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where Istrut is the moment of inertia of each strut and Idiagonal is the moment of inertia of the 
diagonal.

Finally, to determine the total torsional brace stiffness, the following equation is offered by Yura 
(2001), modified to include connection stiffness (Battistini 2009): 

connectiongirderbrT �����
11111

sec

����  (5) 

where, �T is the total torsional brace stiffness, �br is the stiffness of the cross frame, �sec is the 
stiffness of the web cross-section including any stiffeners, �girder is the in-plane stiffness of the 
attached girder, and �connection is the stiffness of the plates connecting the brace to the girder. 
Expressions for �sec and �girder are provided in Yura (2001), while Quadrato (2010) provided 
expressions for �connection.

3. Cross Frame Design 
For straight girder systems, the current Texas Department of Transportation (TxDOT) design 
procedure for cross frames makes use of typical sizes that are often conservative compared to the 
braces that are required.  Based upon the girder spacing and depth, the engineer selects an 
appropriate size member for the cross frame layout. Once the geometry has been finalized, 
computer models are used to verify the cross frame layout and the cross frame members are 
adequate. 

The TxDOT standard plans provide three typical angle sizes for cross frames (TxDOT 2006). 
The angle properties are given in Table 1 along with the capacity calculated assuming A36 
Grade steel and including a 0.9 safety factor (�t) for a tension member (AISC Steel Construction 
Manual 2005).

Table 1: Standard Angle Sizes and Properties 
Angle Size Area Tension Capacity 
L4 x 4 x 3/8 2.86 in2 92.7 k 
L5 x 5 x 1/2 4.75 in2 154 k 
L6 x 6 x 9/16 6.45 in2 209 k 

The angle sizes listed in Table 1 are to be used for X-type cross frames for web depths of 52 in to 
96 in with varying spacing (TxDOT 2006). Since the angle cross frames are designed as tension-
only systems, a single diagonal tube replaces two angle diagonals in the proposed single diagonal 
cross frame.  The strength of the tube will be controlled by the buckling strength, which is 
generally less than the tensile yield strength, unless the connection strength controls the capacity.

In order to develop a preliminary design for a single tubular diagonal, the column strength tables 
from the AISC Manual (2005) were used. Since these tables include a 0.9 safety factor (�c) for 
compression, the values obtained are directly comparable to those in Table 1. To size the tubular 



member, an effective length factor (K) of 1.0 was used.  Therefore, the unbraced length was set 
equal to the diagonal length (Lc). If a 10 ft girder spacing is used, the calculated diagonal length 
ranges from 10.9 ft to 12.8 ft, corresponding to a web depth of 52 in to 96 in. In actuality, these 
diagonal lengths will be less than those calculated since the diagonal does not connect at the 
web-to-flange interface (see Figure 1 for typical offsets). Table 2 presents square and round 
tubular members with compression capacities that are comparable to the tension capacities of the 
TxDOT standard angle sizes for the 96 in web depth condition.  These tube sizes were used in 
finite element analyses, the results of which are presented in the remainder of this paper. 

Table 2: Angle Tensile Strength vs. Tube Buckling Strength 

Angle Size Angle Capacity        
(36 ksi) Tube Size Tube Capacity1,2

L4 x 4 x 3/8 92.7 k HSS 5 x 5 x 3/16    88.6 k 
HSS 5.563 x 0.258 99.6 k 

L5 x 5 x 1/2 154 k HSS 5 x 5 x 3/8      160 k 
HSS 5.563 x 0.375 139 k 

L6 x 6 x 9/16 209 k HSS 5 x 5 x 1/2      199 k 
HSS 6.000 x 0.500 207 k 

1. Tube capacity was calculated using a length of 13 ft  
2. Yield stress (Fy) is assumed to be 46 ksi for square tubes and 42 ksi for round tubes (AISC 2005) 

4. Finite Element Analysis for Cross Frame Stiffness 
 
4.1 Line Element Cross Frame Model 
Commercial programs often simplify the analysis of cross frames by using line elements to 
represent the cross frame geometry. When modeling a tension-only cross frame, a single 
diagonal is typically used since the two-node line elements are equally stiff in compression or 
tension.

However, as finite element models of steel bridges become more readily used, it is prudent to 
determine if the line element model accurately portrays the torsional stiffness provided by the 
braces. Models consisting of only the cross frame were constructed with both line elements and 
shell elements using the three-dimensional finite element program ANSYS® (Academic 
Research, Release 11.0, 2010). The line element model used three-dimensional linear finite strain 
beam elements (BEAM188), based on Timoshenko beam theory and including shear 
deformations, with six degrees of freedom at each node (ANSYS 2010). The elements allow the 
cross-section geometry to be input by the user for calculation of the member properties. Figure 
4a shows the cross frame model with only the lines shown while Figure 4b displays the member 
cross-section. 

In performing the analysis of the line element cross frame, the deflection of the node where the 
diagonal and bottom strut meet was restrained against vertical and horizontal deflection. The 
deflections of the other nodes were restrained against vertical movement, which assumes the 
cross frame will experience small rotations only. All nodes were restricted from out-of-plane 
deflection, which is consistent with the planar interpretation of this problem. These boundary 
conditions are the same as those used in the derivation of the axial stiffness of the brace given by 
Eq. 3 and allow direct comparisons between the finite element brace stiffness and the analytical 
solution.  
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Moreover, because the shell element cross frame model included the stiffeners and connection 
plates, the total brace stiffness recovered from ANSYS reflected these additions, as given in 
Eq. 5. However, the stiffness of the web-section (�sec) and of the connection (�connection) was taken 
as near infinity by applying a large modulus of elasticity to the stiffeners and the cross frame 
connection plates. Thus, the stiffness recovered from the finite element program can be 
compared to the analytical solution. 

In terms of cross frame geometry, the shell element cross frame model uses dimensions 
consistent with the values given on the TxDOT standard detail shown in Figure 1 
(TxDOT 2006). The force couple induced by the girder twist was applied close to the centroid of 
the top and bottom struts.  Vertical and horizontal deformation constraints were the same as 
those applied in the line element cross frame model. For comparison with the analytical solution, 
all out-of-plane deformations were restrained. Results from the analyses are given in Table 4. 

Table 4: Shell Element Cross Frame Stiffness- Comparison to Analytical Solution 

Type Member Size 

Web Depth = 52˝ (hb = 37.25˝) Web Depth = 96˝ (hb = 82.19˝)

ANSYS    
(106 k-in/rad)

Analytical1,2

(106 k-in/rad)
Difference 

(%)
ANSYS    

(106 k-in/rad)

Analytical1,

2 (106 k-
in/rad)

Difference 
(%)

A
ng

le
 L 4 x 4 x 3/8 0.299 0.395 -24.4 1.284 1.297 -1.02 

L 5 x 5 x 1/2 0.461 0.656 -29.8 2.064 2.208 -6.55 
L 6 x 6 x 9/16 0.570 0.891 -36.1 2.736 3.063 -10.7 

Sq
ua

re
 

Tu
be

 HSS 5 x 5 x 3/16 0.378 0.518 -27.4 1.534 1.697 -9.59 
HSS 5 x 5 x 3/8 0.716 0.991 -27.7 2.997 3.257 -7.98 
HSS 5 x 5 x 1/2 0.930 1.281 -27.4 3.870 4.219 -8.28 

R
ou

nd
 

Tu
be

 HSS 5.563 x 0.258 0.400 0.602 -33.6 1.755 2.034 -13.7 
HSS 5.563 x 0.375 0.560 0.857 -34.6 2.504 2.891 -13.4 
HSS 6.000 x 0.500 0.780 1.217 -35.9 3.494 4.135 -15.5 

1. The analytical cross frame stiffness was calculated using the nominal areas, not the areas provided in the AISC Manual, which 
include decreases due to fabrication methods and tolerances.

2. The analytical cross frame stiffness also uses the actual height of the brace (hb), and the length of the strut is used in place of 
the girder spacing.

In general, the shell element cross frame model predicts lower stiffness than the analytical 
solution.  For shallow cross frames, this stiffness is as much as 36% less than calculated, while 
deeper cross frames were found to be a maximum 16% lower. One reason the values of the 
stiffness of the shell element models are less than the analytical solutions is likely due to shear 
lag in the connections, which is modeled by welding the nodes of the cross frame members 
which are in contact with the connection plate (as would be represented by a welded connection). 
By not engaging the entire cross-section at the end of the members, the overall stiffness of the 
system is reduced.  Additionally, the decrease in the angle of inclination of the diagonal is more 
pronounced in the shorter cross frames, perhaps minimizing the effectiveness of the diagonal. 

4.2.3 Tension-Only Cross Frame Behavior: Angle Members 
Using the same shell element cross frame model, the effect of out-of-plane deformations on the 
cross frame system, caused by the eccentricity of the connections (shown in Figure 5), was 
explored.  In accordance with the TxDOT standard details, a connection plate thickness and 
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Conclusions
Line element and shell element cross frame models can be very useful in understanding cross 
frame stiffness behavior. When considering the planar cross frame problem, these models 
produce values of the brace stiffness within reasonable accuracy of the available analytical 
solutions. However, by more accurately modeling the cross frame geometry and including effects 
such as shear lag in the connections and out-of-plane deformations, preliminary finite element 
analyses predicted brace stiffnesses that were significantly less than those calculated using the 
analytical solutions. 

Using the shell element model to compare out-of-plane deformations, it was observed the 
deformations for the tubular cross frame system were an order of magnitude less than for the 
angle cross frame system, even when including both the tension and compression angle 
diagonals.  One contributing factor to the reason angle cross frames may still provide adequate 
bracing is that the inclusion of the compression angle helps to increase the cross frame stiffness, 
relative to the tension-only system.   

Finally, when considering the compression diagonal tubular cross frame system, the brace 
stiffness decreases as the force in the diagonal approaches the buckling load of the member.  
However, by following the proposed method for sizing the tubular diagonal, the axial brace 
stiffness of the tubular cross frame system still exceeds the corresponding angle system. 
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