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Role of the analysis:

+ forces, moments and deflections = design equations

+ insight into the behavior of a structure
= better the understanding, better the design

Limit States Design:
Prior to limit of resistance, significant nonlinear
response, including
- geomeftrical effects (P-A, P-3)
- material effects (yielding, cracking, crushing)
- combined effects

Nonlinear Analysis

+ Hand methods

- Second-order effects
- i.e. Moment Amplification Factors (Bl and B2 factors)

* Material nonlinear effects
- i.e. plastic analysis (upper and lower bound theories)
« Computer Methods (focus of today's lecture)
- Lots of variations
- all use same basic concepts (most important to today)
- one approach will be presented (basis for MASTAN2)
+ Please keep in mind
+ All methods are approximate
- Not a substitute, but a complement to good engineering

The function of a structural engineer is
to design — not to analyze
Norris and Wilbur
1960

Analysis is a means to an end
rather than the end itself.

Impetus:

AISC Ch. C: P-A, P-8 (App. 7)
App. 1: Inelastic Design

Seismic: Pushover Analysis

\ Other: Progressive Collapse

Limit States Design

Nonlinear Analysis
Available Software \ Education

Research

Lecture Overview

< Brief Introduction (done!)

« Computer Structural Analysis (Review?)

+ Basis for Material Nonlinear Models

« Incorporating Geometric Nonlinear Behavior
+ Critical Load Analysis

« Overview of MASTANZ software

+ Summary and Concluding Remarks




How does the computer get
these results?

+ State-of-the-Art Crystal Ball? Not quite.

+ By applying 2 requirements and 1 translator
+ Two Requirements:
- Equilibrium (equations in terms of F's and M's, 1 per d.o.f.)
- Compatibility (equations in terms of A's and 6's, 1 per d.o.f.)
* Translator “apples to oranges”
- Constitutive Relationship (i.e. Hooke's Law, c= E €)
- Generalized to Force-to-Displacement (i.e. F=kA)
- Re-write equilibrium egs. in terms of unknown displacements

« # of Equil. Egs. = # of Unknown Displacemen‘rs@

Translator: Forces - Displacements
0

‘ fi =Kty + KoVt + Kyl + kv,

fyi =Ko + KooV +KpgUlj +KpgV,

fiq =Kaily + KooV +KagUj +KggV;

= fi =Kl +KpVi +KggUj +KggV,

Big Question:

Where do these known stiffness coefficients k's
come from? Little Answer:
Function of member’'s material and geometric
properties, including its orientation.

uting into Equil. Egs.
Member AD:
KaPURD + kgPVaD + kaPubP + kaPvhP
Member BD:
KEPUEP +kEPVEP + kEPugP + kEPVEP

Member CD:

CD,,CD CD, ,CD CD, CD CD, ,CD
kg ug” + kg Ve + kg up” + kg v

AD, |AD |, AD,,AD | |, AD, \AD _ [, AD,,AD
s Un TRy Vi T ke Uy kg Vo )+
BD, BD , |, BD, ,BD , | BD, BD | BD,,BD
s Ug TKgp Vg Tk Up +Kay 'V )+

CD, ,CD cb, ,CD CD, ,CD cb, ,CD
31 uC +k32 VC +k33 uD +k34 VD )

Equilibrium Equations

Free Body fo«—
Diagram fX%D D 40kips

x-dof. uy: XF, =0
40= 12+ (2 4 1P
y-dof. vp: XF, =0

_ fAD BD Ccb
0=fp +fp +fp

Member CD

F > A for all members

Member AD:
2 = kAPURD + kEPVAD + ki up® + ki g
= K3 URD + kEPVAD + kEPup® + kgPvh®
i = kP UAD + ki va® + ke up® + ko g

AD AD, AD AD, ,AD AD, AD AD, AD
va =k un + K Vo ke Up + kg Vo

Member BD: Member CD:

fo =kPug® + kv + kP us? + ki ve? 12 =kPu® + kv +kPus? + kGVS?
fig =kgoug® + kgL +kspug? + Kk veY F @ =k u® + kG VEP + kg usP +kgoveP
f =kEPUS® +kEPVED + kS us® + kP ve? £ =k§PU® +kSPVEP +kSPuSP + k§PvsP

20 = kEPUS® + KEPVER +KEPuSP + kEPVEP £ =kPuS® + KEPVER +kPuSP + kEPvEP

Substituting into Equil. Egs. (cont.)

Member AD:

AD  AD AD, ,AD AD  AD AD, ,AD
Ky un” + ki V- + ki up + Ky Vo

Member BD:
i) JE KEPUS® + KPve® + kP ug? + kg vg”
Member CD:

€D, ,CD , |,CD,,CD _ 1,CD, ,CD _ |,CD, ,CD
K 'Uc” +Kkep Ve +Kig'Up- +Kgg Vg

0= (KPuL® +KLOVE +k/Pu + KOV +
(kff’uBBD +KPVER + KePugP + kﬁDng) +

CD,,CD , },CD,,CD , 1, CD CD , |,CD, CD
(k41 Uc™ +Ke Vo +Keg Up +Kig Vo )




So, where are we at?

+ We have two equilibrium equations (1 per
d.o.f.) in ferms of a lot of displacements:

. (1, AD, , AD AD, ,AD AD, ,AD AD, ,AD
Uyt 40 = (KEPuf® +KPV +KPul® +kPv/P) +

(KEPUE + KEPVED + kPUE +KEPVER ) +

(KSPUSP + KLV + KPUSL + KEPVEP)
Vp: 0= (:kﬁDuf\‘D +KEPVAD 4 KAPYAD 1 kAOVAD ) 4

(:kleuSD +KEPVE + KEPUBP L kEOVER ) 4

cD, ,CD cb, ,CD CcD, ,CD cob, ,CD
(k.u Uc +k42 Ve +k43 Up +kM Vo )

What card haven't we played yet?

Time for some serious simplifying
+ Applying Compatibility to Equil. Egs.:

Which simplifies to...

With all displacements, solve for
member' for‘cesm Member AD:

KAPURT + K VAT + kg U + ki vp©

KEPUEP + KEPVEP + kPubP +kPvE?

KEPUg® + kEPVED + KEPug® + k5 vp®

KEPUg® + KEPVER + kEPUEP + kEPVEP

KEPUE® + KEPVER + KEPUEP + kEPVEP

— AD _ kPuc® +kPvEP + ki usP + kP VP

Up = Up Up D E KPS +kGPVER +kEPuSP + kSPveP
vp = VAP =vEP = KEPUE® + KDV +

CD,(CD , },CD,/CD CD _ 1,CD, CD
K ug” +kip Ve +Kig'Up” + Ky Vg

Compatibility Egs. (consistent deflections)
Member-to-Member

Vo
' T o W

Up: 40 = (k;sD +ke2 + kS )ug + (k;f +kD + kS )vg

. _ (LA BD , ,CD), ? AD 8D , 1,cD),,?
Vp: 0= (k43 +Kig +Kig )uD+(k114 +Kkyy + K )VD

Since k's are known, we have
2 Equations and 2 Unknowns

Solve for Unknown Displacements
U =# and Vp = #i#

Summary of Computer Approach

« For each d.o.f., write an equilibrium equation:

FexTernaI =2 fmember‘
« Re-write (translate) each member force in terms of
its end displacements (Stiffness Egs.)
fmember = 2 k member A member end
« Substitute Stiffness Eqs. into above Equil. Egs.
« Simplify Equil. Egs. by applying member-to-member
and member-to-support compatibility conditions
« Solve n Equil. Egs. for the n unknown displacements
« Use Stiffness Egs. to calculate member forces
« Apply Equil. Egs. to solve for reactions




Lot’s of Questions Two Big Questions

+ S0, this is how most commercial programs such + Where do those stiffness coefficients
as SAP2000, RISA, STAAD, etc. get the come from?
answer? * You mean the ones that relate member end
- Yes! Known as "Direct Stiffness Method" forces to member end displacements?

T  Yeah, those k's | <More to come on this>
+ So, all such programs will give the same answer? ~ What h h e i
* Yes, as long as it is a static 1s*-order elastic analysis. ¢ ar happens when we go static noniinear

. : . . : or even dynamic?
+ Wait a minute..Is this the basic analysis Y

wpe - " + Same basic procedure, but apply loads in
procedure for the “finite element method"? increments and perform a series of analyses.

- Yes! Bit more tricky o get K's, d's, and €'s Then, sum incremental results.
< Much more to come on this! >

Important Points Stiffness Coefficients, k's

+ The only opportunity for most computer
analysis software to model the actual « Let's start with high school physics
behavior of the structure is through the - Extension Spring Experiment
member stiffness terms.

+ S0, To include Before:

- first-order effects I_/\/\/\/_

1
1
- second-order effects .
I ® After:
1
1

S
|

- material nonlinear behavior
A\ N\N\——>F

Must modify member stiffness!l!

«Let's review member stiffness

A Displacement

Stiffness Coefficients, k's (cont.) How about real structural members?

+ More “advanced" high school physics lab * Axial force member Before:

- Rotational Spring Experiment

Before: I_@

M

|

1 A

I o After: /D \ « Stiffness k function of:
I |—@)

|

I

- Geometry: Area and Length (At kt & L1, ki)
- Material: Elastic Modulus (E1t k1)

€  Rotation F = k(A,L,E) A




How about real members? (cont.)

+ Flexural members
Before: Before:

f— . =
® After: /)/ 0 e After:
S S 171 A
F

+ Stiffness k function of:
- Geometry: Moment of Inertia & Length (It kt& L1, ki)
* Material: Elastic Modulus (E1 k1)

HO M= KILEO | [F=kILEA

Orientation of axial force member

k,=(cos2p)EA/L k,=(sin?g)EA/L

W

Important Point: Less vertical a member,
the less stiffness to resist vertical loads.

Three Perspectives (cont.)
+ What you see on your computer screen:

1DL

WL
—

Collection of elements
connected by sharing
common nhodes

Other factor impacting stiffness

+ Orientation of member
- consider axial force member:

t::g kv:E%A/L k,=0 %

Vertical
Member

Horizontal
Member

Summary: Three Perspectives

+ Reality: What you see...

Three Perspectives

+ What your computer actually sees:

Assemblage of
equivalent springs {F} = [K{A}




Inelastic Behavior:
Flexure

Analysis Review: Key Points

+ Reviewed the "Direct Stiffhess Method"
- Equilibrium > Translator F(A) - Compatibility
+ Response of structure controlled by
stiffness of members (a.k.a. springs)
+ First-order elastic stiffness of member

function of:

* Material Property (E)

- Geometric Properties (A, I, L, and orientation)
« Time to go nonlinear...

let's begin with material nonlinear

Normal Stress: Structural Members

+ For typical structural steel members
(L/d>10), elastic/inelastic behavior
controlled by normal stresses o's acting
along the length axis of the member.

+Normal stress produced by:

- Axial force (P/A)

* Major and/or minor axis flexure (Mc/I)

- Combination of above effects (i.e. P/A + Mc/I)
* Warping (not today!)

+ We will assume elastic-perfectly-plastic
material (often done for steel)

—
M
A e
M )
M\

Section A-A _g

e

Y

k=4EI/L
E Ielas‘ric

1
)

Material Nonlinear (Inelastic)

+ Best place to start is with a tensile test

Inelastic Behavior: Axial Force
Originally:

=P/A=0
[EEE

J k=EA/L o Elastic:
1 —— —
g < Oy ‘ A

‘

E=0 > k=0
~—

=

A
® Yield:

Plastic Hinge .
at P = Py or o Post-Yield:
when P/Py =10

G=Oy

Inelastic Behavior:
Flexure (cont.)

0




Inelastic Behavior:
Flexure (cont.)

M

:
ETE T e MMM,

S

k=4ET/L

1

Inelastic Behavior:
Flexure (cont.)

M

A M/
‘o) \°
%?\A

EI=0 > k=0

k=4EI/L

1

Types of inelastic models

+ We will employ a plastic hinge model
+ AK.A. "Concentrated Plasticity”
- Section is fully elastic or fully yielded
+ Plastic hinges only at element ends
+ Distributed plasticity (still line elements)
+ AK.A. "Plastic Zone"

+ Captures gradual yielding through depth and along
length

* More accurate, but computationally more $$$
+ Finite element with continuum elements ($$$)

Inelastic Behavior:
Flexure (cont.)

ET¢E Ly M <M,
)

Inelastic Behavior: Flexure
Elasti "
® Elastic: 2]
Plastic M&X
EI=0 > k=0 -
M

=M
o Plastic: /Dy )
=)
&

+ Plastic Hinge Model - Assume section as fully
elastic or fully plastic (neglect partial yielding)

+Plastic Hinge at M = M, or when M/M, = 1.0

Simple Example:

‘100 kips

I W12x65

e w2
— 12 -0"———12'-0" ap 12’ -0"—

E = 29,000 ksi
o, = 50 ksi




R B i e et T T AR et
=+ Deflected Shape: 1st-Order Inelastic, Incr # 12, Applied Load Ratio = 0.99874 =
0.832 0.999

Deflected Shape: 1st-Q
0.832

Deflected Shape: 1st.
0.832

-

Vertical Load (kips)

1 2 3 4
Mid-Span Deflection (in)

Inelastic Behavior:
Combination P & M
for Plastic Hinge

Fully yielded M <M, P<P,
section when: M/Mp <1 P/P < 1

Material Nonlinear Analysis

« Employ "Direct Stiffness Method" applying loads
in increments: [K{dA} = {dF}

+ During the load increment, check to see if
plastic hinge(s) form. If so, scale back load
increment accordingly.

+Reduce stiffness of yielded members and
continue load increments
* K = Kejastic + Kplastic  With Kyjesric = plastic reduction

+ Continue to accumulate results of load
increments until all of load is applied or a plastic
mechanism forms.

Inelastic Behavior:
Combination P & M

Plastic Hinge Criterion:
P/P, 9 P=P
10 o E M=6

J

/é o/
L N4
6‘
~7

e =
Oc‘e
(] Elashc E

Simple Example (with axial force):

100 kips
‘ W12x65 Rz 400kips

—12'-0" ——— 12" - O"}—;lZ (O

E = 29,000 ksi
o, = 50 ksi




 MESTAIE C Dhwcumres avd Yatiimgehermiarialy Dot ome ok FAM i AR | ammpln st i  MESTAIE C Thwcumres and SatHimghriomianibly Dot o sk TAM T (AR | ssmple
*+=* Deflected Shape: 1st-Order Inelastic, Incr # 9, Applied Load Ratio = 0.73197 ***

0.732 0.648
0.677 <

. — S . Yield Surface
= Deflected Shape: 1st-O anl 3 52, H!nge 1 (Left)

i . Hinge 2 (Center)
. Hinge 3 (Right)

)

.-'f —1. 1st-Order Elastic
==2. 1st-Order Inelastic (P=0)
==3. 1st-Order Inelastic (P=400)

Vertical Load (kips

1 2 3 4 2 04 06 08
Mid-Span Deflection (in) M/Mp

Second-Order Effects Equilibrium Equations

. ) ) « Formulated on < Formulated on
+ A.K.A. "Geometric Nonlinear Behavior” Undeformed Shape Deformed Shape

+ Equilibrium Equations P1A & P

- Reality: Should be formulated on deformed | '_1 H
shape

- Difficulty: Deformed shape (deformations) is d_
a function of the member forces, which are in 12" kgl)r‘dgr.‘ effects,
turn a function of the deformations uckily ats often
(Chicken 'n Egg) quite small.

- Remedy: Perform a series of analyses with
loads applied in small increments and update
geometry after each load increment.

——>
Truss is susceptible to

Different reactions and member forces.

Equilibrium Equations Focus on Lateral Stiffness

+ Formulated on + Formulated on + Formulated on Undeformed Shape: Linear Response
Undeformed Shape Deformed Shape

Before: ® After: Lateral Stiffness
P _.| is slope of H-A
sprlng response curve

E i

Iaﬁ‘i?‘f:l ive klafer‘al spr'mg
stiffness

is reduced!

M=HL+PA




Focus on Lateral Stiffness (cont.)

+ Equilibrium Formulated on Deformed Shape

Focus on Lateral Stiffness (cont.)

+ Formulated on Deformed Shape: Nonlinear Response

Before: o After: Let's start by assuming L' = L,

< Stiffness k function of:

Effective lateral
kspr'ing stiffness is reduced

spring

lelcn‘eral E kspring

A

Some thoughts here...

« This simple analysis becomes less “accurate” as
A/L becomes large (i.e. A/L > 1/5)

* Remedy: Perform an incremental analysis and update
geometry after each load increment..hence, limit
A/L in each step to some small amount

+ Keep in mind serviceability limits are often
something like A/L < 1/400

+ Most importantly, Kigeral = Kepring = P/L takes on
the form:

and—Order El.= klsT—Order Bt kg

How about real members? (recall...)

+ Flexural members subjected to axial force

M/
n (5]

N A
b

N SM,=0 RL=HL+PA

H ) Ko R=H«+PA/L
‘ R=K,pringA Kepringld = H + PA/L
H = Kgping - PA/L
H = (Kepring - P/L) A

+ Lateral Stiffness (slope of response curve)

H= klatemIA with kla‘rer‘al = kspring_ P/L

spring

Geometric Stiffness

+ Effective lateral stiffness of a member:
- decreases as a member is compressed
- kg is negative for compressive P
- backpacker example
- increases when subjected to tension
- kq is positive for tensile P
- guitar string example
+ Employing geometric stiffness approach
+ Other methods exist (i.e. stability functions)

Closer look at stiffness terms...

+ Flexural members subjected to axial force

M
ALY
L I%'l‘?w

F

- Geometry: Moment of Inertia & Length (It kt& L1, ki)
* Material: Elastic Modulus (E 1 k1)

- Axial Force: Compressive (P1, ki) |~

M = k(I LEP)O with
k = 4EI/L - 2PL/15 F = k(ILEP)A with

k = 12ET/L3 - 6P/5L

Again, basic form:

%F = K(ILEP) A

M=k(ILEP)O

and—Order ElL= kls'r—Or'der' et kg



Geomeftric Nonlinear Analysis

« Employ "Direct Stiffness Method" applying loads
in increments: Solve Equil. Egs. {dF} = [K{dA}

+ At start of increment, modify member stiffness
to account for presence of member forces (such
as axial force):

" K = Kjastic + Ky with kg = geometric stiffness

« At end of increment, update model of structural
geometry to include displacements

« Continue to accumulate results of load increments
(A = A+ dAand f; = f; + df) until all of load is
applied or elastic instability is detected.

Comparison: 15*- and 2"-Order Analysis Results
%

WAV, € Dcmares s gty Do A 1 TG sl et cEm

=** Moment Z: 2nd-Order Elastic, Incr # 10, Applied Load Ratio =1 **
-4696
-2348
2348 =
0.006

Moments increase by ~10%

LA A e US| gl ERm

-Order Elastic, Incr # 1, Applied Load Ratio=1

¢ - -2150_-2150

3960

e v gy D o A A AP | el

*+=* Deflected Shape: 2nd-Order Inelastic, Incr # 9, Applied Load Ratio = 0.67031 *~
0.670

-

60}
—1. 1st-Order Elastic
40 /+2. 2nd-Order Elastic (P=400)
¢ —=3. 1st-Order Inelastic (P=0)
20 =4, 1st-Order Inelastic (P=400)
4 5. 2nd-Order Inelastic (P=400)

% 1 2 3 4
Mid-Span Deflection (in)

Vertical Load (kips)

— —_—

* —1. 1st-Order Elastic
—==2. 2nd-Order Elastic (P=400)

'y
% 02040608 1 121418
Mid-Span Deflection (in)

2nd-Order Inelastic Analysis

« Employ "Direct Stiffness Method" applying loads

in increments: Solve Equil. Egs. {dF} = [K}{dA}

« At start of increment, modify member stiffness

to account for presence of member forces and
any yielding:

k =k k k

elastic * geome'rric+ plastic

+ At end of increment, update model of structural

geometry to include displacements

« Continue to accumulate results of load increments

(A = Ay + dA and f; = f; + df) until all of load is
applied or inelastic instability is detected.

Critical Load Analysis (Basics)

« Definition: Critical or buckling load is the
load at which equilibrium may be satisfied
by more than one deformed shape.

Solution |p

lp Solution

#1 1" #2

Big Q: How does computer software calculate this?

11



Critical Load Analysis (Background)

+ Elastic stiffness of a member k = k,; + k;
kg isf(AorI,L,and E)
* kg is f(P.L), also note directly proportional to P
« Elastic stiffness of structure [K] = Zk
- [K] = [Kg + [Kg]
- [Ky] directly proportional o applied force

- i.e. Double applied forces, hence, double internal force
distribution and double [Kg]

+ To the computer, "buckling” will occur when
our equilibrium equations {F} = [KI{A} permit
non-unique solutions, e.g. det[K] = 0.

Example: Key Stiffness Terms

l P Aluf
H Rigid Beam
— vert

= [ s
A, / A~ lateral
L

I
E
kver*rical

Lateral Stiffness:

H = klaferql AIa?
Kiparg = 12ET/L3 - 6P/5L

Vertical Stiffness:
P= kvarﬁcal AverT

‘100 kips

W12x65 P = 400 kips
E
eN

s S g e 4 D A A T AP mple st

Deflected Shape: Elastic Critical Load, Mode # 1, Applied Load Ratio = 5.386

4

+ MASTAIET C Wowcumerns and Sotfimguhermiaeisty Do e st A LB AR nmmple st

Deflected Shape: Inelastic Critical Load, Mode # 1, Applied Load Ratio = 1.7367

= . ; o

Example

Demonstrate computational
method for calculating the
elastic critical load (buckling
load) for the structural

P
Rigid Beam l
system shown. ———

= [
AT
LE

Example: Solution

P
Riaid Beam 1 1. Apply reference loaf:i, and use 1°'-
order elastic analysis to obtain
internal force distribution.
2. Determine load factor A at which
system stiffness degrades to p
permit buckling. l er
]
Kiatera = 12EL/L3 - 6AP/5L
Kiaterat = O when AP = 10EI/L?

Pe = AP = 10ET/L2 (P, =9.87EI/L?)

Thoughts on Critical Load Analysis
« Computer analysis for a large system:
- First, apply reference and perform analysis
- Solve equilibrium egs. {F,.¢} = [KI{A}
- With displacements solve for member forces

* Second, assemble [K, ] and [K,] based on {F.¢}

* Finally, determine load factor A causing instability;
computationally this means find load factor A at which
[K1=[K¢]+A[K,] becomes singular

- Determine A at which de’r([Ke,]+)\[Kg) =0
- "Eigenvalue" problem: Eigenvalues = Critical Load Factors, A's
Eigenvectors = Buckling modes
+ Accuracy increases with more elements per
compression members (2 often adeguate)

12



Basic Introduction Complete

+ Where do I go from here? (Learning to drive)
- Review the slides (Read the driver's manual)
+ Acquire nonlinear software (Borrow a friend's car)
- Work lots of examples (6o for a drive, scary at first...)
- Apply nonlinear analysis in design (NASCAR? not quite)

Acquire nonlinear analysis software A
- Commercial programs 5, o
- Educational software (i.e. MASTAN2)

Levels of Analysis: MASTANZ

1st-Order Elastic:  [K,J{A}={F}

2"d-Order Elastic:  [K, + K, {dA}={dF}
1s*-Order Inelastic: [K, + K,{dA}={dF}
2rd-Order Inelastic: [K, + K, + K, }{dA}={dF}
Critical Load: [K. + AK;{dA}={0}

Yield Surface:
Function of P, Mmajor, and M_nor

Planar Frame: . L oorder _ 2r-Order

Elastic
" 1=t-Order
60 2 Inelastic
2nd-Qrder
Inelastic

et ———
. /\Second hinge )
N 8783 (1°-Order)
/ 8783 (2™-Order)

e

é

Mechanism Moments at Limit (in. kips)

MASTANZ2:

- Educational software

-6UI < commercial programs

-Limited # of pre- and post-processing options
to reduce learning curve

- Suite of linear and nonlinear 2D and 3D
analysis routines

- Available with textbook
or online at no cost

www.mastan2.com or

www.aisc.org [Steel Tools g8

1s%-Order MASTAN2
/ Elastic

2n-Order
Elastic

1st.Order

Inelastic Critical Load

Inelastic Limit Load

A
H=0P g et
Limit
2nd-Order
Inelastic

L ateral displacement, A

Summary and Conclusions

+ Provided an introduction to nonlinear analysis
- Review of direct stiffness method
* Material nonlinear analysis (Inelastic hinge)
- Geometric nonlinear analysis (2"d-Order)
- 2rd-Order inelastic analysis (combine above)
- Critical load analysis (“eigenvalue analysis")
+ Nonlinear...think modifying member stiffness!
« Overview and availability of MASTAN2
+ Now, its your turn to take it for a spin...

13



Appendix

« Several examples to try out
+ Solutions by MASTANZ2
+Need a reference text with many

examples? see Matrix Structural Analysis,
2nd Ed., by McGuire, Gallagher, and Ziemian

(Wiley, 2000)
+ See tutorial that comes with MASTANZ2
+ OK, time to jump in and start driving...
<See Final Exam...>

MASTAN2
Model:

Gravity Load

Inelastic
Analysis:
P =37.7 kips

Gravity Load
Multi-story =y
Frame: g

Demonstrate:
2nd-Order Inelastic Analysis

Non-proportional loading E = 29000 ks

o, =36ksi

2nd-Order— |
Inelastic |
Analysis:

ndOer.. :
Inelastic -
Analysis:

Limit State:
Piim = 40.3 kips

14



- 2nd-Order-
Inelastic
Analysis:

Truss (Hoff et al.):

3P

e

All members:
A =9.348x102 in?
1 =6.954 X104 in*
E = 29,000 ksi
3P

-—
P =100 Ibs

Demonstrate:
Elastic Critical Load
2r.Order Elastic
Experimental (P,,,,;=220 Ibs)

2nd-Order
Inelastic
Analysis

1st Plastic Hinge (P=30 kips)

A

MASTAN2

Model:

Strength Limit State (P=40.3 kips)

15



Response
Curves:

1 st;:_Ort:ie
Elastic

Elastlc Critical Load P =210 Ibs

2'“’-Order Elastic

"MASTANZ

Model:

Elastlc Crltlcal Load AnaIyS|s (oc = 0 04)

E Isometric View E

= Elevation View

== PlanView=

E Isometric View =

Beam-Column:

W24x76
E = 29,000 ksi

Demonstrate:
Elastic Critical Load Analysis
1. Flexural Buckling (0=0.0)
2. Torsional Flexural Buckling
(=0.04)

Elevation View

Suspension System:

A=540in2
. g,=150ksi

P=100% P=100% P=100F
E = 29,000 ksi
6@ 40 =240

2™-Order W

Inelastic P
1=.Order
Inelastic

W

[]
] 50 100 150 200 250
Vria(in.)

~ Plan View

A .
=20, OOOm“

Z 1,000in3

o, =50ksi

Hinge Formation

16



