

			11· C	Genera	al Pro	ovisions	
TABLE I1.1a							
	Limiting Width-to-Thickness Ratios for Compression Steel Elements in						
Composite Members Subject to Axial Compression							
	For Use with Section 12.2						
	Element	Thickness Ratio	∧ _р Compact/ Noncompact	۸r Noncompact/ Slender	Permitted		
	Walls of rectangular HSS and boxes of uniform thickness	b/t	$2.26\sqrt{\frac{E}{F_y}}$	$3.00 \sqrt{\frac{E}{F_{y}}}$	5.00 $\sqrt{\frac{E}{F_y}}$		
	Round HSS	D/t	0.15 <i>E/F_y</i>	0.19 <i>E</i> / <i>F_y</i>	0.31 <i>E/F_y</i>		
	TABLE 11.1b Limiting Width-Thickness Ratios for Compression Steel Elements in Composite Members Subject to Flexure For Use with Section 13.4						
l	Description of Element	Width- Thickness Ratio	λ _p Compact/ Noncompact	λ _r Noncompact/ Slender	Maximum Permitted		
	Flanges of rectangular HSS and boxes of uniform thickness	b/t	$2.26\sqrt{\frac{E}{F_y}}$	$3.00 \sqrt{\frac{E}{F_y}}$	5.00 $\sqrt{\frac{E}{F_y}}$		
	Webs of rectangular HSS and boxes of uniform	h/t	$3.00 \sqrt{\frac{E}{F_y}}$	5.70 $\sqrt{\frac{E}{F_y}}$	5.70 $\sqrt{\frac{E}{F_y}}$		
	Round HSS	D/t	0.09 E/F _y	0.31 <i>E/F_y</i>	0.31 <i>E</i> / <i>F</i> _y	40	
Inere's	aiways a suluu	UII III SLEEI.				10	

			I1: C	Senera	al Pro	ovisions	
TABLE I1.1a Limiting Width-to-Thickness Ratios for Compression Steel Elements in Composite Members Subject to Axial Compression For Use with Section I2.2							
	Description of Element	Width-to- Thickness Ratio	λ _ρ Compact/ Noncompact	λ _r Noncompact/ Slender	Maximum Permitted		
	Walls of rectangular HSS and boxes of uniform thickness	blt	$2.26\sqrt{\frac{E}{F_y}}$	$3.00 \sqrt{\frac{E}{F_y}}$	$5.00 \sqrt{\frac{E}{F_y}}$		
	Round HSS	D/t	0.15 E/F _y	0.19 E/F _y	0.31 E/Fy		
104 131 214 TABLE I1.1b Limiting Width-Thickness Ratios for Compression Steel Elements in Composite Members Subject to Flexure For Use with Section I3.4							
	Element	Thickness Ratio	λ _p Compact/ Noncompact	λ _r Noncompact/ Slender	Permitted		
	Flanges of rectangular HSS and boxes of uniform thickness	b/t	$2.26 \sqrt{\frac{E}{F_y}}$	$3.00 \sqrt{\frac{E}{F_y}}$	$5.00 \sqrt{\frac{E}{F_y}}$		
	Webs of rectangular HSS and boxes of uniform thickness	hlt	$3.00 \sqrt{\frac{E}{F_y}}$	5.70 $\sqrt{\frac{E}{F_y}}$	5.70 $\sqrt{\frac{E}{F_y}}$		
There's	Round HSS		0.09 <i>E</i> / <i>F</i> _y	0.31 <i>E</i> / <i>F</i> _y	0.31 <i>E</i> / <i>F</i> _y	41	
	,						

]	3: Flexure - Filled				
b ₁ =B-21 _w	STEEL STRESS	CONCRETE RESULTANT <u>STRESS</u> <u>FORCES</u>				
T	Fr a b c c c c c c c c c c c c c	0.70 F_{c} G_{2} G_{2} G_{2} G_{2} G_{2} G_{2} G_{3}				
Component	Force	Moment arm				
Compression in steel flange	$C_1 = F_y b_i t_f$	$y_{c1} = a_y - \frac{t_f}{2}$				
Compression in concrete	$C_2 = 0.35 f_c' \left(a_y - t_f \right) b_i$	$y_{c_2} = \frac{2(a_y - t_y)}{3}$				
Compression in stee1 web	$C_3 = F_y a_y t_w$	$y_{C3} = \frac{2a_y}{3}$				
Tension in steel web	$T_1 = F_y a_y t_w$ $T_2 = 2F_y \left(H - 2a_y\right) t_w$	$y_{r1} = \frac{2a_{r1}}{3}$ $y_{r2} = \frac{H}{2}$				
Tension in steel flange	$T_3 = F_y b_i t_f$	$y_{T3} = H - a_y - \frac{t_f}{2}$				
where: $a_{j} = \frac{2F_{j}Hu_{+} + 0.35f_{j}^{t}b_{t}}{4F_{j}t_{+} + 0.35f_{j}^{t}b_{j}}$ $M_{j} = \sum (\text{force })(\text{moment arm})$						
Noncomp There's always a solution in s	act (at steel.	Transition) 68				

Copyright \bigcirc 2011 by The American Institute of Steel Construction

Copyright \bigcirc 2011 by The American Institute of Steel Construction

I6: Load Transfer

101

• Force Allocation Requirement:

The applied external forces shall be distributed within the composite section based on the same ratio of steel section strength to reinforced concrete section strength as represented by the plastic capacity model.

There's always a solution in steel.

I6: Load Transfer • Plastic Model Encased Composite Columns $P_{no} = A_s F_y + A_{sr} F_{ysr} + 0.85 A_c f'_c$ (Eq. 12-4) • The formula of the second second

Copyright \bigcirc 2011 by The American Institute of Steel Construction

	I8:	Steel Anchors
• Tension an	d Interaction	
Loading Condition	Normal Weight	Lightweight Concrete
Shear	h/d = 5	h/d=7
Tension	h/d = 8	h/d = 10
Shear+Tension	h/d = 8	N/A ⁺
 h/d = ratio of steel headed stud anchor shank length to the top of the stud head, to shank diameter * Refer to ACI 318 Appendix D for the calculation of interaction effects of anchors embedded in lightweight concrete. 		
There's always a soluti	131	

Why Update? 2005 Design Examples • I-1: Composite Beam Design • I-2: Filled Composite Column in Axial Compression • I-3: Encased Composite Column in Axial Compression • I-4: Encased Composite Column in Axial Tension • I-5: Filled Composite Column in Axial Tension • I-6: Filled Composite Member Design for Shear • I-7: Combined Axial and Flexural Strength (Encased)

137

Why Update?

139

- I-1: Composite Beam Design
- I-2: Composite Girder Design
- I-3: Concrete Filled Member Force Allocation/Load Transfer
- I-4: Concrete Filled Member in Axial Compression
- I-5: Concrete Filled Member in Axial Tension
- I-6: Concrete Filled Member with Combined Loading
- I-7: Concrete Filled Box Column with Noncompact/Slender Elem.
- I-8: Encased Composite Member Force Allocation/Load Transfer
- I-9: Encased Composite Member in Axial Compression
- I-10: Encased Composite Member in Axial Tension
- I-11: Encased Composite Member with Combined Loading
- I-12: Steel Anchors in Composite Components

There's always a solution in steel.

<text><list-item><list-item><list-item><list-item><table-container>

141

- I-1: Composite Beam Design
- I-2: Composite Girder Design
- I-3: Concrete Filled Member Force Allocation/Load Transfer
- I-4: Concrete Filled Member in Axial Compression
- I-5: Concrete Filled Member in Axial Tension
- I-6: Concrete Filled Member with Combined Loading
- I-7: Concrete Filled Box Column with Noncompact/Slender Elem.
- I-8: Encased Composite Member Force Allocation/Load Transfer
- I-9: Encased Composite Member in Axial Compression
- I-10: Encased Composite Member in Axial Tension
- I-11: Encased Composite Member with Combined Loading
- I-12: Steel Anchors in Composite Components

There's always a solution in steel.

<text><list-item><list-item><list-item><table-container>

Copyright \bigcirc 2011 by The American Institute of Steel Construction

			Load Transfer
• Shear Connection			
Use I8.3 – Steel Anchors in Composite Components			
	Loading Condition	Normal Weight Concrete	Lightweight Concrete
	Shear	h/d = 5	h/d=7
	Tension	h/d = 8	h/d = 10
	Shear+Tension	h/d = 8	N/A ⁺
	 h/d = ratio of steel headed stud anchor shank length to the top of the stud head, to shank diameter * Refer to ACI 318 Appendix D for the calculation of interaction effects of anchors embedded in lightweight concrete. 		
$Q_{nv} = F_u A_{sa}$ $\Phi_{nv} = 0.65$			
	There's always a solution in steel.		

Copyright \bigcirc 2011 by The American Institute of Steel Construction

