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Basic Introduction to 
Nonlinear Analysis

Ronald D. Ziemian
Bucknell University

The function of a structural engineer is 
to design — not to analyze

Norris and Wilbur
1960

Analysis is a means to an end
rather than the end itself.

Role of the analysis:

• forces, moments and deflections  ⇒ design equations

• insight into the behavior of a structure
⇒ better the understanding, better the design

Limit States Design:
Prior to limit of resistance, significant nonlinear 
response, including
- geometrical effects (P-∆, P-δ)
- material effects (yielding, cracking, crushing)
- combined effects

AISC Ch. C: P-∆, P-δ (App. 7)
App. 1:  Inelastic Design

Seismic:  Pushover Analysis
Other:  Progressive Collapse

Impetus:

Nonlinear Analysis

Limit States Design

Available Software

Research

Education

Nonlinear Analysis
Hand methods
• Second-order effects

– i.e. Moment Amplification Factors (B1 and B2 factors)
• Material nonlinear effects

– i.e. plastic analysis (upper and lower bound theories)

Computer Methods (focus of today’s lecture)
• Lots of variations

– all use same basic concepts (most important to today)
– one approach will be presented (basis for MASTAN2)

Please keep in mind
• All methods are approximate
• Not a substitute, but a complement to good engineering

Lecture Overview

Brief Introduction (done!)
Computer Structural Analysis (Review?)
Basis for Material Nonlinear Models
Incorporating Geometric Nonlinear Behavior
Critical Load Analysis
Overview of MASTAN2 software
Summary and Concluding Remarks 



2

How does the computer get 
these results?

State-of-the-Art Crystal Ball?  Not quite.
By applying 2 requirements and 1 translator
• Two Requirements:

– Equilibrium (equations in terms of F’s and M’s, 1 per d.o.f.)
– Compatibility (equations in terms of ∆’s and θ’s, 1 per d.o.f.)

• Translator “apples to oranges”
– Constitutive Relationship (i.e. Hooke’s Law, σ = E Є )
– Generalized to Force-to-Displacement (i.e. F=k∆)
– Re-write equilibrium eqs. in terms of unknown displacements

# of Equil. Eqs. = # of Unknown Displacements   

Equilibrium Equations
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Big Question:
Where do these known stiffness coefficients k’s
come from? Little Answer:

Function of member’s material and geometric 
properties, including its orientation. 
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F ∆ for all members
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Substituting into Equil. Eqs.
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Substituting into Equil. Eqs. (cont.)
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So, where are we at?
We have two equilibrium equations (1 per 
d.o.f.) in terms of a lot of displacements:
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What card haven’t we played yet?

Compatibility Eqs. (consistent deflections)
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Time for some serious simplifying
Applying Compatibility to Equil. Eqs.:
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Which simplifies to…

All = 0

All = uD

All = vD

After simplifying…
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Solve for Unknown Displacements

Since k’s are known, we have
2 Equations and 2 Unknowns
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With all displacements, solve for 
member forces…
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Summary of Computer Approach
For each d.o.f., write an equilibrium equation:

Fexternal = Σ fmember
Re-write (translate) each member force in terms of 
its end displacements (Stiffness Eqs.)

fmember = Σ k member ∆ member end
Substitute Stiffness Eqs. into above Equil. Eqs.
Simplify Equil. Eqs. by applying member-to-member 
and member-to-support compatibility conditions
Solve n Equil. Eqs. for the n unknown displacements
Use Stiffness Eqs. to calculate member forces
Apply Equil. Eqs. to solve for reactions
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Lot’s of Questions

So, this is how most commercial programs such 
as SAP2000, RISA, STAAD, etc. get the 
answer?
• Yes!  Known as “Direct Stiffness Method”
So, all such programs will give the same answer?
• Yes, as long as it is a static 1st-order elastic analysis.
Wait a minute…Is this the basic analysis 
procedure for the “finite element method”?
• Yes!  Bit more tricky to get k’s, σ‘s, and Є’s

Two Big Questions
Where do those stiffness coefficients 
come from?
• You mean the ones that relate member end 

forces to member end displacements?
• Yeah, those k’s !  <More to come on this>
What happens when we go static nonlinear 
or even dynamic?
• Same basic procedure, but apply loads in 

increments and perform a series of analyses.  
Then, sum incremental results.

< Much more to come on this! >

Important Points
The only opportunity for most computer 
analysis software to model the actual 
behavior of the structure is through the 
member stiffness terms.
So, to include
• first-order effects
• second-order effects
• material nonlinear behavior

Must modify member stiffness!!!
Let’s review member stiffness

Stiffness Coefficients, k’s

Let’s start with high school physics
• Extension Spring Experiment

After:
F

∆

∆

F

k

1

F = k ∆

Before:Force

Displacement

After:

θ

M

k

1

M = k θ

M

θ

Stiffness Coefficients, k’s (cont.)
More “advanced” high school physics lab
• Rotational Spring Experiment

Before:
Moment

Rotation

How about real structural members?
Axial force member

∆

F = k(A,L,E) ∆

Stiffness k function of:
• Geometry: Area and Length (A↑,k↑ & L↑, k↓)
• Material: Elastic Modulus (E↑,k↑)

After:
F

∆

F

k
1

Before:
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How about real members? (cont.)
Flexural members

Before:

Stiffness k function of:
• Geometry: Moment of Inertia & Length (I↑,k↑& L↑, k↓)
• Material: Elastic Modulus (E↑,k↑)

Before:

After:

F

∆

After:
M

θ

F = k(I,L,E) ∆M = k(I,L,E) θ

Other factor impacting stiffness
Orientation of member
• consider axial force member:

kv=EA/L
kh=0

Vertical 
Member kh=EA/L

kv=0

Horizontal 
Member

Orientation of axial force member

Important Point:  Less vertical a member, 
the less stiffness to resist vertical loads.

kv=(sin2φ)EA/L

φ

kh=(cos2φ)EA/L

φ

Summary: Three Perspectives

Reality:  What you see…

F1

Three Perspectives (cont.)
What you see on your computer screen:

DL
WL

Collection of elements 
connected by sharing 
common nodes

Three Perspectives
What your computer actually sees:

Assemblage of 
equivalent springs {F} = [K]{∆}

Σ k

DL
WL
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Analysis Review: Key Points
Reviewed the “Direct Stiffness Method”
• Equilibrium Translator F(∆) Compatibility
Response of structure controlled by 
stiffness of members (a.k.a. springs)
First-order elastic stiffness of member 
function of:
• Material Property (E)
• Geometric Properties (A, I, L, and orientation)
Time to go nonlinear…

let’s begin with material nonlinear

Material Nonlinear (Inelastic)

Best place to start is with a tensile test

σ = P/A

Є = ∆/L

E

1

σyield Perfectly Plastic (E = 0)

El
as

ti
c

Normal Stress:  Structural Members
For typical structural steel members 
(L/d>10), elastic/inelastic behavior 
controlled by normal stresses σ’s acting 
along the length axis of the member.
Normal stress produced by:
• Axial force (P/A)
• Major and/or minor axis flexure (Mc/I)
• Combination of above effects (i.e. P/A + Mc/I)
• Warping (not today!)
We will assume elastic-perfectly-plastic 
material (often done for steel) 

E=0 k=0

Post-Yield: ∆

σ = σy

Inelastic Behavior:  Axial Force
Originally:

∆

P
σ =P/A=0

Yield:
Py

∆

Py=Aσy

σ = σy
Plastic Hinge
at P = Py or
when  P/Py = 1.0

k=EA/L
1

Elastic:
P

∆

σ < σy

Inelastic Behavior:
Flexure

Mp=Zσy

M

θ

My=Sσy

M
θA

A

k=4EI/L

1
EIelastic

-σy +σy

M < My

Section A-A

Inelastic Behavior:
Flexure (cont.)

M
θA

A

Mp=Zσy

k=4EI/L

1

M

θ

My=Sσy

Section A-A

EIelastic

-σy +σy

M=Sσy=My
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Inelastic Behavior:
Flexure (cont.)

Mp=Zσy

k=4EI/L

1

M

θ

My=Sσy

Section A-A -σy +σy

E=0

EI<EIelastic My<M<Mp

M
θA

A

Inelastic Behavior:
Flexure (cont.)

Mp=Zσy

k=4EI/L

1

M

θ

My=Sσy

Section A-A -σy +σy

E=0

EI<<EIelastic My<<M<Mp

M
θA

A

EI=0 k=0

Inelastic Behavior:
Flexure (cont.)

Mp=Zσy

k=4EI/L

1

M

θ

My=Sσy

Section A-A

EI = 0

-σy +σy

E=0

M=Zσy=Mp

M
θA

A

EI=0 k=0

Inelastic Behavior:  Flexure

Mp=Zσy

Elastic:
M < Mp

θM

θ

k=4EI/L
1

Plastic: θ
M = Mp

Plastic
Ela

sti
c

Plastic Hinge Model – Assume section as fully 
elastic or fully plastic (neglect partial yielding)
Plastic Hinge at M = Mp or when  M/Mp = 1.0

Types of inelastic models
We will employ a plastic hinge model
• A.K.A. “Concentrated Plasticity”
• Section is fully elastic or fully yielded
• Plastic hinges only at element ends
Distributed plasticity (still line elements)
• A.K.A. “Plastic Zone”
• Captures gradual yielding through depth and along 

length
• More accurate, but computationally more $$$
Finite element with continuum elements ($$$)

Simple Example:

E = 29,000 ksi
σy = 50 ksi

12’ - 0”

W12×65

12’ - 0” 12’ - 0”

100 kips
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Inelastic Behavior:
Combination P & M

Mp=Zσy

k=4EI/L

1

M

θ

M
θA

A
P

-σy

+σy

M < Mp

σ = Mc/I + P/A

+σy

-σy

Plastic

Elas
tic

Inelastic Behavior:
Combination P & M
for Plastic Hinge

M
θA

A
P

+σy

-σy

+σy

-σy

+σy

-σy= +

M < Mp
M/Mp < 1

P < Py
P/Py < 1

Fully yielded
section when:

Elastic

Yield Surface

Plastic Hinge Criterion: 
P/Py

M
θA

A
P

M/Mp

1.0

1.0

-σy P=Py
M=0

+σy

-σy P<Py
M<Mp

+σy

-σy P=0
M=Mp

+σy

-σy P<Py
M<Mp

Material Nonlinear Analysis
Employ “Direct Stiffness Method” applying loads 
in increments:  [K]{d∆} = {dF}
During the load increment, check to see if 
plastic hinge(s) form.  If so, scale back load 
increment accordingly.
Reduce stiffness of yielded members and 
continue load increments
• k = kelastic + kplastic with kplastic = plastic reduction
Continue to accumulate results of load 
increments until all of load is applied or a plastic 
mechanism forms.

Simple Example (with axial force):

P = 400 kips

E = 29,000 ksi
σy = 50 ksi

12’ - 0”

W12×65

12’ - 0” 12’ - 0”

100 kips
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No
Axial Force

Second-Order Effects
A.K.A. “Geometric Nonlinear Behavior”
Equilibrium Equations
• Reality: Should be formulated on deformed 

shape
• Difficulty: Deformed shape (deformations) is 

a function of the member forces, which are in 
turn a function of the deformations
(Chicken ‘n Egg)

• Remedy:  Perform a series of analyses with 
loads applied in small increments and update 
geometry after each load increment.

Truss is susceptible to 
2nd-Order effects, 
luckily ∆ is often
quite small.

Equilibrium Equations
Formulated on 
Undeformed Shape

Formulated on 
Deformed Shape

H
P P

∆

H

Different reactions and member forces.

∆

∆

∆

k=3EI/L3

1

H

Equilibrium Equations

H
P

M=HL

∆

k=3EI/L3

1

H

keff < k
1

Effective 
lateral 
stiffness 
is reduced!

Formulated on 
Undeformed Shape

H P

M=HL+P∆

∆

Formulated on 
Deformed Shape

Focus on Lateral Stiffness
Formulated on Undeformed Shape: Linear Response

Before:

kspring
P ∆

H

After:

∆

klateral = kspring
1

H

Lateral Stiffness 
is slope of H-∆
response curve
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Focus on Lateral Stiffness (cont.)
Formulated on Deformed Shape: Nonlinear Response

Before:

kspring
P∆

H

After:

∆

klateral < kspring
1

H kspring

1

Effective lateral 
stiffness is reduced

Focus on Lateral Stiffness (cont.)
Equilibrium Formulated on Deformed Shape

P∆

H kspring

R=kspring∆

ΣMo = 0 RL = HL + P∆
R = H + P∆/L

H = klateral∆ with  klateral = kspring – P/L

Lateral Stiffness (slope of response curve)
Pt. o

L’ L

Let’s start by assuming L’ ≈ L,

kspring∆ = H + P∆/L
H = kspring∆ – P∆/L
H = (kspring – P/L) ∆

Some thoughts here…
This simple analysis becomes less “accurate” as 
∆/L becomes large (i.e. ∆/L >> 1/5)
• Remedy: Perform an incremental analysis and update 

geometry after each load increment…hence, limit 
∆/L in each step to some small amount

• Keep in mind serviceability limits are often 
something like ∆/L < 1/400

Most importantly, klateral = kspring – P/L takes on 
the form:

k2nd-Order El. = k1st-Order El. + kg
Geometric Stiffness

Geometric Stiffness

Effective lateral stiffness of a member:
• decreases as a member is compressed

– kg is negative for compressive P
– backpacker example

• increases when subjected to tension
– kg is positive for tensile P
– guitar string example

Employing geometric stiffness approach
• Other methods exist (i.e. stability functions)

How about real members? (recall…)
Flexural members subjected to axial force

F

∆

Stiffness k function of:
• Geometry: Moment of Inertia & Length (I↑,k↑& L↑, k↓)
• Material: Elastic Modulus (E ↑,k↑)
• Axial Force:  Compressive (P↑, k↓)

M
θ

P
P

F = k(I,L,E,P) ∆M = k(I,L,E,P) θ

Closer look at stiffness terms…
Flexural members subjected to axial force

M = k(I,L,E,P) θ with
k = 4EI/L – 2PL/15

M
θ

P

F = k(I,L,E,P)∆ with
k = 12EI/L3 – 6P/5L

F

∆
P

Again, basic form:
k2nd-Order El. = k1st-Order El. + kg
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Geometric Nonlinear Analysis
Employ “Direct Stiffness Method” applying loads 
in increments:  Solve Equil. Eqs. {dF} = [K]{d∆} 
At start of increment, modify member stiffness 
to account for presence of member forces (such 
as axial force):
• k = kelastic + kg with kg = geometric stiffness
At end of increment, update model of structural 
geometry to include displacements
Continue to accumulate results of load increments 
(∆i = ∆i-1 + d∆ and fi = fi-1 + df) until all of load is 
applied or elastic instability is detected.

Comparison: 1st- and 2nd-Order Analysis Results

Moments increase by ~10%

2nd-Order Inelastic Analysis
Employ “Direct Stiffness Method” applying loads 
in increments:  Solve Equil. Eqs. {dF} = [K]{d∆} 
At start of increment, modify member stiffness 
to account for presence of member forces and 
any yielding:

k = kelastic + kgeometric + kplastic

At end of increment, update model of structural 
geometry to include displacements
Continue to accumulate results of load increments 
(∆i = ∆i-1 + d∆ and fi = fi-1 + df) until all of load is 
applied or inelastic instability is detected.

Critical Load Analysis  (Basics)
Definition:  Critical or buckling load is the 
load at which equilibrium may be satisfied 
by more than one deformed shape.

Big Q: How does computer software calculate this?

P Solution 
#1 P

Solution 
#2

P
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Critical Load Analysis  (Background)
Elastic stiffness of a member k = kel + kg
• kel is f(A or I, L, and E)
• kg is f(P,L), also note directly proportional to P
Elastic stiffness of structure [K] = Σk
• [K] = [Kel] + [Kg]
• [Kg] directly proportional to applied force

– i.e. Double applied forces, hence, double internal force 
distribution and double [Kg]

To the computer, “buckling” will occur when 
our equilibrium equations {F} = [K]{∆} permit 
non-unique solutions, e.g. det[K] = 0. 

Example

Demonstrate computational 
method for calculating the 
elastic critical load (buckling 
load) for the structural 
system shown.

A, I
L, E

P
Rigid Beam

Example:  Key Stiffness Terms

∆vert

A, I
L, E

H
P

Lateral Stiffness:

klateral

H = klateral ∆lat
klateral = 12EI/L3 – 6P/5L

kvertical

Vertical Stiffness:
P = kvertical ∆vert

∆latP
Rigid BeamH

Example:  Solution
1. Apply reference load, and use 1st-

order elastic analysis to obtain 
internal force distribution.

A, I
L, E

P
Rigid Beam

klateral = 12EI/L3 – 6λP/5L

klateral = 0 when λP = 10EI/L2

(Ptheory=9.87EI/L2)Pcr = λP = 10EI/L2

Pcr

2. Determine load factor λ at which 
system stiffness degrades to 
permit buckling.

P = 400 kipsW12×65
100 kips

λ=9.4

λ=1.7

Thoughts on Critical Load Analysis
Computer analysis for a large system:
• First, apply reference and perform analysis

– Solve equilibrium eqs. {Fref} = [K]{∆}
– With displacements solve for member forces

• Second, assemble [Kel] and [Kg] based on {Fref}
• Finally, determine load factor λ causing instability; 

computationally this means find load factor λ at which 
[K]=[Kel]+λ[Kg] becomes singular
– Determine λ at which det([Kel]+λ[Kg) = 0
– “Eigenvalue” problem: Eigenvalues = Critical Load Factors, λ‘s

Eigenvectors = Buckling modes

Accuracy increases with more elements per 
compression members (2 often adequate)
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Basic Introduction Complete

Acquire nonlinear analysis software
• Commercial programs
• Educational software (i.e. MASTAN2)

Where do I go from here?  (Learning to drive)
• Review the slides (Read the driver’s manual)
• Acquire nonlinear software (Borrow a friend’s car)
• Work lots of examples (Go for a drive, scary at first…)
• Apply nonlinear analysis in design (NASCAR? not quite)

MASTAN2:

-Educational software
-GUI ⇔ commercial programs
-Limited # of pre- and post-processing options 
to reduce learning curve

-Suite of linear and nonlinear 2D and 3D 
analysis routines

-Available with textbook
or online at no cost
www.mastan2.com or
www.aisc.org [Steel Tools]

MASTAN2

1st-Order Elastic: [Ke]{∆}={F}

Levels of Analysis:

2nd-Order Elastic: [Ke + Kg]{d∆}={dF}
1st-Order Inelastic: [Ke + Kp]{d∆}={dF}
2nd-Order Inelastic: [Ke + Kg + Kp]{d∆}={dF}
Critical Load: [Ke + λKg]{d∆}={0}

Yield Surface:
Function of P, Mmajor, and Mminor

1st-Order
Elastic

Lateral displacement, ∆

2nd-Order
Elastic

Elastic Stability LimitHes

Lateral
load,
H

Inelastic Limit Load
1st-Order
InelasticHp

H = αP

H = αP
∆

P

P

Elastic Critical Load

Inelastic Critical Load

Hec

Hic

2nd-Order
Inelastic

Inelastic Stability
Limit

His
Actual

MASTAN2

1st-Order
Elastic

ud (in.)

Load
Factor

First 
hingeSecond hinge

8783 (1st-Order)
8783 (2nd-Order)

14
1831

1665
1720

Mechanism Moments at Limit (in. kips)

Planar Frame: 2nd-Order
Elastic

2nd-Order
Inelastic

1st-Order
Inelastic

E = 29,000 ksi
σy = 36 ksi

Summary and Conclusions
Provided an introduction to nonlinear analysis
• Review of direct stiffness method
• Material nonlinear analysis (Inelastic hinge)
• Geometric nonlinear analysis (2nd-Order)
• 2nd-Order inelastic analysis (combine above)
• Critical load analysis (“eigenvalue analysis”) 
Nonlinear…think modifying member stiffness!
Overview and availability of MASTAN2
Now, its your turn to take it for a spin…
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Appendix
Several examples to try out
Solutions by MASTAN2
Need a reference text with many 
examples?  see Matrix Structural Analysis, 
2nd Ed., by McGuire, Gallagher, and Ziemian 
(Wiley, 2000)
See tutorial that comes with MASTAN2
OK, time to jump in and start driving…

<See Final Exam…>

Multi-story
Frame:

Demonstrate:
2nd-Order Inelastic Analysis
Non-proportional loading

Gravity Load

L
a

te
ra

l L
o

a
d

E = 29,000 ksi
σy = 36 ksi

P
0.5P

P
P
P
P
P
P
P

50 kips 25 kips25 kips

MASTAN2
Model:

Gravity Load

2nd-Order
Inelastic
Analysis:

P = 30 kips

2nd-Order
Inelastic
Analysis:

P = 37.7 kips

2nd-Order
Inelastic
Analysis:

Limit State:
Plim = 40.3 kips
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2nd-Order
Inelastic
Analysis: Post-limit State:

P = 40 kips
1st Plastic Hinge (P=30 kips)

2nd-Order
Inelastic
Analysis:

Strength Limit State (P=40.3 kips)

∆

All members:
A = 9.348×10-2 in2

I = 6.954 ×10-4 in4

E = 29,000 ksi

P = 100 lbs

20”

3 @ 20”

3P

3P

Truss (Hoff et al.):

Demonstrate:
Elastic Critical Load
2nd-Order Elastic
Experimental (Plimit=220 lbs)

MASTAN2
Model:

Elastic Critical Load:  Pcr = 210.7  lbs 2nd-Order Elastic:  Plim = 210  lbs
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Response
Curves:

Elastic Critical Load

2nd-Order Elastic

1st-Order
Elastic

P = 210 lbs Beam-Column:

Demonstrate:
Elastic Critical Load Analysis
1. Flexural Buckling (α=0.0)
2. Torsional Flexural Buckling

(α=0.04)

L = 24’

P
M = αPL

M = αPL

W24×76
E = 29,000 ksi

MASTAN2
Model:

Elastic Critical Load (α = 0.0)

Isometric View Elevation View Plan View

Elastic Critical Load Analysis (α = 0.04)

Isometric View Elevation View Plan View vmid (in.)

Load
Factor

Suspension System:

2nd-Order
Inelastic

1st-Order
Inelastic

A = 5.40 in2

σy = 150 ksi

A = 50 in2

I = 20,000 in4

Z = 1,000 in3

σy = 50 ksi

1.5

1

0.5

2

0
0 50 100 150 250200

1st-Order Inelastic

2nd-Order Inelastic

Hinge Formation


