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Introduction 
Buildings and the structural systems that support them have evolved, as have the 
requirements and practices upon which their design and construction are based. The 
treatment of stability effects has varied significantly through the history of (and before) 
the AISC Specification. Despite differences in the provisions in AISC Specifications of 
differing eras, it can be generalized that stability effects are addressed in all AISC 
Specifications in some combination of three features in the AISC Specification: the 
column buckling equation(s), the compression and flexure interaction equation(s), and the 
analysis requirements. 
 
In this paper, the evolution of stability analysis and design provisions will be traced 
through observation of the changes made in these three areas up to the most current 
requirements: those included in the 2005 and 2010 versions of AISC 360 Specification 
for Structural Steel Buildings (AISC, 2005; AISC, 2010). These historical developments 
will be summarized by time period as follows: 
 

1. Before the AISC Specification Existed 
2. The First AISC Specification – 1923 
3. Developments Leading to the 1963 AISC Specification 
4. Refinements in Allowable Stress Design (1969 through 1989) 
5. Load and Resistance Factor Design (1986 through 1999) 
6. The 2005 and 2010 AISC Specifications 

 
Additionally, the influence of changing characteristics of buildings and the structures 
supporting them will be summarized. 
 
A frame of reference is needed to make more sense out of the historical developments as 
they are reviewed. The best frame of reference may be the current state-of-the-art, which 
can be found in Chapter C and Appendix 7 in the 2005 AISC Specification, and Chapter 
C and Appendices 7 and 8 in the 2010 AISC Specification. A detailed discussion is 
available in the corresponding Commentary sections, but for the purposes of this paper it 
is sufficient to review the list provided in Section C1.1 of factors that must be accounted 
for in stability analysis and design: 
 

1. Flexural, shear, and axial deformations – these are the member deformations and 
all other component and connection deformations that contribute to displacements 
of the structure; 
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2. Second-order effects – these are the increases that occur in forces and moments 
due to displacements of the structure induced by the loads, including both P- 
effects (displacements of points of intersection of members) and  P- effects 
(deformations of the members between points of intersection); 

3. Geometric imperfections – these are the initial out-of-plumbness of the structure 
and the initial out-of-straightness of the members; 

4. Stiffness reductions due to inelasticity – these are the effects of residual stresses; 
and, 

5. Variability in component and system stiffness – these are the effects of variations 
in material and cross-sectional properties of members, as well as the other effects 
generally accounted for in the resistance factors (LRFD) and safety factors 
(ASD). 

 
As will be explained in greater detail when the 2005 and 2010 AISC Specification are 
discussed, these factors combine to affect both the demand side (the analysis results) and 
the strength side (the member strength equations). It will also be highlighted throughout 
the review of historical developments which of these effects were considered and which 
were not. 
 
Griffis and White (2013) provide an excellent compilation of current state-of-the-art for 
stability analysis and design. In preparing that publication, the history of column design, 
interaction, and stability was explored. That work is used extensively in this paper, and 
credited as Griffis and White (2008) because it was not included in the final manuscript 
of Griffis and White (2013) 
 
Before the AISC Specification Existed 
Griffis and White (2008) provide an excellent summary of stability-related developments 
in the pre-1923 era, including some of the very early developments: 
 

“While columns and frames have been in use for many centuries, it was not until 
1729 that van Musschenbroek published the first paper concerning the strength of 
columns (Salmon, 1921). An empirical column curve was presented for a rectangular 
column taking the form, 
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where P is the column strength, b and d are the column width and depth, respectively, 
L is the column length, and k is an empirical factor. Interestingly, this equation has 
remarkable similarity to those still in use today. 
 
In 1759, Euler published his now famous treatise on the buckling of columns 
(Salmon, 1921). The original buckling load determined by Euler was for a column 
with one end fixed and the other free – a flagpole column. His equation took the form, 
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where P is the buckling strength, L is the column length, and the constant C is the 
“absolute elasticity”, which was defined as depending on the elastic properties of the 
material. Euler was the first to recognize that column strength could also be a 
problem of stability and not just a matter of crushing the material. Euler investigated 
the purely elastic phenomenon of buckling. 
 
We know today that elastic instability of columns occurs only with very slender 
columns, and the theories that define inelastic column strength began to emerge over 
a century after the above developments in elasticity. Engesser published his tangent 
modulus theory in 1889, and followed this in 1895 with a revised theory called the 
reduced modulus theory. 
 
The reduced modulus theory of inelastic buckling was accepted as the correct 
buckling theory until 1947 when Shanley published a paper giving the buckling load 
of a centrally loaded column as the tangent modulus load (Beedle, 1964). The critical 
buckling stress was given by the equation, 
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Et is the tangent modulus of the stress-strain relationship of the material at the critical 
stress. Indeed, in 1924 the forerunner to the Column Research Council declared this 
tangent modulus equation as the proper basis for establishing column load formulas 
(Beedle, 1964). 
 
The first discussion on problems of the stability of members that were part of 
rectangular frames came in 1893 by Engesser (Timoshenko and Gere, 1961). Yet it 
would not be understood until the late 1940s that the key to the tangent modulus 
concept for steel column buckling was the inclusion of the effects of residual stresses 
that existed in the cross-section of the column even before the application of external 
load.” 

 
Regarding the five factors that influence stability, it is not surprising that few of them 
were explicitly addressed. Implicitly, however, there were compensating factors that 
explain why buildings rarely experienced problems with stability. Workmanship 
requirements for materials, fabrication, and erection, the customary use of heavy masonry 
infill details that added uncalculated strength and stiffness, and the factors of safety used 
probably served to manage P- and P- effects, member, component, and connection 
deformations, and the effects of geometric imperfections in the erected structure. 
Analysis methods of this era were also conservative by nature, and although the term 
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“skyscraper” had come into existence, it described buildings that were on the order of 10 
stories tall. 
 
It is interesting that the concept that would come to be known as effective length and 
consideration of the impact of residual stresses date as far back as these works. 
Nonetheless, the state of knowledge was focused on the column buckling equation. 
Recognition had not yet been made of the role of combined compression and flexure in 
column behavior; nor had the relationship between stability effects and analysis been 
realized. 
 
The First AISC Specification – 1923 
In 1923, AISC published the work upon which five eminent engineers collaborated – the 
Specification of the American Institute of Steel Construction, Inc. for the Design 
Fabrication, and Erection of Structural Steel for Buildings (AISC, 1923). Their 
deliberations resulted in nine pages of text in a document that was proposed for 
acceptance by the engineering community and steel construction industry. We know 
today that this document became the cornerstone upon which all else since has been built. 
 
The allowable stress for column buckling was given as:  
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where l is the unsupported length of the column and r is the corresponding least radius of 
gyration of the section. Thus, the 15,000 psi allowable plateau applied for values of l/r up 
to 60 and the parabolic formulation controlled thereafter. It was also allowed for “short 
lengths or where lateral deflection is prevented” to use Fa = 18,000 psi. 
 
Consideration of the combination of stresses was required, but the basis of the 
requirements was fairly crude: “Members subject to both direct and bending stresses shall 
be so proportioned that the greatest combined stresses shall not exceed the allowed 
limits.” There was no mention of second-order effects, amplification factors, effective 
length factors, or overall frame behavior (Griffis and White, 2008). Thus, it remained in 
this period that the impact of stability on interaction and analysis had not been 
recognized. 
 
Regarding the five factors that influence stability, it continued that few of them were 
explicitly addressed. However, for most buildings, the aforementioned implicit 
compensating factors continued to exist as well, albeit with one important exception. 
Such landmark structures as the Empire State Building, Manhattan Tower, and Chrysler 
Building were being designed to rise to heights approaching and exceeding 1,000 ft 
despite a continuing lack of clear understanding of system buckling, secondary effects in 
frames, and effective length factors (Griffis and White, 2013). Certainly the 
compensating factors were now beginning to be tested. 
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It is also interesting to note how performance-oriented some of the text was in those 
original nine pages: 
 

1. The writers commented to the reader in their introduction that “The question of 
design is all-important. It necessarily presupposes that the design is good, made 
by and executed under the supervision of competent structural engineers; that 
proper provision is made for secondary stresses, excentric [sic] loads, unequal 
distribution of stresses on rivets, etc.; that the details are suitable and that the 
workmanship is high grade.”. 

2. Section 2 included general requirements that “To obtain a satisfactory structure, 
the following major requirements must be fulfilled. (a) The material used must be 
suitable, of uniform quality, and without defects affecting the strength or service 
of the structure. (b) Proper loads and conditions must be assumed in the design. 
(c) The unit stresses must be suitable for the material used. (d) The workmanship 
must be good, so that defects or injuries are not produced in the manufacture. (e) 
The computations and design must be properly made so that the unit stresses 
specified shall not be exceeded, and the structure and its details shall possess the 
requisite strength and rigidity. 

3. Section 9 repeated that “Full provision shall be made for stresses caused by 
excentric [sic] loads.” 

4. Section 22(a) required that “The frame of all steel skeleton buildings shall be 
carried up true and plumb, …”. The first AISC Code of Standard Practice, which 
was also a proposed standard when first published by AISC in 1924, established 
this as no greater than 1/500 for interior columns nor 1/1000 for exterior columns. 

 
Some of these requirements may have been intended to mitigate the effects of stability, 
but the effectiveness in doing so probably related more to the use of traditional 
techniques than any meaning that might have been taken from these general statements. 
 
Developments Leading to the 1963 AISC Specification 
After the first AISC Specification was published in 1923, several revisions were issued 
up to and including the 1963 AISC Specification. This period was a time of growth in 
both knowledge and application, but treatment of stability evolved at a much slower pace. 
Griffis and White (2008) summarize this as follows: 
 

“By the 1936 AISC Specification, column design was based upon the following 
equations: 
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 For l/r ≥ 120 
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Considerable research was undertaken in the late 1940s and 1950s studying the 
influence of residual stresses and other factors such as initial out-of-straightness, 
eccentricity of load, end fixity, transverse loads and the effect of local and lateral 
buckling on column strength. This work culminated with the Column Research 
Council (now Structural Stability Research Council - SSRC) publishing column 
strength curves that serve as the basis for many code provisions today (CRC, 1960). 
 
The tangent modulus concept for steel column design gave way to direct 
consideration of the effects of residual stresses, which it was discovered existed in the 
cross-section of the column even before the application of external load. The effects 
of initial out-of-straightness, eccentricity of load, end fixity, transverse loads, and 
local buckling on column strength became known. 
 
Column buckling provisions were based upon the Johnson parabola (CRC, 1960) in 
the inelastic range until it merged with the Euler curve for elastic strength.  
 
Members subject to both axial and bending stresses were proportioned by an 
interaction equation reflecting a simple combination of stresses. There was no 
mention of second-order effects, amplification factors, effective length factors, or 
overall frame behavior.  
 
Although the concept of effective length was discussed in the Commentary that 
accompanied the 1961 AISC Specification, it was not until the 1963 AISC 
Specification that the effective length, KL, became explicit in the AISC Specification. 
The now-well-known alignment chart2 was first published in a comprehensive paper 
(Kavanaugh, 1962) discussing column and frame buckling. 
 
New strength formulas were introduced for columns based upon the basic column 
strength estimate suggested by the Column Research Council (CRC, 1960). An 
amplification factor was introduced in one of the two interaction equations to account 
for the fact that lateral displacement generates a secondary moment that must be 
accounted for in the member bending stress. For the first time, stability against 
sidesway of a frame was recognized in the interaction equations and design 
procedure. 
 
 
 

                                                 
2 First introduced from unpublished notes in 1959 as the J & L Charts by Julian and Lawrence for 
incorporation into the Boston Building Code (Griffis and White, 2013). 
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The resulting equations for column buckling were: 
 
 For KL/r < Cc 
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 For KL/r ≥ Cc 
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The resulting interaction equations were: 
  
 For fa/Fa ≤ 0.15 
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The term (1 – fa / Fe') was the new amplification factor and Cm was a moment 
modifier term.” 

 
Regarding the five factors that influence stability, the substantial growth in knowledge in 
this era resulted in the explicit inclusion of many stability factors in design provisions and 
more explicit consideration of stability effects in design office practices. The treatment of 
stability that evolved in this era continued to be based largely on modification made on 
the design-side of the equations, however. The effects of stability on the analysis side 
remained to be developed. 
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Additionally, the introduction of K was not without compromise. The methods available 
to calculate K in all but the most simple of cases required a number of assumptions, few 
and often none of which were actually satisfied in real structures (Kavanaugh, 1962). 
Regardless, what would come to be known as the effective length method was accepted 
because it did something and that was better than doing nothing. 
 
This era also marked the beginning of changes in the way buildings were designed and 
constructed, particularly at the end of it. Building systems were evolving and architecture 
was demanding changes in the way structures were configured. Computational 
techniques were on the verge of sophistication. Stability effects were soon to become a 
by-product of these changes in methods and technologies. 
 
Refinements in Allowable Stress Design (1969 through 1989) 
There were three major revisions of the AISC Specification made in this time period: 
 

1. The 1969 AISC Specification 
2. The 1978 AISC Specification 
3. The 1989 AISC (ASD) Specification3 

 
The Column Research Council was now known as the Structural Stability Research 
Council, and their work fed into the AISC Specification. None of these revisions made 
any substantive changes to the column buckling equations or the interaction equations. 
There were other developments, however, and Griffis and White (2008) summarize the 
1969 and 1978 developments as follows: 
 

“The 1969 Specification for the first time explicitly mentioned the word stability in 
the provisions and required that “General stability shall be provided for the structure 
as a whole and for each compression element”. More attention was given to overall 
frame behavior as opposed to member behavior. The Commentary to Section 1.8 
Stability and Slenderness Ratios focused more on determination of the effective 
length factor K which was a subject of much attention among practitioners during this 
period. The Commentary referred to the SSRC Guide second edition (Johnston ,1966) 
which covered the subject in some detail. 
 
It was not until the 1978 Specification (AISC, 1978) that the subject of structural 
analysis and determination of secondary effects on frames was covered, albeit in the 
Commentary to Section 1.8 on Stability and Slenderness Ratios. For the first time the 
term “P-Δ” was used and its impact on frame behavior highlighted. Reference was 
made to research at Lehigh University on the load carrying capacity of rigid 
multistory frames subjected to gravity and lateral loads using second-order analysis 
methods. This discussion also referenced a fairly comprehensive treatment of this 
subject in the third edition of the SSRC Guide (Johnston, 1976).” 

                                                 
3 All AISC Specifications that predated the 1989 ASD Specification were written using the allowable stress 
design method. The load and resistance factor design method was introduced in 1986 is omitted from this 
section and discussed in the next section. 
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The 1989 ASD Specification was little more than an editorial reorganization of the 1978 
AISC Specification to align with the format and organization of the new, alternative 1986 
LRFD Specification. There were some substantive changes, but changes in stability 
considerations were insignificant in spite of the significant advancements in stability 
analysis and design requirements that had been made in the 1986 LRFD Specification. 
This may have contributed to a mistaken perception in the engineering community that 
stability was a concern when the LRFD method was used, but not when the ASD method 
was used. 
 
In spite of the advancements noted above, considerations of stability effects in design 
office practice largely remained constant – and usually were limited to whatever effects 
were considered by the terms that explicitly had been added to the equations in the AISC 
Specification. Changes in buildings literally soared in almost every respect. The heights 
of skyscrapers reached the pinnacle of the century, and every system used in building 
architecture, structure, and mechanics was being developed and innovated. The curtain 
wall and open floor plans with longer and longer spans dominated. 
 
Even the marketplace was changing, with construction management firmly split as a 
discipline away from the role of the architect. CM influence would further drive the 
lightness and flexibility of structural systems as economic evaluations dictated that 
framing be economized by more exact designs and limited use of lateral framing. 
 
The more advanced projects like the Sears Tower, John Hancock Tower, and Standard 
Oil Building in Chicago and World Trade Center Towers in New York City undoubtedly 
received significant attention to stability effects. Nonetheless, building systems were 
changing and this impact would manifest itself in many ways, including a heightened 
need for more advanced stability analysis and design requirements. 
 
The John Hancock Tower in Boston is perhaps the most notable example of a building 
with design and construction aspects that outpaced the technology of the code in the area 
of stability. A project that ultimately was beset with a number of different structural 
issues, stability was cited as the reason that the majority of the panels in its all-glass 
façade popped out. Other examples exist, but none are as dramatic in their illustration of 
the need for further development of provisions to address stability in the design of 
buildings. 
 
Load and Resistance Factor Design (1986 through 1999) 
Concurrent with the development of the load and resistance factor design method as a 
replacement for allowable stress design, significant work was being done by AISC, the 
Structural Stability Research Council (SSRC), and others to advance the state-of-the-art 
of stability analysis and design. These efforts came together, and stability design 
requirements were advanced with the release of the first LRFD Specification in 1986. 
 



 10

A new column curve was also introduced into this new Specification (Griffis and White, 
2008), based on column strength curve 2P of the 4th edition of the SSRC Guide 
(Galambos, 1988). The resulting equations for column buckling were: 

 
For c ≤ 1.5 
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Second-order effects were required to be included in the analysis results (that is, included 
in the calculation of Pu and Mu), which simplified the resulting interaction equations: 

  
For Pu/Pn ≥ 0.2 
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Griffis and White (2008) summarize other significant developments as follows: 
   

“A more comprehensive treatment of stability of frames and second-order effects was 
introduced in the new LRFD Specification published in 1986 (AISC, 1986). Here, as 
part of a reorganization of the Specification provisions, an entire Chapter C was 
devoted to the subject of frame behavior. For the first time the Specification 
specifically required that “Second-order (P-Δ) effects shall be considered in the 
design of frames.” Requirements were placed on the structural analysis to include 
axial deformations and the effects of frame instability under ultimate loads, a point 
not always realized under the allowable stress method. … In addition, continuing a 
trend toward specifying requirements for the structural analysis in order to properly 
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address second-order effects, Chapter H on combined forces contained an 
approximate second-order analysis procedure, introducing the now commonly used 
B1-B2 method. The second-order amplification factor B2 was permitted to be 
calculated using either the story buckling approach or the story stiffness approach. 
Frame stability was recognized as a system or story buckling phenomenon.  
 
The 1993 LRFD Specification in Chapter C on frames expanded the stability 
treatment of steel frame structures – both braced and unbraced. For the first time, the 
“destabilizing effects of gravity loaded columns…” were required to be considered in 
the moment frame analysis and design. This important fact was frequently overlooked 
in many building designs before this requirement was formally made a part of the 
Specification. Emphasis was placed in the Commentary to Chapter C on acceptable 
methods to calculate the effective length factor K, given the difficulty of this topic for 
practicing engineers. Consideration of the leaning column effect and its use in frames 
not meeting the requirements of the alignment chart commonly used in practice was 
introduced. The effect of leaning columns on different versions of K factor equations 
was discussed in detail. The B1 – B2 method was moved from Chapter H on combined 
forces to Chapter C on frames. 
 
In the 1999 Specification, Chapter C was expanded to include a discussion of stability 
bracing of frames as well as column and beam bracing. Specific stability bracing 
requirements emerged for braced frames where a minimum strength and stiffness 
requirement was placed on the story or panel of a steel building. Equations for the 
strength and stiffness requirements for braces in columns and beams were 
introduced.” 

 
These advancements were largely lost to the engineering community when debate about 
ASD and LRFD ensued. Indeed, this duality prevailed throughout this era with LRFD 
being developed further while ASD lay fallow – and without the advancements in 
stability analysis and design requirements that would have been made in it had LRFD 
never come into existence. It was unfortunate that this translated into the perception that 
stability was an LRFD issue, not an ASD issue. 
 
These advancements also were made within the context of the effective length method. 
As a result, they merely pecked at the problems with that method that were mentioned 
previously and ignored many new problems. 
 
The 2005 AISC Specification 
As the 1990s gave way to the new century, AISC established a direction to resolve the 
debate between ASD and LRFD advocates. A unified specification was created and the 
previously separate ASD and LRFD methods were combined, using the best of both as 
the single approach for the future. At about the same time, the developmental work being 
done by AISC, SSRC, and others on stability analysis and design had achieved critical 
mass. This landmark work was incorporated into the 2005 AISC Specification. 
 



 12

The equations for column buckling were returned to more familiar terms. The LRFD 
alternative is shown below4: 
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Second-order effects were required to be included in the analysis results, which 
simplified the resulting interaction equations: 
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In these equations, the numerator of each term represents the demand determined by 
analysis and the denominator of each term represents the corresponding available 
strength determined with the member strength provisions in the AISC Specification. All 
quantities are calculated using LRFD load combinations and resistance factors, or ASD 
load combinations and safety factors. 
 
Also, for the first time, the impact of stability was addressed properly on both the demand 
side (the analysis results) and the strength side (the member strength equations). The 

                                                 
4 The ASD alternative is similar with  = 1.67 used as a divisor instead of the  = 0.9 used as a multiplier. 
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2005 AISC Specification included three prescriptive approaches for stability analysis and 
design: 
 

1. The Direct Analysis Method (Appendix 7) 
2. The Effective Length Method (Section C2.2a) 
3. The First-Order Analysis Method (Section C2.2b) 

 
Each of these methods is further illustrated in the information provided in Attachment A 
(Carter and Geschwindner, 2008). 
 
The Direct Analysis Method was new in 2005. The Effective Length Method remains 
similar to the traditional approach, but has been modified. The First-Order Analysis 
Method was new in 2005, and offers an approach that permits a first-order analysis but 
still satisfies the requirements of the AISC Specification. These methods also are 
addressed in the 2010 AISC Specification (AISC, 2010) with simplifications, refinements 
and clarifications based upon usage sine the 2005 AISC Specification was published. 
 
Direct Analysis Method 
From Carter and Geschwindner (2008): 
 

“The direct analysis method is permitted for any ratio of second-order drift, 2nd, to 
first-order drift, 1st, and required when this ratio exceeds 1.5. It requires the use of: 
 
1. A direct second-order analysis or a first-order analysis with B1-B2 amplification. 
2. The nominal frame geometry with an additional lateral load of Ni = 0.002Yi, 

where Yi is the total gravity load on level i from LRFD load combinations, or 1.6 
times ASD load combinations. 

3. The reduced stiffnesses EA* and EI* (including in B1-B2 amplification, if used). 
4. LRFD load combinations, or ASD load combinations multiplied by 1.6. This 

multiplier ensures that the drift level is consistent for LRFD and ASD when 
determining second-order effects. The forces and moments obtained in this 
analysis are then divided by 1.6 for ASD member design. 

 
The following exceptions apply as alternatives in item 2 above: 
 
a. If the out-of-plumb geometry of the structures is used, the notional loads can be 

omitted. 
b. When the ratio of second-order drift to first-order drift is equal to or less than 1.5, 

the notional load can be applied as a minimum lateral load, not an additional 
lateral load. Note that the unreduced stiffnesses, EA and EI, are used in this 
comparison. 

c. When the actual out-of-plumbness is known, it is permitted to adjust the notional 
loads proportionally. 

 
For all frames designed with this method, K = 1.0.” 
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Regarding the five factors that influence stability, it is not surprising that all of them are 
explicitly addressed in this method – the direct analysis method represents the current 
state-of-the-art: 
 

1. Member, component, and connection deformations are addressed directly in the 
analysis. 

2. Second-order effects (both P- and P- effects) are addressed directly in the 
analysis, either by rigorous second-order analysis or a first-order analysis with B1-
B2 amplification; 

3. Structural out-of-plumbness is addressed with the use of notional loads (or direct 
modeling of the initial out-of-plumbness). 

4. Member out-of-straightness is accounted for in the column design equations for 
its effect on member strength, and in the use of a reduced stiffness for its effect on 
the structure stiffness. 

5. Residual stresses are accounted for in the column design equations for their effect 
on member strength, and in the use of a reduced stiffness for their effect on the 
structure stiffness. 

6. Variability in component and system stiffness is accounted for in the resistance 
and safety factors for its effect on member strength, and in the use of a reduced 
stiffness for its effect on the structure stiffness. 

 
Effective Length Method 
From Carter and Geschwindner (2008): 
 

“[This] is essentially the traditional effective length method with an additional 
requirement for a minimum lateral load. It is permitted when the ratio of second-order 
drift, 2nd, to first-order drift, 1st, is equal to or less than 1.5, and requires the use of: 
 

1. A direct second-order analysis or a first-order analysis with B1-B2 
amplification. 

2. The nominal frame geometry with a minimum lateral load (a “notional load”) 
Ni = 0.002Yi, where Yi is the total gravity load on level i from LRFD load 
combinations (or 1.6 times ASD load combinations). This notional load is 
specified to capture the effects of initial out-of-plumbness up to the AISC 
Code of Standard Practice maximum value of 1:500. In this method, Ni is not 
applied when the actual lateral load is larger than the calculated notional load. 

3. The nominal stiffnesses EA and EI. 
4. LRFD load combinations, or ASD load combinations multiplied by 1.6. This 

multiplier on ASD load combinations ensures that the drift level is consistent 
for LRFD and ASD when determining second-order effects. The forces and 
moments obtained in this analysis are then divided by 1.6 for ASD member 
design. 

 
When the ratio of second-order drift to first-order drift, which is given by B2, is equal 
to or less than 1.1, K = 1.0 can be used in the design of moment frames. Otherwise, 
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for moment frames, K is determined from a sidesway buckling analysis. Section 
C2.2a(4) indicates that for braced frames, K = 1.0.” 

 
Regarding the five factors that influence stability, it is slightly less obvious how the 
simple addition of a notional load to the traditional effective length method could result 
in all of them being explicitly addressed in this method. Nonetheless: 
 

1. Member, component, and connection deformations are addressed directly in the 
analysis. 

2. Second-order effects (both P- and P- effects) are addressed directly in the 
analysis, either by rigorous second-order analysis or a first-order analysis with B1-
B2 amplification; 

3. Structural out-of-plumbness is addressed with the use of notional loads. 
4. Member out-of-straightness is accounted for in the column design equations for 

its effect on member strength. 
5. Residual stresses are accounted for in the column design equations for their effect 

on member strength. 
6. Variability in component and system stiffness is accounted for in the resistance 

and safety factors for its effect on member strength. 
7. Note that K must be calculated (exceptions above noted) and used to account for 

the effects on structure stiffness of member out-of-straightness, residual stresses, 
and variability in component and system stiffness. 

 
The basis in the use of K in this method means that some of the aforementioned 
limitations and criticisms of the effective length method are still applicable. 
 
First-Order Analysis Method 
From Carter and Geschwindner (2008): 
 

“The first-order analysis method is permitted when: 
 

1. The ratio of second-order drift, 2nd, to first-order drift, 1st, is equal to or less 
than 1.5. 

2. The column axial force Pr ≤ 0.5Py, where  = 1.0 for LRFD, 1.6 for ASD. 
 
This method requires the use of: 
 

1. A first-order analysis. 
2. The nominal frame geometry with an additional lateral load Ni = 2.1(/L)Yi ≥ 

0.0042Yi,  applied in all load cases. 
3. The nominal stiffnesses EA and EI. 
4. B1 as a multiplier on the total moment in beam-columns. 
5. LRFD load combinations, or ASD load combinations multiplied by 1.6. This 

multiplier on ASD load combinations ensures that the drift level is consistent 
for LRFD and ASD when determining the notional loads. The forces and 
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moments obtained in this analysis are then divided by 1.6 for ASD member 
design. 

 
For all frames designed with this method, K = 1.0.” 

 
Regarding the five factors that influence stability, it is even less obvious how they are 
explicitly addressed in this method. This is for good reason – they are all satisfied 
implicitly because the method is a mathematical manipulation of the Direct Analysis 
Method based upon the characteristics of typical building frames. For this reason, this 
method should be used with care to ensure that it is appropriate. 
 
A General Observation About the Progression of Provisions and Design Practices 
As can be seen in the descriptions, the stability provisions and corresponding designs 
have always been related, with one advancing slightly and affecting the other in a stair-
stepping fashion. Early in the time-span, stability design provisions were comparatively 
crude, but they were acceptable then because framing systems were very conservative 
and very redundant in the typical building. As provisions advanced, framing systems 
changed. Stability problems sometimes influenced changes in provisions, systems, or 
both. 
 
Today’s provisions would have been unnecessary in the early days of the portal-frame 
building with heavy masonry infill. Yesterday’s provisions are inadequate for today’s 
economized and open buildings. Tomorrow’s buildings and provisions will undoubtedly 
follow a similar trend. 
 
Conclusions 
The preceding historical summary of developments in stability analysis and design 
provisions shows an extensive path of progress from the first basis of column design in 
elastic buckling to the current state-of-the-art. Additionally, the key developments, 
particularly those made in the AISC Specification, have been highlighted. 
 
The most current methods – those presented in the 2005 and 2010 AISC Specifications – 
have been available for several years now, and are being used in design offices and 
implemented by companies that write software for use in design offices. The Direct 
Analysis Method, which first appeared in the 2005 AISC Specification, offers a clean 
approach that sheds the deficiencies that have been noted in the methods of the past. 
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A Comparison of Frame Stability
Analysis Methods in ANSI/AISC 360-05
CHARLES J. CARTER and LOUIS F. GESCHWINDNER

ANSI/AISC 360-05 Specifi cation for Structural Steel 
Buildings (AISC, 2005a), hereafter referred to as the 

AISC Specifi cation, includes three prescriptive approaches 
for stability analysis and design. Table 2-1 in the 13th 
Edition AISC Steel Construction Manual (AISC, 2005b), 
hereafter referred to as the AISC Manual, provides a compar-
ison of the methods and design options associated with each. 
A fourth approach, referred to as the Simplifi ed Method, is 
also presented in the AISC Manual (see page 2-12) and on 
the AISC Basic Design Values cards. These four methods are 
illustrated in this paper in order to give the reader a general 
understanding of the differences between them:

1. The Second-Order Analysis Method (Section C2.2a)

2. The First-Order Analysis Method (Section C2.2b)

3. The Direct Analysis Method (Appendix 7)

4. The Simplifi ed Method (Manual page 2-12; AISC 
Basic Design Values cards)

Two simple unbraced frames are used in this paper. The 
one-bay frame shown in Figure 1 has a rigid roof element 
spanning between a fl agpole column (Column A) and leaning 
column (Column B). Drift is not limited for this frame, which 
results in a higher ratio of second-order drift to fi rst-order 
drift, and allows illustration of the detailed requirements in 
each method for the calculation of K-factors, notional loads, 
and required and available strengths. The three-bay frame 
shown in Figure 2 has rigid roof elements spanning between 

two fl agpole columns (Columns D and E) and two leaning 
columns (Columns C and F). This frame is used with a drift 
limit of L/400 to illustrate the simplifying effect a drift limit 
can have on the analysis requirements in each method.

Although these example frames are not realistic frames, 
the results obtained are representative of the impact of 
second-order elastic and inelastic effects on strength require-
ments in real frames, particularly when the number of mo-
ment connections is reduced. The loads shown in Figures 
1 and 2 are from the controlling load and resistance factor 
design (LRFD) load combination and the corresponding de-
signs are performed using LRFD. The process is essentially 
identical for allowable strength design (ASD), where ASD 
load combinations are used with α = 1.6 as a multiplier, 
when required in each method, to account for the second-
order effects at the ultimate load level.

When it is required to include second-order effects, 
the B1-B2 amplifi cation is used with a fi rst-order analy-
sis throughout this paper. A direct second-order analysis 
is straightforward and could have been used instead of the 
B1-B2 amplifi cation.

THE ONE-BAY FRAME

A trial shape is selected using a fi rst-order analysis without 
consideration of drift limits or second-order effects. There-
after, that trial shape is used as the basis for comparison of 
the four methods discussed earlier.

Charles J. Carter is vice president and chief structural 
engineer, American Institute of Steel Construction, 
Chicago, IL.

Louis F. Geschwindner is vice president of special projects, 
American Institute of Steel Construction, and professor 
emeritus of architectural engineering at Pennsylvania State 
University, University Park, PA.

Fig. 1. One-bay unbraced frame used in examples.
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Design by Second-Order Analysis (Section C2.2a)

Design by second-order analysis is essentially the traditional 
effective length method with an additional requirement for 
a minimum lateral load. It is permitted when the ratio of 
second-order drift, ∆2nd, to fi rst-order drift, ∆1st, is equal to or 
less than 1.5, and requires the use of:

1. A direct second-order analysis or a fi rst-order analysis 
with B1-B2 amplifi cation.

2. The nominal frame geometry with a minimum lateral 
load (a “notional load”) Ni = 0.002Yi, where Yi is the 
total gravity load on level i from LRFD load combina-
tions (or 1.6 times ASD load combinations). This no-
tional load is specifi ed to capture the effects of initial 
out-of-plumbness up to the AISC Code of Standard 
Practice maximum value of 1:500. In this method, Ni 
is not applied when the actual lateral load is larger than 
the calculated notional load.

3. The nominal stiffnesses EA and EI.

4. LRFD load combinations, or ASD load combinations 
multiplied by 1.6. This multiplier on ASD load com-
binations ensures that the drift level is consistent for 
LRFD and ASD when determining second-order ef-
fects. The forces and moments obtained in this analy-
sis are then divided by 1.6 for ASD member design.

When the ratio of second-order drift to fi rst-order drift, 
which is given by B2, is equal to or less than 1.1, K = 1.0 
can be used in the design of moment frames. Otherwise, for 
moment frames, K is determined from a sidesway buckling 
analysis. Section C2.2a(4) indicates that for braced frames, 
K = 1.0.

For the example frame given in Figure 1, the minimum lat-
eral load based upon the total gravity load, Yi, is:

Yi = 200 kips + 200 kips 
 = 400 kips

Selection of Trial Shape Based Upon Strength 
Consideration Only

Based upon the loading shown in Figure 1, the fi rst-order 
axial force, strong-axis moment, and design parameters for 
Column A are:

Pu = 200 kips Mux = (20 kips) (15 ft)
Kx = 2.0   = 300 kip-ft
Ky = 1.0 Cb = 1.67
Lx = Ly = 15 ft Lb = 15 ft

Note that Kx = 2.0, the theoretical value for a column with a 
fi xed base and top that is free to rotate and translate, is used 
rather than the value of 2.1 recommended for design in the 
AISC Specifi cation Commentary Table C-C2.2. The value 
of 2.0 is used because it is consistent with the formulation 
of the lateral stiffness calculation below. Note also that the 
impact of the leaning column on Kx is ignored in selecting 
the trial size, although it will be considered in subsequent 
sections when Kx cannot be taken equal to 1 for Column A. 
Out of the plane of the frame, Ky is taken as 1.0.

A simple rule of thumb for trial beam-column selection is 
to use an equivalent axial force equal to Pu plus 24/d times 
Mu, where d is the nominal depth of the column (Geschwind-
ner, Disque and Bjorhovde, 1994). Using d = 14 in. for a 
W14, the equivalent axial force is 714 kips and an ASTM 
A992 W14�90 is selected as the trial shape.

The lateral stiffness of the frame depends on Column A only 
and is:

k = 3EI/L3 
 = 3(29,000 ksi)(999 in.4)/(15 ft × 12 in./ft)3 
 = 14.9 kips/in.

The corresponding fi rst-order drift of the frame is:

∆1st = (20 kips)/(14.9 kips/in.) 
 = 1.34 in.

Note that this is a very fl exible frame with ∆1st/L = 1.34/ 
(15 ft � 12 in./ft) = 1/134.

Fig. 2. Three-bay unbraced frame used in examples. 
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Ni = 0.002 Yi 
 = 0.002 (400 kips) 
 = 0.8 kips

Because this notional load is less than the actual lateral load, 
it need not be applied. For a load combination that did not 
include a lateral load, the notional load would need to be 
included in the analysis. 

For Column A, using fi rst-order analysis and B1-B2 amplifi -
cation:

Pnt = 200 kips,      Plt = 0 kips
Mnt = 0 kip-ft,      Mlt = 300 kip-ft

For P-δ amplifi cation, since there are no moments associated 
with the no-translation case, there is no need to calculate B1. 
For P-∆ amplifi cation, the fi rst-order drift ratio is determined 
from the calculated drift of 1.34 in. Thus,

∆1st /L = (1.34 in.)/(15 ft � 12 in./ft)
 = 0.00744

For moment frames, Rm = 0.85 and from Equation C2-6b 
with ∆H = ∆1st and ΣH = 20 kips,

ΣPe2 = Rm ΣH/(∆1st /L)
 = 0.85 (20 kips)/(0.00744)
 = 2,280 kips

For design by LRFD, α = 1.0 and ΣPnt is the sum of the 
gravity loads. Thus,

αΣPnt /ΣPe2 = 1.0 (200 kips + 200 kips)/2,280 kips
 = 0.175

From Equation C2-3, the amplifi cation is:
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Because B2 = 1.21, the second-order drift is less than 1.5 
times the fi rst-order drift. Thus, the use of this method is 
permitted. Because B2 > 1.1, K cannot be taken as 1.0 for 
column design in the moment frame with this method. Thus, 
K must be calculated, including the leaning-column effect. 
Several approaches are available in the AISC Specifi ca-
tion Commentary to include this effect. A simple approach 
that uses the ratio of the load on the leaning columns to the 
load on the stabilizing columns had been provided in previ-
ous Commentaries and is used here (Lim and McNamara, 
1972):

ΣPleaning /ΣPstability = (200 kips)/(200 kips)
 = 1

Kx* = Kx(1 + ΣPleaning / ΣPstability)2  
 = 2.0(1 + 1)2 
 = 2.83

The amplifi ed axial force (Equation C2-1b) and associated 
design parameters for this method are:

Pr = Pnt + B2Plt 
 = 200 kips + 1.21(0 kips)
 = 200 kips

Kx* = 2.83, Ky = 1.0

Lx = Ly = 15 ft

The amplifi ed moment (Equation C2-1a) and associated 
design parameters for this method are:

Mrx = B1Mnt + B2Mlt 
 = (0 kip-ft) + 1.21 (300 kip-ft)
 = 363 kip-ft

Cb = 1.67

Lb = 15 ft

Based upon these design parameters, the axial and strong-
axis available fl exural strengths of the ASTM A992 W14×90 
are:

Pc = φc Pn 
 = 721 kips

Mcx = φb Mnx 
  = 573 kip-ft

To determine which interaction equation is applicable, the 
ratio of the required axial compressive strength to available 
axial compressive strength must be determined.
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Thus, because Pr /Pc ≥ 0.2, Equation H1-1a is applicable.
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The W14×90 is adequate because 0.840 ≤ 1.0.

Design by First-Order Analysis (Section C2.2b)

The fi rst-order analysis method is permitted when:

1. The ratio of second-order drift, ∆2nd, to fi rst-order drift, 
∆1st, is equal to or less than 1.5.

2. The column axial force αPr ≤ 0.5Py, where α = 1.0 for 
LRFD, 1.6 for ASD.

159-170_Carter_Geschwinder_2008_3Q.indd   161159-170_Carter_Geschwinder_2008_3Q.indd   161 8/19/08   1:07:39 PM8/19/08   1:07:39 PM



162 / ENGINEERING JOURNAL / THIRD QUARTER / 2008

This method requires the use of:

1. A fi rst-order analysis.

2. The nominal frame geometry with an additional lat-
eral load Ni = 2.1(∆/L)Yi ≥ 0.0042Yi, applied in all load 
cases.

3. The nominal stiffnesses EA and EI.

4. B1 as a multiplier on the total moment in beam-
columns.

5. LRFD load combinations, or ASD load combinations 
multiplied by 1.6. This multiplier on ASD load com-
binations ensures that the drift level is consistent for 
LRFD and ASD when determining the notional loads. 
The forces and moments obtained in this analysis are 
then divided by 1.6 for ASD member design.

For all frames designed with this method, K = 1.0.

For the example frame given in Figure 1, the additional lat-
eral load is based on the fi rst-order drift ratio, ∆/L, and the 
total gravity load, Yi. Thus, with ∆ = ∆1st,

∆1st /L = (1.34 in.)/(15 ft × 12 in./ft)
 = 0.00744

Yi = 200 kips + 200 kips
 = 400 kips

Ni = 2.1(∆1st /L)Yi ≥ 0.0042Yi

 = 2.1(0.00744)(400 kips) ≥ 0.0042(400 kips)
 = 6.25 kips ≥ 1.68 kips
 = 6.25 kips

It was previously determined in the illustration of design by 
second-order analysis example that the second-order drift is 
less than 1.5 times the fi rst-order drift. Additionally,

αPr = 1.0(200 kips)
 = 200 kips 

And for a W14×90,

0.5Py = 0.5Fy Ag 
 = 0.5(50 ksi)(26.5 in.2) 
 = 663 kips

Because ∆2nd < 1.5∆1st and αPr < 0.5Py, the use of this method 
is permitted.

The loading for this method is the same as that shown in Fig-
ure 1, except for the addition of a notional load of 6.25 kips 
coincident with the lateral load of 20 kips shown, resulting 
in a column moment, Mu, of 394 kip-ft.

This moment must be amplifi ed by B1 as determined from 
Equation C2-2. The Euler buckling load is calculated with 
K1 = 1.0. Thus,

Pe1 = π2EI/(K1L)2

 = π2(29,000 ksi)(999 in.4)/(1.0 × 15 ft × 12 in./ft) 2 
 = 8,830 kips 

The moment on one end of the column is zero, so the mo-
ment gradient term is:

Cm = 0.6 – 0.4(M1/M2) 
 = 0.6 – 0.4(0/394 kip-ft) 
  = 0.6

From Equation C2-2,
αPr/Pe1 = 1.0(200 kips)/(8,830 kips)
 = 0.0227
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The axial force and associated design parameters for this 
method are:

Pr = 200 kips
Kx = Ky = 1.0
Lx = Ly = 15 ft

The amplifi ed moment and associated design parameters for 
this method are:

Mrx = B1Mu

 = 1.0 (394 kip-ft) 
 = 394 kip-ft

Cb = 1.67

Lb = 15 ft

Based on these design parameters, the axial and strong-axis 
available fl exural strengths of the ASTM A992 W14�90 
are:

Pc = φcPn = 1,000 kips
Mcx = φbMnx = 573 kip-ft

To determine which interaction equation is applicable, the 
ratio of the required axial compressive strength to available 
axial compressive strength must be determined.
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Thus, because Pr /Pc ≥ 0.2, Equation H1-1a is applicable.
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The W14×90 is adequate since 0.811 ≤ 1.0.

Design by Direct Analysis (Appendix 7)

The Direct Analysis Method is permitted for any ratio of 
second-order drift, ∆2nd, to fi rst-order drift, ∆1st, and required 
when this ratio exceeds 1.5. It requires the use of:

1. A direct second-order analysis or a fi rst-order analysis 
with B1-B2 amplifi cation.

2. The nominal frame geometry with an additional lateral 
load of Ni = 0.002Yi, where Yi is the total gravity load 
on level i from LRFD load combinations, or 1.6 times 
ASD load combinations.

3. The reduced stiffnesses EA* and EI* (including in 
B1-B2 amplifi cation, if used).

4. LRFD load combinations, or ASD load combinations 
multiplied by 1.6. This multiplier ensures that the drift 
level is consistent for LRFD and ASD when determin-
ing second-order effects. The forces and moments ob-
tained in this analysis are then divided by 1.6 for ASD 
member design.

The following exceptions apply as alternatives in item 2:

a. If the out-of-plumb geometry of the structures is used, 
the notional loads can be omitted.

b. When the ratio of second-order drift to fi rst-order drift 
is equal to or less than 1.5, the notional load can be 
applied as a minimum lateral load, not an additional 
lateral load. Note that the unreduced stiffnesses, EA 
and EI, are used in this comparison.

c. When the actual out-of-plumbness is known, it is per-
mitted to adjust the notional loads proportionally.

For all frames designed with this method, K = 1.0.

It was previously determined in the illustration of design by 
second-order analysis example that the second-order drift is 
less than 1.5 times the fi rst-order drift (note that this check is 
properly made using the unreduced stiffnesses, EA and EI). 

Thus, the notional load can be applied as a minimum lateral 
load, and that minimum is:

Yi = 200 kips + 200 kips 
 = 400 kips

Ni = 0.002Yi 
 = 0.002(400 kips) 
 = 0.8 kips

Because this notional load is less than the actual lateral load, 
it need not be applied. For a load combination that does not 
include a lateral load, the notional load would need to be 
included in the analysis.

For Column A, using fi rst-order analysis and B1-B2 amplifi -
cation:

Pnt = 200 kips, Plt = 0 kips
Mnt = 0 kip-ft, Mlt = 300 kip-ft

To determine the second-order amplifi cation, the reduced 
stiffness, EI*, must be calculated. 

αPr = 1.0(200 kips)
 = 200 kips

and

0.5Py = 0.5Fy Ag

 = 0.5(50 ksi)(26.5 in.2)
 = 663 kips

Thus, because αPr < 0.5Py, τb = 1.0 and

EI* = 0.8τbEI
 = 0.8EI

For P-δ amplifi cation, since there are no moments associated 
with the no-translation case, there is no need to calculate 
B1. For P-∆ amplifi cation, the reduced stiffness EI* must be 
used to determine the fi rst-order drift. Because EI* = 0.8EI, 
the fi rst-order drift based upon EI* is 25% larger than that 
calculated previously. Thus,

∆1st = 1.25(1.34 in.) 
 = 1.68 in.

The fi rst-order drift ratio is determined from the amplifi ed 
drift of 1.68 in.

∆1st /L = (1.68 in.)/(15 ft × 12 in./ft) 
 = 0.00933

For moment frames, RM = 0.85 and from Equation C2-6b 
with ∆H = ∆1st and ΣH = 20 kips,

ΣPe2 = ( )R
ΣH

L
M

1st∆ /

 = 0 85
20

.
kips

(0.00933)
 = 1,820 kips
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For design by LRFD, α = 1.0 and ΣPnt is the sum of the 
gravity loads. Thus,

αΣPnt/ΣPe2 = 1.0(200 kips + 200 kips)/1,820 kips
 = 0.220

From Equation C2-3, the amplifi cation is:

B2 = 1

1

1

2

−
Σ

Σ

≥
α P

P
nt

e

 = 1

1 0 220( . )−  

≥ 1.0

 = 1.28 ≥ 1.0
  = 1.28

It is worth noting that use of the reduced axial stiffness, 
EA* = 0.8EA, in members that contribute to lateral stability 
is also required in this method. However, due to the char-
acteristics of the structures chosen for this example, there 
are no axial deformations that impact the stability of the 
structure.

The amplifi ed axial force (Equation C2-1b) and associated 
design parameters for this method are:

Pr = Pnt + B2Plt 
 = 200 kips + 1.28(0 kips)
 = 200 kips

Kx = Ky = 1.0

Lx = Ly = 15 ft

The amplifi ed moment (Equation C2-1a) and associated de-
sign parameters for this method are:

Mrx = B1Mnt + B2Mlt 
 = (0 kip-ft) + 1.28(300 kip-ft) 
  = 384 kip-ft

Cb = 1.67

Lb = 15 ft

Based upon these design parameters, the axial and strong-
axis available fl exural strengths of the ASTM A992 
W14×90 are:

Pc = φcPn = 1,000 kips
Mcx = φbMnx = 573 kip-ft

To determine which interaction equation is applicable, the 
ratio of the required axial compressive strength to available 
axial compressive strength must be determined.
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Thus, because Pr /Pc ≥ 0.2, Equation H1-1a is applicable.
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= 0 796.

The W14×90 is adequate since 0.796 ≤ 1.0.

The Simplifi ed Method

This method is provided in the AISC Basic Design Values 
Cards and the 13th Edition Steel Construction Manual 
(AISC, 2005b), and excerpted as shown in Figure 3. This 
simplifi ed method is derived from the effective length 
method (Design by Second-Order Analysis; Section C2.2a) 
using B1-B2 amplifi cation with B1 taken equal to B2. Note 
that the user note in Section C2.1b says that B1 may be taken 
equal to B2 as long as B1 is less than 1.05. However, it is also 
conservative to take B1 equal to B2 any time B1 is less than 
B2.  Although it cannot universally be stated that B1 is always 
equal to or less than B2, this is the case for typical framing. It 
is left to engineering judgment to confi rm that this criterion 
is satisfi ed when applying the simplifi ed method.

This method is permitted when the ratio of second-order 
drift, ∆2nd, to fi rst-order drift, ∆1st, is equal to or less than 
1.5 as with the Design by Second-Order Analysis method. 
It allows the use of a fi rst-order analysis based on nomi-
nal stiffnesses, EA and EI, with a minimum lateral load 
Ni = 0.002Yi, where Yi is the total gravity load on level i from 
LRFD load combinations or ASD load combinations. The 
1.6 multiplier on ASD load combinations is not used at this 
point but its effect is included in the determination of the 
amplifi cation multiplier upon entering the table.

The ratio of total story gravity load (times 1.0 in LRFD, 
1.6 in ASD) to the story lateral load is used to enter the ta-
ble in Figure 3. The second-order amplifi cation multiplier 
is determined from the value in the table corresponding to 
the calculated load ratio and design story drift limit. While 
linear interpolation between tabular values is permitted, it 
is important to note that the tabular values have, in essence, 
only two signifi cant digits. Accordingly, the value deter-
mined should not be calculated to more than one decimal 
place. The tabular value is used to amplify all forces and 
moments in the analysis.

When the ratio of second-order drift to fi rst-order drift is 
equal to or less than 1.1, K = 1.0 can be used in the de-
sign of moment frames. Otherwise, for moment frames, K is 
determined from a sidesway buckling analysis. For braced 
frames, K = 1.0.
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For the example frame given in Figure 1, the minimum 
lateral load is:

Yi = 200 kips + 200 kips
    = 400 kips

Ni = 0.002Yi 
    = 0.002(400 kips)
    = 0.8 kips

Because this notional load is less than the actual lateral load, 
it need not be applied. For a load combination that does not 
include a lateral load, the notional load would need to be 
included in the analysis.

The actual fi rst-order drift of the trial frame corresponds to a drift 
ratio of L/134 and the load ratio is:

 1.0 × (200 kips + 200 kips)/(20 kips) = 20

Entering the table in the column for a load ratio of 20, the 
corresponding multiplier for a drift ratio of H/134 is 1.3 
(determined by interpolation to one decimal place). This 
multiplier is less than 1.5; thus, ∆2nd < 1.5∆1st and the use of 
this method is permitted. However, because the multiplier is 
greater than 1.1, K cannot be taken as 1.0 for column design 
in the moment frame with this method. Thus, K must be cal-
culated, including the leaning column effect. Using the same 
approach as previously discussed (Lim and McNamara, 
1972):

ΣPleaning/ΣPstability = (200 kips)/(200 kips) 
 = 1

Kx* = Kx(1 + ΣPleaning/ΣPstability)½  
 = 2.0(1 + 1)½ 
 = 2.83

The amplifi ed axial force (with the full axial force am-
plifi ed by B2) and associated design parameters for this 
method are:

Pr = 1.3Pu 
 = 1.3 (200 kips) 
 = 260 kips

Kx* = 2.83, Ky = 1.0

Lx = Ly = 15 ft

The amplifi ed moment (with the full moment amplifi ed by 
B2) and associated design parameters for this method are:

Mrx = 1.3Mu 
 = 1.3(300 kip-ft) 
 = 390 kip-ft

Cb = 1.67

Lb = 15 ft

Based on these design parameters, the available axial com-
pressive strength and strong-axis available fl exural strength 
of the ASTM A992 W14×90 are: 

Pc = φc Pn = 721 kips
Mcx = φb Mnx = 573 kip-ft

To determine which interaction equation is applicable, the 
ratio of the required axial compressive strength to available 
axial compressive strength must be determined.
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Fig. 3. Simplifi ed method from AISC basic design values cards.
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Thus, because Pr /Pc ≥ 0.2, Equation H1-1a is applicable.
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The W14×90 is adequate since 0.966 ≤ 1.0.

Summary for the One-Bay Frame

All methods illustrated in the foregoing sections produce 
similar designs. The results are tabulated here for compari-
son, where the result of the beam-column interaction equa-
tion is given for each method. A lower interaction equation 
result for the same column shape signifi es a prediction of 
higher strength.

Method Interaction Equation

Second-Order 0.840

First-Order 0.811

Direct Analysis 0.796

Simplifi ed 0.966

In this example, the direct analysis method predicts the high-
est strength, while the simplifi ed method predicts the lowest 
strength. This would be expected because the Direct Analysis 
Method was developed as the most accurate approach while 
the simplifi ed method was developed to produce a quick yet 
conservative solution.

The designs compared here are based on strength with no 
consideration of drift limitation, except to the extent that the 
actual drift impacts the magnitude of the second-order effects. 
The usual drift limits of approximately L/400 will necessitate 
framing members and confi gurations with more lateral stiff-
ness than this frame provides. Hence, the designer may fi nd 
that a frame confi gured for drift fi rst will often require no in-
crease in member size for strength, including second-order ef-
fects. This will be explored further with the three-bay frame.

THE THREE-BAY FRAME

For the frame shown in Figure 2, a trial shape is selected 
using a fi rst-order drift limit of L/600 under a service level 
lateral load of 10 kips. Thereafter, that trial shape is used as 
the basis for comparison of the four methods used previously 
for the one-bay frame.

Selection of Trial Shape Based on the Drift Limit Only

For the dimensions shown in Figure 2:

L/600 = (15 ft × 12 in./ft)/600
 = 0.300 in.

The lateral stiffness of the frame depends on Columns D and 
E only, and based on a classical stiffness derivation with the 
given end conditions, it is calculated as follows:

k = 2 × 3EI/L3 
 = 2 × 3(29,000 ksi)(I)/(15 ft × 12 in./ft)3 
 = 0.0298(I)

With the service level lateral load on the frame of 10 kips:

0.0298(I) ≥ (10 kips)/(0.300 in.)

Thus, Ireq = 1,120 in.4 and an ASTM A992 W14×109 is 
selected as the trial shape with Ix = 1,240 in.4

The actual lateral stiffness of the frame is:

k = 2 × 3EI/L3 
 = 2 × 3(29,000 ksi)(1,240 in.4)/(15 ft × 12 in./ft)3 
 = 37.0 kips/in.

The corresponding fi rst-order drift of the frame under the 
LRFD lateral load of 15 kips is:

∆1st = (15 kips)/(37.0 kips/in.) 
 = 0.405 in.

The fi rst-order axial force, strong-axis moment, and design 
parameters for Columns D and E are:

Pu = 150 kips Mux = (15 kips)(15 ft)/2 
Kx = 2.0 = 113 kip-ft
Ky = 1.0 Cb = 1.67
Lx = Ly = 15 ft Lb = 15 ft

Note that Kx = 2.0, the theoretical value for a column with 
a fi xed base and pinned top, is used rather than the value of 
2.1 recommended for design in the AISC Specifi cation Com-
mentary Table C-C2.2. The value of 2.0 is used because it is 
consistent with the formulation of the lateral stiffness calcu-
lation that follows. Note also that the impact of the leaning 
column on Kx is ignored in selecting the trial size, although 
it will be considered in subsequent sections when Kx cannot 
be taken equal to 1.0 for Column A. Out of the plane of the 
frame, Ky is taken as 1.0.

Design by Second-Order Analysis (Section C2.2a)

For the example frame given in Figure 2, the minimum 
lateral load is:

Yi = 75 kips + 150 kips + 150 kips + 75 kips 
 = 450 kips

Ni = 0.002 Yi 
  = 0.002(450 kips) 
  = 0.90 kips

Because this notional load is less than the actual lateral load, 
it need not be applied.
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For Columns D and E, using fi rst-order analysis and B1-B2 
amplifi cation:

Pnt = 150 kips, Plt = 0 kips
Mnt = 0 kip-ft, Mlt = 113 kip-ft

For P-δ amplifi cation, because there are no moments associ-
ated with the no-translation case, there is no need to calcu-
late B1. For P-∆ amplifi cation, the fi rst-order drift ratio is 
determined from the calculated drift of 0.405 in. Thus,

∆1st/L = (0.405 in.)/(15 ft × 12 in./ft) 
 = 0.00225

For moment frames, Rm = 0.85 and from Equation C2-6b 
with ∆H = ∆1st and ΣH = 15 kips,

ΣPe2 = R
ΣH

LM

1st( )∆ /

 = 0 85
15

.
kips

(0.00225)

 = 5,670 kips

For design by LRFD, α = 1.0 and ΣPnt is the sum of the 
gravity loads. Thus,

αΣPnt/ΣPe2 =  1.0(75 kips + 150 kips + 150 kips + 
75 kips)/5,670 kips

 = 0.0794

From Equation C2-3, the amplifi cation is:

 B2 = 
1

1

1

2

−
Σ

Σ
⎛

⎝⎜
⎞

⎠⎟

≥
α P

P
nt

e

  = 
1

1 0 0794( . )−
≥ 1.0

 = 1.09 ≥ 1.0
 = 1.09

Because B2 = 1.09, the second-order drift is less than 1.5 times 
the fi rst-order drift. Thus, the use of this method is permitted. 
Because B2 < 1.1, K can be taken as 1.0 for column design in 
the moment frame with this method.

The amplifi ed axial force (Equation C2-1b) and associated 
design parameters for this method are:

Pr = Pnt + B2Plt 
 = 150 kips + 1.09(0 kips) 
 = 150 kips

Kx = Ky = 1.0

Lx = Ly = 15 ft

The amplifi ed moment (Equation C2-1a) and associated de-
sign parameters for this method are:

Mrx = B1Mnt + B2Mlt 
 = (0 kip-ft) + 1.09 (113 kip-ft) 
 = 123 kip-ft

Cb = 1.67

Lb = 15 ft

Based on these design parameters, the available axial com-
pressive strength and strong-axis available fl exural strength 
of the ASTM A992 W14×109 are: 

Pc = φcPn = 1,220 kips
Mcx = φbMnx = 720 kip-ft

To determine which interaction equation is applicable, the 
ratio of the required axial compressive strength to available 
axial compressive strength must be determined.
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Thus, because Pr /Pc < 0.2, Equation H1-1b is applicable.
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The W14×109 is adequate because 0.232 ≤ 1.0.

Design by First-Order Analysis (Section C2.2b)

For the example frame given in Figure 2, the additional lat-
eral load (with ∆ = ∆1st) is: 

∆1st /L = (0.405 in.)/(15 ft × 12 in./ft) 
 = 0.00225

Yi = 75 kips + 150 kips + 150 kips + 75 kips 
 = 450 kips

Ni = 2.1(∆1st /L)Yi ≥ 0.0042Yi 
 = 2.1(0.00225)(450 kips) ≥ 0.0042(450 kips)
 = 2.13 kips ≥ 1.89 kips
 = 2.13 kips

It was previously determined in the illustration of design by 
second-order analysis example that the second-order drift is 
less than 1.5 times the fi rst-order drift. Additionally,

αPr = 1.0(150 kips) = 150 kips

and for the ASTM A992 W14×109,

0.5Py = 0.5FyAg 
 = 0.5(50 ksi)(32.0 in.2) 
 = 800 kips
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Because ∆2nd < 1.5∆1st and αPr < 0.5Py, the use of this method 
is permitted.

The loading for this method is the same as shown in Figure 
2, except for the addition of a notional load of 2.13 kips co-
incident with the lateral load of 15 kips shown, resulting in a 
moment Mu of 128 kip-ft in each column.

This moment must be amplifi ed by B1 as determined from 
Equation C2-2. The Euler buckling load is calculated with 
K1 = 1.0. Thus,

Pe1 = π2EI / (K1L)2 
 = π2(29,000 ksi)(1,240 in.4)/(1.0 × 15 ft × 12 in./ft) 2 
  = 11,000 kips 

Because the moment on one end of the column is zero, the 
moment gradient term is:

Cm = 0.6 – 0.4(M1/M2) 
 = 0.6 – 0.4(0/128) 
 = 0.6

From Equation C2-2,

αPr /Pe1 = 1.0(150 kips)/(11,000 kips)
 = 0.0136

B1 = 
C

P
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r

e

1

1

1

−
≥

α

 = 0 6

1 0 0136

.

.−  
≥ 1.0

 = 0.608 ≥ 1.0
 = 1.0

The axial force and associated design parameters for this 
method are:

Pr = 150 kips
Kx = Ky = 1.0
Lx = Ly = 15 ft

The amplifi ed moment and associated design parameters for 
this method are:

Mrx = B1Mu 
 = 1.0(128 kip-ft) 
 = 128 kip-ft
Cb = 1.67
Lb = 15 ft

Based on these design parameters, the available axial com-
pressive strength and strong-axis available fl exural strengths 
of the ASTM A992 W14×109 are: 

 Pc = φcPn = 1,220 kips
 Mcx = φbMnx = 720 kip-ft

To determine which interaction equation is applicable, the 
ratio of the required axial compressive strength to available 
axial compressive strength must be determined.
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Thus, because Pr /Pc < 0.2, Equation H1-1b is applicable.
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The W14×109 is adequate because 0.239 ≤ 1.0.

Direct Analysis Method (Appendix 7)

It was previously determined in the illustration of design by 
second-order analysis example that the second-order drift is 
less than 1.5 times the fi rst-order drift (note that this check 
is properly made using the unreduced stiffness EI). Thus, the 
notional load can be applied as minimum lateral load, and 
that minimum is:

Yi = 75 kips + 150 kips + 150 kips + 75 kips
  = 450 kips

Ni = 0.002Yi 
 = 0.002(450 kips) 
 = 0.9 kip

Because this notional load is less than the actual lateral load, 
it need not be applied. 

For Columns D and E, using fi rst-order analysis and B1-B2 
amplifi cation:

Pnt = 150 kips, Plt = 0 kips
Mnt = 0 kip-ft, Mlt = 113 kip-ft

To determine the second-order amplifi cation, the reduced 
stiffness, EI*, must be calculated. 

αPr = 1.0(150 kips)
 = 150 kips

and for the ASTM A992 W14×109,

0.5Py = 0.5Fy Ag 
 = 0.5(50 ksi)(32.0 in.2) 
 = 800 kips

Thus, because αPr < 0.5Py, τb = 1.0 and 

EI* = 0.8τbEI 
 = 0.8EI

For P-δ amplifi cation, because there are no moments as-
sociated with the no-translation case, there is no need to 
calculate B1. For P-∆ amplifi cation, the reduced stiffness 
EI* must be used to determine the fi rst-order drift. Because 
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Cb = 1.67
Lb = 15 ft

Based on these design parameters, the available axial com-
pressive strength and strong-axis available fl exural strengths 
of the ASTM A992 W14×109 are: 

Pc = φcPn = 1,220 kips
Mcx = φb Mnx = 720 kip-ft

To determine which interaction equation is applicable, the 
ratio of the required axial compressive strength to available 
axial compressive strength must be determined.
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Thus, because Pr /Pc < 0.2, Equation H1-1b is applicable.
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The W14×109 is adequate because 0.235 ≤ 1.0.

The Simplifi ed Method

For the example frame given in Figure 2, the minimum lat-
eral load is:

Yi = 75 kips + 150 kips + 150 kips + 75 kips 
 = 450 kips
Ni = 0.002Yi 
 = 0.002(450 kips) 
 = 0.9 kips

Because this notional load is less than the actual lateral load, 
it need not be applied.

The 15-kip lateral load produces slightly less drift than that 
corresponding to the design story drift limit because the 
W14×109 has I = 1,240 in.4 (versus the 1,120 in.4 required to 
limit drift to L/400). The lateral load required to produce the 
design story drift limit is:

15 kips × (1,240 in.4)/(1,120 in.4) = 16.6 kips

The load ratio is then:

 1.0 × (75 kips + 150 kips + 150 kips + 75 kips)/ 
(16.6 kips) = 27.1

Entering the table in the row for H/400, the corresponding 
multiplier for a load ratio of 27.1 is 1.1 (determined by in-
terpolation to one decimal place). Because this multiplier is 
less than 1.5, ∆2nd < 1.5∆1st and the use of this method is 
permitted. Additionally, because the multiplier is equal to 
1.1, K can be taken as 1.0 for column design in the moment 
frame with this method.

EI* = 0.8EI, the fi rst-order drift based on EI* is 25% larger 
than that calculated previously. Thus,

∆1st = 1.25(0.405 in.) 
 = 0.506 in.

The fi rst-order drift ratio is determined from the amplifi ed 
drift of 0.506 in.

∆1st /L = (0.506 in.)/(15 ft × 12 in./ft)
 = 0.00281

For moment frames, RM = 0.85 and from Equation C2-6b 
with ∆H = ∆1st and ΣH = 15 kips,

ΣPe2 = M ( )R
H

L1st

Σ
∆ /

 = 0 85
15

.
kips

(0.00281)
 = 4,540 kips 

For design by LRFD, α = 1.0 and ΣPnt is the sum of the 
gravity loads. Thus,

αΣPnt/ΣPe2 =  1.0(75 kips + 150 kips + 150 kips + 
75 kips)/4,540 kips

 = 0.0991

From Equation C2-3, the amplifi cation is:
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 = 1.11 ≥ 1.0
 = 1.11

It is worth noting that use of the reduced axial stiffness, EA* 
= 0.8EA, in members that contribute to lateral stability is also 
required in this method. However, due to the characteristics 
of the structures chosen for this example, there are no axial 
deformations that impact the stability of the structure.

The amplifi ed axial force (Equation C2-1b) and associated 
design parameters for this method are:

Pr = Pnt + B2Plt 
 = 150 kips + 1.11(0 kips) 
 = 150 kips

Kx = Ky = 1.0

Lx = Ly = 15 ft

The amplifi ed moment (Equation C2-1a) and associated de-
sign parameters for this method are:

Mrx = B1Mnt + B2Mlt 
 = (0 kip-ft) + 1.11(113 kip-ft)
 = 125 kip-ft
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CONCLUSIONS

The following conclusions can be drawn from the foregoing 
examples:

1. If conservative assumptions are acceptable, the easiest 
method to apply is the Simplifi ed Method, particularly 
when the drift limit is such that K can be taken equal 
to 1.

2. None of the analysis methods in the AISC Specifi cation 
are particularly diffi cult to use. The First-Order Analy-
sis Method and Direct Analysis Method both eliminate 
the need to calculate K, which can be a tedious process 
based upon assumptions that are rarely satisfi ed in real 
structures. Nonetheless, those who prefer to continue 
to use the approach of past specifi cations, the Effective 
Length Method, can do so, provided they incorporate the 
new requirement of a minimum lateral load in all load 
combinations.

3. Second-order effects and leaning columns have a signifi -
cant impact on strength requirements, but usual drift lim-
its such as L/400 sometimes can result in framing that re-
quires no increase in member size for strength. For frames 
with little or no lateral load and/or heavy fl oor loading, 
it is more likely that stability will control, regardless of 
the drift limits. This should not be taken as a blanket in-
dication that the use of a drift limit eliminates the need 
to consider stability effects. Rather, it simply means that 
drift-controlled designs may be less sensitive to second-
order effects because the framing is naturally stiffer and 
provides reserve strength. Drift limits also result in sig-
nifi cant simplifi cation of the analysis requirements when 
the increased framing stiffness allows more frequent use 
of the simplifi cations allowed in the various methods, 
such as the use of K = 1.
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The amplifi ed axial force (with the full axial force ampli-
fi ed by B2) and associated design parameters for this method 
are:

Pr = 1.1Pu 
 = 1.1(150 kips)
 = 165 kips

Kx = Ky = 1.0

Lx = Ly = 15 ft

The amplifi ed moment (with the full moment amplifi ed by B2) 
and associated design parameters for this method are:

Mrx = 1.1Mu 
 = 1.1(113 kip-ft)
 = 124 kip-ft

Cb = 1.67

Lb = 15 ft

Based on these design parameters, the axial and strong-axis 
fl exural available strengths of the ASTM A992 W14×109 
are: 

Pc = φc Pn = 1,220 kips
Mcx = φb Mnx = 720 kip-ft

To determine which interaction equation is applicable, the 
ratio of the required axial compressive strength to available 
axial compressive strength must be determined.
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Thus, because Pr /Pc < 0.2, Equation H1-1b is applicable.
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The W14×109 is adequate because 0.240 ≤ 1.0.

Summary for the Three-Bay Frame

As before, all methods produce similar designs. The result of 
the beam-column interaction equation for each method is:

Method Interaction Equation
Second-Order 0.232
First-Order 0.239
Direct Analysis 0.235
Simplifi ed 0.240

In this example, the interaction equations predict values that 
are so close to each other that there is no practical difference 
in the results.
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