Hands-on Demonstrations (and other visual aids)

Low or no budget ways to help your students to understand behavior

Judy Liu, Ron Ziemian

1

First ... collect steel "bits" from the NASCC Exhibit Hall

Slices of W-shapes, angles, channels ...
... bolts (including TC bolts, DTIs), etc.
These don't demonstrate behavior, but they are always good pass-arounds!

Some demos

- Foam 'beams'* / buckling models*
- Effective net area
- Block shear, connections
- Paper columns*
- Buildings in earthquakes
- Built-up compression members
- Stress-strain
- Residual stresses
- Shear lag
- Leaning columns, P-delta
- Live Loads

3

Foam Beams / Columns

Instructions include dimensions for a channel, angle, and "W-shape". The "W-shape" can be used to demonstrate lateral torsional buckling.

Effective Net Area Case (2)

Supplies: paper, cardboard, scotch tape, scissors, marker (optional)

Effective Net Area Case (2)

Supplies: paper, cardboard, scotch tape, scissors, marker (optional) https://youtube.com/playlist?list=PL76luzqU9URxM_cCE6BGLckcUzp3GCBxD

9

Effective Net Area Case 4 WeldedPlateEffNetArea

Supplies: patchwork quilting fabric or similar, mixing spoon https://youtube.com/playlist?list=PL76luzqU9URxM_cCE6BGLckcUzp3GCBxD

Paper Columns

Each student posted their prediction and load test photo(s)/short video to a discussion board. The one with the most "likes" from other students was shared and discussed in class.

17

Building Fundamental Period "Demo" (on a tabletop – shake table or volunteer)

Note responses of these 2 buildings to different frequencies of "ground motions" and with different mass.

(e.g., higher mode response for tall building?)

What changes when we add mass to each building?

Building Fundamental Period "Demo" (on a tabletop – shake table or volunteer)

https://youtube.com/playlist?list=PL76luzqU9URxM cCE6BGLckcUzp3GCBxD

19

Built-Up Compression Member Demo Not as stiff as #2, but stiffer than #1 https://youtube.com/playlist?list=PL76luzqU9URxM_cCE6BGLckcUzp3GCBxD

The fundamentals...stabilty

- Force follows stiffness (wet spaghetti test!)
- Basis for every structural analysis
 - Equilibrium ("forces" must be in agreement!)
 - Compatibility ("displacements" must be in agreement)
 - Constitutive Relationship ("forces" -to- "displacements")
- Superposition always so tempting!
 - Linear response (geometric and material)
 - Serviceability (yeah!) vs. ultimate strength (instability?!)
- Behavior of steel structures
 - Material level
 - Cross-section, Member, System level

Residual Stresses

- 1. Entire section hot and starts to cool...lengthwise contraction with $E_o << E$
- 2. Flange tips (surface area!) cool relatively faster than flange-web intersection (smaller surface) area, $E_{fl} \approx E$

4. Result – locations to cool last end up in tension and equilibrium requires locations that cooled first to end up in compression.

27

Questions?

Note: on the following slides are visual aids/demonstrations suggested by 2018 Educator Workshop participants!

51

Block shear failure is difficult to explain using plan (2D) drawings. 3D isometrics may help

Tension Connection Testing

- Specimens designed by instructor and fabricated by campus technicians to fail in variety of modes
- Small groups of students assigned to calculate all failure modes for one specimen
- Specimens broken during class to determine peak strength and ductility
- Differences between nominal and design strength are highlighted and differences in phi-factors are reviewed
- Groups submit hand calculations and a summary memo for a project grade

Kerry Hall

59

Block Shear

Using physical objects to show different possible mode of failure is the most efficient

Mohamed Zeidan

