AISC Live Webinars

Thank you for joining our live webinar today.
We will begin shortly. Please standby.

Thank you.

Need Help?
Call ReadyTalk Support: 800.843.9166

There's always a solution in steel.

AISC Live Webinars

Today's audio will be broadcast through the internet.
Alternatively, to hear the audio through the phone, dial 800.952.4629.
International callers, dial 00+1+212.231.2934.
For additional support, please press *0 and you will be connected to a live operator.

There's always a solution in steel.
AISC Live Webinars

Today's live webinar will begin shortly.
Please standby.
As a reminder, all lines have been muted. Please type any questions or comments through the Chat feature on the left portion of your screen.

Today's audio will be broadcast through the internet. Alternatively, to hear the audio through the phone, dial 800.952.4629. International callers, dial 00+1+212.231.2934. For additional support, please press *0 and you will be connected to a live operator.

High-Strength Bolts: The Basics

Presented by
Geoff Kulak, Ph.D.
Professor Emeritus at the University of Alberta

There's always a solution in steel.
High-Strength Bolts: The Basics

- Fundamentals and Behavior
- Specification Requirements (AISC 2010)

Role of the Structural Engineer...

- Selection of suitable bolt types and grades
- Design of the fasteners
- Responsibility for installation
- Responsibility for inspection
ASTM A307 Bolts

- often a good choice when loads are static
- strength level inferior to high-strength bolts (60 ksi tensile ult.)
- pretension indeterminate

ASTM A325 Bolts

- Type 1 or Type 3 (weathering steel)
- ASTM Spec. ↔ RCSC Spec.
- Minimum tensile strength: 120 ksi
- Pretension can be induced if desired
ASTM A490 Bolts

- Types 1 or Type 3 (weathering steel)
- Minimum tensile strength: 150 ksi, (maximum 170 ksi)
- ASTM Spec. ↔ RCSC Spec.
- Pretension can be induced if desired

Comparison of Bolts: Direct Tension

![Graph comparing bolt tension and elongation](image-url)
Comments…

• Note: we quote the ultimate tensile strength of the bolt
 – benchmark for strength statements (e.g. shear strength is some fraction of ultimate tensile strength)

• What about yield strength?

• What is “proof load”

...comments cont’d

• Nuts: ASTM A563

• Washers: if needed, ASTM F436

• Bolt – nut – washer sets implied so far, but other configurations available

• Bolt notation: Group A (A325, F1852) and Group B (A490, F2280)
Loading of Bolts

• Shear
 – load transfer by shear in bolt and bearing in connected material OR
 – load transfer by friction (followed by shear and bearing)

• Tension

• Combined Tension and Shear

Shear Loading

Truss Joint
Bolts Loaded in Tension

Bolts in Tension – prying

High-strength bolts in tension can be a source of problems
Bolts in combined tension and shear

Consider a simple joint —
Finally...

this force is equal and opposite to the bearing force shown previously
In the example, we identified...

- force in the bolt (a shear force)
- force that the bolt imposed on the plate (a bearing force)
- force in the plate itself (a tensile force)
- force transfer could also be by friction: not included in this illustration

AISC Standard 2010

- Parallel LRFD and ASD rules
- LRFD uses a resistance factor, ϕ
- ASD uses a safety factor, Ω
- Loads as appropriate:
 - factored loads for LRFD
 - non-factored loads for ASD
AISC Specification cont’d

LRFD: req’d strength LRFD \leq \phi(R_n)
ASD: req’d strength ASD \leq (R_n) / \Omega

Installation —

• Snug-tight only
• Pretensioned
 – Calibrated wrench
 – Turn-of-nut
 – Other means:
 ✓ Tension control bolts
 ✓ Load-indicator washers
Bolts in Shear: Issues

- Shear strength of bolt (single shear or double shear, threads in shear plane?)
- Bearing capacity of bolt (never governs)
- Bearing capacity of plate
- Tensile (comp.) capacity of plate
Slip in bolted joints...

- Can be as much as two hole clearances
- Some bolts will already be in bearing at start of loading
- Both laboratory tests and field measurements indicate that slip is more like \(\frac{1}{2} \) hole clearance

Bolts in shear-type connections:

Specifications include information for:
 - bearing type connections
 - slip-critical connections
Bearing-type connections:

- **Issues**
 - bolt shear strength
 - bearing capacity of connected material
 - member strength

- Shear strength of bolts is not dependent on presence or absence of pretension. (How come?)
Bolt Shear Strength

- Bolt shear strength ≈ 62% of bolt ultimate tensile strength (theory + tests)
 - Design rule takes 90% of this value
 - Threads in shear plane?
 - Long joint effect: another discount applied.
Physical test —

Uneven loading of bolts –

(End four bolts of 13)
Bolt Pretension v. Shear

- The bolt pretension is attained as a result of small axial elongations introduced as nut is turned on
- These small elongations are relieved as shear deformations and shear yielding take place
- Confirmed by both bolt tension measurements and shear strength tests
- So, bolt shear strength NOT dependent on pretension in the bolt.

Back to bolt in shear —

Shear strength of single bolt (tests) —

\[\tau = 0.62 \sigma_{u \text{ bolt}} \]
Bolts in Shear — AISC

\[\phi R_n = \phi F_{nv} A_b \]

\(\phi R_n \) = design shear strength

\(F_{nv} \) = nominal shear strength, ksi

nominal shear strength …

\[F_{nv} = 90\% (0.625 \times F_u) = 0.563 F_u \]

e.g. A325 bolt, no threads in shear plane, Group A: see tabulated value in Table J3.2

(0.563 ksi \(F_u = 0.563 \times 120 \text{ ksi} = 68 \text{ ksi} \))
and...

For threads included, the tabulated values are 80% of the above.

Comments...

- The discount for length (use of 90%) is conservative
- If joint length > 38 in., a further reduction, to 83%
- The ϕ – value used for this case (0.75) is conservative
Let’s return now to slip-critical connections...

Slip-Critical Connection

Clamping force from bolts (bolt pretension)

Load at which slip takes place will be a function of ...?
Bolts in slip-critical connections

- Load is repetitive and changes from tension to compression (fatigue by fretting could occur.)
- Change in geometry of structure would affect its performance.
- Certain other cases.
- **Comment:** for buildings, slip-critical joints should be the exception, not the rule (but, see also seismic rules)
First principles, slip resistance is —

\[P = k_s \ n \ \Sigma T_i \]

- \(k_s \) = slip coefficient (\(\mu \))
- \(n \) = number of slip planes (usually 1 or 2)
- \(T_i \) = clamping force (i.e., bolt pretension)

Design slip resistance, AISC

\[R_n = \mu \ D_u \ h_f \ T_b \ n_s \]

- \(\mu \) = slip coefficient
- \(D_u \) = clamping force
- \(n_s \) = no. slip planes

…terms \(h_f \) and \(D_u \) need to be defined and a value inserted for \(\varnothing \)
and the modifiers …

\[h_f = \text{modifier re fills} : \text{either 1.0 or 0.85} \]

\[\phi = 1.0 \text{ for std. holes and for short slots } \perp \]

\[= 0.85 \text{ for oversize and short slots parallel} \]

\[= 0.70 \text{ for long slotted holes} \]

\[D_u = 1.13, \text{ ratio of installed bolt tension to specified minimum bolt tension} \]

\[\mu = 0.30 \text{ clean mill scale, hot – dipped galvanized and roughened, etc. (Class A surfaces)} \]

\[\mu = 0.50 \text{ unpainted and blast – cleaned, etc. (Class B surfaces)} \]

A note for advanced readers!!

\[D_u \text{ is a statistical parameter that results in a probability of slip of 5% at the service load level when the joint is designed using factored loads.} \]

The resistance factor reflects the consequence of exceeding the “slip limit state.” As the consequence of slip gets more severe, the resistance factor is decreased.
Bolts in Tension

- **Capacity** of a bolt in tension: product of the ultimate tensile strength of the bolt and the tensile stress area of the bolt (i.e. $F_u A_{st}$)
- Specifications directly reflect this calculated capacity (...to come)
- **Force** in bolt must reflect any prying action effect

Bolts in Tension – some comments

- Preference: avoid joints that put bolts into tension, especially if fatigue is an issue
- Use A325 bolts rather than A490 bolts
- Minimize the prying action
Question...

• pretensioned bolt in a connection

• apply external tension force to the connection

• do the bolt pretension and the external tension add?

Bolt tension + external tension

1. Pretension the bolt → tension in the bolt, compression in the plates

2. Add external tension force on connection →
 • Bolt tension increases
 • Compression between plates decreases

Examine equilibrium and compatibility...
And the result is...

- The bolt force does increase, but not by very much ($\equiv 7\%$)
- This increase is accommodated within the design rule.

AISC rule, bolts in tension—

$$\phi R_n = \phi F_{nt} A_b$$

- ϕR_n = design tensile strength
- F_{nt} = nominal tensile strength
- A_b = bolt area for nominal diameter
What is nominal tensile strength, F_{nt}?

\[P_{ult} = F_u A_{st} = F_u (0.75 A_b) \]

or,

\[P_{ult} = 0.75 F_u A_b \]

Call this F_{nt}

So, the AISC rule for bolts in tension...

\[\phi R_n = \phi F_{nt} A_b \]

where $F_{nt} = 0.75 F_u$ as tabulated in the Specification

As we now know, the 0.75 really has nothing to do with F_u
Returning to shear splice joints, we still have to deal with the bearing capacity of the connected material.

Bearing capacity (of connected material)

Shear-out of a block of material or yielding
Bearing stresses at bolt holes...

Needed:
1. shear-out rule
2. yield rule (deformation)

Shear-out rule...

Shear-out is \(2 (\tau_{\text{ult}} \times L_c \times t)\)

or, \(R_n = 2 (0.75 \sigma_u \times L_c \times t)\)

and AISC rule is: \(R_n = 1.5 F_u L_c t\)
Plate bearing...

from tests: \[
\frac{\sigma_b}{\sigma_{pl}} = \frac{L_e}{d}
\]

..after some arithmetic \(R_n = \sigma_b \cdot d \cdot t = \sigma_{pl} \left(\frac{L_e}{d} \right) \cdot d \cdot t \)

valid for \(L_e \geq 3 \cdot d \)

Plate bearing...

Making the substitution and using

\(F_u \equiv \sigma_{pl} \)

\(R_n = 3 \cdot d \cdot t \cdot F_u \)
Finally, the AISC rule for plate bearing capacity is ...

\[R_n = 1.5 F_u L_c t \leq 3.0 d t F_u \]

(with a \(\phi \)-value still to be inserted)

Further note re bearing...

When deformation a consideration, use

\[R_n = 1.2 F_u L_c t \leq 2.4 d t F_u \]

Why this difference, and when do we use the latter? (value of \(\phi \) still to be applied)
Block shear rupture

Failure (ult. load) is by tensile fracture at location shown, regardless of geometric proportions.

Shear yield along vertical planes.

Failure is controlled by ductility – not strength.
Basics...

\[T_r + V_r = \phi A_{nt} F_u + 0.60 \phi A_{gv} F_y \]

where \(A_{nt} \) = net area in tension
and \(A_{gv} \) = gross area in shear

...and some other requirements, including specific case of coped beams, limit on shear

An example of shear + tension failure in a coped beam...
Back to installation…

Bearing-Type Connections—Installation of Bolts

• Bolts can be installed to “snug-tight condition — ordinary effort of worker using a spud wrench. (Pretension unknown, but usually small)
Installation —

-- bring parts together, continue turning nut, bolt elongates, tension develops in bolt, and clamped parts compress

1. Calibrated Wrench Installation

• Reliable relationship between torque and resultant bolt tension? NO ! (and forbidden by RCSC)

• Establish relationship by calibration of the installing wrench.
Hydraulic calibrator –

Calibrated wrench, cont’d

- Adjust wrench to stall or cut out at desired level of bolt pretension
- Target value of pretension (RCSC) is 1.05 times specified min. value
- Calibrate using at least three bolts
- Calibration is unique to bolt lot, length, diameter, grade of bolt
- Washers must be used
2. Turn-of-Nut Installation

- Run nut down, bring parts into close contact
- Work from stiffer regions to edges
- Establish “snug-tight” condition (first impact of impact wrench or full effort of worker using a spud wrench)
- Apply additional one-half turn (or other value, depending on bolt length)

Does this definition of snug-tight seem a little vague?

How influential is “snug-tight?”
Bolt Tension by Turning the Nut

specified minimum tension

bolt elongation (in.)

range of bolt elongations at snug

bolt elongation at one-half turn

There's always a solution in steel.
Inspection of Installation

• Principles:
 – Determination of the bolt pretension after installation is not practical
 – Understand the requirements e.g., are pretensioned bolts required?
 – Monitor the installation on the site
 – Proper storage of bolts is required

Inspection of Installation

• Is bolt tension required? — if not, why inspect for it!
• Know what calibration process is required and monitor it on the job site
• Observe the work in progress on a regular basis
Inspection of installation:

Consider the following AISC cases —

1. Bolts need be snug-tight only
2. Bolts are pretensioned (but not a slip-critical joint)
3. Slip-critical joint

Snug tight only req’d….

- Bearing-type connections
- Bolts in tension (A325 only)
 - only when no fatigue or vibration (bolt could loosen)
Inspection – **snug tight**

- Bolts, nuts, and washers (if any) must meet the requirements of the specifications
- Hole types (e.g., slotted, oversize) must meet specified requirements
- Contact surfaces are reasonably clean
- Parts are in close contact after bolts snugged
- All material within bolt grip must be steel

Inspection: if **pretensioned bolts** required...

- All of requirements for snug-tight case
- Observe the pre-installation verification process
 - turn of nut, or;
 - calibrated wrench, or;
 - other (direct tension washers, tension-control bolts)
- Calibration process done **minimum** once per day
- Calibration process done **any time** conditions change
Inspection: for slip-critical joints

• All of the above, plus
• Condition of faying surfaces, holes, etc.
• In addition to observing the calibration process, the inspection must ensure that the same process is applied to the field joints

An inspected joint (turn-of-nut)
and some other comments...

- Pretension values greater than those specified are not cause for rejection.

- Rotation tests are useful for short-grip bolts or coated fasteners (requirement is in ASTM A325 spec. and is for galvanized bolts)
Actual pretensions, cont’d

• For A325 bolts, turn-of-nut:
 – Average tensile strength exceeds spec. min. tensile by about 1.18
 – Average pretension force is 80% of actual tensile
 – Result is that actual bolt tension is about 35% greater than specified bolt tension

Actual pretensions, cont’d

• A325, ½ turn-of-nut: 35% increase
• A490, ½ turn-of-nut: 26% increase
• A325 and A490, calibrated wrench: 13% increase
• etc. for other cases

Note: these increased pretensions are embodied in the specification rules
Some other options for bolts —

Tension Control Bolts

ASTM F1852, F2280

region of constant torque

groove at which shear will take place
Tension control bolts....

• NOTE: evidence that tips have sheared off is not in itself evidence that desired pretension is present

• Consider limits:
 – Friction conditions are very high...
 – Friction conditions are very low...

• Hence, calibration is essential!

Tension-Control Bolts

• Advantages
 – Installation is from one side
 – Electric wrench is used
 – Installation is quiet

• Disadvantages
 – More expensive
 – Pre-installation calibration required
Direct tension indicators—

Protrusions formed in special washer
Protrusions compress as force in bolt is developed
Use feeler gage to measure gap (or refusal)
User must verify the process (like calibrated wrench)

Direct Tension Indicators

Protrusions formed in special washer
Protrusions compress as force in bolt is developed
Use feeler gage to measure gap (or refusal)
User must verify the process (like calibrated wrench)

ASTM 959
Reliability of these...

- Calibration required
- Reliability same as calibrated wrench
- Tension-control bolt is torque-dependent
- Load-indicating washer is elongation-dependent

Some additional topics …

- Details, other topics
 - washers (but not today!)
 - slotted or oversize holes (but not today!)
 - seismic design
Seismic design of connections

- Analyze structure in order to compute the forces
 - Use FEMA 350 and/or AISC Seismic Design Spec.
- With forces now known, design connectors
- Advisable to use pre-qualified configurations

Pre-qualified bolted connections

Note: some details not shown, e.g., continuity plates
All-bolted connection

...bolted joints, seismic design

• All bolts pretensioned
• Faying surfaces as per slip-critical
• Use bearing values for bolts
 – moderate quakes: no slip
 – major quakes: slip will occur and bolts go into bearing
• Normal holes or short slotted only (perpendicular)
• No bolts + welds in same faying surface
Seismic design, cont’d

• Non-ductile limit state in either member or connection must not govern.

• Calculate bolt shear strength as per bearing type but use $2.4 \, d \, t \, F_u$ bearing rule

• Must use expected yield and ultimate strengths, not the specified values

 e.g. A36 plate: use $1.3 \sigma_y$ spec.

It all started with rivets....
Design example: gusset plate connection

Determine ultimate load for this gusset plate (which is one that was tested)

\[F_y = 39.9 \text{ ksi} \]
\[F_u = 69.0 \text{ ksi} \]
7/8 A325 bolts (holes 15/16 in.)
\[P_{u\text{test}} = 164 \text{ kips (compression)} \]
Set out the issues…

• Brace force in tension
 – slip load of bolts (no slip at service load)
 – shear load of bolts
 – bearing capacity of plate
 – block shear

Continuing…

• Brace force in compression
 – slip capacity of bolts (already checked for load in tension)
 – shear capacity of bolts (already checked for load in tension)
 – bearing capacity of plate (already checked)
 – block shear (doesn’t apply)
 – capacity of gusset plate in compression (New)
Slip load (calculate at factored load level)

\[R_n = \mu D_u h_f T_b n_s \] (per bolt)

\[\mu = 0.30 \text{ (clean mill scale)} \quad h_f = 1.0 \text{ (no fills)} \]

\[A_b = \pi d^2 / 4 = 0.60 \text{ in.}^2 \text{ (7/8 in.dia.)} \]

\[F_u = 120 \text{ ksi (A325 bolts)} \]

\[n_s = 2 \text{ slip planes} \]

\[T_b = \text{spec. min. bolt pretension} = (0.75 \times A_b)(F_u)70\% \]

\[= 0.75 \times 0.60 \text{ in.}^2 \times 120 \text{ ksi} \times 70\% = 37.88 \text{ kips} \]

Slip load calculation cont’d.

\[R_n = \mu D_u h_f T_b N_s \] (per bolt)

\[= 0.30 \times 1.13 \times 1.0 \times 37.88 \text{ kip} \times 2 \text{ slip planes (std.holes)} : \]

\[= 25.68 \text{ kips / bolt} \]

or, for 8 bolts, (\(\phi = 1.0 \)); \(R_n = 205 \text{ kips} \)
Shear resistance of bolts

\[\phi R_n = \phi F_v A_b \]

Use \(\phi = 1.0 \) so that we can compare this load with the test load, assume threads in shear plane, no joint length effect

\[F_v = 90\% [0.62 \times 120 \text{ ksi}] = 68 \text{ ksi} \]

\[\phi R_n = 1.0 \times 68 \text{ ksi} \times 0.60 \text{ in.}^2 = 41.0 \text{ kips (per bolt)} \]

or, for 8 bolts, 2 shear planes, threads in shear plane

\[= (41.0 \times 8 \times 2) \text{kips} \times 0.80 = 525 \text{ kips} \]

Bearing resistance (use \(\phi = 1.0 \))

\[R_n = 1.5 F_u L_c t \leq 3.0 d t F_u \]

\[3 d t F_u = \]

\[3 \times 7/8 \text{ in.} \times 0.26 \text{ in.} \times 69.0 \text{ ksi} = 47.1 \text{ k/bolt} \]

\[1.5 L_c t F_u = \]

\[1.5 \times 1.53 \text{ in.} \times 0.26 \text{ in.} \times 69.0 \text{ ksi} = 41.2 \text{ k} \]
Bearing resistance...

...the governing value is 41.2 kips/bolt and, for 8 bolts—

Bearing resistance is 330 kips

Block shear

\[A_{nt} = (0.26)(2.68 - 15/16) = 0.45 \text{ in.}^2 \]

\[A_{gv} = (8.27 + 2.00)2 \times 0.26 = 5.34 \text{ in.}^2 \]

\[T_r + V_r = \phi A_{nt} F_u + 0.60 \phi A_{gv} F_y \]
Block shear, cont’d

\[T_r = 0.45 \text{ in.}^2 \times 69.0 \text{ ksi} = 31.0 \text{ kips} \]

\[V_r = 0.60 \times 5.34 \text{ in.}^2 \times 39.9 \text{ ksi} = 127.8 \text{ kips} \]

and the total block shear resistance (unfactored) is \((31 + 128) = 159 \text{ kips}\)

Brace force in compression:

issue is sway buckling in this region
Checking the buckling...

- Whitmore method (checks yield)
- Thornton method (checks buckling)
- Modified Thornton method (checks buckling)

Whitmore method....

- Use beam formulae to check perceived critical sections
- Use 30°, as shown to check yielding at location shown.
- Does not predict ultimate capacity very well, usually conservative but sometimes non-conservative
Thornton method...

- Use longest (or average) of L_1, L_2, L_3 to compute a buckling load on a unit width column, then apply this to the total width.
- Use $k = 0.65$ in the column formulae

Thornton method, modified

As per Thornton method but spread load out at 45°
Yam & Cheng gusset plate tests
(U of A, 13 tests)

<table>
<thead>
<tr>
<th></th>
<th>$\frac{P_u}{P_W}$</th>
<th>$\frac{P_u}{P_T}$</th>
<th>$\frac{P_u}{P_{T'}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>1.33</td>
<td>1.67</td>
<td>1.06</td>
</tr>
<tr>
<td>std. dev.</td>
<td>0.26</td>
<td>0.12</td>
<td>0.08</td>
</tr>
</tbody>
</table>

we’ll use this method

Calculations for buckling capacity:

Using scale dwg.
$L_2 = 9.65$ in.

Width of the 45° base is 19.2 in.

$\phi_c P_n = \phi_c A_g F_{cr}$ (use $\phi_c = 1.0$)

$F_{cr} = (0.658 \frac{F_y}{F_c}) F_y$
use $k = 0.65$
Consider a 1 in. wide strip that is 9.65 in. long

\[r = \sqrt{\frac{1}{A}} = \sqrt{\frac{1 \times 1 \times 0.26^3}{0.26 \times 1}} = 0.0751 \text{ in.} \]

and then completing the calculations, \(P_n = 6.91 \text{ kips} \) (on a 1 in. wide strip)

And applying this to the total width...

\[P_u = (6.91 \text{ k/in.}) (19.2 \text{ in.}) = 132 \text{ kips} \]

and the test ultimate load on this particular specimen was 164 kips

so, \(P_u / P_T' = 1.23 \)

(The corresponding ratios for Whitmore and Thornton for this specimen were 1.31 and 1.80)
Summary of our calculations

<table>
<thead>
<tr>
<th>Brace Force</th>
<th>slip load</th>
<th>bolt shear</th>
<th>plate bearing</th>
<th>block shear</th>
<th>buckling load</th>
<th>test load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension</td>
<td>205</td>
<td>525</td>
<td>330</td>
<td>159</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Compress.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>132</td>
<td>164</td>
</tr>
</tbody>
</table>

Some references —

Load and Resistance Factor Design Specification for Structural Joints Using ASTM A325 or A490 Bolts, Research Council on Structural Connections, 2004 (RCSC) (free download available at boltcouncil.org)
References, cont’d.

Thank You!

Please give us your feedback!

www.aisc.org/cesurvey
AISC Seminars
2011 Spring Schedule – 6 seminar topics coming to 26 cities

Upcoming Cities for April:
Detroit – Houston – Denver

Upcoming Cities for May:
St. Louis – Boston - Miami
Philadelphia – Sacramento

www.aisc.org/seminars

AISC Seminars
2nd Thursday of the month

• No webinar in May
• June 9, 2011: Extended Shear Plate Connections – Larry Muir
• July 14, 2011: Design For Stability – Lou Geschwindner

www.aisc.org/webinars
AISC eLearning

Over 60 hours of presentations available anytime, online.

CEUs/PDHs are available.

www.aisc.org/elearning

AISC SteelCamp

2 day, 4 topics, 15 hours of Continuing Education, One low price.

New York City – June 16-17
San Francisco – July 21-22

www.aisc.org/steelcamp