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Abstract 
This paper presents a suite of prediction methods for approximating the elastic buckling 
properties of cold-formed steel columns and beams with edge-stiffened holes. The simplified 
methods supplement recently developed elastic buckling prediction procedures supporting the 
extension of the American Iron and Steel Institute’s Direct Strength Method to members with 
holes. Weighted average section properties are used with classical column stability equations to 
predict flexural and flexural-torsional buckling loads and beam lateral-torsional buckling 
moments including the influence of edge-stiffened holes. Cross-sectional instability of lipped C-
sections including stiffened holes is evaluated with eigen-buckling analysis and the finite strip 
method. Critical elastic distortional buckling is shown to be minimally affected by the presence 
of stiffened holes when edge stiffener dimensions around web holes are sized to replace bending 
stiffness lost by the removal of web material at a hole. Finite strip analysis of the net section at a 
stiffened hole is performed to evaluate local buckling. The simplified methods are validated with 
thin shell finite element eigen-buckling parameter studies where the edge-stiffened holes are 
explicitly modeled. 
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1. Introduction 
 
Elastic buckling and load-deformation response are intimately related for thin-walled cold-
formed steel structural members with or without holes.  For members with unstiffened holes, 
local buckling half-waves can form at a hole or between holes (Moen and Schafer 2009a; Moen 
and Schafer 2009b). Experiments have demonstrated that distortional buckling deformations in 
columns and joists increase with the presence of unstiffened web holes (Moen and Schafer 2008; 
Schudlich et al. 2011). Nonlinear finite element modeling results provide evidence that cold-
formed steel column global buckling capacity decreases when large holes are present and that the 
controlling global buckling mode can switch from weak axis flexure to flexural-torsional 
buckling (Moen 2008; Moen and Schafer 2011). Edge stiffeners may prevent unstiffened strip 
local buckling in the compressed regions above or below a hole (Yu 2007)  and can cause 
distortional buckling to occur between holes (Moen and Yu 2010) as shown in Fig. 1c.  
 

 
Figure 1 : Lipped C-section column elastic buckling with stiffened holes - (a) local buckling between holes, (b) 

distortional buckling at a hole, (c) distortional buckling between holes, and (d) global (flexural-torsional) buckling 
 
Currently, cold-formed steel members without holes can be designed with the American Iron and 
Steel Institute’s Direct Strength Method (DSM) (AISI-S100 2007), which utilizes the local, 
distortional, and global (Euler) elastic buckling properties to predict ultimate strength. The 
elastic buckling properties for members without holes can be determined from an elastic 
buckling curve generated with the semi-analytical finite strip method. However, discontinuities 
caused by holes cannot be explicitly modeled with the finite strip method, and therefore, 
simplified methods for use in design are needed. 
 
This paper presents procedures for approximating the change in the elastic buckling load (or 
moment) of cold-formed steel columns and beams due to the presence of edge-stiffened holes.  
Similar procedures were recently validated for cold-formed steel members with unstiffened holes 
(Moen and Schafer 2009a). The stiffened hole simplified methods for predicting global buckling, 
distortional buckling, and local buckling are evaluated with finite element eigen-buckling 
parameter studies on industry standard Structural Stud Manufacturers Association (SSMA) cold-
formed steel members (Table 1, Fig. 2).   The selected cross-sections were part of an 
experimental program evaluating the flexural capacity of cold-formed steel joists with edge-
stiffened holes sponsored by the National Association of Home Builders (Elhajj 1999).   
 

Table 1: SSMA structural stud and stiffened hole dimensions 

 
 

(a)

(b) (d)

(c)

Thickness Web Size Flange 
Width

Stud 
Length

Hole 
Depth

Hole 
Length

Hole 
Spacing

Inside Corner 
Radius

Hole Stiffener 
Length

Hole 
Radius

(in.) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (in.)
t H B L hhole Lhole S R Q Rhole

800S162-43 0.0451 8 1.625 144 4.25 7 24 0.0712 0.688 2.21
800S162-54 0.0566 8 1.625 144 4.25 7 24 0.0849 0.688 2.21

1000S162-54 0.0566 10 1.625 240 6.25 9 24 0.0849 0.688 3.21
1200S162-54 0.0566 12 1.625 240 6.25 9 24 0.0849 0.688 3.21
1200S162-68 0.0713 12 1.625 240 6.25 9 24 0.1069 0.688 3.21

SSMA 
Designation



 
Figure 2 : Structural stud dimension nomenclature 

 
2. Global buckling of cold-formed steel columns and beams with edge-stiffened holes 
 
The nominal global axial capacity, Pn, of a cold-formed steel column is defined by its global 
slenderness, λc = (Py/Pcre)0.5. If the global elastic buckling load, Pcre, decreases due to the 
presence of holes, then λc increases, and the column (with holes) is predicted to have less 
capacity (Moen and Schafer 2011).  A similar design approach is employed for laterally 
unbraced cold-formed steel beams with holes, except the nominal flexural strength, Mn, is 
predicted with the global slenderness of the beam, λb = (My/Mcre)0.5, where My is the yield 
moment for the beam and Mcre is calculated including the presence of holes. Simplified methods 
for predicting Pcre and Mcre for columns and beams with unstiffened holes have recently been 
developed (Moen and Schafer 2009a,b).  These methods are extended to structural members with 
edge-stiffened holes in the following sections. 
 
2.1. Global flexural buckling 
 
2.1.1. Weak axis flexure prediction equations 
A Rayleigh–Ritz energy solution is employed in this section as an approximate equation for the 
critical elastic global flexural (Euler) buckling load, Pcre, of a uniaxially loaded simply-supported 
column with holes (Moen and Schafer 2009a). This approximate method is motivated by existing 
analytical solutions for the elastic buckling of a column with a variable cross-section  
(Timoshenko 1908; Falk 1956; Timoshenko 1961). For the common case when holes are spaced 
symmetrically about the longitudinal midline of the column, Pcre is determined as follows: 
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The Euler buckling load, Pcre, is proportional to the weighted average of the gross cross section 
moment of inertia, Ig, and the net section moment of inertia at a hole, Inet.  The portion of column 
without holes has length Lg, and the length of column with holes is Lnet, so that L=Lg+Lnet. The 
validity of this “weighted average” approximate method for Pcre is explored next for flexural 
buckling of cold-formed steel columns with evenly spaced edge-stiffened holes.  
 
2.1.2. Verification for flexural buckling of columns with edge-stiffened holes 
Thin shell finite element eigen-buckling analysis in ABAQUS (ABAQUS 2010) was employed 
to evaluate the ‘‘weighted average’’ approximation of Eq. 1 for the global flexural critical elastic 
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buckling load of a column with evenly spaced edge-stiffened holes. This example considers 
weak-axis flexural buckling of the industry standard cold-formed steel (SSMA)SSMA stud 
columns listed in Table 1 with oval-shaped web holes (SSMA 2001). The length of the column, 
L, varies from 144 in. to 240 in.; the hole spacing, S,	
   is 24 in.; the hole depth, hhole, varies 
between 4.25 in. and 6.25 in.; the hole width, Lhole, varies between 7 in. and 9 in.; and the hole 
stiffener length, Q, is 0.688 in. The compression members are loaded with consistent nodal loads 
simulating a uniform stress at the member ends.  The end boundary conditions are pinned-
warping free as shown in Fig. 3. The modulus of elasticity, E, is 29500 ksi and Poisson’s ratio, ν, 
is 0.30.  
 

 
Figure 3 : ABAQUS column boundary and loading conditions 

The presence of stiffened holes reduces the critical elastic global buckling load by a maximum of 
13% for the 1000S162-54 column (see Pcre,ABAQUS with holes/Pcre, ABAQUS no holes in Table 2).  The 
‘‘weighted average’’ approximate method of Eq. 1, denoted as Pcre,avg in Table 2, is shown to be 
a viable and slightly unconservative predictor of the weak-axis flexural buckling load across the 
range of column and hole dimensions	
   considered in this study, with Pcre,ABAQUS with holes/Pcre,avg 
ranging from 0.94 to 0.97.     
 

Table 2 : Influence of edge-stiffened holes on column global buckling
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2.2. Global flexural-torsional buckling 
 
2.2.1. Flexural-torsional prediction equations 
For singly-symmetric sections subjected to flexural-torsional buckling, the elastic flexural-
torsional buckling load, Pcre, including the influence of holes, can be calculated with the 
“weighted average” approach and the following equation provided in AISI-S100-07:  
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The radius of gyration about the shear center is defined as ro,avg=(rx,avg

2 + ry,avg
2 + xo,avg

2)0.5, 
where the “weighted average” x distance from the shear center to the centroid of the cross-
section is xo,avg  

 
xo,avg =

xo,gLg + xo,netLnet
L

. (4) 

The column buckling load, Pcre, is also a function of the radii of gyration of a cross section about 
the centroidal axes, i.e., rx,avg = (Ix,avg /Aavg)0.5 and ry,avg = (Iy,avg/Aavg)0.5, where Ix,avg, Iy,avg, and Aavg 
are calculated using a similar form of Eq. 4. (Note that the gross cross-sectional area, Ag, in Eq. 3 
and Eq. 4 converts the uniform compressive stress at the ends of the column to a force and 
should not be confused with Aavg).   
 
The St. Venant torsional constant, Javg, including the influence of holes, can be calculated with 
weighted average approach with a similar form of Eq. 4. However, the warping torsion constant, 
Cw, does not follow the weighted average approximation, as the presence of holes prevents 
warping resistance from developing (Moen and Schafer 2009a).  A viable approximation for 
warping stiffness at the net section is Cw,net (see Eq. 3). Note that all net section properties, e.g., 
Ix,net, Iy,net, Anet, xo,net, yo,net, Jnet, and Cw,net, can readily be calculated with the built-in section 
property calculations in the freely available open source program CUFSM (Schafer and Ádàny 
2006) by setting the element thicknesses to zero at the hole (Moen and Schafer 2010a). The 
validity of the weighted average approach for flexural-torsional buckling is evaluated in the 
following sections.  
 
2.2.2. Evaluation of torsional property approximations   
A procedure for calculating torsional properties of a thin-walled structural member with holes is 
described in Moen and Schafer (2009b). An imposed torsional rotation (twist) is applied at the 
member end in a finite element model with either warping free or warping fixed boundary 
conditions.  The torsion created by the imposed twist is read from the finite element model and 
input into the classical differential equation for nonuniform torsion to obtain J and Cw for the 
member, including the influence of holes.  The torsional properties for the SSMA member 
dimensions in Table 1 are calculated with this procedure (JABAQUS with holes and Cw, ABAQUS with holes in 
Table 3) to evaluate the viability of the weighted average Javg and net section Cw,net 
approximations in Eq. 4. 



 
The results in Table 3 demonstrate that the weighted average approach is a viable, conservative 
predictor of the St. Venant torsional constant for the SSMA members with stiffened holes 
considered in this study, with the weighted average predicting a maximum of 13% lower than 
that predicted by the semi-analytical approach (compare JABAQUS with holes to Javg in Table 3).   It is 
hypothesized that Javg underpredicts the actual torsional resistance because the weighted average 
approach assumes the stiffened holes are rectangular, whereas the actual holes are oval and taper 
to the gross cross-section. The net section warping torsion constant, Cw,net, is consistent with that 
predicted by the semi-analytical approach (compare Cw ABAQUS with holes to Cw,net in Table 3). The 
addition of edge-stiffened holes has a minimal effect on J and Cw  for the members evaluated in 
this study (compare J,ABAQUS with holes to J,ABAQUS no holes  and C,w ABAQUS with holes to C,w ABAQUS no holes in 
Table 3).  
 

Table 3: Influence of edge-stiffened holes on torsion properties 

 
 

2.2.3. Verification for flexural-torsional buckling of a column with edge-stiffened holes 
The second elastic global mode of all SSMA columns analyzed is flexural-torsional buckling. 
Table 2 shows that the flexural-torsional mode is more sensitive to hole size than the weak-axis 
flexural mode (compare Pcre,ABAQUS with holes /Pcre,ABAQUS no holes in Table 2). The flexure-torsional 
buckling loads of the SSMA columns with edge-stiffened holes from ABAQUS are within 2% of 
the flexural buckling loads predicted by the weighted average approach (compare Pcre,ABAQUS with 

holes /Pcre,avg in Table 2).  
 
2.3. Lateral-torsional buckling 
 
2.3.1. Lateral-torsional buckling prediction equation 
The “weighted average” method developed for columns with holes is extended to beams with 
edge-stiffened holes in this section. The classical lateral-torsional stability equation for a simply-
supported beam with holes loaded with a constant moment along its length can be represented as: 
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Buckling Mode Comparison
800S162-43 800S162-54 1000S162-54 1200S162-54 1200S162-68

L=144 in L=144 in L=240 in L=240 in L=240 in Mean COV
St Venant's torsion constant, J J,g   

[a]   (in.4) 0.000364 0.000715 0.000836 0.000957 0.001899
J,ABAQUS no holes    (in.4) 0.000364 0.000714 0.000835 0.000957 0.001896
J,ABAQUS with holes (in.4) 0.000367 0.000730 0.000831 0.000942 0.001878
J,avg                        (in.4) 0.000342 0.000670 0.000733 0.000854 0.001692
J,ABAQUS no holes /J,g 1.00 1.00 1.00 1.00 1.00 1.00 0.00
J,ABAQUS with holes /J,g 1.01 1.02 0.99 0.98 0.99 1.00 0.02
J,ABAQUS with holes /J,avg 1.08 1.09 1.13 1.10 1.11 1.10 0.02

Warping torsion constant, Cw Cw ,g 
[a]                (in.6) 1.99 2.41 4.00 6.05 7.24

Cw ,ABAQUS no holes      (in.6) 1.99 2.41 4.00 6.05 7.24
Cw ,ABAQUS with holes   (in.6) 2.01 2.47 3.98 5.95 7.17
Cw,net                       (in.6) 1.91 2.30 3.67 5.77 6.88
Cw ,ABAQUS no holes /Cw ,g 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Cw ,ABAQUS with holes /Cw ,g 1.01 1.02 1.00 0.98 0.99 1.00 0.02
Cw ,ABAQUS with holes /Cw ,net 1.06 1.07 1.09 1.03 1.04 1.06 0.02

 [a]  J,g, and  Cw,g are calculated for the gross cross-section with the CUFSM section property calculator

SSMA Section ABAQUS-to-
predicted statistics



The approximate method for beams with edge-stiffened holes is implemented by replacing Iy and 
J with Iy,avg and Javg (see form of Eq. 4) and by calculating Cw,net assuming the cross-section 
thickness is zero over the hole as discussed in Section 2.2.1.  

 
 

2.3.2. Verification for lateral-torsional bucking of a beam with edge-stiffened holes 
The cold-formed steel SSMA members evaluated in the previous sections as columns are now 
evaluated as beams with uniform moments. The beam ends are modeled as pinned warping-free 
and the cross-section at the longitudinal midline is warping-fixed as shown in Fig. 3. The critial 
elastic lateral-torsional buckling moment, Mcre, decreases with the presence of edge-stiffened 
holes by a maximum of 8% as shown in Table 4. The “weighted average” prediction method is 
demonstrated to be an accurate predictor of Mcre when compared to the ABAQUS eigen-buckling 
results (see Mcre,ABAQUS with holes /Mcre,avg in Table 4).  
 

Table 4 : Influence of edge-stiffened holes on beam global buckling 

 
 
3. Distortional buckling of cold-formed steel columns and beams with edge-stiffened holes 
 
Distortional buckling is recognized as a design limit state for cold-formed steel columns and 
beams with open cross-sections separate from that of global or local-global buckling interaction 
(Lau and Hancock 1987; AISI-S100 2007). Rotational restraint of the web to the flange is 
interrupted in open-cross sections when unstiffened holes are present, reducing the critical elastic 
distortional buckling load (Moen and Schafer 2009a). A recent study demonstrated that the 
addition of edge stiffeners to holes may compensate for the loss in web bending stiffness at a 
web hole, causing distortional buckling to occur between holes (Moen and Yu 2010) in the same 
way that local buckling can occur at a hole or between holes (Moen and Schafer 2009b).  This 
idea is implemented in the next section with a simplified approach for predicting the distortional 
buckling load including the effect of stiffened holes.  
 
3.1. Distortional buckling prediction for columns with holes 
The distortional critical elastic buckling load, Pcrd, is calculated for a cold-formed steel column 
with holes as: 
 Pcrd =min(Pcrdnh,Pcrdh ) , (6) 
where Pcrdnh is the distortional buckling load for a buckled half-wave without a hole, which may 
be calculated by finite strip or hand methods (AISI-S100 2007). The buckling load for a 
distortional buckling half-wave including a hole, Pcrdh, can be calculated for unstiffened holes by 
simulating the effect of the hole with a reduced web thickness in a finite strip analysis, as 

Buckling Mode Comparison
800S162-43 800S162-54 1000S162-54 1200S162-54 1200S162-68

L=144 in L=144 in L=240 in L=240 in L=240 in Mean COV
Beam lateral-
torsional 
buckling

Mcre,CLASSICAL no holes     
 [a] (kip-in.)

8.48 10.72 5.54 6.66 8.65
Mcre,ABAQUS no holes             (kip-in.) 8.52 10.77 5.58 6.69 8.74
Mcre,ABAQUS with holes       (kip -in.) 8.09 10.23 5.11 6.33 8.27
Mcre,avg                                     (kip -in.) 8.22 10.36 5.17 6.36 8.20
Mcre,ABAQUS no holes/Mcre,CLASSICAL no holes  

[a] 1.00 1.01 1.01 1.00 1.01 1.01 0.00
Mcre,ABAQUS with holes/Mcre,ABAQUS no holes 0.95 0.95 0.92 0.95 0.95 0.94 0.01
Mcre,ABAQUS with holes/Mcre,avg 0.98 0.99 0.99 1.00 1.01 0.99 0.01

 [a] The critical lateral-torsional buckling moment for a beam without holes is denoted as Mcre,CLASSICAL no holes  

SSMA Section ABAQUS-to-
predicted statistics



detailed in Moen and Schafer (2010a). A similar finite strip approach for calculating Pcrdh of 
cold-formed steel columns with edge-stiffened holes is derived in the next section. 
 
3.2. Effective web stiffness considering edge-stiffened holes 
A web with an edge-stiffened hole will have a reduction in bending stiffness from the removal of 
hole material and an increase in web bending stiffness from the presence of the edge stiffeners 
around the hole. The reduced transverse rotational stiffness of a web with an unstiffened hole 
over a distortional buckling half-wavelength, Lcrd, is approximated in Moen and Schafer (2009a) 
as: 

  K! ,hole = 1! Lhole
Lcrd
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where Kθ is the cumulative web stiffness without a hole over Lcrd for a column with an open 
cross-section (Schafer 2002): 
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For a stiffened hole, the two parallel transverse hole edge stiffeners can be thought of as beams 
spanning hhole, each adding rotational restraint Kθ,stiffener to the web over Lcrd, i.e., 
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The rotational restraint Kθ,stiffener is formulated assuming concentrated moments at each end.  The 
(hhole/H)n multiplier in Eq. 9 is included because a stiffener will be less effective at restraining the 
flanges when hhole is small relative to the web width H.  The (Lhole/ Lcrd)m multiplier expresses the 
influence of the two parallel stiffeners along the length of the hole on web rotational restraint.  
When Lhole is small relative to the distortional half-wavelength Lcrd, the stiffeners along hhole are 
assumed to be less effective at restraining the compressed flanges. (It should be noted that Eq. 9 
is a mechanics-based “educated guess” that produces a simple equation conducive to design.  A 
preliminary validation of Eq. 9 is provided in the next section, with further validation planned in 
the near future for other cross-sections and hole dimensions.)  
An equivalent cumulative web rotational stiffness, Kθ,r, can be written including the loss of web 
material and the presence of edge stiffeners as 
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Substituting Eq. 7 and Eq. 9 into Eq. 10 and solving for the effective web thickness, tr, results in 
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The exponents n=1 and m=3 produce the most accurate predictions for Pcrdh considering the 
columns in this study (see the following validation section).  Therefore, the effect of a stiffened 
hole on the critical elastic distortional buckling load can be approximated by changing the cross-
section web thickness to tr in a finite strip analysis.  The procedure for calculating Pcrdh is the 
same as that outlined in Moen and Schafer (2010a). First, the distortional buckling half-



wavelength, Lcrd, is obtained from a finite strip analysis of the gross cross-section.  The effective 
thickness, tr, is then implemented in a second finite strip analysis performed just at Lcrd, which 
produces Pcrdh. 
 
3.3. Distortional buckling prediction for beams with holes 
The distortional critical elastic buckling moment, Mcrd, is calculated for a cold-formed steel beam 
with holes as: 
 Mcrd =min(Mcrdnh,Mcrdh ) ,   (12) 
where Mcrdnh is the distortional buckling load of a half-wave without a hole, which may be 
calculated by finite strip or hand methods (AISI-S100 2007). The buckling load for a distortional 
buckling half-wave including a hole, Mcrdh, can be calculated for unstiffened holes by simulating 
the effect of the hole by reducing the web thickness in a finite strip analysis, as detailed in Moen 
and Schafer (2010b).   The exponents n=1 and m=1 are recommended in Eq. 11, and the same 
finite strip analysis discussed in Section 3.2 is used to approximate Mcrdh for cold-formed beams 
with edge-stiffened holes.  The viability of this approach is confirmed in the next section with 
thin shell finite element eigen-buckling parameter studies. 
 
3.4. Verification for distortional bucking of members with edge-stiffened holes 
The critical elastic distortional buckling loads (moments) for the cold-formed steel SSMA 
member dimensions in Table 2 at a stiffened hole and away from a stiffened holes are 
approximated with finite strip methods in this section i.e., Pcrdnh,simp, Pcrdh,simp for columns and 
Mcrdnh,simp, Mcrdh,simp for beams. The same distortional buckling modes (at a hole and between 
holes) were identified in thin shell finite element eigen-buckling analyses (Pcrdnh,ABAQUS, 
Pcrdh,ABAQUS for columns and Mcrdnh,ABAQUS, Mcrdh,ABAQUS) for comparison (Fig. 1). The modeled FE 
boundary conditions are described in Fig. 3.  Note that Pcrdnh,simp and Mcrdnh,simp were calculated 
with the gross cross-section in CUFSM, and Pcrdh,simp and Mcrdh,simp were calculated with a 
reduced web thickness (Eq. 11) in CUFSM. 
 
For both columns and beams with stiffened holes considered in this study, the simplified method 
is on average an accurate predictor of Pcrd (ABAQUS-to-predicted mean of 1.01 for columns in 
Table 5, 1.07 for beams in Table 6), however the coefficient of variation (COV) of the 
ABAQUS-to-predicted buckling loads is high, especially for columns (0.14 for columns, 0.09 for 
beams).  In some cases the finite strip distortional buckling prediction is lower than the 
ABAQUS results (Pcrd, ABAQUS/Pcrd,simp=0.86 for the 1000S162-54 column in Table 5).   Both the 
ABAQUS results and the simplified method predict that distortional buckling occurs between 
stiffened holes (Pcrdnh, Mcrdnh) in all cases.  In other words, the hole stiffeners with Q=0.688 in. 
provide enough rotational restraint to the compressed flanges to compensate for the loss in web 
material at the hole, resulting in distortional buckling between holes. Unfortunately this 
prediction trend cannot be confirmed based on the NAHB tests conducted for these members 
because the experimental report does not describe specimen failure modes in detail. 
 
The finite strip simplified method for predicting Pcrdh and Mcrdh using the modified web thickness 
in Eq. 11 and n=1, m=3 for columns, n=1, m=1 for beams, is on average an accurate predictor 
when compared to the ABAQUS results (ABAQUS-to-predicted mean is 1.06 for columns in 
Table 5, 1.07 for beams for Table 6).  The ABAQUS-to-prediction COV is high however, and in 



some cases the prediction is unconservative (Pcrdh,ABAQUS/Pcrdh,simp=0.91 for the 800S162-54 
column in Table 5, Mcrdh,ABAQUS/Mcrdh,simp=0.93 for the 800S162-43 beam in Table 6).  

 
Table 5 : Influence of edge-stiffened holes on column distortional buckling 

 
 

Table 6 : Influence of edge-stiffened holes on beam distortional buckling 

 
 
4. (AISI-S100)Local buckling of cold-formed steel columns and beams with edge-stiffened 

holes 
 
4.1. Local buckling prediction equations 
The local critical elastic buckling load, Pcr, is calculated for a cold-formed steel column with 
holes as:  
 ),min(, hcrnhcrsimplifiedcr PPP  = ,        (13) 
where Pcrnh is the local buckling load of the gross section, ignoring the hole, which may be 
calculated by finite strip or hand methods (AISI-S100). The buckling load including the hole, 
Pcrh, may be calculated by a finite strip analysis of the net cross-section (e.g., in CUFSM) as 
shown in Fig. 4 and examining only those buckling half-wavelengths shorter than the length of 
the hole.  (It should be noted that in previous publications by the second author it was 
recommended to restrain the cross-section corners in a finite strip analysis of the net section.   
Recent experiments by Schudlich et al. (2011) have determined that an Euler type buckling 
failure of the unstiffened strip and compressed flange is a possible local buckling failure mode 
when hole depth is large relative to web height.  This local buckling mode can be readily 
identified with a net section finite strip model if the corners are unrestrained in CUFSM.)   
 

 
Figure 4 : Local buckling at a stiffened hole in CUFSM 
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Once the net cross section is input into CUFSM, an eigen-buckling analysis is performed (zero 
thickness line can remain or it may be removed), and an elastic buckling curve is generated 
(Moen and Schafer 2009b). The half-wavelength corresponding to the minimum buckling load is 
Lcrh. When Lhole< Lcrh, Pcrh is equal to the buckling load at the length of the hole. If Lhole≥ Lcrh  ,   
Pcrh is the minimum on the buckling curve. Use of the net cross-section for buckling half-
wavelengths greater than Lhole is conservative and fails to reflect the stiffness contributions of the 
gross section in a finite strip analysis.  
 
4.2. Verification for local bucking of members with edge-stiffened holes 
The elastic local buckling properties of the SSMA members summarized in Table 2 are predicted 
with the finite strip approach discussed in the previous section and compared to ABAQUS thin 
shell finite element eigen-buckling analysis.  The finite element model boundary conditions are 
summarized in Fig. 3, and both a uniaxially loaded column and a beam with a constant moment 
are considered. For both columns and beams, local buckling is predicted to occur between holes, 
i.e., Pcrh >> Pcrnh and Mcrh >> Mcrnh  (Table 6, Table 7).   
 

Table 7 : Influence of edge-stiffened holes on column local buckling 

  
 

Table 8 : Influence of edge-stiffened holes on beam local buckling 

 
5. Conclusions 
Recently developed elastic buckling simplified prediction methods for thin-walled cold-formed 
steel members with holes are also viable for members with edge-stiffened holes. Global buckling 
loads (moments) of lipped C-section columns and beams with edge-stiffened holes were 
accurately predicted by inputting weighted average cross section properties into classically 
derived engineering expressions for flexural and torsional buckling. An effective web thickness 
equation was derived and validated for distortional buckling of C-section members with edge-
stiffened holes. A finite strip analysis can be performed to simulate the removal of web material 
and the increase in flange rotational restraint provided by edge stiffeners in the web over a 
distortional buckling half-wave. For local buckling, finite strip based simplified methods, 
including a local buckling analysis of the net cross-section, accurately predicted that the edge 
stiffeners minimized buckling at a hole, causing buckled half-waves to form between the holes.  

800S162-43 2.68 6.14 32.3 1.70 2.68 2.70 1.01
800S162-54 5.24 6.10 63.4 1.70 5.24 5.26 1.01

1000S162-54 3.88 7.68 63.4 1.70 3.88 3.90 1.00
1200S162-54 3.00 11.18 37.2 2.30 3.00 3.05 1.01
1200S162-68 5.62 13.41 74.4 2.30 5.62 5.74 1.02

Mean 1.01
COV 0.01

ABAQUS-to-predicted 
statistics

Pcr! ,ABAQUS  
(kip)

Pcr! ,ABAQUS/Pcr!,simpSSMA Section Pcr!nh,simp  
(kip)

Lcr!nh  
(in.)

Pcr!h,simp  
(kip)

Lcr!h  
(in.)

Pcr! ,simp 
(kip)

800S162-43 32.0 4.22 140.0 1.60 32.0 32.1 1.00
800S162-54 62.4 4.19 274.1 1.60 62.4 62.6 1.00

1000S162-54 55.9 5.28 333.8 1.60 55.9 56.2 1.00
1200S162-54 51.1 6.36 212.7 2.20 51.1 51.3 1.00
1200S162-68 96.7 6.48 424.6 2.20 96.7 96.9 1.00

Mean 1.00
COV 0.00

SSMA Section Mcr!nh,simp  

(kip)
Lcr!nh  
(in.)

Mcr!h,simp  

(kip)
Lcr!h  
(in.)

Mcr! ,simp 

(kip)
Mcr! ,ABAQUS  

(kip)
Mcr! ,ABAQUS/Mcr! ,simp

ABAQUS-to-predicted 
statistics



 
Acknowledgements 
 
The authors wish to thank Tom Trestain for his willingness over the past year to thoughtfully 
discuss and critique the topics and ideas presented in this paper. 
 
References 
 
ABAQUS (2010). ABAQUS/Standard Version 6.9-2. Providence (RI), Dessault Systèmes: ABAQUS V.6.9-2 Finite 

Element Program. 
AISI-S100 (2007). North American Specification for the Design of Cold-Formed Steel Structural Members. 

Washington, D.C., American Iron and Steel Institute. 
Elhajj, P. E. (1999). “Innovative Residential Floor Construction: Structural Evaluation of Steel Joists with Pre-

Formed Web Openings.” Upper Marlboro, MD, NAHB Research Center, Inc. 
Falk, S. (1956). "Die Knickformeln fuer den Stab mit n Teilstuecken konstanter Biegesteifigkeit (Buckling formulas 

for members with n segments of constant bending resistance)." Ingenieur—Archiv, 24(2), 85-91. 
Lau, S. C. W. and G. J. Hancock (1987). "Distortional buckling formulas for channel columns." ASCE Journal of 

Structural Engineering, 113(5), 1063-1078. 
Moen, C.D. (2008). "Direct Strength Design for Cold-Formed Steel Members with Perforations," Ph.D. Thesis, 

Johns Hopkins University, Baltimore. 
Moen, C.D., and Schafer, B.W. (2008). "Experiments on cold-formed steel columns with holes." Thin-Walled 

Structures, 46, 1164-1182. 
Moen, C. D. and B. W. Schafer (2009a). "Elastic buckling of cold-formed steel columns and beams with holes." 

Engineering Structures, 31(12), 2812-2824. 
Moen, C.D., and Schafer, B.W. (2009b). "Elastic buckling of thin plates with holes in compression or bending." 

Thin-Walled Structures, 47(12), 1597-1607.  
Moen, C. D. and B. W. Schafer (2010a). “Extending Direct Strength Design to Cold-Formed Steel Columns with 

Holes.” Twentieth International Specialty Conference on Cold-Formed Steel Structures, St. Louis, Missouri, 
USA. 

Moen, C.D., and Schafer, B.W. (2010b). "Extending Direct Strength Design to Cold-formed Beams with Holes." 
20th International Specialty Conference on Cold-Formed Steel Structures, St. Louis, MO. 

Moen, C.D., and Schafer, B.W. (2011). "Direct Strength Method for the Design of Cold-Formed Steel Columns with 
Holes." ASCE Journal of Structural Engineering (accepted). 

Moen, C.D., and Yu, C. (2010). "Elastic buckling of thin-walled structural components with stiffened holes." 51th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, April 12, 2005 - April 
15, 2010, Orlando, FL. 

Schafer, B. W. (2002). "Local, distortional, and Euler buckling of thin-walled columns." Journal of Structural 
Engineering, 128(3), 289-299. 

Schafer, B. W. and S. Ádàny (2006). “Buckling analysis of cold-formed steel members using CUFSM: conventional 
and constrained finite strip methods.” Eighteenth International Specialty Conference on Cold-Formed Steel 
Structures, Orlando, FL. 

Schudlich, A., von der Heyden, A., and Moen, C.D. (2011). "Distortional buckling of cold-formed steel joists with 
unstiffened holes." Sixth International Conference on Thin-Walled Structures, Timisoara, Romania. 

SSMA (2001). Product Technical Information, ICBO ER-4943P, Steel Stud Manufacturers Association. 
Timoshenko, S. P. (1908). Buckling of Bars with Variable Cross-Section. Kiev, Bull. Polytech. Inst. 
Timoshenko, S. P., Gere, J. M. (1961). Theory of Elastic Stability. New York, McGraw-Hill. 
Yu, C. "Behavior and design of cold-formed steel joists with edge stiffened perforations." 2007 Annual Stability 

Conference, April 18, 2007 - April 21, 2007. Structural Stability Research Council, New Orleans, LA, United 
states, 2007, 239-258. 

 
       
 
 
 


