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Abstract

The stability of steel bridges is improved by cross frames, which provide restraint at discrete
locations along the girder length. To provide adequate bracing, both strength and stiffness
requirements must be satisfied. Although there are a variety of potential geometries, many cross
frames are fabricated using steel angles to form an X-type brace with top and bottom struts and
two diagonals. The cross frames are often sized based upon a tension-only design due to the low
buckling strength of the diagonal angle members. This approach neglects the resistance supplied
by the compression diagonal thereby increasing the amount of steel required for the tension
diagonal.

Improved cross frame behavior may result by using tubular members, which have a relatively
large buckling strength. The increased compression capacity of tubular members allows the use
of single diagonal cross frames to provide effective bracing.

To verify the structural adequacy of using a single diagonal tubular cross frame, the Texas
Department of Transportation sponsored a research investigation at the University of Texas at
Austin focused on developing viable cross frames composed from tube shapes. This paper
outlines a comparison of the use of tubular members versus angle members for cross frames used
in bridge systems. The study consists of finite element analyses, and offers a method for sizing
the tubular members for a single diagonal cross frame.

1. Introduction

Cross frames are critical to the stability of straight and curved steel bridges. The cross frames
provide lateral stability to the bridge system and increase the individual girder buckling capacity.
To provide an effective brace, the cross frame must satisfy both strength and stiffness
requirements (Winter 1958). Steel bridge cross frames are usually designed as torsional braces,
which increase the overall strength of the system by forcing the girders to translate or rotate as a
unit.
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Conventional cross frames are often fabricated with steel angles using two diagonal members
and two horizontal struts to create an X-type brace as shown in Figure 1.

> - .
7 See TABLE for Min Lap
Dia "

Erect Bolt A=
Typ I f»l.l_

———5See TABLE
for members -

YP e T7 ¥ :
A =
N Mg
16 ol
“Va
nl> \
ke L :

ZzZZxza -l N
yp 7 YV

Figure 1: TxDOT Standard Detail for X-Type Cross Frame (TxDOT 2006)

Due to the relatively poor buckling resistance of angle members, these cross frames are often
designed as a “tension-only” system. In a tension-only system, the compression diagonal is
conservatively neglected in strength and stiffness calculations, therefore requiring more steel for
stability. In addition, the angles are connected to the end plates along only one leg of the
member, resulting in an eccentric connection. The eccentricity causes bending of the members
and decreases the fatigue performance (McDonald and Frank 2009).

Improved structural behavior may result by using tubular members to construct the cross frame.
Tubular members have significant buckling strength, which makes the tube efficient in both
tension and compression. Thus, a single diagonal cross frame with tubular members can provide
an effective brace for the steel bridge girders. The use of four steel angles often necessitates
multiple rotations of the cross frame during fabrication to accommodate weld placement at
numerous connections, including a spacer plate used to connect the two diagonals. By reducing
the number of cross frame members, handling requirements in the fabrication shop should be
reduced. Figure 2 shows an example of a single diagonal tubular cross frame.
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Figure 2: Single Diagonal Tubular Cross Frame

2. Cross Frame Stiffness

The concept of using a single diagonal cross frame stems from the tension-only system that is
commonly used to model these braces in bridges. In all brace configurations, girder twist induces
a torsional restraining moment from the cross frame, F4,. The torsional moment is represented
by a force couple applied at the top and bottom of the brace (see Figure 3).



-F

>F

F€

A
iy
—
A

l T l T

Ry R Ry R
Figure 3: (a) Tension-Only System and (b) Compression System

Considering the cross frame as a truss member system, the forces that result on the cross frame
as a result of girder twist are depicted in Figure 3 along with the corresponding internal forces.
Static equilibrium on the cross frame system produce the following expressions for the resulting
shears on the cross frame (R4 and Rp) and force in the diagonal, F,:
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where 4, is the brace height, S is the girder spacing, and L. is the length of the diagonal.
Following the derivation provided by Quadrato (2010), a deflection analysis on the tension-only
system can be performed to determine the rotation of the cross frame, and ultimately the brace
stiffness is (in accordance with the formula given by Yura (2001)):
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where fpaviar 18 the torsional stiffness of the cross frame considering only the axial stiffness of
the cross frame members, E is the modulus of elasticity, 4. is the area of the diagonal member,
and A4, is the area of each strut. Eq. 3 assumes that the ends of the cross frame members are
pinned. In the real cross frame system however, the members do not have the idealized pinned
connections, but experience some bending due to connection restraint. As the girder cross section
twists, the individual cross frame members bend in reverse curvature, provided the brace height
extends above the mid-height of the girder (Quadrato 2010). To include this effect in the brace
stiffness, the individual bending stiffness of the members is added to the axial stiffness of the
members to provide the following expression for the cross frame torsional stiffness:
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where [y, 1s the moment of inertia of each strut and Zjiugonas 1s the moment of inertia of the
diagonal.

Finally, to determine the total torsional brace stiffness, the following equation is offered by Yura
(2001), modified to include connection stiffness (Battistini 2009):
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where, S is the total torsional brace stiffness, £, is the stiffness of the cross frame, f.. is the
stiffness of the web cross-section including any stiffeners, fyirqe- 1S the in-plane stiffness of the
attached girder, and S omecrion 15 the stiffness of the plates connecting the brace to the girder.
Expressions for fy. and Pgirqr are provided in Yura (2001), while Quadrato (2010) provided
expressions for Sommection-

3. Cross Frame Design

For straight girder systems, the current Texas Department of Transportation (TxDOT) design
procedure for cross frames makes use of typical sizes that are often conservative compared to the
braces that are required. Based upon the girder spacing and depth, the engineer selects an
appropriate size member for the cross frame layout. Once the geometry has been finalized,
computer models are used to verify the cross frame layout and the cross frame members are
adequate.

The TxDOT standard plans provide three typical angle sizes for cross frames (TxDOT 2006).
The angle properties are given in Table 1 along with the capacity calculated assuming A36
Grade steel and including a 0.9 safety factor (¢,) for a tension member (AISC Steel Construction

Manual 2005).
Table 1: Standard Angle Sizes and Properties

Angle Size Area Tension Capacity
L4 x4x3/8 2.86 in’ 92.7k
L5x5%x1/2 4.75 in’ 154 k
L6x6x9/16 6.45 in’ 209 k

The angle sizes listed in Table 1 are to be used for X-type cross frames for web depths of 52 in to
96 in with varying spacing (TxDOT 2006). Since the angle cross frames are designed as tension-
only systems, a single diagonal tube replaces two angle diagonals in the proposed single diagonal
cross frame. The strength of the tube will be controlled by the buckling strength, which is
generally less than the tensile yield strength, unless the connection strength controls the capacity.

In order to develop a preliminary design for a single tubular diagonal, the column strength tables
from the AISC Manual (2005) were used. Since these tables include a 0.9 safety factor (¢.) for
compression, the values obtained are directly comparable to those in Table 1. To size the tubular



member, an effective length factor (K) of 1.0 was used. Therefore, the unbraced length was set
equal to the diagonal length (L.). If a 10 ft girder spacing is used, the calculated diagonal length
ranges from 10.9 ft to 12.8 ft, corresponding to a web depth of 52 in to 96 in. In actuality, these
diagonal lengths will be less than those calculated since the diagonal does not connect at the
web-to-flange interface (see Figure 1 for typical offsets). Table 2 presents square and round
tubular members with compression capacities that are comparable to the tension capacities of the
TxDOT standard angle sizes for the 96 in web depth condition. These tube sizes were used in
finite element analyses, the results of which are presented in the remainder of this paper.

Table 2: Angle Tensile Strength vs. Tube Buckling Strength

Angle Size Ang;g 6C l?sl;;l city Tube Size Tube Capacity'?
L4x4x3/8 922.7k 322 2.)5(653Xx3(<.12658 22:2 ll:
L5x5x1/2 154k ggg 2.)5(653);3(;.8375 }gg lli
L6x 6x9/16 209k ESS 2.3050);1(;.2500 ég? lli

1. Tube capacity was calculated using a length of 13 ft
2. Yield stress (Fy) is assumed to be 46 ksi for square tubes and 42 ksi for round tubes (AISC 2005)

4. Finite Element Analysis for Cross Frame Stiffness

4.1 Line Element Cross Frame Model

Commercial programs often simplify the analysis of cross frames by using line elements to
represent the cross frame geometry. When modeling a tension-only cross frame, a single
diagonal is typically used since the two-node line elements are equally stiff in compression or
tension.

However, as finite element models of steel bridges become more readily used, it is prudent to
determine if the line element model accurately portrays the torsional stiffness provided by the
braces. Models consisting of only the cross frame were constructed with both line elements and
shell elements using the three-dimensional finite element program ANSYS® (Academic
Research, Release 11.0, 2010). The line element model used three-dimensional linear finite strain
beam elements (BEAMI188), based on Timoshenko beam theory and including shear
deformations, with six degrees of freedom at each node (ANSYS 2010). The elements allow the
cross-section geometry to be input by the user for calculation of the member properties. Figure
4a shows the cross frame model with only the lines shown while Figure 4b displays the member
cross-section.

In performing the analysis of the line element cross frame, the deflection of the node where the
diagonal and bottom strut meet was restrained against vertical and horizontal deflection. The
deflections of the other nodes were restrained against vertical movement, which assumes the
cross frame will experience small rotations only. All nodes were restricted from out-of-plane
deflection, which is consistent with the planar interpretation of this problem. These boundary
conditions are the same as those used in the derivation of the axial stiffness of the brace given by
Eq. 3 and allow direct comparisons between the finite element brace stiffness and the analytical
solution.



Figure 4: Line Element Cross Frame Model (a) without and (b) with Member Cross-Section Displayed

Several linear elastic static analyses were conducted with the line element model using the
properties of the angle members, square tubes, and round tubes listed in Table 2. The results of
these analyses are tabulated in Table 3.

Table 3: Line Element Cross Frame Stiffness- Comparison to Analytical Solution

Web Depth = 52" Web Depth = 96"

Type Member Size ANSYS Analytical' Error ANSYS Analytical' Error
(10° k-in/rad) | (10°k-in/rad) | (%) J (10°k-in/rad) | (10° k-in/rad) | (%)

9 L4x4x3/8 0.520 0.521 0.00 1.225 1.225 0.01
& L5x5x112 0.865 0.865 0.01 2.035 2.034 0.02
< L6x6x9/16 1.171 1.171 0.01 2.756 2.755 0.02
o, | HSS5x5x3/16 0.657 0.657 0.01 1.546 1.546 0.04
g =] HSS5x5x3/8 1.263 1.263 0.01 2.972 2.971 0.04
A~ L HSS5x5x12 1.639 1.639 0.01 3.856 3.854 0.03
2 o | HSS5.563 x 0.258 0.782 0.783 -0.07 1.841 1.842 -0.04
E é HSS 5.563 x 0.375 1.112 1.113 -0.07 2.616 2.618 -0.04
e HSS 6.000 x 0.500 1.572 1.573 -0.07 3.699 3.700 -0.04

—_—

. The analytical cross frame stiffness was calculated using the nominal areas, not the areas provided in the AISC Manual, which
include decreases due to fabrication methods and tolerances.

Reviewing the results, the finite element model with line elements accurately matches the
analytical solution. Furthermore, when the line element cross frame model is switched to a
compression diagonal system, the finite element program confirmed the supposition that under
linear elastic behavior, the cross frame stiffness is the same as the tension diagonal system.

While line elements accurately match the analytical formulation, it is important to consider the
behavior of the various cross-sections in the real structure. For instance, the member forces that
result from force couple (F) acting on the cross frame are often eccentric to the center of gravity
(C.G.) of the cross frame members as depicted in Figure 5. This eccentricity leads to bending in
the member out-of-the-plane of the cross frame and may result in a decrease of the overall
stiffness of the brace. Additionally, real cross frame dimensions will lead to a decrease in the
angle the diagonal makes to the strut, potentially reducing its effectiveness. Shear lag effects in
the connection may also prove detrimental.
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Figure 5: Cross Frame Eccentricity for (a) Angle Members, (b) Square Tube Members, (¢) Round Tube Members

4.2 Shell Element Cross Frame Model

To better understand the cross frame behavior a shell element model was created. The steel
plates and cross frame members were modeled using 8-node shell elements (SHELL93) with six
degrees of freedom at each node (ANSYS 2010). Shell elements have been used in previous
research to model the flat steel plates that constitute most girders and cross frame assemblies
(Helwig 1994, Wang 2002, Whisenhunt 2004, and Quadrato 2010). In addition to flat plates, the
mid-side nodes of the shell element make it well suited to model curved plates (ANSYS 2010).

Rigid beam multipoint constraint elements (MPC184) with six degrees of freedom at each node
were used to model the welds connecting the members of the cross frame to the connection
plates, as well as the welds between the connection plates and the stiffeners. These constraint
elements have nonlinear geometry capabilities and have been used successfully in previous
research to model welds between overlapping plates of varying mesh densities (Quadrato 2010).

4.2.1 Cross Frame Model Validation

To validate the shell element cross frame model, analyses were first conducted with the same
geometry used in the line element cross frame model described in the previous section. The force
and displacement boundary conditions also remained constant, with the exception of the member
end constraints. To eliminate shear lag in the members, the nodes at the very end cross-section of
each member were constrained to each other using the multipoint constraint elements. The
ensuing analyses showed the shell element cross frame model produced comparable results to the
analytical solution, with the model being within 5% of the calculated stiffness.

4.2.2 Comparison of Cross Frame Stiffness

With the simplified shell element cross frame model successfully validated, it is desirable to
construct a more accurate geometric model that includes the effects of shear lag in the
connections and of out-of-plane displacements introduced by the force eccentricity. The brace
stiffnesses recovered from the finite element analyses will be compared to the stiffness
calculated using the analytical solution of Eq.3 (which are the same stiffnesses found using the
line element cross frame model). However, since the shell element model connects the cross
frame members through a moment resisting connection using the multipoint constraint elements,
the resulting cross frame deformation will bend the horizontal struts and diagonal in reverse
curvature. Therefore, the resulting model stiffnesses will be compared to the analytical solution
of Eq.4, which includes the bending stiffnesses of the members.



Moreover, because the shell element cross frame model included the stiffeners and connection
plates, the total brace stiffness recovered from ANSYS reflected these additions, as given in
Eq. 5. However, the stiffness of the web-section (f,..) and of the connection (B onnecrion) Was taken
as near infinity by applying a large modulus of elasticity to the stiffeners and the cross frame
connection plates. Thus, the stiffness recovered from the finite element program can be
compared to the analytical solution.

In terms of cross frame geometry, the shell element cross frame model uses dimensions
consistent with the values given on the TxDOT standard detail shown in Figure 1
(TxDOT 2006). The force couple induced by the girder twist was applied close to the centroid of
the top and bottom struts. Vertical and horizontal deformation constraints were the same as
those applied in the line element cross frame model. For comparison with the analytical solution,
all out-of-plane deformations were restrained. Results from the analyses are given in Table 4.

Table 4: Shell Element Cross Frame Stiffness- Comparison to Analytical Solution

Web Depth = 52" (h, = 37.25") Web Depth = 96" (h, = 82.19")
. 1 L,
Type Member Size ANSYS Analyticall’2 Difference ANSYS A? ally(';éCka I Difference
(10° k-in/rad) | (10° k-in/rad) (%) (10° k-in/rad) (10°k- (%)
in/rad)

N L4x4x3/8 0.299 0.395 -24.4 1.284 1.297 -1.02
0 L5x5x1/2 0.461 0.656 -29.8 2.064 2.208 -6.55
< L6x6x9/16 0.570 0.891 -36.1 2.736 3.063 -10.7
o , 1 HSS5x5x3/16 0.378 0.518 -27.4 1.534 1.697 -9.59
g—% HSS 5x 5x3/8 0.716 0.991 -27.7 2.997 3.257 -7.98
A~ [ HSS5x5x 12 0.930 1.281 -27.4 3.870 4219 -8.28
= HSS 5.563 x 0.258 0.400 0.602 -33.6 1.755 2.034 -13.7
2 é HSS 5.563 x 0.375 0.560 0.857 -34.6 2.504 2.891 -13.4
e HSS 6.000 x 0.500 0.780 1.217 -35.9 3.494 4,135 -15.5

1. The analytical cross frame stiffness was calculated using the nominal areas, not the areas provided in the AISC Manual, which
include decreases due to fabrication methods and tolerances.
2. The analytical cross frame stiffness also uses the actual height of the brace (%,), and the length of the strut is used in place of

the girder spacing.

In general, the shell element cross frame model predicts lower stiffness than the analytical
solution. For shallow cross frames, this stiffness is as much as 36% less than calculated, while
deeper cross frames were found to be a maximum 16% lower. One reason the values of the
stiffness of the shell element models are less than the analytical solutions is likely due to shear
lag in the connections, which is modeled by welding the nodes of the cross frame members
which are in contact with the connection plate (as would be represented by a welded connection).
By not engaging the entire cross-section at the end of the members, the overall stiffness of the
system is reduced. Additionally, the decrease in the angle of inclination of the diagonal is more
pronounced in the shorter cross frames, perhaps minimizing the effectiveness of the diagonal.

4.2.3 Tension-Only Cross Frame Behavior: Angle Members

Using the same shell element cross frame model, the effect of out-of-plane deformations on the
cross frame system, caused by the eccentricity of the connections (shown in Figure 5), was
explored. In accordance with the TxDOT standard details, a connection plate thickness and



stiffener thickness of 0.5 in was used with E =29000 ksi (TxDOT 2006). Results for a web-
depth of 96" are presented.

Figure 6: Deflected Shap of Tension-Only Angle Cross Frame with Out-of-Plane Displacements Allowed
(Max =0.83")

Figure 6 shows the deflected shape for a tension-only cross frame system with L 5x 5x 1/2
angle members. It is evident that the angle diagonal, even under a tensile load, experiences
significant out-of-plane displacements due to the force eccentricity. In fact, under an applied
load creating a calculated force in the diagonal (see Eq.2) near its yield capacity (154 k), the out-
of-plane displacement perpendicular to the plane of the cross frame near mid-length of the
diagonal was almost 0.83 in (out-of-plane displacement is plotted in Figure 6).

Not only does the cross frame experience large deflections, the stiffness is drastically reduced.
The finite element stiffness for the L 5 x 5 x 1/2 member given in Table 4 is 2.064 x 10° k-in/rad.
By including out-of-plane effects and using the TxDOT standard plate thicknesses, the brace
stiffness is reduced to only 0.756 x 10° k-in/rad, which is only 36.6% of the original ANSYS
predicted stiffness (63.4% reduction), and 34.2% of the analytical stiffness (65.8% reduction).
The flexibility of these angle members are of particular concern when considering the fatigue
category of this detail, which is also one of the motivations behind exploring the use of tubular
members.

4.2.4 Tension and Compression Cross Frame Behavior: Angle Members

While the tension-only cross frame with angle members experiences significant decreases in
stiffness due to the inclusion of out-of-plane effects, the tension-only model of cross frame
behavior may be overly-conservative. In reality, since the two angles are typically joined at mid-
length, the tension diagonal provides significant restraint to the compression diagonal. Using the
finite element model, a compression diagonal was included to determine the stiffness of the
combined system shown in Figure 7. Also depicted in Figure 7 is the magnitude of the out-of-
plane displacement at the force level when the tension diagonal reaches the yield strength
(compare to Figure 6b).

From the analysis, the combined model has a stiffness of 1.765x 10° k-in/rad, which is
approximately 80% of the analytical solution of 2.208 x 10° k-in/rad. Compared to the tension-
only model with planar behavior and stiffness of 2.064 x 10° k-in/rad, the combined system is



86% of the ANSYS predicted stiffness. While only the results for the L 5x 5x 1/2 angle
member are discussed, the other TxDOT standard angle sizes showed similar results.

Figure 7: Out-of-lane Deflection of Angle Cross Frame with Two Diagonals (Max = 0.63")

4.2.5 Tension-Only Cross Frame Behavior: Tubular Members

Using the validated shell element cross frame model, out-of-plane effects were also considered
on the single-diagonal system utilizing tubular members that have significant strength in both
tension and compression. Again, in accordance with the TxDOT standard details, a connection
plate thickness and stiffener thickness of 0.5 in was used (TxDOT 2006).

Figure 8: Deflected Shape of Tension-Only Round Tube Cross Frame with Out-of-Plane Displacements Restricted

The reduced eccentricity of the tubular members compared to similar angle systems results in a
reduction in the out-of-plane displacement of the cross frame. Figure 8 shows the relative
behavior of the tubular cross frame for unrestricted out-of-plane deformation subjected to the
same force described in Section 4.2.3 and represented in Figure 6 and Figure 7. The maximum
displacement in the tubular brace was approximately 0.09 in, which is essentially an order of
magnitude less than observed for the single-diagonal and double-diagonal angle cross frames.

4.2.6 Compression Cross Frame Behavior: Tubular Members
There is concern that as the force in the compression diagonal nears the buckling capacity of the
member, the member deformations will increase dramatically thereby decreasing the cross frame



stiffness. The use of tubular members to provide effective cross frames necessitates the
compression resistance of the tube diagonal exceeds the force required to resist the brace
moment induced in the cross frame. To verify the structural integrity of the brace, a nonlinear,
large displacement finite element analysis was conducted on the compression diagonal, tubular
cross frame geometry. Initial imperfections of 1/500 of the member length were applied in the
analysis and rigid stiffeners and connections were assumed. By plotting the finite element brace
stiffness versus the calculated force in the compression diagonal (Eq.2), the behavior of the
compression diagonal system can be assessed (see Figure 9).

Cross Frame Stiffness vs. Force in Diagonal Member
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Figure 9: Finite Element Cross Frame Stiffness vs. Calculated Force in the Compression Diagonal

From the plot in Figure 9, it is observed the cross frame stiffness does not vary significantly as
the force in the compression diagonal nears the pinned-end buckling capacity for both the square
and round tube systems (HSS 5 x 5 x 3/8 and HSS 5.563 x 0.375 members, respectively). While
the ANSYS predicted stiffnesses for these members are lower than the analytical solutions (as
discussed in Section 4.2.2), the stiffnesses for the compression diagonal are consistent with those
obtained for the tension diagonal (given in Table 4), with a slight decrease of 3-5% due to the
application of the initial imperfection. By using the design method set out in Section 3 of this
paper, the brace stiffness at the tube capacity given in Table 2 exceeds the brace stiffness
calculated using the corresponding angle member cross frame. One potential explanation as to
the strength of the tube in compression is the diagonal was sized using the girder spacing and
web-depth rather than the actual length of the diagonal, which is shorter. Secondly, the buckling
capacity was based on that for pinned ends while the actual connection provides some joint
restraint.



Conclusions

Line element and shell element cross frame models can be very useful in understanding cross
frame stiffness behavior. When considering the planar cross frame problem, these models
produce values of the brace stiffness within reasonable accuracy of the available analytical
solutions. However, by more accurately modeling the cross frame geometry and including effects
such as shear lag in the connections and out-of-plane deformations, preliminary finite element
analyses predicted brace stiffnesses that were significantly less than those calculated using the
analytical solutions.

Using the shell element model to compare out-of-plane deformations, it was observed the
deformations for the tubular cross frame system were an order of magnitude less than for the
angle cross frame system, even when including both the tension and compression angle
diagonals. One contributing factor to the reason angle cross frames may still provide adequate
bracing is that the inclusion of the compression angle helps to increase the cross frame stiffness,
relative to the tension-only system.

Finally, when considering the compression diagonal tubular cross frame system, the brace
stiffness decreases as the force in the diagonal approaches the buckling load of the member.
However, by following the proposed method for sizing the tubular diagonal, the axial brace
stiffness of the tubular cross frame system still exceeds the corresponding angle system.
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