BEAM DEPTHS

W-shape beam depth estimate

- **Beam**: ½ in. depth \(d \) per foot of span \(L \), so 30 ft span means 15 in. beam depth (W16)
- **Girder or Beam with heavy loads**: Use above estimate, but round up one size (W18)
- **Roof Purlin**: Use above estimate for beams, but round down one size (W14)

CANTILEVERS

Cantilevers are typically \(\frac{1}{4} \) the length of the backspan. Longer cantilevers require deeper, heavier structure for strength and servicability.

CONNECTIONS

Lateral, tension, and compression forces must travel from beams, braces, and columns down to foundations through connections.

TRUSSES

Appropriate for long spans (>50 ft)

- **Truss depth estimates**
 - triangular or arched: 3–4 in. depth \(d \) per foot of span \(L \)
 - rectangular: 1–1½ in. depth \(d \) per foot of span \(L \)
 - space truss: 1 in. depth \(d \) per foot of span \(L \)

Some truss examples

- Parallel chord
- Triangular (Belgian)
- Scissor
- Crescent
- Inverted
- Inverted queen post

<table>
<thead>
<tr>
<th>System</th>
<th>Typ. Span Range</th>
<th>Spacing</th>
<th>Typ. Shapes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Girder</td>
<td>20–40 ft</td>
<td>—</td>
<td>W12–W30</td>
</tr>
<tr>
<td>Steel Beam</td>
<td>25–45 ft</td>
<td>10–15 ft</td>
<td>W12–W24</td>
</tr>
<tr>
<td>Open Web Joist</td>
<td>10–60 ft</td>
<td>2–5 ft</td>
<td>—</td>
</tr>
<tr>
<td>Steel Truss</td>
<td>40–300 ft</td>
<td>10–20 ft</td>
<td>—</td>
</tr>
<tr>
<td>Roof Purlins</td>
<td>Per truss spacing</td>
<td>Each truss node</td>
<td>—</td>
</tr>
<tr>
<td>Space Frame</td>
<td>80–300 ft</td>
<td>Typ. modules are 4 ft, 5 ft, 8 ft, 12 ft</td>
<td>—</td>
</tr>
</tbody>
</table>

(C.O. & Z, p. 243), (I & R, p. 3), and (A & I, p. 427)
Columns

W-Shapes (Wide-flange)

Column Size Estimates (larger numbers mean larger columns)

- One-story: W6, W8, W10
- Low-to-mid-rise: W8, W10, W12
- High-rise: W12, W14

(Wruby, pp 15–17)

W-shape columns typically have square proportions in plan.

HSS (Hollow Structural Steel)

Column Size Estimates (the number refers to the external dimension)

- One-story: HSS4, HSS6
- Low-rise: HSS8, HSS10

Steel Decking Depth Estimates

- Steel roof decking depth without concrete: 1½ in. and 3 in. typ.
- Composite floor deck with poured concrete depth: 1½–3 in. deck plus 2–4 in. concrete

Lateral Systems

Common types of lateral bracing systems that go the height of the building:

- Moment/rigid frame: stability achieved at beam to column connection—balance cost with performance and architectural coordination
- Chevron- or K-braced frame
- Rigid horizontal diaphragm floor or roof
- Shear wall: vertical solid walls
- Cross- or X-braced frame

(ASCI, p. 25)

Options for Tall Steel Lateral Systems

<table>
<thead>
<tr>
<th>Stories</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interior Systems

- A Moment/rigid frame
- B Braced rigid frame
- C Shear wall and frame
- D Outrigger

Exterior Systems

- E Steel braced tube
- F Diagrid
- G Space truss

References

Additional Resources

These estimates and rules of thumb are for preliminary design estimates only using the most common elements; actual conditions may result in refined solutions. Layout and sizing need to be verified by a licensed professional through structural analysis.

For more information and conceptual and technical assistance, please visit aisc.org/solutions. To download additional copies visit aisc.archeducation.