

Conference ID: 21794928

THE HISTORY OF THE AISC SPECIFICATION 1923 - 2010

BY TED GALAMBOS

STANDARD SPECIFICATION	
AMERICAN INSTITUTE	THE AUTHORS:
DESIGN, FABRICATION, AND	Two professors
STRUCTURAL STEEL	George F. Swain, HARVARD U.
BUILDINGS	Milo S. Ketchum, U of ILLINOIS
June 1st, 1923	Two structural engineers
COMPILED BY	W. J. Thomas, NY City
George F. Steain —M. Am. Soc. C. E.—M. Am. Soc. M. E.—M. Inst. C. E.—M. A. R. E. A.— Past President A. S. C. E.—Professor of Civil Engineering, Harvard Uni- versity.	Wilbur J. Watson, Cleveland
Milo S. Ketchum-M. Am. Soc. C. EM. A. R. E. A Dean of the College of Engineering, and Director of the Engineering Experiment Station of the University	One architect
of Illinois, E. R. Graham	E. R. Graham, Chicago
W. J. Thomas — M. Am. Soc. C. E. — Chief Engineer, Geo. B. Post & Sons, Architects, New York.	
Wilbur J. Watson-M. Am. Soc. C. EM. A. R. E. A President, Watson Engineering Com- pany, Cleveland, Ohio.	Note: All previous editions of the AISC
Note: Handbooks are being prepared based upon the conditions of this Specification.	Website as free downloads for members
Price 25 cents	16

18

THE 1923 AISC SPECIFICATION IS A TRUE PERFORMANCE-BASED SPECIFICATION!

- "To obtain a satisfactory structure, the following major requirements must be fulfilled"
- (a) "The material used must be suitable, of uniform quality, and without defects affecting the strength or service of the structure"
- (e) "The computations and the design must be properly made so that the unit stresses specified shall not be exceeded, and the structure and its details shall possess the requisite strength and rigidity"

MAJOR HEADINGS IN THE 1923 AISC SPECIFICATION

- 4. Loading
- 5. Allowable stresses
- 7. Beams and girders
- 9. Eccentric Loading
- 10. Combined stresses
- 13. Rivets and bolts
- 15. Connections
- 16. Lattice
- 18. Minimum thickness
- 22. Erection
- 23. Inspection

Year of	Specification	Commentary	Committee
Adoption	Pages	Pages	Members
1923	11	0	5
1936	19	0	?
1949	30	0	?
1963	44	46	26
1969	103	44	36
1978	93	68	43
1989	83	68	43
1986	91	66	42
1993	110	92	46
1999	124	113	46
2005	196	231	40
2010	329	311	46

STEEL FOR AISC SPECIFICATIONS Last Year of Serial Designation Tensile Strength, Yield point Adoption F_u 1929 $F_u/2 \ll 30$ ksi 55-65 ksi **ASTM A9-29 ASTM A9-36** 60-72 ksi $F_u/2 \ll 33ksi$ 1936 $F_u/2 \ll 33ksi$ 1946 **ASTM A7-46** 60-72 ksi In 1963 there were choices of available steels: ASTM A7, A373, A36, A440, A441, A242!!!! F_v from 33 to 50 ksi !!!! WOW! 26

DECISION OF LATERAL-TORSIONAL BUCKLING RULESJEACT OF COLSPANE OF

COMBINED STRESS INTERACTION EQUATIONS
$f_a + f_b \le MIN(F_a, F_b) \qquad \underline{1923}$
$\frac{f_a}{F_a} + \frac{f_b}{F_b} \le 1 \qquad \frac{1936, \ 1849}{1849}$
$\frac{f_{a}}{F_{a}} + \frac{f_{b}}{F_{b}} \le 1 if \frac{f_{a}}{F_{a}} \le 0.15 $ <u>1961,1963</u>
$\left\{ \frac{f_a}{F_a} + \frac{C_m f_b}{\left(1 - \frac{f_a}{F_e'}\right) F_b} \le 1 \text{ and } \frac{f_a}{0.6F_y} + \frac{f_b}{F_b} \le 1 \right\} if \frac{f_a}{F_a} > 0.15$

	WIDTH-THICKNESS LIMITS FOR SLENDER CROSS SECTIONS	
1923	b/t=12 limit for beam flanges	
1936	b/t=12 limit for angle legs	
	b/t=16 limit for other unstiffened elements	
	h/t=40 limit for stiffened elements	
1949	Same limits as in 1936, but if limits are exceeded, lop off the excess in calculating stress	
1963	Same criteria for limits as in 1949, but expressed as a function of the square root of $F_{y.}$	
1969	Stress reduction factors Q_s and effective widths b_e are introduced for unstiffened and stiffened elements	

TOPIC	1923	1936	1949	1963	1969	1978	1989
1/3 increase of stress for wind	x	x	x	x	x	x	x
Fatigue		x	x	x	x	x	x
Plastic Design				x	x	x	x
Moment Redistribution				x	x	x	x
Types of construction				x	x	x	x
Ponding					x	x	x
Vibration					x	x	x
Deflection				x	x	x	x
Web-tapered members						x	x
Hybrid airders					x	x	

TOPIC	1923	1936	1949	1963	1969	1978	1989
Composite beams				x	x	x	x
Encased beams		x	x	x	x	x	x
Incomplete composite action					x	x	x
Metal deck on composite beam						x	x
Welding			x	x	x	x	x
A325 HS bolts			x	x	x	x	x
A490 HS bolts					x	x	x
Friction connections					x	x	x
Combined rivets (bolts) & welds			x	x	x	x	x
Web crippling, etc.			x	x	x	x	x

TOPIC	1923	1936	1949	1963	1969	1978	1989
Plate girders, riveted	x	x	х				
Plate girders, tension field action				x	x	x	x
Shear-flexure interaction				x	x	х	x
Table of compactness limits							x
Block shear							x
Flexural-torsional buckling							x
F _b =0.66F _y for beams				х	x	x	x
Slender plates in columns, Q-factor					x	x	x
Effective length factor for frame stability				x	x	x	x
C factor for beams				х	x	x	x

© Copyright 2016 American Institute of Steel Construction

- INDUSTRY
- Composite design
- Stud shear connectors
- High strength bolts
- Welding
- Welded connections
- Bolted connections
- Many steel grades
- High-Performance steels
- etc

- <u>ACADEMIA</u>
- Plastic design
- Stability criteria
- Computer methods
- Direct design
- Bracing rules
- Plate girder design

- Ponding
- Fatigue
- Fracture
- etc

TREMENDOUS CHANGES AFTER WWII

48

EXAMPLE OF INDUSTRY INITIATED PRACTICE

- <u>COMPOSITE BEAMS</u>
- FIRST STRUCTURES ~1935
- RESEARCH AT ILLINOIS AND LEHIGH 1950s
- AASHO ROAD TEST BRIDGES 1959-61
- BOOK BY VIEST, FOUNTAIN, SINGLETON, 1958
- First in AASHO Standard 1957
- First in AISC Specification 1963
- Continuous research up to this date and beyond

EXAMPLE OF RESEARCH INITIATED PRACTICE

- <u>PLASTIC DESIGN AND INELASTIC</u> <u>INSTABILITY</u>
- Realization around 100 years ago: there is life beyond the elastic limit.
- Column experiments by Engesser (~1890s)
- First tests of plastic mechanism (1914, Budapest)
- Tests, theory and practice (John Baker, 1930s and 1940s)

FROM: L. H. Gillette, (1980), "The First 60 Years, American Institute of Steel Construction, 1921-1980", AISC

During the Year [1949], the AISC supported work at Lehigh University dealing with the ultimate strength of welded rigid frames figured prominently in technical discussions at a symposium on plasticity sponsored by the Navy. Professor J. F. Baker, whose work at Cambridge University in England supplemented Lehigh's, visited the United States. He provided members of the Welding Research Council (WRC) and staff members of Lehigh University the opportunity to exchange notes. His visit led to a correlation of the programs at Cambridge and Lehigh".

Major sponsors of research on plastic design: AISC, AISI, USN, WRC, NSF

49

PLASTIC DESIGN AT LEHIGH 1950s-1970s

- Plastic design leads to a better understanding of behavior under load, and it gives economy
- Inelastic stability is much more difficult than elastic stability: research had to proceed on both fronts.
- Theory alone was not enough: testing had to be integral part of the development
- Research was not enough: results must be directed to usefulness in practice.

50

PLASTIC DESIGN RESEARCH RESULTS

- Continuous beam and frame design
- Column formulas
- Interaction equations for beam-columns
- Connection design rules (welded and bolted joints)
- Multi-story design methods
- Post-buckling strength of plate girders is recognized
- Many applications in seismic design
- Applications in bridge design
- SEISMIC DESIGN
- Etc.

<image><image><section-header><image><page-footer>

STABILITY LIMITS IN AISC

- ELEMENT STABILITY:
- LOCAL BUCKLING
- Width- thickness limits
- Compact
- Non-compact
- Slender

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

- FRAME STABILITY
- Effective length

- 1923-1963: ALLOWABLE STRESS DESIGN, *F*_{allowable} >= f_{required}, *F*_b=0.6*F*_y
- 1963-1989: LIMIT DESIGN DISGUISED IN ASD FORMAT, F_b=0.66F_v
- 1986-FORSEEABLE FUTURE: LOAD AND RESISTANCE FACTOR DESIGN, MULTIPLE LOAD FACTORS AND RESISTANCE FACTORS

<section-header><section-header><image><page-footer><page-footer>

