important as the assumed uniform expansion of a microvoid under tension is not simply equal and opposite

when subjected to the reverse excursion. Instead compression strains compress the minor direction of the voids resulting in an oblate void perpendicular to the direction of loading. Locally increasing the curvature of the voids results in a stress riser which further localizes strains, or can lead to decohesion and cleavage (Kanvinde 2004).

1.3.5 Continuity Plate and Doubler Plate Research

Prior research related to the size and welding of continuity plates and doubler plates is summarized below.

- Popov et al. (1986) tested 8 half-scale, two-sided pre-Northridge connections. The tests compared the performance of the connection with and without continuity plates, with and without doubler plates, and with a fillet welded or CJP welded continuity plate. All of these specimens fractured near or at the beam flange CJP weld-most of them demonstrating little ductility. The authors observed that the presence of a continuity plate improved the performance. These continuity plates were designed based on the AISC Specifications at the time, using the nominal yielding flange force entering the column as a concentrated load. Two specimens used fillet-welded continuity plates with double-sided fillet welds of size 5/8 times the thickness of the continuity plate, t_{cp} . Of the two fillet welded specimens tested, one experienced a brittle fracture of the fillet welds. However, the same column experienced lamellar tearing when retested with a CJP welded continuity plate; poor metallurgy is likely a culprit. Based on the results of this test, the authors recommended that CJP welds should be used for continuity plates. Additionally, the authors stipulate that designing a continuity plate based on the nominal yielding strength of the beam is unconservative based on the observed yielding and buckling of the continuity plates.
- Kaufman et al. (1996) tested several moment frame connections and determined that fillet-welded continuity plates were adequate when notch-tough electrodes were used for the beam flange CJP welds.
- In 1997 AISC released an advisory that welding of stiffeners and doubler plates must not be made within the k-area of the rolled column due to several observed fractures during fabrication (AISC 1997). Malley and Frank (2000)

documented the fracture toughness of k-area of W-shaped sections of A992 steel. They determined that this area has 25% lower upper-shelf CVN toughness, which is postulated to be due to of the cold-working of the material during the straightening process. The authors determine that the lower toughness of the k-area material coupled with the high restraint of welding continuity plates and doubler plates leads to unanticipated fractures during fabrication. Tide (2000) corroborated this conclusion and reproduced the lower toughness material by straining a coupon of material to 15% and performing CVN testing after aging the material.

This research is the premise of AWS D1.8 §4.2, which dictates that continuity plate corner clips must extend at least 1.5 in. into the web from the tabulated k dimension. AISC 358 §3.6 repeats the corner clip criteria. Yee et al. (1998) further demonstrated by modeling the thermomechanical effects of welding that the high weld volumes associated with CJP-welded continuity plates develop higher residual stresses than a fillet-welded continuity plate. However, Deierlein and Chi (1999) found that the effect of welding residual stress is most significant during the elastic behavior of the connection. This conclusion was corroborated by Matos and Dodds (2000), who found that the effects of residual stress have minimal effect on the connection after the beam has reached its plastic limit state.

Engelhardt et al. (1998) tested five one-sided RBS connections using continuity plates matching the flange thickness of the adjacent beams and fastened to the column flanges using CJP welds. In an article summarizing testing of RBS connections during the SAC Joint Venture, Engelhardt et al. explains that no connections have been tested so far without continuity plates. As a cost-saving measure, it was mentioned that the removal of the steel backing of the continuity plate CJP weld is not required (Engelhardt 1999). More recent testing of exterior RBS connections using continuity plates of thickness equal to be the beam flange thickness was also only tested using CJP welds fastening the continuity plate to the column flange [Chi and Uang (2002) and Lee et al. (2005)]. Chi and Uang found that even continuity plates

equal to the beam flange thickness may yield when using A36 steel plate. This research also found that RBS-type connections framing into deep columns are more susceptible to lateral-torsional buckling instability due to the lower warping stiffness of the column.

- Bjorhovde et al. (1999) tested nine different moment frame connections using fillet-welded continuity plates. All of the specimens utilized W14×176 columns and W21×122 beams with welded cover plates to reinforce the connection. Double-sided fillet welds of size 5/8t_{cp} were used to fasten continuity plates matching the thickness of the adjacent beam flange.
- El-Tawil et al. (1999) performed finite element analysis on a pre-Northridge connection tested during the SAC Joint Venture (Specimen PN3). This specimen was a W36×150 beam attached to a W14×257 column that only achieved 0.01 rad of inelastic drift before experiencing a brittle fracture (Popov et al. 1996). By comparing values of RI during a parametric finite element analysis, the authors concluded that a weak panel zone results in a higher fracture potential at the beam-to-column interface at high drift levels.
- El-Tawil et al. (2000) continued work on their finite element analysis of Specimen PN3. The authors concluded by comparing the RI at the beam flange-to-column interface that a continuity plate equal to 50% of the adjacent beam flange thickness was adequate in stiffening the joint. Continuity plates of thicknesses greater than this saw diminishing returns. Furthermore, the authors postulated that thicker continuity plates might result in a k-area fracture of the column due to the increased volume of welds required.
- Dexter et al. (2001) tested 47 pull plate specimens consisting of a monotonically loaded plate welded on each face of a column. The focus of the research was on the through-thickness strength of a heavy rolled section subjected to a tension force coming from a beam flange. In efforts to force a failure in the through-thickness direction, 100 ksi material was used for the pull plates. No instances of lamellar tearing were observed, which is postulated to be a consequence of modern material manufacturing processes. Only 1 of 12 specimens using a fillet-welded continuity plate demonstrated a
fracture of the fillet welds. This specimen had inadequate corner clips of the continuity plate resulting in the continuity plate welds extending into the k-area of the column. The resulting fracture propagated through the fillet-welded continuity plate and the k-area of the column.

- Ricles et al. (2002) tested 6 one-sided (Specimens T1 to T6) and 5 two-sided . (Specimens C1 to C6) moment frame connections. All of the specimens tested in this study utilized a W36×150 beam. These connections were the first WUF-W specimens tested with the modified welded access hole developed by Mao et al. (2000). Several specimens did not use the modern shear tab connection detail with supplemental fillet welds-these specimens performed markedly worse than those with the modern shear tab connection. Additionally, one specimen fractured prematurely in the beam plastic hinge due to the presence of a welded shear stud. Four specimens (Specimens T5 and T6 with a W14×311 column, Specimen C1 with a W14×398 column and Specimen C3 with a W27×258 column) were tested without a continuity plate. All four of these specimens achieved at least 0.05 rad drift. Specimens C2 and C4 were nominally identical to Specimens C1 and C3, respectively, except that they used a continuity plate that matched the thickness of the adjacent beam flange. Both specimens achieved one cycle higher drift when tested with a pair of continuity plates. CJP welds were used to affix all of the continuity plates. In the case of Specimen C3 the beam flange width-tocolumn flange thickness ratio (b_{bf}/t_{cf}) was equal to 6.8—significantly over the suggested limit of 6.0 of the Lehigh Criterion.
- Ricles et al. (2003) provided a detailed finite element study of the previously tested 11 specimens. The study compared the *PEEQ* demand at the root of the CJP weld across the testing cohort. Finite element results demonstrated that when the $b_{bf}/t_{cf} < 6.0$, the addition of a continuity plate only marginally influenced the *PEEQ* across the width of the CJP weld; the only observed effect was that the *PEEQ* demands became more uniform across the flange with the same resulting peak value. When the specimen with b_{bf}/t_{cf} of 6.8 was tested, the peak value of *PEEQ* was observed to decrease when adding a

continuity plate. However, whether a continuity plate was equal to one-half or the full thickness of the adjacent beam flange did not influence the results. Note that the clear beam span-to-depth ratio of Specimens C3 and C4 is equal to 9.1; this specimen is similar to Specimen W1 tested and to be reported in Chapter 4. The study also corroborated an earlier conclusion from El-Tawil et al. (1999) that a weak panel zone with column kinking tends to exacerbate the fracture potential.

- Hajjar et al. (2003) tested a series of monotonic pull plate specimens to investigate the WLY and FLB limit states. Two of these specimens were fabricated with continuity plates half the thickness of the pull plate with fillet welds of size equal to (2/3)t_{cp}. The column size of these specimens was W14×132. It was observed that yielding occurred in the continuity plate and fracture of the fillet welds did not occur.
- Lee et al. (2005a) tested six two-sided WUF-W specimens. All of the specimens used a W24×94 beam, while the column size and column stiffening detail were varied. Three of these specimens (Specimens CR1, CR2, and CR5) did not use continuity plates, while Specimens CR2 and CR5 violated the FLB criterion by using the hardened beam flange force as a demand. All three of these specimens completed at least one cycle of 0.04 rad. Given this observation, the authors discuss that the FLB limit state contained in ASIC 360 §J10, developed for non-seismic applications, appears satisfactory for seismic demands when notch-tough electrodes are used. Specimen CR3 used a fillet-welded continuity plate with a thickness equal to 60% of the adjacent beam flange thickness. This thickness was chosen based on satisfying the width-to-thickness requirement of unstiffened plates subjected to axial compression:

$$\frac{b}{t} < 0.56 \sqrt{\frac{E}{F_y}} \tag{1.7}$$

The fillet weld was sized to develop the strength of the continuity plate and resulted in a double-sided fillet weld of size $0.75t_{cp}$. This specimen

completed 14 cycles of 0.04 rad drift before low-cycle fatigue occurred in the beam flange CJP weld. Strain gauging of the continuity plate revealed that the continuity plate did not yield across its breadth. Based on this observation, it was concluded that fillet welds might not need to develop the strength of the plate. The authors also observed ductile tearing at 0.03 rad of the beam flange CJP weld at the toe of the last weld pass, which creates a radius at the reentrant corner of the CJP weld. One specimen of this study, Specimen CR4, experienced a brittle fracture at 0.02 rad drift. Material testing revealed that the CJP weld of this specimen had low toughness—despite being performed using an E70T-6 notch tough electrode.

Further investigation also revealed that Specimen CR1 failed to meet the notch toughness requirements of a post-Northridge connection. No conclusion was made regarding why these specimens had a lower notch toughness then expected despite using a qualified electrode. A companion paper published looked at the relative strength of the panel zones and concluded that weak panel zones could develop excellent inelastic performance (Lee et al. 2005b). These panel zones used doubler plates that utilized fillet welds sized to develop the shear strength of the doubler plate for the vertical weld attaching the doubler plate to the column. The doubler plates were beveled such that they cleared the radius of the column flange to column web junction.

• Shirsat and Englehardt (2012) investigated the attachment details for the doubler plate. This work was performed using finite element analysis and explored the effect of welding different edges of the doubler plate, extending the doubler plate beyond the connection region, and of using asymmetric doubler plates. This research effort demonstrated that welding the top horizontal edges of extended doubler plates provided minimal benefit beyond stabilizing doubler plates about to buckle. The authors also found that the demands imposed on the vertical welds were between 0.5 and 1.3 times the expected shear yielding strength of the plate—an effect attributed to the strain hardening of the doubler plate. Gupta (2013) continues this research and

further demonstrates that the loading condition at the flange level of a doubler plate is mostly in the transverse direction and well beyond the nominal yielding strength of the plate. The author observed that the welding of the continuity plate to the doubler plate does not result in overstressing the doubler plate. The final remark was that extending the doubler plates beyond the level of the beam flanges demonstrates better panel zone behavior.

- Han et al. (2014) tested four exterior WUF-W connections using beam depths of 27 in. and 35 in. The authors found that the deeper beam depths failed to satisfy the 0.04 rad drift requirement. They postulated that the root cause of this was due to two reasons: (1) the weld access hole, although still compliant to the AISC 358 (2016) detailing requirements, was quite steep relative to those shown to be satisfactory by Ricles et al. (2002); and (2) that the clear span-to-depth ratio was 6.8, slightly below the minimum value of 7.0 required by AISC 358 (2016). The continuity plates in these specimens matched the thickness of the beam flange and used CJP welds for the weldment to column flange. Han et al. later tested the same two specimens with shallower weld access holes and found satisfactory performance (Han et al. 2016). The authors then demonstrated using detailed finite element models and the Rupture Index, *RI*, that shallow welded access holes have less propensity to fracture (Han et al. 2017).
- Shim (2017) performed experimental testing on nine WUF-W connections and one Bolted Flange Plate (BFP) connection. The research explored the role of relative panel zone strength to the overall ductile performance of the moment frame and the role of axial tension on the panel zone strength. The columns tested were either W33×263, W14×398, or W12×106. The only specimen which did not achieve at least 0.04 rad drift was Specimen UT05, which used a 1/16-in. tungsten electrode embedded into the doubler plate CJP weld as an intentional defect. It is unclear whether this intentional defect was the source of the fracture, as the fracture appeared to originate at the termination of the beam web to column flange CJP weld before propagating through the column flange. The author concluded that weak panel zones are

a reliable and effective means of generating ductility capacity. Furthermore, the panels with weak panel zones demonstrated less beam buckling and required less lateral bracing. The study demonstrates that although the specimens with the weak panel zones generate higher fracture potential according to the Rupture Index, *RI*, experimental evidence does not support this conclusion.

1.4 Flexibility-Based Formulation

In response to uncertainty on how design fillet welds to fasten continuity plates to the column flanges of Special Moment Frames, Tran et al. (2013) developed a flexibility formulation. This method allows the designer to design the continuity plate and its weldments based on its relative stiffness dictating the proportion of hardened beam flange force, P_f , acting on the plate. The fundamental assumption in this theory is that the continuity plate remains elastic. The force entering a continuity plate is determined as:

$$P_{cp} = \left(\frac{P_f}{2}\right) \left(\frac{b_{bf} - t_{pz} - 2t_{cf}}{b_{bf}}\right) \left(\frac{B_{cf}}{B_{cf} + B_{cp}}\right)$$
(1.8)

where B_{cp} is the flexibility coefficient of the continuity plate and B_{cf} is the out-of-plane column flexibility coefficient. Given the short 'span' of the column flange and continuity plate, the flexibility coefficients include both a flexural and shear components. The second term of Eq. 1.8 refers to the amount of force that is assumed to transmit directly into the column web, assuming a 1:1 catchment through the column flange. The continuity plate was then designed based on satisfying an M-V-P interaction equation (Doswell 2015):

$$\frac{M_r}{M_c} + \left(\frac{P_r}{P_c}\right)^2 + \left(\frac{V_r}{V_c}\right)^4 < 1.0 \tag{1.9}$$

Axial force in the continuity plate is computed using Eq. 1.8. Shear in the continuity plate develops due to the moment equilibrium of the plate (see Figure 1.6); it was assumed that P_{cp} is centered about 0.6 the width of the continuity plate, b_n . The 0.6 was derived based on an assumed trapezoidal elastic stress distribution on the edge of the plate. Mashayekh (2017) identified an additional moment that is generated by the clipping of the continuity plate.

The strength of the weld connecting the continuity plate to column flange is designed to resist the resultant force:

$$R_{cp} = \sqrt{P_{cp}^2 + V_{cp}^2} \tag{1.10}$$

The strength of a fillet weld of size, w, and length, l_w , is then designed as per §J2.4 of AISC 360 (2016):

$$R_n = 2(0.6F_{EXX})wl_w \left(1 + \frac{1}{2}\sin(\theta)^{1.5}\right)$$
(1.11)

where F_{exx} is the weld electrode strength, and θ is the orientation of the fillet with respect to the orientation of the vector R_{cp} :

$$\theta = \tan^{-1} \left(\frac{P_{cp}}{V_{cp}} \right) \tag{1.12}$$

Mashayekh and Tran et al. both recommended designing for a maximum shear flow of the fillet weld:

$$q_{max} = \frac{1.6P_{cp}}{b} \tag{1.13}$$

which originates from the peak of the assumed trapezoidal force distribution on the edge of the continuity plate. The strength of the weld adjoining the continuity plate to the column web (or doubler plate) is designed for P_{cp} for an exterior connection or $\sum P_{cp}$ for an interior connection. The orientation of this weld suggests $\theta = 0^{\circ}$ in Eq. 1.11.

Mashayekh and Uang (2018) validated the flexibility methodology with two exterior full-scale RBS connections. Specimen C1 was a W30×116 beam and a W24×176 column and Specimen C2 was a W36×150 beam and a W14×257 column. The thickness of the continuity plates tested were 1.8 and 1.3 times thicker than the recommended minimum thickness of 50% of the beam flange for an exterior connection. The large continuity plates are a consequence of the flexibility methodology whereby keeping the continuity plates elastic results in the attraction of significant load due to the relatively higher axial stiffness of the continuity plate versus the out-of-plane flexure of the column flange. Specimen C2 was designed such that the plastic interaction (Eq. 1.9) was violated, a conclusion which is corroborated by observed yielding of the continuity plates. The fillet weld sizes of Specimens C1 and C2 were $0.75t_{cp}$ and $0.8t_{cp}$, respectively. Both specimens performed well, achieving a maximum story drift of 0.05 rad and 0.07 rad, respectively.

Despite the success of the flexibility method, there are some critiques:

- The assumption that the continuity plate remains elastic is conservative, resulting in continuity plates thicker than those that have demonstrated adequate performance through prequalification. Several researchers during these tests have observed the yielding of the continuity plates.
- The flexibility formulation tends to be iterative, as the stiffness of the continuity plate is typically an order of magnitude larger than that of the column flange. This results in a runaway procedure as the continuity plate attracts more load as it's size is increased.

Testing of Specimens C1 and C2 in 2016 was a pilot project to verify the flexibilitybased method of design (Mashayekh and Uang, 2018). Although the research objective of this study has pivoted, the performance of Specimens C1 and C2 are still presented herein as evidence of the efficacy of fillet-welded continuity plate.

1.5 Historical Review of AISC Requirements on Continuity Plate and Doubler Plate Design

A brief review of the requirement of continuity plates and weld attachments to the column in AISC 341 is summarized below.

- AISC 341 (1992) (pre-Northridge): continuity plate is sized such that 1.8F_{yb}b_ft_{bf} ≤ 6.25(t_{cf})²F_{yf} which relates an assumed beam flange force to the flange local bending limit state (§J10.1 of AISC 360). The attachment welds are not specified.
- AISC 341 (1997): continuity plates shall be provided to match the tested connection; almost all of the tested continuity plates which satisfy the drift requirement of SMF at this point equal in size to the beam flange thickness and use CJP welds to connect the plates to the beam flanges.
- AISC 341 (2005): the seismic specifications (AISC 341) refer to AISC 358 for the design of continuity plates in Special Moment Frames. The AISC 358 (2005) specification specifies that continuity plates are required unless both of the following are satisfied:

$$t_{cf} \ge 0.4 \sqrt{1.8b_{bf}t_{bf}\frac{F_{yb}R_{yb}}{F_{yc}R_{yc}}}$$
(1.14)

$$t_{cf} \ge \frac{b_{bf}}{6} \tag{1.15}$$

The latter (Eq. 1.15) is referred to as the Lehigh Criterion herein. The required thickness of the continuity plates shall be one half of t_{bf} in an exterior connection, or equal to the larger t_{bf} in an interior connection. Additionally, the continuity plates were also required to conform to §J10 of AISC 360. The welds to the column flanges were required to be CJP welds.

 AISC 341 (2010): the continuity plate requirements are the same as listed in AISC 358 (2005).

According to the latest edition of AISC 341 (2016b), continuity plates are required if the predicted flange force exceeds the design strength at the column face as per §J10 AISC 360 (2016) or if the column flange thickness is less than one-sixth of the adjoining beam flange width [see Eq. (1.15)]. The strength requirement is equivalent to the previous proportion limit from AISC 341-05 (Eq. 1.14).

$$t_{cf} \ge \frac{b_{bf}}{6} \tag{1.16}$$

AISC 358 (2016c) generates the predicted flange force of a cyclically hardened beam undergoing large inelastic strains for the appropriate connection. For example, the flange force, P_f , for an RBS connection with a CJP-welded web connection is computed as:

$$P_f = \frac{0.85M_f}{d^*} = \frac{0.85}{d^*} \left(M_{pr} + V_{RBS}S_h \right) = \frac{0.85}{d - t_{bf}} \left(Z_{RBS}F_yR_yC_{pr} + V_{RBS}S_h \right)$$
(1.17)

The thickness of the continuity plates, according to §E3.6f.2(b) of AISC 341 (2016b), is determined as:

$$t_{cp} = \begin{cases} 0.5t_{bf} & \text{for exterior connections} \\ 0.75t_{bf} & \text{for interior connections} \end{cases}$$
(1.18)

§E3.6f.2(b) of AISC 341 (2016b) stipulates that the width of continuity plates shall at least extend to the edge of the beam flange.

As per the current specifications, the weld connecting the continuity plate to the column flange is required to be a CJP groove weld. However, the continuity plate to the column web can be either a groove weld or fillet weld. Currently, this weld must be sized

to develop the lesser of the tension or shear strength of the continuity plate or the shear capacity of the doubler plate (if applicable) that it attaches to in the column panel zone.

The use of doubler plates are dictated when the panel zone shear, derived from the equilibrium between the flange force, P_f , and the column shear, exceeds the design strength as per §J10.6 of AISC 360 (2016):

$$R_n = 0.6F_y d_c t_{pz} \left(1 + \frac{3b_{cf} tcf^3}{d_b d_c t_p} \right)$$
(1.19)

Note that the resistance factor, ϕ , for panel zone shear has been equal to 1.0 since the 1997 Seismic Provisions (AISC 1997). When a doubler plate is required, the groove or fillet welds connecting the doubler plate to the column are required to develop the design shear yielding strength of the doubler plate thickness. This requirement has been the same since the first edition of the Seismic Provisions (AISC 1992). When fillet welds are used, the plate thickness must be maintained through the combined thickness of the weld throat and plate bevel at the inside radius of the column. To prevent premature instability of the doubler plate, AISC recommends the following stability limit:

$$t_{dp} \ge \frac{d_z + w_z}{90} \tag{1.20}$$

Up until the 2010 edition of AISC 341, horizontal welds at the top and bottom of the doubler plates were required regardless of the configuration. Modern requirements waive the requirements for these welds unless the stability limit (Eq. 1.20) is violated when the doubler plate is extended at least 6 in. beyond the beam flange.

1.5.1 Lehigh Criterion

The Lehigh Criterion of §E3.6f.1(b) of AISC 341 stipulates that a continuity plate must be used when the column flange thickness is less than the beam flange width framing in divided by six (see Eq. 1.16). The source of this requirement is from Ricles et al. (2000), who explored the performance of WUF-W connections through finite element analysis and an experimental testing program of interior and exterior connections. This experimental testing program utilized the newly developed modified weld access hole by Mao et al. (2000). To develop the criterion, the authors leveraged ductile fracture mechanic indices.

Ricles et al. calibrated the material factor in Eq. 1.4 by testing A572 Gr. 50 material and two different weld metals, E70T-4 and E70TG-K2 (see Figure 1.4). The pre-

Northridge electrode, E70T-4, demonstrates significantly less fracture strain for all triaxiality ratios. The research also demonstrates that the critical plastic strain is much lower for higher triaxiality, a condition which is typical for highly restrained regions. The authors selected a material constant of $\alpha = 2$, which is similar to the value of 2.6 selected by Chi et al. (2006). The authors developed a criterion for fracture based on the net section rupture of the material. A critical crack length is defined from Figure 1.5 as:

$$a_f = \left(1 - \frac{F_y}{F_u}\right)t \tag{1.21}$$

where t is the thickness of the material. To develop a model for cyclic loading, a fatigue law for constant strain range was assumed:

$$\ln(\Delta \epsilon^{\rm p}) = \ln(\epsilon_f) - \frac{1}{k} \ln(n)$$
(1.22)

where $\Delta \epsilon^p$ is the strain range and ϵ_f is the engineering strain at failure. Converting the plastic strain at failure, \bar{e}^f , into engineering strain at failure allows the determination of k, a material parameter that now depends on triaxiality through the previously calibrated material parameter α . The authors found that for a triaxiality of 1.3, the value of k equals 2.26 for the A572 Gr. 50 steel and high-toughness weld electrode. Using a Paris fatigue law based on the effective plastic strain using two material parameters, C and B:

$$\frac{da}{dn} = Ca(\Delta \epsilon^{\rm p})^k \tag{1.23}$$

inverting this equation:

$$C = \frac{\ln a \Big|_{a_0}^{a_f}}{\epsilon_f^k} \tag{1.24}$$

Substituting the results from before and using an initial flaw size equal to 0.0012 in., an average flaw size observed at the root of the weld, allows for the determination of constant *C*. Eq. 1.18 to track the growth of a crack or the number of constant amplitude cycles to failure, N_f can be solved for as:

$$N_f = \left(\frac{\epsilon_f}{\Delta \epsilon^{\rm p}}\right)^k \tag{1.25}$$

Using the results of the low-cycle fatigue analysis, the authors correlated their findings to column flange flexural deformations. The authors found that at least 0.03rad of inelastic

story drift ratio could be obtained if the column flange deflection at the edge of the beam flange, Δ_A , was limited to l/520, where l is the clear distance from the column web to the edge of the beam flange. Assuming that the moment of inertia of a cantilever section of the column flange has a width of $9t_{cf}$ and that the flange force is evenly distributed results in the criteria:

$$t_{cf} \ge 0.26 \left[F_y t_{bf} l^3 \right]^{\frac{1}{4}} \tag{1.26}$$

It was found that the beam size of W36×150, with a W14×311 column, satisfies Eq. 1.26 and achieved at least 0.03 rad of inelastic drift during their experimental testing. Therefore, to simplify the criterion, it was instead decided to set the b_{bf}/t_{cf} ratio of this specimen (equal to 5.2) to the limiting b_{bf}/t_{cf} ratio. This ratio was rounded up to 6.0 in FEMA 350 (2000).

This criterion was explicitly derived using WUF-W connections, which tend to have higher flange forces. Table 1.1 shows the results of a typical one-sided RBS connection using beams from the W36 shape family and columns from the W14 shape family. The figure demonstrates that the Lehigh Criterion is triggered for a significant number of combinations, while only a few violate the flange local bending limit state. Therefore, the Lehigh Criterion may be overly conservative for a significant number of potential RBS connections.

1.5.2 Development of Column Stiffening Limit States

The design of continuity plates uses either the minimum thickness as per Eq. 1.18 extending to at least the width of the beam flange or is designed as a typical stiffener using the concentrated force limit states of §J10 of AISC 360. Three limit states are applicable: Flange Local Bending (§J10.1), Web Local Yielding (§J10.2), and Web Local Crippling (§J10.3). The limit state of Web Local Crippling seldom governs and is not discussed in detail. A brief discussion of FLB and WLY follows.

1.5.2.1 Web Local Yielding (WLY)

The WLY yielding was first described in the AISC ASD Specifications in the 1937 Edition to prevent local yielding and crippling of the web of a wide flange shape subjected to a concentrated compressive load (Prochnow et al. 2000). At that time, the WLY limit state was combined with the Web Local Crippling Limit State. The stress in the column web was to be limited to 24 ksi, and the assumed spread of the bearing force was assumed to be 1:1 through the column flange. Later, testing by Sherbourne and Jensen (1957) found that the 1:1 slope was conservative and recommended a 2:1 slope. In 1960 Graham et al. (1960) found that a 2.5:1 slope provided a better fit to the experimental data. To explain the 2.5:1 slope, the authors used an elastic stress distribution along the k-line of a rolled section. The incorporation of this slope did not occur until the 9th Edition of the AISC ASD Specifications in 1989 and the 1st Edition of the AISC LRFD Specifications in 1986. At this time, the Web Local Crippling limit state was separated from WLY. The WLY of AISC 360 (2016) for interior connections is:

$$R_n = (5k + N)F_y t_{cw} (1.27)$$

where k is the dimension from the outside face of the column to the termination of the fillet, and N is the bearing width. Exterior connections have a similar expression except that the leading term takes on the value of 2.5k. For moment frames it is a convention to take N as the thickness of the adjacent beam flange, t_{bf} . Figure 1.8 shows the WLY limit state of an interior connection.

1.5.2.2 Flange Local Bending (FLB)

The FLB is a tension limit state where insufficient stiffening of a column flange results in a concentration of the tension load at the center stiffer portion of the flange above the web of the column (Carter 1999). Figure 1.11 shows the FLB and the role of continuity plates in preventing it. The combined bending of the flanges with the concentration of the load leads to the rupture of the beam flange weld. Graham et al. (1960) developed the FLB limit state by using a yield line analysis to determine the strength of a column flange. The FLB as first specified in the 8th Edition of the AISC ASD Specification, which required stiffeners if:

$$t_{cf} < 0.4 \sqrt{\frac{P_{bf}}{F_y}} \tag{1.28}$$

A set of lower bound values of key geometric variables from available section shapes were used to conservatively derive this equation. The yield line analysis is reposed to convert this expression for use in LRFD design (Prochnow et al. 2000):

$$R_n = 7t_{cf}^2 F_c + t_{bf} k F_y \tag{1.29}$$

where the first term describes the strength of the column flanges in bending, and the latter describes the capacity of the web directly below the adjacent beam flange. After taking a 20% reduction in capacity and imposing the experimental results of pull plate testing, the following equation for FLB in AISC 360 (2016) is realized:

$$R_n = 6.25t_{cf}^2 F_y \tag{1.30}$$

As an alternative derivation, Prochnow et al. (2000) developed a yield line analysis informed from the results of an experimental testing program of pull plates welded to W-shapes. Following their methodology, a yield line analysis was developed such that four hinges form on each side of the web to form a tent (see Figure 1.10). The clear span of the flange, q, is taken as:

$$q = \frac{b_{cf}}{2} - k_1 \tag{1.31}$$

The authors recommend the same value as Graham et al. used for the longitudinal length of the yield lines of:

$$p = 12t_{cf} \tag{1.32}$$

Defining the length of the inclined yield line as:

$$r = \sqrt{\left(\frac{p}{2}\right)^2 + q^2}$$
(1.33)

Solving for the internal energy of the yield lines results in:

$$W_I = M_p \Delta \left[\frac{p}{q} + \frac{8q}{p} \right] \tag{1.34}$$

Substituting with $M_p = \frac{1}{4} t_{cf}^2 F_y$ results in:

$$W_I = t_{cf}^2 \left[\frac{p}{4q} + \frac{2q}{p} \right] \Delta F_y \tag{1.35}$$

Solving for the external energy as:

$$W_E = \int_0^h w\left(\frac{\Delta}{q}\right) x \, dx = \frac{w\Delta}{2q} h^2 \tag{1.36}$$

where $h = \frac{b_{bf}}{2} - k_1$, and *w* is the assumed uniform load applied by the beam flange. Finally, equating the internal and external energy results in:

$$w = \frac{t_{cf}^2}{h^2} \left[\frac{p}{2} + \frac{4q^2}{p} \right] F_y$$
(1.37)

Solving for the maximum flange force then produces:

$$R_n = 2k_1 t_{bf} F_y + 2wh (1.38)$$

Substituting in the result for *w*:

$$R_n = 2k_1 t_{bf} F_y + \frac{2}{h} \left[\frac{p}{2} + \frac{4q^2}{p} \right] t_{cf}^2 F_y$$
(1.39)

Prochnow et al. (2000) simplified Eq. 1.39 by taking the average minus one standard deviation of parameters for common column and girder combinations to find:

$$R_n = F_y \left(0.8 + 5.9 t_{cf}^2 \right) \tag{1.40}$$

Graham et al. and Prochnow et al. both used the simplification that $p = 12t_{cf}$; however, if the critical value of p is found by taking the derivative of 1.37 with respect to p:

$$\frac{dw}{dp} = \frac{t_{cf}^2}{h^2} F_y \left[\frac{1}{2} - \frac{4q^2}{p^2} \right]$$
(1.41)

Then solving for the minimum value by setting equal to zero:

$$p = 2\sqrt{2}q \tag{1.42}$$

This minimum value of p, as a function of q, results in a capacity for FLB of:

$$R_n = 2k_1 t_{bf} F_y + \frac{2}{h} \left[\sqrt{2}q + \frac{2q}{\sqrt{2}} \right] t_{cf}^2 F_y$$
(1.43)

Prochnow et al. found that Eq. 1.40 predicted the results of their pull plate specimens with greater accuracy. Figure 1.11 compares Eq. 1.30 and Eq. 1.40 to Eq. 1.43 for a W36×150 beam framing into either a W14 or W27 column. It is observed that the bounding performed by Prochnow et al. (2000) is very close to that performed by Graham et al. (1960). Both of these equations are conservative for the columns tested (W14×132 to W14×159) when compared with the unsimplified yield line equation (Eq. 1.43). Their experimental testing program corroborates this as none of the pull-plate specimens fractured (Hajjar et al. 2003). These specimens used E70T-6 weld electrodes for their CJP welds with a measured CVN toughness of 63.7 ft-lb at 70°F and 19.0 ft-lb at 0°F. It is noted that Eq. 1.40 and Eq. 1.30 both use a reduction factor of 0.8 which has not been incorporated into Eq. 1.43. This reduction factor was applied to original derivation in an attempt to make the upper bound strength estimate from the yield line method conservative.

The previous discussion indicates that the FLB is conservative when using notchtough weld electrodes for monotonic pull-plate tests. The level of conservatism diminishes for heavier sections—sections that would be common in a modern moment frame subjected to a Strong Column Weak Beam (SCWB) philosophy. An additional concern when using an FLB derived based on a monotonic pull plate test is that the beam flange CJP rupture of a seismic moment frame is significantly different than from a pull-plate test. Firstly, the connection of a moment frame experiences large scale cyclic strains resulting in strain hardening and, secondly, significant secondary bending exists in the flanges of a moment frame connection.

1.6 Summary

The 1994 Northridge Earthquake was a pivotal event for the design of steel moment frames as an SFRS. Observation of brittle fractures in the connection region of the frames precipitated necessary changes in the detailing of these moment frames, including the use of notch-tough electrodes, careful treatment of backing bars, and welding of the beam web to the column to facilitate the shear transfer from the beam web. The most significant modification was the requirement that connections for SMF and IMF be prequalified to achieve a prescribed level of drift. Most of these early tests, which set the foundation for prequalified connections, utilized conservative column stiffening details, including the use of continuity plates as thick as the beam flange and the use of CJP groove welds for the continuity plate weldments.

Research in the 2000s attempted to set conservative bounds as to when a continuity plate was required and set minimum required thicknesses of the continuity plate. Several researchers have demonstrated the efficacy of using fillet welds for this joint in monotonic pull-plate specimens as well as full-scale cyclic moment frame tests. However, the use of a CJP groove for the weldment of the continuity plate to the column flange is still required. This weld tends to be costly due to the increased preparation to bevel the plate and install a backing bar, and the required UT testing of the joint after welding. In response to the steel industry's push to economize the connection, a new method was derived using the flexibility of the continuity plate and column. This new flexibility method was validated using the full-scale testing of two exterior RBS connections and relies on the assumption that continuity plates must remain elastic. This assumption results in relatively thick

continuity plates, which are often thicker than plates that have already demonstrated adequate performance.

In response, this research program is designed to explore a plastic design methodology to design continuity plates and their welds. This program explored the currently defined limit states for stiffening columns as per the AISC Specifications and validates a simple design rule for designing fillet welds. The next chapter describes the design of each specimen.

		Beam: W36×									
·		302	282	262	247	231	194	182	170	160	150
	455										
	425										
	398										
	370										
	342										
Column:	311										
W14×	283										
	257										
	233							FLB	FLB		
	211									FLB	FLB
	193										FLB
	176										
			No CP Req'd		FLB	Governed by AISC 360 §J10.1					
			Eq. (1.1) Triggered		WLY	Governed by AISC 360 §J10.2					
			Violates SCWB				Phase 1 Testing				

Table 1.1 Limit State Matrix (W14 Column and W36 Beam; One-Sided RBS Connection)

Figure 1.1 Pre-Northridge Connection (Hamburger et al. 2016)

Figure 1.2 Fracture at Beam Bottom Flange Backing Bar (Hamburger et al. 2016)

Figure 1.3 Prequalified Moment Connections (Hamburger et al. 2016)

Figure 1.4 Plastic Strain versus Triaxiality Ratio (Ricles et al. 2000)

Figure 1.5 Net-Section Failure of Beam Flange (Ricles et al. 2000)

Figure 1.6 Continuity Plate Free Body Diagram (Mashayekh 2017)

(a) Specimen C1(b) Specimen C2Figure 1.7 Flexibility Method Verification (Mashayekh and Uang 2018)

Figure 1.8 WLY Limit State (Carter 1999)

(a) Unstiffened Flange

(b) Stiffened Flange

Figure 1.9 FLB Limit State (Tran et al. 2013)

Figure 1.10 Yield Line Mechanism

Figure 1.11 Flange Local Bending Comparison

2 SPECIMEN DESIGN

2.1 General

This chapter discusses the design philosophy and research objective of Phase 1 (Specimens C3, C4, C5, C6, C6-G, and C7) and Phase 2 (Specimens W1, W2, W3, and W4). The Phase 1 specimens are one-sided specimens simulating an exterior moment frame RBS connection. These six specimens are engineered to characterize the limit states surrounding continuity plates. Specimens C1 and C2 were previously tested as part of the verification of the flexibility design method in 2016 (Mashayekh 2017). Although the research objective of this study has pivoted, the satisfactory performance of Specimens C1 and C2 are presented as evidence of the usability of fillet welds for the continuity plate-to-column flange weld. The Phase 2 specimens are two-sided WUF-W connections simulating an interior moment frame connection. These four specimens are engineered to challenge the continuity plate and its weldments with high flange forces.

The primary objective of this research is to economize the detailing of continuity plates. Improving the economy of continuity plates is accomplished in two ways: (1) by exploring the boundaries in which continuity plates are required, and (2) by providing a design methodology to use a fillet weld for the continuity plate-to-column flange weld. It is proposed that the continuity plate is designed for the plastic distribution of forces in accordance with the existing stiffener design procedure of §J10 in AISC 360 (2016) while using the strain hardened beam flange force for the applicable connection as per AISC 358 (2016c). This methodology differs from previous research (Tran et al. 2013, Mashayekh and Uang 2018), which used the elastic distribution of forces in the connection to size the continuity plates and their weldments. Subscription to this methodology requires a revaluation of the Lehigh Criterion (Eq. 1.16), which often necessitates continuity plates in connections where a strength limit state (either WLY or FLB) do not govern, This effect is demonstrated in Table 1.1, which illustrates the cohort of possible single-sided RBS connections between a W14 shape column and a W36 shape beam.

The second objective of the research program is to economize the detailing of doubler plates. Doubler plates are incorporated into this research because of their prevalence of use in conjunction with continuity plates. Doubler plate economy is improved by providing a design methodology to size the weld for the proportion of the panel zone shear in the doubler plate.

2.2 Design Philosophy

With the exception of the test parameters (see Table 2.1), the specimens are designed according to AISC 341 (2016b) and AISC 358 (2016c).

2.2.1 Continuity Plate Design

The continuity plate design uses the plastic design method, where the force demand, P_{cp} , imposed on the continuity plate is:

$$P_{cp} = (P_f - \min(FLB, WLY))/2 \tag{2.1}$$

where P_f is the hardened flange force as per AISC 358 (Eq. 1.17), and *FLB* and *WLY* are the column strengths associated with the limit states as per AISC 360 (Eqs. 1.27 and 1.30). The resistance factors are $\phi = 0.9$ and $\phi = 1.0$ for the FLB and WLY limit states, respectively. When the resultant plastic demand on the continuity plate is negative, which occurs when the column capacity according to FLB and WLY is greater than the flange force, a continuity plate is not required. The strength of the continuity plate is based on a plastic interaction equation (Eq. 2.2) between the shear and axial force in the continuity plate (Doswell 2015).

$$\left(\frac{P_{cp}}{P_c}\right)^2 + \left(\frac{V_{cp}}{V_c}\right)^4 \le 1.0 \tag{2.2}$$

Shear forces in the continuity plate are found from the equilibrium of the continuity plate. The capacity of the continuity plate in axial compression, P_c , and shear, V_c , are evaluated as per the yielding limit states of AISC 360 §J4.1 and §J4.2 on the edge of the continuity plate in contact with the column flange. When the ratio of $V_{cp}/V_c \leq 0.4$ the shear contribution to the interaction is less than 2.5% and can be neglected for design purposes. Finite element analysis shows that the small amount of moment that exists at the edge of the continuity plate vanishes as the plate achieves its ultimate state.

2.2.2 Continuity Plate Weld Design

The high in-plane stiffness of the continuity plate relative to the out-of-plane stiffness of the column flange results in a significant portion of the beam flange force being transmitted to the plate. Extending the flexibility method (Section 1.4) for an elasticplastically designed continuity plate allows for the prediction of the continuity plate force, P_{cp} . Figure 2.1 demonstrates this using Specimens C5 and C6 of this testing program. The figure shows that, for these two cases, the continuity plate is expected to yield until a thickness above the minimum specified in AISC 341 is reached (Eq. 1.18). Specimen C2 demonstrates this effect, where the plastic method does not require a continuity plate, but the flexibility method shows that a 5/8-in. thick continuity plate yields Yielding of this continuity plate was confirmed by the experimental testing of this specimen. Additionally, the presence of high residual stresses due to the thermal stresses induced by welding promotes continuity plate yielding. Therefore, the continuity plate fillet welds fastening the continuity plate to the column flange are designed to develop the strength of the continuity plate. Traditionally a (5/8)t rule, where t is the thickness of the plate in question, would be used to design a double-sided fillet weld that would develop the strength of a plate in tension. To verify this rule, we equate the strength of a transversely orientated double-sided fillet weld of size, w, to the yield limit state of a plate:

$$\phi_w 0.6F_{EXX} A_{we} (1.0 + 0.5 \sin^{1.5} \theta) = \phi_t F_y A_g$$
(2.3)

$$\phi_w 0.6F_{EXX} 2 \frac{w}{\sqrt{2}} l_w (1.5) = \phi_t F_y t_{cp} l_w$$
(2.4)

$$w = 0.786 \frac{\phi_t F_y}{\phi_w F_{EXX}} t_{cp} \tag{2.5}$$

which for a Gr. 50 steel plate with a matched electrode ($F_{EXX} = 70$ ksi) results in:

$$w = \frac{5}{8}t_{cp} \tag{2.6}$$

However, to be consistent with a capacity design philosophy, the fillet weld of the specimen continuity plates is designed for the nominal yielding, not design, strength of the continuity plate such that:

$$\phi_w 0.6F_{EXX} A_{we} (1.0 + 0.5 \sin^{1.5} \theta) = F_y A_g$$
(2.7)

$$w = 0.786 \frac{F_{y}}{\phi_{w} F_{EXX}} t_{cp}$$
(2.8)

which for a Gr. 50 steel plate with a matched electrode ($F_{EXX} = 70$ ksi) results in:

$$w = \frac{3}{4} t_{cp} \tag{2.9}$$

Since the column flange edges of the continuity plate experiences shear, V_{cp} , the assumption that the weld is only loaded in tension appears not be conservative. But

including the shear in the analysis also modifies the design strength of the plate. Assuming that the continuity plate observes an elastic-plastic response (i.e., the plate will not be subjected to significant cyclic strains that would induce strain hardening) it will be shown below that the modified yield condition of the continuity plate offsets the decrease in the weld strength.

The direction-dependent term used for fillet welds, $(1.0 + 0.5 \sin^{1.5} \theta)$, decays as additional shear modifies the direction of the resultant force vector, P_r , (see Eq. 2.10 and 2.11).

$$P_r = \sqrt{P_{cp}^2 + V_{cp}^2}$$
(2.10)

$$\theta = \tan^{-1} \left(\frac{P_{cp}}{V_{cp}} \right) \tag{2.11}$$

The shear at the forward edge of the plate is found as:

$$V_{cp} = \gamma P_{cp} \tag{2.12}$$

Assuming that P_{cp} acts at the center of the plate edge results in the following expressions for γ :

$$\gamma = \begin{cases} \frac{\left(b_{clip} + \frac{b_n}{2}\right)}{d} & \text{for exterior connections} \\ \frac{2\left(b_{clip} + \frac{b_n}{2}\right)}{d} & \text{for interior connections} \end{cases}$$
(2.13)

where b_{clip} is the distance clipped off the continuity plate to clear the radius of the column web-to-flange junction, and d is the depth of the continuity plate: $d = d_c - 2t_{bf}$ (see Figure 2.2). Assuming the continuity plate does not demonstrate significant strain hardening, the resultant force P_r must exist on the initial yield surface defined by the nominal yield strength of the material. For metal plasticity it is common to assume a von Mises yield surface:

$$\sigma_{\nu m}^2 = \frac{1}{2} \left[(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 + 6(\sigma_{23}^2 + \sigma_{31}^2 + \sigma_{12}^2) \right] \quad (2.14)$$

Assuming plane stress and conservatively setting $\sigma_{22} = 0$ results in:

$$F_y^2 = \sigma_{11}^2 + 3\sigma_{12}^2 \tag{2.15}$$

The average tension stress is $\sigma_{11} = P_{cp}/A_{cp}$ and the average shear stress is $\sigma_{12} = V_{cp}/A_{cp}$, where $A_{cp} = b_n t_{cp}$ is the area of the continuity plate in contact with the column flange. Substituting these expressions into Eq. 2.15 produces:

$$P_{cp} = \frac{P_y}{\sqrt{1+3\gamma^2}} \tag{2.16}$$

$$V_{cp} = \frac{\gamma P_y}{\sqrt{1+3\gamma^2}} \tag{2.17}$$

where $P_y = F_y A_{cp}$. Substituting these expressions into Eq. 2.10 results in:

$$\frac{P_r}{P_y} = \sqrt{\frac{1+\gamma^2}{1+3\gamma^2}}$$
(2.18)

$$\theta = \tan^{-1}\left(\frac{1}{\gamma}\right) \tag{2.19}$$

The ratio of strengths of a transversely orientated ($\theta = 90^{\circ}$) weld versus a resultant angle according to Eq. 2.19 is:

$$\frac{R_n(\theta = 90^\circ)}{R_n(\theta)} = \frac{\frac{3}{2}}{1.0 + 0.5 \sin^{1.5} \left(\tan^{-1}\left(\frac{1}{\gamma}\right)\right)}$$
(2.20)

The ratio of Eq. 2.18 to Eq. 2.20 represents the resulting demand-capacity ratio, *DCR* between a weld subjected to a vector resultant of axial and shear forces, limited by a von Mises yield criterion, to a weld design solely for tension:

$$DCR_{Weld} = \frac{3\sqrt{\frac{1+\gamma^2}{1+3\gamma^2}}}{2\left[1.0+0.5\sin^{1.5}\left(\tan^{-1}\left(\frac{1}{\gamma}\right)\right)\right]}$$
(2.21)

Since $DCR_{Weld} \leq 1.0$ for all admissible values of γ , it is conservative to neglect the shear force acting on the weld (see Figure 2.3). Finite element analysis has also revealed that before the continuity plate yields, a small amount of moment is generated at the edge of the plate. This moment vanishes as the continuity plate yields due to the axial force. The weld fastening the continuity plate to the web of the continuity plate is designed to develop the strength of the axially loaded portion of the continuity plate. For an exterior connection, this is equal to $A_{cp}F_y$, while for an interior connection, the force is doubled. Therefore, it is conservative to assume this weld is orientated longitudinally ($\theta = 0^\circ$).

The continuity plate fillet welds in this research program were typical welds with no special requirements regarding the treatments at weld terminations. This use of typical detailing was intentional to represent a conservative fabrication case where the fillet weld may be fabricated with a start and stop of each weld pass contained within the breadth of the continuity plate.

2.2.3 Doubler Plate Vertical Weld Design

The vertical welds of a doubler plate are designed to resist the appropriate proportion of the panel zone shear based on the relative elastic shear stiffness of the doubler plate:

$$V_{dp} = \left(\frac{Gt_{dp}}{Gt_{dp} + Gt_{cw}}\right) V_{pz} = \left(\frac{t_{dp}}{t_{dp} + t_{cw}}\right) V_{pz}$$
(2.22)

where V_{dp} is the shear force in the doubler plate(s), and t_{dp} and t_{cw} are the thicknesses of the doubler plate and column web, respectively. The panel zone shear, V_{pz} is derived from the equilibrium between the flange force, P_f and the column shear, V_{col} . Assuming that the stress of the doubler plate is uniformly distributed across a shear area equal to $t_{dp}d_c$ results in shear flow of $q_{dp} = V_{dp}/d_c$. Moment equilibrium of the doubler plate itself results in (see Figure 2.4):

$$\frac{V_{dp}}{d_c}h_c d^* = V_{dp,v}h_c \tag{2.23}$$

$$V_{dp,\nu} = \frac{V_{dp}}{d_c} d^*$$
 (2.24)

For design purposes, assume that the shear flow along the vertical edge is uniform:

$$q_{dp,v} = \frac{V_{dp,v}}{d^*} = q_{dp}$$
(2.25)

It is observed that the uniform shear flow along the vertical edge of the doubler plate is equal to the uniform shear flow along the horizontal edge. The above approach may result in a vertical shear force in excess of the shear yielding strength of the plate—a paradox that occurs because of the inelastic behavior assumed in the second term of Eq. 1.19. Therefore, the following requirement is necessary:

$$q_{dp,\nu} = \frac{V_{dp}}{d_c} \le 0.6F_{\nu}t_{dp}$$
(2.26)

In practice, economic doubler plates designed solely for panel zone shear would not be designed differently than the current practice of sizing the weld to develop the shear strength of the doubler plate. However, there are two instances where the proposed approach realizes greater economy:

- (1) When the strength design (Eq. 1.19) would suggest a doubler plate that would violate the stability limit (Eq. 1.20) and instead of using plug welds to stabilize the plate, a thicker doubler plate may be specified.
- (2) When WLY governs the need for column stiffening, a doubler plate may be used in lieu of a continuity plate. Specimen C7 of this research project utilized this approach.

An additional complication to using fillet welds as the vertical weld to fasten the doubler plate to the column is maintaining the effective throat of the weld through the beveled portion of the doubler plate [see Figure 2.5(a)]. The commentary of §E3.6e.3 in AISC 341 (2016b) discusses the issue and recommends that the fillet weld size should be increased to accommodate any reductions in the effective throat due to the bevel of the doubler plate. For Specimen C7, a bevel angle of 45° was specified to circumvent this issue [see Figure 2.5(b)]. No fit-up issues of the 5/8-in. doubler plate on the W24×192 column was reported.

2.3 Specimen Design and Details

Table 2.1 summarizes the research objective of the specimens in both phases. The first two specimens of Phase 1 (Specimens C3 and C4) challenge the need for the Lehigh Criterion (Eq. 1.16) for a shallow and a deep column configuration. While Specimen C4 has a much higher SCWB ratio indicating a stiffer column, the deep column may be more susceptible to warping once a lateral-torsional instability is developed at the plastic hinge in the beam. Specimen C4 also possesses a markedly stronger panel zone than Specimen C3. Specimen C5 was designed with a continuity plate as per Eq. 2.2, resulting in a continuity plate that is 1/8 in. thinner than that required per Eq. 1.18. The resulting continuity plate has a high width-to-thickness ratio of 16.0; high width-to-thickness ratio plates are susceptible to local buckling. Specimen C5 also used a weak panel zone (*DCR* =1.18). The combination of column kinking and continuity plate buckling while the continuity plate is cycled plastically challenges the ductility capacity of the continuity plate

fillet welds. The continuity plate-to-column flange fillet weld was the nearest standard weld size to satisfy $w = (3/4)t_{cp}$.

Specimen C6 was designed with a continuity plate as per Eq. 2.2, resulting in a continuity plate that is equal to that required per Eq. 1.18. The continuity plate fillet welds in this specimen were equal to t_{cp} . This was done to ensure that premature failure of the specimen did not occur such that Specimen C6-G, which was a duplicate specimen that was hot-dip galvanized, would have meaningful results when comparing the effects of galvanization. To maintain consistency for later comparison, Specimen C6-G is fabricated identically to Specimen C6—including maintaining metallurgical similarity by using rolled shapes from the same heat number. Specimen C7 aims to satisfy the governing column limit state, WLY, by the addition of a doubler plate in lieu of a continuity plate. The DCR for the FLB limit state is 0.92, which according to the plastic design methodology does not require a continuity plate. The doubler plate fillet weld has been sized to resist the proportion of panel zone shear transmitted to the doubler plate based on its ratio of shear stiffness to the column web, according to Eq. 2.22 and Eq. 2.26. Table 2.2 shows the RBS dimensions of the Phase 1 specimens. Included in this table is the ratio of moment at the column face to the expected plastic moment, M_f/M_{pe} , which indicates the utilization of the RBS including hardening.

Specimen W1 used a 1/2-in. continuity plate as per Eq 2.2, which violates the current minimum thickness criterion for two-sided connections as per Eq. 1.18. This specimen used a pair of 5/8-in. extended doubler plates with a vertical PJP weld. Specimen W2 used a 3/4-in. continuity plate as per the minimum thickness of AISC 341 (Eq. 1.18). The plastic methodology predicts this plate as overloaded, with a *DCR* of 1.43. Overloading of the continuity plate was done intentionally to observe any negative consequences. This specimen used a pair of 3/4-in. extended doubler plates with a vertical PJP weld. Specimen W3 used a 1/2 -in. continuity plate as per Eq 2.2 which violates the current minimum thickness criterion for two-sided connections as per Eq. 1.18. This specimen used a pair of 1/2-in. extended doubler plates, which were insufficient based on the predicted panel zone shear (see Eq. 1.19) and violated the stability criteria (see Eq. 1.20). The weak and slender panel zone was designed intentionally to investigate any negative consequences. The slope of the weld access hole from the beam flange for WUF-W connections has been shown to

be a critical parameter (Han et al. 2014). AWS D1.8 (2016) §6.11.1.2 is not explicit in specifying the slope of the weld access hole—only imposing a limit of 25° degrees. The design drawings for Phase 2 detailed the weld access as a standard weld access for WUF-W connections following the Alternate Geometry of AWS D1.8. As-built slopes of the access holes for the Phase 2 specimens were approximately 15°.

Specimen W4 used a 3/4-in. continuity plate as per Eq 2.2, which satisfied the current minimum thickness criterion for two-sided connections as per Eq. 1.18. This specimen used a doubler plate placed within the continuity plates. The vertical welds of the doubler plates were designed to develop the shear strength of the doubler plate. Only Specimen W4 used horizontal fillet welds to fasten the doubler plate to the continuity plate. This fillet weld was sized based on 75% of the available shear capacity of the doubler plate as per §E3.6e.3(b)(2) in AISC 341 (2016b).

Concrete slabs were not used in this testing as their presence significantly complicates the testing and impairs the visual assessment of the connection during testing. Experimental testing of SMFs using concrete slabs have demonstrated that their presence is generally beneficial by stabilizing the plastic hinge (Englehardt et al. 2000). In positive flexure the addition of a composite slab can increase the plastic strain demand at the beam bottom flange extreme fiber (Hajjar et al. 1998). However, a modern connection which prohibits the use of shear studs in the beam plastic hinge region lacks the shear transfer capability to develop significant composite behavior. Uang et al. (2000) found that the shift in the neutral axis for partially composite beams to be minor.

Table 2.3 shows the following specimen and continuity plate design metrics:

- The clear Span-to-Depth Ratio. AISC 358 (2016c) §5.3.j requires the ratio for SMF using RBS connections to be limited to 7 or greater. Similarly, AISC 358 (2016c) §8.3.j requires the ratio for SMF using WUF-W connections to be limited to 7 or greater.
- The Strong Column Weak Beam (SCWB) Moment Ratio. AISC 341 (2016b) §E3.4a requires that the ratio of the summation of projected column strengths to the summation of projected beam strengths shall be larger than one. The ratio listed in the table is:

$$SCWB = \frac{\sum M_{pc}^*}{\sum M_{pb}^*}$$
(2.27)

- The flange force, P_f as per Eq. 1.17 using the appropriate clause of AISC 358 (2016c) to compute the moment at the face of the column, M_f. Specifically, §5.8 in AISC 358 for RBS connections and §8.7 in AISC 358 for WUF-W connections.
- The resistance of the FLB, WLY column limit states computed as per §J10 in AISC 360 (2016) (Eq. 1.30 and Eq. 1.27) using the designed thickness of the panel zone (i.e., t_{cw} + ∑t_{dp}). The WLC limit state has been omitted since it does not govern.
- The resultant continuity plate force, P_{cp} , computed as per Eq. 2.1.
- The continuity plate DCR expressed as the resultant of the P-V interaction equation (Eq 2.2).
- The continuity plate width-to-thickness ratio (b/t).
- The fillet weld size, w, adjoining the continuity plate to the column flange.
- The ratio of fillet weld size to continuity plate thickness, w/t_{cp} .

Table 2.4 shows the following panel zone and doubler plate design metrics:

- The panel zone shear force, V_{pz} determined as the equilibrium between the flange force(s) and the column shear.
- The panel zone DCR expressed as the ratio of V_{pz} and R_n as per Eq. 1.19.
- The ratio of the combination of the panel zone width and depth to its thickness (see Eq. 1.20) computed for the column web and doubler plate.
- The vertical weld shear flow as computed per Eq. 2.26 and the upper bound of the shear flow defined as $0.6F_y t_{dp}$.

Spec. No.	Beam	Column	Connection Type	Research Objective				
C1 ^a	W30×116	W24×176	One-sided RBS	Continuity plate designed using the flexibility method (Section 1.4).				
C2 ^a	W36×150	W14×257	One-sided RBS	Continuity plate designed using the flexibility method (Section 1.4). Continuity plate expected to yield.				
C3	W36×150	W14×257	One-sided RBS	Specimen violates Lehigh Criterion (Eq. 1.16). Strength Limit states predict plate not required (Eq. 2.1).				
C4	W30×116	W27×235	One-sided RBS	Specimen violates Lehigh Criterion (Eq. 1.16). Strength Limit states predict plate not required (Eq. 2.1).				
C5	W36×150	W14×211	One-sided RBS	Size of continuity plate designed as per Eq. 2.2. Column designed to have a weak panel zone to exacerbate column kinking. Beam designed to deliver a probable maximum beam flange force that results in a continuity plate thinner than Eq. 1.18. Continuity plate welds designed as the per the $w = (3/4)t_{cp}$ rule.				
C6	W30×116	W24×176	One-sided RBS	Size of continuity plate designed per Eq. 2.2. The continuity plate also satisfied the minimum thickness as per Eq. 1.18. Welds conservatively designed ($w = t_{cp}$).				
C6-G	W30×116	W24×176	One-sided RBS	Identical as Specimen C6 but, except all plates and the beam and column members were hot dip galvanized.				
C7	W30×116	W24×192	One-sided RBS	Size of doubler plate to satisfy WLY limit state. FLB limit state satisfied without stiffening. Welds designed according to Eq. 2.22 and Eq. 2.26.				
W1	W36×150	W27×258	Two-sided WUF-W	Size of continuity plate designed per Eq. 2.2. Extended doubler plate welded with PJP. Continuity plate welds designed as per the $w = (3/4)t_{cp}$ rule.				
W2	W33×141	W27×217	Two-sided WUF-W	Size of continuity plate under-designed based per Eq. 2.2 (DCR =1.16). Continuity plate satisfied minimum thickness as per Eq. 1.18. Extended doubler plate welded with PJP. Continuity plate welds designed as per the $w = (3/4)t_{cp}$ rule.				
W3	W30×116	W24×207	Two-sided WUF-W	Size of continuity plate designed per Eq 2.2. Weak panel zone (<i>DCR</i> of 1.07) per Eq. 1.19. Doubler plate stability criterion violated (Eq. 1.20). Extended doubler plate welded with vertical fillet welds to develop shear capacity. Continuity plate welds designed as per the $w = (3/4)t_{cp}$ rule.				
W4	W24×94	W24×182	Two-sided WUF-W	Size of continuity plate designed per Eq. 2.2. Continuity plate satisfied minimum thickness as per Eq. 1.18. Doubler plate welds placed within continuity plates with vertical fillet welds to develop shear capacity. Continuity plate welds designed as per the $w = (3/4)t_{cp}$ rule.				

Table 2.1 Research Objective Matrix

a) Specimens tested and reported in Mashayekh and Uang (2018).

Spec. No.	<i>a</i> (in.)	<i>b</i> (in.)	с (in.)	<i>R</i> (in.)	$\frac{M_f}{M_{pe}}$
C1 ^a	7.0	25.0	2.00	40.0	0.95
C2 ^a	7.0	25.0	2.50	32.5	0.92
C3	6.0	24.0	2.50	30.0	0.91
C4	6.0	20.0	2.00	26.0	0.93
C5	6.0	24.0	2.00	37.0	0.88
C6	6.0	20.0	2.00	36.0	0.93
C6-G ^b	6.0	20.0	2.00	36.0	0.93
C7	6.0	20.0	2.25	23.3	0.89

Table 2.2 Phase 1 Specimen RBS Dimensions

a) Specimens tested and reported in Mashayekh and Uang (2018).

b) Specimen beam and column are galvanized.

Specimen No.	Span-to- Depth Ratio ^a	SCWB Ratio	<i>t_{cp}</i> (in.)	P _f (kips)	FLB (kips)	WLY (kips)	P _{cp} ^b (kips)	V _{cp} ^b (kips)	Cont. Plate DCR	b/t	w ^c (in.)	w/t _{cp}
C1	11.2	2.41	0.75	577	505	377	100	15.5	0.35	8.0	9/16	0.75
C2	9.6	1.58	0.63	719	1005	790	-36	-10.2	-	9.6	1/2	0.80
C3	9.9	1.60	-	709	1005	790	-41	-	-	-	-	-
C4	11.4	3.70	-	563	729	585	-11	-	-	-	-	-
C5	9.9	1.19	0.38	681	684	575	53	15.3	0.45	16.0	5/16	0.83
C6	11.6	2.48	0.50	563	505	377	93	14.5	0.68	12.0	1/2	1.00
C6-G	11.6	2.48	0.50	563	505	377	93	14.5	0.68	12.0	1/2	1.00
C7	11.6	2.84	-	538	600	764	-31	-	-	-	-	-
W1	6.8	1.05	0.50	1088	881	1532	104	28.4	0.86	12.0	3/8	0.75
W2	7.3	0.99	0.75	1040	633	1446	204	53.2	1.43	7.8	9/16	0.75
W3	8.2	1.11	0.50	849	693	1047	78	67.5	0.6	11.0	3/8	0.75
W4	10.1	1.22	0.75	710	419	926	146	41.9	0.95	7.3	9/16	0.75

Table 2.3 Continuity Plate Design Metric

a) Span-to-depth ratio for two-sided specimens listed for the shorter span.

b) Negative values result when continuity plates not required per §J10 in AISC 360 regarding the FLB and WLY limit states.

c) Weld size, w, tabulated for the continuity plate-to-column flange fillet weld.

Specimen No.	<i>t_{dp}</i> (in.)	V _{pz} (kips)	Panel Zone DCR	$\frac{d_z + w_z}{t_{cw}}$	$\frac{d_z + w_z}{t_{dp}}$	q _{dp,v} (kips/in)	0.6 <i>F_yt_{dp}</i> (kips/in)	Doubler Plate Vertical Weld
C1	-	576	0.90	68	-	-	-	-
C2	-	692	0.96	40	-	-	-	-
C3	-	683	0.94	40	-	-	-	-
C4	-	562	0.63	59	-	-	-	-
C5	-	656	1.18	48	-	-	-	-
C6	-	562	0.88	68	-	-	-	-
C6-G	-	562	0.88	68	-	-	-	-
C7	0.63	537	0.43	63	81	9.2	18.8	7/16 in.
W1	0.63	2003	0.98	61	95	18.8	18.8	PJP
W2	0.75	1957	0.94	68	76	22.2	22.5	PJP
W3	0.50	1640	1.07	58	102	15.0	15.0	11/16 in.
W4	0.63	1431	0.93	64	72	18.3	18.3	7/8 in.

Table 2.4 Doubler Plate Design Metric

Figure 2.1 Continuity Plate Force Prediction

(a) Dimensions and Sign Convention

(b) Free Body Diagram (Exterior)

Figure 2.2 Continuity Plate Diagrams

Figure 2.3 Continuity Plate Weld DCR Including Shear

Figure 2.4 Doubler Plate Free Body Diagram

(a) Fig. C-E3.6.(b) AISC 341 (2016b)

(b) Specimen C7 Figure 2.5 Doubler Plate Vertical Fillet Welds

3 TEST PROGRAM

3.1 General

The testing was conducted in accordance with Section K2 of AISC 341 (2016b) at the Charles Lee Powell Structural Systems Laboratories of the University of California, San Diego (UCSD). The full-scale testing program was divided into two phases. Phase 1 consisted of exterior (one-sided) beam-column subassemblies with Reduced Beam Section (RBS) moment connections. Table 3.1 shows the test matrix for the exterior RBS connections. The specimens used either a W36×150 beam or a W30×116 beam. Several shallow columns (W14×211 and W14×257) and several deeper column shapes (W24×176, W24×192, and W27×235) were tested. Three of the Phase 1 specimens (Specimens C5, C6, and C6-G) used a continuity plate that either met or was undersized according to §E3.6f.2(b) of AISC 341. The three specimens which did not use a continuity plate (Specimens C3, C4, and C7) violated the continuity plate requirement of §E3.6f.1(b) of AISC 341. Specimen C6-G was nominally identical to Specimen C6, except this specimen was hot-dip galvanized before simulated field welding. Specimen C7 was the only specimen of Phase 1 to use a doubler plate. Fillet welds were used for the vertical welds of this doubler plate.

Phase 2 consisted of four interior (two-sided) beam-column subassemblies with Welded Unreinforced Flange with a Welded Web (WUF-W) connections. Table 3.2 shows the beams and columns selected for the specimens. Specimen W1 used two W36×150 beams welded to a W27×258 column. Specimen W2 used two W33×141 beams welded to a W27×217 column. Specimen W3 used two W30×116 beams welded to a W24×207 column. Finally, Specimen W4 used two W24×94 beams welded to a W24×182 column. Specimens W2 and W4 used continuity plates which satisfied the minimum thickness as per AISC 341. The other two specimens used continuity plates thinner than the minimum thickness requirement. All four specimens used doubler plates as symmetric plates placed on either side of the column. All of the doubler plates were extended 6 in. beyond the beam flange level, except for Specimen W4, which placed a doubler plate within the continuity plates. Specimens W1 and W2 used a PJP weld for the vertical welds, while Specimens W3 and W4 used fillet welds for the vertical welds.

All of the members satisfy the requirements of AISC 341 Section D1. Specifically, the members are proportioned to satisfy the requirements of a highly-ductile member. Except for Beam 1 of Specimen W1, all the specimens satisfy the clear span-to-depth ratio specified in either Chapter 5 or Chapter 8 of AISC 358-16. The remaining design details, including but not limited to Demand Critical (DC) welding of CJP beam-to-column welds, supplemental fillet welds, shear tab thickness, and continuity plate corner clips, satisfy the design requirements of AISC 341 or the connection-specific requirements of AISC 358.

3.2 Test Setup

The Phase 1 test setup is shown in Figure 3.1; each specimen was tested in the upright position. Frame inflection points are assumed to exist at the mid-height of each story, which are simulated by using three W14×257 hinge supports. The W14 shapes were mounted under the column and at the top and bottom as shown in Figure 3.2. The beam length represents half of the bay width, assuming an inflection point at the midspan of the beam. The loading end (south end of the specimen) is loaded through a 220-kip hydraulic actuator with an inline load cell. The load from the actuator is delivered to the free end of the beam through a loading corbel (see Figure 3.3). An intermediate top flange lateral restraint placed about 18 in. away from the RBS cut used for Specimens C3 and C5 is seen Figure 3.4. The top-flange lateral bracing outside of the RBS simulates the lateral restraint provided by a composite concrete slab in a real application. To increase the stiffness of the intermediate lateral restraint, the two lateral columns were tied together. For the remainder of the specimens both the top and bottom flange of the beam was braced as the same location just beyond the reduced beam section (see Figure 3.5). A modular frame provides lateral bracing at the loading corbel at the end of the beam. All lateral restraints use a polished, greased sliding surface to minimize friction.

The Phase 2 test setup is shown in Figure 3.6; each specimen was tested in the horizontal position. As in Phase 1, frame inflection points are assumed to exist at the midheight of each story. The lower end of the specimen is mounted in a clevis while the upper end uses a W14×311 hinge (see Figure 3.8). The clevis uses a 9-in. greased pin and a matching tang, which was designed to attach to the bottom of the specimens through a bolted base plate. The beam ends are loaded through loading corbels which slide on a greased plate elevated by a sliding block (see Figure 3.9). The load is delivered to the

loading corbels through a 500-kip hydraulic actuator on each side of the specimen. Lateral restraint of the beam is achieved by sandwiching the beams between two HSS sections. These HSS sections are bolted to an HSS post which is post-tensioned to the laboratory strong floor.

3.3 Specimen Sizes and Test Order

Table 3.1 shows the member sizes and stiffening element details for the five specimens tested in Phase 1 as well as the two specimens previously tested by Mashayekh and Uang (2018). The Phase 2 specimens consisted of two identical beam shapes framing into a common column using the WUF-W connection. Table 3.2 summarizes the specimens of Phase 2. Table 3.3 shows the member cross-sectional dimensions for each test specimen. Detailed engineering drawings are included in Appendix A.

3.4 Specimen Construction and Inspection

The San Bernardino location (San Bernardino Steel) of The Herrick Corporation fabricated the test specimens. For reasons of economy, the field welding was simulated at Herrick's shop. The simulated field welding of Specimen C5 was observed on October 25 of 2018. Figure 3.10 to Figure 3.16 show the observed simulated field welding. At the time of welding, a visual inspection was performed by West Coast Inspection Services. After a 24-hour cool-down period, UT and magnetic particle testing were also performed by West Coast Inspection Services. Weld inspection of the Phase 2 specimens was completed by the Smith & Emery Company. See Appendix B for all Weld Inspection Reports. The inspections did not reveal any actionable flaws in the welding.

3.5 Material Properties

The W-shaped beams and columns were fabricated from ASTM A992 steel, while the continuity and doubler plates were fabricated from ASTM A572 Gr. 50 steel. Table 3.4 shows the mechanical properties of the base materials. Table 3.5 shows the chemical composition of the materials obtained from the Certified Mill Test Reports (see Appendix C). Appendix D shows the stress-strain response of the tensile coupon testing performed at UCSD.

The simulated field welding of the beam top and bottom flange CJP welds used an E70T-6 (Lincoln Electric NR-305) electrode in the flat position. The beam web CJP, beam

top flange backing bar fillet, and beam bottom flange reinforcing fillet was welded with an E71T-8 (Lincoln Electric NR-232) electrode in the vertical and overhead positions. Continuity plate and doubler plate welds were shop-welded with an E70T-9C (Lincoln Electric OSXLH-70) electrode. These electrodes satisfy the requirements of AWS D1.8 (2016) for Demand Critical welds. Specifically, they satisfy the minimum Charpy V-Notch toughness requirements of 20 ft-lb at 0°F and 40 ft-lb at 70°F. Table 3.6 shows the Charpy V-Notch toughness from the beam flange and beam web welds. Charpy samples were extracted in the transverse direction of a weld mockup fabricated on the same day as the Phase 2 specimens. Appendix E shows the Welding Procedure Specifications for shop and the simulated field welding.

3.6 Instrumentation

A combination of displacement transducers, strain gauge rosettes, and uniaxial strain gauges were used to measure global and local responses. Figure 3.17 shows the location of the displacement transducers for the Phase 1 specimens. Displacement transducer L1 measured the displacement and controls the actuator for displacement-control testing. Transducer L2 was used to quantify slip, if any, between the loading corbel and beam tip. Panel zone deformations were measured from transducers L3 and L4. Column rotations were measured from transducers L7 through L9 were used to monitor displacements at the supports, which were anticipated to be negligible.

Figure 3.18 shows the location of displacement transducers for the Phase 2 specimens. L1 and L2 measured the displacements and controlled the two actuators. Transducers L3 and L4 were used to quantify slip between the loading corbels and the beam ends. Column rotations were measured using transducers L5 and L6, while the panel zone deformation was measured by transducers L7 and L8. Transducers L12, L13, and L14 were used to monitor the out-of-plane displacement of the column. The remaining transducers were used to monitor the displacements at the supports, which were anticipated to be negligible.

Various rosettes and uniaxial strain gauges were used to measure the strains in the connection region. Figure 3.19 to Figure 3.25 show the instrumentation layout for the connection region of each specimen. Additionally, several gauges were placed on the intermediate lateral restraint columns to characterize the lateral bracing force.

It is typical practice to whitewash the specimens in the connection region prior to loading such that yielding can be photographed during testing. As part of a pilot project to test the capabilities of Digital Imaging Correlation (DIC) software, the first two specimens tested (Specimens C3 and C5) were not whitewashed. Instead, a random speckle pattern was applied to key areas of the specimen. The remaining specimens were whitewashed to provide visual evidence of yielding.

3.7 Data Reduction

The Story Drift Angle (SDA) is the ratio between δ_{total} and L:

$$SDA = \delta_{total}/L$$
 (3.1)

where δ_{total} is the total beam tip deflection measured by displacement transducer L1 (and L2 for Phase 2), and *L* is the length of the beam measured from the beam tip (i.e., loading point) to the centerline of the column.

The total plastic rotation (θ_p) of the specimen is calculated by dividing the plastic component (δ_p) of the beam tip displacement by *L*.

$$\Theta_p = \frac{\delta_p}{L} = \frac{1}{L} (\delta_{total} - \delta_e) = \frac{1}{L} \left(\delta_{total} - \frac{P}{K} \right)$$
(3.2)

where *P* is the applied load, δ_e is the elastic component of beam tip displacement, and *K* is the elastic stiffness determined from the initial low-amplitude response of *P* vs. δ_{total} .

The components of the beam tip displacement are separated into the displacements due to the flexure of the beam, the flexure of the column, and the shearing of the panel zone. Panel zone deformation, γ is computed using L3 and L4 in Phase 1 or L7 and L8 in Phase 2. Assigning the displacement recorded by L3 or L7 to δ_a and the displacement from L4 or L8 to δ_b , the average panel zone shear deformation is computed by:

$$\gamma = \frac{\sqrt{w_{pz}^2 + d_{pz}^2}}{2w_{pz}d_{pz}} (\delta_b - \delta_a)$$
(3.3)

where w_{pz} and d_{pz} are the width and depth of the panel zone measure points. For specimens without a continuity plate, the transducers were placed within the panel zone to avoid spurious displacement caused by column out-of-plane flange flexure. Otherwise, the transducers were placed at the center of the cruciform formed by the beam flange, continuity plate, and column flange. A rigid-body correction is required when extrapolating the influence of the panel zone deformation on the beam tip deformation (Uang and Bondad 1996):

$$\delta_{pz} = \gamma L - \gamma d - \frac{d_b}{H} \left(L + \frac{d_c}{2} \right)$$
(3.4)

The contribution of the beam tip deformation due to the column flexure is found by transducers L5 and L6 in either phase. Assigning the displacement recorded by these transducers to δ_c and δ_d , respectively, results in:

$$\delta_{col} = \frac{\delta_d - \delta_c}{d_b} L - \gamma d_b \left(1 - \frac{d_b}{H} \right)$$
(3.5)

where the latter term is the correction to remove the panel zone deformation from the flexural deformations. Finally, the components of the beam tip deformation are as follows:

$$\delta_{total} = \delta_{beam} + \delta_{pz} + \delta_{col} \tag{3.6}$$

The contribution due to the beam can then be solved for as:

$$\delta_{beam} = \delta_{total} - \delta_{pz} - \delta_{col} \tag{3.7}$$

In the Phase 2 specimens an additional component of deformation exists due to the gap between the clevis and the pin, δ_{clevis} . The rigid-body motion of this is removed by incorporating the displacement recorded by transducer L15. Assigning δ_p to be the displacement recorded by transducer L15 results in:

$$\delta_{clevis} = \frac{2\delta_p}{H}L\tag{3.8}$$

Which gives the beam tip deformation for Phase 2 as:

$$\delta_{beam} = \delta_{total} - \delta_{pz} - \delta_{col} - \delta_{clevis} \tag{3.9}$$

The dissipated hysteretic energy is computed by integrating the load-displacement response such that:

$$E_{h,total} = E_{h,beam} + E_{h,pz} + E_{h,col} - E_{elastic}$$
(3.10)

where $E_{elastic}$ is the recoverable elastic energy. By convention, the integration of the dissipated energy includes only the drift cycles where the moment at the face of the column has not degraded beyond $0.8M_{pn}$, where M_{pn} equals the beam nominal plastic moment. This cutoff is imposed because strength degradation beyond this limit does not satisfy the SMF requirements of AISC 341. From the dissipated energy the cumulative plastic drift can be determined as:

$$\Sigma \theta_p = \frac{E_{h,total}}{M_p} \tag{3.11}$$

where M_p is the actual plastic moment of the section. The Reserved Energy Ratio. Ω_E , represents the amount of energy dissipated in excess of the first-cycle, 0.04 rad story drift angle requirement of SMF based on AISC 341. Setting the dissipated energy capacity, $E_{h,min}$, to be the dissipated energy after completing one cycle of 0.04 rad story drift results in:

$$\Omega_E = \frac{E_{h,total}}{E_{h,min}} \tag{3.12}$$

The peak connection strength factor, C_{pr} , accounting for strain hardening and local restraint, is used in predicting the seismic flange forces of the beams framing into the column (AISC 2016b). Specimen design has used the values provided in AISC 358-16 as 1.15 and 1.4 for the RBS and WUF-W connections, respectively. After testing of each specimen, C_{pr} is computed by normalizing the experimentally determined moment at the plastic hinge location by the expected moment, M_{pe} . For RBS connections, $M_{pe} = Z_{RBS}F_{ya}$, and for WUF-W connections, $M_{pe} = Z_xF_{ya}$, where F_{ya} is the measured yield strength of the material. Per AISC 358-16 The plastic hinge location is assumed to take place at the center of the reduced section for RBS cuts and at the face of the column for WUF-W connections.

3.8 Loading Sequence

Testing is conducted in a displacement-control mode. The loading sequence used for all specimens was the standard AISC loading sequence specified in Section K2 of AISC 341 (2016). The AISC loading sequence specifies a series of load cycles at different *SDAs*. The loading history begins with six cycles each at 0.00375, 0.005, and 0.0075 rad drifts. These are followed by four cycles at 0.01 rad drifts, two cycles at 0.015 rad drifts, two cycles at 0.02, 0.03, 0.04 rad drifts, and etc., up until failure. Figure 3.26 shows the loading sequence.

3.9 Acceptance Criteria

According to Section E3.6b of the AISC Seismic Provisions for Structural Steel Buildings (AISC 2016b), beam-to-column connections used in special moment frames shall satisfy the following requirements:

- (1) The connection shall be capable of accommodating a story drift angle of at least 0.04 rad.
- (2) The measured flexural resistance of the connection, determined at the column face, shall equal at least $0.8M_{pn}$ of the connected beam at a story drift angle of 0.04 rad, where M_{pn} is the nominal plastic moment of the beam.

Spec. No.	Beam	Column	Continuity Plate (in.)Continuity Plate Fillet Weld (in.)		Doubler Plate	Test Date
C1 ^a	W30×116	W24×176	3/4	9/16	-	04/28/2016
C2 ^a	W36×150	W14×257	5/8	1/2	-	04/04/2016
C3	W36×150	W14×257	-	-	-	11/02/2018
C4	W30×116	W27×235	-	-		1/29/2019
C5	W36×150	W14×211	3/8	5/16		11/14/2018
C6	W30×116	W24×176	1/2	1/2		2/08/2019
C6-G ^b	W30×116	W24×176	1/2	1/2		2/15/2019
C7	W30×116	W24×192	-	-	1 × 5/8"	2/04/2019

Table 3.1 Phase 1 Exterior RBS Connection Test Matrix

a) Specimens tested and reported in Mashayekh et al. (2017).

b) Specimen beam and column are galvanized.

Spec. No.	Beam	Column	Continuity Plate (in.)	Continuity Plate Fillet Weld (in.)	Doubler Plate	Test Date
W1	W36×150	W27×258	1/2	3/8	2 × 5/8"	8/08/2019
W2	W33×141	W27×217	3/4	9/16	2 × 3/4"	7/31/2019
W3	W30×116	W24×207	1/2	3/8	2 × 1/2"	7/26/2019
W4	W24×94	W24×182	3/4	9/16	2 × 5/8"	7/22/2019

Table 3.2 Phase Two Interior WUF-W Connection Test Matrix

Specimen	Mamhar	d	t_w	b_{f}	t_f	Width-Thic	kness Ratio
No.	Member	(in.)	(in.)	(in.)	(in.)	Web	Flange
Cla	Beam (W30×116)	30.0	0.57	10.5	0.85	47.8	6.17
CI	Column (W24×176)	25.2	0.75	12.9	1.34	28.7	4.81
C2a	Beam (W36×150)	35.9	0.625	12.0	0.94	51.9	6.37
C2ª	Column (W14×257)	16.4	1.18	16.0	1.89	9.71	4.23
C2	Beam (W36×150)	35.9	0.625	12.0	0.94	51.9	6.37
C3	Column (W14×257)	16.4	1.18	16.0	1.89	9.71	4.23
	Beam (W30×116)	30.0	0.57	10.5	0.85	47.8	6.17
C4	Column (W27×235)	28.7	0.91	14.2	1.61	26.2	4.41
C5	Beam (W36×150)	35.9	0.625	12.0	0.94	51.9	6.37
0.5	Column (W14×211)	15.7	0.98	15.8	1.56	11.6	5.06
	Beam (W30×116)	30.0	0.57	10.5	0.85	47.8	6.17
C6, C6-G	Column (W24×176)	25.2	0.75	12.9	1.34	28.7	4.81
C7	Beam (W30×116)	30.0	0.57	10.5	0.85	47.8	6.17
C7	Column (W24×192)	25.5	0.81	13.0	1.46	26.6	4.43

Table 3.3 Member Cross-Sectional Dimensions

a) Specimens tested and reported in Mashayekh et al. (2017).

Specimen	Manahan	d	t_w	b_{f}	t _f	Width-Thickness Ratio		
No.	Member	(in.)	(in.)	(in.)	(in.)	Web	Flange	
W1	Beam (W36×150)	35.9	0.625	12.0	0.94	51.9	6.37	
	Column (W27×258)	29.0	0.980	14.3	1.77	24.4	4.03	
WO	Beam (W33×141)	33.3	0.605	11.5	0.96	49.6	6.01	
VV Z	Column (W27×217)	28.4	0.830	14.1	1.50	28.7	4.71	
W/2	Beam (W30×116)	30.0	0.565	10.5	0.85	47.8	6.17	
W 3	Column (W24×207)	25.7	0.870	13.0	1.57	24.8	4.14	
W4	Beam (W24×94)	24.3	0.515	9.07	0.88	41.9	5.18	
	Column (W24×182)	25.0	0.705	13.0	1.22	30.6	5.31	

Table 3.3 Member Cross-Sectional Dimensions (continued)

Spec. No.	Component	Steel Type/ Heat No.	Yield Stress ^a (ksi)	Tensile Strength (ksi)	Elong. ^b (%)
	Beam Flange (W30×116)	A992	56.9 (56.5) ^b	75.6 (72.0) ^b	34.5 (28.0) ^b
	Beam Web (W30×116)	443484	58.5	73.2	39.5
C1	Column Flange (W24×176)	A992	57.2 (57.5) ^b	70.6 (72.5) ^b	39.1 (27.0) ^b
	Column Web (W24×176)	442208	58.5	72.2	37.3
	Continuity Plate (3/4 in.)	A572 Gr. 50 SB15106	68.1 (58.0) ^b	85.6 (81.0) ^b	36.9 (25.0) ^b
	Beam Flange (W36×150)	A992	53.5 (57.0) ^b	74.9 (75.1) ^b	38.3 (26.4) ^b
	Beam Web (W36×150)	60114091/04	57.9	74.7	38.1
C2	Column Flange (W14×257)	A992	52.3 (57.0) ^b	74.3 (75.0) ^b	37.7 (26.0) ^b
	Column Web (W14×257)	317275	54.8	74.8	38.6
	Continuity Plate (5/8 in.)	A572 Gr. 50 813K75180	54.1 (57.6) ^b	79.8 (82.6) ^b	35.1 (22.5) ^b
	Beam Flange (W36×150)	A992	57.2 (57.0) ^b	72.4 (72.0) ^b	25.7 (26.0) ^b
C2	Beam Web (W36×150)	421418	67.8	78.8	21.8
0.5	Column Flange (W14×257)	A992	60.0 (59.0) ^b	80.4 (78.0) ^b	22.3 (28.0) ^b
	Column Web (W14×257)	N039862	52.6	75.5	29.6
	Beam Flange (W30×116)	A992	59.7 (60.7) ^b	82.0 (82.8) ^b	22.7 (24.5) ^b
C ⁴	Beam Web (W30×116)	3G7361	65.7	85.4	-
	Column Flange (W27×235)	A992	(53.0) ^b	(71.0) ^b	(27.0) ^b
	Column Web (W27×235)	488640	60.0	75.0	24.8

Table 3.4 Base Metal Mechanical Properties

Spec. No.	Component	Steel Type/ Heat No.	Yield Stress ^a (ksi)	Tensile Strength (ksi)	Elong. ^b (%)
	Beam Flange (W36×150)	A992	(55.0) ^b	(71.0) ^b	(28.0) ^b
	Beam Web (W36×150)	440889	65.6	77.1	23.2
C5	Column Flange (W14×211)	A992	54.3 (59.0) ^b	71.5 (75.0) ^b	24.2 (28.5) ^b
	Column Web (W14×211)	452443	57.0	75.1	24.2
	Continuity Plate (3/8 in.)	A572 Gr. 50 N17266	59.9 (63.3) ^b	79.0 (82.0) ^b	20.5 (31.0) ^b
	Beam Flange (W30×116)	A992	56.9 (58.0) ^b	69.9 (72.0) ^b	24.3 (28.5) ^b
	Beam Web (W30×116)	426935	62.8	76.4	22.2
C6, C6-G	Column Flange (W24×176)	A992	54.2 (57.0) ^b	73.0 (75.0) ^b	25.5 (26.5) ^b
	Column Web (W24×176)	463912	61.0	74.3	23.6
	Continuity Plate (1/2 in.)	A572 Gr. 50 1202005567	(54.9) ^b	(75.2) ^b	(34.0) ^b
	Beam Flange (W30×116)	A992	57.1 (58.0) ^b	72.5 (72.0) ^b	24.3 (28.5) ^b
	Beam Web (W30×116)	A127163	61.7	74.2	23.7
C7	Column Flange (W24×192)	A992	57.6 (60.0) ^b	80.0 (80.0) ^b	22.8 (23.5) ^b
	Column Web (W24×192)	H53207	60.0	80.7	22.6
	Doubler Plate (5/8 in.)	A572 Gr. 50 N17707	51.2 (51.8) ^b	72.2 (70.8) ^b	23.9 (28.0) ^b

Table 3.4 Base Metal Mechanical Properties (continued)

Spec. No.	Component	Steel Type/ Heat No.	Yield Stress ^a (ksi)	Tensile Strength (ksi)	Elong. ^b (%)
	Beam Flange (W36×150)	A992	52.3 (57.0) ^b	78.8 (78.2) ^b	23.3 (26.1) ^b
	Beam Web (W36×150)	3110558	68.9	85.7	20.1
W 71	Column Flange (W27×258)	A992	52.6 (56.0) ^b	72.8 (74.0) ^b	25.3 (28.0) ^b
W I	Column Web (W24×258)	321553	59.49	74.0	23.8
	Continuity Plate (1/2 in.)	A572 Gr. 50 N21707	(64.0) ^b	(80.2) ^b	(31.0) ^b
	Doubler Plate ($2 \times 5/8$ in.)	A572 Gr. 50 N20741	(62.0) ^b	(80.5) ^b	(21.0) ^b
	Beam Flange (W33×141)	A992	54.9 (53.0) ^b	70.4 (68.5) ^b	26.3 (29.5) ^b
WO	Beam Web (W33×141)	506190	67.8	76.2	21.0
	Column Flange (W27×217)	A992	59.7 (58.0) ^b	76.0 (75.0) ^b	24.2 (26.0) ^b
W Z	Column Web (W27×217)	494737	63.9	77.4	23.1
	Continuity Plate (3/4 in.)	A572 Gr. 50 S27292	(58.0) ^b	(81.0) ^b	(40.0) ^b
	Doubler Plate ($2 \times 3/4$ in.)	A572 Gr. 50 S27292	(58.0) ^b	(81.0) ^b	(40.0) ^b
	Beam Flange (W30×116)	A992	56.3 (53.5) ^b	71.3 (69.0) ^b	23.9 (27.5) ^b
	Beam Web (W30×116)	504994	66.6	76.4	22.5
W2	Column Flange (W24×207)	A992	58.3 (58.0) ^b	76.8 (76.5) ^b	22.9 (26.5) ^b
C VV	Column Web (W24×207)	399018	60.2	75.9	21.8
	Continuity Plate (1/2 in.)	A572 Gr. 50 N21707	(64.0) ^b	(80.2) ^b	(31.0) ^b
	Doubler Plate $(2 \times 1/2 \text{ in.})$	A572 Gr. 50 N21707	(64.0) ^b	(80.2) ^b	(31.0) ^b

Table 3.4 Base Metal Mechanical Properties (continued)

Spec. No.	Component	Steel Type/ Heat No.	Yield Stress ^a (ksi)	Tensile Strength (ksi)	Elong. ^b (%)
	Beam Flange (W24×94)	A992	53.5 (57.7) ^b	79.0 (76.6) ^b	21.6 (27.2) ^b
	Beam Web (W24×94)	N 042176	60.5	81.3	23.6
	Column Flange (W24×182)	A992	57.4 (56.6) ^b	80.1 (76.9) ^b	22.3 (25.0) ^b
vv 4	Column Web (W24×182)	H77491	66.3	83.5	24.0
	Continuity Plate (3/4 in.)	A572 Gr. 50 S27292	(58.0) ^b	(81.0) ^b	(40.0) ^b
	Doubler Plate $(2 \times 5/8 \text{ in.})$	A572 Gr. 50 N20741	(62.0) ^b	(80.5) ^b	(21.0) ^b

Table 3.4 Base Metal Mechanical Properties (continued)

^a Yield stress determined by 0.2% strain offset method
^b Values in parentheses from Certified Mill Test Reports, others from testing at UCSD

Spec. No.	Member	С	Mn	Р	S	Si	Cu	Ni	Cr	Mo	V	CE (%)
	Beam (W36×150)	0.08	1.10	0.019	0.028	0.25	0.24	0.08	0.12	0.03	0.01	0.32
	Column (W14×257)	0.13	1.39	0.008	0.002	0.19	0.15	0.05	0.07	0.01	0.04	0.40
C4	Beam (W30×116)	0.17	1.03	0.021	0.010	0.13	0.23	0.10	0.15	0.02	0.028	0.40
C4	Column (W27×235)	0.08	1.31	0.013	0.022	0.20	0.27	0.13	0.19	0.05	0.04	0.38
	Beam (W36×150)	0.07	1.12	0.110	0.022	0.22	0.29	0.09	0.11	0.02	0.0	0.31
C5	Column (W14×211)	0.08	1.31	0.016	0.021	0.26	0.27	0.16	0.14	0.04	0.04	0.37
	Continuity Plate (3/8 in.)	0.14	1.08	0.011	0.004	0.22	0.01	0.05	0.02	0.00	0.016	0.33
	Beam (W30×116)	0.08	1.10	0.013	0.023	0.25	0.23	0.09	0.12	0.04	0.0	0.32
C6, C6-G	Column (W24×176)	0.08	1.36	0.018	0.022	0.21	0.25	0.12	0.14	0.05	0.05	0.37
	Continuity Plate (1/2 in.)	0.14	1.07	0.011	0.004	0.25	0.01	0.05	0.02	0.00	0.018	0.33
	Beam (W30×116)	0.07	1.23	0.014	0.025	0.23	0.30	0.10	0.10	0.031	0.035	0.33
C7	Column (W24×192)	0.26	1.03	0.013	0.011	0.22	0.20	0.09	0.09	0.017	0.03	0.40
	Doubler Plate (5/8 in.)	0.14	1.03	0.010	0.006	0.22	0.01	0.05	0.02	0.00	0.016	0.32

Table 3.5 Chemical Compositions for Components from Mill Certificates

Spec. No.	Member	С	Mn	Р	S	Si	Cu	Ni	Cr	Мо	v	CE (%)
	Beam (W36×150)	0.17	1.02	0.072	0.011	0.14	0.24	0.08	0.13	0.02	0.032	0.39
W1	Column (W27×258)	0.07	1.38	0.022	0.020	0.24	0.30	0.09	0.11	0.03	0.05	0.37
	Continuity Plate (1/2 in.)	0.17	1.06	0.015	0.007	0.22	0.01	0.04	0.03	0.00	0.018	0.36
	Doubler Plate $(2 \times 5/8 \text{ in.})$	0.14	1.10	0.017	0.006	0.23	0.01	0.05	0.02	0.00	0.048	0.38
W2	Beam (W33×141)	0.07	1.01	0.011	0.024	0.21	0.30	0.10	0.12	0.02	0.01	0.29
	Column (W27×217)	0.07	1.35	0.016	0.020	0.26	0.29	0.11	0.13	0.03	0.05	0.36
	Continuity Plate (3/4 in.)	0.14	1.34	0.012	0.003	0.31	0.010	0.010	0.020	0.00	0.07	0.39
	Doubler Plate $(2 \times 3/4 \text{ in.})$	0.14	1.34	0.012	0.003	0.31	0.010	0.010	0.020	0.00	0.07	0.39
	Beam (W30×116)	0.08	1.00	0.010	0.024	0.20	0.32	0.13	0.10	0.04	0.01	0.31
W3	Column (W24×207)	0.07	1.35	0.012	0.025	0.29	0.25	0.11	0.15	0.04	0.05	0.37
VV 5	Continuity Plate (1/2 in.)	0.17	1.06	0.015	0.007	0.22	0.01	0.04	0.03	0.00	0.018	0.36
	Doubler Plate $(2 \times 1/2 \text{ in.})$	0.17	1.06	0.015	0.007	0.22	0.01	0.04	0.03	0.00	0.018	0.36
	Beam (W24×94)	0.18	0.94	0.020	0.008	0.15	0.21	0.08	0.12	0.02	0.13	0.39
W/A	Column (W24×182)	0.15	1.10	0.012	0.006	0.19	0.22	0.07	0.09	0.02	0.12	0.38
** 4	Continuity Plate (3/4 in.)	0.14	1.34	0.012	0.003	0.31	0.010	0.010	0.020	0.00	0.07	0.39
M	Doubler Plate $(2 \times 5/8 \text{ in.})$	0.14	1.10	0.017	0.006	0.23	0.01	0.05	0.02	0.00	0.048	0.38

Table 3.5 Chemical Compositions for Components from Mill Certificates (continued)

 $CE = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$

Weld Electrode	Energy (ft-lbs)								
	at 0°F				at 70°F				
E71T-8	62 60		60	57	84	7	3	76	
(Lincoln Electric NR 232)		Avera	ge: 60		Average: 78				
E70T-6C	44	44	44	45	62	62	59	58	
(Lincoln Electric NR 305)		Avera	ge: 44		Average: 60				

Table 3.6 Weld Metal Charpy V-Notch Test Results

Figure 3.1 Exterior Moment Connection Test Setup (Phase 1)

(a) Lower End

(b) Upper End

Figure 3.3 Lateral Bracing at Loading End (Phase 1)

(b) Detail

(a) Overview

Figure 3.5 Top Flange Intermediate Lateral Restraint (Specimens C4, C6, C6-G, and C7)

Figure 3.6 Interior Moment Connection Test Setup (Phase 2)

Figure 3.7 Test Setup (Phase 2)

(a) Column Base Support Clevis (b) Top Column Support Figure 3.8 Column Supports (Phase 2)

Figure 3.9 Beam Lateral Restraint and Loading End (Phase 2)

(b) Weld Access Hole

(a) Overview (c) Run off Tab Figure 3.10 Beam Bottom Flange and Web CJP Weld Preparation (Specimen C5)

(a) Backing Bar (b) Groove Figure 3.11 Beam Top Flange CJP Weld Preparation (Specimen C5)

(a) Beam Bottom Flange

(b) Beam Top Flange

Figure 3.12 Beam Flange CJP Weld during Groove Welding (Specimen C5)

(a) Backgouging (b) Reinforcing Fillet Figure 3.13 Beam Bottom Flange Underside CJP Weld Treatment (Specimen C5)

(a) Reinforcing Fillet

(b) after Cleanup

Figure 3.14 Beam Top Flange Underside CJP Weld Treatment (Specimen C5)

(a) Completed Weld Figure 3.15

(b) after Cleanup

Figure 3.15 Beam Web Weld (Specimen C5)

Figure 3.16 Continuity Plate Fillet Welds (Specimen C5)

Figure 3.17 Exterior Moment Connection (Specimens C3 to C7) Transducer Layout

Figure 3.18 Interior Moment Connection (Specimens W1 to W4) Transducer Layout

Figure 3.19 Specimen C3: Instrumentation

VIEW B-B

Figure 3.20 Specimen C4: Instrumentation

Figure 3.21 Specimen C5: Instrumentation

Figure 3.22 Specimen C6: Instrumentation

Figure 3.23 Specimen C6-G: Instrumentation

Figure 3.24 Specimen C7: Instrumentation

Figure 3.25 Interior Frame (Specimen W1 to W4): Instrumentation

Figure 3.26 AISC Loading Protocol

4 TEST RESULTS

4.1 General

This section contains the observed and recorded response for the Phase 1 and 2 specimens. during the imposed AISC Loading protocol.

4.2 Specimen C3

4.2.1 General

Specimen C3 was designed to challenge the Lehigh Criterion. This was the only requirement of AISC 341 (2016) that would necessitate a continuity plate in this specimen; the flange force computed from AISC 358 (2016) for this connection does not exceed any column limit state of AISC 360 §J10 (2016). The specimen also closely matches Specimen C2 tested during the verification of the flexibility method, except that Specimen C2 used a 5/8-in. continuity plate. The panel zone of Specimen C3 has a high DCR of 0.94. Figure 4.1 shows the specimen before testing. The specimen failed by a complete fracture of the beam top flange CJP weld during the second cycle of 0.05 rad drift.

4.2.2 Observed Performance

The observed response for Specimen C3 is described below.

- Figure 4.2 shows the east side of the specimen at the peak excursions during the later cycles of the loading protocol. The specimen met the AISC acceptance criteria by completing one complete cycle at 0.04 rad drift while the flexural strength at the column face did not degrade below 80% of the beam nominal flexural strength. It was observed that beam web buckling initiated during the first cycle of 0.04 rad drift. Flange local bucking initiated at the beam bottom flange within the RBS cut during the second cycle of 0.04 rad drift. By 0.05 rad drift flange local bucking was observed in both flanges.
- Figure 4.3 shows ductile tearing of the beam top flange CJP weld that was first observed during the 2nd negative excursion of 0.03 rad drift. Minor growth of this fracture occurred during the 0.04 rad cycles occurred during testing.
- Figure 4.4 shows the progression of web buckling. It was observed that the buckling orientation was mirrored in the web between positive and negative excursions.

- Figure 4.5(a) shows an incomplete beam top flange CJP weld fracture, that occurred during the first negative excursion to 0.05 rad extending from the west side of the flange to 2.5 in. beyond the center of the flange. Complete fracture of the CJP weld occurred at -0.013 rad drift of the second cycle of 0.05 rad drift. This shear type fracture originates at a toe of the prominent weld pass against the column and propagates through the flange at a 35-degree angle through the base metal. At the flange tips the fracture takes on a cup and cone with interlocking shear lips through the weld and base metal of the beam. The asymmetry in the fracture pattern was likely due to beam lateral-torsional buckling.
- Figure 4.6 shows the connection after testing. The top flange CJP weld fractured at -0.013 rad of the second cycle of 0.05 rad drift. Tearing of the web through the erection bolts occurred during continued negative excursion. Figure 4.7 shows the beam lateral-torsional buckling at the end of testing. The buckling was most pronounced in the unbraced bottom flange of the beam.
- Figure 4.8 shows the beam top flange CJP weld fracture after testing. The lateraltorsional buckling has produced a latent twist to the beam. A ductile shear fracture through the weld metal was observed at the center of the flange. A small fracture exists perpendicular to the beam at the termination of this fracture at the center of the flange. The ends of the beam flange fractured as a typical tension fracture with interlocking shear lips.

4.2.3 Recorded Response

4.2.3.1 Global Response

• Figure 4.9 shows the recorded displacement response of the beam tip measured with transducer L1. A hairline crack at the centerline of the beam top flange CJP weld was observed at the first negative excursion of 0.03 rad drift. The beam top flange CJP weld experienced an incomplete fracture at -0.029 rad of the first negative excursion of 0.05 rad drift. The beam top flange continued to tear in a ductile manner until the peak excursion was reached. At -0.015 rad drift during the second negative excursion of 0.05 rad drift the remaining portion of the beam top flange CJP weld fractured.

Continued excursion saw tearing of the web which originated at the radius of the weld access hole and propagated through the first two bolt holes in the shear tab.

- Figure 4.10 shows the load-displacement response of the beam.
- Figure 4.11 shows the computed moment at the column face (M_f) versus the story drift angle. Two horizontal axes at 80% of the nominal plastic moment (M_{pn}) of the beam section are also added. In addition, two vertical axes at ±0.04 rad story drift show the drift required for SMF connections per AISC 341. It was observed that the beam developed its nominal plastic bending moment. If the moment is computed at the plastic hinge location and compared to the expected plastic moment, then the peak connection strength factor (C_{pr}) is 1.13.
- Figure 4.12 shows the plastic response of the specimen. The plastic response is computed using the procedure outlined in Section 3.7. The computed elastic stiffness of the specimen was determined to be 57.9 kips/in.
- Figure 4.13 shows the panel zone deformation determined from transducers L3 and L4. It was observed that modest panel zone yielding occurred.
- Figure 4.14 shows the column rotation determined from transducers L5 and L6 after removing the rigid-body motion due to panel zone deformation. It was observed that negligible hysteretic behavior occurred.
- Figure 4.15 shows the dissipated energy of Specimen C3. The dissipated energy is obtained by integrating the load-displacement response of each constituent deformation. Dotted vertical lines on the graph demonstrate the completion of each group of cycles, and the dashed red vertical line shows the completion of the first cycle of 0.04 rad in the AISC loading. An additional vertical axis normalizes the hysteretic energy by the nominal plastic moment of the beam to determine the cumulative plastic rotation. It is observed that the completion of the first drift cycle of 0.04 rad (the requirement for SMF connections per AISC 341) occurs after 530 kip-ft of energy has been dissipated. The connection does not degrade below $0.8M_{pn}$ until 975 kip-ft of energy has been dissipated. Therefore, only 54% of the energy dissipation capacity was utilized after the completion of the 0.04 rad drift requirement. It is observed that most (71%) of the energy dissipation capacity occurred in the beam.

4.2.3.2 Local Response

- Figure 3.19 and Figure 4.17 show the strain gauge response from the extreme fiber of the beam top and beam bottom flange during the testing. At 0.03 rad drift the strain pattern is nearly uniform, while higher drifts show moderate weak axis flexure due to the lateral-torsional buckling of the beam. The top flange results are influenced by the weld tearing which initiates from the center of the top flange. As the weld tears, the tension force concentrates near the peripheral edges of the flange where the weld is still intact. As a result, the gauge at the center of the top flange remains in compression during the peak tension excursion to 0.05 rad drift.
- Figure 4.18 shows the strain gauge response of the column flange which affixes the beam. It is observed that the column flange did not yield, but significant deviation from a 1:1 response demonstrates the torsional demand imposed on the column due to the lateral-torsional buckling of the beam.
- Figure 4.19 shows the shear strain response of the panel zone. The center of the panel demonstrates the most strain with a minor decrease in shear strain magnitude at an intermediate gauge. The outermost gauge, placed in line with the beam flange, shows a significant reduction in shear strain. Significant panel zone yielding was expected with a DCR of 0.94 using the post-yielding panel zone strength permitted in AISC 341.
- Figure 4.20 shows the transverse flexural strain of the column flange. Peak strains on the order of $4\epsilon_y$ demonstrate significant flange yielding behind the beam flange. The strain is significantly higher during positive excursions when the top flange is in compression due to the weak axis bending of the beam.

(a) West Side

(b) East Side Figure 4.1 Specimen C3: Specimen before Testing

(a) Overview

(b) Tearing at -0.03 rad (2nd Cycle)

(c) -0.04 rad (1st Cycle)

- (d) -0.04 rad (2nd Cycle)
- Figure 4.3 Specimen C3: Beam Top Flange Weld Tearing

(c) +0.05 rad (1st Cycle)

(d) -0.05 rad (1st Cycle)

(b) -0.013 rad (during 2nd Cycle at

(a) -0.05 rad (1st Cycle) 0.05 rad Drift) Figure 4.5 Specimen C3: Beam Top Flange Fracture

(a) East Side

(b) West Side Figure 4.6 Specimen C3: Connection at End of Test

Figure 4.7 Specimen C3: Beam Lateral-Torsional Buckling (End of Test)

(a) Overview

(b) Fracture Surface

Figure 4.8 Specimen C3: Beam Top Flange CJP Weld Fracture (End of Test)

Figure 4.9 Specimen C3: Recorded Loading Sequence

Figure 4.10 Specimen C3: Applied Load versus Beam End Displacement Response

Figure 4.11 Specimen C3: Moment at Column Face versus Story Drift Response

Figure 4.12 Specimen C3: Moment at Column Face versus Plastic Rotation

Figure 4.13 Specimen C3: Panel Zone Shear Deformation

Figure 4.14 Specimen C3: Column Rotation

Figure 4.15 Specimen C3: Energy Dissipation

(a) Section

(c) Negative Drift

Figure 4.16 Specimen C3: Topside of Beam Top Flange Strain Profile

(a) Section

(c) Negative Drift

Figure 4.17 Specimen C3: Underside of Beam Bottom Flange Strain Profile

(a) Gauge Layout

(b) Response

Figure 4.18 Specimen C3: Column Flange Warping

Figure 4.19 Specimen C3: Panel Zone Response

(c) Strain Rosette Gauge R02

(d) Strain Rosette Gauge R03

Figure 4.19 Specimen C3: Panel Zone Response (continued)

Figure 4.20 Specimen C3: Column Flange Strain Profile

4.3 Specimen C4

4.3.1 General

Specimen C4 was similar to Specimen C3 as it was designed to challenge the Lehigh Criterion. This was the only requirement of AISC 341 (2016) that would necessitate a continuity plate in this specimen; the flange force computed from AISC 358 (2016) for this connection does not exceed any column limit state of AISC 360 §J10 (2016). In contrast to Specimen C3, Specimen C4 uses a deep column to reflect a modern practice in SMFs to control drift. Figure 4.21 shows the specimen before testing. The specimen ultimately failed by low-cycle fatigue of the beam bottom flange in the plastic hinge location during the second cycle of 0.06 rad drift.

4.3.2 Observed Performance

The observed response for Specimen C4 is described below.

- Figure 4.22 shows the east side of the specimen at the peak excursions during the later cycles of the loading protocol. The specimen met the AISC acceptance criteria by completing one complete cycle at 0.04 rad drift while the flexural strength at the column face did not degrade below 80% of the beam nominal flexural strength. Local buckling of the web and flange initiated during the second cycle of 0.03 rad drift. This progressed to result in modest flange local buckling during the 0.04 rad and 0.05 rad drift cycles.
- Beam bottom flange yielding started during the 0.01 rad cycles within the reduced beam section and near the column flange. Figure 4.23 shows the progression of the yielding which concentrates in the reduced beam section. Figure 4.23(c) shows lateral-torsional buckling initiating at the thinnest portion of the reduced beam section. This lateral-torsional buckling was first observed during the 2nd cycle of 0.03 rad drift. Lateral-torsional buckling did not progress significantly beyond this level due to the top and bottom flange lateral restraint just beyond the reduced beam section.
- Beam web yielding was observed inboard of the k-area during the 0.02 rad drift cycles (see Figure 4.24). This was accompanied with observed yielding on the underside of the beam top flange.

- Significant beam top flange yielding was observed during the 0.04 rad drift cycles. Some minor distress was observed at the toe of an unintentional cover weld (see Figure 4.25). This distress did not progress further.
- During the first negative excursion of 0.04 rad drift significant beam flange local bucking was observed (see Figure 4.26). This was accompanied with modest web yielding propagating into the web from the k-area. This yielding occurred at the high double curvature portion of a uniform out-of-plane web buckling (see Figure 4.27).
- During the unloading portion at -0.047 rad after the 1st negative excursion to 0.06 rad the beam bottom flange partially fractured due to load cycle fatigue (see Figure 4.28). This fracture occurred at the apogee of the local buckling as the tension in the flange started to pull the curvature out. It is predicted that the fracture started at the underside of the flange at the most extreme curvature and propagated through. Upon resuming load, the remainder of the beam bottom flange immediately fractured (Figure 4.30). This fracture occurred near the smallest section of the reduced beam. Minor panel zone yielding was observed at the end of test [see Figure 4.30(a)].
- Figure 4.29 shows ductile tearing of the beam top flange similar to the condition of the beam bottom flange prior to fracture. It was observed that significant tearing occurs in the 'compression' side of the local buckling during load reversals.
- The complete bottom flange tear was accompanied with a 4-in. propagation into the web (see Figure 4.31). Most of the fracture surface consists of cleavage fracture with shear fracture surfaces at the peripheral edges of the flange.
- Column flange yielding behind the beam flanges, similar to a flange local bending phenomenon, was observed during the 0.05 rad cycles. Figure 4.32 shows the yielding of the column flanges at the end of the test.

4.3.3 Recorded Response

4.3.3.1 Global Response

• Figure 4.33 shows the recorded displacement response of the beam tip measured with transducer L1. A partial beam bottom flange fracture occurred during the unloading portion of the first cycle of 0.06 rad drift. Immediately after resuming loading the remainder of the beam bottom flange fractured.

- Figure 4.34 shows the load-displacement response of the beam.
- Figure 4.35 shows the computed moment at the column face (M_f) versus the story drift angle. Two horizontal axes at 80% of the nominal plastic moment (M_{pn}) of the beam section are also added. In addition, two vertical axes at ±0.04 rad story drift show the drift required for SMF connections per AISC 341. It is observed that the beam developed 1.2 times its nominal plastic bending moment. If the moment is computed at the plastic hinge location and compared to the expected plastic moment, then the peak connection strength factor (C_{pr}) is 1.23.
- Figure 4.36 shows the plastic response of the specimen. The plastic response is computed using the procedure outlined in Section 3.7. The computed elastic stiffness of the specimen was determined to be 50.6 kips/in.
- Figure 4.37 shows the panel zone deformation determined from transducers L3 and L4. It is observed that negligible panel zone yielding occurred.
- Figure 4.38 shows the column rotation determined from transducers L5 and L6 after removing the rigid-body motion due to panel zone deformation. It is observed that negligible hysteretic behavior occurred.
- Figure 4.39 shows the dissipated energy of Specimen C3. Dotted vertical lines on the graph demonstrate the completion of each group of cycles, and the dashed red vertical line shows the completion of the first cycle of 0.04 rad in the AISC loading. An additional vertical axis normalizes the hysteretic energy by the nominal plastic moment of the beam to determine the cumulative plastic rotation. It is observed that the completion of the first drift cycle of 0.04 rad (the requirement for SMF connections per AISC 341) occurs after 517 kip-ft of energy has been dissipated. The connection does not degrade below $0.8M_{pn}$ until after completing the first positive excursion to 0.06 rad drift dissipating 1,239 kip-ft of energy. Therefore, only 42% of the energy dissipation capacity was utilized after the completion of the 0.04 rad drift requirement. It is observed that all of the energy dissipation capacity occurred in the beam.

4.3.3.2 Local Response

- Figure 4.40 and Figure 4.41 show the strain gauge response from the extreme fiber of the beam top and beam bottom flange during the testing. The compression excursions of each flange demonstrate weak axis flexure consistent with the observed deformation.
- Figure 4.42 shows the strain gauge response of the column flange which affixes the beam. It is observed that the column flange did not yield, but significant deviation from a 1:1 response demonstrates the torsional demand imposed on the column due to the lateral-torsional buckling of the beam.
- Figure 4.43 shows the shear strain response of the panel zone. The center of the panel zone achieved yielding levels of shear strain, γ_y, however, hysteretic behavior was not observed. Yielding of the panel zone was not anticipated given the low DCR (0.63) of the panel zone.
- The column web response directly behind the beam flange is shown in Figure 4.44. The observed behavior was close to the expected with yielding level strains extending over a distance of 5k as per the WLY limit state. During positive drifts, when the top flange is in compression, the strain distribution is more uniform with strains exceeding ϵ_y by 0.04 rad drift. During negative drifts, when the top flange is in tension, a significantly steeper gradient in the strain response is observed. The peak strain response in either direction is similar. The discrepancy is partially attributed to a complex residual stress pattern in the in the web resulting in a predilection to yielding in compression.
- Figure 4.45 shows the transverse flexural strain of the column flange. Peak strains on the order of $3\epsilon_y$ demonstrate significant yielding of the column flange behind the beam; the DCR of the flange local bending limit state was designed as 0.77.

(a) West Side

(b) East Side Figure 4.21 Specimen C4: Specimen before Testing

(b) -0.03 rad (2nd Cycle)

(d) -0.04 rad (2nd Cycle)

North

(c) +0.04 rad (2nd Cycle)

(a) -0.015 rad (2nd Cycle)

(b) -0.02 rad (2nd Cycle)

(c) -0.04 rad (2nd Cycle)

Figure 4.23 Specimen C4: Beam Bottom Flange Yielding and Buckling

Figure 4.24 Specimen C4: Beam Web Yielding at +0.02 rad (2nd Cycle)

(a) Overview

Figure 4.25 Specimen C4: Beam Top Flange at -0.04 rad (1st Cycle)

Figure 4.26 Specimen C4: Beam Flange and Web Yielding at -0.04 rad (1st Cycle)

Figure 4.27 Specimen C4: Beam Web Buckling at -0.04 rad (1st Cycle)

Figure 4.28 Specimen C4: Beam Bottom Flange Fracture after one cycle at 0.06 rad

(b) Ductile Tearing Figure 4.29 Specimen C4: Beam Top Flange at -0.06 rad (2nd Cycle)

(a) West Side

(b) East Side Figure 4.30 Specimen C4: Connection at End of Test

(a) Overview

(b) Fracture Surface Figure 4.31 Specimen C4: Beam Bottom Flange Fracture (End of Test)

(a) Overview(b) Flange Local BendingFigure 4.32 Specimen C4: Column Flange (End of Test)

Figure 4.33 Specimen C4: Recorded Loading Sequence

Figure 4.34 Specimen C4: Applied Load versus Beam End Displacement Response

Figure 4.35 Specimen C4: Moment at Column Face versus Story Drift Response

Figure 4.36 Specimen C4: Moment at Column Face versus Plastic Rotation

Figure 4.37 Specimen C4: Panel Zone Shear Deformation

Figure 4.38 Specimen C4: Column Rotation

Figure 4.39 Specimen C4: Energy Dissipation

(c) Negative Drifts

Figure 4.40 Specimen C4: Topside of Beam Top Flange Strain Profile

Figure 4.41 Specimen C4: Underside of Beam Bottom Flange Strain Profile

(a) Gauge Layout

(b) Response

Figure 4.42 Specimen C4: Column Flange Warping

(b) Strain Rosette Gauge R01

Figure 4.43 Specimen C4: Column Panel Zone Response

(c) Negative Drift

Figure 4.44 Specimen C4: Column Web Strain Profiles

Figure 4.45 Specimen C4: Column Flange Strain Profiles

4.4 Specimen C5

4.4.1 General

Specimen C5 was designed to investigate the validity of using the plastic distribution to estimate the required strength of the continuity plate. The continuity plates were designed to satisfy the governing AISC 360 §J10 concentrated force column limit state; WLY, was the governing limit state exceed by the flange force. The panel zone strength of Specimen C5 was intentionally designed weak with a *DCR* of 1.18. The continuity plate was welded to the column flange and web using a fillet weld of size $w = 0.8t_{cp}$, which was the closest standard fillet weld size to $w = 0.75t_{cp}$. The specimen failed by fracture of the beam top flange CJP weld after completing two cycles of 0.05 rad drift. Figure 4.46 shows the connection before testing.

4.4.2 Observed Performance

The observed response for Specimen C5 is described below.

- Figure 4.47 shows the east side of the specimens at the peak excursions during the later cycles of the loading protocol. The specimen met the AISC acceptance criteria. It was observed that beam web buckling initiated during the first cycle of 0.04 rad drift. Flange local bucking initiated at the beam bottom flange within the RBS cut during the second cycle of 0.04 rad drift. By 0.05 rad drift flange local bucking was observed in both flanges.
- Figure 4.48 shows ductile tearing of the beam top flange CJP weld that was first observed during the 2nd negative excursion of 0.03 rad drift. Minor growth of this fracture occurred during the 0.04 rad cycles during testing.
- Figure 4.49 shows gradual progression of tearing of the beam top flange CJP weld. Figure 4.49(e) shows the complete beam top flange fracture. This shear type fracture originated at a toe of the prominent weld pass against the column and propagated through the flange at a 35-degree angle through the base metal. At the flange tips the fracture took on a cup and cone with interlocking shear lips through the base metal of the beam.
- Significant column kinking was observed during the testing of the specimen (see Figure 4.50).

- Minor web buckling was evident at the end of testing [see Figure 4.51(a)]. Continued negative excursion after fracturing the beam top flange produced a fracture of the beam web [see Figure 4.51(b)]. This fracture originated in the weld access hole and propagated down though the erection bolt holes. Local necking was observed near this fracture.
- Figure 4.52 shows the slight beam lateral-torsional buckling at the end of testing.
- At the end of testing no damage was observed in any of the fillet welds fastening the continuity plates to the column. Figure 4.53 shows the continuity plates after testing. The east bottom flange and west top flange continuity plate experienced local plate buckling. The east bottom flange continuity plate started developed local buckling during the first negative excursion of 0.04 rad drift. At the time of failure, the specimen was experiencing a negative excursion which pulled the west top flange continuity plate straight with minor residual deformation. The east bottom flange shows the full extent of the buckling as this plate was in compression at the point of failure. Despite the significant plate buckling and column flange kinking, the continuity plate to column flange welds have remained intact [see Figure 4.53(b)].

4.4.3 Recorded Response

4.4.3.1 Global Response

• Figure 4.54 shows the recorded displacement response of the beam tip measured with transducer L1. A hairline crack at the centerline of the beam top flange CJP weld was observed at the second negative excursion of 0.03 rad drift. A tear through the center of the beam top flange CJP weld was observed at the peak excursion of 0.05 rad drift. At -0.035 rad drift during the second negative excursion of 0.05 rad drift, the remaining portion of the beam top flange CJP weld fractured. Continued excursion saw tearing of the web which originated at the radius of the weld access hole and propagated through the first bolt hole in the shear tab. Unanticipated bolt slip had occurred at the loading corbel during testing of the latter cycles. This slip resulted in a slight undershoot of the target displacements. For example, the computed drift during the targeted 0.04 rad story drift cycles was determined to be 0.0391 rad. It is not believed that this minor discrepancy affects the conclusions of this specimen.

- Figure 4.55 shows the load-displacement response of the beam.
- Figure 4.56 shows the computed moment at the column face (M_f) versus the story drift angle. Two horizontal axes at 80% of the nominal plastic moment (M_{pn}) of the beam section are also added. In addition, two vertical axes at ±0.04 rad story drift show the drift required for SMF connections per AISC 341. It is observed that the beam developed its nominal plastic bending moment. If the moment is computed at the plastic hinge location and compared to the expected plastic moment, then the peak connection strength factor (C_{pr}) is 1.16.
- Figure 4.57 shows the plastic response of the specimen. The plastic response is computed using the procedure outlined in Section 3.7. The computed elastic stiffness of the specimen was determined to be 56.3 kips/in.
- Figure 4.58 shows extensive inelastic behavior of the panel zone. It is possible that the deformation of the column flanges has erroneously influenced the computation of the panel zone shear given the significant deformation observed of the continuity plates.
- Figure 4.59 shows that minor hysteretic behavior was observed in the column rotation.
- Figure 4.60 shows the dissipated energy of Specimen C5. Dotted vertical lines on the graph demonstrate the completion of each group of cycles, and the dashed red vertical line shows the completion of the first cycle of 0.04 rad in the AISC loading. It is observed that the completion of the first drift cycle of 0.04 rad (the requirement for SMF connections per AISC 341) occurs after 538 kip-ft of energy has been dissipated. The connection did not degrade below $0.8M_{pn}$ until 1,165 kip-ft of energy had been dissipated. Therefore only 46% of the energy dissipation capacity was utilized after the completion of SMF requirement. It is observed that most (65%) of the energy dissipation capacity occurred in the panel zone.

4.4.3.2 Local Response

• Figure 4.61 and Figure 4.62 show the strain gauge response from the extreme fiber of the beam top and beam bottom flange during the testing. The top flange results are influenced by the beam flange CJP weld tear. It is observed that during the 0.04 rad

drift cycles the gauge in the center of the flange experienced very little tension correlating with the spread of the beam top flange CJP weld tear. During compression excursions the weld tear closes, and the flange can develop compressive yield forces. Subsequent tension excursions result in residual compressive stresses in this location; the weld tear results in a ratcheting of the strain response. During the first cycle of 0.05 rad drift significant weld tearing resulted in a transfer of load to the peripherical edges of the flange. A lateral-torsional response of the beam influences these peripheral gauges. These large cyclic strains on the west edge of the beam top flange result in a ductile shear fracture before the east edge of the flange.

- Figure 4.63 shows the strain gauge response of the column flange which affixes the beam. It is observed that the column flange did not yield, but deviation from a 1:1 response demonstrates the torsional demand imposed on the column due to the lateral-torsional buckling of the beam.
- Figure 4.64 shows the shear strain response of the panel zone. The panel zone saw significant hysteretic behavior with strains on the order of $12\gamma_y$. Significant yielding of the panel zone was anticipated due to the high as-designed DCR of 1.18.
- Significant continuity plate axial yielding was observed at the edge attaching the plate to the column flange (see Figure 4.65). The strains are most significant at the outboard edge of the plate with an amplitude of $12\epsilon_y$. Significant shear response, as predicted from equilibrium, is observed in the plate (see Figure 4.66). Before instability of the continuity plate cyclic principal strains of ϵ_y were observed in the plate [see Figure 4.67(b)]. After instability cyclic strains on the order of $20\epsilon_y$ was observed [see Figure 4.67(c)].
- The shear response of the continuity plate attachment to the web of the plate demonstrates localized shear strains of γ_y at the corner adjacent to the loaded edge of the plate. This peak only occurs when the continuity plate is in compression, which is attributed to a loss of stiffness of the outboard edge of the plate concentrating the shear to the nearest edge of the plate (see Figure 4.68).
- Figure 4.69 shows the response of the outboard edge of the continuity plate. Gauges placed on the topside and underside of the plate provide an indication of the nature

of loading. If the response follows the 1:1 line, shown as a red dashed line, then the plate is responding axially. Deviation from this line indicates flexure of the continuity plate. Significant deviation from this line correlates with the observed buckling of the continuity plate.

(a) West Side

(b) East Side

Figure 4.46 Specimen C5: Specimen before Testing

(a) -0.03 rad (1st Cycle)

(b) -0.03 rad (2nd Cycle)

(c) -0.04 rad (1st Cycle)

(d) -0.04 rad (2nd Cycle)

(e) -0.05 rad (1st Cycle) (f) -0.05 rad (2nd Cycle) Figure 4.48 Specimen C5: Beam Top Flange

(a) Overview

(c) -0.04 rad (2nd Cycle)

(d) -0.05 rad (1st Cycle)

(e) Fracture (End of Test)

Figure 4.49 Specimen C5: Beam Top Flange CJP Weld Fracture Progression

(a) +0.05 rad (2nd Cycle)(b) -0.05 rad (2nd Cycle)Figure 4.50 Specimen C5: Column Kinking due to Panel Zone Deformation

(a) Beam Web Buckling

(b) Web Fracture

Figure 4.51 Specimen C5: Beam Web Buckling (End of Test)

Figure 4.52 Specimen C5: Beam Lateral-Torsional Buckling (End of Test)

(a) East Bottom Flange Continuity Plate

(b) Enlarged View of Weld

(c) West Bottom Flange Continuity Plate

(d) West Top Flange Continuity Plate Figure 4.53 Specimen C5: Continuity Plate (End of Test)

Figure 4.54 Specimen C5: Recorded Loading Sequence

Figure 4.55 Specimen C5: Applied Load versus Beam End Displacement Response

Figure 4.56 Specimen C5: Moment at Column Face versus Story Drift Response

Figure 4.57 Specimen C5: Moment at Column Face versus Plastic Rotation

Figure 4.58 Specimen C5: Panel Zone Shear Deformation

Figure 4.59 Specimen C5: Column Rotation

Figure 4.60 Specimen C5: Energy Dissipation

(a) Section

(c) Negative Drift

Figure 4.61 Specimen C5: Topside of Beam Top Flange Strain Profile

(a) Section

Figure 4.62 Specimen C5: Underside of Beam Bottom Flange Strain Profile

(a) Gauge Layout

(b) Response

Figure 4.63 Specimen C5: Column Flange Warping

(a) Gauge Layout

(b) Strain Rosette Gauge R01

Figure 4.64 Specimen C5: Panel Zone Response

(a) Section

(c) Negative Drift

Figure 4.65 Specimen C5: Continuity Plate at Column Flange Edge Strain Profile

(a) Section

(c) Negative Drift

Figure 4.66 Specimen C5: Continuity Plate at Column Flange Edge Shear Strain Profile

(b) Principal Strains to First Positive Excursion of 0.04 rad drift

(c) Principal Strains throughout Testing

Figure 4.68 Specimen C5: Continuity Plate at Column Web Edge Shear Strain Profile

(b) Response

Figure 4.69 Specimen C5: Bottom Continuity Plate Bending

4.5 Specimen C6

4.5.1 General

Specimen C6 was designed to investigate the validity of using the plastic distribution to estimate the required strength of the continuity plate. The continuity plates were designed to satisfy the governing AISC 360 §J10 concentrated force column limit state; both the FLB and WLY limit dictate the need of a continuity plate in this specimen. The continuity plate was welded to the column flange and web using a fillet weld of size w = $1.0t_{cp}$, which was oversized on purpose to ensure survivability of the fillet weld for this specimen and Specimen C6-G, which was essentially an identical twin of this specimen. The specimen eventually failed by fracture of the beam top flange CJP weld during the first negative excursion to 0.05 rad drift during the first excursion to 0.05 rad. Figure 4.70 shows the connection before testing.

4.5.2 Observed Performance

The observed response for Specimen C6 is described below.

- Figure 4.71 shows the east side of the specimen at the peak excursions during the later cycles of the loading protocol. The specimen met the AISC acceptance criteria. It was observed that beam web buckling and beam flange local buckling both initiated during the first cycle of 0.04 rad drift. Flange local bucking initiated at the beam bottom flange within the RBS cut during the second cycle of 0.04 rad drift. At 0.05 rad drift modest beam flange and beam web local buckling was observed.
- Figure 4.72 shows the progressive tearing of the beam top flange CJP weld. At the first negative excursion to 0.03 rad drift a minor crack was observed at the toe of prominent weld pass on the outward surface of the CJP weld. This crack progressed until -0.037 rad of the first negative excursion of 0.05 rad drift when a sudden fracture of the flange propagated severing the east side of the beam flange connection. Continued excursion to -0.05 rad tore the remainder of the beam flange CJP weld.
- The gradual progression of the weld tearing is shown in Figure 4.73. The final fracture surface was observed to primarily be a shear fracture [see Figure 4.73(e)]. This picture also shows minor column flange yielding which only occurred at the center of the beam top flange location.
- Beam bottom flange yielding started during the 0.01 rad cycles within the reduced beam section and near the column flange (see Figure 4.74). This yielding progresses through testing. Minor lateral-torsional buckling was observed during testing.
- Figure 4.75 shows panel zone yielding on the west side of the specimen. This yielding commenced during the 0.015 rad drift cycles and progressed through testing. Figure 4.76 shows the beam flange and beam web local buckling.
- Figure 4.77 shows the connection after testing. Significant flange local buckling occurred during the first cycle of 0.05 rad drift.
- Figure 4.78 shows the continuity plates and their fillet welds after testing. No damage to the fillet welds was observed. Additionally, yielding of the continuity plates was not observed.

4.5.3 Recorded Response

4.5.3.1 Global Response

- Figure 4.79 shows the recorded displacement response of the beam tip measured with transducer L1. A hairline crack at the centerline of the beam top flange CJP weld was observed at the first negative excursion of 0.03 rad drift. This gradually tore throughout testing until, during the first negative excursion of 0.05 rad drift, the beam top flange partially ruptured at -0.037 rad drift. Continued excursion to -0.05 rad tore the remainder of the flange.
- Figure 4.80 shows the load-displacement response of the beam.
- Figure 4.81 shows the computed moment at the column face (M_f) versus the story drift angle. Two horizontal axes at 80% of the nominal plastic moment (M_{pn}) of the beam section are also added. In addition, two vertical axes at ±0.04 rad story drift show the drift required for SMF connections per AISC 341. It is observed that the beam developed 1.1 times its nominal plastic bending moment. If the moment is computed at the plastic hinge location and compared to the expected plastic moment, then the peak connection strength factor (C_{pr}) is 1.21.
- Figure 4.82 shows the plastic response of the specimen. The plastic response is computed using the procedure outlined in Section 3.7. The computed elastic stiffness of the specimen was determined to be 46.9 kips/in.

- Figure 4.83 shows modest inelastic behavior of the panel zone.
- Figure 4.84 shows that minimal hysteretic behavior was observed in the column rotation.
- Figure 4.85 shows the dissipated energy of Specimen C6. Dotted vertical lines on the graph demonstrate the completion of each group of cycles, and the dashed red vertical line shows the completion of the first cycle of 0.04 rad in the AISC loading. It is observed that the completion of the first drift cycle of 0.04 rad (the requirement for SMF connections per AISC 341) occurs after 489 kip-ft of energy has been dissipated. The connection did not degrade below $0.8M_{pn}$ until 834 kip-ft of energy had been dissipated. Therefore only 58% of the energy dissipation capacity was utilized after the completion of SMF requirement. It is observed that most (78%) of the energy dissipation capacity occurred in the beam.

4.5.3.2 Local Response

- Figure 4.86 and Figure 4.87 show the strain gauge response from the extreme fiber of the beam top and beam bottom flange during the testing. Weak axis flexural response of the beam is observed across the flange consistent with the observed lateral-torsional buckling of the beam. The top flange results are influenced by the weld tearing which initiates from the center of the top flange. As the weld tears, the tension force transmits to the peripheral edges of the flange, and the gauge at the center of the top flange remains in compression.
- Figure 4.88 shows the strain gauge response of the column flange which affixes the beam. It is observed that the column flange did not yield, but deviation from a 1:1 response demonstrates the torsional demand imposed on the column due to the lateral-torsional buckling of the beam.
- Figure 4.89 shows the shear strain response of the panel zone. The panel zone saw significant hysteretic behavior with strains on the order of $6\gamma_y$. Yielding of the panel zone was expected; using the post-elastic panel zone strength results in a DCR of 0.88.
- Modest continuity plate axial yielding $(2\epsilon_y)$ was observed at the edge attaching the plate to the column flange (see Figure 4.90). Shear response, as predicted from

equilibrium, is observed in the plate (see Figure 4.91). The principal strain response at the outboard edge of the continuity plate shows cyclic strains limited to $2\epsilon_y$.

- The shear response of the continuity plate attachment to the web of the column shows nearly a uniform response (see Figure 4.93).
- Figure 4.94 shows the response of the outboard edge of the continuity plate. The response conforming to the 1:1 line (shown in red) demonstrates that the continuity plate was loaded axially and did not experience any out of plane flexure.

(a) West Side

(b) East Side

Figure 4.70 Specimen C6: Specimen before Testing

(b) -0.03 rad (2nd Cycle)

(a) +0.03 rad (2nd Cycle)

(d) -0.04 rad (2nd Cycle)

(c) +0.04 rad (2nd Cycle)

(e) +0.05 rad (1st Cycle) (f) -0.05 rad (1st Cycle) Figure 4.71 Specimen C6: East Side of Connection

(a) -0.03 rad (1st Cycle)

1

(b) -0.03 rad (2nd Cycle)

(c) -0.04 rad (1st Cycle)

(e) -0.037 rad (1st Cycle of 0.05 rad) (f) -0.05 rad (1st Cycle) Figure 4.72 Specimen C6: Beam Top Flange

(c) -0.04 rad (1st Cycle)

(d) -0.04 rad (2nd Cycle)

(e) Fracture (End of Test)

Figure 4.73 Specimen C6: Beam Top Flange CJP Weld Fracture Progression

(a) -0.01 rad (4th Cycle)

(b) -0.02 rad (2nd Cycle)

(c) +0.04 rad (2nd Cycle) Figure 4.74 Specimen C6: Beam Bottom Flange Yielding

(a) +0.02 rad (2nd Cycle) (a) +0.03 rad (2nd Cycle) Figure 4.75 Specimen C6: Panel Zone Yielding

Figure 4.76 Specimen C6: Beam Web and Flange Local Buckling at +0.04 rad (2nd Cycle)

(a) West Side

(b) East Side

Figure 4.77 Specimen C6: Connection at End of Test

(a) West Bottom Flange Continuity Plate

(b) East Top Flange Continuity Plate

(c) West Top Flange Continuity Plate

Figure 4.78 Specimen C6: Continuity Plate (End of Test)

Figure 4.79 Specimen C6: Recorded Loading Sequence

Figure 4.80 Specimen C6: Applied Load versus Beam End Displacement Response

Figure 4.81 Specimen C6: Moment at Column Face versus Story Drift Response

Figure 4.82 Specimen C6: Moment at Column Face versus Plastic Rotation

Figure 4.83 Specimen C6: Panel Zone Shear Deformation

Figure 4.84 Specimen C6: Column Rotation

Figure 4.85 Specimen C6: Energy Dissipation

Figure 4.86 Specimen C6: Topside of Beam Top Flange Strain Profile

(c) Negative Drift

Figure 4.87 Specimen C6: Underside of Beam Bottom Flange Strain Profile

(a) Gauge Layout

(b) Response

Figure 4.88 Specimen C6: Column Flange Warping

Figure 4.89 Specimen C6: Panel Zone Response

(a) Section

(b) Positive Drift

(c) Negative Drift

Figure 4.90 Specimen C6: Continuity Plate at Column Flange Edge Strain Profile

(a) Section

(b) Positive Drift

(c) Negative Drift

Figure 4.91 Specimen C6: Continuity Plate at Column Flange Edge Shear Strain Profile

180

(a) Layout

Figure 4.92 Specimen C6: Continuity Plate Strain Gauge Rosette R09 Response

(a) Section

(b) Positive Drift

Figure 4.93 Specimen C6: Continuity Plate at Column Web Edge Shear Strain Profile

Figure 4.94 Specimen C6: Bottom Continuity Plate Bending

4.6 Specimen C6-G

4.6.1 General

Specimen C6-G was nominally identical to Specimen C6 except that the specimen was hot-dip galvanized prior to welding such that the effects of galvanization can be investigated. Figure 4.95 shows the specimen before testing. The specimen suffered a complete beam top flange fracture during the negative excursion of the first 0.05 rad drift.

4.6.2 Observed Performance

The observed response for Specimen C6-G is described below.

- Figure 4.96 shows the east side of the specimen at the peak excursions during the later cycles of the loading protocol. The specimen met the AISC acceptance criteria. It was observed that beam web buckling initiated during the first cycle of 0.04 rad drift. Flange local bucking initiated at the beam bottom flange within the RBS cut during the first cycle of 0.04 rad drift.
- Figure 4.97 shows cracking in the galvanization coating that first occurred at the RBS location during the second cycle of 0.02 rad drift. Once the cracked coating was brushed the bare pickled steel was left before the surface.
- A hairline crack was observed at the beam top flange CJP weld at the negative excursion of 0.03 rad drift (see Figure 4.98). This crack did not progress significantly during testing [see Figure 4.98(c)].
- Figure 4.99 shows the initiation of flange local buckling during the first negative excursion of 0.04 rad drift. Also demonstrated in this figure was flaking of the galvanization in the beam web in the regions of higher curvature due to beam web buckling. The shedding of the galvanization in sheets during yielding was observed in Figure 4.99(b).
- Beam web buckling was first observed during the 0.04 rad cycles. During the second cycle at -0.05 rad drift web buckling was pronounced and interacting with beam lateral-torsional buckling to create a step in the web (see Figure 4.100).
- During the first negative excursion of 0.06 rad drift the beam web k-area fractured in a region of high local curvature due to beam web buckling (see Figure 4.101). This fracture propagated to the top surface of the beam top flange [see Figure 4.101(c)]. The remainder of the top flange fractured once the negative excursion was resumed

(see Figure 4.102). The surface of the fracture reveals that the partial fracture consisted of mainly cleavage fracture. Shear fracture dominated the secondary fracture which completed separation of the flange.

• Figure 4.103 shows the east side of the specimen at the end of testing. No damage was observed to the continuity plate fillet welds at the end of testing (see Figure 4.104).

4.6.3 Recorded Response

4.6.3.1 Global Response

- Figure 4.105 shows the recorded displacement response of the beam tip measured with transducer L1. At 0.036 rad drift during the first negative excursion of 0.06 rad drift a partial fracture occurred in the k-area of the beam top flange. This fracture extended outward to the top surface of the beam top flange. Upon resuming negative excursion, the remainder of the top flange ruptured at 0.018 rad drift.
- Figure 4.106 shows the load-displacement response of the beam.
- Figure 4.107 shows the computed moment at the column face (M_f) versus the story drift angle. Two horizontal axes at 80% of the nominal plastic moment (M_{pn}) of the beam section are also added. In addition, two vertical axes at ±0.04 rad story drift show the drift required for SMF connections per AISC 341. It is observed that the beam developed 1.1 times its nominal plastic bending moment. If the moment is computed at the plastic hinge location and compared to the expected plastic moment, then the peak connection strength factor (C_{pr}) is 1.18.
- Figure 4.108 shows the plastic response of the specimen. The plastic response is computed using the procedure outlined in Section 3.7. The computed elastic stiffness of the specimen was determined to be 46.9 kips/in.
- Figure 4.109 shows modest inelastic behavior of the panel zone.
- Figure 4.110 shows that minimal hysteretic behavior was observed in the column rotation.
- Figure 4.111 shows the dissipated energy of Specimen C6-G. Dotted vertical lines on the graph demonstrate the completion of each group of cycles, and the dashed red vertical line shows the completion of the first cycle of 0.04 rad in the AISC loading.

It is observed that the completion of the first drift cycle of 0.04 rad (the requirement for SMF connections per AISC 341) occurs after 492 kip-ft of energy has been dissipated. The connection did not degrade below $0.8M_{pn}$ until 1,104 kip-ft of energy had been dissipated. Therefore only 44% of the energy dissipation capacity was utilized after the completion of SMF requirement. It is observed that most (90%) of the energy dissipation capacity occurred in the beam.

(a) West Side

(b) East Side

Figure 4.95 Specimen C6-G: Specimen before Testing

(b) -0.03 rad (2nd Cycle)

(d) -0.04 rad (2nd Cycle)

(a) +0.03 rad (2nd Cycle)

(c) +0.04 rad (2nd Cycle)

(e) +0.05 rad (1st Cycle) (f) -0.05 rad (1st Cycle) Figure 4.96 Specimen C6-G: East Side of Connection

Figure 4.97 Specimen C6-G: Cracks in Galvanization Coating

(a) Overview

(b) -0.03 rad (1st Cycle) (c) End of Test Figure 4.98 Specimen C6-G: Hairline Crack at Beam Top Flange CJP Weld

(a) -0.04 rad (1st Cycle)

(b) -0.04 rad (2nd Cycle) Figure 4.99 Specimen C6-G: Flange Local Buckling

Figure 4.100 Specimen C6-G: Web Local Buckling

(a) Overview

Figure 4.101 Specimen C6-G: Beam Flange Partial Fracture at -0.06 rad (1st Cycle)

(a) West Side

(b) Fracture Surface

Figure 4.102 Specimen C6-G: Complete Beam Fracture at -0.06 rad (1st Cycle)

Figure 4.103 Specimen C6-G: East Side of Connection at End of Test

(a) West Top Flange

(b) East Top Flange

Figure 4.104 Specimen C6-G: Continuity Plate Welds at End of Test

Figure 4.105 Specimen C6-G: Recorded Loading Sequence

Figure 4.106 Specimen C6-G: Applied Load versus Beam End Displacement Response

Figure 4.107 Specimen C6-G: Moment at Column Face versus Story Drift Response

Figure 4.108 Specimen C6-G: Moment at Column Face versus Plastic Rotation

Figure 4.109 Specimen C6-G: Panel Zone Shear Deformation

Figure 4.110 Specimen C6-G: Column Rotation

Figure 4.111 Specimen C6-G: Energy Dissipation

4.7 Specimen C7

4.7.1 General

Specimen C7 was designed to investigate the validity of using the plastic distribution to estimate the required strength of the continuity plate while violating the Lehigh Criterion. The continuity plates were designed to satisfy the governing AISC 360 §J10 concentrated force column limit state; WLY was the governing limit state that dictates the need of a continuity plate in this specimen. Instead of using a continuity plate to reinforce the column web, since it was found that the FLB limit state does not require reinforcement, a doubler plate was added to the east side of the specimen. The doubler plate was a minimum size such that the stability of the doubler plate was achieved without using plug welds within the doubler plate. The vertical welds fastening the doubler plate to the column were designed based on the distribution of shear force in the panel zone, which violates the current AISC 341 Provisions requiring vertical welds to develop the strength of the doubler plate. Horizontal welds were not used across the top and bottom edge of the extended doubler plate, which conforms to the current Provisions. Figure 4.112 shows the specimen before testing. The specimen developed a partial rupture of the beam bottom flange during the unloading portion of the second cycle of 0.05 rad drift; loading was not continued.

4.7.2 Observed Performance

The observed response for Specimen C7 is described below.

- Figure 4.113 shows the east side of the specimen at the peak excursions during the later cycles of the loading protocol. The specimen met the AISC acceptance criteria. It was observed that beam web buckling and beam flange local buckling both initiated during the first cycle of 0.04 rad drift. Flange local bucking initiated at the beam bottom flange within the RBS cut during the second cycle of 0.03 rad drift. Web local buckling started during the 0.03 rad drift cycles. The beam bottom flange developed a partial rupture during the unloading portion of the second cycle of 0.05 rad drift.
- Beam bottom flange yielding initiated at 0.005 rad drift cycles two inches from the column flange [see Figure 4.114(a)]. At 0.01 rad drift this yielding had spread outward and into the reduced beam section [see Figure 4.114(b)]. Figure 4.114(c) shows that the yielding had distributed through most of the reduced beam section by 0.04 rad drift. Similar yielding observations occurred on the beam top flange (see

Figure 4.115). By 0.02 rad drift the yielding had spread through the flange, showing yield lines on the underside of beam top flange (see Figure 4.116).

- Figure 4.117 shows web local yielding at the beam top flange location. The WLY was first observed at 0.02 rad drift and progressed slightly with each drift level. Figure 4.118 shows the WLY patterns at the end of testing. It was observed that the yielding was localized at the elevation just outside of the beam flange. Yielding was only observed on the side of the column which did not have a doubler plate.
- Web and flange local buckling started during the 0.03 rad drift cycles (see Figure 4.119). The flange local buckling continued to amplify during later cycles. A partial beam bottom flange occurred during the negative excursion of the second cycle of 0.05 rad.
- Figure 4.120 shows the condition of the connection at the end of testing.
- The partial beam flange tear was observed in Figure 4.121.
- The west side of the column demonstrated a yielding along a vertical line that runs the length of the beam web. This yield line was 2.5 in. from the beam web (see Figure 4.122).
- No damage was observed in the doubler plate fillet welds at the end of testing (see Figure 4.123).

4.7.3 Recorded Response

4.7.3.1 Global Response

- Figure 4.124 shows the recorded displacement response of the beam tip measured with transducer L1. The beam bottom flange partially fractured during the unloading portion of the second 0.05 rad drift cycles; loading was not continued after developing the partial fracture.
- Figure 4.125 shows the load-displacement response of the beam.
- Figure 4.126 shows the computed moment at the column face (M_f) versus the story drift angle. Two horizontal axes at 80% of the nominal plastic moment (M_{pn}) of the beam section are also added. In addition, two vertical axes at ±0.04 rad story drift show the drift required for SMF connections per AISC 341. It is observed that the beam developed 1.1 times its nominal plastic bending moment. If the moment is

computed at the plastic hinge location and compared to the expected plastic moment, then the peak connection strength factor (C_{pr}) is 1.20.

- Figure 4.127 shows the plastic response of the specimen. The plastic response is computed using the procedure outlined in Section 3.7. The computed elastic stiffness of the specimen was determined to be 49.0 kips/in.
- Figure 4.128 shows negligible inelastic behavior of the panel zone. The black and blue lines are the measured panel zone deformations from the transducers placed on the column web and doubler plate, respectively. Little difference is observed between these two sides of the specimen.
- Figure 4.129 shows that negligible hysteretic behavior was observed in the column rotation.
- Figure 4.130 shows the dissipated energy of Specimen C7. Dotted vertical lines on the graph demonstrate the completion of each group of cycles, and the dashed red vertical line shows the completion of the first cycle of 0.04 rad in the AISC loading. It is observed that the completion of the first drift cycle of 0.04 rad (the requirement for SMF connections per AISC 341) occurs after 495 kip-ft of energy has been dissipated. The connection did not degrade below $0.8M_{pn}$ until 754 kip-ft of energy had been dissipated. Therefore only 65% of the energy dissipation capacity was utilized after the completion of SMF requirement. It is observed that most (93%) of the energy dissipation capacity occurred in the beam.

4.7.3.2 Local Response

- Figure 4.131 and Figure 4.132 show the strain gauge response from the extreme fiber of the beam top and beam bottom flange during the testing. Weak axis flexural response of the beam is observed across the flange consistent with the observed lateral-torsional buckling of the beam.
- Figure 4.133 shows the strain gauge response of the column flange which affixes the beam. It is observed that the column flange did not yield, but deviation from a 1:1 response demonstrates the torsional demand imposed on the column due to the lateral-torsional buckling of the beam.

- Figure 4.134 shows the shear strain response of the panel zone. Low levels of shear strain were anticipated due to the low utilization of the panel zone in resisting the panel zone shear (DCR = 0.43). A rosette placed on the doubler plate shows less shear response in the doubler plate than in the web.
- Figure 4.135 shows the response of the column directly behind the beam flange. Despite the doubler plate reinforcing, yielding level strains were reached in the column web for most of the width marked as 5k. The strains between the column web and doubler plate are attributed to an out-of-plane flexural response due to warping of the column. The corresponding effect is more pronounced on the doubler plate side (Figure 4.136) due to the increased offset of the gauges from the axis of bending of the column web. Additionally, the fillet weld fastening the doubler plate the column flange is eccentric to the axis of the doubler plate, resulting in additional curvature.
- Figure 4.137 shows significant yielding of the column flange behind the beam flange. More strain is realized during the positive drift excursions, which is attributed to the lateral-torsional response of the beam.

(a) West Side

(b) East Side

Figure 4.112 Specimen C7: Specimen before Testing

(b) -0.03 rad (2nd Cycle)

(a) +0.03 rad (2nd Cycle)

(d) -0.04 rad (2nd Cycle)

(c) +0.04 rad (2nd Cycle)

(e) +0.05 rad (1st Cycle) (f) -0.05 rad (1st Cycle) Figure 4.113 Specimen C7: East Side of Connection

(a) -0.0005 rad (6th Cycle)

(b) -0.01 rad (2nd Cycle)

(c) +0.04 rad (1st Cycle) Figure 4.114 Specimen C7: Beam Bottom Flange Yielding

Figure 4.115 Specimen C7: Beam Top Flange Yielding at -0.015 rad (2nd Cycle)

Figure 4.116 Specimen C7: Beam Top Flange Yielding at -0.02 rad (2nd Cycle)

(a) -0.03 rad (2nd Cycle)
(b) -0.04 rad (1st Cycle)
Figure 4.117 Specimen C7: Colum WLY at Beam Top Flange Level

(a) Beam Top Flange Level(b) Beam Bottom Flange LevelFigure 4.118 Specimen C7: Colum WLY at End of Test

(a) -0.03 rad (1st Cycle)

(b) -0.04 rad (1st Cycle) Figure 4.119 Specimen C7: Beam Flange Local Bucking

(a) West Side

(b) East Side

Figure 4.120 Specimen C7: Connection at End of Test

(a) Overview

(a) Fracture

Figure 4.121 Specimen C7: Beam Flange Partial Fracture

(a) Overview

(b) Column Yielding Figure 4.122 Specimen C7: Column Yielding (End of Test)

Figure 4.123 Specimen C7: Doubler Plate at End of Test

Figure 4.124 Specimen C7: Recorded Loading Sequence

Figure 4.125 Specimen C7: Applied Load versus Beam End Displacement Response

Figure 4.126 Specimen C7: Moment at Column Face versus Story Drift Response

Figure 4.127 Specimen C7: Moment at Column Face versus Plastic Rotation

Figure 4.128 Specimen C7: Panel Zone Shear Deformation

Figure 4.129 Specimen C7: Column Rotation

Figure 4.130 Specimen C7: Energy Dissipation

(a) Section

(c) Negative Drift

Figure 4.131 Specimen C7: Topside of Beam Top Flange Strain Profile

(a) Section

(c) Negative Drift

Figure 4.132 Specimen C7: Underside of Beam Bottom Flange Strain Profile

Figure 4.133 Specimen C7: Column Flange Warping

Figure 4.134 Specimen C7: Panel Zone Response

(c) Negative Drift

Figure 4.135 Specimen C7: Column Web Strain Profiles

Figure 4.136 Specimen C7: Doubler Plate Response

Figure 4.137 Specimen C7: Column Flange Response

4.8 Specimen W1

4.8.1 General

Specimen W1 was designed to investigate use of the plastic methodology to design continuity plates. The resulting continuity plates were thinner than required by the current AISC 341 Provisions. Continuity plate double-sided fillet welds were sized such that $w = 0.75t_{cp}$. A pair of doubler plates stiffen the web of the column for panel zone yielding—these plates were extended 6 in. above and below the beam flange elevations. The doubler plate vertical welds use a PJP groove weld, and no horizontal welds were used in accordance with the current Provisions. Specimen W1 failed by a fracture of the east beam top flange CJP weld during the second cycle of 0.04 rad drift. Figure 4.138 shows the specimen before testing.

4.8.2 Observed Performance

The observed response for Specimen W1 is described below.

- Figure 4.139 shows the connection during testing. The loading protocol was applied symmetrically such that a clockwise rotation is a positive excursion on the east beam and a negative excursion on the west beam. The response is described such that a positive excursion refers to a clockwise rotation of the joint. The specimen met the AISC acceptance criteria by completing one complete cycle at 0.04 rad drift while the flexural strength at either column face did not degrade below 80% of the beam nominal flexural strength. Beam flange and web local buckling initiated at 0.03 rad drift and progressed throughout testing.
- Figure 4.140 and Figure 4.141 show the progressive beam yielding during testing. Yielding starts adjacent to the column flange and propagates outward, concentrating down the center of the beam.
- Figure 4.142 shows the progression of flange local bucking that developed in the east beam bottom flange. The local buckling develops in a opposite sense between the east and west beams depending on which flange of the beam was in compression.
- Figure 4.143 shows yielding in the panel zone observed at a at 0.03 rad drift. The yielding did not progress significantly further by the end of testing.

- Figure 4.144 shows the minor lateral-torsional buckling that developed in beam top flanges during the 0.04 rad drift cycles. The buckling was mirrored between positive and negative joint rotations, reflecting when the top flange experienced compression.
- Figure 4.145 shows the fractured east beam top flange CJP weld at -0.03 rad during the second negative excursion to 0.04 rad drift. The fracture started at the CJP Weld root on the underside of the specimen, on the tension side of the lateral-torsional buckling and propagated along the beam flange following the 30° bevel of the CJP weld. The progression of the fracture was observed in Figure 4.146. After initiating in the weld metal as a ductile tear the fracture transitioned to the bevel of the CJP weld after 0.75 in. The fracture continued its tearing in a ductile fashion until 50% of the flange was fractured when a secondary ductile fracture appeared in the reentrant corner in the center of the flange. The remainder of the fracture propagated due to cleavage through the flange (see Figure 4.147).
- Figure 4.148 shows the connection at the end of testing. Modest amounts of flange local bending and web local buckling were present. Additionally, modest levels of panel zone yielding were observed. Minor shear tab yielding was also observed.
- Continuity plates did not demonstrate yielding nor damage to any of the fillet welds during testing (see Figure 4.149 to Figure 4.151). A slight bow present in the continuity plates occurred before testing of the specimen and was not due to local buckling of the plate.

4.8.3 Recorded Response

4.8.3.1 Global Response

- Figure 4.152 shows the recorded displacement response of the beam tip measured with transducer L1 for the east beam and L2 for the west beam. The response from the east and west beams are shown in black and blue, respectively. The east beam CJP weld fractured at -0.03 rad drift during the second negative excursion of 0.04 rad drift. Figure 4.153 shows the column shear versus the applied story drift response.
- Figure 4.154 shows the load-displacement response of the beams.

- Figure 4.155 shows the computed moment at the column face (M_f) versus the story drift angle. Two horizontal axes at 80% of the nominal plastic moment (M_{pn}) of the beam section are also added. In addition, two vertical axes at ±0.04 rad story drift show the drift required for SMF connections per AISC 341. It is observed that the beams developed about 1.5 times its nominal plastic bending moment. If the moment is computed at the plastic hinge location and compared to the expected plastic moment, then the peak connection strength factor (C_{pr}) is 1.41 and 1.40 for the east and west beams respectively.
- Figure 4.156 shows the plastic response of the specimen. The plastic response is computed using the procedure outlined in Section 3.7. The computed elastic stiffness of the specimen was determined to be 172.6 kips/in.
- Figure 4.157 shows modest hysteretic behavior in the panel zone.
- Figure 4.158 shows negligible hysteretic behavior in the column.
- Figure 4.159 shows the dissipated energy of Specimen W1. Dotted vertical lines on the graph demonstrate the completion of each group of cycles, and the dashed red vertical line shows the completion of the first cycle of 0.04 rad in the AISC loading. It is observed that the completion of the first drift cycle of 0.04 rad (the requirement for SMF connections per AISC 341) occurs after 1,952 kip-ft of energy has been dissipated. The connection did not degrade below 0.8*M*_{pn} until fracture of the east beam top flange occurred and 2,501 kip-ft of energy had been dissipated. Therefore 78% of the energy dissipation capacity was utilized after the completion of the SMF requirement. It is observed that most (82%) of the energy dissipation capacity occurred in the beam.

4.8.3.2 Local Response

• Figure 4.160 and Figure 4.161 shows the extreme fiber response of the east beam top and bottom flanges. Strains on the order of 6% $(30\epsilon_y)$ are observed in the flanges which are exacerbated by high local curvatures and weak axis bending. Figure 4.162 and Figure 4.163 show the extreme fiber response of the west beam top and bottom flanges.

- Figure 4.164 shows the strain gauge response of the west column flange above the beam top flange. It is observed that the column flange did not yield, and little deviation from a 1:1 line demonstrates negligible column flange warping.
- Figure 4.165 shows the horizontal strain pattern on the doubler plate through two sections. The highest strain develops at the location of the beam flange and continuity plate. Horizontal strains in the center of the doubler plate are mostly balanced. Figure 4.166 shows the shear stress distribution in the doubler plate. The center of the doubler plate sees the most significant strains $(2\gamma_y)$.
- Figure 4.167 shows the horizontal shear distribution of the top flange continuity plate. At lower drifts the strain response is mostly equal and opposite across the continuity plate. At higher levels of drift during the east negative excursion, the tension on the west edge of the plate develops more bending—an effect attributed to the development of the plastic hinge in the west beam bottom flange. It is observed that the continuity plate develops yielding level strains in the horizontal direction. Moderate shear strains are present at the edges of the continuity plate in contact with the column flange (see Figure 4.168). The principal strains of the outermost strain gauge rosettes demonstrate cyclic strains between -3ε_y and ε_y on the west side of the continuity plate and between -ε_y and 1.5ε_y on the east side of the continuity plate. The compression bias of the west outmost strain gauge (R16) is congruent with the observed lateral-torsional buckling of the west beam. A similar conclusion is observed with the tension bias of the east outermost strain gauge (R22).
- Figure 4.170 shows the shear response of the continuity plate on the edge fillet welded with the doubler plate.
- Figure 4.171 shows the shear response of the west beam adjacent to the column. It is observed that the shear tab develops higher shear strains than the beam web.

(a) Overview

(b) Connection Region Figure 4.138 Specimen W1: Connection before Testing

(b) -0.02 rad (2nd Cycle)

(a) +0.02 rad (2nd Cycle)

(d) -0.03 rad (2nd Cycle)

(c) +0.03 rad (2nd Cycle)

(e) +0.04 rad (2nd Cycle) (f) -0.04 rad (2nd Cycle) Figure 4.139 Specimen W1: Connection during Testing

(a) -0.015 rad (2nd Cycle)

(b) -0.02 rad (2nd Cycle)

(c) -0.03 rad (2nd Cycle)

(d) -0.04 rad (1st Cycle)

Figure 4.140 Specimen W1: East Beam Bottom Flange Yielding

(a) -0.015 rad (2nd Cycle)

(b) -0.02 rad (2nd Cycle)

(c) -0.03 rad (2nd Cycle)

(d) -0.04 rad (1st Cycle)

Figure 4.141 Specimen W1: West Beam Bottom Flange Yielding

(a) -0.03 rad (2nd Cycle)
 (b) -0.04 rad (1st Cycle)
 Figure 4.142 Specimen W1: East Beam Bottom Flange Local Buckling

(b) Yielding

Figure 4.143 Specimen W1: Panel Zone Yielding at +0.03 rad (2nd Cycle)

(a) West Beam Top Flange at +0.04 rad (1st Cycle)

(a) East Beam Top Flange at +0.04 rad (2nd Cycle) Figure 4.144 Specimen W1: Lateral-Torsional Buckling

(a) Overview

(b) Fracture

Figure 4.145 Specimen W1: East Beam Top Flange CJP Weld Fracture at -0.04 rad (2nd Cycle)

(a) Fracture Initiation

(b) during Propagation

(c) after Fracture

Figure 4.146 Specimen W1: East Beam Top Flange CJP Weld Fracture Progression

Figure 4.147 Specimen W1: East Beam Top Flange CJP Weld Fracture Surface

Figure 4.148 Specimen W1: Connection at End of Test

(a) Underside of Continuity Plate

(b) Edge of Continuity Plate Figure 4.149 Specimen W1: Top Flange Continuity Plate (End of Test)

(a) Topside of Continuity Plate

(b) Underside of Continuity Plate

Figure 4.150 Specimen W1: Bottom Flange Continuity Plate (End of Test)

(a) Top Flange Continuity Plate

(b) Bottom Flange Continuity Plate

Figure 4.151 Specimen W1: Underside Continuity Plates (End of Test)

Figure 4.152 Specimen W1: Recorded Loading Sequence

Figure 4.153 Specimen W1: Column Shear versus Story Drift Angle

(b) West Beam

Figure 4.154 Specimen W1: Applied Load versus Beam End Displacement Response

Figure 4.155 Specimen W1: Moment at Column Face versus Story Drift Response

(b) West Beam

Figure 4.156 Specimen W1: Moment at Column Face versus Plastic Rotation

Figure 4.157 Specimen W1: Panel Zone Shear Deformation

Figure 4.158 Specimen W1: Column Rotation

Figure 4.159 Specimen W1: Energy Dissipation

(a) Section

Figure 4.160 Specimen W1: Topside of East Beam Top Flange Strain Profile

Figure 4.161 Specimen W1: Underside of East Beam Bottom Flange Strain Profile

(a) Section

Figure 4.162 Specimen W1: Topside of West Beam Top Flange Strain Profile

(a) Section

Figure 4.163 Specimen W1: Underside of West Beam Bottom Flange Strain Profile

Figure 4.164 Specimen W1: Column Flange Warping

Figure 4.165 Specimen W1: Panel Zone Strain Profile

Figure 4.166 Specimen W1: Panel Zone Shear Strain Profile

Figure 4.167 Specimen W1: Continuity Plate at Column Flange Edge Strain Profile

Figure 4.168 Specimen W1: Continuity Plate at Column Flange Edge Shear Strain Profile

(a) Layout

(b) Strain Gauge R16 Principal Strains

Figure 4.169 Specimen W1: Continuity Plate Strain Gauge Rosette Response

(b) Positive Drift

(c) Negative Drift

Figure 4.170 Specimen W1: Continuity Plate at Column Web Edge Shear Strain Profile

(a) Gauge Layout

Figure 4.171 Specimen W1: Beam Shear Response

4.9 Specimen W2

4.9.1 General

Specimen W2 was designed to investigate use of the plastic methodology to design continuity plates. The continuity plate thickness was chosen to match the minimum thickness requirement of AISC 341, for which the plastic methodology results in an undersized continuity plate with a DCR of 1.43. Continuity plate double-sided fillet welds were sized such that $w = 0.75t_{cp}$. A pair of doubler plates stiffen the web of the column for panel zone yielding—these plates were extended 6 in. above and below the beam flange elevations. The doubler plate vertical welds use a PJP groove weld, and no horizontal welds were used in accordance with the current Provisions. Specimen W2 failed by a fracture of the east top and west bottom beam flange CJP weld during the second cycle of 0.06 rad drift. Figure 4.172 shows the specimen before testing.

4.9.2 Observed Performance

The observed response for Specimen W2 is described below.

- Figure 4.173 shows the connection during testing. The specimen met the AISC acceptance criteria by completing one complete cycle at 0.04 rad drift while the flexural strength at either column face did not degrade below 80% of the beam nominal flexural strength. Beam flange and web local bucking initiated at 0.03 rad drift and progressed throughout testing.
- Figure 4.174 and Figure 4.175 shows the bottom flange yielding and buckling of the east and west beams. The yielding of the flanges initiated during the 0.0075 rad drift cycles. It was observed that significant lateral-torsional buckling initiates at 0.04 rad drift and progresses in the later drift cycles.
- Figure 4.176 shows the progression of flange local bucking that developed in the east beam top flange. The local buckling develops in the flange of the beam in compression during that excursion and then is pulled relatively straight during the tension excursions.
- Figure 4.177 shows the initiation of a weld fracture during the second cycle of 0.03 rad drift. The fracture originates at the fusion face of the CJP weld and backing bar on the flange bevel side. Figure 4.178 shows the progression of this tear during the 0.04 rad and 0.05 rad drift cycles. At 0.05 rad drift cycles a weld tear on the top side

of the west beam bottom flange CJP weld was observed (see Figure 4.179). A similar fracture was observed in the east beam bottom flange CJP weld at 0.06 rad drift (see Figure 4.180).

- Figure 4.181 shows the severe lateral-torsional buckling, flange local bucking, and web local buckling of the east beam during the 0.06 rad drift cycles. The west beam has a similar profile with flanges arching up. Significant lateral bracing forces restraining the beams result in localized yielding at the restraint points.
- At -0.018 rad during the negative excursion of the east beam to 0.06 rad drift (2nd Cycle) the east beam top flange partially fractured (see Figure 4.182). This fracture extends from the top edge of the beam flange to about the centerline. The fracture initiated at the CJP weld root and deviated into the beam flange after traversing the CJP weld bevel for several inches. This weld fracture was accompanied by a tear at the far radius of the weld access hole (see Figure 4.183). Shortly after resuming load the west beam bottom flange experienced a similar fracture, propagating through 80% of the beam flange (see Figure 4.184).
- Figure 4.185 shows the connection after testing. Minor panel zone yielding was observed in the doubler plate after testing (see Figure 4.186). This picture also demonstrates that no continuity plate yielding was evident.
- No damage to the continuity plate fillet welds was observed during the testing or after test visual inspection (see Figure 4.187).

4.9.3 Recorded Response

4.9.3.1 Global Response

- Figure 4.188 shows the recorded displacement response of the beam tip measured with transducer L1 for the east beam and L2 for the west beam. The response from the east and west beams are shown in black and blue, respectively. The east beam top flange partially fractured at 0.018 rad during the second negative excursion to 0.06 rad drift. The west beam bottom flange fractured slightly past neutral during the positive excursion to 0.06 rad drift. Figure 4.189 shows the column shear versus the applied story drift response.
- Figure 4.190 shows the load-displacement response of the beams.

- Figure 4.191 shows the computed moment at the column face (M_f) versus the story drift angle. Two horizontal axes at 80% of the nominal plastic moment (M_{pn}) of the beam section are also added. In addition, two vertical axes at ±0.04 rad story drift show the drift required for SMF connections per AISC 341. It is observed that the beams developed about 1.4 times its nominal plastic bending moment. If the moment is computed at the plastic hinge location and compared to the expected plastic moment, then the peak connection strength factor (C_{pr}) is 1.23 and 1.23 for the east and west beams respectively.
- Figure 4.192 shows the plastic response of the specimen. The plastic response is computed using the procedure outlined in Section 3.7. The computed elastic stiffness of the specimen was determined to be 144.8 kips/in.
- Figure 4.193 shows minor hysteretic behavior in the panel zone.
- Figure 4.194 shows zero hysteretic behavior in the column.
- Figure 4.195 shows the dissipated energy of Specimen W2. Dotted vertical lines on the graph demonstrate the completion of each group of cycles, and the dashed red vertical line shows the completion of the first cycle of 0.04 rad in the AISC loading. It is observed that the completion of the first drift cycle of 0.04 rad (the requirement for SMF connections per AISC 341) occurs after 1,755 kip-ft of energy has been dissipated. The connection did not degrade below $0.8M_{pn}$ until fracture of the east beam top flange occurred and 4,000 kip-ft of energy had been dissipated. Therefore only 44% of the energy dissipation capacity was utilized after the completion of the SMF requirement. It is observed that nearly all (96%) of the energy dissipation capacity occurred in the beam.

4.9.3.2 Local Response

• Figure 4.196 and Figure 4.197 shows the extreme fiber response of the east beam top and bottom flanges. Strains on the order of 4% $(20\epsilon_y)$ are observed in the flanges which are exacerbated by high local curvatures and weak axis bending. Figure 4.198 and Figure 4.199 show the extreme fiber response of the west beam top and bottom flanges.

- Figure 4.200 shows the strain gauge response of the west column flange above the beam top flange. It is observed that the column flange did not yield but moderate levels of warping occurred during the latter part of the loading protocol.
- Figure 4.201 shows the horizontal strain pattern on the doubler plate through two sections. Horizontal strains in the center of the doubler plate are mostly balanced. Figure 4.202 shows the shear stress distribution in the doubler plate. The center of the doubler plate sees the most significant strains $(2\gamma_y)$. Yielding of the doubler plate was anticipated.
- Figure 4.203 shows the horizontal shear distribution of the top flange continuity plate. The strain response is equal and opposite across the continuity plate. The continuity plate reaches yielding levels of horizontal strain. Moderate shear strains are present at the edges of the continuity plate in contact with the column flange (see Figure 4.204). Figure 4.205 shows the principal strains of strain gauge rosette R16 and R22, the outermost strain gauges, during testing. It is observed that the cyclic strains are limited to ±ε_ν.
- Figure 4.206 shows the shear response of the continuity plate on the edge fillet welded with the doubler plate.
- Figure 4.207 shows the shear response of the west beam adjacent to the column.

(a) Overview

(b) Connection Region

Figure 4.172 Specimen W2: Connection before Testing

(b) -0.03 rad (2nd Cycle)

(c) +0.04 rad (2nd Cycle)

(e) +0.05 rad (1st Cycle) (f) -0.05 rad (1st Cycle) Figure 4.173 Specimen W2: Connection during Testing

(a) -0.02 rad (2nd Cycle)

(b) -0.03 rad (2nd Cycle)

(c) +0.04 rad (2^{nd} Cycle) (d) -0.05 rad (2^{nd} Cycle)

Figure 4.174 Specimen W2: East Beam Bottom Flange Yielding

(a) -0.02 rad (2nd Cycle)

(d) -0.05 rad (2nd Cycle)

(c) +0.04 rad (2nd Cycle)

Figure 4.175 Specimen W2: West Beam Bottom Flange Yielding

(a) +0.03 rad (2nd Cycle)
(b) +0.04 rad (2nd Cycle)
Figure 4.176 Specimen W2: East Beam Top Flange Local Buckling

(a) Overview

(b) Weld Fracture

Figure 4.177 Specimen W2: East Beam Top Flange CJP Weld Tear at -0.03 rad (2nd Cycle)

(a) $-0.04 \text{ rad} (2^{nd} \text{ Cycle})$ (b) $-0.05 \text{ rad} (2^{nd} \text{ Cycle})$

(a) Overview

(b) Weld Fracture

Figure 4.179 Specimen W2: West Beam Bottom Flange CJP Weld Fracture at: -0.05 rad (2nd Cycle)

(a) Overview

Figure 4.180 Specimen W2: East Beam Bottom Flange CJP Weld Fracture at: +0.06 rad (1st Cycle)

Figure 4.181 Specimen W2: East Beam Bottom Flange Lateral-Torsional Bucking at: -0.06 rad (1st Cycle)

Figure 4.182 Specimen W2: East Beam Top Flange Partial Fracture during Excursion to -0.06 rad (2nd Cycle)

(a) Overview

(b) Weld Fracture

Figure 4.184 Specimen W2: West Beam Bottom Flange Fracture during Excursion to -0.06 rad (2nd Cycle)

Figure 4.185 Specimen W2: Connection at End of Test

Figure 4.186 Specimen W2: Panel Zone (End of Test)

(a) East Beam Top Flange

(c) East Beam Bottom Flange(d) West Beam Bottom FlangeFigure 4.187 Specimen W2: Continuity Plate Fillet Welds (End of Test)

(b) West Beam Top Flange

Figure 4.188 Specimen W2: Recorded Loading Sequence

Figure 4.189 Specimen W2: Column Shear versus Story Drift Angle

(b) West Beam

Figure 4.190 Specimen W2: Applied Load versus Beam End Displacement Response

(b) West Beam

Figure 4.191 Specimen W2: Moment at Column Face versus Story Drift Response

(b) West Beam

Figure 4.192 Specimen W2: Moment at Column Face versus Plastic Rotation

Figure 4.193 Specimen W2: Panel Zone Shear Deformation

Figure 4.194 Specimen W2: Column Rotation

Figure 4.195 Specimen W2: Energy Dissipation

(c) Negative Drift

Figure 4.196 Specimen W2: Topside of East Beam Top Flange Strain Profile

(c) Negative Drift

Figure 4.197 Specimen W2: Underside of East Beam Bottom Flange Strain Profile

(a) Section

(c) Negative Drift

Figure 4.198 Specimen W2: Topside of West Beam Top Flange Strain Profile

(c) Negative Drift

Figure 4.199 Specimen W2: Underside of West Beam Bottom Flange Strain Profile

(a) Gauge Layout

Figure 4.200 Specimen W2: Column Flange Warping

Figure 4.201 Specimen W2: Panel Zone Strain Profile

Figure 4.202 Specimen W2: Panel Zone Shear Strain Profile

Figure 4.203 Specimen W2: Continuity Plate at Column Flange Edge Strain Profile

Figure 4.204 Specimen W2: Continuity Plate at Column Flange Edge Shear Strain Profile

(a) Layout

Figure 4.205 Specimen W2: Continuity Plate Strain Gauge Rosette Response

(b) Positive Drift

(c) Negative Drift

Figure 4.206 Specimen W2: Continuity Plate at Column Web Edge Shear Strain Profile

(a) Gauge Layout

Figure 4.207 Specimen W2: Beam Shear Response

4.10 Specimen W3

4.10.1 General

Specimen W3 was designed to investigate use of the plastic methodology to design continuity plates. The resulting continuity plates were thinner than the current AISC 341 Provisions. Continuity plate double-sided fillet welds were sized such that $w = 0.75t_{cp}$. A pair of doubler plates stiffen the web of the column for panel zone yielding—these plates were extended 6 in. above and below the beam flange elevations. The doubler plates were designed to result in a weak panel zone, with a resulting DCR of 1.07; additionally, the stability criteria of the doubler plates were violated. The doubler plate vertical welds use a fillet weld sized to develop the shear strength of the plate, and no horizontal welds were used in accordance with the current Provisions. Specimen W3 failed by a fracture of the east beam top flange CJP weld during the second cycle of 0.06 rad drift. Figure 4.208 shows the specimen before testing.

4.10.2 Observed Performance

The observed response for Specimen W3 is described below.

- Figure 4.209 shows the connection during testing. The specimen met the AISC acceptance criteria by completing one complete cycle at 0.04 rad drift while the flexural strength at either column face did not degrade below 80% of the beam nominal flexural strength. Beam flange and web local buckling initiated at 0.03 rad drift and progressed throughout testing.
- Figure 4.210and Figure 4.211show the east beam bottom flange and west beam bottom flange during testing. The gradual progression of yielding, flange local buckling, and lateral-torsional buckling is observed. The progression of flange local buckling between the second cycle of 0.03 rad and the first cycle of 0.04 rad is shown in Figure 4.212.
- Figure 4.213 shows the initiation of tearing in the weld access holes. All four weld access holes show a similar behavior.
- Severe web buckling develops in both beams during the 0.05 rad drift cycles (see Figure 4.214). Figure 4.215 shows a similar severity of flange local buckling during the 0.05 rad drift cycles.

- Figure 4.216 shows the gradual progression of tearing in the east beam top flange CJP weld. The tear initiated at the CJP weld root during the second cycle of 0.04 rad drift. A similar tear was observed in the west beam top flange CJP weld (not pictured). During the first negative excursion to 0.06 rad drift the east beam top flange fractured through 60% of the width of the flange. The tear of the top flange was accompanied with a 5-in. tear of the beam web extending outward from the radius of the weld access hole (see Figure 4.217).
- Although the root of the CJP weld started to tear during earlier cycles the propagation of the tear to the top surface of the CJP weld occurred when the beam was under global compression during the first positive excursion of 0.06 rad drift (see Figure 4.218). This occurs due to the high local curvature of the flange local buckling. During the first negative excursion of 0.06 rad drift the fracture propagates to 60% of the beam flange width (see Figure 4.219). During the second negative excursion of 0.06 rad drift the east beam top flange fractures completely.
- Figure 4.220 shows the connection at the end of testing.
- Figure 4.221 shows a partial fracture of the west beam top flange at the end of testing. Also observed in this photo is minor column yielding above the beam flange.
- No yielding or damage to the continuity plate fillet welds was observed during testing (see Figure 4.222 and Figure 4.223). A detailed view of four of the continuity plate fillet welds is shown in Figure 4.224. Similarly, no damage was observed to the doubler plate fillet weld.

4.10.3 Recorded Response

4.10.3.1 Global Response

- Figure 4.225 shows the recorded displacement response of the beam tip measured with transducer L1 for the east beam and L2 for the west beam. The response from the east and west beams are shown in black and blue, respectively. The east beam top flange partially fractured at -0.038 rad during the first negative excursion to 0.06 rad drift. The remainder of the east beam top flange fractured during at 0.01 rad during the second negative excursion of 0.06 rad drift.
- Figure 4.227 shows the load-displacement response of the beams.

- Figure 4.228 shows the computed moment at the column face (M_f) versus the story drift angle. Two horizontal axes at 80% of the nominal plastic moment (M_{pn}) of the beam section are also added. In addition, two vertical axes at ±0.04 rad story drift show the drift required for SMF connections per AISC 341. It is observed that the beams developed about 1.4 times its nominal plastic bending moment. If the moment is computed at the plastic hinge location and compared to the expected plastic moment, then the peak connection strength factor (C_{pr}) is 1.18 and 1.22 for the east and west beams respectively.
- Figure 4.229 shows the plastic response of the specimen. The plastic response is computed using the procedure outlined in Section 3.7. The computed elastic stiffness of the specimen was determined to be 100.8 kips/in.
- Figure 4.230 shows minor hysteretic behavior in the panel zone.
- Figure 4.231 shows minor hysteretic behavior from the column.
- Figure 4.232 shows the dissipated energy of Specimen W3. Dotted vertical lines on the graph demonstrate the completion of each group of cycles, and the dashed red vertical line shows the completion of the first cycle of 0.04 rad in the AISC loading. It is observed that the completion of the first drift cycle of 0.04 rad (the requirement for SMF connections per AISC 341) occurs after 1,255 kip-ft of energy has been dissipated. The connection did not degrade below $0.8M_{pn}$ until fracture of the east beam top flange occurred and 2,793 kip-ft of energy had been dissipated. Therefore only 45% of the energy dissipation capacity was utilized after the completion of the SMF requirement. It is observed that nearly all (94%) of the energy dissipation capacity occurred in the beam.

4.10.3.2 Local Response

• Figure 4.233 and Figure 4.234 show the extreme fiber response of the east beam top and bottom flanges. Strains on the order of 4% $(20\epsilon_y)$ are observed in the flanges which are exacerbated by high local curvatures and weak axis bending. Figure 4.235 and Figure 4.236 show the extreme fiber response of the west beam top and bottom flanges.

- Figure 4.237 shows the strain gauge response of the west column flange above the beam top flange. It is observed that the column flange did not yield but moderate levels of warping occurred during the latter part of the loading protocol.
- Figure 4.238 shows the horizontal strain pattern on the doubler plate through two sections. Horizontal strains in the center of the doubler plate are mostly balanced. Figure 4.239 shows the shear stress distribution in the doubler plate. The center of the doubler plate sees the most significant strains (γ_y). Yielding of the doubler plate was anticipated.
- Figure 4.240 shows the horizontal shear distribution of the top flange continuity plate. The continuity plate reaches yielding levels of horizontal strain. Moderate shear strains are present at the edges of the continuity plate in contact with the column flange (see Figure 4.241). Figure 4.242 shows the principal strains of strain gauge rosette R16 and R22, the outermost strain gauges, during testing. It is observed that the cyclic strains are generally limited to $\pm \epsilon_y$ with a minor ratcheting of R16 to $2.5\epsilon_y$ during the compression excursions.
- Figure 4.243 shows the shear response of the continuity plate on the edge fillet welded with the doubler plate.
- Figure 4.244 shows the shear response of the west beam adjacent to the column. A significant ratcheting of the shear tab strain gauge was observed.

(a) Overview

(b) Connection Region

Figure 4.208 Specimen W3: Connection before Testing

(b) -0.03 rad (2nd Cycle)

(d) -0.04 rad (2nd Cycle)

(c) +0.04 rad (2nd Cycle)

(e) +0.05 rad (1st Cycle) (f) -0.05 rad (1st Cycle) Figure 4.209 Specimen W3: Connection during Testing

290

(a) -0.02 rad (2nd Cycle)

(b) -0.03 rad (2nd Cycle)

(c) -0.04 rad (2nd Cycle)

(d) -0.05 rad (1st Cycle)

Figure 4.210 Specimen W3: East Beam Bottom Flange Yielding

(a) -0.02 rad (2nd Cycle)

(b) -0.03 rad (2nd Cycle)

(c) -0.04 rad (2nd Cycle)(d) -0.05 rad (1st Cycle)Figure 4.211 Specimen W3: West Beam Bottom Flange Yielding

(a) +0.03 rad (2nd Cycle)
(b) +0.04 rad (1st Cycle)
Figure 4.212 Specimen W3: East Beam Top Flange Local Buckling

(a) Overview

(b) Weld Access Hole

Figure 4.214 Specimen W3: Web Local Buckling at +0.05 rad (1st Cycle)

Figure 4.215 Specimen W3: Flange Local Buckling at -0.05 rad (1st Cycle)

(a) Overview

(b) -0.04 rad (2nd Cycle)

(c) -0.05 rad (1st Cycle)

(d) -0.06 rad (1st Cycle)

Figure 4.216 Specimen W3: East Beam Top Flange CJP Weld Tear Progression

Figure 4.217 Specimen W3: East Beam Top Flange Weld Access Hole Tear

(b) Weld Tear

(a) -0.06 rad (1st Cycle)
 (b) -0.06 rad (2nd Cycle)
 Figure 4.219 Specimen W3: East Beam Top Flange Fracture

Figure 4.220 Specimen W3: Connection at End of Test

Figure 4.221 Specimen W3: West Beam Top Flange (End of Test)

(a) Topside

(b) Underside

Figure 4.222 Specimen W3: Top Flange Continuity Plate (End of Test)

(a) Topside

(b) Underside

Figure 4.223 Specimen W3: Bottom Flange Continuity Plate (End of Test)

(a) West Top Flange

(b) East Top Flange

(c) West Bottom Flange

(d) East Bottom Flange Figure 4.224 Specimen W3: Continuity Plate Fillet Welds (End of Test)

Figure 4.225 Specimen W3: Recorded Loading Sequence

Figure 4.226 Specimen W3: Column Shear versus Story Drift Angle

(b) West Beam

Figure 4.227 Specimen W3: Applied Load versus Beam End Displacement Response

Figure 4.228 Specimen W3: Moment at Column Face versus Story Drift Response

(b) West Beam

Figure 4.229 Specimen W3: Moment at Column Face versus Plastic Rotation

Figure 4.230 Specimen W3: Panel Zone Shear Deformation

Figure 4.231 Specimen W3: Column Rotation

Figure 4.232 Specimen W3: Energy Dissipation

Figure 4.233 Specimen W3: Topside of East Beam Top Flange Strain Profile

Figure 4.234 Specimen W3: Underside of East Beam Bottom Flange Strain Profile

(a) Section

Figure 4.235 Specimen W3: Topside of West Beam Top Flange Strain Profile

(a) Section

Figure 4.236 Specimen W3: Underside of West Beam Bottom Flange Strain Profile

(a) Gauge Layout

Figure 4.237 Specimen W3: Column Flange Warping

Figure 4.238 Specimen W3: Panel Zone Strain Profile

Figure 4.239 Specimen W3: Panel Zone Shear Strain Profile

Figure 4.240 Specimen W3: Continuity Plate at Column Flange Edge Strain Profile

Figure 4.241 Specimen W3: Continuity Plate at Column Flange Edge Shear Strain Profile

(a) Layout

Figure 4.242 Specimen W3: Continuity Plate Strain Gauge Rosette Response

(b) Positive Drift

(c) Negative Drift

Figure 4.243 Specimen W3: Continuity Plate at Column Web Edge Shear Strain Profile

(a) Gauge Layout

(b) Strain Rosette Gauges R24

Figure 4.244 Specimen W3: Beam Shear Response

4.11 Specimen W4

4.11.1 General

Specimen W4 was designed to investigate use of the plastic methodology to design continuity plates. The resulting continuity plates satisfy the current minimum thickness requirements as per the AISC 341 Provisions. Continuity plate double-sided fillet welds were sized such that $w = 0.75t_{cp}$. A pair of doubler plates stiffen the web of the column for panel zone yielding. The doubler plate is placed within the panel zone and is welded to the continuity plates on the top and bottom edges. The doubler plate vertical welds use a fillet weld sized to develop the strength of the doubler plate. Horizontal fillet welds between the doubler plate and continuity plate were sized to develop 75% of the doubler plate shear capacity as per the current Provisions. Specimen W4 failed by a fracture of the east and west beam top beam flange CJP weld during the first cycle of 0.05 rad drift. Figure 4.245 shows the specimen before testing.

4.11.2 Observed Performance

The observed response for Specimen W4 is described below.

- Figure 4.246 shows the connection during testing. The specimen met the AISC acceptance criteria by completing one complete cycle at 0.04 rad drift while the flexural strength at either column face did not degrade below 80% of the beam nominal flexural strength.
- Figure 4.247 and Figure 4.248 show the east beam bottom flange and west beam bottom flange during testing. The progression of flange local buckling between the second cycle of 0.04 rad and the first cycle of 0.05 rad is shown in Figure 4.249.
- Figure 4.250 shows the initiation of web buckling during the first negative excursion of 0.04 rad drift.
- During the second negative excursion of 0.04 rad drift the east beam top flange partially fractured through 50% of the flange at the CJP weld (see Figure 4.251).
- During the first negative excursion of 0.05 rad drift the west beam top flange developed a partial fracture through 20% of the beam flange (see Figure 4.252).
- Severe lateral-torsional buckling developed in the east beam during the 0.05 rad drift cycles (see Figure 4.253).

- During the first negative excursion of 0.05 rad drift the east beam top flange completely fractured through the CJP weld (see Figure 4.254). This fracture propagated down the CJP weld bevel. Accompanying this fracture, the web of the east beam fractured (see Figure 4.255). This fracture propagated 5 in. from the radius of the weld access hole. Continuing the 0.05 rad drift cycles resulted in the complete fracture of the west beam top flange (see Figure 4.256). A close up of the east beam top flange fracture is shown in Figure 4.257.
- Figure 4.258 shows the connection at the end of testing. Continued negative excursion of the east beam resulted in the web continuing to fracture following a few inches outboard of the fillet welded shear tab.
- No yielding of the continuity plates was observed during testing (see Figure 4.259).
 Furthermore, no damage was observed in the continuity plate fillet welds. Minor yielding of the inside face of the column flange, above the top flange continuity plates, is shown in Figure 4.259(b).
- The top and bottom edge of the doubler plate of this specimen was welded to the continuity plate using a 5/8-in. fillet weld based on the Provisions. This weld was the sole attachment of the inside face of the continuity plate to the panel zone. The termination of the doubler plate vertical welds was held back from the continuity plate by 1 in. as per the Provisions. No damage was observed in any of these welds (see Figure 4.260).

4.11.3 Recorded Response

4.11.3.1 Global Response

- Figure 4.261 shows the recorded displacement response of the beam tip measured with transducer L1 for the east beam and L2 for the west beam. The response from the east and west beams are shown in black and blue, respectively. The east beam top flange fractured during the second negative excursion of 0.03 rad drift. Complete fracture occurred at a neutral position during the first negative excursion of 0.05 rad drift. Complete fracture of the west beam top flange occurred at 0.015 rad during the first negative excursion of 0.05 rad drift.
- Figure 4.263 shows the load-displacement response of the beams.

- Figure 4.264 shows the computed moment at the column face (M_f) versus the story drift angle. Two horizontal axes at 80% of the nominal plastic moment (M_{pn}) of the beam section are also added. In addition, two vertical axes at ±0.04 rad story drift show the drift required for SMF connections per AISC 341. It is observed that the beams developed 1.5 times its nominal plastic bending moment. If the moment is computed at the plastic hinge location and compared to the expected plastic moment, then the peak connection strength factor (C_{pr}) is 1.39 and 1.34 for the east and west beams respectively.
- Figure 4.265 shows the plastic response of the specimen. The plastic response is computed using the procedure outlined in Section 3.7. The computed elastic stiffness of the specimen was determined to be 54.9 kips/in.
- Figure 4.266 shows minor hysteretic behavior in the panel zone.
- Figure 4.267 shows negligible hysteretic behavior from the column.
- Figure 4.268 shows the dissipated energy of Specimen W4. Dotted vertical lines on the graph demonstrate the completion of each group of cycles, and the dashed red vertical line shows the completion of the first cycle of 0.04 rad in the AISC loading. It is observed that the completion of the first drift cycle of 0.04 rad (the requirement for SMF connections per AISC 341) occurs after 852 kip-ft of energy has been dissipated. The connection did not degrade below $0.8M_{pn}$ until fracture of the east beam top flange occurred and 1,427 kip-ft of energy had been dissipated. Therefore only 60% of the energy dissipation capacity was utilized after the completion of the SMF requirement. It is observed that nearly all (96%) of the energy dissipation capacity occurred in the beam.

4.11.3.2 Local Response

• Figure 4.269 and Figure 4.270 show the extreme fiber response of the east beam top and bottom flanges. Strains on the order of 7% $(40\epsilon_y)$ are observed in the flanges which are exacerbated by high local curvatures and weak axis bending. Figure 4.271 and Figure 4.272 show the extreme fiber response of the west beam top and bottom flanges.

- Figure 4.273 shows the strain gauge response of the west column flange above the beam top flange. It is observed that the column flange did not yield but minor levels of warping occurred during the last few cycles of the loading protocol.
- Figure 4.274 shows the horizontal strain pattern on the doubler plate through two sections. Figure 4.275 shows the shear stress distribution in the doubler plate. The center of the doubler plate sees the most significant strains (γ_y). Yielding of the doubler plate was anticipated.
- Figure 4.276 shows the horizontal shear distribution of the top flange continuity plate. The continuity plate reaches yielding levels of horizontal strain. Moderate shear strains are present at the edges of the continuity plate in contact with the column flange (see Figure 4.277). Figure 4.278 shows the principal strains of strain gauge rosette R16 and R22, the outermost strain gauges, during testing. It is observed that the cyclic strains are generally limited to $\pm 0.75\epsilon_y$.
- Figure 4.279 shows the shear response of the continuity plate on the edge fillet welded with the doubler plate.
- Figure 4.280 shows the shear response of the west beam adjacent to the column. A significant ratcheting of the shear tab strain gauge was observed.

(a) Overview

(b) Connection Region

Figure 4.245 Specimen W4: Connection before Testing

(b) -0.03 rad (2nd Cycle)

(a) +0.03 rad (2nd Cycle)

(c) +0.04 rad (2nd Cycle)

(e) +0.05 rad (1st Cycle) (f) -0.05 rad (1st Cycle) Figure 4.246 Specimen W4: Connection during Testing

(a) +0.015 rad (1st Cycle)

(b) -0.02 rad (2nd Cycle)

(c) +0.03 rad (2^{nd} Cycle)

(d) -0.04 rad (2nd Cycle)

Figure 4.247 Specimen W4: East Beam Bottom Flange Yielding

(a) +0.015 rad (1st Cycle)

(b) -0.02 rad (2nd Cycle)

(c) +0.03 rad (2nd Cycle)

(d) -0.04 rad (2nd Cycle)

Figure 4.248 Specimen W4: West Beam Bottom Flange Yielding

(a) +0.04 rad (2nd Cycle) (b) +0.05 rad (1st Cycle) Figure 4.249 Specimen W4: West Beam Bottom Flange Local Buckling

Figure 4.250 Specimen W4: West Beam Web Buckling at +0.04 rad (1st Cycle)

Figure 4.251 Specimen W4: East Beam Top Flange CJP Weld Fracture at -0.04 rad (2nd Cycle)

(b) Weld Tear

Figure 4.252 Specimen W4: West Beam Top Flange CJP Weld Tear at +0.05 rad (1st Cycle)

Figure 4.253 Specimen W4: East Beam Lateral-Torsional Buckling at +0.05 rad (1st Cycle)

Figure 4.254 Specimen W4: East Beam Top Flange Fracture during First Excursion of -0.05 rad

Figure 4.255 Specimen W4: East Beam Top Flange Weld Access Hole Fracture during First of -0.05 rad

(a) Overview

Figure 4.256 Specimen W4: West Beam Top Flange Fracture (End of Test)

Figure 4.257 Specimen W4: East Beam Top Flange Fracture

Figure 4.258 Specimen W4: Connection at End of Testing

(a) Bottom Flange

(b) Top Flange

Figure 4.259 Specimen W4: Continuity Plates (End of Test)

Figure 4.260 Specimen W4: Panel Zone (End of Test)

Figure 4.261 Specimen W4: Recorded Loading Sequence

Figure 4.262 Specimen W4: Column Shear versus Story Drift Angle

Figure 4.263 Specimen W4: Applied Load versus Beam End Displacement Response

(b) West Beam

Figure 4.264 Specimen W4: Moment at Column Face versus Story Drift Response

(b) West Beam

Figure 4.265 Specimen W4: Moment at Column Face versus Plastic Rotation

Figure 4.266 Specimen W4: Panel Zone Shear Deformation

Figure 4.267 Specimen W4: Column Rotation

Figure 4.268 Specimen W4: Energy Dissipation

(a) Section

Figure 4.269 Specimen W4: Topside of East Beam Top Flange Strain Profile

Figure 4.270 Specimen W4: Underside of East Beam Bottom Flange Strain Profile

Figure 4.271 Specimen W4: Topside of West Beam Top Flange Strain Profile

(a) Section

Figure 4.272 Specimen W4: Underside of West Beam Bottom Flange Strain Profile

Figure 4.273 Specimen W4: Column Flange Warping

Figure 4.274 Specimen W4: Panel Zone Strain Profile

Figure 4.275 Specimen W4: Panel Zone Shear Strain Profile

Figure 4.276 Specimen W4: Continuity Plate at Column Flange Edge Strain Profile

Figure 4.277 Specimen W4: Continuity Plate at Column Flange Edge Shear Strain Profile

(a) Layout

(b) Strain Gauge R16 Principal Strains

Figure 4.278 Specimen W4: Continuity Plate Strain Gauge Rosette Response

(b) Positive Drift

(c) Negative Drift

Figure 4.279 Specimen W4: Continuity Plate at Column Web Edge Shear Strain Profile

(a) Gauge Layout

Figure 4.280 Specimen W4: Beam Shear Response

4.12 Specimen Macroetching

After testing, several sections of the specimens were cut out and sectioned using a cold saw. The surfaces of the sections were then polished and etched using a 5% Nital acid to reveal the formation of the welds. Figure 4.281 shows a macroetch of the beam bottom flange weld of Specimen C3; the beam bottom flange CJP weld did not fracture during testing. Evident in this figure is the beam flange CJP weld performed from the horizontal position and the reinforcing fillet placed on the underside of the beam in the overhead position after the backing bar is removed. Figure 4.282 shows the beam bottom and top flange welds of Specimen C5. The fractured top flange CJP weld is observed to propagate at a 35-degree angle through the weld metal, initiating at the reentrant corner formed between the weld and the column flange. Also shown in this figure are the continuity plate fillet welds, which show no indications of damage. A similar macroetch is performed on Specimen C6 (see Figure 4.283). In this case the beam top flange CJP weld fracture has two shear lips because the etching was taken closer to the edge of the beam flange. No damage to the fillet welds is observed. Figure 4.284 shows a similar section of the east beam flange welds from Specimen W1. The beam top flange CJP weld fracture is observed to follow the 30-degree bevel of the CJP weld.

Figure 4.285(a) shows a section through the doubler plate at an elevation which includes the beam web. This section shows the beam web CJP weld using the shear tab as a backing bar. The one-sided fillet weld fastening the shear tab to the column flange is also shown in the figure. The doubler plate fillet weld and bevel are shown in Figure 4.285(a) and (b).

Figure 4.281 Macroetch of Specimen C3 Beam Bottom Flange CJP Weld

(a) Beam Top Flange

(a) Beam Top Flange

(b) Bottom Flange Figure 4.284 Macroetch of Specimen W1 Welds (East Beam)

(a) Doubler Plate at Web

(b) Doubler Plate Above Beam Top Flange Figure 4.285 Macroetch of Specimen C7 Welds

4.13 Lateral Bracing Force

During testing of the Phase 1 specimens the lateral bracing force was monitored using a set of strain gauge rosettes placed on each lateral brace column. The lateral braces were placed approximately $d_b/2$ away from the end of the RBS. The response of each of the specimens is tabulated in Table 4.1 through Table 4.5. The table shows the expected flange force of the specimen as per AISC 341 and the computed flange force determined from the peak load during each cycle. Specimen C3, Specimen C5, and Specimen C6 develop about 2.0% of the flange force at the brace location at the end of testing. All three of these specimens failed during the 0.05 rad cycles. Specimen C4 develops about 5.0% of the flange force equal to 6.0% of the expected flange force or 7.6% of the measured force. The bracing force of Specimen C7 was not measured during testing.

The measured flange force was determined by dividing the measured moment at the brace location by the centroid between flanges. This procedure is consistent with AISC 341 (2016) §D1.2b stipulating the required force of the lateral bracing for highly ductile members.

		Flange Force at Br	ace Location (kips)	Measured	Normalized Brace Force	
Drift	Cycle			Brace	by Expected	by Measured
(rad)	eyere	Expected	Measured	Force	Flange	Flange Force
				(kips)	Force (%)	(%)
0.02	1		494	1.35	0.24	0.27
0.02	2		510	1.42	0.26	0.28
0.03	1		560	1.50	0.27	0.27
0.03	2	542	573	1.73	0.31	0.30
0.04	1		602	4.07	0.73	0.68
0.04	2		599	7.25	1.30	1.21
0.05	1		595	13.32	2.38	2.23

Table 4.1 Specimen C3: Lateral Bracing Force

Table 4.2 Specimen C4: Lateral Bracing Force

		Flange Force at Br	ace Location (kips)	Measured	Normalized Brace Force	
Drift	Cycle			Brace	by Expected	by Measured
(rad)	Cycle	Expected	Measured	Force	Flange	Flange Force
				(kips)	Force (%)	(%)
0.02	1		521	2.05	0.42	0.39
0.02	2		522	2.10	0.43	0.40
0.03	1		567	1.81	0.37	0.32
0.03	2		574	1.84	0.38	0.32
0.04	1	486	565	2.42	0.50	0.43
0.04	2		537	2.83	0.58	0.53
0.05	1		492	4.55	0.94	0.92
0.05	2		448	11.33	2.33	2.53
0.06	1		405	22.17	4.56	5.47

		Flange Force at Br	ace Location (kips)	Measured	Measured Normalized B	
Drift (rad)	Cycle	Expected	Measured	Brace Force (kips)	by Expected Flange Force (%)	by Measured Flange Force (%)
0.02	1	542	454	2.32	0.43	0.51
0.02	2		470	2.36	0.44	0.50
0.03	1		510	2.31	0.43	0.45
0.03	2		528	2.32	0.43	0.44
0.04	1		546	2.84	0.52	0.52
0.04	2		566	2.80	0.52	0.49
0.05	1		575	3.12	0.58	0.54
0.05	2		548	7.50	1.38	1.37

Table 4.3 Specimen C5: Lateral Bracing Force

Table 4.4 Specimen C6: Lateral Bracing Force

		Flange Force at Br	race Location (kips)	Measured	Normalized	Brace Force
Drift (rad)	Cycle		Maggurad	Brace	by Expected	by Measured
(Idd)		Expected	Weasured	(kips)	(%)	(%)
0.02	1		490	0.80	0.18	0.16
0.02	2		498	1.17	0.26	0.23
0.03	1		524	1.86	0.42	0.35
0.03	2	448	533	2.42	0.54	0.45
0.04	1		530	3.23	0.72	0.61
0.04	2		518	3.11	0.69	0.60
0.05	1		468	9.56	2.13	2.04

		Flange Force at Br	ge Force at Brace Location (kips)		Measured Normalized B	
Drift (rad)	Cycle	Expected	Measured	Brace Force (kips)	by Expected Flange Force (%)	by Measured Flange Force (%)
0.02	1		490	1.56	0.35	0.32
0.02	2		497	2.00	0.45	0.40
0.03	1		514	4.79	1.07	0.93
0.03	2		524	5.66	1.26	1.08
0.04	1	448	525	8.72	1.95	1.66
0.04	2		518	10.03	2.24	1.94
0.05	1		487	12.70	2.83	2.61
0.05	2		420	20.84	4.65	4.96
0.06	1		351	26.77	5.98	7.63

Table 4.5 Specimen C6-G: Lateral Bracing Force

5 DISCUSSION OF TEST RESULTS

5.1 General

This chapter presents the comparison of the performance of specimens from Phase 1 (Specimens C3, C4, C6, C6-G, and C7), Phase 2 (Specimens W1, W2, W3, and W4), and the pilot study completed in 2016 (Specimens C1 and C2). All the specimens with a 'C' prefix were one-sided, simulating an exterior RBS moment connection with or without continuity plates. The careful design of these specimens for testing resulted in the ability to investigate the existing code criteria regarding the implementation of continuity plates in SMFs. Three of these specimens (Specimens C3, C4, and C7) directly challenge the Lehigh Criterion (Eq. 1.16) by omitting continuity plates, despite the ratio of beam flange width to column thickness being greater than 6.0. The one-sided specimens used either a W36×150 beam or a W30×116 beam. The tested columns consisted of two different shallow column shapes (W14×211 and W14×257) and several deeper column shapes (W24×176, W24×192, and W27×235). Specimens C1, C2, C5, C6, and C6-G used continuity plates. Only one specimen used a doubler plate (Specimen C7) consisting of a single-sided plate to reinforce the column web.

Specimens with a 'W' prefix were two-sided, simulating an interior WUF-W connection with continuity plates. Specimen W1 used two W36×150 beams, the largest beam size permitted by AISC 358-16, adjoined to a W27×258 column. Specimen W2 used two W33×141 beams fastened to a W27×217 column. Specimen W3 used two W30×116 beams connected to a W24×207 column. Finally, Specimen W4 used two W24×94 beams connected to a W24×182 column. All of the two-sided specimens used a pair of symmetric doubler plates with either a PJP or fillet weld attachment to the column flange. One specimen, Specimen W4, used a doubler plate that was terminated inside the continuity plates, while the other three specimens used a typical extended doubler plate detail.

All of the specimens with a continuity plate used 2-sided fillet welds to attach the continuity plate to the column flange and column web. Except for Specimens C6 and C6-G, the size of these fillet welds satisfy the proposed design rule of $w = (3/4)t_{cp}$, where w is the specified weld size, and t_{cp} is the thickness of the continuity plate. The doubler plate in Specimen C7 is designed using the assumed shear flow (Eq. 2.25) derived from the equilibrium of the plate instead of, as required by AISC 341-16, developing the shear

strength of the plate. Doubler plate welds for Phase 2 specimens develop the shear strength of the plate. Because the doubler plates of Specimen W4 do not extend beyond the continuity plates, this specimen uses a weld to attach the horizontal edge of the doubler plate, a requirement of AISC 341-16. This horizontal fillet weld is designed as per requirements to develop 75% of the shear strength of the doubler plate.

5.2 Observed Response and Governing Failure Modes

All of the specimens completed the AISC prequalification for SMF. Specifically, all the specimens completed at least one cycle of 0.04 rad drift without the strength of the connection degrading below $0.8M_{pn}$. The one-sided connections failed either by fracture of the beam flange within the reduced beam section or failure of the top flange CJP weld. Specimens, including those with and without continuity plates, which ultimately failed due to weld fracture demonstrated early signs of ductile weld tearing during the initial 0.03 rad cycle drifts. During each negative excursion where the top flange was in tension, the weld tear progressed until the complete fracture of the weld. The weld tears started in the center of the beam flange at the toe of a prominent weld pass in the reentrant corner. The typical fracture was a ductile shear fracture that propagated at a 35-degree angle through the weld metal until a fracture occurred perpendicular to the direction of loading (e.g., see Figure 4.49). The specimens which ruptured through the beam flange at the reduced beam section developed fractures in the vicinity of the largest local buckling amplitudes. Specimen C7 had a multi-stage fracture, which originated with a cleavage fracture in the k-area of the beam adjacent to severe web local buckling of the beam. The final stage of the fracture resulted in a ductile fracture of the entire beam top flange. Specimen C1 from the pilot study was the only specimen not loaded to failure. Instead, loading of this specimen stopped once the strength of the connection had degraded below $0.8M_{pn}$. Finally, a single cycle of 0.07 rad was imposed on Specimen C2 after completing two cycles of 0.05 rad of the AISC loading protocol.

Phase 2 specimens all fractured through the beam top flange CJP weld (e.g., see Figure 4.182). This fracture developed at the CJP weld root at the notch at the junction between weld metal and steel backing. The initiation of this fracture was during the 0.03 rad drift cycles, and its gradual progression occurred through the weld metal along the CJP weld bevel. Final fracture surfaces resulted in a mixture of shear fracture and cleavage.

Extreme local curvatures influenced the fractures by providing secondary initiation sites at other locations in the CJP weld. Several partial tears of the beam bottom flange CJP weld extending downward from the inside face of the flange was observed. In one specimen, Specimen W2, this resulted in a partial fracture of the beam bottom flange (see Figure 4.184). Table 5.1 compares the story drift capacities of all 12 specimens. (The drift capacity of two-sided specimens is the lowest obtained drift from either beam.) Figure 4.108 summarizes the completed drifts and the distribution of elastic and inelastic drift components. The expected and experimentally determined continuity plate and doubler plate forces are tabulated in Table 5.2 and Table 5.3.

The peak connection strength factor, C_{pr} , as determined by comparing the experimentally determined moment at the AISC 358-16 assumed plastic hinge location to the actual plastic moment, M_{pa} , of the beam is shown in Figure 5.2. (The computed C_{pr} for the two-sided specimens is the average of the two beams.) The average C_{pr} for the eight RBS connections is 1.19, which is similar to the value of 1.15 assumed in AISC 341-16. The average C_{pr} for the four WUF-W connections (eight beams total) is 1.30, less than the value of 1.4 stipulated in AISC 358-16. Figure 5.3 shows the normalized dissipated energy of each specimen and the distribution of energy dissipation between the column, panel zone, and beams. The energy is normalized by the summation of the actual plastic moment, M_{pa} , of the beams at the connection (i.e., for the two-sided connections the energy is normalized by $2M_{pa}$). The distribution shows that Specimens C2 and C5 demonstrated significant panel zone yielding, while Specimen C3 showed moderate panel zone yielding. This conclusion is reinforced by comparing the measured panel zone shear force, V_{pz} , to the shear yielding strength of the panel zone (see Table 5.3). As predicted by the AISC 360-16 panel zone shear strength (Eq. 1.19), Specimens C4 and C7 did not dissipate energy through inelastic panel zone deformation.

Figure 5.4 shows the reserve energy ratio for each specimen. The reserve energy ratio is a metric that demonstrates a connection energy dissipation capacity beyond the single cycle of 0.04 rad drift as required by AISC 341-16. A value of 1 indicates no energy dissipation capacity after satisfying the minimum AISC qualification cycles. A value of 2, which was substantially achieved by Specimens C2, C4, C5, C6-G, W2, and W3, demonstrates that a connection has double the minimum required energy dissipation

capacity. The tested clear span-to-depth ratios are shown in Figure 5.5. Only Specimen W1 violated the AISC 358-16 minimum ratio of 7 for either RBS or WUF-W connections; this may explain the lowest reserve energy ratio by this specimen.

5.3 Effect of Galvanization

Specimen C6-G was nominally identical to Specimen C6, except the specimen was hot-dip galvanized before shop welding. Removal of the galvanization in the area of the connection was required to perform the simulated field welding. Zinc paint was then applied to the welded area to simulate standard practice. The load-displacement response of the two specimens was identical until the beam flange CJP weld fractured during 0.05 rad drift of Specimen C6 (see Figure 5.6). The discrepancy in cyclic performance between the two specimens is attributed to variability in toughness and geometry of the beam flange CJP welds. Therefore, for the specimens tested it appears that the galvanization did not affect the strength or the ductility capacity.

5.4 Continuity Plate Response

The specimens with continuity plates did not demonstrate any damage to the fillet weldments between the continuity plates and the column flanges or column webs. Except for Specimens C6 and C6-G, the continuity plate-to-column flange weld used a proposed weld size of $(3/4)t_{cp}$. Specimens C2 and C5 used the closest weld size that would develop at least $(3/4)t_{cp}$ (see Table 2.3).

According to the recorded strain gauge response of the continuity plates, all specimens, including Specimens C1 and C2, realized yielding or nearly yielding levels of strain (Mashayekh 2017). The limited amount of cyclic strain precludes significant hysteresis and strain hardening of the continuity plate. The yielding of Specimen C1, which is designed to remain elastic according to the flexibility design method, is explained through high levels of residual stresses in the continuity plates due to the welding of the plates. With the exception of Specimen C5, the strains in the continuity plates were limited to $2.5\epsilon_y$ (see Figure 5.7). The addition of cyclic buckling of the continuity plate used in Specimen C5 contributed to the recorded strain approaching $12\epsilon_y$ in tension; however, prior to buckling the strains were limited to $1.5\epsilon_y$ [see Figure 5.7(c)]. Therefore, most of the high strain response in C5 is attributed to the flexural buckling of the plate and not high membrane strains in the continuity plate. It is noted that the continuity plates of Specimen

C2, which used a continuity plate despite not requiring stiffening to satisfy FLB or WLY, still demonstrated yielding. This is attributed to the relative stiffness of the continuity plate.

Specimens W1 and W3 also show an asymmetric strain response; however, in this case, it is attributed to the lateral-torsional buckling of the adjacent beam [see Figure 5.7(e) and (g)]. The lateral-torsional buckling of the beam imposes an in-plane flexural demand to the continuity plate that exaggerates the compressive strains in the plate. Specimen W2 was the only specimen designed with an intentionally undersized continuity plate with a *DCR* of 1.43 (see Table 2.3). Instead of satisfying the governing column limit state, this continuity plate was sized based on matching 75% of the adjacent beam flange thickness as per AISC 341-16. Despite being undersized, the principal strains in the plate were limited to ϵ_y . This is attributed to a combination of two factors: (1) the measured peak flange force was 0.88 times the expected, and (2) the measured F_y value of the continuity plate material was 58.0 ksi. There appears to be no detrimental effect of two-sided connections on continuity plates. Before any lateral-torsional response of the beams, the axial response in the continuity plate near the column flange approximates equal and opposite pairs (e.g., see Figure 4.203). The shear response along the column web is substantially uniform (e.g., see Figure 4.206).

Specimen C5 was the only specimen that demonstrated buckling of the continuity plate. This buckling initiated at 0.04 rad drift during the peak beam flange force; local continuity plate curvature was straightened out during the tension excursions of the adjacent beam flange. Specimen C5 was designed with a width-to-thickness ratio of a continuity plate of 16. Three specimens were designed with a width-to-thickness ratio of 12—these specimens did not develop an instability during testing (see Table 5.2).

5.5 **Doubler Plate Response**

Only the design of the vertical welds adjoining the doubler plate to the column flange of Specimen C7 deviated from the provisions of AISC 341-16. This specimen and the four specimens with doubler plate weldments conforming to AISC 341 did not demonstrate any damage to the weldments. Specimen W4 utilized a doubler plate that was terminated within the continuity plates. The top and bottom edges of the doubler plate of this specimen was welded to the continuity plate using a fillet weld. This weld was the sole attachment of the

inside face of the continuity plate to the panel zone. No damage was observed in any of the weldments of this specimen.

Table 5.3 shows that the measured panel zone shear exceeded the yield strength of the plate in Specimen W1. This specimen observes the largest recorded strain in the center of the doubler plate (see Figure 5.8). Specimens W2, W3, and W4 have strains approaching the yielding strain in the middle of the doubler plate—consistent with the predicted behavior from Table 5.3. The edge of the doubler plate demonstrated higher shear strains, above $2\gamma_y$, as shown in Chapter 4. These locations experience local loading effects and high levels of residual stress. Figure 5.8 shows that the extended portion of the doubler plate shows negligible shear stress. Specimen W4, without the extended doubler plate, demonstrates a minor shear response corresponding to the shear of the column.

Specimen W3 used a doubler plate with a ratio of $(d_z + w_z)/t_{dp}$ of 102, which violates the AISC 341-16, limiting width-to-thickness ratio to 90. Despite the violation, doubler plate instability was not observed.

5.6 Column Limit States

Although the limit states of column flanges and webs under concentrated loads are implicitly investigated by all specimens in this test program, Specimens C3, C4, and C7 without continuity plates provide a unique opportunity to isolate the limit states.

5.6.1 Web Local Yielding (WLY)

Specimens C4 and C7 challenged the Lehigh Criterion by omitting continuity plates. The expected flange force of Specimen C4 was 611 kips, while the expected strength of the WLY limit state was 620 kips, resulting in a *DCR* of 0.99. Instrumentation of this specimen illustrated the WLY limit state by distributing five uniaxial strain gauges over a distance of 5k behind the beam flange at the toe of the column flange-to-column web radius. As discussed in Section 1.5.2, the distance of 5k was derived from experimental results, which confirmed a 2.5:1 diffusion of the beam flange force in the column web. The experimentally determined flange force of Specimen C4 was 667 kips—1.09 times higher than the expected flange force. The peak force occurred during the second cycle of 0.03 rad drift. The resulting peak flange force exceeds the estimated strength of the WLY limit state of 620 kips based on the actual yield stress (see Table 5.2). The local response of Specimen C4 demonstrates that, during the 0.03 rad drift cycles, yielding had distributed

over the 5k distance during the positive drift cycles. Negative excursions do not demonstrate yielding extending beyond 5k during the testing (see Figure 5.9). Continued positive excursions saw uniform incremental growth of the web strains. The difference between the positive and negative excursions is attributed to column warping producing an out-of-plane flexure of the column web during positive excursions when the beam top flange was in compression (see Figure 4.44). Therefore, despite the experimentally determined flange force exceeding the WLY limit state of the column by 8%, the limit state was not violated until 0.03 rad. The local response indicates peak cyclic strains of 0.01 in./in. ($5\epsilon_y$) directly behind the beam flange. The specimen failed by ductile tearing through the reduced beam section and not because the WLY was exceeded.

Specimen C7 was reinforced with a web doubler plate to satisfy the WLY limit state. The experimentally determined flange force of 594 kips is significantly lower than the actual WLY limit state of 917 kips. Despite this level of robustness, the local response of Specimen C7 demonstrated significant yielding in the column web and doubler plate over a distance of 5k (see Figure 5.10). This is attributed to the combined effect of warping of the column flange producing out-of-plane flexure of the column web and doubler plate. Additionally, the eccentric weldments of the doubler plate produce additional curvature, which exacerbates the extreme fiber measured strain response. Despite the additional flexural demands imposed on the column web and doubler plate, the specimen failed by ductile tearing through the reduced beam section.

Figure 5.11 shows that column web strains of Specimen W4 approached $1\epsilon_y$ adjacent to the continuity plate as the continuity plate yielded across its breadth (see Figure 5.12). This indicates that although the WLY limit state may be applicable to unreinforced columns that the significant plasticification that must occur to mobilize its full strength.

5.6.2 Flange Local Bending (FLB)

Localized yielding of the inside face of the column flange at the beam flange level was only observed in Specimen C4 (see Figure 5.13). Recorded strains in that region demonstrate strains of $4\epsilon_y$ at the edge of the column flange, diminishing to $2.5\epsilon_y$ several inches away [see Figure 5.14(a)]. Specimen C4 demonstrated strains on average of $3\epsilon_y$ with little gradient across the column flange [see Figure 5.14(b)]. Specimen C7 developed strains of $6\epsilon_y$, diminishing to $3.5\epsilon_y$ at the other gauge location [see Figure 5.14(c)]. It is noted that the recorded strains are influenced by the lateral-torsional response of the beam, which superimposes a weak-axis flexure on the beam flanges. Weak-axis flexure of the beams changes the distribution of the flange forces between sides of the column while keeping the net flange force unchanged. For the specimens tested, at the gauge location, the positive excursion demonstrated the highest peak strain.

The moderate levels of strains recorded behind the beam flange suggest the initiation of a FLB yield line mechanism; however, the inclined yield line that would be expected to extend (Prochnow et al. 2000) from the radius of the column outward at an inclination away from the beam flange was not observed.

5.7 **RBS Lateral Bracing Force**

During the Phase 1 testing program, the lateral bracing force of the lateral bracing at approximately $d_b/2$ away from the end of the RBS was monitored. The bracing force is normalized by the measured instantaneous beam flange force as determined from static equilibrium. Table 5.4 shows the computed normalized maximum bracing force recorded during testing. It is observed that the lateral bracing force of the specimens that terminated at 0.05 rad developed approximately 2% of the beam flange force. Specimen C6-G developed 5% of the measured flange force during the 0.05 rad drift cycles. Specimens C4 and C6-G developed 5.5% and 7.7%, respectively, of the measured flange force as per \$D1.2b of AISC 341-16 for highly ductile members. This provision requires 6% of the expected beam flange force to be used when designing lateral bracing.

Spec. No.	Beam	Column	Continuity Plate (in.)	Doubler Plate	Cycle at Failure	Failure Mode
C1 ^a	W30×116	W24×176	3/4	-	-	Not Tested to Failure (Stopped at 0.05 rad)
C2 ^a	W36×150	W14×257	5/8	-	1 st of 0.07 rad after 0.05 rad	RBS Fracture
C3	W36×150	W14×257	-	-	1 st of 0.05 rad	Beam Top Flange CJP Weld
C4	W30×116	W27×235	-		1 st of 0.06 rad	RBS Fracture
C5	W36×150	W14×211	3/8		2^{nd} of 0.05 rad	Beam Top Flange CJP Weld
C6	W30×116	W24×176	1/2		1 st of 0.05 rad	Beam Top Flange CJP Weld
C6-G	W30×116	W24×176	1/2		1 st of 0.06 rad	RBS Fracture
C7	W30×116	W24×192	-	1 × 5/8"	2^{nd} of 0.05 rad	RBS Fracture
W1	W36×150	W27×258	1/2	2 × 5/8"	2^{nd} of 0.04 rad	Beam Top Flange CJP Weld
W2	W33×141	W27×217	3/4	2 × 3/4"	2 nd of 0.06 rad	Beam Top Flange CJP Weld
W3	W30×116	W24×207	1/2	2 × 1/2"	2 nd of 0.06 rad	Beam Top Flange CJP Weld
W4	W24×94	W24×182	3/4	2 × 5/8"	1 st of 0.05 rad	Beam Top Flange CJP Weld

Table 5.1 Specimen Performance Comparison

a) Specimens tested and reported in Mashayekh and Uang (2018).

		Expected	per Design ^a			Experimental Results		
Spec. No.	Expected P _f (kips)	Cont. Plate <i>b/t</i>	$w^{\rm b}/t_{cp}$	FLB (kips)	WLY (kips)	Measured P_f^c (kips)	$\frac{\text{Measured } P_f}{\text{Expected } P_f}$	Local Buckling
C1	597	8.0	0.75	642	431	629	1.05	No
C2	745	9.6	0.80	1168	826	790	1.06	No
C3	738	-	-	1317	932	725	0.98	-
C4	611	-	-	859	620	667	1.09	-
C5	765	16.0	0.83	897	679	693	0.91	Yes
C6	582	12.0	1.00	640	430	627	1.08	No
C6-G	582	12.0	1.00	640	430	618	1.06	No
C7	558	-	-	799	917	594	1.07	-
W1	1127	12.0	0.75	1097	1716	997	0.88	No
W2	1002	7.8	0.75	816	1677	913	0.91	No
W3	826	11.0	0.75	894	1215	734	0.89	No
W4	745	7.3	0.75	527	1048	662	0.89	No

Table 5.2 Continuity Plate Design and Experimentally Determined Forces

a) Values tabulated for F_{ya} and $\phi = 1$, FLB and WLY calculated as per AISC 360 §J10.1 and §J10.2.

b) Weld size, *w*, tabulated for continuity plate-to-column flange fillet weld.

c) Measured P_f derived by assuming 85% of the beam moment at the column face is resolved in the flanges.

			H	Experimental Results						
Spec.	t _{dp} (in.)	Expected V _{pz} (kips)	Panel Zone ϕR_n^a (kips)	$\begin{array}{c} 0.6F_yd_ct_{pz} \\ (\text{kips}) \end{array}$	$\frac{d_z + w_z}{t_{cw}}$	$\frac{d_z + w_z}{t_{dp}}$	Doubler Plate Vertical Weld	Measured V_{pz}^{b} (kips)	$\frac{\text{Measured }V_{pz}}{\text{Expected }V_{pz}}$	Instability?
C1	-	596	745	664	68	-	-	620	1.04	No
C2	-	717	825	662	40	-	-	752	1.05	No
C3	-	710	761	611	40	-	-	691	0.97	No
C4	-	610	948	831	59	-	-	656	1.08	No
C5	-	678	626	518	48	-	-	661	0.97	No
C6	-	581	777	692	68	-	-	618	1.06	No
C6-G	-	581	777	692	68	-	-	609	1.05	No
C7	0.63	557	1494	1317	63	81	7/16 in. Fillet	585	1.05	No
W1	0.63	2040	2299	2173	61	95	РЈР	1951	0.96	No
W2	0.75	2063	2402	2303	68	76	РЈР	1747	0.85	No
W3	0.50	1729	1784	1672	58	102	11/16 in.	1439	0.83	No
W4	0.63	1472	1741	1661	64	72	7/8 in.	1367	0.93	No

Table 5.3 Doubler Plate Design and Experimentally Determined Forces

a) Values tabulated for F_{ya} and $\phi = 1$; panel zone strength determined as per AISC 360 Eq. J10-11.

b) Panel zone shear, V_{pz} , determined from equilibrium.

Spec. No.	Beam	Column	Connection	Failure of Specimen	Maximum Normalized Lateral Bracing Force
C3	W36×150	W14×257	RBS	1 st of 0.05 rad	2.2
C4	W30×116	W27×235	RBS	1 st of 0.06 rad	5.5
C5	W36×150	W14×211	RBS	2 nd of 0.05 rad	1.4
C6	W30×116	W24×176	RBS	1 st of 0.05 rad	2.0
C6-G	W30×116	W24×176	RBS	1 st of 0.06 rad	7.6

Table 5.4 Specimen Lateral Bracing Force Comparison

Figure 5.1 Summary of Specimen Story Drift Capacity

Figure 5.2 Summary of Measured Peak Connection Strength Factor, C_{pr}

Figure 5.3 Summary of Normalized Energy Dissipation Capacity

Figure 5.4 Summary of Reserve Energy Ratio

Figure 5.5 Summary of Beam Clear Span-to-Depth Ratio

Figure 5.6 Comparison of Specimens C6 and C6-G Responses

Figure 5.7 Continuity Plate Principal Strains

Figure 5.8 Doubler Plate Shear Strain Profiles (Positive Drift)

Figure 5.9 Specimen C4: Column Web Strain Profiles

Figure 5.10 Specimen C7: Comparison of Column Web and Doubler Plate Strains

Figure 5.11 Specimen W4: Panel Zone Strain Profile

Figure 5.12 Specimen W4: Continuity Plate at Column Flange Edge Strain Profile

(a) Overview

(b) Yielding

Figure 5.13 Specimen C4: Observed Column Flange Localized Yielding (End of Test)

Figure 5.14 Recorded Column Flange Response (Positive Drift)

6 SUMMARY AND CONCLUSIONS

6.1 Summary

Cyclic testing of ten full-scale steel moment frame connections was conducted to evaluate the efficacy of economized continuity plate and doubler plate weld details. Phase 1 of the testing included Specimens C3, C4, C5, C6, C6-G, and C7. The Phase 1 specimens were one-sided RBS connections tested in the upright position with a single 220-kip hydraulic actuator. Phase 2 of the testing included Specimens W1, W2, W3, and W4. The Phase 2 specimens were two-sided WUF-W connections tested in the horizontal position with two 500-kip hydraulic actuators. The testing was performed in displacement control to impose a prescribed drift according to the standard AISC cyclic loading sequence, as specified in the 2016 Seismic Provisions (AISC 341-16). In the case of the two-sided specimens, imposed drifts were applied equal and opposite on either side of the connection. These ten specimens are accompanied by Specimens C1 and C2, which were tested previously as part of a pilot project (Mashayekh and Uang 2018).

The Phase 1 specimens were carefully designed to investigate the applicable column limit states of Flange Local Bending (FLB) and Web Local Yielding (WLY). The omission of Web Local Crippling (WLC) from the investigation was because it is found to seldom govern the design of column stiffening of Special Moment Frames (SMFs). Three of these specimens were designed to directly challenge a criterion in AISC 341-16, which imposes a minimum thickness of an unstiffened column flange to be equal to the adjacent beam flange width divided by 6. This criterion is named as the Lehigh Criterion in this study after the institution of the founding study (Ricles et al. 2000). Specimen C7 challenged this criterion by reinforcing the governing column limit state, WLY, by the addition of a column web doubler plate. Since this doubler plate was not required based on the shear strength requirement of the panel zone, a new design methodology to design the vertical welds was applied in lieu of the stringent requirements imposed by the provisions in AISC 341-16.

The Phase 2 specimens were designed to subject the continuity plates to a higher level of force that is realized by the WUF-W connection and investigate the effect of a continuity plate stiffening of two-sided connections. Since a relatively high panel zone shear force was anticipated in the Phase 2 specimens, the doubler plate weldments were designed as per AISC 341-16 to develop the shear strength of the plate. Specimen W4 used a doubler plate that was terminated inside the continuity plates, while the other three specimens used an extended doubler plate detail.

All of the specimens that had continuity plates used two-sided fillet welds to attach the continuity plate to the column flange and column web. Except for Specimens C6 and C6-G, the size of these fillet welds satisfy the proposed design rule of $w = (3/4)t_{cp}$, where w is the specified weld size, and t_{cp} is the thickness of the continuity plate. All of the Wshaped beams and columns were fabricated from ASTM A992 steel, while the continuity and doubler plates were fabricated from ASTM A572 Gr. 50 steel. Simulated field welding of the beam top and bottom flange CJP welds were performed in the shop with the frame standing in the upright position. Beam flange CJP welds used an E70T-6 (Lincoln Electric NR-305) electrode in the flat position. The beam web, the reinforcing fillet on the beam top flange backing, and the reinforcing fillet on the beam bottom flange were welded with an E71T-8 (Lincoln Electric NR-232) electrode in the vertical and overhead positions. The continuity plate and doubler plate welds were shop welded with an E70T-9C (Lincoln Electric OSXLH-70) electrode. The electrodes used for the continuity plate and doubler plate welding satisfy the notch-toughness requirements of AWS D1.8 (2016) for Demand Critical welds. Specifically, they have a minimum notch-toughness of 20 ft-lb at 0°F and 40 ft-lb at 70°F.

All of the specimens passed the AISC Acceptance Criteria for SMF applications, i.e., all specimens achieved at least one cycle of 0.04 rad story drift angle while not experiencing a strength degradation resulting in a moment capacity less than 80% of the beam nominal plastic moment at the column face. After passing the Acceptance Criteria, the Phase 1 specimens eventually failed either through low-cycle fatigue of the beam in the reduced beam section (Specimens C4, C6-G, and C7) or through fracture of the beam top flange CJP weld (Specimens C3, C5, and C6). Specimens that failed through fracture of the beam top flange demonstrated initial tearing of the beam top flange CJP weld during the 0.03 rad drift cycles. The tearing initiated at the toe of a prominent weld pass on the top surface of the CJP weld slightly outward of the re-entrant corner formed by the beam top flange and column flange. Continued ductile tearing of the weld occurred during each negative excursion when the beam top flange was loaded in tension. The fracture

propagated through the weld metal at an angle of about 35°. Eventual fracture of the beam top flange CJP weld occurred primarily through cleavage and ductile fracture once the remaining material was overloaded.

The Phase 2 specimens all failed eventually through fracture of the beam top flange CJP weld. This fracture primarily initiated at the beam flange CJP weld root, where the root of the weld met the backing bar. Secondary initiation sites developed in the CJP weld from extreme local curvatures that developed due to the flange local buckling at the plastic hinge near the face of the column. Ductile tearing of the weld was observed during excursions which put the affected flange in tension. Tearing of the weld tended to propagate outward along the CJP weld bevel until a cleavage fracture occurred. No damage was observed to any of the continuity plates or doubler plate welds. Except for the continuity plate of Specimen C5, yielding of the continuity plate was limited to $2.5\epsilon_y$ according to measurements of principal strains near the column flange edge. Specimen C5 was the only specimen that showed buckling of the continuity plate. The high strains observed in the continuity plate of Specimen C5 were due to local buckling of the plate.

Except for Specimens C2 and C5, the primary mechanism for energy dissipation was the plastic hinging of the beam. Instead, these two specimens developed significant energy dissipation in the panel zones. All of the specimens presented reserve energy ratios above 1.3, demonstrating that significant reserve energy dissipation potential exists beyond the AISC minimum criteria (including one cycle of 0.04 rad drift) for connection prequalification. The specimen which realized the least reserve energy capacity had a clear span-to-depth ratio of 6.8, slightly violating the limit imposed by the AISC 358-16 requirement of 7.0. The relatively poor performance of this specimen might be partially attributed to the relatively high beam moment gradient (i.e., high shear) of this specimen.

6.2 Conclusions

The following conclusions can be made:

- All of the specimens tested in this program passed the AISC Acceptance Criteria for Special Moment Frames.
- (2) Three of eight RBS connections failed through ductile tearing of the beam top flange CJP weld. The tear propagated for several tension excursions in a ductile manner through the weld metal until a brittle overload of the remaining flange material

occurred. The propensity to fracture is attributed to variability in weld surface topology (i.e., how sharp the re-entrant corner is formed between the beam flange and column flange) and variability in weld notch toughness. This assertion is confirmed by the observation that the two nominally identical specimens (Specimens C6 and C6-G) failed through different mechanisms.

- (3) Including the pilot program (Specimens C1 and C2), a total of nine specimens were tested with fillet welds fastening the continuity plate to the column flange. Most of these specimens (seven) used a proposed fillet weld size, w, of $(3/4)t_{cp}$. The remaining two specimens were conservatively designed with $w = t_{cp}$. No damage was observed in any fillet welds. Therefore, the AISC 341-16 requirement to connect the continuity plate to the column flange with CJP groove welds may be unnecessary.
- (4) The continuity plate of Specimen C5 developed local buckling during the 0.04 rad drift cycles. The width-to-thickness ratio of this plate was 16. Three specimens (Specimens C6, C6-G, and W1) used a width-to-thickness ratio of 12 and did not develop any instability. A width-to-thickness ratio equal to $0.56\sqrt{E/F_y}$, which limits the width-to-thickness of continuity plates fabricated with Grade 50 material to 13.5, is recommended.
- (5) Except for the continuity plate of Specimen C5, recorded principal strains were limited to $2.5\epsilon_y$. The recorded strains of Specimen C5 were limited to ϵ_y prior to flexural buckling of the continuity plate during the first 0.04 rad drift cycle. The limited amount of cyclic strain precludes significant hysteresis and strain hardening of the continuity plate. Except for the continuity plate of Specimen W2, all of the continuity plates satisfied the column strength limit states of §J10 in AISC 360-16. Specimen W2 used an undersized continuity plate that instead satisfied the thickness requirement of 75% of the adjacent beam flange for a two-sided connection. Therefore, sizing a continuity plate for the column strength limit states of §J10 in AISC 360-16 appears to limit inelastic strains preventing strain hardening from occurring.
- (6) A detailed review of the limiting column flange thickness of $b_{bf}/6$ given by §E3.6f.1(b) in AISC 341-16 provided in Chapter 1 of this report reveals consecutive simplification of the limit from a low-cycle fatigue analysis performed on WUF-W

connections. The violation of this criterion for three RBS specimens of Phase 1 (Specimens C3, C4, and C7) indicates that this criterion may be unnecessarily applied to RBS connections. As discussed in Chapter 1, this criterion triggers the mandatory use of continuity plates in a significant number of RBS connections, which may be relatively lightly loaded when compared to a typical WUF-W connection.

- (7) The Web Local Yielding (WLY) limit state in AISC 360-16 §J10.2 appears to correspond well with the prediction despite the application of cyclic loading. It is noted that column warping produces out-of-plane flexural strains in the column web, which are superimposed on the predicted web strains.
- (8) The Flange Local Bending (FLB) limit state AISC 360-16 §J10.1 was found to be developed in a conservative way by selectively limiting parameters to conservative values. The level of conservatism that was enjoyed by the original derivation (Graham et al. 1960) is expected to drop off as heavier sections are selected. Although localized column flange yielding was observed on the inside face of the column flange at the beam flange level, a complete yield line mechanism was not anticipated or observed.
- (9) Specimen C7 used a relatively lightly loaded doubler plate such that inelastic behavior of the plate was not anticipated. The vertical weldments attaching this plate to the inside faces of the column flanges were designed for the computed shear flow on the edge of the doubler plate based on the relative elastic stiffness. This fillet weld was undersized by a factor of 2, according to AISC 341-16, but did not demonstrate any damage during testing. The fillet weld throat was maintained through the doubler plate bevel by specifying that the bevel angle shall be 45°.
- (10) One specimen, Specimen W3, used a doubler plate with a $(w_z + d_z)/t_{dp}$ ratio of 102, which violated the AISC 341-16 width-to-thickness limit of 90. No instability of this doubler occurred during testing.
- (11) The lateral bracing force of a lateral brace placed approximately d/2 away from the end of the RBS was limited to 5% of the flange force during the 0.05 rad drift cycles. During the 0.06 rad drift cycles, one specimen, Specimen C6-G, saw a lateral bracing force equal to 7.6% of the flange force. This column was a W24×176 shape, representing a deeper column section. Another specimen, Specimen C4, developed

lateral bracing forces of 5.5% during the 0.06 rad drift cycles. In general, the deeper column sections require higher bracing forces, but the force requirements are bounded within the AISC 341-16 requirements during the cycles up to 0.05 rad drift.

- (12) The average peak connection strength factor for the eight one-sided RBS connections of Phase 1 was determined to be 1.19. This is slightly higher than the recommended value of 1.15 as per AISC 341-16.
- (13) The average peak connection strength factor for the four two-sided WUF-W connections of Phase 2 was determined to be 1.30. This results in a 10% reduction in estimated flange force when compared to the recommended value of 1.4 as per AISC 341-16.
- (14) A duplicate RBS specimen that used the same design details and metallurgical properties was hot-dip galvanized before simulated field welding. This specimen performed better, completing one additional cycle of 0.05 rad drift and one additional cycle of 0.06 rad drift. The better performance is not attributed to the effect of galvanization. Therefore, for the one specimen tested, it appears that the galvanization did not affect the strength or the ductility capacity of the connection.

REFERENCES

- Abbas, E.K., (2015). "A low Cycle Fatigue Testing Framework for Evaluating the Effect of Artifacts on the Seismic Behavior of Moment Frames." *Ph.D Dissertation*, Viginia Polytechnic Institute, Blacksburg, VI.
- American Institute of Steel Construction (1992). "Seismic Provisions for Structural Steel Buildings." ANSI/AISC 341, Chicago, IL.
- American Institute of Steel Construction (1997). "Seismic Provisions for Structural Steel Buildings." ANSI/AISC 341, Chicago, IL.
- American Institute of Steel Construction (2005). "Seismic Provisions for Structural Steel Buildings." ANSI/AISC 341-05, Chicago, IL.
- American Institute of Steel Construction (2010). "Seismic Provisions for Structural Steel Buildings." ANSI/AISC 341-10, Chicago, IL.
- American Institute of Steel Construction (2016). "Specifications for Structural Steel Buildings." ANSI/AISC 360-16, Chicago, IL.
- American Institute of Steel Construction (2016b). "Seismic Provisions for Structural Steel Buildings." ANSI/AISC 341-16, Chicago, IL.
- American Institute of Steel Construction (2016c). "Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, including Supplement No. 2." ANSI/AISC 358, Chicago, IL.
- American Institute of Steel Construction (1997). "AISC Advisory Statement on Mechanical Properties Near the Fillet of Wide Flange Shapes and Interim Recommendations January 10, 1997." *Modern Steel Construction*, Vol. 37, No. 2, pp. 18.
- American Society of Civil Engineers 7 (2016). "Minimum Design Loads and Associated Criteria for Buildings and Other Structures." *ASCE/SEI* 7-16, Reston, VA.
- American Welding Society (2016). "Structural Welding Code–Seismic Supplement." AWS D1.8, Miami, FL.
- Anderson, T.L. (2017). "Fracture Mechanics: Fundamentals and Applications." CRC Press, Boca Raton, FL.
- Bjorhovde, R., Goland, L J., Benac, D. J. (1999). "Tests of Full-Scale Beam-to-Column Connections." *Internal Report*, Southwest Research Institute, San Antonio, Texas.
- Carter, C. J. (1999). "Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications." *Design Guide 13*, AISC, Chicago, IL.

- Chi, W.-M., Deirerlein G.G., Ingraffea, A. (1997). "Finite Element Fracture Mechanics Investigation of Welded Beam-Column Connections." *Report No. SAC/BD -97/05*, SAC Joint Venture, Sacramento, CA.
- Chi, W.-M., Kanvinde, A.M., Deirelein, G.G. (2006). "Prediction of Ductile Fracture in Steel Connections using SMSC Criterion." *Journal of Structural Engineering*, ASCE Vol. 132, No. 2, pp. 171-181.
- Chi, B., and Uang, C-M. (2002). "Cyclic Response and Design Recommendations of Reduced Beam Section Moment Connections with Deep Columns." *Journal of Structural Engineering*, ASCE, Vol. 128, No. 4, pp. 464-473.
- Deierlein, G. G., Chi W. M. (1999). "Integrative Analytical Investigation on the Fracture Behavior of Welded Moment Resisting Connections." *Report No. SAC/BD -99/15*, SAC Joint Venture, Sacramento, CA.
- Dexter, R. J., Prochnow, S. D., Perez, M. I. (2001), "Constrained Through-Thickness Strength of Column Flanges of Various Grades and Chemistries." *Engineering Journal*, AISC, Vol. 38, No. 4, pp. 181-189.
- Doswell, B. (2015) "Plastic Strength of Connection Elements." *Engineering Journal*, AISC, Vol 52, No. 1, pp. 47-66.
- El-Tawil, S., Mikesell, T., Kunnath, S. K. (2000) "Effect of Local Details and Yield Ratio on Behavior of FR Steel Connections." *Journal of Structural Engineering*, ASCE, Vol. 126, No. 1, pp. 79-87.
- El-Tawil, S., Vidarsson, E., Mikesell, T., Kunnath, S. (1999), "Inelastic Behavior and Design of Steel Panel Zones." *Journal of Structural Engineering*, ASCE, Vol 125, No. 2, pp. 183-193.
- Engelhardt, M. D. (1999), "Design of Reduced Beam Section Moment Connections." *Proceedings, North American Steel Construction Conference*, Toronto, Ontario, May 19-21, 1999, AISC, Chicago, IL.
- Engelhardt, M. D., Husain, A. S., (1993). "Cyclic-Loading Performance of Welded Flange-Bolted Web Connections." *Journal of Structural Engineering*, ASCE, Vol. 19, No. 12, pp. 3537-2550.
- Engelhardt, M. D., Venti, M.J., Fry, G.T., Jones, S.L., Holliday, S.D. (2000), "Behavior and Design of Radius Cut Reduced Beam Section Connections." *Report No. SAC/BD-*00/17, SAC Joint Venture, Sacramento, CA.
- Engelhardt, M. D., Sabol, T.A. (1997). "Seismic-resistant steel moment connections: developments since the 1994 Northridge earthquake." *Earthquake Engineering and Structural Dynamics*, Vol. 1, No.1, pp. 68-76.

- Engelhardt, M. D., Winneberger, T., Zekany, A. J., Potyraj, T. J. (1998), "Experimental Investigation of Dogbone Moment Connections." *Engineering Journal*, AISC, Vol. 35, No. 4, pp. 128-139.
- Federal Emergency Management Agency (2000a). "Recommended Seismic Design Criteria for New Steel Moment Frame Buildings." *FEMA 350*, Washington, DC.
- Federal Emergency Management Agency (2000b). "Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment Frame Buildings." FEMA 351, Washington, DC.
- Federal Emergency Management Agency (2000c). "Recommended Postearthquake Evaluation and Repair Criteria for Welded Steel Moment-Frame Buildings." FEMA 352, Washington, DC.
- Federal Emergency Management Agency (2000d). "Recommended Specifications and Quality Assurance for Steel Moment Frame Construction for Seismic Applications." *FEMA 353*, Washington, DC.
- Federal Emergency Management Agency (2000e). "A Policy Guide to Steel Moment Frame Construction." *FEMA 354*, Washington, DC.
- Federal Emergency Management Agency (2000f). "State of Art Reports on Steel Moment Frame Structures." *FEMA 355A through FEMA 355F*, Washington, DC.
- Goel, S. C., Stojadinvic, B., Lee, K-H. (1997), "Truss Analogy for Steel Moment Connections." *Engineering Journal*, AISC, Vol. 34, No. 2, pp. 43-53.
- Graham, J. D., Sherbourne, A.N., Khabaz, R. N., Jensen, C. D. (1960). "Welded Interior Beam-to-Column Connections." Welding Research Council, No. 63, pp. 1-28.
- Gupta, U. (2013), "Cyclic Loading Analysis of Doubler Plate Attachment Details for Steel Moment Resisting Frames." *Masters Thesis*, University of Texas at Austin.
- Hamburger, R. O. (2006). "Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications." *Structures Congress*, ASCE.
- Hamburger, R. O., and Malley, J.O. (2016), "Seismic Design of Steel Special Moment Frames: A Guide for Practicing Engineers." *Seismic Design Technical Brief No. 2*, National Institute of Standard and Technology, Gaithersburg, MD.
- Hancock, J. W., Cowling, M. J. (1980). "Role of State of Stress in Crack-tip Failure Processes." *Metal Science*, Vol. 14, No. 8, pp. 234-304.
- Hancock, J. W., Mackenzie, A. C. (1976), "On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-Axial Stress-States." *Journal of the Mechanics and Physics of Solids*, Vol. 24, pp. 147-169.

- Han, S. W., Moon, K.H., Jung, J. (2014), "Cyclic Performance of Welded Unreinforced Flange-Welded Web Moment Connections." *Earthquake Spectra*, Vol. 30, No. 4, pp. 1663-1681.
- Han, S. W., Jung, J., Ha S. J. (2016), "Seismic Performance of WUF-W Moment Connections According to Access Hole Geometries." *Earthquake Spectra*, Vol. 32, No. 2, pp. 909-926.
- Han, S. W., Kim, N., H, (2017), "Permissible Parameter Ranges of Access Hole Geometries for WUF-W Connections." *Earthquake Spectra*, Vol. 33, No. 2, pp. 687-707.
- Hajjar, J. F, Dexter, R.J., Ojard, S.D., Ye, Y., Cotton S.C. (2003). "Continuity Plate Detailing for Steel Moment-Resisting Connections." *Engineering Journal*, AISC, Vol. 40, No. 4, pp. 189-211.
- Hajjar, J. F., Leon, R. T., Gustafson, M. A., Shield, C. K. (1998). "Seismic Response of Composite Moment-Resisting Connections. II: Behavior." *Journal of Structural Engineering*, ASCE, Vol. 124, No. 8, pp. 877-885.
- Johnson, M. Q., Mohr, B., Barsom, J. (2000). "Evaluation of Mechanical Properties in Full-Scale Connections and Recommended Minimum Weld Toughness for Moment Resisting Frames." *Report No. SAC/BD 00/14*, SAC Joint Venture, Sacramento, CA.
- Kanvinde, A. M., Deierlein, G.G. (2004). "Micromechanical Simulation of Earthquake Induced Fracture in Steel Structures." *Report No. TR. 145*, Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
- Kanvinde, A. M. (2017). "Predicting Fractures in Civil Engineering Steel Structures: State of the Art." *Journal of Structural Engineering*, ASCE, Vol. 143, No. 3.
- Kaufman, E. J, Xue, M., Lu, K-W., Fisher, J.W. (1996a). "Achieving Ductile Behavior of Moment Connections." *Modern Steel Construction*, AISC, Vol. 36, No. 1, pp. 30-39.
- Lee, C-H., Jeon, S-W., Kim, J-H., Uang, C-U. (2005), "Effects of Panel Zone Strength and Beam Web Connection Method on Seismic Performance of Reduced Beam Section Steel Moment Connections." *Journal of Structural Engineering*, ASCE, Vol. 131, No. 2, pp. 1854-1865.
- Lee, C-H., Cotton. S. C, Hajjar, J. F., Dexter, R. J. (2005a), "Cyclic Behavior of Steel Moment-Resisting Connections Reinforced by Alternative Column Stiffener Details I. Connection Performance and Continuity Plate Detailing." *Engineering Journal*, AISC, Vol. 42, No. 4, pp. 189-214.
- Lee, C-H., Cotton. S. C, Hajjar, J. F., Dexter, R. J. (2005b), "Cyclic Behavior of Steel Moment-Resisting Connections Reinforced by Alternative Column Stiffener Details II. Panel Zone Behavior and Doubler Plate Detailing." *Engineering Journal*, ASCE, Vol. 42, No. 4, pp. 189-214.

- Malley, J. O., Frank, K. (2000), "Materials and Fracture Investigations in the FEMA/SAC Phase 2 Steel Project." *Proceedings, 12th World Conference on Earthquake Engineering*, Auckland, New Zealand.
- Mashayekh, A. (2017). "Sloped Connections and Connections with Fillet Welded Continuity Plates for Seismic Design of Special Moment Frames." *Ph.D Dissertation*, Department of Structural Engineering, University of California, San Diego, CA.
- Mashayekh, A., Uang, C-M. (2018). "Experimental Evaluation of a Procedure for SMF Continuity Plate and Weld Design." *Engineering Journal*, AISC, Vol 55, No. 2, pp. 109-122.
- Matos C. G., Dodds, R.H. (2000). "Modelling the Effects of Residual Stresses on Defects in Welds of Steel Frame Connections." *Engineering Structures*, Vol. 22, No. 9, pp. 1103-1120.
- Mao, C., Ricles, J., Lu, L-W., Fisher, J. (2000). "Effect of Local Details on Ductility of Welded Moment Connections." *Journal of Structural Engineering*, ASCE, Vol. 127, No. 9, pp. 1036-1044.
- Paret, T. F, (2000), "The W1 Issue. I: Extent of Weld Fracturing During Northridge Earthquake." *Journal of Structural Engineering*, ASCE, Vol .126, No. 1, pp. 10-18.
- Popov, E. P., Amin, N.R., Louie, J.C., Stephen, R.M. (1986). "Cyclic Behavior of Large Beam-Column Assemblies." *Engineering Journal*, AISC, Vol. 23, No. 1, pp. 9-23.
- Popov, E. P., Pinkney, B., (1971). "Cyclic Yield Reversals in Steel Building Connections." *Engineering Journal*, AISC, Vol. 8, No. 3, pp. 66-79.
- Popov, E. P., Blondet, M., Stepanov, L., Stojadinovic, B. (1996). "Full-Scale Beam-Column Connection Tests." *Experimental Investigations of Beam-Column Subassemblages, Report No. SAC 96-01, Part 2*, Applied Technology Council, Redwood City, CA.
- Prochnow, S. D., Dexter, R. J., Hajjar, J. F., Ye, Y., Cotton, S. C. (2000). "Local Flange Bending and Local Web Yielding Limit States in Steel Moment Resisting Connections." *Structural Engineering Report No. ST-00-4*, University of Minnesota, Minneapolis, MN.
- Rice, J. R., Tracey, D. M. (1969), "On the Ductile Enlargement of Voids in Triaxial Stress Fields." *Journal of the Mechanics and Physics of Solids*, Vol. 17, pp. 201-217.
- Ricles, J. M, Mao, C., Lu, L-W., Fisher, J.W. (2000). "Development and Evaluation of Improved Details for Ductile Welded Unreinforced Flange Connections." *Report No.* SAC/BD-00/24, SAC Joint Venture, Sacramento, CA.
- Ricles, J. M., Mao, C., Lu, L-W., Fisher, J. M. (2002), "Inelastic Cyclic Testing of Welded Unreinforced Moment Connections." *Journal of Structural Engineering*, ASCE, Vol. 128, No. 4, pp. 429-440.

- Ricles, J. M., Mao, C., Lu, L-W., Fisher, J. M. (2003), "Ductile Details for Welded Unreinforced Moment Connections Subjected to Inelastic Cyclic Loading." *Engineering Structures*, Vol. 25, No. 5, pp. 667-680.
- Sherbourne, A. N., Jensen C. D. (1957). "Direct Welded Beam Column Connections." *Report No. 233.12*, Fritz Laboratory, Lehigh University, Bethlehem, PA.
- Shirsat, P. S., Engelhardt, M. D. (2012), "Preliminary Analysis of Doubler Plate Attachment Details for Steel Moment Frames." *Proceedings*, 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
- Smith, C. M., Deierlein, G. G., Kanvinde, A. M. (2014). "A Stress-Weighted Damage Model for Ductile Fracture Initiation in Structural Steel Under cyclic Loading and Generalized Stress States." *Report No. TR. 187.* Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
- Tide, R. H. R. (2000). "Evaluation of Steel Properties and Cracking in the "k"-Area of W Shapes." *Engineering Structures*, Vol. 22, No. 2, pp. 128-134.
- Tran, T. T, Hasset, P.M., Uang, C-M. (2013). "A Flexibility-Based Formulation for the Design of Continuity Plates in Steel Special Moment Frames." *Engineering Journal*, AISC, Vol. 50, No. 3, pp. 181-200.
- Tremblay, R., Timler, P., Bruneau, M., Filiatrault, A. (1998). "Performance of Steel Structures during the 1994 Northridge Earthquake." *Canadian Journal of Civil Engineering*, Vol. 22, No. 2, pp. 338-360.
- Uniform Building Code (1988). International Conference of Building Officials, Whittier, CA.
- Uang, C.-M., Yu, Q.-S., Noel, S., Gross, J. (2000). "Cyclic Testing of Steel Moment Connections Rehabilitated with RBS of Welded Haunch." *Journal of Structural Engineering*, Vol. 126, No. 1, pp. 57-68.
- Uang, C.-M., Bondad, D. (1996). "Static cyclic Testing of pre-Northridge and Haunch Repaired Steel Moment Connections." *Rep. No. SSRP-96/02*, SAC, Sacramento, CA.
- Yee, R. K., Paterson, S. R., Egan, G. R. (1998), "Engineering Evaluations of Column Continuity Plate Detail Design and Welding Issues in Welded Steel Moment Frame Connections." Welding for Seismic Zones in New Zealand, Aptech Engineering Services, Inc., Sunnyvale, CA.

APPENDIX A: DESIGN DRAWINGS

APPENDIX B: WELD INSPECTION REPORTS

TESTING & INSPECTION REPORT

market on use Ryan E. Bordenkecher	TESTING & INSPECTION	REPORT				PAGE: 1 of 2
A CONTROL OF MOCK-Up Analysis and a second a sec	INSPECTOR NAME: Ryan F	Bordenkecher		JOB NUMBER: 9870		DATE: 9/26/18
	JOB NAME: ALSC Mock-I	In		DEA FILE # / OSHPD INC. # NA		0/20/10
The second	ADDRESS: 5454 Industri	al Pkwy San Berna	dino. CA 92/07	DEA APPL #/OSHPO PERMIT # NA		
Control VA C	GENERAL NIA	arr wy, oan berna	1110, OA 32401	JURISDICTION: A ICC		
NPA SUM SUM SUM SUM HERMINEERSE: List and a bandhor, one participate information that by the part of DEC books, facility identifies the superflow the participate information and a superflow the	ARCHITECT: N LA	c	NONCER	BUBCONTRACTOR		line Cteel/Herrick
Model Reserve is an advanced product back and a specific time and in second part of the Structure product state advanced part of the Structure Structure state advanced part of the Structure Struc	INA		INA		San Demac	ano Steel/Herrick
BiolulAR 156 24 Take IN Take IN Take IV MeAL PERIOD Buo Field AR 215 PM 30 Min. Dec Celementor or work KRECTED Decodement or work KRECTED Decodement or work KRECTED Arried on location at 3an Bernalino Steel/Heink to provide continuous visual inspection and perform non-destructive testing of the modified re-design of moment frame weided connections to be destructively tested at UCSD Seismic Testing Facility in San Diego, CA. Verified weiding performed by certified personnel using approved materials, consumables, and weid procedures for steel moment frame seismic resistant design per AWS D1.8 and ALSC at 19 Seismic Provision. Reviewed mock-up drawings to include weided joint configuration, fil-up tolerances, weld types, and backing. Verified proper fit-up, pre-heat, weiding sequence, equipment parameters, workmanship and technique are in compliance with approved mock-up drawings and current code requirements for seismic design. Weiding of picce marks identified as 30001/1A (RBS WF beam) to 10001/1A (WF column): -3001/1A HT#H403880 (AR02) Visually inspected/accepted complete joint penetration groove weids at topbottom flanges and web per AWS D1.1 Section 6, Part C 6.9, Table 6.1. Visually inspected/accepted complete joint penetration groove weids and magnetic particle examination of run-off tab removal/reinforcing filet weids to be performed after a 24-hour cooling period has been reached. 109-001-18 CENTPEALE OF COMPLIANCE Non 45000HIM (MS RDS) Non 45000HIM (M	REQUIREMENTS: Limit one job numb Communication (R	er, one permit number per sheet. Identify a FI, Sketch etc.) volding previous non-comp	I work by type and SPECIFIC location lant items must be listed, record conv HOI	 Each joint must be specifically identified ensitions and communications with project URS. 	for SSWHS boil inspection. Non-com t designers, building and permit grant	plant work must be specifically identified. ing authority officials.
0	REGULAR	1.5X	2X	TIME IN	TIME OUT	MEAL PERIOD
Control of the model of the model of the model of the model of the modified re-design of moment frame welded connections to be destructively tested at UCSD Seismic Testing Facility in San Diego, CA. Verified welding performed by certified personnel using approved materials, consumables, and weld procedures for steel moment frame seismic resistant design per AWS D 1.8 and AISC 241 Seismic Provision. Reviewed mode-up drawings to include welded point configuration, fil-up tolerances, weld types, and backing. Verified welding or pice marks identified as 30001/IA (RBS WF beam) to 10001/IA (WF column): 30001/IA httPM030862 (A902) Visually inspected/accepted complete joint penetration groove welds at topbottom flanges and web per AWS D 1.1 Section 6, Part C 6.9, Table 6.1. Visually inspected/accepted fillet welded environing fillet welds at top fange backing bar left in place and bottom flange removed backing bar per AWS D 1.1 Section 6, Part C 6.9, Table 6.1. Visually inspected/accepted fillet weldse inforcing fillet welds at top fange backing bar left in place and bottom flange removed backing bar per AWS D 1.1 Section 6, Part C 6.9, Table 6.1. Non-destructive ultrasonic flaw detection of CJP groove welds and magnetic particle examination of run-off tab removal/reinforcing fillet welds to be performed after a 24-hour cooling period has been reached. Ide-001-18 CERTPECATE OF COMPLIANCE The work was inspected in the approved documents Yes Non-destructive ultrasonic flaw detection of CJP groove welds and magnetic particle examination of run-off tab removal/reinforcing fillet welds to be performed after a 24-hour cooling period has been reached. Ide-001-18 CERTPECATE OF COMPLIANCE The work was inspected in the approved documents Yes Non-compliance with the approved document Yes Non-compliance with the approved document Yes Non-compliance with the approved document Yes Non-compliance with the approved d	Stop X Field	ᆈᄱ	T Meterial ID	0:40 AM	2:10 PM	30 Min.
Arrived on location at San Bernadino Steel/Herrick to provide continuous visual inspection and perform non-destructive testing of the modified re-design of moment frame welded connections to be destructively tested at UCSD Seismic Testing Facility in San Diego, CA. Verified welding performed by certified personnel using approved materials, consumables, and weld procedures for steel moment frame seismic resistant design per AVX 51 Seismic Provision. Reviewed mock-up drawings to include welded joint configuration, fil-up tolerances, weld types, and backing. Verified proper fi-up, pre-heat, welding sequence, equipment parameters, wortmanship and technique are in compliance with approved mock-up drawings and ourrent code requirements for seismic design. Welding of piece marks identified as 30001/1A (RBS WF beam) to 10001/1A (WF column): -30001/1A HTF4408898 (A962) Visually inspected/accepted complete joint penetration groove welds at top/bottom flanges and web per AWS D1.1 Section 6, Part C 6.9, Table 6.1. Visually inspected/accepted fillet welded reinforcing fillet welds at top fange backing bar left in place and bottom flange removed backing bar per AWS D1.1 Section 6, Part C 6.9, Table 6.1. Non-destructive ultrasonic flaw detection of CJP groove welds and magnetic particle examination of run-off tab removal/reinforcing fillet welds to be performed after a 24-hour cooling period has been reached. 109-01-18 The work was inspected in coordina with the approved documents Version document document and sequence with de sequenced in the report.			DESCRIPTION OF	WORK INSPECTED		
Verified proper fil-up, pre-heat, welding sequence, equipment parameters, workmanship and technique are in compliance with approved mock-up drawings and current code requirements for seismic design. Welding of piece marks identified as 30001/IA (RBS WF beam) to 10001/IA (WF column):	Arrived on location at Sar moment frame welded co Verified welding performe design per AWS D1.8 and Reviewed mock-up drawi	n Bernadino Steel/Herrick to nnections to be destructively ed by certified personnel usin d AISC 341 Seismic Provisio nas to include welded ioint c	provide continuous visual tested at UCSD Seismic g approved materials, cor n. onfiguration, fit-up toleran	inspection and perform nor Testing Facility in San Dieg nsumables, and weld proces	i-destructive testing of the Io, CA. dures for steel moment fr Ia.	e modified re-design of ame seismic resistant
30001/1A HT#H40888 (AB02) 10001/1A HT#H008862 (AB02) Visually inspected/accepted complete joint penetration groove welds at topfbottom flanges and web per AWS D1.1 Section 6, Part C 6.9, Table 6.1. Visually inspected/accepted complete joint penetration groove welds at top flange backing bar left in place and bottom flange removed backing bar per AWS D1.1 Section 6, Part C 6.9, Table 6.1. Non-destructive ultrasonic flaw detection of CJP groove welds and magnetic particle examination of run-off tab removal/reinforcing fillet welds to be performed after a 24-hour cooling period has been reached. 180-001-18	Verified proper fit-up, pre- and current code requirer Welding of piece marks in	-heat, welding sequence, equences for seismic design.	uipment parameters, work	(manship and technique are	in compliance with appro	oved mock-up drawings
Visually inspected/accepted complete joint penetration groove welds at top/bottom flanges and web per AWS D1.1 Section 8, Part C 6.9, Table 6.1. Visually inspected/accepted fillet welded reinforcing fillet welds at top flange backing bar left in place and bottom flange removed backing bar per AWS D1.1 Section 8, Part C 6.9, Table 6.1. Non-destructive ultrasonic flaw detection of CJP groove welds and magnetic particle examination of run-off tab removal/reinforcing fillet welds to be performed after a 24-hour cooling period has been reached. 180-001-18 welcoen NAME FILLER METAL / ELECTRODE DAMETER AVERAGE AMPS / VOLTS / TRAVEL SPEED / JONT COMPUTATION NE-305) 0.093 425/25/12 IPM/BTC-U4a-F remains CERTIFICATE OF COMPULANCE remains The work was inspected in accordance with the approved documents Ves Ves No The work inspected mat the requirement of the approved documents Ves Ves No Approval Documents // Approval documents and any approved documents Insertion / EXCEPTIONS ADDITIONAL COMMENTS / NON-COMPLIANCE ITEMS / DEVIATIONS / EXCEPTIONS	-30001/1A HT#440889 -10001/1A HT#N0398	9 (A992) 62 (A992)				
Visually inspected/accepted fillet welded reinforcing fillet welds at top flange backing bar left in place and bottom flange removed backing bar per AWS D1.1 Non-destructive ultrasonic flaw detection of CJP groove welds and magnetic particle examination of run-off tab removal/reinforcing fillet welds to be performed after a 24-hour cooling period has been reached. 160-001-18 welder NAME FILLER METAL / ELECTRODE ELECTRODE DAMETER AVERAGE AMPS / VOLTS / TRAVEL SPEED / JOINT CONTOURATION REMAINS Salvador Raminez F70T-6 (Lincoln NR-305) 0.003 425/25/12 IPM/BTC-U4a-F	Visually inspected/accept	ed complete joint penetration	n groove welds at top/bott	om flanges and web per AV	VS D1.1 Section 6, Part 0	6.9, Table 6.1.
Non-destructive ultrasonic flaw detection of CJP groove welds and magnetic particle examination of run-off tab removal/reinforcing fillet welds to be performed after a 24-hour cooling period has been reached. 189-001-18 WELDER NAME PILLER METAL / ELECTRODE E70T-6 (Lincoln NR-305) .093 425/25/12 IPM/BTC-U4a-F	Visually inspected/accept Section 6, Part C 6.9, Tak	ted fillet welded reinforcing fil ble 6.1.	let welds at top flange ba	cking bar left in place and b	ottom flange removed ba	cking bar per AWS D1.1
169-001-18 weibber name FILLER WETAL / ELECTRODE ELECTRODE DIAMETER AVERAGE AMPS / VOLTS / TRAVEL SPEED / JOINT CONFIGURATION REMARKS Salvador Ramirez E70T-6 (Lincoln NR-305) 0.093 425/25/12 IPM/BTC-U4a-F	Non-destructive ultrasonio after a 24-hour cooling pe	c flaw detection of CJP groov riod has been reached.	ve welds and magnetic pa	article examination of run-off	tab removal/reinforcing f	illet welds to be performed
WELDER NAME FILLER METAL / ELECTRODE ELECTRODE DIAMETER AVERAGE AMPS / VOLTS / TRAVEL SPEED / JOINT CONFIGURATION REMAINS Salvador Ramirez E70T-8 (Lincoin NR-305) .093 425/25/12 (PM/BTC-U4a-F	169-001-18					
Salvador Ramirez E70T-6 (Lincoln NR-305) .093 425/25/12 IPM/BTC-U4a-F E71T-8 (Lincoln NR-232) .072 255/21/7 IPM/BTC-U4a-F E E E E CERTFICATE OF COMPLIANCE E E The work was inspected in accordance with the approved documents Yes No I hereby declare that, to the bat of my personal knowledge, the work performed and the materials used and installed covered by this report, are in compliance with the approved documents and any approved Post The work inspected met the requirement of the approved documents Yes No I hereby declare that, to the bat of my personal knowledge, the work performed and the materials used and installed covered by this report, are in compliance with the approved documents and any approved Post "See additional comments for interaction nearbs. Inspector Initials: REE ADDITIONAL COMMENTS / NON-COMPLIANCE ITEMS / DEVIATIONS / EXCEPTIONS Inspector Initials: REE Inspector Stonature: MADITIONAL COMMENTS / NON-COMPLIANCE ITEMS / DEVIATIONS / EXCEPTIONS	WELDER NAME	FILLER METAL / ELECTRODE	ELECTRODE DIAMETER	AVERAGE AMPS / VOLTS / TRAVEL	SPEED / JOINT CONFIGURATION	REMARKS
	Salvador Ramirez	E70T-6 (Lincoln NR-305)	.093	425/25/12 IPN	I/BTC-U4a-F	
CERTIFICATE OF COMPLIANCE The work was inspected in accordance with the approved documents Yes No The work inspected met the requirement of the approved documents Yes No The work inspected met the requirement of the approved documents Yes No The work inspected met the requirement of the approved documents Yes No The work inspected met the requirement of the approved documents Yes No The work inspected met the requirement of the approved documents Yes No The work inspected met the requirement of the approved documents Yes No The work inspected met the requirement of the approved documents Nest inspector initials: REE The work inspector initials: No The work inspector Stonature: No The work inspector initials: No The work inspector Stonature: No The Wor		E71T-8 (Lincoln NR-232)	.072	255/21/7 IPM	/BTC-U4a-F	
CERTIFICATE OF COMPLIANCE The work was inspected in accordance with the approved documents Yes No The work inspected met the requirement of the approved documents Yes No The work inspected met the requirement of the approved documents Yes No The work inspected met the requirement of the approved documents Yes No The work inspected met the requirement of the approved documents Yes No The work inspected met the requirement of the approved documents Yes No The work inspected met the requirement of the approved documents No The work inspected met the requirement of the approved documents Inspector Initials: <u>REE No The work inspector Stonature: Comments No ADDITIONAL COMMENTS / NON-COMPLIANCE ITEMS / DEVIATIONS / EXCEPTIONS Inspector Stonature: Multiple Inspector Stonature: Multiple Inspector Stonature: Multiple Multiple Inspector Stonature: Multiple Multiple Multiple Multiple Multiple Inspector Stonature: Multiple Multin Multin Multin Multiple Multiple </u>						
The work was inspected in accordance with the approved documents results in the second accordance with the approved documents results and any approved Post and the materials used and any approved Post Approval Documents/Amended Construction Documents, unless otherwise noted in this report. The work inspected met the requirement of the approved documents results. The work inspected met the requirement of the approved documents results. The work inspected met the requirement of the approved documents and any approved Post Approval Documents/Amended Construction Documents, unless otherwise noted in this report. The work inspected met the requirement of the approved documents and any approved Post Approval Documents/Amended Construction Documents, unless otherwise noted in this report. The work inspector initials: REE ADDITIONAL COMMENTS / NON-COMPLIANCE ITEMS / DEVIATIONS / EXCEPTIONS Inspector Signature: REE Inspector Signature: REE		I	CERTIFICATE O	FCOMPLIANCE		
In a work was inspected in accordance with the approved documents Area in the rest of may personal knowledge, the work performed and the materials used and installed covered by this report, are in compliance with the approved documents and may personal knowledge, the work performed and the materials used and installed covered by this report, are in compliance with the approved documents and may personal knowledge, the work performed and the materials used and installed covered by this report, are in compliance with the approved bet Approval Documents / Amended Construction Documents, unles otherwise noted in this report. Inspector Initials:	-					
The work inspected met the requirement of the approved documents Yes No Approval Documents/Amended Construction Documents, unles otherwise noted in this report. Approval Documents/Amended Construction Documents, unles otherwise noted in this report. Inspector Initials: <u>REE</u> ADDITIONAL COMMENTS / NON-COMPLIANCE ITEMS / DEVIATIONS / EXCEPTIONS Inspector Signature: REH	The work was inspected in accorda	nce with the approved documents		I hereby declare that, to the best of a installed covered by this report or	ny personal knowledge, the work p e in compliance with the approach	erformed and the materials used and
	The work inspected met the require	ment of the approved documents	Yes No	Approval Documents/Amend	ed Construction Documents, unles	s otherwise noted in this report.
ADDITIONAL COMMENTS / NON-COMPLIANCE ITEMS / DEVIATIONS / EXCEPTIONS	"See additional comments for information re	earding non-compliant inspection results.				Inspector Initials: REE
Inspector Steasture: RLPD		ADDITION	IAL COMMENTS / NON-COMPLIA	ANCE ITEMS / DEVIATIONS / EXCER	PTIONS	
Inspector Steasture: RLP						
Inspector Stepature: RLP						
Inspector Steasture: RLP						
Inspector Stepsture: RLP						
Inspector Stepsture: RLP						
Inspector Stengture:						
Inspector Signature: // Junit		READ				
Instantia Name Bath Ryan Barriankecher	Inspector Signature:	Ryan Bordenkecher				
Inspector name run: rygetru: Longenine uren	Inspector Name Print:	AWS/CWI 05101101				
	All lacestication.		d house & house minimum. Minute	the la collect to a seclect and	and and a 3 hours about the	and the second second
on many when yours of minimum or a nours and over a nours minimum, a many clor is called to a project and no work is performed a 2 nour andw up charge will be any last	All Inspections Th CC: Bedard Architect: Disordered Ford	as report will be distributed to the archit	ect, engineer, client and governing) School District	Jurisdiction (e.g. DSA) as required by a	pplicable codes and project docum	sents
a series of the	Th CC: Project Architect: Structural Engine	is report will be distributed to the architer; Project Inspector; DSA Regional Office	ect, engineer, client and governing School District	jurisdiction (e.g. DSA) as required by a	pplicable codes and project docum	senta

Project #: 9870 Bldg. Permit #: Date of Report: 9/26/18

PROJECT: AISC Mock-up

CONTRACTOR: San Bernadino Steel/Herrick

ADDRESS: 5454 Industrial Pkwy., San Bernadino, CA 92407

Certification of Compliance: All work, unless otherwise noted, complies with the approved documents.

NAME: Ryan E. Bordenkecher

CERTIFICATION NO: AWS CWI # AWS/CWI 05101101

Page 2 of 2

2500 Hoover Ave. Suite D San Diego CA 31950 O: 619.326.4405 F: 619.430.2453 www.wcinspedion.com

TESTING & INSPECTION	REPORT				PAGE: 1 of 2
INSPECTOR NAME: Ryan E. E	Bordenkecher		JOB NUMBER: 9870		DATE: 9/25/18
JOB NAME: AISC Mock-L	ID		DEA FILE # / OSHPO INC. # NA		
ADDRESS: 5454 Industria	al Pkwy, San Berna	adino, CA 92407	DEA APPL # / OSHPD PERMIT #: NA		
	arr kirj, car borne		JURISDICTION: ALSC		
			SUBCONTRACTOR	TABRICATOR: San Remad	ing Steel/Herrick
DECURPENENTS: I knl one ich muni-	ar one normal number nor sheet (dentile	all and by broad RECIER location	Fork later west to enortheath identifie	die Rewise het berechen Neueren	allert work must be specificate blanting
Communication (R	FI, Sketch etc.) volding previous non-cor	npilant items must be listed, record conv	ersations and communications with pro-	ect designers, building and permit granti	ng suthority officials.
REGULAR	1.5X	H0 2X	URS TIME IN	TIME OUT	MEAL PERIOD
8			5:45 AM	2:15 PM	30 Min.
Shop X Field	ит мт	PT Material ID	Welding Bolting	Fireproofing	Phased Array
		DESCRIPTION OF	WORK INSPECTED		
Arrived on location at Sar moment frame welded co Verified welding performe design per AWS D1.8 and	Bernadino Steel/Herrick to nnections to be destructive d by certified personnel us d AISC 341 Seismic Provisi	o provide continuous visual ly tested at UCSD Seismic ing approved materials, cor ion	inspection and perform no Testing Facility in San Die nsumables, and weld proce	on-destructive testing of the go, CA. edures for steel moment fra	modified re-design of arme seismic resistant
Reviewed mock-up drawi	ngs to include welded joint	configuration, fit-up tolerar	ces, weld types, and back	ing	
Verified proper fit-up, pre- and current code requirer	heat, welding sequence, e nents for seismic design	quipment parameters, wor	manship and technique ar	e in compliance with appro	wed mock-up drawings
Welding of piece marks in -30003/1A HT#421418 -10003/1A HT#452444	lentified as 30003/IA (RBS 3 (A992) 4 (A992)	WF beam) to 10003/1A (W	/F column)		
Visually inspected/accept	ed complete joint penetrati	on groove welds at top/bott	om flanges and web per A	WS D1.1 Section 6, Part C	6.9, Table 6.1
Visually inspected/accept Section 6, Part C 6.9, Tab	ed fillet welded reinforcing ble 6.1	fillet welds at top flange ba	cking bar left in place and	bottom flange removed bac	king bar per AWS D1.1
Non-destructive ultrasonio after a 24-hour cooling pe	c flaw detection of CJP gro riod has been reached.	ove welds and magnetic pa	article examination of run-o	ff tab removal/reinforcing fi	llet welds to be performed
169-001-18					
WELDER NAME	FILLER METAL / ELECTRODE	ELECTRODE DIAMETER	AVERAGE AMPS / VOLTS / TRAVE	EL SPEED / JOINT CONFIGURATION	REMARKS
Salvador Ramirez	E70T-6 (Lincoln NR-305)	.093	425/25/12 IP	M/BTC-U4a-F	
	E71T-8 (Lincoln NR-232)	.072	255/21/7 IPI	M/BTC-U4a-F	
	•	CERTIFICATE O	FCOMPLIANCE		+
The work was inspected in accordar The work inspected met the require	noe with the approved documents ment of the approved documents	Yes No Yes No	I hereby declare that, to the best of installed covered by this report, Approval Documents/Amen	f my personal knowledge, the work p are in compliance with the approved ded Construction Documents, unless	arformed and the materials used and documents and any approved Post otherwise noted in this report. Inspector Initials: <u>REB</u>
	ADDITIO	ONAL COMMENTS / NON-COMPLU	ANCE ITEMS / DEVIATIONS / EXC	EPTIONS	
	1 SAN				
Inspector Signature:	Rype Bordonkasher				
Inspector Name Print: Inspector certification:	AWS/CWI 05101101				
All inspections	based on minimum of 4 hours and ov	er 4 hours-8 hours minimum. If inspe	ctor is called to a project and no work	k is performed a 2 hour show up chan	pe will be applied
Th	is report will be distributed to the arci	hitect, engineer, client and governing	jurisdiction (e.g. DSA) as required by	applicable codes and project docum	ente

CC: Project Architect; Structural Engineer; Project Inspector; DSA Regional Office; School District

Project #: 9870 Bldg. Permit #: Date of Report: 9/25/18

PROJECT: AISC Mock-up

CONTRACTOR: San Bernadino Steel/Herrick

ADDRESS: 5454 Industrial Pkwy., San Bernadino, CA 92407

Certification of Compliance: All work, unless otherwise noted, complies with the approved documents.

NAME: Ryan E. Bordenkecher

CERTIFICATION NO: AWS CWI # AWS/CWI 05101101

Page 2 of 2

WCIS
2500 Hoover Ave. Suite D San Diego CA 91950
O: 619.326.4405 F: 619.430.2453
www.wcinspection.com

TESTING & INSPECTION REPORT

TESTING & INSPECTION	REPORT					PAGE: 1 of 4
INSPECTOR NAME: RVan E. I	Bordenkecher		JOB NUMBER: 98	70		DATE: 9/27/18
JOB NAME: AISC Mock-L	ID		DOA FILE # / OSHPO	NC. # NA		
ADDRESS: 5454 Industri	al Pkwy, San Berna	adino, CA 92407	DSA APPL # / OSHPC	PERMIT		
GENERAL CONTRACTOR: NA			JURISDICTION: AL	SC		
ARCHITECT: NA		ENGINEER: NA	· · · · ·	SUBCONTRACTOR	MADRICATOR: San Berna	dino Steel/Herrick
REQUIREMENTS: Limit one job numb	er, one permit number per sheet. Identify	all work by type and SPECIFIC location	Each joint must be a	pecifically identifie	d for SSWHS boil Inspection. Non-o	ompliant work must be specifically identified
Communication (R	FI, Sketch etc.) volding previous non-con	ripliant items must be listed, record conv	ersations and commu	nications with pro	ect designers, building and permit gn	inting authority officials.
REGULAR	1.5X	2X	TIME	IN	TIME OUT	MEAL PERIOD
4			5:45	AM	9:45 AM	
Shop K Field		PT Material ID	Welding	Bolting	Fireproofing	Phased Array
		DESCRIPTION OF	WORK INSPECTE	D		
Arrived on location at modified re-design of Calibrations on non-de equipment throughout Performed non-destru column top/bottom flat unremarkable with no Performed non-destru	San Bernadino Steel/He moment frame welded of estructive testing equipn the entire examination ctive ultrasonic shearwa nges and web on piece defects noted at the tim ctive magnetic particle t	errick to perform non-de connections to be destru- nent were performed pri process in accordance ave testing of moment fr marks identified as 300 le of testing. See attact esting of moment frame	structive ultra actively tester ior to, during with applicab rame comple 03/1A to 100 and UT repor	asonic flaw d at UCSD , and after le code re te joint per 03/1A and t for furthe int penetra	v detection and magne Seismic Testing Faci testing to ensure prop quirements. hetration groove welds 30001/1A to 10001/1 r information.	tic particle testing of the lity in San Diego, CA. er functioning of located at WF beam to A. Ultrasonic testing was off tabs located at WF
as 30003/1A to 10003 testing. See attached 169-001-18	/1A and 30001/1A to 10 MT report for further inf	001/1A. Magnetic parti formation	icle testing w	as unrema	rkable with no defects	noted at the time of
WEI DER NAME	FILLER METAL / FLECTRODE	ELECTRODE DIAMETER	AVERAGE AMPR	/ VOLTS / TRAV	SUBPER / JOINT CONFIGURATIO	N PEMARKS
Salvador Ramirez	E70T-6 (Lincoln NR-305)	.093	4	25/25/12 IP	M/BTC-U4a-F	A HEADOOLS
	E71T-8 (Lincoln NR-232)	.072	2	255/21/7 IPI	M/BTC-U4a-F	
		CERTIFICATE C	FCOMPLIANCE			-
The work was inspected in accords The work inspected met the require "See additional contents for information of	nos with the approved documents ment of the approved documents spiring non-compliant inspection results.	Yes No	I hereby declare t installed covere Approval D	hat, to the best o d by this report, ocuments/Amer	I my personal knowledge, the work are in compliance with the approv ded Construction Documents, uni	performed and the materials used and ed documents and any approved Post eas otherwise noted in this report. Inspector Initials:
	ADDITIO	DNAL COMMENTS / NON-COMPLU	ANCE ITEMS / DEV	ATIONS / EXC	EPTIONS	
Inspector Signature Inspector Name Print Inspector certification: All inspections	Ryah E. Bordenkecher AWS/CWI 05101101 based on minimum of 4 hours and ov	er 4 hours-8 hours minimum. If Inape	ctor is called to a pr	oject and no wor	k is performed a 2 hour show up cl	arge will be applied

This report will be distributed to the architect, engineer, or CC: Project Architect; Structural Engineer; Project Inspector; DSA Regional Office; School District

ULTRASONIC TEST REPORT

Job Ide	entification:	AISC	Moc	k-up								Addre	-55	5454	Industri	al Pkwy.				Date:	9/21	//18
City of:	San Ber	nadin	0									Build	ing Pe	ermit No.:	N/A					Report:	2	of 4
General	Contractor:	NA										Sub (Contra	actor:	San Be	madino	Steel/H	lerrick		· ·	-	
Architec	t: NA											Engin	eer:	NA								
Qualit	, Requirer	nents	s-Sec	tion	No	AWS	D1 1 T	Cable	62													
										ULT	RASONIC	FOUIP	MFI	NT								
				Man	ufacture	r		Mo	del	8	erial No.					Т	ransduce	5				
Instrum	nent			TW	DUF	0	\rightarrow	SUE	3140	90	16208	Ma	nufad	turer	Mit	ech	NDT S	vstems		_	Т	
-		_			Model	/Type	-+	81	eel	8	erial No.		Argie		()	7	0			+	
Refere	ICO BIOCKS				IIW T	vpe I		10	18	E	2742	Crys	tal Ser	rial No.	120	875	AWV	V070				-
Coupla			Man	ufacture	r	1	Туре		в	atch Serie	s No.		Size	•	1	r	.75	x.75				
coupie			Sor	notech	1	UTX	Powde	er		12HD4	47	Wed	ge Ser	rial No.	N	/A	AWS	-0266				
		-						-							Ref.	Level	5	2				
									ULTI	RASOI	VIC TEST	NG OF	MA	TERIAL	S							
	Surface Cond	ition			Thic	kness			Joint Ty	pe	Welding Pro	cess E	Exam 1	from Face	Volumetri	Exam in L			Scar	ining Leve	ł	
	Clean/Dr	Y			5/	8-1"			"T"		FCAV	V	Α	& B	1	& 2		Per/	AWS	D1.1 Ta	able	8.2
								-		ITCH			ет	50								
					_					IIEN	IS EXAMI	NED/11	:511	ED					_			
Line	Ple	ce Ma	ark/W	eld ID						Desc	ription					Interpr	etation		ļ	Re	mari	8
		400				 		0.10			-				# webi(x)	Accepted	Rejected	Repaired	<u> </u>			
		100	01/1/	<u>\</u>		<u> </u>		CJP	at top	bottor	n flanges a	and web			3	3	N/A	N/A				
	+	100	Uartie	•				UJF	at top	vbouor	n nanges a	ind web			3	<u>э</u>	DUA	INA	<u> </u>			
						<u> </u>																
	+					<u> </u>																
	+					<u> </u>																
	+																					
													Tot	al Welds	6	6	N/A	N/A				
Con	ments:																					
				_				IN	DICA	HON(S	5) FOUND	IN RE.	ECI	IED WE	LDS							
		-		1	Ind	DECIBE	LS (dB)	<u> </u>	+		<u>ر</u>	ISCONTIN	UITY	(in.)			≥8					
	5	åс	2	1	Level	Ref	Att	Ind			Angular Distance			DIS	TANCE (in)	fort					
Line	9	22	E S	ê	a	b	e	d	- Le	enath	(Sound Path)	Depth fro "A" Surfa	om ce	From X	F	rom Y	88		(Disco	REMARI Intinuity E	(S) valuat	on)
	2	- <		-													00					-
\vdash									1				+									
\vdash													+									
<u> </u>															_							
I, the I	indersigned,	certify t	that the	e stater	nents l	n this re	cord are	e com	ect and	that the	test weids w	ere prepa	red a	and tested I	n conforr	nance with	h the requ	irements	of Clau	ise 6, Pa	rt F o	r
AWS	01.1/D1.1M:	2015	Struct	ural We	eiding (code-St	eel and	the P	roject a	pecifical	tions.											
																1	Inspec	tor				
Instru	ment Calib	vatio	n har	beer	nerf	iorm~	d for 1	horia	contal	and m	artical	Insp	ector	: Ryan	E. Bord	enkech	er					
lineari	w shear w	3778 3	nd lo	noita	dinal	In 20	corda	nces	with W	VCIS-I	UT-101	Leve	t: I	I								
aneali	7, sucar w	ave a		agitu	sund.		contrait	ave	with V		01-101				29	BC						
												Signs	ture	: ^	0							

REPORT OF MAGNETIC PARTICLE TESTING OF WELDS

Projec	ct Name: AISC	C Mock-up					Clier	nt Project	number	9870				
Qualit	Quality Requirements-Section No. AWS D1.1 Section 6, Table 6.1 WCIS Project Number 169-001-18 Items Examined/Tested: Moment frame CJP groove weld R/O tabs and bottom flange 5/16" reinf. fillets													
Items	Items Examined/Tested: Moment frame CJP groove weld R/O tabs and bottom flange 5/16" reinf. fillets													
LINE	Piece Mark	DESCRIPTION	Area E	xamined	Interpr	etation	Rep	airs Relected		REMARKS				
1	10001/1A	MF beam to column	enure	X	X	Rejected	Accepted	Nejected	4-R/0 t	abs & 1-reinf, flt,				
2	10003/1A	MF beam to column		X	X				4-R/O t	abs & 1-reinf. flt.				
3														
4														
5														
6														
7														
8	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9													
9	9 10													
10														
11														
12	12													
13														
14														
15														
16			<u> </u>											
17														
18														
20	19													
-	Quantity:	10 Total Accepted:		10	_	т	otal Reje	cted:	0					
Comm	nents:													
PRE-E	<u>XAMINATION</u>	loon/Dr/												
Surraci	e Preparation:	aean/Dry												
EQUIP	<u>MENT</u>	dear		DA	400				24202					
Instrur	Instrument Make: Parker Model: DA-400 S/N Number: 24363													
МЕТН	METHOD OF INSPECTION													
1	Visible Ruorescent How Media Applied: Blower													
	AC C DC Residual Continuous V Yoke Prods Other													
Directi	Direction for Field: Circular Longitudinal Strength of Field: Known indications													
POST	POST EXAMINATION													
Demagnetizing Technique (if required): NA Cleaning (if required): NA Marking Method: NA														
I, the undersigned, certify that the statements in this record are correct and that the test welds were prepared and														
	tested in conformance with the requirements of AWS D1.1/D1.1M: 2015 , Structural Welding Code - Steel													
<u> </u>														
Inspec	ctor Ryan E.	Bordenkecher	SNT-T	c-1ALe	v. II M	Т		Date	9/27/18	3				
			West Cor	ast Inspecti	ion Service	s								
			5575 M	agnatron B Diego, Ca	lvd Suite D 92111									

Project #: 9870 Bldg. Permit #: Date of Report: 9/27/18

PROJECT: AISC Mock-up

CONTRACTOR: San Bernadino Steel/Herrick

ADDRESS: 5454 Industrial Pkwy., San Bernadino, CA 92407

Certification of Compliance: All work, unless otherwise noted, complies with the approved documents.

NAME: Ryan E. Bordenkecher

Project Name:	AISC/UCSD SM	1F Project					SE Job #	New Job
							Jurisdiction	
Address							Permit #	
		Off-Site			Date:		Jurisdict	ion, spoke to:
Shop Name:	Work at perform	ned at San Bernadino	Steel		Start Time:	AM		
Shop Address:	5454 Industrial I	Pkwy San Bernardino	, Ca		End Time:	PM		Page: 1 of
Con	crete	Fireproofing	Masonry	✓	Steel Field	Steel	Shop	Other
Description o	f Work Inspect	ed						
Performed ultra Performed mag Inspector, Julia AWS/CWI #03 ICC Structural ICC Structural ICC Fireproofing L.A. County St U.T. Level II // M.T. Level II/S	n Razo 120501 Steel & Bolting # Steel Welding #5 Goastruction, Dri #P018657 rucctural Steel & V SNT-TC-1A NT-TC-1A	complete joint penetr of weld tab removal, s :5232503 232503 lled In Anchors Welding #01735	ation groove welds, se ee attached reports.	e attache	d reports.			
Work Not In Co	mpliance							
The	work 🗌 was	WAS NOT inst	ected					
Material sam The work insp with the requi	ipling was bected met irements of the ar	WAS NOT	N/A performed the requirements		Date		Signature	
CC: P	roject Architect, Struc	tural Engineer, Project Insp	ector	En	nployee ID		Name	

ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS. AUTHORIZATION FOR PUBLICATION OF OUR REPORT, CONCLUSIONS, OR EXTRACTS FROM OR REGARDING THEM IS RESERVED PENDING OUR WRITTEN APPROVAL AS A MUTUAL PROTECTION TO CLIENTS, THE FUBLIC AND OURSELVES. © Smith Emery Company 2.0b SECO 101A

		SMI	тн-е	ме	RY	0	ом	PAN	YY	DSJ OSHPI	New Job	
									-	Permit No.		
	REPORT	OF MA	GNETIC	PA	RTIC	CLE	SHO	P EX	AMIN	ATION		
Job Name AISC/UCSD												
Job Address												
Worked performed	at San I	Bernard	dino St	teel	545	4 In	dus	trial	. Pkw	ry San B	ernardi	.no
Jobsite Location (area/floor)												
Weld location and identificat	ion sketch											
MT weld tab removal	Weld Access Holes	· _		_		Filet	Weikta					
~****~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ł							1			
			\geq							<u> </u>		
			ACCEPT	PROPERTY	ACCEPT	PRINCE			TOL NO.			
Piece Work	Loca	tion		Page Bre I	REPAIR	REFAIR				Remarl	ks.	
10001 1/A	Case 1 A	side	~				мт	Weld	tab	removal	4 loca	ations
10001 1/A	Case 1 B	side	~				мт	Weld	tab	removal	4 loca	ations
	<u> </u>											
			<u> </u>									
Equipment (brand)]	No	del		Outpu			Curre	nt	Particle t	ype	
Magnaflux		Y	7 AC/DO	C	4 a	mps		120	vol	Red Pa	article	
Naterial Surfa	ce.	Ter	at Temp.			Spaci	ng			Quality Re	quirement-se	ction
Carbon Stel Cle	an	A	mbient			4-	6 in	ches		AWS D	1.1 Sec	6
Direction	_	Nethod of	inspection	_	_	_	_		_	_	_	_
Circular Long	P Both	Prod	1 🖌 Yoke		Coil	∠ λ¢		DC	Wet	Dry	Visible	Fluorescent

6/26/19 2673 Julian Razo Dated Employee ID Name

ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS. AUTHORIZATION FOR PUBLICATION OF OUR REPORT. CONCLUSIONS, OR EXTRACTS FROM OR REGARDING THEM IS RESERVED PENDING OUR WRITTEN APPROVAL AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC AND OURSELVES. C 2004 Smith Emery Company

		SMI	CH-E	MER	YCC	OMPA	NY	SE Job No.		
		REPORT OF	F ULTR	ASONI	C SHOP	P WELD	TESTI	Permit No.		
Job N AIS	c/UCSD SMF Pro	oject		1	Work a	t perfo	ormed	at San B	erna	dino Steel
545	4 Industrial F	kwy San Bernard	dino, C	a						
	Piece Work	Location	ACCEPT F	REJECT ACC	EPT REJECT AIR REPAIR			Remarks		
Col	10001 1/A	Moment Conn	~			CJP A)	Side	T/B Flgs	8 1	Web
Col	10001 1/A	Moment Conn	~			CJP B)	Side	T/B Flgs	8 1	Web
Equipme	nt (brand)	Model		Seri	al No.			Angle(s)	_	
Sona	test	D-20		10	11912			Deference Level	70	60 45
GE G	amma	.75 x .625		2.	25			40		60
Quality	y Requirements									1
AWS Remark	Dl.1 Clause 6 1	Table 6.2								

6/26/19 2673 Julian Razo Dated Employee ID Name

ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS. AUTHORIZATION FOR PUBLICATION OF OUR REPORT. CONCLUSIONS, OR EXTRACTS FROM OR REGARDING THEM IS RESERVED PENDING OUR WRITTEN APPROVAL AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC AND OURSELVES.

		SM	IIII	н-е	ме	RY	co	ом	PAN	YY	DSJ OSHPJ	New Job	
										-	Permit No		
	REPORT	OF	MAGN	ETIC	: PA	RTIC	LE	SHC	PEX	AMIN	ATION	-	
Job Name													
Job Address													
Worked performed	at San H	Bern	ardiı	no St	teel	545	4 In	dus	trial	Pkw	y San B	ernardin	0
Jobsite Location (area/floor)											-		
Weld location and identificat	ion sketch Weld Access	,					Filet V	Veids					
×	Holes	1		~~									
		1			ł			-			<u>.</u>		
Piece Work	Loca	tion		ACCEPT	REJECT	ACCEPT REPAIR	REJECT REPAIR				Remar	k5	
10004 1/A	Case 1 A	sic	le	~				мт	Weld	tab	removal	. 4 locat	ions
10004 1/A	Case 1 B	sic	le	~				мт	Weld	tab	removal	4 locat	ions
Equipment (brand)			Model			Outpu	t		Curre	nt.	Particle	type	
Magnaflux			¥7 1	AC/D	c	4 a	mps		120	vol	Red P	article	
Material Surfac	:e		Test T	emp.			Spaci	ng			Quality Re	equirement-sect	ion
Carbon Stel Cle	an		Amb	ient			4-6	5 iı	nches		AWS D	1.1 Sec	6
Circular Long	Both	Metho	d of ins Prod	Pection Yoka		Coil	AC]DC [Wet	Dry	Visible	Fluorescent

6/27/19 2673 Julian Razo Dated Employee ID Name

ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS. AUTHORIZATION FOR PUBLICATION OF OUR REPORT. CONCLUSIONS, OR EXTRACTS FROM OR REGARDING THEM IS RESERVED PENDING OUR WRITTEN APPROVAL AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLICAND OURSELVES. do 20104 Smith Finary Commany
		SMI	тн-е	MI	RY	co	ОМР	ANY	SE Job No.	<u> </u>		
						-			Permit No.			
		REPORT C	F ULTH	RASO	NIC	SHOR	P WELI	D TEST	ING	<u> </u>		
Job Name												
AISC/UCSD SMF	Projec	et			Wo	rk a	t per	formed	at San B	erna	dino S	Steel
5454 Industria	l Pkwy	y San Bernar	dino,	Ca								
Piece Work		Location	ACCEPT	REJECT	REPAIR	REJECT REFAIR			Remark	а		
Col 10004 1/A	Мо	ment Conn	~				CJP A) Side	T/B Flgs	3 & V	Web	
Col 10004 1/A	Мо	ment Conn	~				CJP B) Side	T/B Flgs	3 & V	Web	
Equipment (brand)		Model			Serial 1	ю.	I		Angle(s)			
Sonatest		D-20			10119	912				✓ 70	60	45
Transducer(brand)		Size			Frequenc	У			Reference Level	L	Scanning	Level
GE Gamma Quality Requirements		.75 x .625			2.25				40		60	
AWS D1.1 Clause	6 Tabl	e 6.2										
Remarks												

6/27/19 2673 Julian Razo Dated Employee ID Name

ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS. AUTHORIZATION FOR PUBLICATION OF OUR REPORT. CONCLUSIONS, OR EXTRACTS FROM OR REGARDING THEM IS RESERVED PENDING OUR WRITTEN APPROVAL AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC AND OURSELVES. © 2004 Smith Embery Company

								D 4 37 37	OSHPD
	~	SMIT	н-е	ME	RY	00	эм	PANY	SE Job No. New Job
	DEDODT O		E TO		DTTC	ਾ ਹਾ	2101		Permit No.
Automatica and	REFORT 0.	F MAGN	EIIC	, FA	KIIC	-115	SHO	P LAMINA	1110M
AISC/UCSD									
Job Address									
Worked performed	at San Be	rnardi	no St	teel	545	4 In	dust	trial Pkwy	y San Bernardino
Jobsite Location (area/floor)									
Wald location and identificat	ion skatch								
MT weld tab removal	Weld Access					Filet V	Welds		
	Holes		~~					-1-	
		Î		Ĩ.				7	
8.44 (0000000 BBN (00000000 BBN (0000000000 BBN (0000000000		5		Ì					
		~		_			C	$\Delta \Gamma$	<u> </u>
		L					1	FILCENT -	1
Piece Work	Locati	on	ACCEP7	REJECT	ACCEPT	REJECT			Remarks
			~		Paperserv	nuerats			
10002 1/A	Case 1 A s	side	-				MT.	weld tab	removal 4 locations
10002 1/A	Case 1 B s	side	~				MT	Weld tab :	removal 4 locations
10003 1/A	Case 1 A s	side	~				МТ	Weld tab	removal 4 locations
10003 1/A	Case 1 B s	side	~				мт	Weld tab	removal 4 locations
A5K1011	Case 1 A s	side	~				мт	Weld tab	removal 4 locations
			<u> </u>						
			<u> </u>						
			<u> </u>						
									1
Equipment (brand)		Model			Output	t		Current	Particle type
Magnaflux		¥7 1	AC/D	C	4 a	mps		120 vol	Red Particle
Material Surface	28	Test T	emp.			Spaci	ng		Quality Requirement-section
Carbon Stel Cle	an	ethod of inc	pection			4-0	5 1n	ches	AWS D1.1 Sec 6
Circular Long	Both	Prod	Yoke		Coil	AC		DC Wet	Dry Visible Sluoresce

7/1/19 2673 Julian Razo Dated Employee ID Name

ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS. AUTHORIZATION FOR PUBLICATION OF OUR REPORT. CONCLUSIONS, OR EXTRACTS FROM OR REGARDING THEM IS RESERVED PENDING OUR WRITTEN APPROVAL AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLICAND OURSELVES.

	SMU		IFPV	00	MDANY			
	51111	H-EA	AFKI	00	MPANI	SE JOD NO.		
	DEDODT OF	י דוד.ידס ז	SONTC	SHOP	WELD TEST	INC.		
Job Neme	REPORT OF	ODIKA	ASOMIC :	SHOP	WEDD IESI.	ING		
AISC/UCSD SMF Pro	ject		Wor	ck at	t performed	at San B	ernadino St	eel
Job Address 5454 Industrial P	kwy San Bernard	ino, C	a					
Piece Work	Location	ACCEPT RI	EJECT ACCEPT I REPAIR I	REJECT		Remarks		
Col 10002 1/A	Moment Conn	~			CJP A) Side	T/B Flgs	& Web	
Col 10002 1/A	Moment Conn	~			CJP B) Side	T/B Flgs	& Web	
Col 10003 1/A	Moment Conn	~			CJP B) Side	T/B Flgs	& Web	
Col 10003 1/A	Moment Conn	~			CJP B) Side	T/B Flgs	& Web	
Assy A5K1011	Moment Conn	~			CJP B) Side	T/B Flgs	& Web	
Equipment (brand)	Model		Serial No	D.		Angle(s)		
Sonatest	D-20		10119	12				45
Transducer (brand)	Size		Frequency	1		Reference Level	Scanning Lev	/el
GE Gamma Quality Requirements	.75 x .625		2.25			40	60	
AWS D1.1 Clause 6 T	able 6.2							
Remarks								

7/1/19 2673 Julian Razo Dated Employee ID Name

Г

ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS. AUTHORIZATION FOR PUBLICATION OF OUR REPORT. CONCLUSIONS, OR EXTRACTS FROM OR REGARDING THEM IS RESERVED PENDING OUR WRITTEN APPROVAL AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC AND OURSELVES. ~

APPENDIX C: CERTIFIED MILL TEST REPORTS

Specimen C5 Column CERTIFIED MILL TEST REPORT NUCOR-YAMATO STEEL CO. Invoice No. 749265 100% Melted and Manufactured in U.S.A P.O. BOX 1228: BLYTHEVILLE, AR 72316 Bill of Lading 233608 All Shapes produced by Nucci-Yamato Steel are cast and rolled to a fully killed and fine grain practice Customer No. 7950. Customer P.O 2016-04-01 20 Date HERRICK CORPORATION ASTM A992/A992M-11 A572/A572M GR50-15 SAN BERNÁRDINO STEEL ASTM A709/A709M-15 GRS0T (3451) ASTM A709/A709M-15 GR505T (34551). BOX 8429 C/O KEEP ON TRUCKING RANCHO CUCAMONGA, CA FOR TRK DEL TO STOCKTON CA 95208 ----2 CSA 640.21-13 50WMT (345WMT)-SAN BERNARDINO CA 92235 ASTM A6/A6M-14 USA ... i % USA · · · · 11.11 Mechanical Properties Chemical Properties (wt %) ÷ ., Tensile Charpy Inipact Yield ELONG Yield to Item Description Strength Strength. Temp Impact Energy Loc Item QTN 'Heat# c ία^γ ٤v ĊЬ CĖ. 'Sn Pcm' c ้ระ ¹Cù Ni Tensile ٠P 'S Mo Mn. ASI. · KSI ٠£. ff•lbf 96 \mathcal{A} Ratio х. MPat MPa .96 °C 1000 70 90 100 96 122 136 W14X211.0 57 74 28 70 e 38 ft 0 in 0;77. 57 74 21 .08 .37 .01 .18 1.31 .021 .26 .27 316 :14 .04 .001 1 452443 ..016 :04 :1 W360X314 510 0,77 393 (11:58 m) ·393 -510-73 W14X211.0 56 28 70 261 261 271 ж · . .: 1 4. 38 ft 0 in 0.77 61 76 . 29 -21 354 354 367 .016 452444 :08 1.31 .019 -24. .28 .14 .04 .05 .001 .37 .01 .18 4 _14 ż W360X314 503 524 0.80 386 (11.58 m) · 421 ELONGATION BASED ON 8.00 INCH GAUGE LENGTH CARBON EQUIVALENT CE= C+Mn/6+(Cr+Mo+V)/5+(NI+Cu)/15'-Pem= C+Si/30+Mn/20+Cu/20+NI/60+Cr/20+Mo/15+V/10+5B(B=Approx.0005) Mercury has not been used in the direct manufacturing of this material. Corrosion Index= 26.01(%Cu]+3.88(%Ni)+1.2(%Cr)+1.49(%Si)+17.28(%P)-7.29(%Cu)(%Ni)-This material was produced in accordance with the Nucor-Yamato Steel Quality Manual. 9.10(%Ni)(%P)-33.39(%Cu)^2 ISO 9001:2008 certified (Registration #0985-07). All mechanical testing is performed by the Quality Testing Lab, which is independent of the production departments I hereby certify that the contents of this report are accurate and $\cdot <$ State of Arkansas DAH ANN RO correct. All test results and operations performed by this material County of Mississippi manufacturer are in compliance with the requirements of the Sworn to and subscribed before me NOTARY material specifications, and when designated by the purchaser, meet the applicable specifications. PUBLIC on 2016-04-01 Dielas Chief Metallurgist ۰., ۰. My commission expires on 07/17/2023

Specimen C3 Column

I	Contract No.									٦												Г					1/1	m	101		- 1		
l	Customer	65.6	IORAL							-																	TE	EL	JP41				
												101		-	-							┢		_						Clavera	PA	GP	[1/3]
ļ	PO No.	4620	1708AGI	1							16	121	PEC		Or	4 (-ER	(II	FIC	A	E	Fac	tory		63	, Jungb	ong-D	aero, D	long-gi	u, Inch	ison,	S. Ko	rea
l	L/C No.												EN	102	204(200	4) T	YPE	3.1			Ce	rtificate	No.	IH	201712	03158	-1					
ĺ	Commodity	H-BE	AM									٢	$\overline{\mathbf{n}}$	P	10	11	M	Δ	T			Ga	sontia	ate Ne									
ĺ	Specification	ASTM	A572 G	90/A992/CSJ	A 64021-1	3 50MM(34	45WN	D				L	<u> </u>	<u> </u>	1	<u> </u>	14	<u></u>	-	1.		Iss	ue dat	۰.	20	17-12-	15						
Ī				高於	WEAR CHEAR					124			Che	micel	Com	posit	on ,						対策	Ten	小水			BEND	N-No	ipact 1 téh	Test(L	13.4	Remarks
ł	Dimensions	<u>.</u>	Length	Heat NO.	1055	0:91	C	si.	Mn	P	. 5	Cr	N	Mo	G	Å.	×.	Nb	5a	CEn		Ť	1	<u>م</u>		Closed action	Sauce Size		AVG	1	2	-3	(Impact Specimen Sipt)
ŀ	1.1.11	4:22	1.00	3 av : 98	<u> (</u> 27.77)	1. 199	12.7	<u>e100</u>	2.2	562	300 ;	270	. ¥1	00 <i><'</i>	-	: <u>:</u>	:>0	000.2	1220	7 690 8	<u>~~~</u>	1	- <u>18</u>	N/min	200	275	0764		12:55	1		122	********
l	14X16X257		45.00 FT	N 039862	1	5,246	13	19	139	8	2	15	5	1	7	4	40	3	9	40	_	_	5	2	407	28.0	0.766			_			
	14X16X257		55.00 FT	N 039861	1	6,412	13	17	144	8	2	12	5	1	8	3	41	4	6	41			54	15	400 397	26.0 26.5	0.734 0.747						
ľ	14X16X257		55.00 FT	N 039862	3	19,236	13	19	139	8	2	15	s	1	7	4	40	3	9	40		Τ	555	17	410 407	27.5 28.0	0,764						
İ	18X6X35		40.00 FT	E 201163	19	12,065	13	15	52	21	7	26	8	2	16	4	13	2	9	28		1	5	15	380	27.0	0.753						
ł	18X6X35		40.00 FT	E 201164	8	5,080	15	16	52	28	3	27	9	2	22	s	14	2	10	31	-	-	5	18	388	27.0	0.764		\square				
ŀ	18X6X35		40.00 FT	£ 201168	s	B,175	13	17	52	19	10	23	9	2	15	4	13	2	9	27	-+	+	4	38	420	24.5	0.844				-		
ł	18%5%35		45.00 FT	E 201165	3	2,142	13	14	51	19	7	25	9	2	15	4	11	2	9	27	-	╉	- 4	95	413	27.0	0.835	-					
ł	18X6X35		45.00 FT	E 201177	6	4,284	13	16	53	15	7	28	8	2	14	4	n	1	11	28	-+		- 4	57	408	20.0	0.838	1				-	
ł	16X5X35		45.00 FT	E 201178	6	4,284	13	18	57	12	9	19	6	1	11	4	12	2	8	27	-		4	58	371	29.5	0.793				-	1	
ŀ	18X6X35		50.00 FT	E 201169	4	3,176	13	15	52	21	7	26	8	2	16	4	13	z	9	28	•		5	05	380	27.0	0.753				—		
ŀ	SUB TOTAL	·	•		56	65,100		L	L		ļ ,				L	L	Į	I				IEX.		21. I. 800			,		÷		L	l	L
	(1) Ceq: (CE=C+M: (2) Gauge length : (3) Y.R = Y.S/T.S	n/6+Cg 200 m	/5+V/S+X m	Mo/5+NV25	i+Ou/15)	- Not	e																						- 1				
					: ::::		WE	HEREE BOVE	IV CE		THAT	THE	MAT	ERUAŬ S WIT	HAS	BEEN E REC	I MAI JUIRE	DE AN	ID TE	STED :	N ACC	ORD/	ANCE V	ITTH 1 RDER	NHE -	:.		• .:		5	J. (с.	Ahn
I				1.2	1.1	· · · · · ·	e		7	٠ç.	۰.,	÷	4.,	22		ς,				٠.						·. •.	•	·	[7	Gener	ral Ma	inage	of Q.A. Team

Job # 98.70 PO # 987-2

,

.

\$

Specimen C4, C6 or C7 Beam (for 2 Pieces)

			NUCOR - YAMAT	TO STEEL COMPANY		
	NUCOR - YAMATO STEEL COMPANY PO Box 1228 Blytheville AR 72316 USA		Da 2014-	ate 08-01 100% Melt All Shapes pr killed and fin	CERTIFIED MILL TEST REP ed and Manufactured in U.S roduced by Nucor-Yamato Steel are e grain practice	ORT 3.A a cast and rolled to a fully
	SOLD TO	5	HIP TO			
	HERRICK CORPORATION BOX 8429 STOCKTON CA 95208 USA	s K S D	TOCKTON STEEL C/0 (EEP ON TRUCKING BNS TOCKTON, CA FOR TRK VEL TO STOCKTON CA 95	 F R/R 5212	Invoice 646116 Customer No.	Bill Of Lading 162479 Customer P.O. 354-3
	Specifications: ASTM A992/A992M-11	4572/4572M GR50-1	ISA	M-13a GR50 (345) . ASTM A709	/A709M-13a GR50S (345S) . CS/	A G40.21-13 50WM (345WM)
	, ASTM A6/A6M-13a				777 00 III 200 01000 (0100) 1 001	
	Product Description	Heat Quantity	Heat Number	Length		
*	W30X116.0 (W760X173)	8	426935	50 ft 4 in(15.34 m)		

				Mechanica	Properties			
Yield To Tensile Ratio	UOM	Yield Strength	Tensile Strength	Elong %	Temp F/C	Impact Energy	Freq	Loc
0.79	KSI	57	72	28				
0.79	KSI	58	73	29				
	MPa	393	496	28				
	MPa	400	503	29				

					(hemica	Proper	ties						
с	Mn	P	S	SI	Cu	Ni	Cr	Mo	v	СЬ	Sn	CE	Pcm	CI
.08	1.10	.013	.023	.25	.23	.09	.12	.04	.00	.024	.01	.32	.16	.0

ELONGATION BASED ON 8.00 INCH GAUGE LENGTH

CARBON EQUIVALENT CE= C+Mn/6+(Cr+Mo+V)/5+(NI+Cu)/15

Pcm= C+Si/30+Mn/20+Cu/20+Nil/60+Cr/20+Mo/15+V/10+5B(B=Approx .0005) Mercury has not been used in the direct manufacturing of this material

Corrosion Index= 25.01(%Cu)+3.88(%NI)+1.2(%Cr)+1.49(%Si)+17.28(%P)-7.29(%Cu)(%NI)-9.10(%NI)(%P)-33.39(%Cu)^2

I hereby certify that the contents of this report are accurate and correct. All test results and operations performed by this material manufacturer are in compliance with the requirements of the material specifications, and when designated by the purchaser, meet the applicable specifications.

Daughennell

Chief Metallurgist

State of Arkansas County of Mississippi Sworn to and subscribed before me on 2014-08-01 Ö

My commission expires on 07/17/2023

		Invoice No. 795989 Bill of Lading 267158 Customer No. 7873	-NU P.O.	JCOR-3 BOX 1228:	KAMA BLYTHE	ATO STI VILLE, AR 72	EEL CO 2316	r	100% All Shap killed ar	Melt es pr nd fin	ed and oduced l e grain p	CERTIF Manu by Nuce ractice	IED MI ufactu or-Yam	ILL TES Ired in ato Sto	T-REPC n U.S. el are	ORT .A cast ar	nd rolle	d to a	fully		Sp	eci	me	n C	6	Col	umn
	¢	Customer P.O 377-7								Date	2	2017-	01-20														
	5 0 1 0 7 0	HERRICK CORPORATION BOX 8429 STOCKTON CA 95208 USA				S H P T O	STOCKTO KEEP ON STOCKTO DEL TO S USA	TRUCKI DN, CA F TOCKTO	l C/O NG BNS OR TRK IN CA 9	5212	R					STM A9 STM A7 STM A7 SA G40. STM A6	92/A99 09/A70 09/A70 21-13 5 /A6M-1	2M-11 9M-15 9M-15 0WM (A572/A GR50 (3 GR505 345WN	572M 845) (3455) (}	GR50-1	5					
	Γ		Τ				Mecha	nical Pro	perties										Chemi	cal Pro	perties						
	iter	n#Item Destription	an	Heat#	Yield to	Yield Strength	Tenalle Strength	ELONG	Charpy Temp	impa impa	ct ict Energy	Loc		Ma			6			~	240	v	ch	Œ	5n	8cm	
					Ratio	KSI MPa	KSI MPa	% %	• F		ft•lbf J			1 MAIN		,	34		"		MIC	ľ		~			
	1	W24X131.0 58 ft 8 in W610X195 (17.88 m)	1	463933	0.76 0.79	55 57 379 393	72 72 496 496	28 27					.07	1.10	.016	.027	.23	.28	.11	.16	.03	.01	.020	.32	.01	.16	
*	2	W24X176.0 40 ft 0 in W610X262 (12.39 m)	3	463912	0.74 0.75	55 57 379 393	74 76 510 524	26 27					.08	1.36	.018	.022	.21	.25	.12	.14	.05	.05	.000	.37	.01	.18	•
	ELO	NGATION BASED ON 8.00 INCH	GAUG +Cr/2	E LENGTH	//10+5B(B=Approx .0	1005)			CA M	RBON EC	QUIVAL	een uso	C+Mr	/6+(Cr e direct	+Mo+V manuf)/5+(Ni- acturin,	Cu)/15 g of this	s mater	ial							

Corrosion Index= 26.01(%Cu)+3.88(%Ni)+1.2(%Cr)+1.49(%Si)+17.28(%P)-7.29(%Cu)(%Ni)-9.10(%Ni)(%P)-33.39(%Cu)^2

ISO 9001:2008 certified (Registration # 0985-07).

-

All mechanical testing is performed by the Quality Testing Lab, which is independent of the production departments.

I hereby certify that the contents of this report are accurate and correct. All test results and operations performed by this material manufacturer are in compliance with the requirements of the material specifications, and when designated by the purchaser, meet the applicable specifications.

tennell

Chief Metallurgist

State of Arkansas County of Mississippi Swarn to and subscribed before me on 2017-01-20 My commission expires on 07/17/2023

٠.

Specimen C7 Column

有京和銅鐵企業股份有限公司

	6F.,No.9,Sec. Teb+885-2-2	1,Oleng-	un E.Rd.Ta D Fax+836	Ipel City1 2-2552 6	6441.Talwa 6520	10 *******				材質	證明	書 (出2	は 激明 表 可して あて あて	-			-				- (R) De	CER TEOP	ISSUE		Aug	31;20	16	
	Miceli Werk No.22, Pined Sitra Townshi	s Sing, Bitw Ip, Miaqu	Villoca County 34	1842, Taiw	en.				:	In act	ordánice	with AS	MA992								N C	AS A	ATEN	10;	H078	315		
200	ES L	THYSS	ENKRUP	P STEEL	SERVICE	5									990 990	1318 PING DA	ATE	Au	g. 30,	2015								
200	132	US160	7		(ORDERN	O.:H180	30)								SIG MODER	v	W	DEFL	ANGE	BEAM	MS		-				
1241P	(IG)#E	50081	1												335	ETT .		1-2	170,74	85 (ko	3)			-				
530. 508	ISCT NO.	ASTM	- A992-11												2012	1(2)	3		细		~	(**	902					
STA	NDARD	CREDE	TNOISS	INGR	ANK2:0										CUTEL	JUCAIN	acco	_										
REM	ARKS	TEMEN	SIONS	01100	1				045	TI MECHA	NICAL PRO	PERTY							boda	CHEN	ECAL	COMP	OSTE	CND	58	-	TYPE:	
F	12:5		80	20	10		FEIKEL	Distant i	10(5)(3)	FICE .		1				Т	T	П	T	T		T	T	T	ÍΠ	T	TT	577
	2010/07/09		LENSTH	MINO C	HEATING.		CLUP TODO	STRENGTH	in 250mm	~					¢	S N	in P	5	0	1 or	No	v P	12 50		6			80
	to look and		(dard												290	100 20	0 1000	1000	100 10	0 100	10001		800,100		1000			TEST
\vdash	nonatacted		10200		Min.		345	450	23.0		1	1				-	0	\square	+	+	-1	-+	+	+	+		$^{++}$	
1					Max.		453			75		1			21	40 10	60 3S	45	60 4	5 35	150	150 1	2 2	1 15	5 450		11	
	W 240x127	5+1750	35:00	8,355	H\$3341		354	433	257	72			1		23	20 30	8 24	19	24 5	11	15	20	2 2	1 24	259		11	GK
1			(C)				358	495	363	72		}			_								.	. [
	W 2404223	511760	4300	5,558	102342		254		267	27					"	20 12	- 34	"	-	13	13	2	" "	1"	1259			GE
	W 240v123		4000	18.655	H53207		412	154	223	26		1			20	22 12	10 36	11	21 3		19	28		۰I ه	309		11	OK
T			8				405	548	22.5	74							1		-1			1	1	1			11	1
					H52340		366	\$10	26,4	72		1			24	22 10	8 33	12	20 9	7	37	32	2 1	1 9	337			R I
1							372	512	24,5	73		1												ł	11		11	
	W 27.5-14.0	າຈະາຍາງ	\$3,00	10,510	103362		372	535	245	73					34	쯔 프	00 I 10	12	26 1	1 10	15	32	2 2	1 2	1 362		11	, ∝
1			63				377	512	243	76		1								1							11	
							1					1																1
																				[1	E		11	
								L				1					1							1				_
						Thismit	SC COLOR	ನನನ • ಶಾಸ ನಗಣವಾಗದ	SUNAZ-	heranbed	up licated ex	renaded.	Fécilierte	۱ ،	I	-	ance	Oth		826	加合さ	QUM	INYCO	ONTR	IOL MA	MAGER		
1						anarda	d, \$7 3335	ed al deta.	nd the set	Ficted run	enclosestrep	ortare then	fore intelled			兄弟	うちょう						,		-			
1						- 2203	0.67623	- 5154-52	Barg Bar	2-3792	022.	funnette	and and an or			正見	表版	Z				32	1	ų	Į _	臣		
1						with the	sundares.	and specifica	tion specific	es pyyou at	dautrist	sfestrent	urevents.			相關	民公	司				5	Ð	E	A	.94	ł	
						355253	-	-0420								材質	<u>299</u> 55	周盟				. "]	~		1	۰.	
						Theing	annetwea	swithund	etee an D	ν.					Ľ				1					_				
20	******	Of a Na	1-3F291	144年・152	****	-07,222	ATTERS .	9693- 1	lik certific	te is involte	without the	ned stal of	Tung He Ste	el Enterprise	Corp	•									pageb	\$29/20	5	
																		-										

San Dori 2. Juni

PO . 98.70

×.

. Н

ł

i.

I

	State in some state of the	Invoice No. 805912 Bill of Lading 273183 Eustomer No. 7950	NI P.O	JCOR-Y	YAMA BLYTHE	ATO STI VILLE, AR 7	EEL CC 2316).	100% All Shaj killed a	Mell pes pr nd fin	ed an oduced e grain	CER d Ma i by N practi	TIFIEI Inufa ucor- ice	D Mill I Ctu i Yama	L TEST red in to Ste	r REPO n U.S el are	ORT .A cast ar	nd rolle	ed to a	fully		9	Spe	cin	nen	Ce	3-G	
	C	ustomer P.O 381-26								Date	9	201	17-02-	20								C	-01	umi		JUC	10	
	SOLD TO	HERRICK CORPORATION BOX 8429 STOCKTON CA 95208 USA	-			5 H P T O	SAN BER C/O KEEI RANCHO SAN BER USA	NARDIN P ON TR CUCAN NARDIN	IO STEE UCKING IONGA IO CA 9	L ; CA F 2235	OR TRK	C DEL 1	го	-	-	A A A U A	5TM A9 5TM A7 5TM A7 5A G40.3 5TM A6	92/A99 09/A70 09/A70 21-13 5 /A6M-1	2M-11 9M-15 9M-15 9M-15 60WM (A572// GR50 (GR505 345WN	4572M 345) (3455) A)	GR50-1	5					
						1	Mecha	nical Pro	perties						·····					Chemi	cal Pro	perties						
	lter	#Item Description	an	Heat#	Yield to Tensile Batio	Yield Strength KSI	Tensile Strength KSI	ELONG	Charpy Temp ° F	Impa Impa	ct ict Energ ft= lbf	gy Lo	<u>c</u>	c	Mn	P	s	Sj	Cu	NI	Cr	Мо	v	Cb	CE	Sn	Pcm	Ci
	ļ					MPa	MPa	%	°C		J																	
	1	W24X176.0 29 ft 0 in W610X262 (8.84 m)	1	460158	0.77 0.76	57 57 393 393	74 75 510 517	27 26						08	1.35	.016	,018	.27	.26	.11	.16	.04	.05	.001	.38	.01	.19	
*	2	W24X176.0 29 ft 0 in W610X262 (8.84 m)	9	465327	0.77 0.77	57 56 393 386	74 73 510 503	28 28	-					07	1.35	.015	.020	.25	.26	.10	.09	.03	.05	.001	,35	.01	.17	
	3	W24X176.0 58 ft 4 in W610X262 (17.78 m)	4	465327	0.77 0.77	57 56 393 386	74 75 510 503	28 28						07	1.35	.015	.020	.25	.26	.10	.09	E0,	,05	.001	.35	.01	.17	
	4	W24X176.0 29 ft 0 in W610X262 (8.84 m)	2	465328	0.77 0.77	56 56 386 386	73 73 503 503	28 28						07	1.35	.014	,020	,24	.25	.12	.11	.03	,05	.001	.36	.01	.18	
4 	ELOI Pem Corr ISO	VGATION BASED ON 8.00 INCH G = C+SI/30+Mn/20+Cu/20+Ni/60+ osion Index= 25.01(%Cu)+3.88(% 9001:2008 certified (Registration nechanical testing is performed b	AUG Cr/20 (NI)+: # 09 v the	E LENGTH)+Mo/15+V 1.2(%Cr)+1. 35-07). Quality Te:	/10+5B(i 49(%Si)+	B=Approx .0 17.28(%P}-)	005) 7.29(%Cu)(%	6Ni)-9.10)(%NI)(%	CA M (P)-33	RBON E ercury h .39(%Cu	as not	LENT been	CE= used	C+Mn/ in the	6+(Cr+ direct	Mo+V) manufa	/5+(Ni+	Cu)/15 ; of this	materi	al				· · · · ·			
-	i he corr man mat mee	reby certify that the contents of t ect. All test results and operation ufacturer are in compliance with erial specifications, and when des t the applicable specifications.	his re s per the r	eport are ad formed by t equirement ted by the p	courate a this mate ts of the purchase	nd erial	herallun	ferro gist	ul				State Count Sworn	of Ark y of N I to ar	Aississi Aississi ad subs	ppi scribed	i before	me	56	N	ANN OTAR UBLI]				
												·	My co	mmis	sion ex	pires (on 07/1	7/2023			da Emplu As-9415		,					

Specimen C4, C6 or C7 Beam

Big 0: 025-010 Big 0: 010-010 Big 0	SII	Stang Lang Since	eel g Pro Sural e	Dyna nducts Gro and Rat Divis	mics, li nip	10:			(CER	TIFI	ED N	AILL TE Customer#	EST 00044		ORT					Prir Produ	nted: 10 / 09 / 2016 iced: 09 / 25 / 2016
Demetral INFORMATION Broduct Wide Fange Beam Size W20X116 W 760 x 173 Least Market All Additions Specific Attons Specific Attons Boll # 000428910 - 41005.00 Rs Bundle / ASN M 20X116 W 760 x 173 Least Mumber A 127163 Ondition(g) & R-R0ind Prio Emined Prio Emine Prio Emined Prio Emined Prio Emined Prio Emined Prio Prio Emined Prio Emined Prio Prio Emined Prio Prio Emined Prio Prio Emined Prio Prio Prio Emined Prio Prio Prio Emined Prio Prio Prio Emined Prio Prio Prio Prio Emined Prio Prio Prio Prio Prio Prio Emined Prio Prio Prio Prio Prio Prio Emined Prio Prio Prio Prio Prio Prio Prio Prio	1	(260) Quali and Recycle /SO) 625 ity \$ Mai d co 9001	5-8100 Steel 1 nufact intent: P 1:2008 a	(260) 6254 00% EA ured in 1 2C = 77.0% nd ABS C	8950 FM the , Pl ertifi	FAX leited USA = 19.4% led															
Product Wide Flange Beam Standards Grades Bize M30X116 ASTM ARAMA-16 Brader Standards ASTM ARAMA-16 ASTM ARAMA-16 Brader Standards BURD(e / ASN # Longth pcc. Cuet PO Recv PO Job Condition(s) ASTM ARAMA-16 Brader Standards BURD(e / ASN # Longth pcc. Cuet PO Recv PO Job Condition(s) ASTM ARAMA-16 ASTM ARAMASH.16 ASTM ARAMASH.16 Cuet PO Recv PO Job ASTM ARAMASH.16 ASTM ARAMASH.16 ASTM ARAMASH.16 Cuet PO Recv PO Job Cuet PO Recv PO Job Condition(s) ASTM ARAMASH.16 ASTM ARAMASH.16 ASTM ARAMASH.16 Cuet PO Recv PO Job ASTM ARAMASH.16 ASTM ARAMASH.16 ASTM ARAMASH.16 Cuet PO Recv PO Job Cuet PO Recv PO Job ASTM ARAMASH.16 ASTM ARAMASH.16 ASTM ARAMASH.16 Cuet PO Recv PO Job Cuet PO Recv PO Job ASTM ARAMASH.16 ASTM ARAMASH.16 ASTM ARAMASH.16 Cuet PO Recv PO Job Cuet PO Recv PO Job ASTM ARAMASH.16 ASTM ARAMASH.16 ASTM ARAMASH.16 ASTM ARAMASH.16 Cuet PO Recv PO Job Chempone Line Content Poly Astender Poly Poly Astender Poly Poly Astender Poly Poly Astender Poly Poly Poly Astender Poly Po	GENE	ERAL	NFO	ORMA	TION	1	SPECIF	CAT	ONS							SHIPMEN	T DET/	AILS	E	OL#00	0042681	0 - 41006.00 lbs
Size W 30X116 Attraction Status District District <thdistrict< th=""> District<!--</td--><td>F</td><td>Produc</td><td>at '</td><td>Wide Fla</td><td>ange Beam</td><td>. </td><td></td><td></td><td>andarde</td><td></td><td></td><td></td><td>Grada</td><td></td><td></td><td>Bundlo /</td><td>AGN #</td><td>Long</td><td>th nor</td><td></td><td>~ 80</td><td>Poer PO Lieb</td></thdistrict<>	F	Produc	at '	Wide Fla	ange Beam	.			andarde				Grada			Bundlo /	AGN #	Long	th nor		~ 80	Poer PO Lieb
ASTM A992/A924-11 AS	*	Siz	e	W30X	116				AR/ARM -	16			Graue			022298	120	60' 6	en pes	A3482	00013	Project Sarah
east Number A127163 ASTM A708/A709M - 16a A709 gr50gr345 02228003 50° 5° 1 A38200015 Project Samh Condition(s) As Railed ASTM A708/A709M - 16a A709 gr50gr345 02228003 50° 5° 1 A38200015 Project Samh Sondition(s) As Railed ASTM A708/A709M - 16a A709 gr50gr345 02228003 50° 5° 1 A38200015 Project Samh Moved Repair ASTM A508/A58K - 14 A387 / A386 ASTM A508/A58K - 14 A387 / A386 02228003 50° 5° 1 A38200015 Project Samh Moved Repair CSA 640.21-13 SOW/350W 02228003 50° 5° 1 A38200015 Project Samh CHARCY IMPACT TESTS (available only when specified at time of order) Time Asocked Berny K-Mark Project Samh Project Samh Strength Strength fy/ fu % Elong. Time Asocked Berny K-Mark F/ C Specimen 1 Specimen 2 Specimen 3 Average Minimum 1 Strength fy/ fu % Elong. Time Asocked Berny K-Mark F/ C Specimen 1 Specimen 2 Specimen 3 Average Minimum	æ	0.0	Ξ,	W 760	x 173		» A	STMA	992/A992)	N-11			A992 / A99	2M		022298	031	50'6		A3482	00013	Project Sarah
Condition(s) As-Rollind Prior Grained Fine Grained No Weid Repair ASTMAST/204720-15 AASHTO M2200/M220-12 M220 gr345gr50 CSA G40.21-13 ASTZ gr60gr345 M220 gr345gr50 D22288035 D02298034 S0 °F 1 ASt82-00019 Ast8200019 Project Samth Project Samth D22288035 Chemiced Fine Grained No Weid Repair ASTMAST/204720-12 ASTMAST/204720-12 Strateging Project Samth CSA G40.21-13 ASTMAST/204720-12 M220 gr345gr50 D22288035 D022 98035 S0 °F 1 Ast82-00019 Project Samth D22288035 Chemiced Fine Fine Fine Data Sitt Assift Ass	Heat I	Numbe	r	A1271	63		AS	TM A7	09/A709M	- 16a			A709 gr50/a	1345		022298	037	50' B	. 1	A3482	00019	Project Sarah
Fine Grained Pully Killed No Weld Repair AASHTO MZZ00MAEZ0 - 12 ASTMASO/36M - 14 ASTMASO/36M - 1	Cond	lition/e	3	As-Roll	sd		AS	TMAS	72/A572M	- 15			A572 gr50/g	r345	1	022298	034	50'6	• 1	A3482	00019	Project Sarah
Fully Rillod No Weld Repair ASTM ASGMASSM-14 CSA 640.21-13 ASG / ASGM O22280036 022280032 S0'6''' 1 Add82.00019 Project Senah CHEMICAL ANALYSIS Verdight percent) Che Man P S 0.77 Si S 1.23 Cu Ni Cu Ni Cu Ni Cu Ni Cu Ni Strength Cr Mo Si Ni Cu Ni Cu Ni Strength Cr Mo Si Ni Cu Ni Cu Ni Cu Ni Strength Ni Cu Ni Cu Ni Cu Ni Cu Ni Strength Cr Mo Si Ni Cu Ni Cu Ni Cu Ni Strength Ni Cu Ni Cu Ni Cu Ni Strength Ni Cu Ni Cu Ni Cu Ni Strength Cu Ni Cu Ni Cu Ni Cu Ni Strength Cu Ni Cu Ni Cu Ni Cu Ni Strength Cu Ni Strength Strength Average Minimum Cetter (Strength-CutStrength-Strength-Strength-Strength-Strength-Strength-Strength Stresticle Strength <t< td=""><td>Conta</td><td>monto</td><td>7</td><td>Fine Gr</td><td>ained</td><td></td><td>AAS</td><td>HTON</td><td>1270M/M2</td><td>70 - 12</td><td></td><td></td><td>M270 gr345/</td><td>gr50</td><td></td><td>022298</td><td>035</td><td>50' 6</td><td>" 1</td><td>A3482</td><td>-00019</td><td>Project Sarah</td></t<>	Conta	monto	7	Fine Gr	ained		AAS	HTON	1270M/M2	70 - 12			M270 gr345/	gr50		022298	035	50' 6	" 1	A3482	-00019	Project Sarah
No Weld Repair CSA 640.21-13 SOW/350W 022208032 50*6***********************************				Fully Ki	lled		,	STM/	36/A36M -	- 14			A36/A36	м		022298	036	50' 6	• 1	A3482	-00019	Project Sarah
CHEMICAL ANALYSIS 0.01 (weight percent) C Min P S Si Cu Ni Cr Mo Sin V Nb/Cb Al N 14 B *C1 *C2 *C3 *PC *1 Analysis Type 0.07 1.23 .014 .025 23 .30 .10 .10 .031 .011 .035 .001 .014 .003 .33 .37 .31 .16 .5.64 Heat ECHANICAL TESTING Widd (fy) Tempil Absorbed Energy F//C Specimen 1 Specimen 2 Specimen 3 Average Minimum 1 57/.392 71/.469 .80 .72 .43 .4 .5 .7 .7 .4 .5 .7 .7 .4 .5 .7 .7 .4 .5 .7 .7 .4 .5 .7 .7 .4 .5 .7 .7 .4 .5 .7 .7 .4 .5 .7 .7 .4 .5 .7 .4 .5 .7 .7 .4 .5 <td< td=""><td></td><td></td><td></td><td>No Wel</td><td>ld Repair</td><td></td><td></td><td>CSA</td><td>G40.21-13</td><td>3</td><td></td><td></td><td>50W/350</td><td>W</td><td></td><td>022298</td><td>032</td><td>50'6</td><td>"1</td><td>A3482</td><td>00019</td><td>Project Sarah</td></td<>				No Wel	ld Repair			CSA	G40.21-13	3			50W/350	W		022298	032	50'6	"1	A3482	00019	Project Sarah
C Mn P S Si Cu Ni Cr Mo Sn V Nb/Cb Al N B *C1 *C2 *C3 *C4 *Ind Analysis Type 077 123 014 0.25 23 30 10 0.01 0.01 0.01 0.014 0.014 0.003 33 37 *C3 *PC *I Analysis Type ECHANICAL TESTING Triald (h) Ternsite (fu)	CHE	MICAL	AN	ALYSI	5 (weight	perc	centi)															
07 1.23 0.14 0.25 2.3 3.0 1.0 1.0 0.31 0.11 0.35 0.01 0.01 0.142 0.003 3.3 3.7 3.1 1.6 5.64 Heat ECHANICAL TESTING Wield (fy) Tensile (fu) Tenp Absorbed Energy Mc/fr/J Tenp Absorb	С	Mr	n	P	S	Si	Cu	Ni	Cr	Mo	Sn	v	Nb/Cb	A	N	в	*C1	*C2	*C3	*PC	*1	Analysis Type
ECHANICAL TESTING Yield (fy) Tensile (fu) Strength fy / fu % Elong. 1 57/392 71/489 .80 30 2 38/403 72/494 .61 27 3 4 5 5 5 5 5 7 Catabase Game Game Game Game Game Game Game Gam	.07	1.2	3	.014	.025	.23	.30	.10	.10	.031	.011	.035	.001	.001	.0142	.0003	.33	.37	.31	.16	5.64	Heat
Visital (ty) Tensile (tu) Strength Strength 1 57.392 2 58.4 do3 2 58.4 do3 4 1 5 6 7 3 4 5 6 6 7 7 0692: Caculated Chembergy Webster Cachen Excluders (CC, PC, CC, CC, PC), Concelerations (CC, PL, CC, CC, PC), Concelerations (CC, PL, CC, PC, CC, CC, PC), Concelerations (CC, PL, CC, PC, CC, CC, PC), Concelerations (CC, PL, CC, PC), Concele	MECH	ANICA	1.7	ESTIN	IG					· CHA	DDV I	APACT	TESTS /a	vailable	only w	hen enecifie	d at th	me of o	riar)			
Strength Strength fy/fa % Elong, (0''''''''''''''''''''''''''''''''''''	meen	Yia	ld (fi	v)	Tensile	(fu)				<u>Unv</u>	Te	mp /	Absorbed En	erav	fbibf/J	ви зрасни	su at m	ne or o	iuer)			
East ksi/ MPa ksi/ MPa ratio (B* page) 1 1 57/ 392 71 / 489 .80 30 2 2 58 / 403 72 / 494 .81 27 3 4 5 6 7 0btest: "Calculated Chambley Wease Cabon Exploates (C1, C2, C3, PC), Concelse index (f) 1, Warted Grapher Lag(c)+Lag(c)+17.23(P-7.43(Pc)(MP) = 0.45(X/G) + 0.42(X/G)		Str	engt	th	Streng	th	fy/fi	4	% Elong.	Test	F	10	Specimen 1	Spec	dmen 2	Specimen 3	A	wenaga	Mi	ກ່ອນກາ		
1 57/192 71/1489 .60 30 2 2 58/403 72/494 .61 27 4 3	Test	ksi,	/ MP	Pa	ksi / MF	°8_	ratio	<u> </u>	{8" gage}	- 1												
2 58/403 72/494 .61 27 3 3 4 5 6 6 7 7 Obtest: 'Concented Chemotry Waters Conton Equivalents (C1, C2, C3, PC), Correctate index (I) I. (ASTM Gron)= 20.01()Cu)+3.88(Ni+1.23(Cr)+1.49(5)+17.29(P)+7.28(P0)(N)-9.318(DuP)) Detest: 'Concented Chemotry Waters Conton Equivalents (C1, C2, C3, PC), Correctate index (I) I. (ASTM Gron)= 20.01()Cu)+3.88(Ni+1.23(Cr)+1.49(5)+17.29(P)+7.28(P0)(N)-9.318(DuP)) hereby contly that the material described herein has been made to the applicable CEX (IIII) Pem(NNR)= C-63/30+Mar23+Cu220+MER3+MER3+Cu220+MER3+Cu220+MER3+	1	57	/ 393	2	71/48	9	.80		30	2												
3 7 4 6 6 7 6	2	58	/ 403	3	72/49	4	.81		27	3												
4 6 7 7 Object * Calculated Chambery Values Candon Equivalents (C1, C2, C3, PC), Corrector Index (I) 1 (ASTM Group = 20.014(Cu)+3.88(N(H+1.23)(Cp)+1.48(SI)+7.23)(Cp)+7.48(DU)/P3.23.9(Cu)+ hereby certify that the material described herein has been made to the applicable pacelisation by the electric are furmace/continuous cart process and tested in accordance with the requirements of American Bureau of Shipping Rules with satisfactory results. Signed: ABS CERTIFICATION hereby certify that the content of this report are accurate and correct. All tests and perdions performed by this material manufacturer are in compliance with the equirements. State of Indiana, County of Whitley Sworn to and subscribed before me this	3									5												
7 Object Catedated Chambery Veloce Cate Equivalence (C1, C2, C3, PC), Correction inter (U) 1 (ACTM Grotopic 20.014(Cuty20.88(NU+1.20(Cry1-1.48(E))+7.20(Cry1-1.48(E))+7.20(Cry10)+9.18(PU/P)-9.3.38(Cuty) Prector control (Proceeding (Proceedin	4									6												
detest Calculated chemothery Wearse Cachon Explorations (C1, C2, C3, C1, C1), Contraction index (U1, 11, KATM details) + (X14M)										7												
hereby certify that the material described herein has been made to the applicable pecification by the electric are furnace/continuous cart process and tested in accordance with the requirements of American Bureau of Shipping Rules with satisfactory results. Signed: hereby certify that the content of this report are accurate and correct. All tests and perdisons performed by this material manufacturer are in compliance with the requirements of the material specifications and epplicable purchaser designated requirements. Signed: Signed: ABS CERTIFICATION AB	Notes:	Calculat	ind Ch	hemistry Va Mo/Bel/Crei	luas: Carbon MorVVS+INIE	Equiva Cut/12	Jenis (C1, C2, 0 5 CE2 (AWS)-	23, PC), C+(Mn+5	Correction Ind R/6+(Cr+Mo+1	ακ(I) t (/ /)/5+(NT+Cu	ASTM G101 N/15 CE3	j= 28.01 (C (CET) = C	u)+3.88(NI)+1.20(+ (MoG) + (8024)	Cr)+1.49(Si) + (Cr/5) + (+17.29(P)-7.0 N740) +(Ma44	29(Cu)(NI)-9-10(NI 3+(V/14) Perm	(P)-33.39((AWS) = C	(Cu²) +51/30+M/J2	0+Cu20+0	(UE0+Cx20-	100/15+W	10+53
pecification by the electric are furmace/continuous cart process and tested in accordence with the requirements of American Bureau of Shipping Rules with satisfactory results. Signed: hereby certify that the content of this report are accurate and correct. All tests and perdions performed by this material manufacturer are in compliance with the requirements of the matural specifications and applicable purchaser designated requirements. Signed: Jeremy Cronkhite m F-600-002-054 ev-8 Quality Manager ASTM A6-14.6: A signature is not required on the test report; however, the document shall clearly identify the organization submitting the report. San Bio and the report.	I hereby	y certify t	hatt	he materi	al describe	her	ain has been	made t	o the applic	able			ARS.	CERT	FICAT	ON						
Signed: State of Indiana, County of Whitley Sworn to and subscribed before me persions performed by this material manufacturer are in compliance with the squirements of the material specifications and applicable purchaser designated requirements. Signed: State of Indiana, County of Whitley Sworn to and subscribed before me this day of Signed: Signed: My commission expires: m P-6100-002.054 mv/s Quality Manager My commission expires: ASTM A6 - 14.6: A signature is not required on the test report; however, the document shall clearly identify the organization submitting the report. San Bio .	specific with the	cation by	the e	electric ar	c fumace/o	ontin a of s	uous cast pr	DOB55 2	ind tested in splicfactors	abcorda maulte	nice.		100	Gailt								
Signed: State of Indiana, County of Whitley Sworn to and subscribed before me persions performed by this material manufacturer are in compliance with the persions performed by this material manufacturer are in compliance with the persion of the material specifications and applicable purchaser designated requirements. State of Indiana, County of Whitley Sworn to and subscribed before me this day of Signed: Jeremy Cronkhite My commission expires: m P-000-002001 meret My commission expires: My commission expires: My commission expires: Notary Public Signed: Notary Public	Man Hit	- rodnicet					and hand some			- a contract												
hereby certify that the content of this report are accurate and correct. All tests and perations performed by this material manufacturer are in compliance with the equirements of the material specifications and applicable purchaser designated requirements. Signed: <u>Jeremy Cronkhite</u> m P-stor-022454 tor a <u>Quality Manager</u> ASTM A6 - 14.6: A signature is not required on the test report; however, the document shall clearly identify the organization submitting the report. <u>San Böring time State</u>	Signe	ed:																				
perations performed by this material manufacturer are in compliance with the squirements of the material specifications and applicable purchaser designated requirements. Signed: Jeremy Cronkhite	I hereby	y certify l	lhat	the conte	ent of this i	apor	rt are accura	te and	correct. A	li tests a	nd		State	e of Ind	iana, Co	unty of Wh	itley S	worn to	and su	bscribe	d befo	are me
Signed: Jeremy Cronkhite Signed: Jeremy Cronkhite Signed: My commission expires: Signed: Notary Public My commission expires: Signed: Notary Public Signed: San Bigi unit find Cliffic Cliffi	operatio	ons perfo	me	d by this	a material n	nanu	facturer are	in con	npliance wi	th the												
Signed: Jeremy Cronkhite /// Signed: My commission expires: My commission expires: My commission expires: My commission expires: Notary Public Notary P	require	ments of	the	material	sbactical	onsa	and applical	ne pur	cnaser des	ignated I	requirem	84119.	this		0	lay of						
m F-6100-002451 ray 3 Quality Manager Notary Public ASTM A6 - 14.6: A signature is not required on the test report; however, the document shall clearly identify the organization submitting the report. Notwithstanding the absence of a signature, the organization submitting the report is responsible for the content of the report Notwithstanding the absence of a signature, the organization submitting the report is responsible for the content of the report	Signe	d: J	er	rem	ny C	r	onkh	ite	2 4	/ pe	1	-	Sign	ed:					Ay com	missio	n expin	es:
AS IM AV - 14.9: A signature is not required on the test report, however, the document shar cleany locating two organization submitting the report. Sen life. If this Studies	Form F-61	00-002-054	i tov t	Qualit	y Manager							and the s		at a start	Not	ary Public		las the		0.5		
				ASTM	Notwilb	A Bİg sland	gnature is n ding the abs	ence o	red on the f a signalu	test repo re. the or	ort; howe raanizatio	ver, the o on submi	socument sha ting the reco	t is respo	contity the	e organization the content of	f the rea	ang ine re art	port.	San G	Sing o	MC CLCI
											0.0000		3							7-1-1	0	0 - 70

100# 287-2 PO# <u>287-2</u>

Contract No.							-		4												1				HY	JU	DF	11			
Customer	GS (JLOBAL							4																5T	22	-			÷.,	i a
PO No.	4620	01706AB	02	-						I	NS	PE	CT	Ю	N (CE	RT	FI	CA	FE							0		P	AGE:	18/81
L/C No.												EN	10	204	(200)4) '	TYPE	3.1	L		Taco	ory Record		Sector	graean	owan-	upon.	ang-site	yeongs	angpuk	doskona
Commodity	H-B	EAM																			Cert	ricate	NO.	120170	140821)+ 1 .					
Specification	ASTA	AA572.65	0/A992/CS	A G4021-1	3.5000/34	151474	0					ſ	0	R	łC	ìl	N	<u>A</u>		٠.	Cass	cerunceo	e Nici						· · ·		- 1
		1	T	1	1	1.1.2	-					-	_								-19500	0810		2017-05	1-28	1	1				
Dimension	5	Length	Heat No.	Quantity	Weight	<u> -</u>					<i>.</i> .	Ch	brnica	d Con	npost	tion .	÷.,			с.		1.1	ensite	Test (Yield	BEND	.v-	Notch	Test) c	Remarks
				(PCS)	(kg)	<u>c</u>	si a100	Mn	P	5	0	NI	Mo	Cr.	A	V	Nb	Sn	CEau	. · I		Strangt	Strongt	klongutk Gi			AVO	1	2	3	(Impeci Specie Size)
30X10-1/2X	9	60 00 FI	367359	- 11	29,634	17	16	102	23	,	24	8	2	16	4	29	1	12	40	Ť	1	546	405	27.5	0.74		\vdash	T	İ.	F.	
30X10-1/2X	9	65.00 FT	366997		11,672	10	1.	102	17								-	-				536	410	270	0.74		۰.	+			
/					4.4,97.8			102					-		1-	32	. ² .	-	40			542	408	26.0	0.75			'		ļ	·
30x10-1/2x1	16	35.00 FT	3G8076	3	5,523	17	15	104	. 15	7	17	8	2.	10	4	30	2	7	39			557	401 398	24.1 24.5	0.71	Ι.					-
30X10-1/2X1	16	45 00 FT	307361	1	2,367	.17	13	103	21	10	23	10	2	15	3	28	2	12	40			570 573	416 421	25 0 24.0	0.72	÷.,		1	1.1		- 11
30x10-1/2x1	16	45.00 FT	3G7352	3	7,101	18	15	103	18	10	22	9	2	14	3	54	2	'n	42			\$74	425	23.4	0.74	1	ļ. "	1	1	1	* • •
30X10-1/2X1	16	50.00 FT	367001	1	2,630	17	15	202	19	.9	38	8	2	'n	3	30	2		39		-	555	423	25.3	0.76	t.		•	† •		
30X10-1/2X1		50.00 FT	367002	· ·	· · · · · ·			103						•	•							559	425	25.0	0.76		,			: 1	
						Ϋ,					"				-	80	1	-				546	410	24.3	0.75					-	in in month
30X10-1/2X1	- MA	50.00 FT	3G7003	· 1	2,630	18	15	103	21	13	21	9	2	щ	3	29	2	9	40			554 549	428	25.6	0.77			L .			
30×10-1/2×11	6	55.00 FT	367361	- 4	11,572	17	13	103	21	10	23	16	2	15	3	28	2	12	40		1.	570 573	416 421	25.0 24.0	0.72 0.73	· .		1.			
30X10+1/2X11	6 .	60.00 FY	367361	15	47,340	17	13	103	21	10	23	10	2	15	3	28	z	12	40			570	416	25.0	0.72					-	
SUB TOTAL				45	125,729					. '			. '		·		••••••••••••••••••••••••••••••••••••••			nan N	EXT.	00000		1	1.	· · ·		1	L	1	
Conditions of sup (1) Ceq. (CE=C+M (2)-Gauge-length;	oly : As n/6+Cr/ 200-nar	Rolled 5+V/5+M	u/5+Ni/15	-Çu/15)	Note	÷																	-				•				-
3) Y R = Y.S/1.S								1.												,											
					v	VE HI	REBY	CERT	IFY T	HAT	THE	AATE	RIAL I	HAS E	EEN I	MAD	t AND	TES	TED IP	ACCO	RDANC	E WITH	THE	· · · ·				4	2%	1	nn
					,	- A 8	WAS 2	PECH	A	ION I	AND /	ats0	WITH	THE	REQU	JUREN	MENTS	CAL	LEO PA	78 THE	ABOVE	ORDE	L				÷	Genera	al Mar	naciar (of QA Team

Specimen C4 Beam 30006

,

(...4

NUCOR - YAMATO STEEL COMPANY PO Box 1228 Blytheville AR 72316 USA	Date 2014-03-31 100% Melte All Shapes pro killed and fine	CERTIFIED MILL TEST REP ed and Manufactured in U.S educed by Nucor-Yamato Steel are grain practice	ORT S.A cast and rolled to a fully
SOLD TO HERRICK CORPORATION BOX 8429 STOCKTON CA 95208 USA	SHIP TO SAN BERNARDINO STEEL C/O KEEP ON TRUCKING RANCHO CUCAMONGA, CA FOR TRK DEL TO SAN BERNARDINO CA 92235 USA	Involce 621653 Customer No. 1382	Bill Of Lading 148116 Customer P.O. 349-3
Specifications: ASTM A992/A992M-11 A572/A572M GR5 , ASTM A6/A6M-13a	0-13a, ASTM A709/A709M-13a GR50 (345) , ASTM A709/	/A709M-13a GR50S (345S) , CS/	A G40.21-13 50WM (345WM)

	Product Description	Heat Quantity	Heat Number	Length
¥	W36X150.0 (W920X223)	5	421418	62 ft 0 in(18.90 m)

				Mechanica	l Properties			
Yield To Tensile Ratio	UOM	Yield Strength	Tensile Strength	Elong %	Temp F/C	Impact Energy	Freq	Loc
0.79	KSI	57	72	28				
0.77	KSI	55	71	24				
	MPa	393	496	28				
	MPa	379	490	24				

						Chemical	Proper	ties						
С	Mn	Р	5	Si	Cu	Ni	Cr	Mo	v	Cb	Sn	CE	Pcm	CI
.08	1.10	.019	.028	.25	.24	.08	.12	.03	.01	.019	.01	.32	.17	.0

ELONGATION BASED ON 8.00 INCH GAUGE LENGTH

Pcm= C+SI/30+Mn/20+Cu+Ni/60+Cr/20+Mo/15+V/10+5B(B=Approx .0005)

CARBON EQUIVALENT CE= C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15

Mercury has not been used in the direct manufacturing of this material

Corrosion Index= 26.01(%Cu)+3.88(%Ni)+1.2(%Cr)+1.49(%Si)+17.28(%P)-7.29(%Cu)(%Ni)-9.10(%Ni)(%P)-33.39(%Cu)^2

I hereby certify that the contents of this report are accurate and correct. All test results and operations performed by this material manufacturer are in compliance with the requirements of the material specifications, and when designated by the purchaser, meet the applicable specifications.

Daug Lemmell Chief Metallurgist

County of Mississippi Sworn to and subscribed before me

State of Arkansas

on 2014-03-31 Deleased the My commission expires on 07/17/2023

	şı	peçimen C3	or	C5 E	Bear	n					í		;				Ć	D									7	,
	b Bil Cu Cu	1voice No. 702784 1 of Lading 200567 stomer No. 7873 stomer P.O 357-3	NU(p.o. b	COR-YA 0X 1228: BL	AMAT .YTHEVILI	O STEE	3L CO. 6 すう	10 All kill	0% M Shapes led and C	elter prod fine p bete	i and luced grain	CER d Ma by N pract	tifie nufa ucor- ice 15-07	D MILL acture Yamat	o Steel	REPOR U.S.A are ca	T st and	rolled	to a fu	llγ					5P	5	30	,
		RRICK CORPORATION X 8429 DCKTON CA 95208 A				5 S 1 P 7 C	TOCKTON EEP ON TI TOCKTON SEL TO STO JSA	STEEL C RUCKING , CA FOR	/O 5 BNSF R TRK CA 952	R/R 12						AST AST AST CSA AST	M A992 M A709 M A709 G40.21 M A6/A	/A992A /A709A /A709A -13 50V 5M-14	4-11 A5 4-13a G 4-13a G VM (34	72/A5 R50 (3 R50S (3 SWM)	2M GR 15) 3455)	50-13ə						
			Т				Mecha	nical Pro	pertiles										Ch	emical	Propert	les (wt	%)					
	ltem	Item Description	an	Heatt	Yield to Tensile Ratio	Yield Strength KSI	Tensile Strength KSI	ELONG	Temp *F	Char) Impa	oy imp oct Env ft+libi	ergy	Loc	с	Mn	P	s	si	Cu	NI	Cr	Mo	v	сь	Œ	Sn	Pcm	a
			_			MPa	MPa	%	• C		1				L										L			
	1	W36X150.0 39 ft 4 in W920X223 (11.99 m)	1	440686	0.77 0.77	54 55 372 379	70 71 483 490	28						.08	1.37	.017	.027	.20	.26	.11	.17	.04	.00	.019	.34	.01	.17	
	2	W36X150.0 54 ft 8 in W920X223 (16.66 m)	1	440685	0.77 0.77	54 55 372 379	70 71 483 490	28 27						.08	1.17	.017	.027	.20	.26	.11	.17	.04	.00	.019	.34	.01	.17	
*	3	W36X150.0 61 ft 8 ln W920X223 (18.80 m)	2	440889	0.77 0.77	55 55 379 379	71 71 490 490	28 28						.07	1.12	.011	.022	.22	.29	.09	.11	.02	.00	.019	.31	.01	.16	
	4	W36X150.0 64 ft 0 in W920X223 (19.51 m)	1	440893	0.77 0.76	55 54 379 372	71 71 490 490	28 28						.07	1.30	.014	.027	.19	.29	.12	.13	.04	.01	.021	.32	.01	.16	
	5	W36X150.0 54 ft 0 in W920X223 (16,46 m)	2	440895	0.76 0.76	55 55 379 379	72 72 496 495	28 29						.08	1.10	.013	.022	.21	.25	.12	.12	.04	.00	.019	.32	.01	.16	
	6	W36X160.0 56 /t 4 lm W920X238 (17.17 m)	1	440911	0.77 0.76	55 54 379 372	71 71 490 490	28 29						.08	1.10	.010	.024	.22	.27	.11	.10	.03	.00	.023	.31	.01	.16	

ELONGATION BASED ON 8.00 INCH GAUGE LENGTH

CARBON EQUIVALENT CE= C+Ms/6+(Cr+Mo+V)/5+(NI+Cu)/15

Pcm= C+SI/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+SB(6=Approx.0005) Mercury has not been used in the direct manufacturing of this material.

Corresion Index= 26.01(%Cu)+3.88(%Ni)+1.2(%Cr)+1.49(%Si]+17.28(%P)-7.29(%Cu)(%Ni)-9.10(%Ni)(%P)-33.39(%Cu)^2

ISO 9001:2008 certified (Registration # 0985-07).

All mechanical testing is performed by the Quality Testing Lab, which is independent of the production departments.

I hereby certify that the contents of this report are accurate and correct. All test results and operations performed by this material correct, we test results and operations performed of the material manufacturer are in compliance with the requirements of the material specifications, and when designated by the purchaser, meet the applicable specifications.

Daug Lemmell

Chief Metallurgist

State of Arkansas County of Mississippi Sworn to and subscribed before me on 2015-07-01 Deliant Ape Ridea My commission expires on 07/17/2023

Invoice No. 913776 Bill of Lading 347625 Customer No. 7950 Customer P.O 987-1	NU P.O.	JCOR-1 BOX 1228:	YAMA	ATO STI VILLE, AR 72	EEL CC 2316).	100% All Shap killed ar	Melt bes pr nd fin Date	ed and oduced b e grain pr	Mar Mar y Nu actic	rifiED Mi nufactu .cor-Yam ce 8-09-24	ILL TES Ired in ato Ste	T REPO	ORT .A cast ar	d rolle	ed to a	fully								
S HERRICK CORPORATION BOX 8429 STOCKTON CA 95208				S H P T O	SAN BER C/O KEEI RANCHO SAN BER USA	NARDIN P ON TR CUCAN NARDIN	IO STEE UCKING IONGA, IO CA 9	L 5 , CA F 2235	OR TRK D	ELT	ō		AS AS CS AS	5TM A9 5TM A7 5TM A7 5A G40. 5TM A6	92/A99 09/A70 09/A70 21-13 5 /A6M-1	2M-11 9M-15 9M-15 0WMT 4	A572/A GR50T GR50S1 (345W	572M (345T) (3455 MT)	GR50-1 T)	5					
					Mecha	nical Pro	perties				_						Chemi	cal Pro	perties			1			
Iten#Item Description	атı	Heat#	Yield to Tensile Ratio	Yield Strength KSI	Tensile Strength KSI	ELONG	Charpy Temp * F	lmpa Impa	ct Energy ft•lbf	Loc	c c	Mn	P	s	Si	Cu	Ni	Cr	Mo	v	сь	CE	Sn	Pcm	а
W27X235.0 27 ft 4 in W690X350 (8.33 m)	1	488640	0.73 0.76	52 54 356 370	MPa 71 71 490 490	28 26	70 21	99 134	141 114 191 155	Co	or .08	1.31	.013	.022	.20	.27	.13	.19	.05	.04	.001	.38	.01	.19	-
ELONGATION BASED ON 8.00 INCH G Pcm= C+Si/30+Mn/20+Cu/20+Ni/60+ Corrosion Index= 26.01(%Cu)+3.88(% 9.10(%NI)(%P)-33.39(%Cu)+2 ISO 9001:2015 certified (Registration All mechanical testing is performed b	AUG Cr/20 Ni)+1 # 098 y the	E LENGTH)+Mo/15+\ 1.2(%Cr)+1. 35-07). Quality Te	//10+5B(i .49(%Si)+ sting Lab	B=Approx .0 -17.28(%P)-7	0005) 7.29(%Cu){5 dependent	%Ni}-	roductio	CA M Th	RBON EQU iercury has his materia artments.	not was	been use s produce	C+Min d in the d in acc	/6+(Cr+ direct cordanc	Mo+V) manufa e with	/5+(Ni+ acturing the Nu+	Cu)/15 g of this cor-Yan	materi nato Ste	al iel Qua	ity Ma	nual.					
The Charpy machine striker geometry I hereby certify that the contents of 1 correct. All test results and operation manufacturer are in compliance with material specifications, and when des meet the applicable specifications.	his re s peri the n	port are a formed by equirement and by the p	-Yamato 9 ccurate a this mate ats of the purchase	r, which is the stand arial r, Chie	f Metallur	5")strike	<u>بد (۲</u> ۷۵) ه	er AS	TM A370 S	S S S	on 22.1.2 State of A County of Sworn to : on 2018-0 My comm	and ISC rkansas Mississ and sub 9-24 ission e	ippi scribed	Section I before Lak fr on 07/1	7.3. me (kodi 7/2023		P N P	TANA DTAR UBLI							

	EVF	RAZ	EVRAZI	NC.NA				· .	REPO	RT OF C	HEM	ICAL/	PHYSIC	AL TEST	S		CERT	FICATE N	D. DATE	0	7 2	PAGE
	Evraz Orego	n Steel 144	100 N. Rivergat	te Blvd., Portlar	d, Oregon S	7203								••			MILL	ORDERN	0.		DATE	010 1
		. 1				TON	CAN BED	NARDIN	1	IR HER	RTCI	K CO	RPORA	TION		•	3	19495	5		-	
		. 5	RERE	ALCA COL	D	104	CONN DBI/		PC	BOX	842	9 (95	208)		- '		CUST	MER OR	DER NO.			
S(D 900	1 2	PO P	50A 0423	, 1 11 11 1	TNCS	LEY.		30	003 E.	HAI	MMER	LANE				2	0018	-013			
i i	ISTERE	D D	STO	CKTON, (CA 95	208		. ·	ST	FOCKTO	N, (CA.	95212		· .		J08/7	EQ. NO.				
ď.	ATT PRODUC	Ĭ	USA	•	-			· · · ·		J.A.							SHIPP	ING NO.			DATE	
		-			٠.			,	· .								1	5952	58	- 1	03/0	7/2018
	· · · ·		1					PECIFICAT	IONS AND	PURCHA	SE OF	DER R	FOLIBER	IENTS			CARR	IER				,
HISI	MATERIAL H	AS BEEN	MANUFACT	URED, TESTE	EDAND P	1 357	2-15 GRA	DE 50	ASME 3	SA572	GRA	DE 5	0 201	7			B	URLI	NGTON	NOR	THER	N
HS.	LA SIRO	17 CI	ADE EU	KTLL	ED FIN	E GR	AIN PRAC	TICE.						-			CAR/1	RUCK NO)		-	
AS	IM A/US	-1, 91											-				P	INK				
								PHYS	SICAL	PROP	ERT	IES										
uiso			DESCRIP	TION			HEAT NO.	SLAB	YIELD PSI-X 100	TENSILE PSI X 100	% EL 8'	ONG 2"	% RA	HARDNESS BHN	BEND				IMPACT	5		
	0.3750	X 96.0	DOOME X	360.00	0			1						-								
- I																						
	· 6	PCS	22050	LBS	;	₩ ^	N17266		625	815	1	31		(OUTER	ф – і							
		,							640	825	19			(INNÉR	4							
														l .						-		
	3	PCS	11025	LES		. ^	N17268		630	805		28		(OUTER	φ							
									640	805	18			(INNER	4		•					
		- '								ľ				1		-			· .			
2	0.5000	X 96.	000ME X	360.00	0					· ·	11		· • `								•	
							· ·			1	1								÷ .			
	2	PCS	9802	LBS		^	N16987		740	910	1	23		OUTER	Ϋ́	-	,			· ·	•	
- F								1 .	700	815	18			(INNER	ep.							
															ŀ							
					• •						· -					•						
· [.1:	PCS	42877	LBS TO	TALS						1											
1				•							1			1								
								CH	EMICA	L ANA	LYS	sis										Line of the
HE	AT NO.	C	Vin P	S	Si	Cu	Ni	V	Cb	Al	Cr	Mo	TI	B		N	Ca				CE	Gren Size
117	266	14 1.	08 .01	.1 .004	22	.01	05 10	16	.017 .	044 .	02	1.00			1.	0053					1	
N17	268	14 JL.	07 .01	4 .004	24	1.01	05	120	.018 .	039 .	02	1.00				0033			1		· ·	
116	5987	14 µ.	10 .01	.5 .004	22	1.01		121	.010	031 .	.02	1.00	1.00		1.	00/9			-			k -
,	· · ·	1			1				I	-	TC A	1 Press	-	IDT CA	» امع	TTTE /	^\ 1010	REP	OLUET	N TN	THE	USA.
	HEATS	INDIC	ATED WI	(+)	WERE	MELTI	SU & MAN	JFACTO		THE	/əA ,	- new	710 II	DI CRIT	. "		/ #5	r				
			-											1 .	: I .	<u> </u>	· · .				1	
· :	•									· .		. 1	1	AIN	レ	'	/	1				
• •]	END PF	REPORT	r .	•••					يل خ			-44	Y.H	10	nil	£	I		<i></i>		
													1/4		VIII	11		-				·

		Sp	ecime	n C6-	G Stif	fener	Plate	p116			
NUCOR CORPORTION NUCOR STEEL UTAN Sold To: INTSEL PO BOX HOUSTO	STE 21	EL WEST 119 TX 77226 (LLC	Mi	10/11/2	ficatio ⁰¹⁸ Ship To:	INTSEL ST 1887 S 700 SALT LAKI	EEL WEST	7 - SALT L 84104 US	Lot a W CE PLYMOUT Fa AKE	MTR#:96146- #:120200556720 METERY ROAD H, UT 84330 US 800-453-2886 x: 435-458-2309
Curture PO		0.44955					:				
Customer PO	1.5	LC-14255				÷		Sales	Order #	12010074	- 9.1
Grede	H	ot Holl - Me	rchant Bar	Quality				P	roduct #	3017258	
Grade	IN O	ucor Multigr	ace	and the second se					Lot #	12020055	6720
Size	0.	5-X6-							Heat #	12020055	67
BOL #	B	OL-190444	about Day	0	1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -				Load #	96146	
Description	20	0" [240"] 2	2001-6000	Quality Fla	at 1/2" x 6"	Nucor Mu	tigrade	Custom	er Part #		
Production Date	30	\$/16/2018						Qty Ship	ped LBS	16332	
Of Origin	U	nited States						Qty Shi	pped EA	80	
Description								Origi	nai Item Number		
Thereby certily that the materia	si des	cribed herein has	been manufact	ured in accorda	nce with the spe	cifications and	standards listed a	above and that it	satisfies those	requirements.	
Melt Country of Orig	in :	United Stat	88					M	elting Dat	e: 08/13/20	18
C (%) Mn (% 0.18 0.69 Sn (%) 0.010	6) 9	P (%) 0.006	S (%) 0.026	Si (%) 0.23	Ni (%) 0.08	Cr (%) 0.09	Mo (%) 0.02	Си (%) 0.30	Ti (%) 0.001	V (%) 0.023	Nb (%) 0.000
ASTM A529 S78.2 ASTM A992 5.4 CI	: CE E (%	(%): 0.38): 0.35									
Other Test Results Yield (PSI): 5490 Tensile (PSI): 75	0 200			Yield (P Elongati	SI): 55000 on in 8" (%)	: 34.0		Tensile ((PSI): 753	800	-
Comments: NUCOH MULTIG ASTM A36/A38M A572/A572M-18 (CSA G40.21-13 (AASHTO M270/N Nucor-Plymouth i materials in this p	RAL GR5 3R4 1270 8 an	DE MEETS T A529/A529M 0, A709/A70 4W(300W)/G M-15 GR36/ ISO-9001 //	HE REQUIF 1-14 GR50, 9M-17e1 GF R50W(350W GR50, ASM id an ABS of	REMENTS C R36/50 NO 4 V), E SA36/SA ertified mill.	DF: CVN, 36M-13 CMTR comp	lies with D	N EN 10204	– 3.1 All ma	nufacturing	processes o	f the steel

materials in this product, including melting, casting, and hot rolling have occurred in the United States. All products produced are weld free. Mercury, in any form, has not been used in the production or testing of this material.

S(O 90	01	SOLD	H P A S U	ERRIC O BOX TTN: TOCKI SA	K CORE 8429 ERIN ON, CA	ORAT: BILL 95	ION [INGSI 208	san ber Ey	NARDII	NO TI P(3(S: U)	HE HERI D BOX 1 DO3 E. FOCKTOI SA	RICE 8429 HAD N, C	(95) (95) MER	RPORAJ 208) LANE 95212	TON	Ň		32 CUSTO 20 JOB/RE	1637 MER ORD 018-	ER NO. 012				1
•	241E BBO	~	ò																SHIPPI 16	NG NO.	1		DATE 04/26	/2018	ļ
IIS I	MATERIA LA STI	HAS	EEN N	ANUF	ACTURE	D, TESTED PLATE	AND FO ASTM	UND TO	MEETTHE S	PECIFICA DE 50	TIONS AND ASME	SA572	SE OF	DER F	EQUIREN	ients 7			CARRIE	R ION	PACI	FIC			-
AS	TM A7)9-1'	GR	ADE	50,	KILLEI	FIN	E GRZ	IN PRAC	TICE.		• •							CARVIN	PX81	1101	OR			
_										PHY	SICAL	PROP	ERT	IES											
80				DESC	RIPTIO	N			HEAT NO.	SLAB	YIELD PSI-X 100	TENSILE PSI X 100	% EL 8'	ONG 2	% RA	HARDNESS BHN	BEND TEST			1	MPACT	s			
t	0.375	D X	96.0	OOME	X 36	0.000	• ,									10111120									
		2 P	cs	735	0 LBS			î	N17704		585 665	810	18	28	•	(INNÉR							-		
	0.500	xo	96.0	0 OME	х 3	50.000								2					-						
		7. P	cs	343	807 LI	35	•	呆^	N17704		640 650	780 790	17	32	•	(OUTER (INNER				; *					
		9 P	cs	416	557 LI	BS TOT	ALS		•					4					•	a			r	•	
	-	•		ч.,	•		•																	-	
1										CH	EMICA	L ANA	LYS	SIS					Ő.				CEL	ACOUNT OF	
HE 17	AT NO. 7704 7704	C 14	1.0 1.0	n 7 7	P .011 .011	\$.004 .004	Si 25 25	.01	NI .05 .05	018 018	.014 . .014 .	AI 048 . 048 .	02 02	.00 .00	00.00	2 2	0.	049 049	<u>va</u>					Ginen 2829	-
	HEAT	S IN	DICA	TEP	WITH	(+) 1	ERE N	ELTE	D & MAN	UFACT	JRED I	THE U	JSA.	HE	TS IN	DICATE	IN DI	тн (*	`) WE	RE R	OLLEI) IN	THE C	ISA.	
•	· · · · · ·	ENI	OF	REP	ORT .						-				A	10	1								
	· .	1		<u> </u>		·		L							11	nhi V	111	16		-					

Contract No.																					ſ			54		-IYL	וחנ	DA	I			
Customer	GS GL	OBAL																						ľ	1	5TE	El	•				
PO No.	46201	711AB1	6							I	NS	PE	CT	Ю	N (CEI	RTI	FIC	:A'	ΓE	ŀ						a biana a	Online		P/	AGE:	17/71
L/C No.												EN	1 102	204	(200	4) 1	YPE	3.1			Ë	acto	ry ianto t		6363,Don	205013	alvam-g	uponan	g-suy	eongs	angouk	-00,5,60183
Commodity	H-BEA	M							-												Ë	lerus	Icate n	No.	IH20180	205012	-/					
Specification	ASTM	A572 G5	0/A992/CS/	A G4021-1	L3 50WM(34	45WN	1)															ssue	date		2018-02	-23						
Dimensions		Length	Hoat No.	Quantity	Weight			1.5		1,1		у¢.	MAG emica	l Cor	s s o si nposit	ion :		(Terry	49. 676	45.05 				in tie ensile	Tost - 14 Jost - 14 Jost - 14	Yield Ration	BEND	in îl î Sv-N	npact atch	Teit(I 1214)) ".c"	Remarks
			1999 (* 17. 2005 - 1999 (* 17. 2005 - 1999 (* 19.	(PCS)	-7(kg)	¢C	451 *100	Mn S ¹	P.	15:	Cu	Ni	Mo"	Cr.	11AI	V.	1ND	5n	CEm +100	7.) 14.	153 201-2	44 717	Strength	strang	th - In.y	の時間	343.X	AVG	N1.) 5/55	5 20 (5 %)	.73 A.Y.	Tini Size)
36X12X135		50.00 FT	3H0557	3	11,022	17	15	103	22	13	24	9	2	7	3	31	2	12	39				549 553	422 424	24.6	0.760						
36X12X150	1	35.00 FT	3H0558		7,143	17	14	102	72	11	24	8	2	13	4	32	2	11	40	-			539	392	26.2	0,720						
36X12X160			3H0560	4	10.160	17	13	100	. 17	10	17	10	3	· 11	3	- 30		8	 89			•	556	418	27.8	0.750						
369139160		50.00 ET	340560		10.897		13	100			17					20					-		556	42.	27.8	0.750						
300120100		50 00 P1			10,857										·			•					560	421	27.3	0,750						
36X12X160		50.00 FT	31:0560		13.062	1.7	13	100	17	10	17	10	3			30	1.	8					560	421	27.3	0.750		.	-			
36X12X170		40.00 FT	3H0564	3	9,255	17	14	99	20	10	14	6	1	10	3	55	2	6	38				558	400	25.0	0.710					L	
36×12×170		50,00 FT	3G5655	1	3,856	18	15	103	13	9	15	7	3	10	4	56	2	7	10		L		548 551	391 393	24.5 24.0	0.710	-					
36X12X210	ŀ	40.00 řt	3140563	2	7,620	18	14	301	23	16	23	11	z	14	4	55	2	10	41				566 569	419 417	24.5 24.2	0.730 0.730						
						-				· · ·	[[.						1	[
						ľ		1.							1	-		••						1		1						
TOTAL		-,		204	578,363	<u> </u>		I	ι.	· .	l	l		·	۱. 	Į., .			ا ==	 	= E N	D.==		·		· • • • • •	·	1	, ,		۰. .	
Conditions of supp (1) Ceq: (CE=C+M (2) Gauge length : (3) Y.R = Y S/T.S	oly:Asi n/G+Cr/9 200 mm	Rolled 5+V/5+X n	/a/5+Ni/15	+Cu/15)	Note	e																										
				•••	• • •	WE I	IEREB	Y CEI SPEC	RTIFY TFICA	THAT	THE	MAT	ERIAL O WIT	HÀS H TH	BEEN IE REQ	MAD	DE AN MENT	D TES S CAI	TED I	IN AC	CORC	BOVE	E WITH ORDE	LTHE R. ++				· . 	l	16	1	n Ng
This test report car	be ver	ified the	authentici	ly to scan	the top-rid	iht Of	R cod	e via	'Qreal	" mo	bile a	 pp.	••	·	•	:		018 02	2.27.1	0:24:4					21212	56		. [0	Sener	al Ma HN	nager IS I 102	of Q.A Tear (A)-32 , A4(210)
				,													-				-							••				

PO# 9900023197 RMTN

.

·NUCOR-YAMATO STEEL CO. CERTIFIED MILL TEST REPORT Invoice No. 951295 9960 100% Melted and Manufactured In U.S.A P.O. BOX 1228: BLYTHEVILLE, AR 72316 Billof Lading 374540 All Shapes produced by Nucor-Yamato Steel are cast and rolled to a fully killed and fine grain practice Customer No. 7603 Customer P.O 45166 Date 2019-04-17 BROWN STRAUSS STEEL CO. BROWN STRAUSS-FONTANA ASTM A992/A992M-11 A572/A572M GR50-15 ASTM A709/A709M-15 GR50 (345) 2495 URAVAN ST C/O MHX FONTANA - NAPA ASTM A709/A709M-15 GR505 (3455) 13600 NAPA STREET AURORA CO 80011 CSA G40.21-13 50WM (345WM) . т FONTANA CA 92335 USA ASTM A6/A6M+14 0 USA Mechanical Properties Chemical Properties (wt %) Yield Tensile Charpy Impact ELONG Yield to Strength Item Item Description QTh Heat# Strength Temp Impact Energy Loc с Mn SI Cr CE Tensile Ρ s Cu Nî Mo v Cb Sn Pcm CI KSI KSI % ۰F ft+lbf Ratio MPa MPa 96 •c J W33X141.0 55 71 24 60 ft 0 in 0.77 53 69 29 1 2 498876 .08 110 .012 .028 .18 .26 .09 .13 .04 .01 .019 .32 .01 .16 W840X210 0.76 379 492 (18.29 m) 364 477 W33X141.0 59 73 27 50 ft 0 in 0.81 60 74 26 1 S01579 .08 1.10 .012 .025 .23 .34 .12 .10 .04 .01 .019 .32 .01 .17 2 405 503 W840X210 0.81 (15.24 m) 414 510 W33X141.0 57 74 26 50 ft 0 in 0.78 56 74 26 1 502481 .08 114 .012 .025 .24 .30 .13 .13 .04 .01 .018 .33 .01 .17 3 509 W840X210 0.76 395 (15 24 m) 386 510 W33X141.0 53 68 30 4011010 0.77 53 69 29 3 506190 .07 1.01 .21 .12 .02 01 022 .29 .15 .011 .024 .30 10 .01 4 W840X210 0.77 364 470 363 (12.19 m) 473

ELONGATION BASED ON 8.00 INCH GAUGE LENGTH

۰,

CARBON EQUIVALENT CE= C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15

Mercury has not been used in the direct manufacturing of this material.

Corrosion Index= 26.01(%Cu)+3.88(%Ni)+1.2(%Cr)+1.49(%Si)+17.28(%P)-7 29(%Cu)(%Ni)-9.10(%Ni)(%P)-33.39(%Cu)^2

ISO 9001:2008 certified (Registration # 0985-07).

All mechanical testing is performed by the Quality Testing Lab, which is independent of the production departments.

I hereby certify that the contents of this report are accurate and correct All test results and operations performed by this material manufacturer are in compliance with the requirements of the material specifications, and when designated by the purchaser, meet the applicable specifications.

Pcm= C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B(B=Approx .0005)

Daug hannell

Chief Metallurgist

My commission expires on 07/17/2023

on 2019-04-17 Dicherah itu Ander

\$

431

CERTIFIED MILL TEST REPORT NUCOR-YAMATO STEEL CO. Invoice No. 951300 100% Melted and Manufactured in U.S.A P.O. BOX 1228; BLYTHEVILLE, AR 72316 Billof Lading 874545 All Shapes produced by Nucor-Yamato Steel are cast and rolled to a fully killed and fine grain practice Customer No. 7603 Customer P.O 45166 Date 2019-04-17 9960 BROWN STRAUSS STEEL CO. BROWN STRAUSS-FONTANA ASTM A992/A992M-11 A572/A572M GR50-15 ASTM A709/A709M-15 GR50 (345) C/O MHX FONTANA - NAPA 2495 URAVAN ST ASTM A709/A709M-15 GR50S (345S) P 13600 NAPA STREET AURORA CO 80011 CSA G40.21-13 50WM (345WM) FONTANA CA 92335 USA т ASTM A6/A6M-14 USA Mechanical Properties Chemical Properties (wt %) Tensile Charpy Impact Yield ELONG Yield ta Strength Strength Temp Impact Energy Loc Item Description OT Heat# Item Si Ni Cr v Сь CE CI с Mn Р s Cu Мо Sn Pcm Tensile KSI KSI ft•lbf % • F Ratio MPa MPa % ۰c J W30X116.0 53 68 27 60 /t 0 in 0.78 54 70 28 504994 .08 1.00 010 024 .20 .32 .13 .10 .04 .01 .020 .31 .01 .17 1 W760X173 366 0.78 469 (18 29 m) 373 480 W30X116.0 54 71 28 55 ft 0 in 0.77 55 28 71 506364 1.02 015 027 .22 .32 .12 .17 .04 .01 .018 .32 .01 .17 2 1 .08 W760X173 0.77 375 490 (16,76 m) 379 492 W30X116.0 54 70 28 55 27 55 ft 0 in 0.77 71 506366 .07 1.00 .015 .024 .22 .31 .14 .13 .04 .01 .019 .30 .01 .16 3 2 W760X173 372 483 0.78 487 (16.76 m) 381 ELONGATION BASED ON 8.00 INCH GAUGE LENGTH CARBON EQUIVALENT CE= C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 Pcm= C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B(B=Approx .0005) Mercury has not been used in the direct manufacturing of this material. Corrosion Index= 26.01(%Cu)+3.88(%Ni)+1.2(%Cr)+1 49(%Si)+17.28(%P)-7 29(%Cu)(%Ni)-9.10(%Ni)(%P)-33.39(%Cu)^2 ISO 9001:2008 certified (Registration # 0985-07). All mechanical testing is performed by the Quality Testing Lab, which is independent of the production departments. State of Arkansas County of Mississippi

I hereby certify that the contents of this report are accurate and correct. All test results and operations performed by this material manufacturer are in compliance with the requirements of the material specifications, and when designated by the purchaser, meet the applicable specifications.

Daug Lamuel

Chief Metallurgist

Sworn to and subscribed before me On 2019-04-17 Dicherah Fin (Andra My commission expires on 07/17/2023

PO No. L/C No.	46201804A							_	-																	-				ACE	
L/C No.		B03						_	I	NS	PE	CI	101	N (CEH	R II	FIC	A	ΓE	h	Facto	ny	6	3, Jung	bong-(Daero,	Dong	-gu, Ir	ncheor	n, 5)	Corea
											E١	1 10	204(200	4) T	YPE	3.1			t	Certi	icate N	o. II	120180	606058	3-4					
Commodity	H-BEAM																			h	Class o	ertificate	No								
Specification	ASTM A572	G50/A992/C	SA G40.21-1	13 50WM(34	15WM	ŋ														1	ssue	date	2	018-06	-29			•			
			1		1	·	 i .				ch	amic	at Con	nneit	ion								, visile T					Impac	t Test	(L)	<u> </u>
Dimensions	Leng	h Heat No	Quantity	Weight	-	61				1 in	LAU	Lite	10	1 41	L v	Alla	50	CE.				Tenalle	Yield	tiongation	Ration	TEST	V-	Notch	+-	17	- (împa
			(rca)	(\9)		×100	min	×1	000	1.0	1 mi x	100	14	1	×1	00	an	*100			<u> </u>	Strangth N/m	Strangth htm2	- (n - %		- 1	1	<u>.</u>	<u>.</u>	13	-
24X9X94	50 00	FT N 042175	5 1	2,132	19	17	95	17	8	17	13	4	11	4	13	4	8	40				528	398	27.5	0.754				T	Τ	
								ŀ		[.]	1	١.	ŀ.							•		523	405	27.5	0.777	· ·	· ·	· ·			
								20	. <u>.</u> .	ļ.".	1.											532	390	28.5	0.734		-				.
24X9X94	50.00	FT N 042938	3 7	14,924	18	12	102	19	13	26	11	1	14	2	13	3	9	41				560	379	27.0	0.683				.		
24X9X94	50 00	FT N 042939	5	10,660	19	16	94	22	7	26	9	1	u	4	13	4	9	40				541 539	380 380	26.5	0.703						
24¥0¥04	60.00	ET N 04293		2 558	18	14	95	22	 11	24	1.0	1	14	3	15		10	39	****		• • • •	558	401	28.0	0.719			· ·	····		
				2,550		"	1				1	·		[•						550	380	270	0.691						
24X9X94	60 00	FT N 042938	3	7,674	18	12	102	19	13	26	11	1	14	2	13	3	9	41			·.	555	379	27.0	0.683				.	.	
24X9X94	65.00	FT N 042938	5 5	13,860	18	12	102	19	13	26	11	1	14	2	13	3	9	41				560 555	412 379	27.0 27.0	0.736						
24X9X94	65.00	FT N 042939	-	2,772	19	16	94	22	7	26	9	1	u	4	13	4	9	40	-	•••	-	541	380	26.5	0.703			-			- ····
										-			· · /							~		 548	402	29.0	0.734		:			• ···-	
24X9X103	45.00	FT N 042939	4	8,392	18	15	95	26	14.	25.	10	2	12	4-	14	4		39				552	366	27.5	0.664		.				.
24X9X103	45.00	FT N 042936	5 2	4,195	18	14	96	27	7	25	9	1	16	3	14	3	8	40				564 552	393 373	30.0 27.5	0.697 0.676						.
SUB TOTAL			30	69,300														241		NE	X T =										

•

															M	T-	1188	5	99	160	Ì							
			_				MUC	08-)	/AB	141	0.9	STE	FLO	20			CERI	IFIE	DM	ILL	TES	TRE	PO	RT				
`	•	DATE		6/28	/08	_	P.O. B03	K 1228	• 8	LYTH	EVILL	E,AR	72316				100% N All shap	ELTED es prod	AND N uced by	Nucor	VCTURI Yamata	ED IN U Steel a	IS.A. Ire cast					
		INVOICE NO).	240687	7									-		. ۲	and rola	an p a kity sited and the grain proces.										
,	ļ	BILL OF LAD	NG	916373	3		AN C/O	BEEN KHEP	ARDII ON 1	NO S	TEEL	,				P	ASTM A	992/A 709/A	992M-	06a 3	A572/ 3850	(345) (245)	(GR50	-06				
	STOMER NO. 7950 P BANCHO CUCAMONGA, CA FOR TER DEL TO SAN EERMARDINO, CA 92235														C I	ASTM A	6/268	1-07	.07 1	aroop	(345	-,						
		CUSTOMER P	.0.	\$ 2533	12-253	30	p									F				~	-							
			s				Desir Chr.								_	C A		80	DE	火	53)							
			L	HERB	LICK C	ORFOR/	errow									i			99	60								
			Т	STOC	EXTON,	CA		ţ	9520	в						8			W	1 -	100	001						
1	_			·			MICHAN	GAL PRO	Prest	165							CHEM	CAL PR	OPERTIE	5								
	TEN S	IVEM DESCRIPTION	arr	HEAT #	YIELD TO	VIELD STEREOTH	TENNE	ELONG	TEN	ARPY > IA	IMPAC IPACT E	IT NERSY	с	Mn	P	\$	Si	Cu	NI	Cr	Мо	۷	Cb	CE				
					E	PSI MPa	PSI MPa	<u>%</u>	·F ·C		FT-LBS OULES	8									Sn	Pan		а				
	1	W27 -258.0	1	321559	.75	57000 57000	76000	26 26	+70	38	42	43	.08	1.36	.016	-01	7 .27	.28	.09	.09	.02	.05	.001	.36				
		W690 x384.0 10,566 M				393 393	524 524	26	+21	52	57	58	(CORE															
	2	W27 -258.0 39' 4"	1	321.557	.76	58000 59000	76000 78000	26 26	+70 +70	70 70	88 116	96 102	.08	1.38	.015	.01	9.27	.27	.10	-09	.03	.05 .18	-001	.36				
		W690 x384.0 11.989 M				400 407	524 538	26 26	+21 +21	95 95	119 157	130 138	(CORE (CORE															
									+70 +21	117 159	127 172	77 104	(CORE															
	3	N27 -258.0 42'	3	321553	.76	56000 56000	74000	28	+70	74	60 110	155	.07	1.38	.022	.02	0.24	.30	.09	.11	.03	.05 .19	-001	.37				
	-	.802 M				386 386	510	28	+21	175	149	210	(CORE															
	4	827 -258.0	2	321553	.76	56000	74000	28	+21	149	167	206	CORE	1.38	.022		.24	.30	.09	.11	.03	.05	001	37				
		431 W690 x384.0			.76	56000	74000	28 28	+70	129 100	110 81	155	(CORE								.01	.19						
		13.106 M				386	510	28	+21 +70	175	149 123	210 152	(CORE	1														
	5	W27 -258.0	2	321548	.75	57000	76000	25	+21 +70	149 47	167 85	205	(CORE .08	1.36	.014	.01	6 .28	.27	.09	.07	.02	.05	-002	.36				
		44' W690 x384.0			.76	58000 393	76000 524	24 25	+21	64	115	157	(CORE	1.							.01	.18						
	6	13.411 M W27 -258.0	2	321551	.76	400 57000	524 75000	24 26	+70	141	241	105	.08	1.37	.019	.01	9 .28	.27	.09	.10	.02	.05	.002	.36				
		44' N690 x384.0			.77	57000 393	74000 517	27	+70 +21	79 191	100	105	(CORE								.01	.19						
		13.411 M				393	510	27	+21	107	136	259	CORE															
	7	N27 -258.0	4	321555	.75	55000	73000	29	+70	55	69	35	.08	1.36	.020	.02	0.26	.26	.10	.11	.03	.05	.002	.37				
		N690 x384.0			."	379	503	29	+21	75	94	47	(CORE								.01	.19						
		23.130 M				- 300	503	<i></i>	141	^{''}	04	1	-cons															
	914	6-8-18-02-18-02- 19-28-19-19-02-	·동·오~ 16 - 8	10-/gmc.68	A CVAR	NUIQUE HOC	ALENT: CE	- CE(IIIN)	=C+M	W6+80	nikes.	A22+62	+CeVIS	QUE	alenindus	CH-MAN/	alina metang	+Lastept+	AN(955)-17.	20(507)-7.25	(\$2-Q%A)-	anorsaya.	panasinda	0 ⁸				
	J	LONGATION BA	SED (ON 8.00 IN	ICH GAI	JGE LEN	GTH			н		Ø	,		STA SW	ORN 1	F ARKAN TO AND	ISAS C	RIBED	OF MI	SSISSI E MEX	INTE MS	NEW	Ø.				
		accurate and com accurate and com	ect. A mater	It test result fol manufe	a easing dis and o octume a	operation re in	5		>		7	Xer	mel	1	_	30		Day of "		06	/0/B	 90	en Gan GNRY)°ø/				
		compliance with the specifications liste	he req ed in th	uirements le Specific	of the m	voteriał Nock abo	ve.		_	QUA	LITY	ASSU	RANCE		_	CI	interne	Walt	60	NOTAR	u fil	LIC .	RIC 1-2018) 3				
									С	JST	OME	ER C	OPY		M	COM	MISSION	EXPIR	ES <u>1</u>	0/2	1/20	1 Per	00.48	(23)32				

-

• •	N	ucoi	R-YAM	ATO 3 1228	STEE	L CO			DAT	E	· · · ·				·C	ERT.	IFIE	ED N Re dei	CIL.) D MAG	L TI	EST	REP	ÓR3
		807.0	TO					HIP TO	-	/13		• .			ALL ta	l shiges a fully	'yrabz 'xilled	et by N and fir	nat-Jy 18 grad	inato S in prac	ieel an	enst a	l reile
		PO B	CK CORPL	NRAY I	CIN			STOCKTOR	1 370 1R00	CEL C CKING A FOR	70 BNSF R/R TRK			INV 5336	OICE 60 FLADI	NG	CUS 78 CUS	TOME 373 - TOME	R NO.				· ·
		STOC	KTON, CA			95208		XEL 70 3	STOCI	CTON,	CA 952	12		97	717		331-1	LO		ſ			
	1	SPECI AS7H	FICATION A709/A705	NS GR 9H-11	GR50S	(343s	:)	ASIN A	4992/ 46/86	/a592 58-12	n-11 8572	/8512	n gr	50-07	851	M A/	12/91	10384	ц	GHDU	(39:	7	•
				÷				· .		. 2	:. ::		• -	•,	• :	•					. ·		
			<u>.</u>	1	· · · · · · · · · · · · · · · · · · ·	MECH	HANTCAT	1000	BTD	22	•				CHI	MC	AT. P	ROPE	RTU				
	mea	10250 00	ESCRIPTION'	qT7	ПАТ#	·				 	ANY INFACT					d:		N:					a ti
						VITLB TO VATGILE	VIELD STRENGTH FUI	TERMIN STRANGUN FUL	21.0NE X H	TEN:	IMPACT 201367 PD4.03 JOHL28		MR		5	31	Ca	. 00	GT.	Sn Sn	Pem	Co	cis ci
	1	\$24	-207.0	2	399025	.76	57000	75000	27	+70	133112135	.07	1.35	.017	021	.25	.27	.09	.14	.03	.05	.003	.38
	:	49 W610 14.93	x307.0			.15	393	517	27	+21	180152183	CORE).							-01	.16		
	2	\$24 50°	-207.0	1	399018	.17 .75	59000 57000	77000 76000	27 26	+70 .+70	1.59199185 267221220	-07	1.35	.012	025	.29	-25	.11	.15	.04 .01	.05 .18	.003	.37
		ต610 15.24	x307.0 Юм∵,				. 407 393	531 524	27	+21 +21	216270251 362300298	CORE) 5.							·			
	3	924 50'	-207.0	. 5	399024	.78 .76	56000 56000	72000	. 28 28	+70 +70	194104194 205208134	.08	1,36	.014	023	.20	.25	.11	.12	.04	.06 -19	-003	.37
		15.24	x307.0				386 386	496 510	28 28	+21 +21	263141263	CORE).				•.					•.	-
	4	924 494	229.0	• ,1	399022	.76	56000	74000	26	+21 +70	279191285	CORE) 1.35	.012	025	.21	.25	.10	.12	.03	-05	.001	.36
		49 9610	x341.0			./1	.386	510	20	+70	115123137 178115209	CORE	,	, i		-	•	:			. '		•
·		14.93	5 M-	:		•	365	496	28	+21 +21	126104107 156167186	CORE		• ,	· ·	•					•••	·	
	5	W24 50'	-229.0	1 	399024	.75	54000	72000	27	+70	184158205	.08		.014	.023	-20	.25	· -11	.12	.04 .01	.06	.003	.37
	6	W010 15.29 W24	x391.0 0 M -229.0	2	399022		372 379 56000	496 74000	27	+70	131 85154	.07	1.35	.012	025	21	.25	.10	.12	.03	.05	. 001	.36
.		δ0' -				.74	53000	72000	28	+70 +70	93 77 79 115123137				and the second se					.01	.17		
		9610 18.28	x341.0 8 M				386 365	510 496	26 28	+21 +21 +21	178115209 126104107	CORE											
	7	W24 60'	-229.0	2	399023	.75	53000 53000	71000 71000	27 28	+70+70	199149213 134143244	.07	-35	.013	023	.24	.27	.10	.11	.04 .01	.05 .18	.003	-36
		W610 18.28	x341.0 8 M				365 365	490 490	27 28	+21 +21	270202289 182194331	CORE											
	ELC Fen Cos	NGATI C+Si Tresion	ON BASED / 30+Min / Indea: C	CN 8.0 20+Ca 1=26.	01NCH 0 7/20+N1/ 01(%CU	AUGR 60+Cr D+3,25	1.ENGTH / 20+Mo (%Ni)+3	15+V/1 .2(%Cr	0+5B)+1.4	計由10 9(%)	n .005 5i)+17.28(%	CAT Me P)-7.2	BON TORY 9(%	EQUIV has not Cu)(%	VALEN been GNI)-	er CR med in 9,10(*	- C† the di (6NI)	Mn/6 itect n (%P)	+ (Crt Lanuf -33.3	ida+ actur 9(%	7)/5 ng of Cu) ¹	(NHCa this and	1) / 15 tessal
Ì	lare) ançi	y certify thei ance with the	llecanteris of Dia regionaris of D GAR	nepalaie Iepalaia V PEN	actania gradica specifications fo NELL	ntect, jälle stedin file S	st results ned ope geolications Box	salinsperințin Roberta	ellyűks	edaid	මෝ ක්රේෂන කාර්			COU	NTY RN T	OF M	ANS. ISSIS D SU	AS SLPP BSCT	1 : UBF	DB	FOR	E ME '	THIS
			QUALT	TY ALL U	Lallet											D	ıy ol					Bataba	ATTEN

	Ē	Invoice No 922462 NUCOR-YAMATO STEEL CO. Bill of Lading 353695 P.O. BOX 1228: BLYTHEVILLE, AR 72316 Customer No. 7670 PPO-002586-1									CERTIFIED MILL TEST REPORT 100% Melted and Manufactured in U.S.A All Shapes produced by Nucor-Yamato Steel are cast and rolled to a fully killed and fine grain practice Date 2018-11-05									fully		9960						, ۲ اند [`]	
	5 0 1 0 1 0	CCC STEEL, INC. 2576 E VICTORIA ST RANCHO DOMINGUEZ CA 9022 USA	20-00	000		S H P T O	CCC STEE ANCON VERNON COMPTO USA	L, ING- C IRANS B , CA FOR IN CA 90	/0	R DEL TO)						TM A9 TM A7 TM A7 A G40. TM A5	92/A99 09/A70 09/A70 21-13 5 /A6M-1	2M-11 9M-15 9M-15 0WM (4	A572/A GR50 (3 GR505 345WN	572M 345) (3455) 1)	GR50-1	5						
	lte	n#ltem Description	QTY	Heat#	Yield to Tensile Ratio	Yield Strength KSI MPa	Mecha Tensile Strength KSI MPa	ELONG	Charp Temp * F	y Impa Impa	act Ene ft• Ibt	ergy f	Loc	с	Mn	р	s	Si	Cu	Ni	Cr	Mo	v	сь	CE	Sn	Pcm	сі	
	1	W14X283.0 60 ft D in W360X421 (18.29 m)	1	492890	0.75 0.77	53 54 362 370	70 70 482 481	28 27						.06	1.35	.019	.022	.27	.23	.09	.13	.03	.05	.002	.34	.01	.16		
-	2	W27X178.D 35 ft 0 ln W690X265 (10.67 m)	1	496778	0.79 0.79	57 57 392 396	72 73 499 502	26 28						.07	1.20	.013	.028	.25	-28	.10	.11	.03	.02	.019	.33	.01	.17		
	3	W27X178.0 60 ft 0 ln W690X265 (18.29 m)	1	496778	0.79 0.79	57 57 392 396	72 73 499 502	26 28						.07	1.20	.013	.028	.25	.28	.10	.11	.03	.02	.019	.33	.01	.17		
	4	W27X217.0 W690X323 (13.72 m)	1	494737	0,77 0.77	58 58 399 399	75 75 519 516	26 26						.07	1.35	.016	.020	.26	.29	-11	.13	.03	.05	.003	.36	.01	.17		
	ELC Por 9.1 ISC All Th	DINGATION BASED ON B.00 INCH G n= C+51/30+Mn/20+Cu/20+Ni/50+ rosion Index= 26.01(%Cu)+3.88(% 0(%Ni)(%P)+3.39(%Cu)*2 9 001:2015 certified (Registration mechanical testing is performed b e Charpy machine striker geometry	AUG Cr/2 6Ni)+ # 09 ry the y use	E LENGTH 0+Mo/15+1 1.2(%Cr)+1 85-07). 2 Quality Te 2 d by Nucor	//10+58 .49(%Si) sting Lab	(B=Approx.C +17.28(%P)-7), which is in Steel is the	0005) 7.29(%Cu)(dependen 8 mm (0.3:	%Ni}- t of the pi 15")strike	roducti r (KV _R)	C/ N T on dep per A	ARBO! Aercur his ma partma	y has n terial y ents. 370 Se	WALE not be was p	NT CE en use roduce 22,1.2	C+Mn d in the d in acc and ISC	/6+(Cr- e direct cordan	Mo+V) manufa e with	/5+(Ni+ icturing the Nuc	Cu)/15 ; of this :or-Yam	materi ato Ste	al el Qua	lity Ma	nual.						
	1 h coi ma ma ma	ereby certify that the contents of 1 rrect. All test results and operation nurfacturer are in compliance with iterial specifications, and when de- et the applicable specifications.	this r is per the signa	eport are a rformed by requirement ated by the	ccurate this mat hts of the purchase	and erial er, Y	Bang	Lon	ul	e			Sta Co Sw	te of A unty of orn to	rkansas Mississ and sub	s sippi bscribe	d before	nne R.I		Sugar A	OTAR	Y)		<u> </u> .					

Chief Metallurgist

on 2018-11-05 Deliarah Au fli My commission expires on 07/17/2023

1 東加鋼 6### 104 6F,No.9,Sec	鐵石 FTEEL E	学業股 INTERPR	份有 mee co 就 6 即 mipei Citys							後明書	書 784	资料印刷	N				99	60										
Miaoli Work	2552 1100 is dina, Echu	u Village.		1120					MILL	TEST	CERTI	FICATE								0	可立日 DATE(注明山	19) OF IS: (#9)	SUE	F	eb. 25, 2	.019		
Sihu Tawnsh	nip, Miaol	li County 30	5842, Taiv	4301 										out	ាយ					Ľ	FKU	ICAI	ENO.	1				
USTOMER	BEST-S	STEEL TR	ADE CO	RP.						<u></u>				SHIP	PING	DATE	Feb	. 23,	2019									
ONTRACT NO.	US181	1			ORDER N	O.:H218	40)		1					COM	MOD	ITY	WI	DE FL	ANG	E BEA	AMS							
ロ(工作)扱数 ROJECT NO.	US-LA	-L-357												TOTA	UNI ALWFI	GHT	44.4	591,7	16 (kg)								
用規模 ANDARD	ASTM	A992-11												合約 BUNI	끰(支 DIFS() 17 PIECES	**0	個			(*24	支)				-
8) MARKS	CREDIT NO(ISSUING BANK):()																											
资品尺寸PRODUC	T DIMEN	ISIONS				•		STALL	tel Mechan	NICAL PRO	PERTY						ſ	动成	D CHE	MICA	LCON	APOS	ITION	(%)		IYP	'E:L	
- HIM SPECIFICATION		日辺。 (は支約) LENGTH (IOTALPCS)	ゴロ WEIGHI	네있 HLATNO.		TRUCK	JAJOŠKA TENSOF STRENGTH	学授机 Flo in200mm	降民山。 Y.R					c x	si x	Mn F	S x			Mo	v	NĿ	Sn x	N C	ev x			(日句) (自辺 RAD,
in.xm,x(lbs/lt)		R(pcs)	kg			N/mm2	N/mm2	95	%					100	ıċo	100 100	0 1000	100 1	01 O	0 1000	1000	1000	1000 1	000 1	200			TEST
	1.1520	25.00	7710	Min. Max.	7710	345 450	450	-180	85					23	40	50 150 31	45	50 4	5 35	150	150	50	20	15 4	50			04
₩ 24,0X 12.	/5x 102.0	(3)	1,119	1177431	(3)	378	516	24.4	73										1	1	12	.10	".]	12	"			-04
W 24.0x12.	75x 162.0	40.00	8,820	11 77491	8820	400	544	25.7	73		}			15	19	10 13	6	22	9	20	12	10	<u></u> 17	12 3	8r :-			ок
W 24.0x12	75x 162.0	(3)	22.050	(477492	(3) 22050	378	516	24,4 24.0	73'					16	22	9 91	6	21		20	ы	11	16	12 3	96			ox
		(6)			(6)	366	539	240	72									-		1								
W 24.0x12	75x 162.0	55.00	12,129	1472821	4043	392	555	20.5	л					15	21	116 11	2	24	10	23	16	11	11	10 3	97			OK
		(3)		H(7749)	(1) 8086	396 400	550 544	22,4	72 73					13	19	110 12	6	2Z	9	20	12	i0	17	12 3	81			ок
W 240€12	75x 176,0	40.00 (3)	9,588	H71104	3196 (1)	385 393	513 517	26.9 27,1	75 76					14	24	97 14	9	25	8	15	15	10	10	10	49			OK
					• 조건비대 This null amendo • 1118932 We here with the BRUTH The imp	时用不识通 test certific d, or calcari e我所列政路 by certify th standards a dd 编程位表 act test valu	は の 和 そ の の に す の に す の に す の に す の に た に す の に た に う に た に う に た に う に た に う に た に う に た に う に た に う に た に う に た に う に た に う に う に う に う に う に う に う に う に う に う に う い た こ う い た こ う に う に う い た こ う い た こ う い た こ う い た こ う い た こ う い た こ う い た こ う い た こ う い た こ う い た こ う い た こ う い た こ う い た こ う い た こ う い た こ う い た こ う い た い こ う い た い こ う い た い こ い た い こ い た い 二 い 二 い 二 い 二 い 二 い 二 い 二 い 二 い 二 い 二 い 二 い 二 い 二 い 二 い つ の 、 の 、 の 、 の つ の 、 の つ の 、 の つ の 、 の つ の つ 、 つ つ の つ つ つ つ つ つ つ つ つ つ つ つ つ	逆折除気。 antents neit and the cert 信号店及紙 信利店で自由 tion specific erling are ID	hệt can be đ likrated matr 4 · 空司 合規 escilbed hai at by you an N.	uplicateri no rrial test repo 格爭求 - i béen manut d that it katis	r extracted out are ther factured in dies the rec	. Il dupirratori efore invalid, accordance juirements,		. [東企有機	和部業限	りとうことを見ていた。		品好日	制式	101 M	L L L L L L L L L L L L L L L L L L L	сом1	TROIL	MANAGE			

.

.

S	HERRICK CORPORATION [SAN PO BOX 8429 ATTN: ERIN BILLINGSLEY STOCKTON, CA 95208 USA	BERNARDI	NO T P 3 S U	HE HERI O BOX : 003 E. TOCKTOI SA	RICK 8429 HAM N, C	COR (952 MER A 9	PORATIC 08) LANE 5212	NN -	•	MILL ORDER NO. 336231 CUSTOMER ORDER NO. 20019-021 JOB/REO. NO. SHIPPING NO. 1665990	DATE	/2019
THIS HS AS	MATERIAL HAS BEEN MANUFACTURED, TESTED AND FOUND TO MEET SLA STRUCTURAL QUALITY PLATE ASTM A572-18 STM A709-18 GRADE 50. KILLED FINE GRAIN	GRADE 50	ASME	D PURCHAS	se ori Gradi	ERRE 50	QUIREMEN 2017	TS ,		CARRIER BURLINGTON CAR/TRUCK NO. YELLOW	NORTHERN	
	· · · · · · · · · · · · · · · · · · ·	PHY	SICAL	PROP	ERTI	ES						
811/0	DESCRIPTION	T NO. SLAB	YIELD PSI-X 100	TENSILE PSI X 100	% ELO 8"	NG 2	% RA HAR	idness B Bhn T	END EST	IMPACT	s	
4	0.5000 X 96.000ME X 360.000 PT# 6251 2 PCS 9802 LBS ^ N21 1.5000 X 96.000ME X 360.000 PT# 6266 2 PCS 29404 LBS ^ N20	707	615 665 635 590	790 815 840 795	16 19 23	31	10) 11)	JTÉR) NNER)	99	960/9970 -	Plate 1	/2"
	4 PCS 39206 LBS TOTALS	CH	EMICA		LYSI	S						
HE	ATNO. C Mn P S Si Cu N 1707 14 06 015 007 22 01 0		· Cb	AI	Cr 03	Mo	TI	B	N 0041	Ca	CE	Grein Size
	0800 16 1.12 .017 .006 22 .01 .0 HEATS INDICATED WITH (+) WERE MELTED & END OF REPORT	05 055	.000 .	031 . THE U	03 SA.	.00	.000	CATED	.0160 WITH (^)) were rolle	D IN THE C	SA.

.

· · · N20741 . EVRAZ EVRAZ EVRAZINC. NA Evraz Oregon Steel 16400 R. Rivergate Blvd., Fordand, Oregon Steel **REPORT OF CHEMICAL/PHYSICAL TESTS** CERTIFICATE NO. | DATE 1654232 Feb 20, 2019 3 MILL ORDER NO. DATE \mathbf{x}_{i} 294363 OREGON STEEL MILL SOLD CUSTOMER ORDER NO. OSM JOBBER ISO 9001 LSI JOBBER 14400 N. RIVERGATE BLVD REGISTERED ₩-0#_ 2 -52-17 PORTLAND, OR 97203 JOBRED, NO. CUSTOMER Son Barnerdine Offee 048 ĩ ATELEO C 2005-02-0 P.O. #_ SHIPPING NO. DATE DATE. ac 1654232 02/20/2019 CARDIER THIS MATERIAL HAS BEEN MANUFACTURED, TESTED AND FOUND TO MEET THE SPECIFICATIONS AND PURCHASE ORDER REQUIRIMENTS (ESIA STRUCTURAL QUALITY PLATE ASTM A572-13A GRADE 50 ASME SA572 GRADE 50 2013. MITCHELL BROS KILLED FINE GRAIN PRACTICE. CAR/TRUCK NO. 13367 PHYSICAL PROPERTIES VIELD TENSLE % ELONG PSIX 100 PSIX 100 8 2 HARDNESS BEND BHN TEST IMPACTS DESCRIPTION HEAT NO. SLAB %RA 1 0.6250 X 96.000ME X 360.000 9960-Plate 5/8" 6126 LBS N20741 620 805 21 1 PC ÷н. . 1 PC 6126 LBS TOTALS . CHEMICAL ANALYSIS
 HEATNO.
 C
 Mn
 P
 S
 Si
 Cu
 N
 V
 Cb
 Al
 Cr
 Mo
 Ti
 B
 N
 Ca

 N20741
 14
 1.10
 .017
 .006
 23
 .01
 .05
 .048
 .000
 .034
 .02
 .00
 .000
 .011.0
 CE Manager . HEATS INDICATED WITH (+) WERE MELTED & MANUFACTORED IN THE USA. HEATS INDICATED WITH (-) WERE ROLLED IN THE USA. END OF REPORT 併 ÷ . Aaron Capps I certify the above to be correct as contained in the records of EVRAZ INC. NA By __ Quality Coordinator м Tch :" STK

JŚW	JSW Steel (USA) INC. 5200,East McKinney Road, BAYTOWN, TX 77523		METALLURG	ICAL TEST REPORT	MET - 0	4 Rev. No.: 3 Rev. Date:02/27/2018 3/28/2019
Bulletin Order Its	m Heat PO No.		Shipping Mode		Order Dimensions	Siab Origin ITC No.
R052303 JSW121	77-04 \$27292 20019-013		RAIL PTTX 136460		0.75x96x360	R052303-7292-1
						9960/9970- Plate 3/4"
Plates Certified fo	r the Following grades	s	pecifications		Marking Instructions	
ASTM-A572-50 AR Hot Rolled Carbon Plates Manufacture Sold To: HERRIG	Steel Plates of In the USA CK CORPORATION P.O. BOX 842	9 STOCKTON, C	A 95208		Stencil in 1 location(s); X.Loc. 1 DIM GRADE; FREIGHT ORDE TRANSMODE Stamp in 1 locat ID; Slab ID	18 Y Loc. 30; CUST; MADEINUSA PN PO; RITEM PLATEID SHIPWEEK SLABID ion(s); X Loc. 18 Y Loc. 12; Slab ID; Slab
Ship To: HERRIC	CK CORP C/O MHX LLC 11355 AI	RROW RT. BNSF	TRACK 1362 RANCHO CUCAM	ONGA, CA 91730		
Test C Mn	P S SI Cu NI C	Cr Mo Sn		Nb Ca CE	Carbon Equivalent CE =	C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15
LADIE 044 134	0.012 0.003 0.31 0.010 0.010 0.	20 0.000 0.000 0	033 0.0060 0.069 0.0001 0.001	0.002 0.0022 0.38	PCM = C + Si/30 + Mn/20	+ Cu/20 + Ni/60+ Cr/20 + Mo/15 + V/10 + 5B
Plate Slab Tested Identity 1122857 02D	Gauge Test Test Viel Tested Cond Dir. Poir 0.7500 AR T 58	d Tensile Elong tt Stgth. In 2" 81 40.0% Plates Certified F	YS/UTS Yield Strenght Ratio Determind At 0.72 0.2% or The Above Tests Utdd///mb.b.ez //thi.wc/t.b.			• •
Material Thick(IN	96 000 360 00 7350 912	1122857B 0 750	96 000 380 00 7350 912	Material [Trick(iiv)] Width(iiv) [D	en(IN) Wgt(LB)	
112200/A 0.1000		11220010 1 0.1000	-			
••••	· · ·	••••••••				
· .						· · ·

APPENDIX E: WELDING PROCEDURE SPECIFICATIONS

				ELECTRODE	LINCOLN		PR	EQUALIF	IED		
WPS ID #	JOINT	ROOT/ANGLE	POSITION	DIAMETER	ELECTRODE	CVN	D1.8	YES	NO	DATE	REV #
FCAW - Complete	Penetration We	lds									
FCAW CP-2	BTC-U4a-F	1/4" 45°	Vert (3G)	.072	NR-232	Yes	Yes	X		3/24/14	1
FCAW CP-22	BTC-U4a-F	3/8" 30°	Flat (1G)	3/32"	NR-305	Yes	Yes	Х		3/24/14	1
FCAW - Fillet Weld	s										
FCAW F-3	Fillet	Fillet	OH (4F)	.072	NR-232	Yes	Yes	X		3/24/14	2
MIXED WELDS											
MIX-#2	Field	E71T-8 & E70T-6	1G	0.72 & 3/32"	NR-232 & NR-305	YES	YES		X	7/12/01	0

The Herrick Corporation FIELD Welding Procedure Specification Index Herrick Job #9870

09/13/2018 Field WPS Index Rev #9 6/09/17

Herrick WELDING PROCEDURE SPECIFICATION (WPS) YES (X) PREQUALIFIED _X_ QUALIFIED BY TESTING _____

						Identific	ation #		FCAW CP - 2		
						Revisio	n <u>#1</u>	_ / Date	By JWG		
Company N	Name	The Her	rick Corp	oration		Authoria	zed by	pu la	Date 07/25/13		
Welding Pr	ocess (es)	FCAW			Type -	Manual ()	Semi - Automatic (X)		
Supporting	PQR No.	(s)	N/A			P	Machine ()	Automatic ()		
JOINT D	ESIGN US	SED				POSITI	ON				
Туре		BTC-U4	a-F			Position	of Groo	ove Ver	t (3G) Fillet N/A		
Single (x)		Double V	Veld ()		Vertical	Progress	ion l	Jp(x) Down()		
Backing	Y	es (x)	No ()		FLEOT		ABACTE	PIETICE		
Backing Material A36 1/4" Min.							RIGAL G	HARAGTE	RISTICS		
Root Opening 1/4" Root Face Dimension 0											
Groove A	Angle	45°	Radius	(J - U)	N/A	Chart	circuiting	GMAN)			
Back Go	uging	Yes ()	No (X) Method	N/A	Short -			FD() DCFN(x) Buland()		
BASE M	ETALS					Curren	C AC (EP () DCEN (X) Pulsed ()		
Material S	Spec.	AWS D1	.1 Table	3.1 Group	1, 2, 3	Power	Source:	00()	UV (A)		
Type or C	Grade	(Except fo	or Group 3	5 to Group	3) N/A	TECHN	IQUE				
Diameter	S Groov	e_Uniimi	N/A	rillet	INVA	Stringer	or Weav	e Bead	Stringer Bead		
Diameter	(Rebai)		19/75			Multi - p	ass or Si	ngle Pass	(per side) Multi/Single		
FILLER N	METALS					Numbe	Number of electrodes One				
AWS Sp	ecification		A5.20					Lor	ngitudinal <u>N/A</u>		
AWS Cla	assification	E71T-8	Linco	In's NR-23	2				Lateral N/A		
SHIELDI	NG								Angle <u>N/A</u>		
Flux	N/A		Gas	N/A		Contac	Tube to I	Work Diet	2000 3/4" - 1 1/4"		
			Composi	tiont	N/A	Deening	Nene	WOR DISC	ance 3/4 - 1 1/4		
Electrode	e - Flux (C	lass)	Flow Rat	te <u>N</u>	/A	Internet	3. None ss Cleanir	na Pneur	matic Chipping Hammer or Brush		
	N/A		Gas Cup	Size	N/A	interpat	ss clearni	g_ <u>rnea</u>	hate on pping hanner or broan		
PREHEA	NT I					POSTW	POSTWELD HEAT TREATMENT				
Preheat	Temp., M	in. See belo	w.*	5500 E		Temp.	Temp. None" Jose W Garcia				
Interpass	s Temp.,	Min See b	elow Max	(550" F		Time	DWA		CONTEXE 12/1/2015		
					WELDING	G PROCED	URE				
		Filler N	Aetals	Cur	rent				Joint Details		
						In/Min			rV1		
Pass or						Wire		In/Min			
Weld				Type &		Feed		Travel			
Layer (s)	Process	Class	Diam.	Polarity	Amps	Speed	Volts	Speed			
ALL	FCAW	E71T-8	.072	DCEN	255	170	21	7"	5 75		
					±10%	±10%	±/%	±15%	╎╞───┤┹		
									← ¹ 2 → ▼ / /		
Heat Input Range: 30 - 78 KJ/in											
ALL FCAW E71T-8 .072 DCEN 315				250	24	9"	TOLERANCES				
					±10%	±10%	±7%	±15%	AS DETAILED AS FIT UP		
									R = + 1/16, - 0 + 1/4, - 1/16		
		Hea	t Input R	ange: 30 -	78 KJ/in				a = + 10°, - 0° + 10°, - 5*		

MINIMUM PREHEAT AND INTERPASS TEMPERATURE

UP TO 3/4*	OVER 3/4" - 1 1/2"	OVER 1 1/2" - 2 1/2"	OVER 2 1/2"
NONE *	50 °F	150 °F	225 °F

* When Base Metal is Below 32 °F, preheat to at least 70° and maintain during welding. For Material A913-65 use elevated preheat temperature as per AWS D1.1-(2010) Table 3.2 Category C. This procedure conforms to ANSI/AWS D1.1-(2010), see project specification for additional notes. The maximum pass width for 1G, 2G, and 4G, is 5/8° and 1° for 3G. Thickness of weld laver in groove weld, except surface laver, shall not exceed 1/4°.

Herrick WELDING PROCEDURE SPECIFICATION (WPS) YES (X) PREQUALIFIED _X_ QUALIFIED BY TESTING ____

1101				_		Ide	entific	ation #		FC	AW CP - 22		
						Re	evision	n #1	Date	03/2	24/14_ By	JWG	
ompany Na	ame	The Herr	ick Corp	oration	_	Au	uthoriz	ed by	In for	~	Date	07/25/	13
/elding Pro	cess (es)		FCAW		_	T	ype - I	Aanuel ()		Semi - Automa	atic (X)	
upporting F	PQR No. ((s)	N/A				N	Nachine ()		Autom	atic ()	
JOINT DE	SIGN US	ED				P	OSITIC	NC					
Type		BTC-U4a	a-F			Po	osition	of Groo	ve Flat	(1G)	Fillet	N/A	
Single (x	()		Double W	/eld ()		Ve	ertical	Progressi	on U	p()	Down	()	
Backing	Č Ye	s (χ)	No ()		E	ELECTRICAL CHARACTERISTICS						
Back	king Mater	ial <u>A3</u>	6 1/4° M	n				DC					
Root Ope	Root Opening <u>3/8</u> Root Face Dimension <u>0</u>						ransfe	r Mode (0	SMAW)				
Groove A	ngle	<u>30°</u>	Radius (J - U)	N/A	-ls	hort -	Circuiting	() G	obula	r () Spra	ay () '	
Back Gou	iging	Yes ()	NO (X	Method_	11/7	Чc	urrent	AC () DCE	P ()	O DCEN () Pul	sed ()
BASE ME	TALS		1 Table 3	3 1 Group 1	123	P	ower	Source:	CC()	CV (X	.)		
Material S	spec Srade	(Except for	r Group 3	to Group	3)		ECHN	IOUE					
Thicknes	s Groov	e Unlimite	ed	Fillet	N/A	S	tringer	or Weave	e Bead		Stringer Bead		
Diameter	(Rebar)		N/A			м	ulti - p	ass or Sir	igle Pass	(per s	ide) Multi/	Single	
	AETAL S					N	umbe	of electro	odes		One		_
AWS Soc	nETALO acification		A5.20						Lon	gitudi	nal N	/A	
AWS Cla	ssification	E70T-6	Linco	n's NR-305	; ;		LateralN/A						
										Ar	ngleN	I/A	
SHIELDI	NG		Gae	N/A							4 5 101 0		
Flux	N/A		Composi	tion 1	V/A	C	ontac	Tube to	Work Dista	ance _	1 5/8* - 2	1/4	_
Electrode	a - Flux (C	lass)	Flow Rat	te N/	A	P	eening	g. None		-	Ohinging Llenn	nor or Pr	uch
	N/A		Gas Cup	Size	N/A	In	terpat	ss Cleanir	ig <u>Pneun</u>	hatic (Unipping Hami		uait
PREHEA	T					P	POSTWELD HEAT TREATMENT						
Preheat	Temp., M	in. See belo	w ^			T	emp.	None*		A	Jose W Ga	rcia	
Interpass	s Temp.,	Min See be	elow Map	< 550° F		1	ime	N/A		S S S S S S S S S S S S S S S S S S S	OC1 EXP.	12/1/201	5
					WELDING) PR	OCED	OURE		\sim			
		Eiller N	letals	Cur	rent						Joint D	etails	
		Thiert				1	Min				v ⁻¹ P		
Dage of						ľw	ire		In/Min			$ \rightarrow $	
Weld				Type &	1	Fe	ed		Travel	نے ا	100 H 18		
Layer (s)	Process	Class	Diam.	Polarity	Amps	Spe	eed	Volts	Speed	11	and and		LT-
ALL	FCAW	E70T-6	3/32"	DCEP	425		240	25	13"	1			71'
					±10%	1 ±	10%	±/%	±10%	4			
						1					R-	<u> </u>	_
Heat input Range: 35 - 66 KJ/in						00	478	Ĺ	1				
ALL FCAW E70T-6 3/32" DCEP 475		3	0%	+7%	±10%		TOLE	RANCES	TUP				
10%				- '	0.10	2170			AS DETAILED R = + 1/16, - 0	+ 1/4.	1/16		
						1				11.) = + 10° 0°	+ 10*.	- 6*
	Heat Input Range: 35 - 66 KJ/in												
	_		MI	NIMUM PR	REHEAT A	ND	NTER	RPASS TE	MPERAT	URE	OVER 21	1/2"	1
	UP TO 3/4" OVER 3/4" - 1 1/2"							/ER 11/2	2" - 2 1/2"		OVER 2	1/2	

NONE *	50 °F	150 °F	225 °F	
	bent to at least 70% and ma	letain during welding. For M	Anterial A913-65 use elevato	ad pre

i preheat * When Base Metal is Below 32 °F, preheat to at least 70° and maintain during welding. For Material A913-65 use ele temperature as per AWS D1.1-(2010) Table 3.2 Category C. This procedure conforms to ANSI/AWS D1.1-(2010), see project specification for additional notes. The maximum pass width for 1G, 2G, and 4G, is 5/8° and 1° for 3G. Thickness of weld laver in groove weld, except surface laver, shall not exceed 1/4°.

Herrick Welding Procedure Specification (WPS) YES (X) PREQUALIFIED X QUALIFIED BY TESTING

						Identifica	ation #		FCA	W F-3	
						Revision	#2	Date	03/24/1	4 By JWG	
omnany Na	ame	The Herri	ck Corpo	oration		Authoriz	ed by	hu /a	_	Date 07/25/13	
eldina Pro	cess (es)		FCAW		_	Type - 🕅	lanual ()	Ser	mi - Automatic (X)	
upporting F	QR No. (s)	N/A			N	lachine ()		Automatic ()	
	SIGN US	ED				POSITIC	N				
Tune	001000	Fillet				Position	of Groo	ve N	/A	Fillet O.H (4F)	
Single (v	4	1 1104	Double W	(eld ()		Vertical	Progressi	ion U	p()	Down ()	
Backing	/ Ye	s ()	No (x	0		TO COM		LAD LOTE	DIOTIOO		
Backing	ing Mater	ial	N/A			ELECTRICAL CHARACTERISTICS					
Root One	nina N/A	Root	Eace Din	nension	N/A						
Groove A	ngle	N/A	Radius (J - U)	N/A	Transfe	r Mode (G	MAW)	-hules () Corrow ()	
Back Gou	Back Gourging Yes () No (X) Method N/A								obular (DCEN (X) Pulsed	
BASE ME	BASE METALS									DOEN (X) TUBOU	
Material S	Spec. A	WS D1.1	Table 3.1	Group 1, 2	2.3	Powers	source. (
Type or G	Grade	(Except fo	r Group 3	to Group	3)	TECHN	IQUE				
Thicknes	s Groov	e <u>N/A</u>		Fillet Uni	imited	Stringer	Stringer or Weave Bead Stringer Bead				
Diameter	(Rebar) _		N/A			Multi - pass or Single Pass (per side) Multi/Single					
FILLER N	METALS					Number	Number of electrodes				
AWS Spe	ecification		A5.20					Lon	gitudinai		
AWS Cla	ssification	E71T-8	Lincol	n's NR-23	2				Lateral	N/A	
CHIEL DI						-			Angle	N/A	
Elux	NG N/A		Gas	N/A			Tube to i	Mark Diete		2/4" - 1 1/4"	
Fiux	19/5		Composi	tion N	N/A	Contact	Contact Tube to Work Distance				
Electrode	e - Flux (C	lass)	Flow Rat	e N/	A	Peening	Peening. None Interprets Cleaning, Pneumatic Chipping Hammer or Brush				
			Gas Cup	Size	N/A	Interpa	ss Cleanir	ng <u>Pheun</u>	latic Only	oping naminer of broat	
DDELLEA	T					POSTWELD HEAT TREATMENT					
Preheat	Temp., M	in. See belo	w *			Temp. None* Jose W Garcia					
Interpass	Temp.,	Min See b	elow Max	< 550° F		Time	N/A	1	W 4	G1-EXP-12/1/2015	
					WELDING	9 PROCE	DURE		Ŷ		
		Eiller b	Intele	Cur	rent					Joint Details	
		Filler N	netais			1			N	\	
						In/Min		In/Min		\neg \neg	
Pass or				T		Foed		Travel			
Weld	Process	Class	Diam	Polarity	Amps	Speed	Volts	Speed		1.7	
Layer (S)	ECAN	E71T-8	072	DCEN	255	170	21	7"	1		
ALL	FCAW	2711-0		0000	±10%	±10%	±7%	±15%			
	Heat Input Range: 30 - 78 KJ/in									J	
ALL ECAWLE71T-8 072 DCEN 315						250	24	9"	11	ſ	
/ the last					±10%	±10%	±7%	±15%		EULET	
						1				FILLEI	
		L							Mir	 Weld Size See Table 5.8 	

Heat Input Range: 30 - 78 KJ/in

MINIMUM PREHEAT AND INTERPASS TEMPERATURE									
UP TO 3/4"	OVER 3/4" - 1 1/2"	OVER 1 1/2" - 2 1/2"	OVER 2 1/2*						
NONE *	50 °F	150 °F	225 °F						

* When Base Metal is Below 32 °F, preheat to at least 70° and maintain during welding. For Material A913-65 use elevated preheat temperature as per AWS D1.1-(<u>2010</u>) Table 3.2 Category C. This procedure conforms to ANSI/AWS D1.1-(<u>2010</u>), see project specification for additional notes. The maximum single pass fillet weld size for 1F and 3F is 1/2°, for 2F is 3/8°, and for 4F is 5/16°

Herricl	K	PRO	CEDURE Q	UALIFICA	TION RECO	RD (PQR)			
Company Name Welding Proces	Company Name <u>The Herrick Corporation</u> Welding Process (es) FCAW						MIX ate	- #2 By Date ami - Autom Autom	
JOINT DESIGN Type	A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	POSITION Position of: Groove _Flat (1G)							
PREHEAT Preheat Temp Interpass Tem	, Min <u>7</u> p, Min <u>7</u>	0°F N	Nax <u>550°F</u>	ר ד - ד	POSTWELD HEAT TREATMENT Temp <u>None</u> Time <u>N/A</u>				
DETAIL									>
			Filler	Metals	Cu	rrent			
	Pass or Weld Layer (s)	Process	Class	Diam.	Type & Polarity	Amps	Volts	In/Min Travel Speed	
	1-4 5-14	FCAW	E701-6 E71T-8	3/32" 072	DCEN	425 250	28	10"	
Tested as	Tested as per FEMA 353								

MIX - #2

ACCURATE WELD TESTING LAB

.

5223 TWEEDY BLVD., SOUTH GATE, CA 90280 PH(323)564-5879 FX(323)564-3843

Date: July 24, 2001

ì

SAN BERNARDINO STEEL/HERRICK CORP.	Test Date:	07/24/01
5454 N. INDUSTRIAL PARKWAY	WPS#:	MIX#2
SAN BERNARDINO, CA 92427	LAB#	776

CHARPY "V" NOTCH

TAKING SAMPLE OF THE WELD @ MID THICKNESS

1	BIRE WELDIG * 0 P.			
N	TCH LOCATION	IMPACT VALUE	% SHEAR	MILL. LAT. EXP
1.	WELD METAL	33	30	.034"
2.	WELD METAL	35	30	.030"
3.	*WELD METAL	35	30	.036"
4.	WELD METAL	33	30	.035"
5	*WELD METAL	26	20	.026"

AVG. FT. LBS.: 33.6

* LOW & HIGH READING, AVERAGE OF REMAINING THREE.

ACCURATE WELD TESTING LAB Ronald S. Molley, 124/01 RONALD S. MOBLEY, 140 MANAGER

WE CERTIFY THAT THE ABOVE INFORMATION IS TRUE AND CORRECT

ACCURATE WELD TESTING LAB

5223 TWEEDY BLVD., SOUTH GATE, CA 90280 PH(323)564-5879 FX.(323)564-3843

 SAN BERNARDINO STEEL/HERRICK.
 Date:
 07/17/01

 5454 N. INDUSTRIAL PARKWAY
 Lab#:
 675

 SAN BERNARDINO, CA 92427
 WPS#
 MIX#2

CHARPY "V" NOTCH

SAMPLE WAS TAKEN FROM THE WELD @ MID THICKNESS

MATERIAL: A-572, GR. 50

7

CVN SIZE: 10 MM X 10 MM TEST TEMP: +70° F. MIN. ACCEPATABLE VALUE: 40 FT. LBS

ľ	OTCH LOCATION	IMPACT VALUE	% SHEAR	MILL. LAT. EXP
1.	BASE METAL	60	90	.063"
2.	*BASE METAL	64	90	.059*
3.	*BASE METAL	57	90	.056"
4.	BASE METAL	59	90	.059"
5.	BASE METAL	61	90	.050"
			////	15

AVG. FT. LBS.: 60

* LOW & HIGH READING, AVERAGE OF REMAINING THREE.

ACCURATE WELD TESTING LAB

ξ. 07/17/01 RONALD S. MOBLEY, LAB-MANAGER

WE CERTIFY THAT THE ABOVE INFORMATION IS TRUE AND CORRECT

460

INNERSHIELD® NR®-232

Mild Steel, All Position • AWS E71T-8, E71T8-A2-CS3-H16

KEY FEATURES

- · High deposition rates for out-of-position welding
- Penetrating arc
- · Fast freezing, easy to remove slag system
- Meets AWS D1.8 seismic lot waiver requirements

WELDING POSITIONS

All

TYPICAL APPLICATIONS

- Structural fabrication, including those subject to seismic requirements
- General plate fabrication
- Hull plate and stiffener welding on ships and barges
- Machinery parts, tanks, hoppers, racks and scaffolding

CONFORMANCES

AWS A5.20/A5.20M:	E71T-8-H16				
AWS A5.35:	E71T8-A2-CS3-H16				
ASME SFA-A5.20:	E71T-8-H16				
ABS:	BYSA				
Lloyd's Register:	3YS H15				
DNV Grade:	III YMS H15				
GL:	3YH10S				
BV Grade:	SABYMH				
CWB/CSA W48-05:	E491T-8 H16				
DB:	EN 758 T42 3 Y N 2				
TUV:	EN 758 T42 3 Y N 2				
MIL-E-24403/1:*	MIL-71T-8AS				
FEMA 353					
AWS D1.8					
JIS Z 3313	T49T38-1NA-H15				

Williary Gode Classification of WU-717-845 for 0:068 In (1.7 mm) and 0.872 In (1.8 mm) diameters only

DIAMETERS / PACKAGING

Diameter in (mm)	13.5 lb (6.1 kg) Coli 54 lb (24.5 kg) Master Carton	13.5 lb (6.1 kg) Coll 54 lb (24.5 kg) Master Carton 54 lb (24.5 kg) Hermetically Sealed Pail	
0.068 (1.7)	ED012518		ED030643
0.072 (1.8)	ED012522 ED030232		ED030644
5/64 (2.0)	ED012525		ED030647
Diameter	25 lb (11.3 kg) Plastic Speol		50 lb (22.7 kg)
in (mm)	(Vacuum Saaled Foil Bog)		Coll
0.068 (1.7) 0.072 (1.8) 5/64 (2.0)	ED	030949	ED012519 ED012523 ED012526

MECHANICAL PROPERTIES^{INI}

	Yield Strength ^{II} MPa (lcsi)	Tensile Strength MPa (ksi)	Elongation %	Hardness Rockwell B	Charpy V-Notch / i ft+lbf) @ -29*C (-20*F)
Requirements - AWS E71T-8	400 (58) min	480-655 (70-95)	22 min	-	27 (20) min
Typical Results ¹⁴ - As-Welded	460-520 (66-75)	575-615 (83-89)	25-31	87-90	47-75 (35-55)

⁽¹)great at weld metal. "Measured with 0.35 offset. ⁽⁶See test sets/fs dischilter: ROTE /EMA 353 and AWS 0.18 structural steel satire suggioners' test state can be found on this product at served reachededric.com.

DEPOSIT COMPOSITION¹¹¹

	sc	\$Mn	125	XS	XP	141
Requirements - AWS E717-8	0.30 max	1.75 max	0.60 max	0.03 max	0.03 max	1.8 max
Typical Results ^{ot}	0.16-0.18	0.61-0.72	0.26-0.33	s0.01	s0.01	0.5-0.8

TYPICAL OPERATING PROCEDURES

Diameter, Polarity	CTWD ^{as} mm (in)	Wire Feed Speed m/min (in/min)	Voltage ^m (volts)	Approx. Current (amps)	Melt-Off Rate kg/hr (lb/hr)	Deposition Rate leg/hr (lb/hr)	Efficiency (%)
0.069 in (1.7 mm), DC-	19-32 (3/4-1 1/4)	2.8 (110) 3.3 (130) 3.8 (150) 4.3 (170) 5.0 (195) 5.4 (250) 7.4 (320)	18-19 19-21 19-21 20-22 23-24 23-24 25-27	195 225 250 270 300 350 400	2.3 (5.0) 2.8 (5.2) 3.2 (7.1) 3.5 (7.8) 4.3 (9.4) 5.4 (11.8) 5.9 (15.2)	1.8 (3.9) 2.0 (4.6) 2.4 (5.3) 2.8 (6.1) 3.2 (7.0) 4.0 (9.0) 5.2 (11.4)	78 74 75 78 74 76 75
0.072 in (1.8 mm), DC-	19-32 (3/4-1 1/4)	2.0 (80) 3.5 (140) 3.9 (155) 4.3 (170) 6.4 (250) 7.4 (290)	16-18 18-21 19-22 20-23 22-24 23-25	130 225 240 255 315 350	1.8 (4.0) 3.1 (6.8) 3.3 (7.2) 3.6 (8.0) 5.9 (11.7) 6.2 (13.6)	1.5 (3.3) 2.5 (5.5) 2.7 (6.0) 2.9 (6.5) 4.3 (9.6) 5.0 (11.0)	83 81 83 81 82 81
5/64 in (2.0 mm). DC-	19-32 (3/4-1 1/4)	1.5 (60) 2.9 (115) 3.0 (120) 3.3 (130) 4.6 (180)	16-17 19-20 19-20 20-21 22-23	145 260 270 285 365	1.7 (3.7) 3.2 (7.0) 3.3 (7.3) 3.5 (7.8) 5.0 (10.9)	1.2 (2.7) 2.5 (5.5) 2.6 (5.7) 2.8 (6.2) 3.9 (B.7)	73 78 78 79 80

**Typical all weld metric. "Mitnasured with 0.25 offset. "See text results discloimer NOTE: FEMA 263 and AWS D1.8 structural steel selencic supplement text data can be found on this product at www.lncolmelectric.com.

Material Safety Data Sheets (MSDS) and Certificates of Conformance are available on our website at www.lacoinelectric.com

TEST RESULTS Test reads for matarical properties, deposit or electrode composition and difficulte hydrogen leads were estained from a weld produced and tosted according to prescribed stan-dards, and should not be extended to be the expected estables in a particular application or web/metric. Actual results will eavy desending on many factors, including, but not limited to, weld procedure, plate hermistry and femanetasing and factorization methods. Users are cautioned to confirm by qualitication testing, or other appropriate means, the suitability of any welding consumable end procedure bater use in the interded application.

EUSTOMER ASSISTANCE POLICY

EUSTOMER ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE POLICY
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANCE
EUSTOME ASSISTANC

THE LINCOLN ELECTRIC COMPANY 22801 St. Clair Avenue • Cleveland, OH • 44117-1199 • U.S.A. Phone: +1.216.481.8100 • www.incolnelectric.com

Publication C3.2000.12 | Issue Date 06/16 © Lincoln Global, Inc. All Rights Reserved.

ELECTRIC

The Lincoln Electric Company 22801 St. Clair Avenue Cleveland, Ohio 44117-1199

CERTIFICATE OF CONFORMANCE

Classification: E1173-416 Classification: E1113-42-CS3-H16 E1113-42-CS3-H16 E1113-42-CS3-H16 E1113-42-CS3-H16 Ante A5-36:2012, ABME 5FA-5.36 Date October 03, 2016 This is to certify the the product named above is of the same classification(s) and design as the material used for the tests reported herein. The material was feated according to the specification(s) indicated and met all representation and supplied according to a Cuality System Program that meets the requirements of ISO3001 among do thas documented on The Lincoh Electric web page (*Idip/deven/incohelectric.com/on-us/commany/Basea/com/incation.caanio*.

perating Settings	E71T8-A2-C83-H16 Requirements	E71T-8-H16 Requirements	REGI	JLTS
Electrode Size Current TyperPlaintly Current TyperPlaintly Wine Fead Speed, critini (in/min) Nominal Current, A Nominal Current, A Nominal Current, A Nominal Current, A Nominal Current, A Pasel Jayors Perhed Temperature, ¹ C (¹ F) Prehed Temperature, ¹ C (¹ F) Prehed Temperature, ¹ C (¹ F)	(80 min.) (80 min.) (275 - 325) As-wetded	(60 min.) (275 - 325) As-welded	.068" (1,7 mm) DC. DC. 21 230 230 1,7 (43) 230 1,7 (43) 23 (1) 130 25 (13) 165 (225) As-weided	5/64* (2.0 mm) DC- DC- 325 3.7 (18D) 325 1.7 (42) 25 (1) 13.6 26 (72) 165 (325) A5-wolded
echanical properties of weld deposits				
Tensile Strength, MPa (ksi) Yield Strength, 0.2% Offset, MPa (ksi) Elongation %	(70 - 95) (58 min.) 22 min.	(70 - 95) (58 min.) 22 min.	590 (88) 460 (67) 30	830 (91) 500 (72) 28
Average Impact Energy Joules @ -29 °C (ft-ths @ -20 °F)	(20 min.)	(20 min.)	39 (29) 38,39,39 (28,28,29)	57 (42) 57,58,58 (42,42,43)
Average Hardness, HRB	Info. Only	Info. Only	90	91
hemical composition of weld deposits (weigh	rt %)			
с _М ю	0.30 max. 1.75 max. 0.60 max.	0.30 max. 1.75 max. 0.60 max.	0.18 0.85 0.27	0.13 0.54 0.28
07 B.	0.030 max. 0.030 max.	0.03 max.	0.01	0.01
B	1.8 max. Not Specified	1.8 max.	0.6 0.0015	0.0015
ffusible Hydrogen (per AWS A4.3)	E71T8-A2-C53-H16 Requirements	E71T-8-H16 Requirements	RESI	JLTS
Bectrode Stza Sument Type/Potanty Vominal Voltage, V vominal Current, A			.068" (1,7 mm) DC- 24 -339	5/64* (2.0 mm) 21 236 236
Diffusible Hydrogen, mL/100g Abs. Humidihy (ur moistureilb dry air)	16 max.	15.D max.	5.2 53	0.4 62

Page 1 of 2

The Lincoln Electric Company 22301 St. Chiri Avenue Cleveland, Ohio 44117-1199

CERTIFICATE OF CONFORMANCE

LINCOLN . ELECTRIC

This docurrent meets the requirements of EN 10204, type 2.2, when a specific lot or order number is referenced. It does not meet the requirements of type 3.1.
 The electrod stores required to be leaded for this classification are 0.088 inch and 504 inch. All other sizes manufactured meet meet there requirements of type 3.1.
 This take requirements of type 3.1.
 The take requirements of type 3.1.
 The take requirements of type 3.1.
 This take requirements of the second on the requirements.
 Radiographic inspection: Met requirements.
 The store of the size requirements.
 The size of the rest of the requirements.
 Strength values it units are reported to the nearest 10 MPa connected from actual data. Preheat and interpass temperature values in SI units are reported to the nearest 5 degrees.

October 03, 2018 Date Toronto Cumunition Tororto Cunningham, Certification Supervisor 2

October 03, 2016 Rowaldon S. Ophann

Date Jon Ogborn, Manager, Consumable Comptiance

Page 2 of 2

insola Electric Company St. Clair Avenue land, Ohlo 44117-1199	ot: Innershield® NE ⁶ -232
The Line 22301 St Clevelan	Product:

CERTIFICATE OF CONFORMANCE

Electrode Lof Number: 14810717 Classification: E717-0-H16 Specification: AWB D1.8:2016 May 24, 2017 Date

This is to certify this the above listed product was manufactured to meet the Class T4 requirement of AWS A5.01 as required by chanse 6.3.8.1 of AWS D1.8.2016.

The provinct stand barein was memufactured and scepelacd in accordance with the Quality System Program of The Linoohi Electic Co., Cleveland, Ohio, U.S.A. an outlined in our Quality Assumance Mazuel. The Quality System Program of The Lincoln Electric Co. has been accepted by ASME, ASS and approved by VdTUV, and is certified to ISO 9001.

Operating Settings	AWS D1.8	High Heat Input	Low Heat Input
	Requirements	Results	Results
Required Size for Classification current Type/Pacing Nominel Voltage, V Wite Faed Speed, cm/min (in/min) Nominel Current, A Nominel Current, A Nominel Current, A Nominel Current, A Nomega Heat Tiput, kJmm (kJm) Contact Tip to Work Distance, mm (in) FaesLayers Present Temperature, "C ("F) Work Pestion Work Pestion		.072*(1.8 mm) DC- 22 394 (155) 25 (1) 11 (4.4) 15 (275) 25 (1) 1155 (275) 23 (450) 36	.072" (1.8 mm) DC- 20 457 (180) 457 (180) 220 1.2 (30) 22 (718) 22 (718) 27 (10.8) 187 187 187 187 187 187 187 187 187 187
Mechanical properties of weld deposits			
Tensile Strength, MPa (kst)	(70 min.)	580 (34)	630 (92)
Yield Strength, 0.2% Offset, MPa (kst)	(58 min.)	410 (59)	500 (72)
Elongastion %	22 min.	28	26
Average Impact Energy	(40 min.)	112 (82)	107 (79)
Joules @ 21 °C (ft-fbs @ 70 °F)		107,114,115 (79,84,85)	103,108,109 (76,80,80)
Average Impact Energy	(40 min.)	59 (43)	B1 (45)
Joules @ -18 *C (ft-lbs @ 0 *F)		54,60,62 (40,44,48)	58,81,63 (43,45,46)
 This product asfar/se the negularments of AVAS D13:20 2. The Champy V-notch impact values reported at -18 *C (0 (LAST) is -29 *C (-20 *F). 	16, Annax E., after exposure for 1 work 1 *F) are required when the Lowest Anti-	at 50°F / 80% relative humidity. Spatied Sarvice Temperature	Toronto Commission Supervisor

The Charpy V-notch impact values reported at at v_tv v_vvvvvv and the speciments artificially aged at 105°C (220°F) for (AST) is 10 °C (20°F).
 An anongth and abrigation properties reported here were obtained from tensis speciments artificially aged at 105°C (220°F) for 48 hours.
 Strength values in SI units are reported to the nearest 5 degrees.

May 24, 2017 1250 Januatur S. Open

May 24, 2017

Date

Jan Ogtorn, Manager, Consumable Compliance

INNERSHIELD° NR°-305

Mild Steel, Flat & Horizontal • AWS E70T-6, E70T6-A2-CS3-H16

KEY FEATURES

- High deposition rates in the flat and horizontal positions
- · Smooth arc and low spatter levels
- Capable of producing weld deposits with impact properties exceeding 27 J (20 ft+lbf) at -29*C (-20*F)
- · Welds on lightly rusted or primed plate
- Meets AW5 D1.8 seismic lot waiver requirements

WELDING POSITIONS

Flat & Horizontal

CONFORMANCES

AWS A5.20/A5.20M: AWS A5.36: ASME SFA-A5.20: FEMA 353 AWS D1.8 JIS Z 3313 E70T-6 H16 E70T6-A2-CS3-H16 E70T-6 H16

T 49 3 T6-0 N A-H15

Welding over tack welds

made with stick electrode

TYPICAL APPLICATIONS

- General plate fabrication
 Shipyards, stiffener
 welding on barges
- Structural fabrication, including those subject to seismic requirements
- Bridges and offshore rigs

DIAMETERS / PACKAGING

Diameter In (mm)	25 lb (11.3 kg) Steel Spool	25 lb (11.3 kg) Plastic Spool (Vacuum Sealed Foil Bag)	SO Ib (22.7 kg) Coll	50 lb (22.7 kg) 50 lb Coll (Vacuum Sealed Foil Bag)
5/64 (2.0)	ED034185		6-10-10-10-10-10-10-10-10-10-10-10-10-10-	12.010 (19.02)
3/32 (2.4)		ED030971	ED012593	ED0300

MECHANICAL PROPERTIES¹¹⁾

	Yield Strength ^{re} MPa (lesi)	Tensile Strength MPa (ksi)	Elongation S	Hardness Rockwell B	Charpy V-Notch 1 (ft-lbf) (@ -29°C (-20°F)
Requirements - AWS E70T-6	400 (58) min	480-655 (20-95)	22 min	-	27 (20) min
Typical Results ^{to} - As-Weided	465-535 (68-77)	565-620 (82-90)	24-28	88-93	27-41 (20-30)

DEPOSIT COMPOSITION^{III}

	sc	5.Mn	3.51	15	ъP	SAI
Requirements - AW5 E70T-6	0.30 max	1.75 max	0.60 max	0.03 max	0.D3 max	1.B max
Typical Results®	0.06-0.09	1.08-1.57	0.20-0.27	≤0.01	≤0.01	0.9-1.1

TYPICAL OPERATING PROCEDURES

Diameter, Polarity	CTWD mm (in)	Wire Feed Speed m/min (in/min)	(volts)	Approx. Current (amps)	Melt-Off Rate kg/hr (lb/hr)	Deposition Rate kg/hr (lb/hr)	Efficiency (%)
5/64 in (2.0 mm), DC+	35-51 (1 3/8-2)	4.4 (175) 5.6 (220) 6.6 (260) 7.6 (300) 8.3 (325)	20-22 21-23 22-24 24-26 25-27	300 330 360 375 400	8.5 (10.5) 6.0 (13.3) 7.1 (15.7) 8.2 (18.1) 8.9 (19.7)	4.0 (9.8) 5.0 (11.1) 5.9 (13.1) 6.9 (15.2) 7.4 (16.4)	84 83 83 84 83
3/32 in (2.4 mm), DC+	41-54 (1 5/8-2 1/4) ¹⁴	4.1 (160) 6.1 (240) 7.6 (300) 10.2 (400)	21-23 24-26 27-29 33-35	330 425 475 525	6.0 (13.3) 9.1 (20.0) 11.3 (25.0) 15.2 (33.4)	5.0 (11.0) 7.6 (16.7) 9.5 (21.0) 12.7 (28.0)	82 83 84 83

**Typical all weld metral. **Meanand with 0.2% offset. **See Jest results disciplen: **Upe CTHD of 2: 1/4 in (56 mm) for wire fleat species greater than 300 jpm. NDTE: FEMI 353 and AMS D1.8 alreadand ateal meteraic papelement fest date can be found on this product of unwalknobelecitic.com.

21

Material Safety Data Sheets (MSDS) and Certificates of Conformance are available on our website of www.fincolnelectric.com

TEST RESULTS Test results for mechanical poperties, deposit or electrode composition and difficible legitogen learls were obtained from a weld produced and testod according to prosofiled stan-derite, and should not be assumed in as the opported results in a particular splitcale on weddenet, Actual results will vary depending on more factors, including, but not lanced to weld pronounced and procedure before use in the intended application.

CUSTOMER ASSISTANCE POLICY

The Lincoln Beckix Company is manufacturing and selling high guility wedding explores and ucting explores. Cour employees region to most the needs of car customers and the second their reportations. On accessing partners, partners, manufacturing and selling high guility wedding explores, consumables, and ucting explores to care produces. Cour employees region to inquirity to the best of their ability based on information or ability devices in quarks to the best of their ability based on information or ability explores the produce of the produces of the produce of the pr

to monitor access to any summary or increases or any accessing perpension spectrage accessing to any summary or increases the safe responsibility of the costorier. Many increases the same summarized to any accessing the safety of a spectrage spe

22801 St. Clair Avenue • Cleveland, OH • 44117-1199 • U.S.A. Phone: +1.216.481.8100 • www.lincolnelectric.com ELECTRIC

Publication c3.2000.6 | Issue Date 07/16 # Lincoln Global, Inc. All Rights Reserved.

The Lincoln Electric Company 22801 St. Clair Avenue Cleveland, Ohio 44117-1199

CERTIFICATE OF CONFORMANCE

 Product:
 Innershield* NR*.305

 Classification:
 E70T-6-H16

 E70T6-A2-CS3-H16

 Specification:
 AWS A5.20:2005, ASME SFA-5.20

 AWS A5.36:2012, ASME SFA-5.36

 Date
 July 07, 2016

This is to certify that the product named above is of the same classification(s) and design as the material used for the tests reported herein. The material was tested eccording to the specification(s) indicated and met al requirements. It was manufactured and supplied according to a Quality System Program that meets the requirements of ISO9001 among others as documented on The Lincoln Electric web page (http://www.lincolnelectric.com/en-us/campany/Pages/certifications.aspx).

Operating Settings	E70T-6-H16 Requirements	RESULTS
Electrode Size Current Type/Polarity Nominal Voltage, V Wire Feed Speed, cm/min (in/min) Nominal Current, A Average Heat Input, kJ/mm (kJ/in) Contact Tig to Work Distance, mm (in) Pasa/Layers Preheat Temperature, *C (*F) Interpass Temperature, *C (*F) Postweld Heat Treetment	5/64 Inch (35 - 65) (60 min.) (275 - 325) As-welded	5/64 inch DC+ 25 711 (280) 380 2.0 (50) 35 (1 3/8) 9/5 20 (71) 165 (325) As-weided
Mechanical properties of weld deposits		
Tensile Strength, MPa (ksi) Yield Strength, 0.2% Offset, MPa (ksi) Elongation %	(70 - 95) (58 min.) 22 min.	540 (79) 440 (64) 29
Average Impact Energy Joules @ -29 °C (R-Ibs @ -20 °F)	(20 min.)	52 (38) 52,52,53 (38,38,39)
Average Hardness, HRB	Info. Only	85

Chemical composition of weld deposits (weight %)

C	0.30 max.	0.07
Mn	1.75 max.	1.37
Si	0.60 max.	0.23
S	0.03 max.	0.00
P	0.03 max.	0.01
Al	1.8 max.	0.8
Diffusible Hydrogen (per AWS A4.3)	E70T-6-H16 Requirements	RESULTS
Electrode Size Current Type/Polarity Nominal Voltage, V Nominal Current, A		5/64 inch DC+ 24 358
Diffusible Hydrogen, mL/100g Abs. Humidity (gr moisture/Ib dry air)	16.0 max.	4.3 55

Page 1 of 4

The Lincols Electric Company 22801 St. Clair Avenue Cleveland, Ohio 44117-1199

CERTIFICATE OF CONFORMANCE

Product: Innershield* NR*-305 Classification: E70T-6-H16 E70T6-A2-CS3-H16 Spacification: AWS A5.02:2005, ASME SFA-5.20 AWS A5.36:2012, ASME SFA-5.36 Date July 07, 2016

Operating Settings	E70T-6-H16 Requirements	RESULTS
Electrode Size Current Type/Polarity Nominal Voltage, V Wire Feed Speed, cm/min (in/min) Nominal Current, A Average Heat Input, kJ/mm (kJ/in) Contact Tip to Work Distance, nm (in) Pass/Layers Preheat Temperature, *C (*F) Interpass Temperature, *C (*F) Pastuld Heat Transment	3/32 inch (40 - 65) (60 min.) (275 - 325) An weided	3(32 inch DC+ 25 6(10 (240) 385 2.0 (52) 41 (1 5/8) 9/5 20 (71) 165 (325) 6 considered
Postweid Hear Treatment	Aa-weided	As-weided
Mechanical properties of weld deposits		
Tensile Strength, MPa (ksi) Yield Strength, 0.2% Offset, MPa (ksi) Elongation %	(70 - 95) (58 min.) 22 min.	550 (80) 450 (65) 28
Average Impact Energy Joules @ -29 °C (ft-lbs @ -20 °F)	(20 min.)	49 (36) 47,48,52 (35,38,39)
Average Hardness, HRB	Info, Only	88

Chemical composition of weld deposits (weight %)

C	0.30 max.	0.06	
Mn	1.75 max.	1.41	
Si	0.60 max.	0.22	
s	0.03 max.	0.00	
P	0.03 max.	0.01	
- IA	1.8 max.	0.9	-
Diffusible Hydrogen (per AWS A4.3)	E70T-6-H16 Requirements	RESULTS	
Electrode Size		3/32 inch	
Current Type/Polarity		DC+	
Nominal Voltage, V		27	
Nominal Current, A		431	
Diffusible Hydrogen, mL/100g	16.0 max.	6.1	
Abs. Humidity (gr moisture/lb dry air)		68	

Page 2 of 4

The Lincoln Electric Company 22801 St. Clair Avenue Cleveland, Ohio 44117-1199

CERTIFICATE OF CONFORMANCE

0.8

Product: Innershield® NR®-305 E70T-6-H16 E70T6-A2-CS3-H16 Classification: AWS A5.20:2005, ASME SFA-5.20 AWS A5.36:2012, ASME SFA-5.36 Specification:

July 07, 2016

Date

Operating Settings	E70T6-A2-CS3-H16 Requirements	RESULTS		
Electrode Size Current Type/Polarity Nominal Voltage, V Wire Feed Speed, cm/min (in/min) Nominal Current, A Average Heat Input, kJ/mm (kJ/in) Contact Tip to Work Distance, mm (in) Pass/Layers Preheat Temperature, *C (*F)	5/64 inch (35 - 65) (60 min.)	5/64 inch DC+ 25 711 (280) 360 2.0 (50) 35 (1 3/8) 9/5 20 (71)		
Interpass Temperature, "C ("F) Postweld Heat Treatment	(275 - 325) As-welded	165 (325) As-welded		
Mechanical properties of weld deposits				
Tensile Strength, MPa (ksi) Yield Strength, 0.2% Offset, MPa (ksi) Elongation %	(70 - 95) (58 min.) 22 min.	540 (79) 440 (64) 29		
Average Impact Energy Joules @ -29 °C (ft-lbs @ -20 °F)	(20 min.)	52 (38) 52,52,53 (38,38,39)		
Average Hardness, HRB	Info. Only	85		
Chemical composition of weld deposits (weigh	: %)			
C Mn Si S	0.30 max. 1.75 max. 0.60 max. 0.030 max.	0.07 1.37 0.23 0.004		
P	0.030 max.	0.014		

1.75 max. 0.60 max. 0.030 max. Mn Si S P Al 1.8 max. Not Specified В E70T6-A2-CS3-H16 Diffusible Hydrogen (per AWS A4.3)

,	Requirements	RESULTS
Electrode Size		5/64 inch
Current Type/Polarity		DC+
Nominal Voltage, V		24
Nominal Current, A		358
Diffusible Hydrogen, mL/100g	16 max.	4
Abs. Humidity (gr moisture/lb dry air)		55

Page 3 of 4

The Lincoln Electric Company 22801 St. Clair Avenue Cleveland, Ohio 44117-1199

CERTIFICATE OF CONFORMANCE

Product:	innershield® NR®-305	
Classification:	E70T-6-H16	
	E70T6-A2-CS3-H16	
Specification:	AWS A5.20:2005, ASME SFA-5.20	
	AWS A5.36:2012, ASME SFA-5.36	
Date	July 07, 2016	

Operating Settings	E70T6-A2-CS3-H16 Requirements	RESULTS
Electrode Size Current Type/Polarity Nominal Voltage, V Wire Feed Speed, cm/min (in/min) Nominal Current, A Average Hast Input, kJ/mm (kJ/in) Contact Tip to Work Distance, mm (in) PasalLayers Preheat Temperature, °C (°F) Interpass Temperature, °C (°F) Postweld Heat Treatment	3/32 inch (40 - 65) (60 min.) (275 - 325) As-weided	3/32 inch DC+ 26 610 (240) 385 2.0 (52) 41 (1 5/8) 9/5 20 (71) 165 (325) As-welded
Mechanical properties of weld deposits		
Tensile Strength, MPa (ksi) Yield Strength, 0.2% Offset, MPa (ksi) Elongation %	(70 - 95) (58 min.) 22 min.	550 (80) 450 (65) 28
Average Impact Energy Joules @ -29 °C (ft-lbs @ -20 °F)	(20 min.)	49 (36) 47,48,52 (35,36,39)
Average Hardness, HRB	Info. Only	88

Chemical composition of weld deposits (weight %)

C	0.30 max.	0.06	
Mn	1.75 max.	1.41	
Si	0.60 max.	0.22	
S	0.030 max.	0.003	
P	0.030 max.	0.013	
Al	1.8 max.	0.9	
Diffusible Hydrogen (per AWS A4.3)	E70T6-A2-CS3-H16 Requirements	RESULTS	
Electrode Size		3/32 inch	
Current Type/Polarity		DC+	
Nominal Voltage, V		27	
Nominal Current, A		431	
Diffusible Hydrogen, mL/100g	16 max.	6	
Abs. Humidity (gr moisture/lb dry air)		68	

1. This document meets the requirements of EN10204, type 2.2, when a specific lot or order number is referenced. It does not meet the requirements of

type 3.1, 2. Filet Weld Test (positions as required): Met requirements.

3. Radiographic Inspection: Met requirements.

Date

The strength and elongation properties reported here were obtained from tensile specimens artificially aged at 105°C (220°F) for 48 hours.
 Strength values in SI units are reported to the nearest 10 MPa converted from actual data. Prehest and interpase temperature values in SI units are reported to the nearest 5 degrees.

Toronto Curringha July 07, 2016

Toronto Cunningham, Certification Supervisor

Main of Simitana

July 07, 2016

Date.

Marle Quintana, Director, Consumable Compliance

Page 4 of 4

The Lincoln Elsethric Company 22801 St. Clair Avenue Cleveland, Ohio 44117-1199

CERTIFICATE OF CONFORMANCE (APPLIES ONLY TO U.S. PRODUCTS)

Innershield® NR®-305 AWS D1.8:2009 Electrode Lot Number: 14159486 E70T-6-H16 Classification: Specification: Product

June 08, 2015 Date

This is to certify that the above fisted product was manufactured to meet the Class T4 requirement of AWS A5.01 as required by classe 6.3.8.1 of AWS D1.8.2009.

The product strated betein was manufactured and supplied in accordance with the Quality System Program of The Lincoln Elertis Co., Cleveland, Ohio, U.S.A. as outlined in our Quality Assumate Maniat. The Quality System Program of The Lincoln Electric Co. has been accepted by ASME, ABS and approved by VoTUV, and is certified to ISO 9001:2013

perating Settings	AWS D1.8	High Heat Input	Low Heat Input
	Requirements	Results	Results
Electrode Size Polarity Wire Feed Speed, crivinin (in/min) Voltage, V Current, A Avenage Heat Input, kulmin Avenage Heat Input, kulmin Contract Tip to Work Distance, mm (in) Pest-Jury Ferbant Temperature, *C (*F) Interpass Temperature, *C (*F) Distored Position Weid Position	As-welded	3/32 Inch 3/32 Inch 752 (300) 29 520 520 44 (1.75) 96 96 96 120 (50) 720 (450) 750 (450) 750 (450)	3/32 inch DC+ 467 (180) 24 380 1.5 (37) 44 (1.75) 14(5 20 (88) 22 (350) 22 (350) 44 (1.75) 14(5 20 (88) 22 (350) 44 (1.75) 14(5 20 (88) 22 (250) 22 (250)
lechanical properties of weld deposits			
Tensile Strength, MPa (ksi)	(70 min.)	560 (31)	610 (89)
Yield Strength, 0.2% Offiset, MPa (ksi)	(58 min.)	450 (66)	540 (78)
Elongarton %	22 min.	25	24
Average Impact Energy Joules @ 21 °C (#-bis @ 70 °F)	(40 min.)	71,72,72 (52,53,53)	61 (45) 57,63,64 (42,46,47)
Average Impact Energy	(40 mín.)	85 (48)	54 (40)
Joules @ 10 °C (#-bs @ 50 °F)		84,65,88 (47,48,49)	54,54,55 (40,40,41)
This product satisfies the requirements of AWS D1.6.2.	209, Annex E, after exposure for 2 weeks	s at 80°# / 80% relative humidity.	Tornto Commenter
The Charov V-notch incost values reported at 10 *C (6	50 °F) are recurred when the Lowest Anti-	Sidelad Service Temoerature	

The Charpy V-notch incpact values reported at 10 °C (50 °F) are required when the Lowest Anticipated Service Temperature (LAST) to -1°C (30 °F).
 The Charpy V-notch incpact values reported at 21 °C (70 °F) are required when the Lowest Anticipated Service Temperature (LAST) is 10 °C -0.00 °F).
 The strength and elongation properties reported here were obtained from transite spectments artificially equal at 105°C (20°F) for 5. The strength and elongation properties reported here were obtained from transite spectments artificially equal at 105°C (220°F) for

48 hours. 6. Stinnsph values in Si units are reported to the nearest 10 MPa converted from actual data. Preheat and interpass temperature values in Si units are reported to the nearest 5 degrees.

June 08, 2015 Dave Fink, Manager, Compliance Engineering, Consumable R&D er l Daniel

June 08, 2015

Oato

Torronto Cunningham, Certification Superviso

The Herrick Corporation SHOP Welding Procedure Specifications Index Herrick Job #9960

WPS ID#	PROCESS	JOINT	TYPE WELD	POSITION	ELECT. DIA	ELECTRODE TYPE	CVN	PREQ	QUAL	D1.8	REV.	DATE
COMPLETE	PENETRATION WE	LDS										
THC-CP7	FCAW-G	B-U4b	0-45 Deg CP	1G-2G	3/32"	OSXLH-70	YES	YES		YES	1	5/28/14
THC-CP8	FCAW-G	TC-U4b	0-45 Deg CP	1G-2G	3/32"	OSXLH-70	YES	YES		YES	1	5/28/14
THC-CP12	FCAW-G	B-U4b	0-30 Deg CP	1G-2G	3/32"	OSXLH-70	YES		YES	YES	2	5/28/14
THC-CP13	FCAW-G	TC-U4b	0-30 Deg CP	1G-2G	3/32"	OSXLH-70	YES		YES	YES	2	5/28/14
THC-CP43	FCAW-G	Dblr-F	5/8 - 30 Deg CP	FLAT	3/32"	OSXLH-70	YES	YES		YES	0	5/31/19
				•			•					
PARTIAL PE	NETRATION WELD	DS .										
THC-PP1	FCAW-G	BTC-P4	0-45 Deg PP	1G-2G	3/32"	OSXLH-70	YES	YES		YES	1	5/28/14
								•			•	
FILLET WEL	DS											
THC-F1	FCAW-G	FILLET	FILLET	1F-2F	3/32"	OSXLH-70	YES	YES		YES	2	5/28/14
							•	•				

$\begin{array}{c} \textbf{Herrick} & \text{welding procedure specification (wps) yes } (\chi) \\ \textbf{prequalified } \underline{\chi} & \textbf{qualified by testing} \\ \end{array}$

	Identification # THC- CP7				
	Revision #2 Date 5/28/14 By Joe Kraft				
Company Name The Herrick Corporation	Authorized by no come Date 10/11/12				
Welding Process (es) FCAW-G	Type Manual () Semi - Automatic (X)				
Supporting PQR No. (s) N/A	Machine () Automatic ()				
JOINT DESIGN USED	POSITION				
Type B-U4b-F	Position of Groove (1G) & (2G) Fillet N/A				
Single () Double Weld ()	Vertical Progression Up () Down ()				
Backing Yes () No (X)	ELECTRICAL CHARACTERISTICS				
Backing Material N/A	DC				
Root Opening 0-1/8" Root Face Dimension 0-1/8"	Transfer Made (CMANN)				
Groove Angle 45" Radius (J - U) N/A	Short - Circuiting () Globular () Spray ()				
Back Gouging Yes (X) No () Method AIRARC	Current AC () DCEP (X) DCEN () Pulsed ()				
BASE METALS Material Space AWS D1 1 Table 3.1 Group 1, 2, 3	Power Source: CC () CV (X)				
Type or Grade (Except for Group 3 to Group 3)					
Thickness Groove Unlimited Fillet N/A	Stringer or Weave Bead Stringer Bead				
Diameter (Rebar) N/A	Multi - nass or Single Pass (per side) Multi/Single				
	Number of electrodes One				
AWS Specification A5 20	Longitudinal N/A				
AWS Classification F70T-9 (Lincoln's OSXI H-70.)	Lateral N/A				
	Angle N/A				
SHIELDING					
Flux N/A Gas CO2	Contact Tube to Work Distance1-1/8"				
Electrode - Flux (Class) Flow Rate 50 CFH	Peening, None Internees Cleaning, Resumptio Chipping Hommer or Bruth				
N/A Gas Cup Size 5/8*	Interpass Cleaning Pneumatic Chipping Hammer or Brush				
PREHEAT	POSTWELD HEAT TREATMENT				
Preheat Temp., Min. See below *	Temp. None** Jose W Garcia				
Interpass Temp., Min See below Max 550° F	QC1 EXP. 12/1/2015				
WELDING	3 PROCEDURE				
Filler Metals Current	Joint Details				
	In/Min				
Pass or	Wire In/Min				
Weld Type &	Feed Travel				
Layer (s) Process Class Diam. Polarity Amps	Speed Volts Speed				
ALL FCAW-G E701-9 3/32 DCEP 311-3/9					
	B.G				
Heat land Denses 20, 20 K H					
Heat input Range: 30 - 80 KJ/					
ALL FCAW-GE70T-9 3/32" DCEP 400-490	AS DETAILED AS FIT UP				
	R = + 1/16, - 0 + 1/16, - 1/8				
	F=+1/16,-0 NOT LIMITED a= 10,-0 10,-5				
Heat Input Range: 30 - 80 KJ/	in				

MINIMUM PREHEAT AND INTERPASS TEMPERATURE

UP TO 3/4*	OVER 3/4" - 1 1/2"	OVER 1 1/2" - 2 1/2"	OVER 2 1/2*
NONE *	50 °F	150 °F	225 °F

* When Base Metal is Below 32° F, preheat to at least 70° and maintain during welding.
 **This procedure may vary due to fabrication sequence, fit-up, pass size, etc. within the limitation of variables given in the ANSI/AWS D1.1 (2010). See project welding specifications for additional notes.

Herrick Welding procedure specification (WPS) yes (x) prequalified _x_ qualified by testing ____

	Identification # THC- CP8		
_	Revision #2 Date 5/28/14 By Joe Kraft		
Company Name The Herrick Corporation	Authorized by Date 10/11/12		
Welding Process (es) FCAW-G	Type Manual () Semi - Automatic (X)		
Supporting PQR No. (s)N/A	Machine () Automatic ()		
JOINT DESIGN USED	POSITION		
Type TC-U4b-F	Position of Groove (1G) & (2G) Fillet N/A		
Single () Double Weld ()	Vertical Progression Up () Down ()		
Backing Yes () No (x)	()		
Backing Material N/A	ELECTRICAL CHARACTERISTICS		
Root Opening 0-1/8" Root Face Dimension 0-1/8"			
Groove Angle45° Radius (J - U)N/A	Transfer Mode (GMAW)		
Back Gouging Yes (X) No () Method AIRARC	Short - Circuiting () Globular () Spray ()		
BASE METALS	Current: AC () DCEP (X) DCEN () Pulsed ()		
Material Spec. <u>AWS D1.1 Table 3.1 Group 1, 2, 3</u>	Power Source: CC () CV (X)		
Type or Grade (Except for Group 3 to Group 3)			
Thickness Groove Unlimited Fillet N/A	Stringer or Weave Bead Stringer Bead		
Diameter (Rebar) N/A	Multi - pass or Single Pass (per side) Multi/Single		
FILLER METALS	Number of electrodes One		
AWS Specification A5.20	Longitudinal N/A		
AWS Classification <u>E70T-9</u> (Lincoln's OSXLH-70)	Lateral N/A		
SHIELDING	AngleN/A		
Flux N/A Gas CO2			
Composition 100%	Contact Tube to Work Distance1-1/8*		
Electrode - Flux (Class) Flow Rate 50 CFH	Peening. None		
N/A Gas Cup Size5/8"	Interpass Cleaning <u>Pneumatic Chipping Hammer or Brush</u>		
PREHEAT	POSTWELD HEAT TREATMENTS		
Preheat Temp., Min. See below *	Temp. None** Jose W Garcia		
Interpass Temp., Min See below Max 550° F	Time N/A OC1 Exp 1/10/041		
WELDING	PROCEDURE		
Filler Metals Current	Joint Details		

			Filler N	Aetals	Cur	rent				Joint Details	
	Pass or Weld Layer (s)	Process	Class	Diam.	Type & Polarity	Amps	In/Min Wire Feed Speed	Volts	In/Min Travel Speed		⟨₿.G
	ALL	FCAW-G	E70T-9	3/32"	DCEP	311-379	135-165	23-27	8"-14"		†
			н	eat Input	Range: 3	0 - 80 KJ/i	n				
	ALL	FCAW-G	E70T-9	3/32"	DCEP	400-490	180-220	27-31	12°-20*	TOLERANCES	
I										AS DETAILED AS FIT UP	·
l										R = + 1/16, - 0 + 1/16, - 1/8 f = + 1/16, - 0 NOT LIMITED	
Į			н	eat Input	Range: 3	0 - 80 KJ/i	n			a = + 10, - 0 + 10, -5	

MINIMUM PREHEAT AND INTERPASS TEMPERATURE

UP TO 3/4"	OVER 3/4" - 1 1/2"	OVER 1 1/2" - 2 1/2"	OVER 2 1/2"
NONE *	50 °F	150 °F	225 °F

* When Base Metal is Below 32° F, preheat to at least 70° and maintain during welding.
**This procedure may vary due to fabrication sequence, fit-up, pass size, etc. within the limitation of variables given in the ANSI/AWS D1.1 (2010). See project welding specifications for additional notes.

Herrick Welding PROCEDURE SPECIFICATION (WPS) YES (X) PREQUALIFIED ____ QUALIFIED BY TESTING X____

	Identification # THC- CP12
	Revision #2 Date 5/28/14 By Joe Kraft
Company Name The Herrick Corporation	Authorized by Dute 10/11/12
Welding Process (es) FCAW-G	Type - Manuar () Semi - Automatic (X)
Supporting PQR No. (s) FCAW-CP-4b	(Machine () Automatic ()
JOINT DESIGN USED	POSITION
Type B-U4b-F	Position of Groove (1G) & (2G) Fillet N/A
Single () Double Weld ()	Vertical Progression Up () Down ()
Backing Yes () No (x)	
Backing Material N/A	ELECTRICAL CHARACTERISTICS
Root Opening 0-1/16" Root Face Dimension 0-1/16"	
Groove Angle 30° Radius (J - U) N/A	Transfer Mode (GMAW)
Back Gouging Yes (X) No () Method AIRARC	Short - Circuiting () Globular () Spray ()
BASE METALS	Current: AC () DCEP (X) DCEN () Pulsed ()
Material Spec. AWS D1.1 Table 3.1 Group 1, 2, 3	Power Source: CC () CV (X)
Type or Grade (Except for Group 3 to Group 3)	TECHNIQUE
Thickness Groove Unlimited Fillet N/A	Stringer or Weave Bead Stringer Bead
Diameter (Rebar) N/A	Multi - pass or Single Pass (per side) Multi/Single
FILLER METALS	Number of electrodes One
AWS Specification A5.20	Longitudinal N/A
AWS Classification E70T-9 (Lincoln's OSXLH-70)	Lateral N/A
	Angle N/A
China Gas CO2	
Composition 100%	Contact Tube to Work Distance 1-1/8*
Electrode - Elux (Class) Elow Rate 50 CEH	Peening. None
N/A Gas Cup Size 5/8*	Interpass Cleaning Pneumatic Chipping Hammer or Brush
PREHEAT	Temp None** Jose W Garcia
Internass Temp Min See below Max 550° F	Time N/A CWI 98010941
Interpase remp., with see below max ovo r	QC1 EXP. 12/1/2015

WELDING PROCEDURE

		Filler N	Aetals	Cur	rent				Joint Details
Pass or Weld Layer (s) ALL	Process FCAW-G	Class E70T-9	Diam. 3/32"	Type & Polarity DCEP	Amps 414-500	In/Min Wire Feed Speed 180-220	Volts 28-32	In/Min Travel Speed 12"-20"	R ^J R ^J B.G
		н	eat Input	Range: 3	0 - 80 KJ/I	n			J → T₁/ →
									TOLERANCES AS DETAILED AS FIT UP R = + 1/16, .0 + 1/16, 1/8 F = + 1/16, .0 NOT LIMITED a = 10, .0 10, 5

MINIMUM PREHEAT AND INTERPASS TEMPERATURE

UP TO 3/4"	OVER 3/4" - 1 1/2"	OVER 1 1/2* - 2 1/2*	OVER 2 1/2"
NONE *	50 °F	150 °F	225 °F

When Base Metal is Below 32° F, preheat to at least 70° and maintain during welding.
 **This procedure may vary due to fabrication sequence, fit-up, pass size, etc. within the limitation of variables given in the ANSI/AWS D1.1 (2010). See project welding specifications for additional notes.

Herrick PROCEDURE QUALIFICATION RECORD (PQR) THC-CP12							
		Identification #		FCAW-C	P-4b		
Company Name The Herrick Corpora	ation	Revision	Bat	e	By	04/40/02	
Welding Process (es) FCAW-G		Authorized by	fre	Com	_ Date _(04/10/02	
•		Type - Manual	()	Sen	Automat		
		Machine)		Automat		
LIQINT DESIGN LISED		POSITION					
Type B-U4b-F		Position of: Gr	oove Horz	(2G)	Fillet	N/A	
Single (X) Double Weld	i ()	Vertical Progre	ssion:	Up()	Down ()	
Backing Yes () No (X)		FLECTRICAL	CHARACT	ERISTICS			
Backing Material N/A		LECONIONE [DC	21001100			
Root Opening 0 Root Face Dimen	sion0	Transfer Mode	(GMAW)				
Groove Angle 30° Radius (J -	U)N/A	Short - Circuit	ing () (Globular () Spray	() Duleed ()	
Back Gouging Yes (X) No () Meth	od AIRARC	Current: AC	() D(CEP (X)	DCEN ()) Puiseu ()	
BASE METALS		Power Source	: CC (X)	CV (X)			
Material Spec. A572		Other					
Type or Grade 50		TECHNIQUE	D i	Chi	neer Dood		
Thickness Groove1" F	illet <u>N/A</u>	Stringer or We	ave Bead	Str	nger beau	ala	
Diameter (Pipe) N/A		Multi - pass or	Single Pas	s (per side)	One	pie	
FILLER METALS		Number of ele	ctrodes	opaitudinal	N/A		
AWS Specification A5.20		Electrode Space	cing L	L storal	N/	A	
AWS Classification E70T-9 (Linco	in's OSXLH-70)			Lateral	N/	<u> </u>	
		-		Angle		-	
SHELDING Gee	CO2	Contact Tube	to Work Di	stance	1-1/8"		
Flux <u>N/A</u> Compositi	ion 100%	Peening NONE					
Electrode - Flux (Class) Flow Rate	50 CFH	Interpass Cleaning Pneumatic Chipping Hammer or Brush					
N/A Gas Cup	Size 5/8						
PREVEAT		POSTWELD HEAT TREATMENT					
Preheat Temp. Min 70°F		Temp. None					
Interpass Temp., Min 70° F	Max _ 550° F	Time. N	/A	,			
		~»/_/			`		
		7		/AW			
			1	00		-	
DETAIL		357 J		🗶 JOSE W. G	ARDA 🔊		
DETAIL	7	37 7		1000	** <i>//</i>		
1 1		·		CW			
	Daté Googe to a	word metal prior to weld #10			/		
	Filler Metals	L Cur	rent		In/Min		
Pass or	r mer wietals	Tune &			Travel		
vveid	Class Dia	n Polarity	Amps	Volts	Speed		
Layer (a) Process	E70T 0 2/20	DCEP	460	30	16"		
1-9 FCAW-G	E701-9 3/32	DCEP	460	30	16"		
FCAW-G	2,01-0						
						1	
Backgonged to sound metal prior to weld pass # 10							

ACCURATE WELD TESTING LAB

5223 TWEEDY BLVD., SOUTH GATE, CA 90280 PH(323)564-5879 FX(323)564-3843

Date: April 18, 2002

SAN BERNARDINO STEEL/HERRICK CORP.	Test Date:	04/18/02
5454 N. INDUSTRIAL PARKWAY	WPS#:	FCAW CP-4b
SAN BERNARDINO, CA 92427	Lab#:	759
	PLATE SIZE : 1"	A-572, GR. 50

RADIOGRAPHIC TEST RESULTS: SATISFACTORY

	SIDE BENDS							
1	SIDE BEND	SATISFACTORY	2.	SIDE BEND	SATISFACTORY			
3.	SIDE BEND	SATISFACTORY	4.	SIDE BEND	SATISFACTORY			

TENSION	TEST	RESUL	TS
	1		1

No.	w	Т	Area	Load	P.S.L	Location	
1	.755*	1.000"	.7550"	65,800	87,152	P.M -DUCTILE	
2	.765**	.996"	.7619"	65,700	86,231	P.M- DUCTILE	
CHARPY "V" NOTCH							

@THE WELD@ +70°F.

N	OTCH LOCATION	IMPACT VALUE	% SHEAR	MILL. LAT. EXP
1.	WELD METAL	91	90	.073**
2.	WELD METAL	89	90	.065"
3.	WELD METAL	90	90	.076"
4.	WELD METAL	*87	90	.071"
5.	WELD METAL	*99	90	.075"

AVG. FT. LBS.: 90.6

* LOW & HIGH READING, AVERAGE OF REMAINING THREE. @THE WELD@ +70°F.

NO	CH LOCATION	IMPACT VALUE	% SHEAR	MILL. LAT. EXP
1.	H.A.Z.	150	60	.082"
2.	H.A.Z.	151	60	.093"
3.	H.A.Z.	*176	100	.091"
4.	H.A.Z.	166	90	.090"
5.	H.A.Z.	*147	60	.085" QC 1
* L0	W & HIGH READING,	AVG. FT. LBS.: 155.6 AVERAGE OF REMAINING T	HREE.	JOSE W. GARCIA 98010541
a)	THE WELD@ -0°F.	1		

AVG. FT. LBS.: 155.6

	@THE WELD@ -0'F.			CWI
N	OTCH LOCATION	IMPACT VALUE	% SHEAR	MILL. LAT. EXP
1.	WELD METAL	64	60	.052"
2.	WELD METAL	*55	50	.041**
3.	WELD METAL	61	60	.048"
4.	WELD METAL	*66	60	.054"
5.	WELD METAL	57	60	.045"
	A CONTRACTOR OF A CONTRACTOR OFTA CONT			

AVG. FT. LBS.: 60.6 * LOW & HIGH READING, AVERAGE OF REMAINING THREE.

ACGURATE WELD TESTING LAB

04/18/02

RONALD S. MOBLEY, LAB MANAGER

WE CERTIFY THAT THE ABOVE INFORMATION IS TRUE AND CORRECT

Herric	k P	ELDING	PROCE	DURE SI	PECIFIC	ATION (D BY TE	wps) y Esting	ES (x)
Company Name Welding Process (es Supporting PQR No.	The Her)(s)	rick Corp FCAW-G FCAW-C	oration		Identifi Revisio Authori Type -	cation # on#_2 ized by Mandal (Machine ())	THC- CP13 5/28/14 By Joe Kraft Date <u>10/11/12</u> Semi - Automatic (X) Automatic ()
JOINT DESIGN U Type Single (\chi) Backing Y Backing Mate Root Opening <u>0-1/</u> Groove Angle	SED <u>TC-U4</u> es () rial <u>16"</u> Roo <u>30°</u>	b-F Double V No (; N/A t Face Dir Radius	Veld () x) mension (J - U)	0-1/16* N/A	POSITI Position Vertica ELECT	ON n of Groo I Progress RICAL CI DC er Mode (C	ove <u>(1G)</u> ion U HARACTE	& (2G) Fillet N/A Jp () Down () RISTICS
Back Gouging BASE METALS Material Spec Type or Grade Thickness Groor Diameter (Peber)	Yes (X) AWS D1.1 (Except fo /e _Unlimit	Table 3.1 or Group 3 ted) Method Group 1, 3 to Group Fillet	2, 3 3) N/A	Curren Power TECHN Stringe	t: AC (Source: NIQUE r or Weav	CC() CC()	CV (X) DCEN () Pulsed () CV (X) Stringer Bead
FILLER METALS AWS Specification AWS Classification	n <u>E70T-9</u>	A5.20 (Linco	in's OSXLE	H-70)	Numbe	r of electr	odes Lon	(per side)
SHIELDING Flux <u>N/A</u> Electrode - Flux (C <u>N/A</u>	class)	Gas Compos Flow Ra Gas Cup	CO2 ition1 te50 (Size	00% CFH 3/4"	Contac Peenin Interpa	t Tube to g. None ss Cleanir	Work Dist	ance1-1/8"
PREHEAT Preheat Temp., M Interpass Temp.,	lin. <u>See belo</u> Min See b	ow.* elow Max	< 550° F		POSTV Temp. Time	VELD HE/ None** N/A	AT TREAT	MENT Jose W Garcia CWI 98010941 QC1 EXP. 12/1/2015
				WELDING	PROCE	URE		V
Pass or Weld Layer (s) Process	Filler M	Diam.	Cur Type & Polarity	Amps	In/Min Wire Feed Speed	Volts	In/Min Travel Speed	Joint Details
ALL FCAW-G	E70T-9	3/32"	DCEP	414-500	180-220	28-32	12"-20"	
								AS DETAILED AS FIT UP R = + 1/16, -0 + 1/16, - 1/8 f = + 1/16, - 1/8 f = + 1/16, - 1/8 a = + 10, -0 + 10, -5 + 10, -5 + 10, -5

MINIMUM PREHEAT AND INTERPASS TEMPERATURE

UP TO 3/4"	OVER 3/4" - 1 1/2"	OVER 1 1/2" - 2 1/2"	OVER 2 1/2"
NONE *	50 °F	150 °F	225 °F

* When Base Metal is Below 32° F, preheat to at least 70° and maintain during welding.
**This procedure may vary due to fabrication sequence, fit-up, pass size, etc. within the limitation of variables given in the ANSI/AWS D1.1 (2010). See project welding specifications for additional notes.

Herrick PROCEDURE QUALIFIC	ATION RECORD (PQR)	THC-CP13
IUIIUN	Identification # F	CAW-CP-4b
Company Name The Herrick Corporation	Revision/ Date/	By
Welding Process (es) FCAW-G	Authorized by	Date 04/10/02
	Type - Manual ()	Semi - Automatic (X)
	Machine ()	Automatic ()
JOINT DESIGN USED	POSITION	>> Eillet N/A
Type B-U4D-F	Vortical Programsian:	() Down()
Single (X) Double Weld ()	venical Progression. Op	
Backing Material N/A	ELECTRICAL CHARACTERI	STICS
Root Opening 0 Root Face Dimension 0	Transfer Mode (GMAW)	
Groove Angle 30° Radius (J - U) N/A	Short - Circuiting () Glob	oular () Spray ()
Back Gouging Yes (X) No () Method AIRARC	Current: AC () DCEP	Y(X) DCEN () Pulsed ()
BASE METALS	Other	
Material Spec. A572		
Type or Grade 50	TECHNIQUE Stringer or Weave Bead	Stringer Bead
Diameter (Pine) N/A	Multi - pass or Single Pass (po	er side) Multiple
	Number of electrodes	One
AWS Specification A5.20	Electrode Spacing Longit	tudinal N/A
AWS Classification E70T-9 (Lincoln's OSXLH-70)		Lateral N/A
SHIELDING	1	AngleN/A
Flux N/A Gas CO2	Contact Tube to Work Distance	ce 1-1/8"
Composition 100%	Peening, NONE	
Electrode - Flux (Class) Flow Rate 50 CFH	Interpass Cleaning _Pneuma	tic Chipping Hammer or Brush
Gas Cup Size3/4		
PREHEAT	POSTWELD HEAT TREATM	IENT
Preheat Temp., Min 70°F	Temp. <u>None</u>	
Interpass Temp., Min Wax	Time. <u>N/A</u>	
	~w	~
	γ	AWS
		001
DETAIL		JASE W. GARCIA
7	37 1	CWI
	<u>z</u>	
Back Groups to 1	need metal prior to webi #10	V
Pass or Filler Metals	Current	In/Min
Weid	Type &	I ravel
Layer (s) Process Class Diar	n. Polarity Amps V	70115 Opene
1-9 FCAW-G E70T-9 3/32	DCEP 460 3	30 16"
* Backgouged to sound metal prior to weld pass # 10		

ACCURATE WELD TESTING LAB

5223 TWEEDY BLVD., SOUTH GATE, CA 90280 PH(323)564-5879 FX(323)564-3843

Date: April 18, 2002

SAN BERNARDINO STEEL/HERRICK CORP.	Test Date:	04/18/02
5454 N. INDUSTRIAL PARKWAY	WPS#:	FCAW CP-4b
SAN BERNARDINO, CA 92427	Lab#:	759
	PLATE SIZE : 1"	A-572, GR. 50
RADIOGRAPHIC TEST RESULTS: SATISFACTORY		

		SIDE	BENDS	\$	
1	SIDE BEND	SATISFACTORY	2.	SIDE BEND	SATISFACTORY
3.	SIDE BEND	SATISFACTORY	4.	SIDE BEND	SATISFACTORY

TENSION	TEST	RESUL	TS

No.	w	Т	Area	Load	P.S.I.	Location
1	.755"	1.000"	.7550"	65,800	87,152	P.M -DUCTILE
2	.765"	.996"	.7619"	65,700	86,231	P.M- DUCTILE
			CHARPY	"V" NOTCH		

@THE WELD@+70*F.

NOTCH LOCATION		IMPACT VALUE	% SHEAR	MILL, LAT, EXP
1.	WELD METAL	91	90	.073**
2.	WELD METAL	89	90	.065"
3.	WELD METAL	90	90	.076"
4.	WELD METAL	*87	90	.071"
5.	WELD METAL	+99	90	.075"

AVG. FT. LBS.: 90.6

* LOW & HIGH READING, AVERAGE OF REMAINING THREE.

@THE WELD@+70°F.

N	OTCH LOCATION	IMPACT VALUE	% SHEAR	MILL. LAT. EXP]
1.	H.A.Z.	150	60	.082"	1
2.	H.A.Z.	151	60	.093"	
3.	H.A.Z.	*176	100	.091"	Aure
4.	H.A.Z.	166	90	.090" -	DC 1
5.	H.A.Z.	*147	60	.085"	
		AVG. FT. LBS.: 155.6			1W. GANGA /

LOW & HIGH READING, AVERAGE OF REMAINING THREE.
 THE WELDG - 97.

NOTCH LOCATION	IMPACT VALUE	MILL. LAT. EXP	
1. WELD METAL	64	60	.052"
2. WELD METAL	*55	50	.041"
WELD METAL	61	60	.048"
 WELD METAL 	*66	60	.054"
5. WELD METAL	57	60	.045"

AVG. FT. LBS.: 60.6 * LOW & HIGH READING, AVERAGE OF REMAINING THREE.

ACCURATE WELD TESTING LAB

lily 04/18/02

04/18/02 RONALD S. MOBLEY, LAB MANAGER WE CERTIFY THAT THE ABOVE INFORMATION IS TRUE AND CORRECT

Herrick Welding PROCEDURE SPECIFICATION (WPS) YES (x) PREQUALIFIED <u>x</u> QUALIFIED BY TESTING

	Identification # THC - CP43
Company Name The Herrick Corporation Velding Process (es) FCAW-G Supporting PQR No. (s)	Revision Date By Authorized by Joe Kraft Date/31/19 Type - Manual () Semi - Automatic (X) Machine () Automatic ()
JOINT DESIGN USED Type Dbir - F Single (X) Double Weld () Backing Yes (X) No () Backing Material Base Metal Root Opening As Rolled Root Face Dimension Groove Angle Radius (J - U) Back Gouging Yes () No (X) Method N/A BASE METALS Material Spec AWS D1.1 Table 3.1 Group 1, 2, 3 Type or Grade (Except for Group 3 to Group 3) Thickness Groove Unlimited Fillet N/A	POSITION Position of Groove_FLAT (1G) Fillet N/A Vertical Progression Up () Down () ELECTRICAL CHARACTERISTICS DC Transfer Mode (GMAW) Short - Circuiting () Globular () Short - Circuiting () Globular () Spray () Current: AC () DCEP (X) DCEN () Power Source: CC () CV (X) Other: N/A TECHNIQUE: Stringer or Weave Bead Stringer Bead
FILLER METALS AWS Specification A5.20 AWS Classification E70T-9 (Lincoln's OSXLH-70) SHIELDING Gas CO2 Flux N/A Gas CO2 Electrode - Flux (Class) Flow Rate 50 CFH N/A Gas Cup Size 5/8" PREHEAT Preheat Temp. Min. See below * Internass Temp Min See below *	Number of electrodes One Number of electrodes One Longitudinal N/A Complexity Lateral N/A N/A Contact Tube to Work Distance 1-1/4" Peening. Interpass Cleaning Interpass Cleaning Pneumatic Chipping Hammer or Brush POSTWELD HEAT TREATMENT Temp N/A
WELDING	G PROCEDURE
Current Current	Init Dataile

Pass or Weld Layer (s)	Process	Filler Metals		Current					Joint Details	
		Class	Diam.	Type & Polarity	Amps	In/Min Wire Feed Speed	Volts	In/Min Travel Speed		
ALL	FCAW-G	E70T-9	3/32"	DCEP	414-500	180-220	28-32	12*-20*		WED 5
		Н	eat Inpu	t Range: 3	35 - 80 KJ/	in I			2016 AW	S D1.8 Figure 4.3
									TOLERA	NCES
									AS DETAILED	AS FIT UP
		1							R = +1/16", -0" a = +10", -0"	+ 1/4" , - 1/16" + 10" , -5"

MINIMUM PREHEAT AND INTERPASS TEMPERATURE

UP TO 3/4"	OVER 3/4" - 1 1/2"	OVER 1 1/2" - 2 1/2"	OVER 2 1/2*
NONE *	50 °F	150 °F	225 °F

* When Base Metal is Below 32° F, preheat to at least 70° and maintain during welding.
**This procedure may vary due to fabrication sequence, fit-up, pass size, etc. within the limitation of variables given in the ANSI/AWS D1.1 (2015). See project welding specifications for additional notes.

Herrick Welding procedure specification (WPS) YES (X) PREQUALIFIED X QUALIFIED BY TESTING

	Identification # THC- F1
	Revision #2 Date 5/28/14 By Joe Kraft
Company Name The Herrick Corporation	Authorized by m Can Date 10/11/12
Welding Process (es) FCAW-G	Type - Manual () Semi - Automatic (X)
Supporting POR No. (s) N/A	Machine () Automatic ()
JOINT DESIGN USED Type Fillet	POSITION Position of Groove N/A Fillet (1F) & (2F)
Single (x) Double Weld ()	Vertical Progression Up () Down ()
Backing Yes () No (X) Backing Material <u>N/A</u> Post Ease Dimension N/A	ELECTRICAL CHARACTERISTICS
Groove Angle <u>N/A</u> Radius (J - U) <u>N/A</u> Back Gouging Yes () No (X) Method <u>N/A</u>	Transfer Mode (GMAW) Short - Circuiting () Globular () Spray () Current: AC () DCEP (X) DCEN () Pulsed ()
BASE METALS Material Spec. <u>AWS D1.1 Table 3.1 Group 1, 2, 3</u>	Power Source: CC () CV (X)
Type or Grade (Except for Group 3 to Group 3) Thickness Groove N/A Fillet Unlimited	TECHNIQUE Stringer or Weave Bead Stringer Bead
Diameter (Rebar) N/A	Multi - pass or Single Pass (per side) Multi/Single
FILLER METALS	Number of electrodes One
AWS Specification A5.20	Longitudinai N/A
AWS Classification E70T-9 (Lincoln's OSXLH-70)	Lateral <u>N/A</u>
	Angle <u>N/A</u>
SHIELDING Flux <u>N/A</u> Gas <u>CO2</u> Composition 100%	Contact Tube to Work Distance1-1/8"
Electrode - Flux (Class) Flow Rate 50 CFH N/A Gas Cup Size 5/8"	Peening. None Interpass Cleaning <u>Pneumatic Chipping Hammer or Brush</u>
PREHEAT Preheat Temp., Min. See below *	POSTWELD HEAT TREAT THE CWI 98010941 Time N/A QC1 EXP. 12/1/2015
Interpass remp., win see below wax 500 r	Y

WELDING PROCEDURE

		Filler N	Aetals	Cur	rent				Joint Details
Pass or Weld Layer (s) All	Process FCAW-G	Class E70T-9	Diam. 3/32"	Type & Polarity DCEP	Amps 311-379	In/Min Wire Feed Speed 135-165	Volts 23-27	In/Min Travel Speed 8"-14"	FILLET
		н	eat Input	Range: 3	0 - 80 KJ/i	n			Min Wold Size See Table 5.8
All	FCAW-G	E70T-9	3/32"	DCEP	400-490	180-220	27-31	12"-20"	Base Metal Thickness of Minimum Size Thicker Part Joined (T) of Fillet Weld
									T<3/4 1/4 Single-Pass
Heat Input Range: 30 - 80 KJ/in								be Used	

MINIMUM PREHEAT AND INTERPASS TEMPERATURE

UP TO 3/4°	OVER 3/4" - 1 1/2"	OVER 1 1/2" - 2 1/2"	OVER 2 1/2*
NONE *	50 °F	150 °F	225 °F

*When Base Metal is Below 32° F, preheat to at least 70° and maintain during welding.
**This procedure may vary due to fabrication sequence, fit-up, pass size, etc. within the limitation of variables given in the ANSI/AWS D1.1 (2010). See project welding specifications for additional notes.
Herrick Welding Procedure Specification (WPS) YES (X) PREQUALIFIED X QUALIFIED BY TESTING

	Identification # THC-PP1			
	Revision #1 Date 5/28/14 By Joe Kraft			
Company Name The Herrick Corporation	Authorized by Date Date			
Weiding Process (es) FCAW-G	Type - Manual () Semi - Automatic (X)			
Supporting PQR No. (s)N/A	Machine () Automatic ()			
JOINT DESIGN USED	POSITION			
TypeBTC-P4-F	Position of Groove (1G) & (2G) Fillet N/A			
Single () Double Weld ()	Vertical Progression Up () Down ()			
Backing Yes () No (x)	ELECTRICAL CHARACTERISTICS			
Backing Material N/A	DC			
Root Opening Root Face Dimension(Min)	Torrest and a contract			
Groove Angle 45" Radius (J - U) N/A	Short - Circuiting () Globular () Spray ()			
Back Gouging Tes () NO (X) Method N/A	Current: AC () DCEP (x) DCEN () Pulsed ()			
BASE METALS Material Spec AWS D1 1 Table 3.1 Group 1, 2, 3	Power Source: CC () CV (X)			
Type or Grade (Except for Group 3 to Group 3)				
Thickness Groove 1/4" Min Fillet N/A	Stringer or Weave Bead Stringer Boad			
Diameter (Rebar) N/A	Multi - pass or Single Pass (per side) Multi/Single			
FILLER METALS	Number of electrodes One			
AWS Specification A5.20	Longitudinal N/A			
AWS Classification E70T-9 (Lincoln's OSXLH-70)	Lateral N/A			
	Angle N/A			
Flux N/A Gas CO2				
Composition 100%	Contact Tube to Work Distance1-1/8"			
Electrode - Flux (Class) Flow Rate 50 CFH	Peening. None			
Gas Cup Size 5/8"	Interpass Cleaning Pneumatic Chipping Hammer or Brush			
PREHEAT	POSTWELD HEAT TREATMENT			
Preheat Temp., Min. See below *	Temp. None** Jose W Garcia			
Interpass Temp., Min See below Max 550° F	Time N/A CWI 98010941			
WELDING	PROCEDURE			
Filler Metals Current	Joint Details			
	In/Min			
Pass or	Wire In/Min			
Vveid Type & Type &	Feed Travel			
Layer (s) Process Class Diam. Polarity Amps	Speed Volts Speed			
All [FCAW-G]E/01-9 3/32" [DCEP 311-379]	35-165 23-27 8"-14"			
	f I			
Heat Input Range: 30 - 80 KJ/in				
All FCAW-G E70T-9 3/32" DCEP 400-490	80-220 27-31 12"-20" TOLERANCES			
	AS DETAILED AS FIT UP			
	$f = +U, -0$ $\pm 1/16^{\circ}$			
Heat Input Range: 30 - 80 KJ/in	"S" Minimum as per AWS D1.1			

MINIMUM PREHEAT AND INTERPASS TEMPERATURE

UP TO 3/4*	OVER 3/4" - 1 1/2"	OVER 1 1/2" - 2 1/2"	OVER 2 1/2"
NONE *	50 °F	150 °F	225 °F

*When Base Metal is Below 32° F, preheat to at least 70° and maintain during welding.
**This procedure may vary due to fabrication sequence, fit-up, pass size, etc. within the limitation of variables given in the ANSI/AWS D1.1 (2010). See project welding specifications for additional notes.

The Herrick Corporation SHOP Welding Procedure Specifications Index Herrick Job #9870

WPS ID#	PROCESS	JOINT	TYPE WELD	POSITION	ELECT. DIA	ELECTRODE TYPE	CVN	PREQ	QUAL	D1.8	REV.	DATE
PARTIAL PE	ENETRATION WELD	S										
THC-PP1	FCAW-G	BTC-P4	0-45 Deg PP	1G-2G	3/32"	OSXLH-70	YES	YES		YES	1	5/28/14
FILLET WEL	DS											
THC-F1	FCAW-G	FILLET	FILLET	1F-2F	3/32"	OSXLH-70	YES	YES		YES	2	5/28/14

Herrick WELDING PROCEDURE SPECIFICATION (WPS) YES (X) PREQUALIFIED X QUALIFIED BY TESTING

						Identif	ication # _		THC	-PP1	
_						Revisi	on <u>#1</u>	Date	e <u>5/28/14</u>	By <u></u>	be Kraft
Company	Name	The He	rrick Cor	poration		Author	ized by	In 6	m	Date	10/11/12
Welding P	rocess (es	3)	FCAW	-G		Туре -	Manual	()	Sem	- Automa	itic (X)
Supporting	g PQR No.	(s)	N//	4			Machine	(_)		Automa	atic ()
JOINT D	DESIGN U	SED				POSIT	ION				
Туре		BTC-F	24-F		-	Positio	n of Gro	ove (1G) & (2G)	Fillet	N/A
Single ((x)		Double \	Weld ()		Vertica	I Progres	sion (Up()	Down	()
Backing	γΥ	'es ()	No (X)		FLEC		HARACTE	PISTICS		
Bad	cking Mate	erial	N/A		4 400 (0.4)	LLLO	D	C	-RISTICS		
Root Op	pening	, Roc	ot Face Di	mension _	1/8" (Min)						
Groove Bask O	Angle	45	Radius	(J - U)	N/A	Short	er Mode (- Circuitin	GMAW)	lobular ()	Coro	
DACK GO	Juging	res ()	NO ()	() Method	N/A	Curren	nt: AC		EP (X)	DCEN () Pulsed ()
BASE METALS					Power	Source:	CC ()	CV (X)		,	
Type or	Grade	(Except f	or Group	3 to Group	2.3	TEOL	Course.	00()	01(00)		
Thickne	ss Groov	ve 1/4" N	Ain	Fillet	N/A	Stringe	NIQUE or Weav	A Road	Strin	aor Road	
Diamete	er (Rebar)		N/A			Multi -	nass or S	ingle Pass	(ner side)	<u>Jei Deau</u> Multi/S	Single
FILLER	METALS					Numbe	er of electr	odes	(per 3100)_	ne	Jingie
AWS St	ecification	ı	A5.20)				Lor	ngitudinal	N//	A
AWS C	assificatio	n E70T-9	(Linco	oln's OSXL	H-70)		Lateral N/A				
			Terres	00/12		<u> </u>			Angle	N/	A
SHIELD	ING		Gas	002							
Fiux	N/A		Compos	ition 1	00%	Contac	t Tube to	Work Dist	ance	1-1/8"	
Electrod	le - Flux (C	class)	Flow Ra	te 50	CFH	Peenin	Peening. None				
			Gas Cup	Size	5/8"	Interpa	Interpass Cleaning Pneumatic Chipping Hammer or Brush				
PREHE	ΔΤ					DOST			MENT		
Preheat	Temp., N	lin. See belo	* wc			Temp.	POSTWELD HEAT TREATMENT Temp, None**				
Interpas	s Temp.,	Min See b	elow Max	x 550° F		Time	N/A	•	СИНО СИ	/ 9801094	A I
						PROCE	NIDE		V ac	1 EXP. 12/	1/2015
·					WELDING						
1		Filler N	Metals	Cu	rrent					Joint Det	ails
						In/Min				- a	
Pass or						Wire		In/Min			7
Weld		0	Diam	Type &	Ι.	Feed		Travel			
Layer (s)	Process	Class	Diam.	Polarity	Amps	Speed	Volts	Speed	Л		st
All	FCAW-G	E/01-9	3/32	DCEP	311-379	135-165	23-27	8"-14"	7		
											f
										5	
Heat Input Range: 30 - 80 KJ/in					n			<u>↓</u> _1-	,≓ l,R		
All	FCAW-G	E70T-9	3/32*	DCEP	400-490	180-220	27-31	12"-20"		TOLERAN	CES
									R= + 1/16",	-0 +1/	8", - 1/16"
									f = +U, -0 a= +10*, -	5=** ± 1/	/16"
											-

MINIMUM PREHEAT AND INTERPASS TEMPERATURE

UP TO 3/4"	OVER 3/4" - 1 1/2"	OVER 1 1/2" - 2 1/2"	OVER 2 1/2"
NONE *	50 °F	150 °F	225 °F

"S" Minimum as per AWS D1.1

Heat Input Range: 30 - 80 KJ/in

*When Base Metal is Below 32° F, preheat to at least 70° and maintain during welding.
**This procedure may vary due to fabrication sequence, fit-up, pass size, etc. within the limitation of variables given in the ANSI/AWS D1.1 (2010). See project welding specifications for additional notes.

			Identific	ation #		THC	2- F1	
			Revision	#2_	Date.	5/28/14	By Joe Kraft	
Company Name	The Herrick Corpo	oration	Authoriz	ed by	In G		Date 10/11/12	
Welding Process (es)	FCAW-G	i	Type - I	yanual ()	Sem	i - Automatic (X)	
Supporting PQR No. (s) N/A		Ν	Aachine ()		Automatic ()	
JOINT DESIGN USE	=D		POSITI	NC				
Type	Fillet		Position	of Groo	ve <u>N</u>	I/A	Fillet (1F) & (2F)	
Single (v)	Double W	/eld ()	Vertical	Progressi	on U	p()	Down ()	
Backing Yes Backing Materi	s() No() alN/A	0	ELECT	RICAL CH	ARACTE	RISTICS		
Root Opening <u>N/A</u> Groove Angle	N/A Root Face Din	nension <u>N/A</u> (J - U) N/A	Transfe	r Mode (G	MAW)	labular (
Back Gouging	Yes () No (X)	Method <u>N/A</u>	Curren	Circuiting) DCE	EP (X)	DCEN () Pulsed	()
BASE METALS Material Spec. A	WS D1.1 Table 3.1	Group 1, 2, 3	Power	Source: C	ý () x	CV (X)		
Type or Grade(Except for Group 3	to Group 3)	TECHN	IQUE			Deed	
Thickness Groove	∋ <u>N/A</u>	Fillet <u>Uniimited</u>	Stringe	r or Weave	e Bead	Strir	nger Bead	
Diameter (Rebar) _	N/A		Multi - p	bass or Sir	igle Pass	(per side)	Muit/Single	
FILLER METALS			Numbe	r of electro	odes	aitudiaal	N/A	
AWS Specification	A5.20				Lon	gituulitai _	N/A	
AWS Classification	E70T-9 (Linco	n's OSXLH-70)				Lateral_	N/A	
			-1			Angle_	<u>N/A</u>	
Flux <u>N/A</u>	Gas	CO2	Contac	t Tube to \	Work Dista	ance	1-1/8"	
Electrode - Flux (Cl N/A	ass) Flow Rat	te 50 CFH Size 5/8"	Peenin Interpa	g. None ss Cleanin	ig <u>Pneun</u>	natic Chipp	oing Hammer or Brush	
PREHEAT			POSTV	VELD HEA	AT TREAT	NT Jos	e W Garcia	
Preheat Temp., Mi	n. See below *		Temp.	None-	{	CW CW	1 FXP. 12/1/2015	
Interpass Temp.,	Min See below Max	< 550° F	Time	IWA		V de		
		WELDING	PROCE	OURE				
	Filler Metals	Current					Joint Details	
	1.1061 INTERMS							_

		Filler N	Aetals	Cur	rent				Joint Details
Pass We Layer	or d (s) Process	Class	Diam.	Type & Polarity	Amps	In/Min Wire Feed Speed	Volts	In/Min Travel Speed	FILLET
All	FCAW-G	E70T-9	3/32"	DCEP	311-379	135-165	23-27	8"-14"	
		. н	eat Input	Range: 3	0 - 80 KJ/i	n			Min Weld Size See Table 5.8
All	FCAW-G	E70T-9	3/32*	DCEP	400-490	180-220	27-31	12°-20°	Base Metal Thickness of Minimum Size Thicker Part Joined (T) of Fillet Weld
									T<3/4 1/4 Single-Pass T>3/4 5/16 Weld Must
		н	leat Input	Range: 3	0 - 80 KJ/i	n			be Used

MINIMUM PREHEAT AND INTERPASS TEMPERATURE

UP TO 3/4"	OVER 3/4" - 1 1/2"	OVER 1 1/2" - 2 1/2"	OVER 2 1/2"
NONE *	50 °F	150 °F	225 °F

*When Base Metal is Below 32° F, preheat to at least 70° and maintain during welding.
**This procedure may vary due to fabrication sequence, fit-up, pass size, etc. within the limitation of variables given in the ANSI/AWS D1.1 (2010). See project welding specifications for additional notes.

FLUX-CORED GAS-SHIELDED (FCAW-G) WIRE

Outershield[®] XLH-70 Mild Steel, Flat & Horizontal • AWS E70T-1C-H8, E70T-9C-H8

Key Features

- Meets AWS D1.8 seismic lot waiver requirements for demand critical welds.
- H8 diffusible hydrogen levels controlled for high resistance to hydrogen induced cracking.
- High deposition rates and excellent fast follow characteristics.
- > Stiff wire enables feeding over long distances.
- Tolerates mild levels of surface contaminants.
- Designed for welding with CO₂ shielding gas.

Conformances

AWS A5.20/A5.20M: 2005	E70T-1C-H8, E70T-9C-H8
ASME SFA-5.20:	E70T-1C-H8, E70T-9C-H8
ABS:	3YSA-H5
FEMA 353	
AWS D1.8	

Welding Positions

Flat & Horizontal

Typical Applications

- Structural fabrication
 Heavy equipment
- General fabrication
 Seismic applications
- Machinery fabrication

Shielding Gas

100% CO₂ Flow Rate: 40-50 CFH

FLUX-CORED GAS-SHIELDED (FCAW-G) WIRE

Outershield[®] XLH-70 (AWS E70T-1C, E70T-9C)

DIAMETERS / PACKAGING

Diameter	50 lb (22.7 kg)	500 lb (227 kg)
in (mm)	Coil	Speed-Feed® Drum
3/32 (2.4)	ED030236	

NOTE: Speed-Paed@ drums require rotation for proper payoff.

MECHANICAL PROPERTIES⁽¹⁾ – As Required per AWS A5.20/A5.20M: 2005

	Yield Strength ⁽²⁾ MPa (ksi)	Tensile Strength MPa (ksi)	Elongation %	Charpy J (ft @ -18°C (0°F)	V-Notch •lbf) @ -29°C (-20°F)
Requirements AWS E70T-1C-H8 AWS E70T-9C-H8	400 (58) min.	480-660 (70-95)	22 min.	27 (20) min. _	_ 27 (20) min.
Typical Results ⁽³⁾ As-Welded with 100% CO ₂	480-530 (70-77)	570-620 (82-89)	27-30	61-134 (45-99)	42-107 (31-79)

DEPOSIT COMPOSITION⁽¹⁾ – As Required per AWS A5.20/A5.20M: 2005

	%C	%Mn	%Si
Requirements - AWS E70T-1C-H8, E70T-9C-H8	0.12 max.	1.75 max.	0.90 max.
Test Results ⁽²⁾ As-Welded with 100% CO ₂	0.06-0.07	1.40-1.60	0.48-0.58
	%S	%Р	Diffusible Hydrogen (mL/100g weld deposit)
Requirements - AWS E70T-1C-H8, E70T-9C-H8	%S 0.03 max.	%P 0.03 max.	Diffusible Hydrogen (mL/100g weld deposit) 8.0 max.

TYPICAL OPERATING PROCEDURES

Diameter, Polarity Shielding Gas	CTWD® mm (in)	Wire Fee m/min	d Speed (in/min)	Voltage (volts)	Approx. Current (amps)	Meit-0 kg/hr	iff Rate (lb/hr)	Depositi kg/hr	ion Rate (Ib/hr)	Efficiency (%)
3/32 in. (2.4 mm), DC+	32	3.8 5.1	(150) (200)	23-26 27-30	345 445	6.5 8.7	(14.4) (19.2)	5.6 7.6	(12.4) (16.8)	86 87
100% CO ₂	(1-1/4)	6.4 7.6 8.3	(250) (300) (325)	28-31 30-32 31-33	510 570 600	10.9 13.1 14.2	(24.0) (28.8) (31.2)	9.5 11.4 12.4	(21.0) (25.2) (27.3)	87 87 87

Pitgeical all weld metal. Polyacemed with 0.2% oftent. PSaw last results disclaimer takiws. Pito extinate ESO, subtract 1.4 in (5.0 mm) from CTWD.

WELDING CONSUMABLES CATALOG | 141

The Lincoln Electric Company 22801 St. Clair Avenue Cleveland, Ohio 44117-1199

CERTIFICATE OF CONFORMANCE (APPLIES ONLY TO U.S. PRODUCTS)

 Product:
 Outershield* XLH70

 Classification:
 E70T-1C-H8, E70T-9C-H8 E70T1-C1A2-CS1-H8

 Specification:
 AWS A5.20:2005, ASME SFA-5.20 AWS A5.36:2012, ASME SFA-5.36

 Data
 October 22, 2015

This is to certify that the product named above and supplied on the referenced order number is of the same classification, manufacturing process, and material requirements as the material which was used for the test that was concluded on the date shown, the results of which are shown below. All tests required by the specifications shown for classification were performed at that time and the material tested met all requirements. It was manufactured and supplied according to the Quality System Program of the Lincoln Electric Company, Cleveland, Ohio, U.S.A., which meets the requirements of ISO9001, NCA3800, AWS A5.01, and other specification and Military requirements, as applicable. The Quality System Program has been approved by ASME, ABS, and VdTUV.

Operating Settings	E70T-9C-H8 Requirements	RESULTS
Electrode Size Polarity Shielding Gas (per AWS A5.32) Voltage, V Wire Feed Speed, crwinin (in/min) Current, A Average Heat Input, kJ/mm (kJ/in) Contact Tip to Work Distance, mm (in) Postweld Heat Treatment Pass/Layers Preheat Temperature, "C ("F) Interpass Temperature, "C ("F)	100% CO2 (C1-C-100) As-welded (60 min.) (275 - 325)	3/32 inch DC+ 100% CO2 (C1-C-100) 29 508 (200) 435 1.9 (48) 32 (1.25) As-welded 11/5 20 (70) 165 (325)
Mechanical properties of weld deposits	2.0412-0420-0	
Tensile Strength, MPa (ksi) Yield Strength, 0.2% Offset, MPa (ksi) Elongation %	(70 - 95) (58 min.) 22 min.	630 (91) 540 (78) 27
Average Impact Energy Joules @ -29 °C (ft-lbs @ -20 °F)	(20 min.)	67 (50) 59,63,79 (44,46,58)
Average Hardness, HRB	Not Required	93
Chemical composition of weld deposits (weight %)		
C Mn Si	0.12 max. 1.75 max. 0.90 max.	0.07 1.68 0.63

S P	0.90 max. 0.03 max. 0.03 max.	0.63 0.01 0.01
Diffusible Hydrogen (per AWS A4.3)	E70T-9C-H8 Requirements	RESULTS
Electrode Size Polarity Shielding Gas (per AWS A5.32) Diffusible Hydrogen, mL/100g Absolute Humidity (grains moisture/lb dry air)	8.0 max.	3/32 inch DC+ 100% CO2 (C1-C-100) 4.7 59

The Lincoln Electric Company 22801 St. Clair Avenue Cleveland, Ohio 44117-1199

CERTIFICATE OF CONFORMANCE (APPLIES ONLY TO U.S. PRODUCTS)

Product: Outershield® XLH70 Classification: E70T-1C-H8, E70T-9C-H8 E70T1-C1A2-C51-H8 Specification: AWS A5.20:2005, ASME SFA-5.20 AWS A5.30:2012, ASME SFA-5.36 Date October 22, 2015

E70T1-C1A2-CS1-H8 **Operating Settings** RESULTS 3/32 inch DC+ 100% CO2 (C1-C-100) 29 508 (200) Electrode Size Polarity Shielding Gas (per AWS A5.32) Voltage, V Wire Feed Speed, cm/min (in/min) 100% CO2 (C1-C-100) Vitre Feed Speed, cm/min (m/min) Current, A Average Heat Input, kJ/mm (kJ/in) Contact Tip to Work Distance, mm (in) Postweld Heat Treatment 435 1.9 (48) 32 (1.25) As-welded 11/5 As-welded Pass/Lavers Preheat Temperature, "C ("F) Interpass Temperature, "C ("F) 20 (70) 165 (325) (60 min.) (275 - 325)Mechanical properties of weld deposits Tensile Strength, MPa (ksi) Yield Strength, 0.2% Offset, MPa (ksi) (70 - 95) 630 (91) 540 (78) (58 min.) Elongation % 22 min. 27 Average Impact Energy (20 min.) 67 (50) Joules @ -29 °C (ft-lbs @ -20 °F) 59,63,79 (44,46,58) Average Hardness, HRB Not Required 93

Chemical composition of weld deposits (weight %)

C Mn Si S P	0.12 max. 1.75 max. 0.90 max. 0.030 max. 0.030 max.	0.07 1.68 0.63 0.006 0.006
Diffusible Hydrogen (per AWS A4.3)	E70T1-C1A2-CS1-H8 Requirements	RESULTS
Electrode Size Polarity Shielding Gas (per AWS A5.32)		3/32 inch DC+ 100% CO2 (C1-C-100)
Diffusible Hydrogen, mL/100g Absolute Humidity (grains moisture/lb dry air)	8 max.	5 59

1. This certificate complies with the requirements of EN 10204, Type 2.2.

2. Test assembly constructed of ASTM A36 steel.

3. Fillet Weld Test (positions as required): Met requirements.

4. Radiographic Inspection: Met requirements.

5. The strength and elongation properties reported here were obtained from tensile specimens artificially aged at 105°C (220°F) for 48 hours.

 Results below the detection limits of the instrument or lower than the precision required by the specification are reported as zero. Strength values in Si units are reported to the nearest 10 MPa converted from actual data. Prehest and interpass temperature values in Si units are reported to the nearest 5 degrees.

Toronto Commingham October 22, 2015 Toronto Cunningham, Certification Supervisor Date

Anii Quintana	October 22, 2015
Marie Quintana, Director, Consumable	Date

Compliance

Page 2 of 2

Cert. No. 13500

Outershield[®] XLH70 The Lincoln Electric Company 22801 St. Clair Avenue Cleveland, Obio 44117-1199 Product

CERTIFICATE OF CONFORMANCE (APPLIES ONLY TO U.S. PRODUCTS)

Electrode Lot Number: 14017194 Classification: E70T-1C-H8, E70T-9C-H8 January 16, 2015 AWS D1.8:2009 Specification: Date

This is to certify that the above listed product was manufactured to meet the Class T4 requirement of AWS A5.01 as required by clause 6.3.8.1 of AWS D1.8.2009.

The product stated herein was manufactured and supplied in necordance with the Quality System Program of The Lincoln Elersie Co., Clevolated, Obio, U.S.A. as outlined in our Quality Assumpce Manual. The Quality System Program of The Lincoln Electric Co. has been accepted by ASME, ABS and approved by VdTUV, and is extrified to ISO 9001:2013

Operating Settings	AWS D1.8	High Heat Input	Low Heat Input
	Requirements	Results	Results
Electrode Size Polarity Shedding Gas (per AVIS A5. 32) Shedding Gas (per AVIS A5. 32) Wire Feed Speed, cm/min (in/min) Current, A Voltage, V Average Heat input, kJ/mm (kJ/in) Travel Speed, cm/min (in/min) PassLayers Interpass Tamperature, *C (*F) Preheat Temperature, *C (*F) Weld Position		3/32 inch 3/32 inch 0.C+ 100% CO2 (C+-C-100) 580 580 3.1 (79) 3.1 (79) 3.2 (145) 3.1 (79) 3.2 (145) 3.1 (79) 3.2 (14) 8/5 2.30 (450) 1.0 (250) 1.0 (250)	3/32 inch 100% C02 (C1-C-100) 361 (150) 365 345 35 23 23 23 23 23 23 23 23 23 23 23 23 23
Mechanical properties of weld deposits			
Tensile Strength, MPa (ksi)	(70 min.)	610 (88)	650 (94)
Yield Strength, 0.2% Offset, MPa (ksi)	(68 min.)	510 (74)	560 (85)
Elongation %	22 min.	27	24
Average Impact Energy	(40 min.)	119 (88)	160 (118)
Joules @ 21 °C (ft-lbs @ 70 °F)		117,120,120 (86,89,89)	155,159,167 (114,117,123)
Average Impact Energy	(40 min.)	75 (55)	88 (65)
Joules @ -18 °C (R-lbs @ 0 *F)		67,78,79 (49,58,58)	84,85,96 (62,63,71)

This product satisfies the requirements of AMS D1.8:2009, Annex E, after exposure for 8 weeks at 80°F / 80% relative humidity.
 The Charpy V-notch impact values reported at -18 °C (0 °F) are required when the Lowest Anticipated Sarvica Tamperature (LAST) is -29 °C (-20 °F).
 The Charpy V-notch impact values reported at 21 °C (70 °F) are required when the Lowest Anticipated Sarvica Temperature (LAST) is 10 °C (80°F).
 Test assembly constructed of ASTM A36 steel.

The strength and elongation properties reported here were obtained from lensile specimens artificially aged at 105°C (220°F) for 48 hours.

Strength values in SI units are reported to the nearest 10 MPa converted from actual data. Preheat and interpass temperature values in SI units are reported to the nearest 5 degrees.

Dave Fink, Manager, Compliance Engineering, Consumable R&D

January 16, 2015

Brouto Counsign Toronto Cunningham, Certification Supervisor

Date

January 18, 2015

David Rut

Page 1 of 1

Cert. No. 13500

The Lincoln Electric Company 22801 St. Clair Avenue Cleveland, Ohio 44117-1199

CERTIFICATE OF CONFORMANCE (APPLIES ONLY TO U.S. PRODUCTS)

E70T-1C-H8, E70T-9C-H8 Outershield[®] XLH70 January 30, 2015 AWS D1.8:2009 Electrode Lot Number: 14146087 Classification: Specification: Product: Date

This is to certify that the above listed product was manufactured to meet the Class T4 requirement of AWS A5.01 as required by clause 6.3.8.1 of AWS D1.8.2009.

The product study berein was manufactured and supplied in accordance with the Quality System Program of The Lincoln Electric Co., Claveland, Okino, U.S.A. as outlined in our Quality Assumance Manual. The Quality System Program of The Lincoln Electric Co. has been accepted by ASME, ABS and approved by VdTUV, and is cortified to ISO 9001.2013

Operating Settings	AWS D1.8	High Heat Input	Low Heat Input
	Requirements	Results	Results
Electrode Size Polarity Prolarity Wine Feed Speed, cm/min (in/main) Current, A Voltage, V Average Heat Input, kJimm (kulin) Average Heat Input, kJimm (kulin) Contact Tip to Work Distance, mm (in) Travel Speed, cm/min (in/min), PassLayers Prosheat Temperature, *C (*F) Weid Position		3(32 inch DC+ 100% C02 (C1-C-100) 555 555 32 (176) 32 (125) 36 (14) 120 (250) 7/4 120 (250) 230 (450) 16	3/32 inch DC5 DC5 381 (150) 381 (150) 340 32 (155) 32 (155) 38 (15) 14/5 38 (15) 14/5 20 (70) 120 (70) 120 (70)
Mechanical properties of weld deposits			
Tensile Strength, MPa (xsi)	(70 min.)	580 (83)	630 (92)
Yield Strength, 0.2% Offset, MPa (ksi)	(68 min.)	470 (68)	560 (81)
Elongation %	22 min.	30	26
Average Impact Energy	(40 min.)	177 (130)	153 (113)
Joules @ 21 °C (ft-lbs @ 70 °F)		172,179,180 (127,132,132)	146,153,159 (108,113,117)
Average impact Energy	(40 min.)	112 (83)	95 (70)
Joules @ -18 °C (ft-lbs @ 0 *F)		111,112,113 (82,82,84)	89,93,103 (66,69,76)
). This product satisfies the requirements of AWS D1.8:20 $$. The Charpy V-notch impact values reported at -18 $^{\circ}$ C ((09, Annex E, after exposure for 8 week 0 *F) are required when the Lowest Ant	cs at 80°F / 80% relative humidity. Icipated Service Temperature	Toronto Comings

The Charpy V-notch impact values reported at -18 °C (0 *F) are required when the Lowest Anticipated Service Temperature (LAST) is -28 °C (-20 *F).
 The Charpy V-notch impact values reported at 21 °C (70 *F) are required when the Lowest Anticipated Service Temperature

(LAST) is 10 °C (50 °F).
4. Test assembly constructed of ASTM A38 sheet.
5. The assembly constructed of ASTM A38 sheet.
5. The strength and elorgation properties reported here were obtained from tensite specimens artificially aged at 105°C (220°F) for 48 hours.
6. Strength values in Si units are reported to the nearest 10 MPa converted from actual data. Preheat and interpass temperature values in SI units are reported to the nearest 5. Gegrees.

January 30, 2015 Date David RUS Dave Fink, Manager, Compliance Engineering, Consumable R&D

Date

Toronto Cunningham, Certification Supervisor

Cert. No. 13500