
Proceedings of the 
Annual Stability Conference 

Structural Stability Research Council 
Pittsburgh, Pennsylvania, May 10-14, 2011 

 
 
 
 

In- Plane Stability Considerations of Column 
Braced Steel Frames  

 
A. H. Salem1, A. A. Elserwi1, and F. F. F. El Dib2  

 
     
Abstract  
Bracings usually stabilize frame works and prevent- or reduce side sway. They also increase the 
frame elastic buckling resistance required by design.  Yet in modern steel lightweight structures, 
bracings may be connected to the frame columns in either direction to satisfy architectural and/or 
structural requirements. Their performance is usually determined by laboratory testing, such as in 
formworks and infill of structural lightweight panels. This paper presents the exact analytical 
solution of the elastic buckling of steel portal frames, with bracings connected to columns. The 
aim is to facilitate the design procedure and to reduce testing costs of individual systems. The 
governing parameters are: loads, rigidities, stiffness, geometric and boundary conditions. 
Different model cases are analytically solved and evaluated, critical load values are determined, 
and accuracy is verified by numerical methods. The interference/interaction between different 
modes of buckling is determined. The efficiency of column braces is investigated with respect to 
the different modes of buckling. The best location, geometry and dimensioning of the bracing 
elements are considered based on the model case parameters. The minimum bracing stiffness is 
determined to act as stiff bracings. Different cases and their results are presented for direct use of 
researchers, and simplified methods of solution are given for use of designers including 
recommendations and precautions. 
 
1. Previous Research 
A comprehensive collection of major related research is given by (El-Dib 2009). The bases of the 
analysis of the elastic buckling of frames are mainly given by (Livesly 1952, Merchant 1955, 
Goldberg 1968 and Salem 1966,2010). Various stability cases of portal, single bay and 
multistory frames, un-braced or braced at the corners, are studied in these pioneer researches, 
giving a wide variety of possible solutions of this problem. Two methods were established and 
are mainly used: the Direct Method and the Stiffness Method. 
 
2. Method of Solution 
The assumptions of the two methods of analysis: the direct and the stiffness methods are:  
• The frame material is perfectly elastic. 
• Buckling outside the plane of the frame is not considered. 
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• The deflections of columns and beams are small. 
• Columns, beams and bracing members are perfectly straight. 
• For all members, the principal axis of bending lies in the plane of the structure, and the shear 

center coincides with the centroid of the section. 
• The effect of the axial deformations produced from second order forces is neglected. 
• All loads and displacements are in the plane of frame. 
• Bracings are elastic (axial deformations considered); they act in tension and compression.  
• The modulus of elasticity E is constant. 

2.1 The Direct Method 
The following theorem is derived and used (Salem et al, 1966-2010) for combining the different 
states of buckling deformations: In the presence of axial compression, any general state of sway 
can be resolved into two states: 

1- A state of pure shear sway. 
2- A state of no shear sway.  

This is valid if the axial force is the same in both cases. The moments and the deflections of the 
resultant state are equal to the algebraic sum of each of the moments and deflections:  
 
 
 
 
 
 
 
 
 
 
 
 
 
The non-dimensional functions, used to determine the member end forces and moments 
(Operators) in Fig.1 are: 
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where, the non-dimensional stability functions  m, ,s c, s, ′′ n and o are functions of the ratio of the 
axial load to Euler’s load: r=PCR /(p2EI/L2) , and are used for hinged base elements as shown in 
Fig. 2. The stiffness of the element is k=EI/(Element L), where I, is the moment of inertia, and 
the corresponding angle of rotation is considered positive for clockwise rotations. In the state of 
neutral equilibrium, the external critical loads and the axial forces in the members are in 
equilibrium. Additional axial and shear forces, and additional moments, occur to restore 
equilibrium. The relations between the displacements of the joints and the additional forces and 

Figure 1: Resolution of General State of Sway of Intermediate Element in a Column  
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moments represent the basic equations for the derivation of the stability condition of the 
framework.  
 
 
 
 
 
 
 
 
 
 
The sum of the moments at the frame joints should be zero. This will produce the first set of 
equations. Also, by equating the relative deflections of the columns at every level, or, at rigidly 
braced joints, another set of equations can be derived. The stability equations are linear and 
homogeneous. This means, that no distortions or additional forces occur, and the framework is in 
a state of stable equilibrium. Values of the unknowns, indicating additional forces and 
deformations, exist only when the determinant of the system of stability equations vanishes. 
There is a finite number of solutions of the equation Det = zero, determining an infinite number 
of different unstable equilibrium configurations. The configuration, which is associated with the 
smallest value of the load, determines the critical load of the framework. The equation Det.= zero, 
is solved by trial and error. 
 
2.2 The Stiffness Method  
(Hanna 1999) and (Salem et al 2004) applied this method in developing programs, that are used 
to check individual results obtained from the analytical solution found by the direct method of 
analysis. Results are found to have a minimum of four digit accuracy.  
 
3. Mode Separation and Case Solution 
By separating the general buckling mode into the sway- and the non-sway (symmetric) modes, 
the solution procedure can be reduced and the accuracy at the modes interface is ensured. The 
following example demonstrates the solution and the analytical proof of the validity of this 
separation: By considering the frame in Fig. 3 in the deflected position, five equations of 
equilibrium in the unknowns: Q1 to Q4 in addition to "H" could be written as follows: 
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Figure 2: Superposition of States of Sway for Elements with a Hinged End. 
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Figure 3: Frame with Corner to Column Stiff Bracings
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After rearranging, the general determinant can be written in the following form: 
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The upper sub-determinant represents the sway, anti-symmetric; mode of buckling, the lower one 
represents the non-sway (symmetric) mode, and both became independent of each other. By 
equating each of the sub-determinants to zero, the solution and the interference of the buckling 
modes could be accurately determined. 
 
4. The Scope  

4.1 The General Cases 
The three General Bracing Cases in Fig. 4: Top to Column-, Central-, and Intermediate Bracings; 
are analytically solved, evaluated and presented. They could cover many systems required in the 
practice. In all studied cases, the selected loads are two concentrated equal loads at the top 
corners. All frame elements, including bracing elements, are considered elastic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Bracings:    Top to Column                            Central                         Intermediate 
                                  Figure 4: The selected General System Cases 



4.2 The Extreme Cases 
The numerical evaluation of general cases may fail at extreme values of parameters. The values 
of a, h and g when each is equals null or unity, also when Kb/k in addition to bracing stiffness 
are extreme, the numerical stability of general case determinants is disturbed. For the purpose of 
accuracy assurance and additional self checking of all the results, the extreme cases are 
separately evaluated and represented together with the results of the general cases. Therefore, 
five determinants, related to extreme cases, are solved for each of the two modes of buckling: the 
sway and the non-sway modes. Their results are plotted together with the results of the general 
case to clearly indicate any interference or interaction.  
 
5. Case Study: Typical Buckling Behavior (Fixed Base Frame 
                                   With Central Column Bracing) 
Taking AL2/I, where I is the column moment of inertia, as a dimensionless parameter in a typical 
example case solution and result demonstration, explains all the cases presented later (fixed and 
hinged base frames), and makes it possible to clearly demonstrate how a column braced frame 
behaves when buckling takes place. When increasing small a-values, according to Fig. 5, 
bracings with 0 < AL2/I <100 respond slowly. Most efficient are a-values between 0.5 and 0.8. 
The non-sway (symmetric) mode of buckling interferes over a=0.7, yet bracings can then be 
more efficient than conventional corner to base braces. It is worth noting that only two general 
cases (No. 2 and7) are evaluated, all other Extreme Cases are added to get a complete view on 
the results. In the vicinity of extreme cases the given results have only theoretical value, but are 
necessary to explain the remarkable "two" results at each of extreme a-magnitudes of zero, or 
unity. In fact, these "two" r-values represent the upper and lower mode bounds of the interaction 
behavior due to bracing elasticity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 5 the typical general and extreme critical r-values are shown and numbered. The seven 

Figure 5: Case Study: Critical r-Values for Central Elastic Bracings, 
Kb/K=1.0, r=Pcr/(p2 EI/L2), L= Frame Height & Breadth, 

A: is the Bracing Cross Section Area. 



sketches represent true shapes of the respective buckling first modes, selected out of the ten 
determinants solved for this case. In the extreme cases No. 3 and 5 no bracing deformations are 
assumed, the bracings are stiff over all a-values. Case No. 4 is an extreme case of case No. 3, 
where a=0, and the two bracings coincide together and sway laterally maintaining the same 
vertical line direction between bracings joints at the column. This case is simply represented by a 
rigid horizontal member, rigidly connected at both ends to the columns, and located at mid-
height of the frame. This is the case of two storey single bay frame, where the weaker story 
governs the critical buckling load given by the following formula: 
 

0K/K6n2 b1 =+ .                         (8) 
Where, n1 denotes the upper column segment. In Fig. 5, the point No. 4 matches accurately with 
the curve No. 3 found from extreme case No.3. The same method is applicable at point No. 5 
given by: 

0K/K6n b =+ ,                                    (9) 

 
where, n represents the whole column, noting that the critical load at point No. 5 is overruled by 
the line  No. 6 (Symmetrical mode, A=0): 
 

0K/K2n b =+ .                           (10) 

6. Frames Braced Top Corner- to Column  
As for the top corner- to column braced frame (Fig. 4), the solution determinants of this case are 
established considering the bracing dimensionless parameter “B” (Timoshenco 1936): 
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I

ALB 2
2
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where, y is the bracing inclination with the horizontal (Fig. 4). Using this parameter simplifies 
the use of the results for frames with different breadth- to height ratios included in the right Kb/K 
values. Results are verified and demonstrated for some selected parameters (Figs. 6,7). It should 
be noted that values of Kb/K higher than 4.0 do not add much buckling resistance, and that the 
most upper limit values of r are 4.0 for fixed base- and about 2.0 for hinged base frames. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     

Figure 6: Top Corner- to Column Braced Fixed Base Frame. 
Critical r-Values, (Kb/K=0, 0.5, 1.0 and 4.0) 



                                                                                                                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7. Frames Braced Centrally to Columns   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
                                                                           

Figure 7: Top Corner- To Column Braced Hinged Base Frame. 
      Critical r-Values. (Kb/K=0, 0.5, 1.0 and 4.0) 

Figure 8: Centrally Column Braced Fixed  Base Frame. 
     Critical r-Values. (Kb/K=0, 0.5, 1.0 and 4.0) 

Figure 9: Centrally Column Braced Hinged Base Frame.



The centrally column braced frame is evaluated with the same parameter “B” as shown in Fig. 8. 
This type of bracings can save space and material. In Fig. 9, at Kb/K=0, results show a Special 
Case compared to all other cases. By using the same typical numbering given in Fig. 5, it is 
noticed that the points similar to No. 4 and 5, in addition to the line No. 3, in Fig. 5, all indicate 
the same extreme and constant value of rcr=1.0 in Fig. 9, which is explained as follows: 
 
 
 
 
 
 
 
 
 
 
Fig. 10 represents a hinged frame with Kb=zero. In case of sway buckling, stiff central bracings 
trigger the shown symmetrical shape mode under the critical load. By changing the bracings 
angle, i.e. a-value, the shape mode doesn’t change and remains the same, which is valid for 
a=1.0, as well as for a=0 as given in Fig. 10-(2),(3). For all these cases, rcr=1.0. The position 
of the bracings centerline in this particular case is called a Special Bracing Location (SBL), at a 
distance from the top corners: 
 
                                                      Cs = 1/2 = h +a/2.      (12) 
 
8. Frames with Intermediate Bracings: (Special Bracing Location: SBL)  
A Special Bracing Location is defined as the location of stiff bracings centerline, at which the 
highest possible buckling resistance (rs) could be achieved, and remains unchanged at this 
location for any bracing angle (aL). This location depends on the frame structural conditions, 
and the corresponding minimum bracing stiffness depends on the bracing angle (a- value). 

 

8.1 Determination of the Special Bracing Locations (SBL) 
The typical extreme results in Fig. 9, which are similar to the points No. 4 and 5,  in addition to 
the line No. 3 in Fig. 5, altogether become special and form a constant (horizontal) upper bound 
of the critical load dimensionless parameter values of r in Fig. 9 at  Kb/K=0. Therefore, the 
solution of any of these extreme cases, similar to case No.4, in Fig. 5, leads to the determination 
of the required SBL of the bracings centerline, and its corresponding extreme rS-values.      
  
  
 
 
 
 
 
               Figure 11: Extreme Case: Intermediate Rigid Beam. 

K

Figure 10: Four Hinged Frame, with Central Rigid Bracings



In each of the two storey- single bay frame (Fig. 11), the critical buckling load is governed by the 
smaller critical storey load. As for either upper story, the equation of the critical buckling load is: 
 

0K/K6C/n bS2 =+    (13) 
The buckling length of the hinged base lower storey column is simply equal to [ ]L)C1(2 S− , and 
for the fixed base one = [ ]L)C1( S− . By equating upper- and lower storey critical buckling load 
values, for each of the given two cases in Fig. 11, an implicit equation in the SBL Cs could be 
written. Using a two parametric trial and error numerical procedure, the following values of SBL 
and the corresponding extreme r-values are found (rS - values in Table 1).     

 
                               Table 1: Special Bracing Locations (SBL) CS and Corresponding rS-Values 
 
 
 
 
  
 
 
 
                     
                  
 
With reasonable approximation, the following simplified formulae could be applied to estimate 
SBL- Cs and the corresponding rS. Denoting Kb/K as “k”, we get for fixed base frames:        
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and, for hinged base frames:  
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8.2 Special Bracings Stiffness 
To determine the validity conditions of the special critical buckling loads (rS-values), the total 
spectrum of the results should be determined for bracings arranged at the SBL “CS - values” 
given in Table 1, which are related to Kb/K values. The results plotted in Figs. 12 and 13 
demonstrate that, high buckling resistance is achieved not only in case of stiff bracings, but also 
for any value of bracing elasticity, provided that bracings are placed at the SBL. Given for 
example that Kb/K =4.0, a=0.5 (C=0.25) and B=25, then from Fig.7 r=0.45. If only C is 
changed to SBL Cs = 0.65, then rS becomes =1.75 (Fig. 13). It is also noticed that, for a given 
bracing elasticity “B”, above a certain value of aL , the extreme rS is reached and maintained, 
and the bracings act as infinitely stiff. By inspecting these common boundary values versus a 
and B, it is found that they are almost independent of the stiffness ratio Kb/K. This relationship 
could be simplified and represented, with reasonable accuracy, as follows: 
 

B/3s =α ,                                                                  (16) 
where as is the minimum bracing angle required for the stiffness B. Eq. 16 is valid for hinged 
base frames, if 25 <B <500; and for fixed base frames if 35 <B <500. The values of the Special 
Bracing Angle aS could also be directly and accurately taken from Figs. 12-13. 

Kb/K     CS     rS 

0.00 0.50000 1.0000 
0.25 0.55654 1.2712 
0.50 0.58758 1.4698 
1.00 0.61796 1.7128 
2.00 0.64002 1.9292 
4.00 0.65293 2.0755 
INF 0.66667 2.2500 

HINGED BASE 

Kb/K CS  rS 

0.00 0.33333 2.2500 
0.25 0.37213 2.5367 
0.50 0.39965 2.7745 
1.00 0.43270 3.1072 
2.00 0.46121 3.4448 
4.00 0.47959 3.6924 
INF 0.50000 4.0000 

FIXED BASE             



 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 12: Special Critical rS- and r-Values at SBL CS (Table 1, Fixed Base) 

Related to Kb/K, B and a. 
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 13: Special Critical rS- and r-Values at SBL Cs (Table 1, Hinged Base)  
Related to Kb/K, B and a. 



                 P         P 
9. Solved Example: Sway Buckling 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 14: Column Braced Bridge Pylon 
 
The hinged base frame with intermediate bracing in Fig. 4, when rotated by 1800, is equivalent to 
the case given in Fig. 14. The loads in this case are assumed vertical and are maintaining their 
vertical direction of action in the deformed position. Given in this case Kb/K=4.0; the SBL, from 
Table 1, is at CS =0.65293. The critical sway buckling load ratio, which is related to this 
location, is:  rS =Pcr /(p2EI/L2) = 2.075, can only be secured, if, and only if the relationship 
between aS and B is maintained, either from Eq. 16, or directly from Fig. 13 (for Kb/K=4). 
Select B=25, the corresponding minimum a from Eq.16 is aS = 0.6. We could also select 
B=500 and its aS = 0.13, which is uneconomic and not recommended. Using B=25, determine 
the required minimum (effective) bracing area "A" from Eq. 11.  
 
Another solution is to maintain the Special Location at CS=0.65293 and to select B=10 (instead 
of  25), keeping aS=0.6, then r becomes = 1.0 (Fig. 13). Such solution is economical, provided 
that it fulfills the structural requirements.  
 
A comparison between Bracing Locations of all three General Cases (Fig. 4) is given, for hinged 
base frames, in Table 2, which clearly demonstrates the efficiency of placing the bracings 
centerline at the Special Bracings Locations (SBL). 
                                                                
                   Table 2: Critical Values for Different Bracing Types (Hinged Base, Kb/K=4) 

Bracing type C   ,    CS a B r , rS  
Top Corner- to Column (Fig. 7) 0.3 0.6 25 0.557 

Central (Fig. 9) 0.5 0.6 25 1.092 
SBL CS=0.6529 0.6* 25* rS =2.075 
SBL CS=0.6529 0.5* 36* rS =2.075 
SBL CS=0.6529 0.4* 56.3* rS =2.075 
SBL CS=0.6529 0.3* 100* rS =2.075 

              * According to Eq. 16. 
 
To make full use of the SBL just use either Eq. 14 or 15, in addition to Eq. 16. Alternatively, use 
Figs. 12 or 13. Then place, construct and execute bracing centerline only at SBL. 



 
10. Conclusions 
Column Bracings can take several forms. Presented cases showed that economical solutions 
could be found that remarkably increase the buckling resistance of frames with column braces. 
The bracings can be connected to top corners or arranged centrally. They could also be placed at 
Special Bracing Locations (SBL) CS to obtain the best possible increase in buckling resistance of 
the available system. Accurate solutions may directly be obtained from the plotted results, or 
calculated from given simplified equations.  
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