

The function of a structural engineer is to design — not to analyze

Norris and Wilbur
1960

Analysis is a means to an end rather than the end itself.

Role of the analysis:

- forces, moments and deflections \Rightarrow design equations
- insight into the behavior of a structure
 better the understanding, better the design

Limit States Design:

Prior to limit of resistance, significant nonlinear response, including

- geometrical effects (P- Δ , P- δ)
- material effects (yielding, cracking, crushing)
- combined effects

Nonlinear Analysis

- Hand methods
 - · Second-order effects
 - i.e. Moment Amplification Factors (B1 and B2 factors)
 - · Material nonlinear effects
 - i.e. plastic analysis (upper and lower bound theories)
- * Computer Methods (focus of today's lecture)
 - Lots of variations
 - all use same basic concepts (most important to today)
 - one approach will be presented (basis for MASTAN2)
- * Please keep in mind
 - · All methods are approximate
 - · Not a substitute, but a complement to good engineering

Lecture Overview

- * Brief Introduction (done!)
- * Computer Structural Analysis (Review?)
- * Basis for Material Nonlinear Models
- * Incorporating Geometric Nonlinear Behavior
- Critical Load Analysis
- * Overview of MASTAN2 software
- * Summary and Concluding Remarks

How does the computer get these results?

- * State-of-the-Art Crystal Ball? Not quite.
- * By applying 2 requirements and 1 translator
 - · Two Requirements:
 - Equilibrium (equations in terms of F's and M's, 1 per d.o.f.)
 - Compatibility (equations in terms of Δ 's and θ 's, 1 per d.o.f.)
 - Translator "apples to oranges"
 - Constitutive Relationship (i.e. Hooke's Law, $\sigma = E \epsilon$)
 - Generalized to Force-to-Displacement (i.e. $F=k\Delta$)
 - Re-write equilibrium eqs. in terms of unknown displacements
- # of Equil. Eqs. = # of Unknown Displacements

Big Question:

Where do these known stiffness coefficients k's come from?

<u>Little Answer</u>

Function of member's material and geometric properties, including its orientation.

So, where are we at? * We have two equilibrium equations (1 per d.o.f.) in terms of a lot of displacements: $u_D: \ 40 = \left(k_{31}^{AD}u_A^{AD} + k_{32}^{AD}v_A^{AD} + k_{33}^{AD}u_D^{AD} + k_{34}^{AD}v_D^{AD}\right) + \left(k_{31}^{BD}u_B^{BD} + k_{32}^{BD}v_B^{BD} + k_{33}^{BD}u_D^{BD} + k_{34}^{BD}v_D^{BD}\right) + \left(k_{31}^{CD}u_C^{CD} + k_{32}^{CD}v_C^{CD} + k_{33}^{CD}u_D^{D} + k_{34}^{CD}v_D^{D}\right) + \left(k_{31}^{CD}u_C^{CD} + k_{32}^{CD}v_C^{CD} + k_{33}^{CD}u_D^{D} + k_{34}^{CD}v_D^{D}\right) + \left(k_{41}^{BD}u_A^{AD} + k_{44}^{AD}v_A^{AD} + k_{43}^{AD}u_D^{AD} + k_{44}^{AD}v_D^{D}\right) + \left(k_{41}^{BD}u_C^{BD} + k_{42}^{BD}v_B^{BD} + k_{43}^{BD}u_D^{D} + k_{44}^{BD}v_D^{D}\right) + \left(k_{41}^{CD}u_C^{CD} + k_{42}^{CD}v_C^{CD} + k_{43}^{CD}u_D^{CD} + k_{44}^{CD}v_D^{CD}\right)$ What card haven't we played yet?

Lot's of Questions

- So, this is how most commercial programs such as SAP2000, RISA, STAAD, etc. get the answer?
 - · Yes! Known as "Direct Stiffness Method"
- * So, all such programs will give the same answer?
 - Yes, as long as it is a static 1st-order elastic analysis.
- * Wait a minute...Is this the basic analysis procedure for the "finite element method"?
 - Yes! Bit more tricky to get k's, o's, and E's

Two Big Questions

- * Where do those stiffness coefficients come from?
 - You mean the ones that relate member end forces to member end displacements?
 - · Yeah, those k's! <More to come on this>
- * What happens when we go static nonlinear or even dynamic?
 - Same basic procedure, but apply loads in increments and perform a series of analyses. Then, sum incremental results.
 - < Much more to come on this! >

Important Points

- The only opportunity for most computer analysis software to model the actual behavior of the structure is through the member stiffness terms.
- * So, to include
 - first-order effects
 - · second-order effects
 - · material nonlinear behavior

Must modify member stiffness!!!

*Let's review member stiffness

Stiffness Coefficients, k's * Let's start with high school physics • Extension Spring Experiment Force Before: After: After: Displacement F = k \(\Delta \)

Stiffness Coefficients, k's (cont.) * More "advanced" high school physics lab • Rotational Spring Experiment * Before: * After: * After: * M = k θ

Analysis Review: Key Points

- $*$ Reviewed the "Direct Stiffness Method"
 - Equilibrium \rightarrow Translator $F(\Delta) \rightarrow Compatibility$
- Response of structure controlled by stiffness of members (a.k.a. springs)
- * First-order elastic stiffness of member function of:
 - · Material Property (E)
 - · Geometric Properties (A, I, L, and orientation)
- Time to go nonlinear...
 - let's begin with material nonlinear

Normal Stress: Structural Members

- * For typical structural steel members (L/d>10), elastic/inelastic behavior controlled by normal stresses o's acting along the length axis of the member.
- Normal stress produced by:
 - · Axial force (P/A)
 - Major and/or minor axis flexure (Mc/I)
 - · Combination of above effects (i.e. P/A + Mc/I)
 - Warping (not today!)
- We will assume elastic-perfectly-plastic material (often done for steel)

Types of inelastic models * We will employ a plastic hinge model • A.K.A. "Concentrated Plasticity" • Section is fully elastic or fully yielded • Plastic hinges only at element ends * Distributed plasticity (still line elements) • A.K.A. "Plastic Zone" • Captures gradual yielding through depth and along length • More accurate, but computationally more \$\$\$ * Finite element with continuum elements (\$\$\$)

Material Nonlinear Analysis

- * Employ "Direct Stiffness Method" applying loads in increments: $[K]\{d\Delta\} = \{dF\}$
- During the load increment, check to see if plastic hinge(s) form. If so, scale back load increment accordingly.
- Reduce stiffness of yielded members and continue load increments
 - k = k_{elastic} + k_{plastic} with k_{plastic} = plastic reduction
- * Continue to accumulate results of load increments until all of load is applied or a plastic mechanism forms.

Second-Order Effects A.K.A. "Geometric Nonlinear Behavior" Equilibrium Equations Reality: Should be formulated on deformed shape Difficulty: Deformed shape (deformations) is a function of the member forces, which are in turn a function of the deformations (Chicken 'n Egg)

<u>Remedy</u>: Perform a series of analyses with loads applied in small increments and update geometry after each load increment.

Geometric Nonlinear Analysis

- * At start of increment, modify member stiffness to account for presence of member forces (such as axial force):
 - $k = k_{elastic} + k_q$ with $k_q = geometric stiffness$
- * At end of increment, update model of structural geometry to include displacements
- * Continue to accumulate results of load increments $(\Delta_i = \Delta_{i-1} + d\Delta)$ and $f_i = f_{i-1} + df$ until all of load is applied or elastic instability is detected.

2nd-Order Inelastic Analysis

- * Employ "Direct Stiffness Method" applying loads in increments: Solve Equil. Eqs. $\{dF\} = [K]\{d\Delta\}$
- At start of increment, modify member stiffness to account for presence of member forces and any yielding:

$$k = k_{elastic} + k_{geometric} + k_{plastic}$$

- At end of increment, update model of structural geometry to include displacements
- * Continue to accumulate results of load increments $(\Delta_i = \Delta_{i-1} + d\Delta)$ and $f_i = f_{i-1} + df$ until all of load is applied or inelastic instability is detected.

Thoughts on Critical Load Analysis * Computer analysis for a large system: • First, apply reference and perform analysis - Solve equilibrium eqs. {F_{ref}} = [K]{Δ} - With displacements solve for member forces • Second, assemble [K_{el}] and [K_g] based on {F_{ref}} • Finally, determine load factor λ causing instability; computationally this means find load factor λ at which [K]=[K_{el}]+λ[K_g] becomes singular - Determine λ at which det([K_{el}]+λ[K_g) = 0 - "Eigenvalue" problem: Eigenvalues = Critical Load Factors, λ's Eigenvectors = Buckling modes * Accuracy increases with more elements per compression members (2 often adequate)

Basic Introduction Complete

- * Where do I go from here? (Learning to drive)
 - · Review the slides (Read the driver's manual)
 - · Acquire nonlinear software (Borrow a friend's car)
 - · Work lots of examples (Go for a drive, scary at first...)
 - Apply nonlinear analysis in design (NASCAR? not quite)

Acquire nonlinear analysis software

- Commercial programs
- · Educational software (i.e. MASTAN2)

MASTAN2:

- Educational software
- $-GUI \Leftrightarrow commercial programs$
- -Limited # of pre- and post-processing options to reduce learning curve
- Suite of linear and nonlinear 2D and 3D analysis routines
- Available with textbook or online at no cost

www.mastan2.com or www.aisc.org [Steel Tools]

Levels of Analysis: MASTAN2

1st-Order Elastic: $[K_e]{\Delta}={F}$

2nd-Order Elastic: $[K_e + K_g]{d\Delta} = {dF}$ 1st-Order Inelastic: $[K_e + K_p]{d\Delta} = {dF}$

 2^{nd} -Order Inelastic: $[K_e + K_q + K_p]{d\Delta}={dF}$

Critical Load: $[K_e + \lambda K_a] \{d\Delta\} = \{0\}$

Yield Surface:

Function of P, M_{major} , and M_{minor}

Summary and Conclusions

- Provided an introduction to nonlinear analysis
 - · Review of direct stiffness method
 - · Material nonlinear analysis (Inelastic hinge)
 - · Geometric nonlinear analysis (2nd-Order)
 - · 2nd-Order inelastic analysis (combine above)
 - Critical load analysis ("eigenvalue analysis")
- * Nonlinear...think modifying member stiffness!
- * Overview and availability of MASTAN2
- * Now, its your turn to take it for a spin...

Appendix * Several examples to try out * Solutions by MASTAN2 * Need a reference text with many examples? see Matrix Structural Analysis, 2nd Ed., by McGuire, Gallagher, and Ziemian (Wiley, 2000) * See tutorial that comes with MASTAN2 * OK, time to jump in and start driving... <See Final Exam...>

