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Abstract 

This paper presents procedures for the design of fixed-ended and pin-ended equal-leg angle columns with 

short-to-intermediate lengths. First, some numerical results concerning the buckling and post-buckling 

behavior of the angle columns are presented, (i) evidencing the main differences between the fixed-ended 

and pin-ended column responses, and (ii) showing the need for specific design procedures. Then, the 

paper reports an in-depth investigation aimed at gathering a large column ultimate strength data bank that 

includes (i) experimental values, collected from the literature, and (ii) numerical values, obtained from 

shell finite element analyses carried out in the code ABAQUS. The set of experimental results comprises 41 

fixed-ended columns and 37 pin-ended columns, and the numerical results obtained concern 89 fixed-

ended columns and 28 pin-ended columns − various cross-section dimensions, lengths and yield stresses 

are considered. Finally, the paper closes with the proposal of new design procedures, based on the Direct 

Strength Method (DSM), for fixed-ended and pin-ended angle columns. The two procedures adopt 

modified global and local strength curves, and it is shown that the proposed DSM approach leads to 

accurate ultimate strength estimates for short-to-intermediate columns covering a wide slenderness range. 
 
 
1. Introduction 

Thin-walled columns whose cross-sections have all wall mid-lines intersecting at a point (e.g., angle, T-

section and cruciform columns) are known to exhibit no primary warping − only secondary one. Thus, 

their torsional resistance is extremely low, which renders them highly susceptible to torsional or flexural-

torsional buckling. Moreover, it is often hard to separate the torsional and local deformations and, thus, 

to distinguish between local and torsional buckling. Since these two instability phenomena are commonly 

associated with markedly different post-critical strength reserves, it is fair to say that this distinction may 

have far-reaching implications on the development of a rational model capable of providing accurate 

ultimate strength estimates for such columns. 
 
The post-buckling behavior and strength of equal-leg angle columns has attracted the attention of 

several researchers in the past − e.g., Wilhoite et al. (1984), Gaylord & Wilhoite (1985), Kitipornchai & 

Chan (1987), Popovic et al. (1999). Moreover, Young (2004), Ellobody & Young (2005) and Rasmussen 

(2005, 2006) performed recently experimental tests and shell finite element analyses on fixed-ended 

columns, aimed at obtaining ultimate loads and compare them with the predictions of the currently 

available design rules. Rasmussen and Young also put forward two approaches for the design of angle 
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columns, which are based on the Direct Strength Method (DSM − e.g., Schafer 2008) global curve to 

estimate the flexural and local strengths. Chodraui et al. (2006) proposed a slightly different approach, 

differing from Rasmussen’s one in the fact that the column global strength is the lower of the flexural 

and torsional values, both obtained with the DSM global design curve. Following Chodraui’s work, (i) 

Maia (2008) and Maia et al. (2008) reported experimental tests on fixed-ended and pin-ended angle 

columns, and (ii) Mesacasa Jr. (2011) just performed a few further tests on fixed-ended angle columns. 

This last author also carried out a fairly complete compilation of the experimental results available in 

the literature, concerning both fixed-ended and pin-ended angle columns, explaining in some detail the 

main differences between the various test set-ups and procedures. Also very recently, Shifferaw & 

Schafer (2011) investigated the significant global post-buckling strength reserve observed in cold-

formed steel angle column tests and provided some design guidance for locally slender cold-formed 

steel lipped and plain angles with fixed end supports. Finally, fresh numerical investigations, carried 

out by means of Generalized Beam Theory (GBT − e.g., Camotim et al. 2010) and ABAQUS shell finite 

element analyses (SFEA) (Dinis et al. 2010a,b, 2011, 2012 and Dinis & Camotim 2011), (i) shed new 

light on how to distinguish between local and global buckling in equal-leg angle columns, and (ii) showed 

that (ii1) both fixed-ended and pin-ended columns with short-to-intermediate lengths, buckling in flexural-

torsional modes and having very similar critical stresses, exhibit different post-buckling behaviors and 

ultimate strengths (the amount of corner flexural displacements was found to play a key role in separating 

the various behaviors), and that (ii2) the critical slenderness is inadequate to “measure” the ultimate 

strength of equal-leg angle columns. 
 
This work reports the numerical and experimental results obtained with the aim of developing a rational 

DSM-based design approach for short-to-intermediate equal-leg angle columns − both fixed-ended 

and pin-ended (but with the end section secondary warping prevented) columns are considered. After 

showing some illustrative numerical results concerning the buckling and post-buckling behavior of such 

columns (Dinis et al. 2010a, 2011, 2012, Dinis & Camotim 2011), the paper addresses the assembly 

of column ultimate strength data, intended to provide the basis for the development, calibration 

and validation of specific design procedures for equal-leg angle columns. It consists of (i) collecting and 

organizing experimental values available in the literature and (ii) determining numerical (SFEA) values 

by performing a fairly extensive parametric study. The output of this effort are 76 experimental and 117 

numerical ultimate load values concerning columns with either pinned or fixed end supports and various 

cross-section dimensions, lengths and yield stresses (Silvestre et al. 2012). Finally, the column ultimate 

load “data bank” gathered is used to propose and assess the efficiency (accuracy and economy) of a DSM 

approach to predict the ultimate strength of the angle columns under consideration − it involves distinct 

procedures for fixed-ended and pin-ended columns. 
 

2. Buckling and Post-Buckling Behavior 

One presents and discusses here the main results of a recent investigation on the buckling and post-

buckling behavior and ultimate strength of thin-walled steel (E=210 GP and ν=0.3) angle columns (Dinis 

et al. 2010a, 2011, 2012, Dinis & Camotim 2011). The columns analyzed exhibit (i) pinned (but with the 

secondary warping prevented) and fixed end sections, (ii) equal legs (70×70 mm and t=1.2mm − the 

effect of rounded corners is disregarded) and (iii) short-to-intermediate lengths. Almost all the numerical 

results were obtained through ABAQUS (Simulia 2008) shell finite element analyses, (i) adopting column 

discretizations into fine 4-node isoparametric element meshes (length-to-width ratio close to 1) and (ii) 

modeling the column supports by (ii1) fully attaching the member end sections to rigid end-plates (thus 

ensuring the secondary warping and local displacement/rotation restraints) and (ii2) preventing both the 
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major and minor-axis flexural rotations (fixed supports − F condition) or only the major-axis flexural 

rotations (pinned cylindrical hinge supports − P condition
2
) − the torsional rotations are prevented in both 

cases. However, in order to characterize and distinguish between local and global buckling of angle 

columns, GBT analyses are also performed using GBTUL (Bebiano et al. 2008a,b). 
 
2.1 Buckling Behavior 

The curves shown in Fig. 1(a) provide the variation of Pcr (critical load, obtained from ABAQUS 

shell finite element analysis) with the length L (logarithmic scale), both for fixed-ended (F curve) 

and pin-ended (P curve) columns. This figure also depicts single half-wave buckling loads, Pb.1, 

yielded by GBT analyses including 7 deformation modes: 4 global (1-4) and 3 local (5-7). As for Fig. 

1(b), it displays the GBT modal participation diagrams for the columns with both end support conditions 

− they provide the contributions of each GBT deformation mode to the column single half-wave 

buckling modes (Dinis et al. 2010a). Finally, Fig. 1(c) shows the buckling mode shapes of the pin-

ended columns with L=100, 364, 1000 cm, as well as the in-plane shapes of the first 6 deformation 

modes (axial extension excluded). These buckling results prompt the following remarks: 

(i) For the entire length range, the critical buckling modes of all columns involve only deformation 

modes 2, 3, 4 and 6. 

(ii)  Due to the cross-section symmetry with respect to the major-axis, all the short-to-intermediate 

columns buckle in flexural-torsional modes, combining participations from deformation modes 4 

(torsion) and 2 (major-axis flexure), which correspond to fairly uniform critical loads defining almost 

horizontal “plateaus” in the Pcr vs. L curves. The participations of modes 2 and 4 continuously vary 

with the column length − the former is imperceptible for the shorter columns and only becomes 

visible as L increases (the growth occurs at a fairly small pace). 

(iii) Both the pin-ended and fixed-ended columns display similar buckling features: (iii1) Pcr decreases 

monotonically with L and corresponds to single half-wave buckling, (iii2) the GBT and ABAQUS 
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Figure 1: (a) Pcr vs. L curves and (b) GBT modal participation diagrams (F and P columns), and (c) in-plane shapes 

of 3 buckling modes and first 5 GBT deformations modes (P columns) 
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 results virtually coincide, and (iii3) the torsion mode 4 plays a key role, as it participates in the 

critical buckling modes of all but the long columns, which exhibit pure minor-axis flexural 

buckling modes (only mode 3). 

(iv) Compared to the short-to-intermediate F columns, the P columns only differ in the smaller length 

range corresponding to the end of the “plateau”, due to the 75% drop of the minor-axis flexural 

buckling loads − the transition from flexural-torsional buckling to flexural buckling occurs for 

L=420cm (P columns) and L=890cm (F columns). For columns shorter than L=420cm (P column 

transition length), the local and flexural-torsional buckling loads and mode shapes of the F and P 

columns with the same length are exactly the same. 

(v) The post-buckling results presented in the next subsection concern short-to-intermediate angle 

columns with the following length values (see Fig. 1(a)): L1=53cm, L2=133cm, L3=364cm and 

L4=700cm − 4 fixed-ended columns (F1-F4 − 22.1 ≤ fcr ≤ 27.5 N/mm
2
) and 3 pin-ended columns 

(P1-P3 − 23.4 ≤ fcr ≤ 27.5 N/mm
2
). 

 
2.2 Elastic and Elastic-Plastic Post-Buckling Behavior 

ABAQUS shell finite element analyses are employed to investigate the elastic and elastic-plastic post-

buckling behavior of fixed-ended and pin-ended angle columns (i) exhibiting the lengths indicated 

before, (ii) containing critical-mode initial imperfections with amplitude equal to 10% of the wall 

thickness t (flexural-torsional shapes with mid-span torsional rotations equal to about β0=0.1° for 

the angle section 70×70×1.2mm) and (iii) exhibiting various yield-to-critical stress ratios (Dinis et al. 

2010b, 2012, Dinis & Camotim 2011). 
 
Figures 2(a)-(c) show the upper parts (P/Pcr>0.6) of the F1-F4 column post-buckling equilibrium paths 

(i) P/Pcr vs. β, P/Pcr vs. dM /t and P/Pcr vs. dm /t − β, dM and dm are the mid-span web chord rigid-body 

rotation and corner displacements caused by major and minor-axis flexure, respectively. As for Figs. 

3(a)-(b), they concern the F2-F4 columns and provide the longitudinal profiles of the two corner 

displacements at four equilibrium states (increasing P/Pcr values) − note that (i) the horizontal coordinate 

is normalized to the column length (x3/L) and (ii) the dM /t and dm /t scales are significantly different for the 

three columns (e.g., the F4 column values are 80 times larger than their F2 column counterparts). The 

observation of these elastic post-buckling results prompts the following comments: 

(i) All column post-buckling behaviors involve the simultaneous occurrence of cross-section 

torsional rotations and flexural (corner) displacements. The relative importance of the latter has 

strong impact on the column post-buckling response, namely on its post-critical strength reserve. 
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Figure 2: F1-F4 columns: (a) P/Pcr vs. β , (b) P/Pcr vs. dM /t and (c) P/Pcr vs. dm /t equilibrium paths 
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Figure 3: F2-F4 columns: (a) dM /t and (b) dm /t longitudinal profiles 

 
(ii) Indeed, two column “families” can be identified, according to their post-buckling behavior: 

(ii1) the shorter F1-F3 columns ones (the F1 and F2 columns have virtually identical equilibrium 

paths), which are clearly stable (fairly high post-critical strengths) and exhibit very small corner 

displacements, and (ii2) the longer F4 column, which exhibits significant corner displacements and 

has a limit point, followed by a significant torsional rotation reversal (see Fig. 2(a)). This torsional 

rotation reversal is due to an abrupt switch from a single half-wave to three half-waves soon after the 

peak load is reached (Dinis & Camotim 2011, Dinis et al. 2012). 

(iii) Since major-axis flexure participates in the column critical buckling modes (see the participation of 

deformation mode 2 in Fig. 1(b)) and, thus, integrates the corresponding initial geometrical 

imperfections, it is not surprising that (iii1) dM values progressively grow with the applied load and 

that (iii2) their longitudinal profiles exhibit the typical fixed-ended column critical buckling mode 

shape: one inner half-wave and two outer “quarter-waves” (to ensure null end slopes). 

(iv) The emergence of minor-axis flexure (dm displacements), which does not participate in the column 

critical buckling modes and exhibits longitudinal profiles with three inner half-waves (and two outer 

“quarter-waves” to ensure null end slopes), stems from the longitudinal variation of the torsional 

rotations. These rotations cause non-linear cross-section mid-line longitudinal stress distributions that 

vary along the column axis according to a “three half-wave” pattern, which lead to effective centroid 

shifts (towards the cross-section corner) following that same longitudinal pattern (Stowell 1951, 

Dinis & Camotim 2011, Dinis et al. 2012). These effective centroid shifts are responsible for the 

(positive) minor-axis flexural displacements that have some impact on the fixed-ended angle column 

response. In the longer (F4) column, this impact is overshadowed by the occurrence of fairly strong 

interaction with flexural buckling. Indeed, for this column length, the flexural-torsional and flexural 

buckling loads are fairly close and become much closer due to the axial stiffness reduction associated 

with the flexural-torsional (“local”) post-buckling behavior. 

(v) Due to the relevance of the corner displacements (mostly the minor-axis flexural ones), the behavior 

of fixed-ended equal-leg angle columns can not be viewed as the “sum” of two fixed-ended 

(longitudinally) pinned-free (transversally) long plates, unlike one would be tempted to anticipate. In 

particular, the cross-section longitudinal normal stress distributions develop to be far from parabolic 

as post-buckling progresses. Recently, the authors (Dinis et al. 2010b, 2012) have shown that 
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preventing the corner displacements makes it possible to recover the pinned-free long plate 

post-buckling behaviour. In the case of the (long) F4 column, the post-buckling behavior is 

significantly altered – it changes to clearly stable (no limit point) and the normal stress distributions 

(not shown here) change drastically, becoming parabolic with the higher value at the pinned edge 

(i.e., in line with the general belief). 
 
Next, one investigates how releasing the end sections minor-axis flexural rotations affects the post-

buckling behavior of angle columns with short-to-intermediate lengths. Figures 4(a)-(c) show the upper 

parts of the P1-P3 column post-buckling equilibrium paths P/Pcr vs. β, P/Pcr vs. dM /t and P/Pcr vs. dm /t, 

while Figs. 5(a)-(b) display the P2-P3 column dM /t and dm /t longitudinal profiles at three equilibrium states 

(increasing P/Pcr values). The observation of these pin-ended column post-buckling results, as well as the 

comparison with their fixed-ended counterparts, leads to the following conclusions: 

(i) There are again two pin-ended column “families”, concerning their post-buckling behavior: (i1) 

the P1 column is clearly stable and exhibits minute mid-span corner displacements, and (i2) the P2-P3 

columns are barely stable, experience significant mid-span corner displacements and exhibit limit 

points − either abrupt and followed by torsional rotation reversal (P2 column) or smooth and without 

torsional rotation reversal (P3 column) − the amount of corner flexural displacements plays a key 

role in separating the various post-buckling behaviors. 

(ii) The fixed-ended and pin-ended column equilibrium paths share a few columns common features: 

(ii1) the dM displacements remain always very small (they grow with L and their longitudinal 

profiles retain the typical fixed-ended critical buckling mode shape) and (ii2) the rotation reversals 

coincide with the torsional rotation “switch” from a single to three half-waves. 

(iii) However, there are some important differences between the evolutions of the dm /t longitudinal 

profiles in the fixed-ended and pin-ended columns: while the former exhibit three inner half-waves 

(plus two external “quarter-waves” to ensure null end slopes), the latter apparently exhibit just one 

half-wave
3
. Moreover, note that the pinned column dm values are significantly higher (about ten 

times) than their dM counterparts − their magnitude are similar (and small) for fixed-ended (before 

the interaction with the minor-axis flexural buckling mode, of course). 
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Figure 4: P1-P3 columns: (a) P/Pcr vs. β , (b) P/Pcr vs. dM /t and (c) P/Pcr vs. dm /t equilibrium paths 
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half-wave. This “flat” central region corresponds to the combination of (i) a dominant “well curved” half-wave with (ii) less 

relevant three half-waves − the presence of the latter is virtually imperceptible in the P3 column (Dinis et al. 2012). 
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Figure 5: P2-P3 columns: (a) dM /t and (b) dm /t longitudinal profiles 

 
(iv) The differences described in the previous item stem from the absence of the minor-axis end 

moments, which means that it is no longer possible to oppose the minor-axis bending caused by the 

“effective centroid shifts” occurring due to the cross-section normal stress redistribution (e.g., Young 

& Rasmussen 1999). Indeed, although the mechanical reasoning behind the development of the three 

half-wave dm profile remains valid for the pin-ended columns (recall that the end section secondary 

warping and torsional rotation are still prevented), the predominance of the “well curved” 

(sinusoidal) half-wave component now largely overshadows it. Such predominance is even clearer in 

the longer columns, such as the P3 one, due to the more intense interaction with minor-axis flexural 

buckling (closer flexural-torsional and flexural buckling loads). 
 
The elastic-plastic behavior and strength of fixed-ended and pin-ended short-to-intermediate angle 

columns is briefly addressed now. The results presented concern columns (i) still containing critical-

mode initial imperfections with 0.1 t amplitude, and (ii) exhibiting four yield-to-critical stress ratios 

(fy /fcr≈1.3, 2.5, 5.0 − fy=30, 60, 120 N/mm
2
 and “average” fcr=24 N/mm

2
)
4
 − note that, for comparative purposes, 

some elastic results presented earlier are shown again (they correspond to fy=fy /fcr=∞). 
 
Figure 6(a) depicts typical shorter fixed-ended column elastic-plastic equilibrium paths. It shows the upper 

portions (P/Pcr>0.5) of the F3 column P/Pcr vs. β paths concerning the yield-to-critical stress ratios 

fy /fcr≈1.3, 2.5, 5.0 (and also the elastic path already shown in Fig. 2(a)). Figure 6(b), on the other hand, 

displays three plastic strain diagrams, corresponding to equilibrium states located along the fy /fcr≈2.5 

equilibrium path (as indicated in Fig. 6(a)) and including the column collapse mechanism. As for Figs. 

7(a)-(b), they illustrate a typical longer fixed-ended column elastic-plastic post-buckling behavior. They 

show the upper portions of the F4 column P/Pcr vs. β paths concerning four fy /fcr values and also the 

column deformed configuration and plastic strain evolution, for fy /fcr≈2.5. After the observation 

of all these results, the following remarks are appropriate: 

(i) While the F3 columns with fy /fcr≈1.3, 2.5 fail at the onset of yielding, their fy /fcr≈5.0 counterpart 

exhibits a very small elastic-plastic strength reserve. 

(ii) The F3 column ultimate load grows noticeably with fy − e.g., an increase from 30 to 120 N/mm
2
 

more than doubles the load-carrying capacity. 

(iii) Diagram I in Fig. 6(b) shows that, in the F3 columns, yielding starts around the quarter and three 

quarter-span zones of the corner longitudinal edge, where the shear and longitudinal normal stresses, 

due to the torsional rotation variation, are higher (Stowell 1951 and Dinis et al. 2012). 
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 Note that, in order to cover a wide slenderness range, some unrealistically low yield stresses were considered. 
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(iv) On the other hand, the longer F4 column ultimate strength is practically insensitive to fy, 

since the collapse is predominantly caused by geometrically non-linear effects. Indeed, for fy 

/fcr ≈2.5, 5.0 the column remains elastic up until failure, as the onset of yielding only takes place 

well inside the equilibrium path descending branch − it occurs in the middle of the vertical 

leg mid-span region, as illustrated in Fig. 7(b) (diagram II). 
 
A similar investigation was carried out for pin-ended columns. Figures 8(a)-(b) display (i) the upper 

parts (P/Pcr>0.5) of the P/Pcr vs. β paths concerning P2 columns with fy /fcr≈1.3, 2.5, 5.0, ∞, and (ii) 

the plastic strain evolution and collapse mechanism of the P2 column with fy /fcr≈2.5. The 

observation of these post-buckling results prompts the following comments: 

(i) There is virtually no elastic-plastic strength reserve or ductility prior to failure − yielding starts in 

the middle of the vertical leg quarter-span and three quarter-span (see diagram I in Fig. 8(b)) and 

precipitates the column collapse. 

(ii) There is a rather small variation of the column ultimate load with the yield stress − e.g., a rise 

from 30 to 120 N/mm
2
 entails a small load-carrying capacity increase (only 9.4%). Moreover, there 

is no benefit in increasing the yield stress beyond five times fcr, since for fy /fcr≈5.0 the collapse occurs 

abruptly in the elastic range (the fy /fcr≈5.0 and fy /fcr≈∞ curves share the same limit point). 
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Figure 8: P2 column elastic-plastic post-buckling behavior: (a) P/Pcr vs. β equilibrium paths, for fy /fcr≈1.3, 2.5, 5.0, 

and (b) plastic strain diagrams and failure mode, for fy /fcr≈2.5 

 
(iii) The above P2 column post-buckling behavior features are also exhibited, to an even larger extent, by 

the longer pin-ended columns, such as the P3 one − recall its elastic post-buckling equilibrium paths, 

shown in Figs. 4(a)-(c), which display smooth limit points for P/Pcr≈1.0. 
 
The markedly different elastic and elastic-plastic post-buckling behaviors displayed by the fixed-ended 

and pin-ended short-to-intermediate equal-leg angle columns implies that there is a significant discrepancy 

between their ultimate strengths Pu associated with a given yield stress. Since all those columns have 

virtually identical critical stresses (thus sharing a common critical slenderness λ=(Py /Pcr)
0.5

), their Pu/Py values 

may exhibit a high “vertical dispersion” with respect to λ − this behavioral feature must be adequately 

accounted for by an efficient design procedure for equal-leg angle columns.  
 

3. Ultimate Strength Data: Test Results and Numerical Predictions 

Following the findings reported by Dinis et al. (2010b, 2011, 2012) and Dinis & Camotim (2011), which 

were summarized above, it was decided to assess the performance of the existing design rules for cold-

formed steel equal-leg angle columns. The first step towards achieving this goal consists of putting 

together a fairly large column ultimate strength data bank, comprising (i) experimental test results 

performed by other researchers, collected from the available literature, and (ii) numerical results, 

obtained by means of the shell finite element model developed earlier. 
 
The experimental results gathered concern (i) 41 fixed-ended columns, tested by Popovic et al. (1999), 

Young (2004) and Mesacasa Jr. (2011)
5
, and (ii) 37 pin-ended columns (with cylindrical supports), 

tested by Wilhoite et al. (1984), Popovic et al. (1999), Chodraui et al. (2006) and Maia et al. (2008). The 

fixed-ended columns had nominal cross-section dimensions (i) 50×2.5mm, 50×4.0mm and 50×5.0mm 

(Popovic et al. 1999), (ii) 70×1.2mm, 70×1.5mm and 70×1.9mm (Young 2004) and (iii) 60×2.0mm 

(Mesacasa Jr. 2011). The nominal cross-section dimensions of the pin-ended columns were (i) 70×3.0mm 

(Wilhoite et al. 1984), (ii) 50×2.5mm, 50×4.0mm and 50×5.0mm (Popovic et al. 1999), and (iii) 60×2.4mm 

(Chodraui et al. 2006 and Maia 2008). Further details concerning the measured specimen dimensions and 

steel properties can be found in the publications mentioned above and included in the paper reference list. 

                                                 
5
 Four fixed-ended columns tested by Maia et al. (2008) were excluded from this study, since the ultimate strengths reported 

seem excessively low when compared with the numerical results obtained by the same authors, adopting fair-to-high torsional 

initial imperfections (0.64 t and 1.55 t). In the authors’ opinion, these fixed-ended columns contain abnormally large initial 

imperfections and/or load eccentricities (maybe caused by the procedure adopted to ensure the column end section fixity). 
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For each cross-section geometry, specimen length L and measured yield stress fy, Tables 1 (fixed-ended 

columns) and 2 (pin-ended columns) provides the test results, namely the column ultimate stress fu. 

Concerning the information given in Table 2 (pin-ended columns), it should be mentioned that the 9 pin-

ended columns tested by Wilhoite et al. (1984) had only three different lengths (823, 1227, 1636 mm), 

since three specimens with (approximately) the same length were tested. The repeated test results 

were included herein because due show the following peculiar feature: while (i) the three shorter columns 

(L=823 mm) provided similar ultimate strengths, (ii) those concerning the intermediate columns 

(L=1227 mm) showed some scatter (higher and lower ultimate strength values 11.5% apart) and (iii) the 

longer columns (L=1636 mm) showed even more scatter (22.5% difference). In the tests by Wilhoite et al. 

(1984), a small clearance was built into the pin-ended bearings to avoid locking, and a load eccentricity 

may have been induced by this clearance. Since the bearings were manufactured to a tolerance that 

ensured that the load eccentricity induced would not exceed 1/1.000 of the longer column length, it may 

have happened that non-negligible load eccentricities prevailed in the tests and influenced the ultimate 

strength. Moreover, the 50×2.5mm pin-ended columns tested by Popovic et al. (1999) were not 

concentrically loaded, as they were reported to exhibit load eccentricities of roughly ±L/1000 along 

the major-axis (+L/1000 and –L/1000 eccentricities increase compression at the leg tips and corner, 

respectively). They are, in fact, beam-columns with similar lengths that exhibit different ultimate 

strengths fu because of the eccentricity sign (the lower fu values correspond to +L/1000 eccentricities). It is 

also possible to conclude that the percentage difference between the +L/1000 and –L/1000 eccentricity 

results also grows with L. Since the load eccentricity may be viewed as a geometrical imperfection 

(both affect similarly the column response), these results further indicate that the pin-ended columns 

are also sensitive to the minor-axis initial imperfection sign. 
 
The numerical (SFEA) results obtained concern (i) 89 fixed-ended columns, displaying the cross-

section dimensions 70×1.2mm, 50×1.2mm and 50×2.6mm, and (ii) 28 pin-ended columns, all with the 

cross-section 70×1.2mm. The column lengths were selected to ensure that critical buckling occurs in 

flexural-torsional modes (i.e., they fall within the Pcr vs. L curve “horizontal plateaus” − see Fig. 1(a)). 

Their values are (i) 532, 980, 1330, 1820, 2520, 3640, 4200, 5320, 7000, 8900 mm (fixed-ended 70×1.2mm 

columns), (ii) 1500, 2000, 2500, 3000, 4000 mm (fixed-ended 50×1.2mm columns), (iii) 1000, 1500, 2000 mm 

(fixed-ended 50×2.6mm columns), and (iv) 532, 980, 1330, 1820, 2520, 3640, 4200 mm (pin-ended 

70×1.2mm columns). In all the analyses, the steel material behavior is modeled as elastic-perfectly plastic 

(E=210 GPa, ν=0.3) and both the residual stresses and rounded corner effects are disregarded. Preliminary 

numerical studies showed that the combined influence of strain hardening, residual stresses and rounded 

corner effects has little impact on the angle column ultimate strength (all differences below 3%), 

which is in line with the findings reported by other authors, namely Ellobody & Young (2005) and Shi 

et al. (2009). As mentioned earlier, the yield stresses fy were selected to cover a wide critical slenderness 

range, thus leading to the consideration of a few unrealistic (small) values. They are (i) 30, 60, 120, 235, 

400, 500 N/mm
2
 (fixed-ended 70×1.2mm columns), (ii) 120, 235, 400, 500 N/mm

2
 (fixed-ended 50×1.2mm 

columns), (iii) 120, 235, 400 N/mm
2
 (fixed-ended 50×2.6mm columns) and (iv) 30, 60, 120 235 N/mm

2
 

(pin-ended 70×1.2mm columns). 
 
Following the behavior observed in the experimentally tested columns (described before), namely the 

length-dependency of the imperfection-sensitivity, a preliminary study was carried out to identify the 

most detrimental imperfection shape – critical flexural-torsional shape and/or minor axis flexural shape. 

For column lengths corresponding to the left and intermediate parts of the Pcr(L) curve horizontal 

plateaus, the flexural-torsional imperfections were found to be the most detrimental ones (the columns are 

virtually insensitive to the minor-axis flexural imperfections). In these (short-to-intermediate) columns, 
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Table 1: Fixed-ended column experimental ultimate stresses and their estimates according to (i) the design method 

developed by Young (2004) and (ii) the proposed DSM-based approach 

  Buckling analysis  Test 
Young 
(2004) 

DSM-F 
Test-to-

Predicted 

Section 
L 

(mm) 
fcrl 

(N/mm2) 
fcre 

(N/mm2) 
fy 

(N/mm2) 
fu 

(N/mm2) 
fu/fp 

fnle 

(N/mm2) 
fu/fnle 

150 376 38074 396 308 1.30 329 0.94 

550 198 2832 396 225 1.01 250 0.90 

970 186 910 396 173 0.90 214 0.81 

1379 180 450 396 154 1.00 172 0.89 

1747 174 281 396 130 1.11 133 0.98 

2199 167 177 396 110 1.44 89 1.24 

Popovic 
et al. 

(1999) 
 

50x2.5 

2598 159 127 396 93 1.70 63 1.46 

150 961 38826 388 424 1.26 385 1.10 

970 460 928 388 314 1.19 286 1.10 

1381 430 458 388 250 1.33 216 1.16 

Popovic 
et al. 

(1999) 
 

50x4.0 1743 398 288 388 178 1.41 152 1.17 

150 1431 37819 388 414 1.15 385 1.07 

970 667 904 388 307 1.20 288 1.06 

1378 602 448 388 216 1.21 213 1.02 

Popovic 
et al. 

(1999) 
 

50x5.0 1749 531 278 388 180 1.56 148 1.22 

250 37.6 28143 550 143 1.16 177 0.81 

1000 22.3 1759 550 113 1.03 128 0.88 

1500 21.7 782 550 92 0.99 107 0.86 

2000 21.4 440 550 76 1.04 84 0.90 

2500 21.3 281 550 70 1.28 62 1.13 

3000 21.2 195 550 48 1.10 49 0.99 

Young 
(2004) 

 
70x1.2 

3500 21.1 144 550 35 0.96 40 0.87 

250 61.8 27852 530 189 1.26 208 0.90 

1000 36.6 1741 530 148 1.12 151 0.98 

1500 35.6 774 530 120 1.07 127 0.94 

2000 35.2 435 530 83 0.93 100 0.83 

2500 34.9 279 530 75 1.13 74 1.01 

3000 35.6 193 530 62 1.17 58 1.07 

Young 
(2004) 

 
70x1.5 

3500 34.4 142 530 55 1.24 47 1.16 

250 96.7 28379 500 212 1.22 237 0.90 

1000 57.0 1774 500 180 1.15 174 1.03 

1500 55.4 788 500 134 1.00 147 0.91 

2000 54.6 443 500 102 0.94 118 0.86 

2500 54.0 284 500 84 1.03 89 0.95 

3000 53.4 197 500 56 0.87 68 0.82 

Young 
(2004) 

 
70x1.9 

3500 52.8 145 500 54 1.03 55 0.98 

400 103 7411 350 177 − 191 0.93 

600 93 3294 350 166 − 179 0.93 

900 89 1464 350 137 − 166 0.83 

1200 87 823 350 128 − 152 0.85 

Mesacasa 
Jr. (2011) 

 
60x2.0 

1800 84 366 350 88 − 118 0.74 

     Mean 1.15 Mean 0.98 

     Sd. Dev. 0.18 Sd. Dev. 0.14 
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Table 2: Pin-ended column experimental ultimate stresses and their estimates according to (i) the design method 

developed by Rasmussen (2006) and (ii) the two proposed DSM-based approaches 

  Buckling analysis  Test 
Rasmussen 

(2006) 
DSM-F 

Test-to-
Predicted 

DSM-P 
Test-to-

Predicted 

Section 
L 

(mm) 
fcrl 

(N/mm2) 
fcre 

(N/mm2) 
fy 

(N/mm2) 
fu 

(N/mm2) 
fu/fp 

fnle 

(N/mm2) 
fu/fnle 

fnle 

(N/mm2) 
fu/fnle 

823 155 596 465 174 1.18 191 0.91 133 1.31 

823 155 596 465 174 1.18 191 0.91 133 1.31 

1227 149 268 465 140 1.27 121 1.16 109 1.28 

1227 149 268 465 144 1.30 121 1.19 109 1.32 

1227 149 268 465 156 1.41 121 1.29 109 1.43 

1636 145 151 465 116 1.48 75 1.54 75 1.54 

1636 145 151 465 125 1.59 75 1.66 75 1.66 

Wilhoite 
et al. 

(1984) 
 

70x3.0 

1636 145 151 465 142 1.81 75 1.89 75 1.89 

286 237 2618 396 187 1.06 264 0.71 198 0.95 

285 237 2637 396 212 1.07 264 0.80 198 1.07 

490 202 892 396 158 1.07 219 0.72 167 0.95 

490 202 892 396 180 1.03 219 0.82 167 1.08 

674 192 471 396 139 1.13 180 0.77 151 0.92 

675 192 470 396 213 1.42 179 1.19 150 1.42 

900 187 264 396 113 1.19 131 0.86 125 0.90 

900 187 264 396 144 1.21 131 1.10 125 1.16 

1099 184 177 396 79 1.06 89 0.90 89 0.90 

Popovic 
et al. 

(1999) 
 

50x2.5 

1100 184 177 396 111 1.14 88 1.25 88 1.25 

285 605 2689 388 367 − 351 1.05 344 1.07 

490 512 910 388 295 − 289 1.02 285 1.04 

Popovic 
et al. 

(1999) 
50x4.0 675 484 479 388 205 − 221 0.93 221 0.93 

285 900 2619 388 360 − 350 1.03 350 1.03 

490 758 886 388 277 − 286 0.97 286 0.97 

490 758 886 388 273 − 286 0.95 286 0.95 

675 714 467 388 214 − 218 0.98 218 0.98 

Popovic 
et al. 

(1999) 
 

50x5.0 
675 714 467 388 196 − 218 0.90 218 0.90 

480 143 1307 371 112 − 200 0.56 126 0.89 

835 130 432 371 105 − 149 0.70 109 0.96 

1195 126 211 371 83 − 98 0.85 90 0.92 

Chodraui 
et al. 

(2006) 
 

60x2.4 1550 124 125 371 76 − 63 1.21 63 1.21 

480 144 1320 357 112 − 197 0.57 127 0.88 

650 136 720 357 130 − 174 0.75 117 1.11 

835 131 436 357 105 − 149 0.70 110 0.95 

1000 129 304 357 144 − 126 1.14 103 1.40 

1195 127 213 357 81 − 99 0.82 91 0.89 

1350 126 167 357 103 − 81 1.27 78 1.31 

Maia et 
al. 

(2008) 
 

60x2.4 

1550 126 127 357 76 − 63 1.20 63 1.20 

     Mean 1.26 Mean 1.01 Mean 1.13 

     Sd. Dev. 0.21 Sd. Dev. 0.29 Sd. Dev. 0.25 

 
flexural-torsional imperfections with amplitude equal to 10% of the wall thickness t were adopted. 

Conversely, for column lengths associated with the right part of the Pcr(L) curve horizontal plateaus, 

the minor-axis flexural imperfections were shown to be much more relevant that their “critical” flexural-
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torsional counterparts. In these (intermediate-to-long) columns, the adopted initial imperfections combine 

(i) a “critical” flexural-torsional component, of amplitude equal to 10% of the wall thickness t, and (ii) a 

“non-critical” minor-axis flexural component, of amplitude equal to L/750 (fixed-ended columns) or 

L/1000 (pin-ended columns) − these amplitudes are in line with the means of the values measured in 

the specimens tested by Popovic et al. (1999) and Young (2004), respectively. 
 
The combined “flexural-torsional + minor-axis flexural” initial imperfections were considered for 

the lengths (i) 4200, 5320, 7000, 8900 mm (fixed-ended 70×1.2mm columns), (ii) 3000, 4000 mm (fixed-

ended 50×1.2mm columns), (iii) 1000, 1500, 2000 mm (fixed-ended 50×2.6mm columns) and (iv) 

1820, 2520, 3640, 4200 mm (pin-ended 70×1.2mm columns). 
 
All the cross-section dimensions, lengths, yield stresses fy and numerical (SFEA) ultimate stresses fu are 

given in Table 3 (89 fixed-ended columns) and in Table 4 (28 pin-ended columns). 

 

4. DSM Design Considerations 

Regarding the existing design provisions for concentrically loaded equal-leg angle columns, the earlier 

AISI (1996) and NAS (AISI 2001) specifications prescribed ultimate strength estimates of the form 
 
  

nen fAP ×=  ,   (1) 

 
where Ae is the angle effective cross-section area and fn is the column global strength, given by 
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where fy is the yield stress, fcre is the critical global buckling stress and λc is the global slenderness. 

Since (i) fn is based on the minimum between the flexural-torsional (major-axis) and flexural (minor-axis) 

buckling stresses, and (ii) Ae is based on the local (or torsional) buckling stress, Popovic et al. (2001) 

showed that the above procedure led to overly conservative Pn values, due to the fact that the torsional 

buckling stress comes into play twice (through fn and Ae). In order to achieve more accurate (but still 

safe) ultimate strength predictions, these authors proposed a modification: to base (i) fn on the flexural 

(minor-axis) buckling stress alone, and (ii) Ae on the local (torsional) buckling stress. Later, Young (2004) 

tested fixed-ended angle columns and showed that the modified AISI/NAS estimates were (i) still 

conservative for stocky columns and (ii) unsafe for slender columns. In order to obtain more accurate 

estimates, he proposed the use of a modified global strength curve, given by 
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where fcre is the minor-axis flexural buckling stress. The column ultimate strength is still determined on 

the basis of Eq. (1), but replacing fn by fne. Rasmussen (2005) followed a different path to design slender 

pin-ended angle columns, arguing that the angle singly-symmetry called for the consideration of an 

additional moment due to the effective centroid shift. Quantifying this additional moment required (i) 
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Table 3: Fixed-ended column numerical ultimate stresses and their estimates according to the proposed DSM-based approach 

  Buckling analysis  Numerical DSM-F 
Numerical-
to-Predicted 

Section 
L 

(mm) 
fcrl 

(N/mm2) 
fcre 

(N/mm2) 
fy 

(N/mm2) 
fu 

(N/mm2) 
fnle 

(N/mm2) 
fu/fnle 

532 27.5 5981 25.5 24.7 1.03 

980 24.8 1762 24.3 23.7 1.02 

1330 24.2 957 24.1 23.4 1.03 

1820 23.9 511 24.0 23.0 1.04 

2520 23.6 267 23.9 22.4 1.07 

3640 23.3 128 23.7 21.0 1.13 

4200 23.2 96 19.3 20.3 0.95 

5320 22.8 60 18.1 18.4 0.98 

7000 22.1 35 14.5 15.4 0.94 

8900 21.1 21 

30 

11.3 11.3 1.00 

532 27.5 5981 36.7 38.9 0.94 

980 24.8 1762 34.7 37.1 0.93 

1330 24.2 957 33.3 36.3 0.92 

1820 23.9 511 31.7 35.3 0.90 

2520 23.6 267 29.7 33.5 0.89 

3640 23.3 128 28.6 29.9 0.96 

4200 23.2 96 20.6 27.8 0.74 

5320 22.8 60 19.3 23.2 0.83 

7000 22.1 35 15.5 16.4 0.95 

8900 21.1 21 

60 

12.8 10.7 1.20 

532 27.5 5981 65.7 60.5 1.09 

980 24.8 1762 63.8 57.0 1.12 

1330 24.2 957 61.8 55.1 1.12 

1820 23.9 511 57.7 52.3 1.10 

2520 23.6 267 49.2 47.3 1.04 

3640 23.3 128 35.5 37.9 0.94 

4200 23.2 96 24.1 32.9 0.73 

5320 22.8 60 21.4 23.2 0.92 

7000 22.1 35 15.6 15.9 0.98 

8900 21.1 21 

120 

12.8 10.7 1.20 

532 27.5 5981 110 91.7 1.20 

980 24.8 1762 106 84.7 1.25 

1330 24.2 957 93.7 79.9 1.17 

1820 23.9 511 71.8 72.5 0.99 

2520 23.6 267 55.1 60.0 0.92 

3640 23.3 128 37.9 39.1 0.97 

4200 23.2 96 29.7 31.9 0.93 

5320 22.8 60 23.5 23.2 1.01 

7000 22.1 35 15.6 15.9 0.98 

8900 21.1 21 

235 

12.8 10.7 1.20 

532 27.5 5981 145 126.3 1.15 

980 24.8 1762 122 113.4 1.08 

1330 24.2 957 98 103.5 0.95 

70×1.2 

1820 23.9 511 

400 

72 87.9 0.82 
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Section 
L 

(mm) 
fcrl 

(N/mm2) 
fcre 

(N/mm2) 
fy 

(N/mm2) 
fu 

(N/mm2) 
fnle 

(N/mm2) 
fu/fnle 

2520 23.6 267 55 64.0 0.86 

3640 23.3 128 36 38.4 0.94 

4200 23.2 96 30.3 31.9 0.95 

5320 22.8 60 24.1 23.2 1.04 

7000 22.1 35 15.6 15.9 0.98 

8900 21.1 21 

400 

12.8 10.7 1.20 

532 27.5 5981 163 144.1 1.13 

980 24.8 1762 135 127.1 1.06 

1330 24.2 957 105 113.6 0.92 

1820 23.9 511 72 92.9 0.78 

2520 23.6 267 55 62.5 0.88 

3640 23.3 128 36 38.4 0.94 

4200 23.2 96 30.3 31.9 0.95 

5320 22.8 60 24.1 23.2 1.04 

7000 22.1 35 15.6 15.9 0.98 

 

8900 21.1 21 

500 

12.8 10.7 1.20 

1500 46.3 383.8 58 63.9 0.91 

2000 45.6 215.9 56 57.0 0.98 

2500 45 138.2 54 49.2 1.10 

3000 44.3 96.0 36.6 41.1 0.89 

4000 42.6 54.0 

120 

29.1 26.6 1.10 

1500 46.3 383.8 88 86.3 1.02 

2000 45.6 215.9 67 69.4 0.97 

2500 45 138.2 55 52.4 1.05 

3000 44.3 96.0 38 39.7 0.96 

4000 42.6 54.0 

235 

29.1 26.6 1.10 

1500 46.3 383.8 89 100.2 0.89 

2000 45.6 215.9 67 69.5 0.96 

2500 45 138.2 55 50.8 1.08 

3000 44.3 96.0 38.9 39.7 0.98 

4000 42.6 54.0 

400 

29.1 26.6 1.10 

1500 46.3 383.8 89 103.0 0.86 

2000 45.6 215.9 67 68.3 0.98 

2500 45 138.2 55 50.8 1.08 

3000 44.3 96.0 39 39.7 0.98 

50×1.2 

4000 42.6 54.0 

500 

29.1 26.6 1.10 

1000 214.2 863.6 111 109.0 1.02 

1500 205 383.8 100 96.6 1.03 

2000 194.6 215.9 

120 

87.8 81.6 1.08 

1000 214.2 863.6 202 170.7 1.18 

1500 205 383.8 176 143.5 1.23 

2000 194.6 215.9 

235 

128 110.5 1.16 

1000 214.2 863.6 230 222.8 1.03 

1500 205 383.8 192 168.1 1.14 

50×2.6 

2000 194.6 215.9 

400 

132 110.7 1.19 

      Mean 1.01 

      Sd. Dev. 0.11 
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Table 4: Pin-ended column numerical ultimate stresses and their estimates according to the two proposed DSM-based approaches 

  Buckling analysis  Numerical DSM-F 
Numerical-
to-Predicted 

DSM-P 
Numerical-
to-Predicted 

Section 
L 

(mm) 
fcrl 

(N/mm2) 
fcre 

(N/mm2) 
fy 

(N/mm2) 
fu 

(N/mm2) 
fnle 

(N/mm2) 
fu/fnle 

fnle 

(N/mm2) 
fu/fnle 

532 27.4 1496 30 24.6 24.5 1.00 21.1 1.17 

980 24.8 441 30 23.6 23.2 1.02 19.4 1.22 

1330 24.2 234 30 23.3 22.4 1.04 18.9 1.23 

1820 23.9 128 30 20.7 21.2 0.98 18.3 1.13 

2520 23.7 67 30 18.7 19.1 0.98 17.3 1.08 

3640 23.4 32 30 15.1 15.1 1.00 14.6 1.03 

4200 23.2 24 30 13.2 12.6 1.05 12.6 1.05 

532 27.4 1496 60 27.1 38.4 0.71 24.2 1.12 

980 24.8 441 60 24.6 35.4 0.69 21.9 1.12 

1330 24.2 234 60 23.9 33.3 0.72 21.3 1.12 

1820 23.9 128 60 21 30.1 0.70 20.6 1.02 

2520 23.7 67 60 18.8 24.7 0.76 19.3 0.97 

3640 23.4 32 60 15.3 15.6 0.98 15.0 1.02 

4200 23.2 24 60 13.4 12.0 1.12 12.0 1.12 

532 27.4 1496 120 29.6 58.9 0.50 25.8 1.15 

980 24.8 441 120 26.9 52.1 0.52 23.2 1.16 

1330 24.2 234 120 25.5 46.5 0.55 22.5 1.13 

1820 23.9 128 120 21 38.2 0.55 21.6 0.97 

2520 23.7 67 120 18.8 25.8 0.73 19.6 0.96 

3640 23.4 32 120 15.3 15.3 1.00 14.8 1.03 

4200 23.2 24 120 13.4 12.0 1.12 12.0 1.12 

532 27.4 1496 235 39.2 87.1 0.45 26.6 1.48 

980 24.8 441 235 30.3 71.1 0.43 23.8 1.27 

1330 24.2 234 235 25.7 57.4 0.45 23.0 1.12 

1820 23.9 128 235 21 39.5 0.53 21.7 0.97 

2520 23.7 67 235 18.8 25.3 0.74 19.5 0.97 

3640 23.4 32 235 15.3 15.3 1.00 14.8 1.03 

70x1.2 

4200 23.2 24 235 13.4 12.0 1.12 12.0 1.12 

      Mean 0.80 Mean 1.10 

      Sd. Dev. 0.24 Sd. Dev. 0.11 

 
calculating an angle cross-section “effective modulus” for minor-axis bending and (ii) using an N-M 

interaction formula − but the extra work paid off, since this approach was shown to yield more 

accurate ultimate strength estimates than its predecessors. 
 
In the last decade, the Direct Strength Method (DSM) emerged as a simple and reliable approach to 

design cold-formed steel members, and has already been included in the most recent North American 

(2007) and Australian/New Zealand (2005) cold-formed steel specifications. The DSM approach is 

based on the Winter-type local strength curve (Schafer 2008) 
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where fcrl and fnl are the local buckling stress and strength. However, and since the column local and global 

failures often interact, the current DSM combines Eq. (4), for local failure, with Eq. (2), for global failure 

− fy is replaced by fne in Eq. (4). The current DSM curve for local/global interactive collapse then reads 
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where fnle is the local/global interactive strength, fne is the global strength, obtained from Eq. (2), and fcrl 

is the critical local buckling stress. The column ultimate load is given by 
 
  

nlen fAP ×=  ,   (6) 

 
where A is the gross cross-section area. In Eq. (1), the local and global buckling effects are dealt with 

separately by means of the effective area Ae and global buckling strength fn, respectively. Conversely, 

they are handled simultaneously in Eq. (6), through the local/global interactive strength fnle. 
 
Several cross-section geometries (e.g., lipped channels, Z-sections, rack-sections or hat-sections) are 

currently pre-qualified for the application of the DSM. Despite their extreme geometrical simplicity, 

angle sections did not yet achieved such status, i.e., they are not pre-qualified for the application of the 

current DSM design curves. Nevertheless, Rasmussen (2006) and Chodraui et al. (2006) proposed 

distinct DSM-based approaches for the design of concentrically loaded angle columns. While the former 

incorporates explicitly the eccentricity due to the effective centroid shift, which amounts to treating the 

columns as beam-columns, the latter ignores the above eccentricity, exploring instead different relations 

between the local (flexural-torsional) and global (minor-axis flexural) buckling stresses. At this stage, it 

is worth mentioning that Dinis et al. (2011) have shown that the straightforward use of current DSM 

design curves (combination of Eqs. (2) and (5)) leads to a significant number of poor ultimate strength 

predictions, which is just an obvious and natural cause/consequence of the fact that angle columns are 

not pre-qualified for the DSM application. 
 
While in Eqs. (2)-(3) it is mandatory to calculate the minor-axis flexural buckling stress fcre, Eqs. (4)-(5) 

require the knowledge of the local buckling stress fcrl, replaced herein (equal-leg angle columns) by the 

flexural-torsional buckling stress
6
. In this work, these two buckling stresses were determined by means 

of the code GBTUL (Bebiano et al. 2008a,b), taking into account the column (i) actual end support 

conditions (fixed or pinned end sections) and (ii) experimentally measured cross-section dimensions and 

steel properties − the fcrl and fcre values are given in (i) Tables 1 and 2 (experimental ultimate strengths) 

and (ii) Tables 3 and 4 (numerical ultimate strengths). It its worth mentioning that the signature curves 

fcrl(L) and fcre(L) shown in Figures 9 and 10 were obtained by means of two separate GBT analyses (see 

Figure 1(b)): (i) ones including modes 2 (major-axis bending), 4 (torsion) and 6 (anti-symmetric local), to 

                                                 
6
 Note that the local buckling stress fcrl must be equated to the flexural-torsional buckling stress. Due to the presence of the 

flexural component, the “local” buckling of equal-leg angles cannot be viewed as the usual local buckling of other sections. 

Because the corner flexural displacements have been shown to play a key role in the column post-critical strength, the 

mechanics of “local” buckling should not be equated solely to torsional buckling and the angle column behavior cannot be 

viewed as the “sum” of two pinned-free long plates. Thus, the flexural component of the buckling mode should not be omitted, 

even if its contribution does not alter the design strength predictions significantly. 
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obtain the fcrl(L) curve, and (ii) the others including only mode 3 (minor-axis bending), to obtain the 

fcre(L) curve. The fcrl(L) curve corresponds to clamped support conditions for modes 2, 4 and 6, both in the 

pin-ended and fixed-ended columns. The fcre(L) curve was obtained considering clamped or pinned 

support conditions for mode 3, respectively for the fixed-ended and pin-ended columns. 
 
Figures 9(a)-(b) and 10(a)-(b) show the signature curves fcr(L) of (i) the fixed-ended columns tested by 

Popovic et al. (1999) (Fig. 9(a)) and Young (2004) (Fig. 9(b)), and (ii) the pin-ended columns tested by 

Popovic et al. (1999) (Fig. 10(a)), Chodraui et al. (2006) and Maia et al. (2008) (Fig. 10(b))
7
. The dashed 

and thinner solid curves correspond to the flexural-torsional buckling stress fcrl and the thicker solid curve 

corresponds to the minor-axis flexural buckling stress fcre
8
 − the column critical stresses correspond to the 

lower of fcrl and fcre. The white and black circles, located respectively on the fcrl(L) and fcre(L) curves, 

identify the lengths of the columns tested by the various researchers. 
 
Concerning the fixed-ended columns (Figs. 9(a)-(b)), it is clear that all the columns tested by Young are 

located far away (to the left) from the intersection between the fcrl(L) and fcre(L) curves, which means 

that fcre is always much higher than fcrl − the lowest fcre/fcrl ratio is equal to 2.7, corresponding to the 

longest column (L=3500 mm) with the stockiest cross-section (70×1.9mm). Conversely, most of the 

fixed-ended columns tested by Popovic et al. have lengths placing them on the right side of the fcrl(L) 

curve horizontal plateaus, i.e., the near their intersection with fcre(L), which means fcre/fcrl values close to 

1.0 – the few exceptions concern some 50×2.5mm column lengths, located on the left side of the fcrl(L) 

curve horizontal plateau. Moreover, in some of these columns the minor-axis flexural buckling mode 

becomes “critical” (i.e., fcre/fcrl<1.0). 
 
Concerning the pin-ended columns (Figs. 10(a)-(b)), most of their lengths place them on the right side 

of the fcrl(L) curve horizontal plateaus − the exceptions are the shortest (i) 50×2.5mm columns tested by 

Popovic et al. and (ii) columns tested by Chodraui et al., which are located on the left side of the fcrl(L) 

curve horizontal plateaus. 
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Figure 9: Variation of fcr with L for the fixed-ended columns tested by (a) Popovic et al. (1999) and (b) Young (2004) 

 

                                                 
7
 None of these figures concerns the fixed-ended columns tested by Mesacasa Jr. (2011). 

8
 One flexural-torsional curve per cross-section geometry and a common minor-axis flexural curve for all cross-sections sharing 

the same mid-line dimensions − this amounts to neglecting the contributions of the wall “own inertias” to the cross-section 

minor moment of inertia. 
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Figure 10: Variation of fcr with L for the pin-ended columns tested by (a) Popovic et al. (1999) and (b) Chodraui et al. 

(2006) and Maia et al. (2008) 

 
It will be shown later that, both in fixed-ended and pin-ended columns, the ultimate strength is strongly 

affected by the “location” of the column length, i.e., the “closeness” between the fcrl and fcre values. As 

mentioned previously, the shorter columns, located on the left side of the plateaus, have clearly stable 

post-critical behaviors, since they exhibit very small corner displacements. Conversely, the longer 

columns, located on the right side of the plateaus possess a minute/negligible post-buckling strength, 

since they exhibit significant corner displacements, stemming predominantly from minor-axis flexure 

(even with fcre/fcrl>1.0, i.e., minor-axis flexural buckling is “non-critical”). 
 
After having determined the fcrl and fcre values of all the columns, given in Tables 1-4, it becomes possible 

to calculate their minor-axis flexural and flexural-torsional slenderness values, given by 
creyc f/f=λ  

and 
crlyl f/f=λ . Figures 11(a)-(b) (fixed-ended columns) and 12(a)-(b) (pin-ended columns) show the 

variation of the ultimate-to-yield stress ratio values (fu/fy), obtained from the experimental (white circles) 

and numerical (black circles) results, with both λc (Figs. 11(a) and 12(a)) and λl (Figs. 11(b) and 12(b)) − 

note that the thin solid line in Fig. 12(b) identifies a strength curve proposed by Rasmussen (2005), 

addressed below. The solid lines in these figures correspond to the global (fne/fy − Eq. (2)) and local 

(fnl/fy − Eq. (4)) DSM design curves. The observation of these figures prompts the following comments: 
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Figure 11: Fixed-ended columns: variation of fu/fy with (a) λc and (b) λl 
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Figure 12: Pin-ended columns: variation of fu/fy with (a) λc and (b) λl 

 
(i) In each figure, the clouds of white and black circles share nearly the same location, showing that 

the experimental and numerical ultimate strengths exhibit similar overall tendencies. 

(ii) Regardless of the global or local slenderness range, the vast majority of fu/fy values fall well below 

the DSM curves, thus showing/confirming that the DSM “pure” global and local strength curves 

consistently overestimate the angle column ultimate strengths by fairly large margins. 

(iii) The fu/fy values are widely spread for low-to-moderate global slenderness values λc, but become 

less scattered for higher λc values. Figs. 11(a) and 12(a) also show the global strength curve (Eq. (3) 

– dashed line) proposed by Young (2004). It is clear that this curve follows the tendency of the fu/fy 

values much more closely than the current DSM global strength curve (Eq. (2) – solid line), 

particularly for moderate-to-high global slenderness values λc. 

(iv) Due to the small variation (drop) of fcrl with L within the fcrl(L) curve horizontal plateau, the fu/fy 

values concerning the columns with the same yield stress are clearly “grouped together” in 

Figs. 11(b) and 12(b). As fy increases, the corresponding group is associated with a higher local 

slenderness λl and a lower strength (i.e., moves down and to the right) − within each group, the 

slenderness increases with the length L. 

(v) Within each group, the variation of fu/fy with λl is markedly different for the fixed-ended and pin-

ended columns. While the fixed-ended columns (Fig. 11(b)) exhibit a high “vertical dispersion”, 

thus implying a very significant variation of fu/fy with L (even if fcrl remains practically unaltered), 

those concerning the pin-ended columns (Fig. 12(b)) are rather “packed together” and located 

considerably below the DSM local curve (Eq. (4)). This behavioral difference is mainly due to the 

influence of the effective centroid shift, which was shown to be much more relevant in pin-ended 

columns than in their fixed-ended counterparts. This effect was considered in the rational design 

methodology developed by Rasmussen (2005, 2006) and based on the “beam-column concept”: 

the additional moment, due to the compressive force action on the eccentricity due to the effective 

centroid shift, was taken into account by using a beam-column interaction equation. 

(vi) In spite of the quite pronounced qualitative and quantitative differences detected in the elastic post-

buckling behaviors of the pin-ended columns (see the results presented earlier), the differences 

between their ultimate strengths are only moderate. Note that the fu/fy values corresponding to the 

pin-ended columns, displayed in Fig. 12(b), are only slightly grouped together and show a tendency 

to vary with the local slenderness λl. Thus, it seems possible (and may be advantageous) to fit a 
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new strength curve for the design against “local” (flexural-torsional, in reality) failure of pin-ended 

angle columns, which is given by 
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 Figure 12(b) depicts this curve and it is clear that it follows fairly well the trend of the fu/fy values. 

Moreover, since the influence of the effective centroid shift is directly taken into account, it should 

lead to an efficient design procedure for pin-ended angle columns without the need to resort to the 

beam-column concept. It should also be emphasized that this curve falls well below the current 

DSM local strength curve (applicable to columns with various pre-qualified cross-section shapes). 

This fact just shows that the interaction between flexural-torsional buckling and minor-axis 

flexural buckling in pin-ended angle columns is much more severe than the interaction between 

local and global (flexural or flexural-torsional) buckling in columns with other cross-section shapes. 

This stems from the extremely high sensitivity to the effective centroid shift, which was clearly 

demonstrated earlier in the paper and can be physically explained by the fact that both angle cross-

section walls (legs) are outstands – in all the columns with cross-sections pre-qualified to the 

application of the DSM, local buckling is virtually always triggered by internal walls, which entails a 

considerably less severe interaction with global buckling. 

(vii) Conversely, the differences between the fixed-ended column ultimate strengths are rather sharp. 

Indeed, most of them are located in “almost vertical line segments”, thus meaning that columns 

sharing the same yield and critical stresses (but having different lengths) exhibit quite distinct fu/fy 

values. This somewhat “paradoxical” behavior appears to indicate that the local slenderness λl does 

not provide an adequate “measure” of the column ultimate strength. Recalling that most of these 

columns buckle in flexural-torsional modes “almost akin” to a local mode (see Fig. 1(c) − the word 

“almost” stems from the presence of corner flexural displacements), it seems fair to say that, within 

the fcrl(L) curve horizontal plateau, the fixed-ended column ultimate strength nature “travels” from 

“local” to “global” as the length increases − an efficient design procedure for these columns must 

take this fact into account. 

(viii) The strength curve proposed by Rasmussen (2005) for pin-ended columns (solid thin line in 

Fig. 12(b)), which is given by 
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 and takes into account (viii1) the bending due to the effective centroid shift, through parameter β, 

and (ii) local (torsional) buckling, through the effective area reduction factor ρ. Although this curve 

also provides fairly accurate ultimate strength predictions, it is clear that it leads to slightly higher and 

less accurate ultimate strength predictions than the curve proposed in Eq. (7). 
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One last word to mention that the DSM distortional buckling curve is not considered in this work because 

this buckling mode does not occur in plain angles − the interested reader is referred to the work 

of Silvestre & Camotim (2010) for a mechanical definition of distortional buckling. 
 
4.1 Proposal of a DSM-Based Design Approach 

In order to enable the application of the “DSM philosophy” to the design of fixed-ended and pin-ended 

equal angle columns, the following DSM-based approach is proposed herein: 

(i) To adopt different procedures/design curves to estimate the ultimate strength of fixed-ended and 

pin-ended columns − they are designated as “DSM-F” and “DSM-P”, respectively. 

(ii) The DSM-F procedure combines (ii1) Eq. (3), which is the global strength curve proposed by Young 

(2004), with (ii2) Eq. (5), which is the current DSM design curve for local/global interactive failure. 

Although this procedure was developed specifically for fixed-ended columns, its application to pin-

ended columns is also assessed. 

(iii) The DSM-P procedure combines Eq. (3), as before, with a proposed/new DSM curve for 

“local”/global interactive failure, defined by (see Fig. 12(b)) 
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 which only differs from Eq. (5) in the fact that the yield stress fy is replaced by the global strength fne. 

It is worth emphasizing again that this procedure is applied solely to pin-ended columns, which 

constitute the specific target of its development. 
 
Attention is now turned to assessing the performance of the proposed DSM-based approach, i.e., the 

DSM-F and DSM-P procedures. The corresponding column ultimate strength predictions (fnle values) 

are included in Tables 1-4. The ultimate-to-predicted strength ratios (fu/fnle) are also given, where the 

ultimate strengths fu correspond to the test values (Tables 1-2) and numerical values (Tables 3-4). 

In addition, Table 1 also gives the test-to-predicted ratio fu/fn values provided by the application of the 

methodology developed by Young (2004), which combines Eqs. (1) and (3), to the set of fixed-ended 

columns tested by Popovic et al. (1999) and Young (2004). On the other hand, Table 2 also presents the 

test-to-predicted ratios fu/fn obtained by Rasmussen (2006), with his beam-column methodology, for the 

pin-ended columns tested by Wilhoite et al. (1984) and Popovic et al. (1999). The close observation of 

the ultimate strength estimates presented in Tables 1-4 leads to the following remarks: 

(i) The DSM-F procedure leads to fairly accurate estimates of the fixed-ended column experimental 

ultimate strength values (see Table 1) − fu/fnle average and standard deviation of 0.98 and 0.14. 

The methodology developed by Young (2004) leads to considerably more conservative results − fu/fn 

average and standard deviation of 1.15 and 0.18. 

(ii) The DSM-F procedure also provides fairly accurate predictions of the fixed-ended column numerical 

ultimate strengths (see Table 3) − fu/fnle average and standard deviation of 1.01 and 0.11. 

(iii) Not surprisingly, the DSM-F procedure leads to accurate (in average) but widely scattered estimates 

of the pin-ended column experimental ultimate strengths (see Table 2) − fu/fnle average and standard 

deviation of 1.01 and 0.29. However, 16 (out of 37) predictions have errors higher than 20% (both 

safe and unsafe). This is due to the lack of proper accounting for the effective centroid shift effect − 

the DSM-F procedure adopts the current DSM strength curve for local/global interactive failure 



 23 

(Eq. (5)). Conversely, the DSM-P procedure leads to reasonably accurate and safe (but fairly 

scattered) estimates of the pin-ended column experimental ultimate strengths − fu/fnle average and 

standard deviation of 1.13 and 0.25. The design approach developed by Rasmussen (2006) yields 

more conservative and slightly less scattered ultimate strength predictions − fu/fn average and 

standard deviation of 1.26 and 0.21 (note that the lower scatter is also related with the smaller 

number of results involved). 

(iv) The DSM-F procedure also predicts rather poorly the pin-ended column numerical ultimate strengths 

(see Table 4), which are mostly largely overestimated − fu/fnle average and standard deviation of 0.80 

and 0.24. As for the estimates provided by the DSM-P procedure, they are slightly conservative 

and exhibit a fairly low scatter − fu/fnle average and standard deviation of 1.10 and 0.11. 

(v) The ultimate-to-predicted (ultimate means test or numerical) stress ratios fu/fnle can be viewed and 

compared in Figs. 13(a) (fixed-ended columns) and 13(b) (pin-ended columns) − the white and black 

circles stand again for the experimental (test) and numerical results. With the exception of four less 

accurate pin-ended column ultimate strength estimates (white circles in Fig. 13(b) − 4 underestimations 

concerning eccentrically loaded columns tested by Wilhoite et al.), all the pin-ended and fixed-

ended column fu/fnle values exhibit an acceptable scatter and vary randomly around 1.01 (fixed-ended 

columns) and 1.12 (pin-ended columns). 

(vi) While the fixed-ended column fu/fnle values are spread along a fairly wide local/global slenderness 

range, their pin-ended column counterparts are mostly “accumulated” in a limited local/global 

slenderness range (0.5<λle<1.5) − only numerical fu/fnle values fall outside of this range. In order to 

properly assess the accuracy of the DSM-P procedure in the full λle range, it is necessary to perform 

experimental tests on pin-ended columns with high local/global slenderness values (λle>1.5). 

In this respect, it is worth mentioning that most of the (few) numerical ultimate strengths associated 

with high λle values are underestimated by the DSM-P procedure − this underestimation is larger 

for the two columns exhibiting λle values higher than 2.5. 
 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 1.0 2.0 3.0 4.0 5.0

Test results

Numerical results

                

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 1.0 2.0 3.0 4.0 5.0

Test results

Numerical results

 

 (a) (b) 

Figure 13: Variation of fnle/fu with λle for the (a) DSM-F (fixed-ended columns) (b) and DSM-P (pin-ended columns) procedures 

 
Now, the determination of the LRFD (Load and Resistance Factor Design) resistance factor φ for the 

proposed DSM-based approaches is briefly addressed. According to the most recent North American 

cold-formed steel specification (AISI 2007), the resistance factor φ can be calculated using the formula 

given in section F.1.1 of chapter F, which reads 
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where (i) Cφ is a calibration coefficient (Cφ=1.52 for LRFD), (ii) Mm=1.0 and Fm=1.00 are the mean 

values of the material and fabrication factor, respectively, (iii) β0 is the target reliability index (β0=2.5 

for structural members in LRFD), (iv) VM=0.10, VF=0.05 and VQ=0.21 are the coefficients of variation 

of the material factor, fabrication factor and load effect, respectively, and (v) CP is a correction factor 

that depends on the number of tests (n) and degrees of freedom (m=n-1). In order to evaluate the 

resistance factor φ for each DSM-based procedure (DSM-F and DSM-P), it is necessary to calculate Pm 

and VP, which are the mean and standard deviation values of the “exact”-to-predicted stress ratios fu/fnle – 

“exact” means either test fu values, numerical fu values or both test and numerical fu values. 
 
Table 5 shows the n, CP, Pm, VP and φ values obtained for the column ultimate strength estimates 

provided by the DSM-F (fixed-ended columns) and DSM-P (pin-ended columns) procedures using the 

test, numerical and overall (test plus numerical) data. The resistance factor values associated with each 

of the two proposed DSM-based procedures are (i) φ=0.81 (fixed-ended columns) and φ=0.78 (pin-ended 

columns), for the experimental data, and (ii) φ≈0.89 (fixed-ended columns) and φ≈0.95 (pin-ended 

columns), for the numerical data. When all the experimental and numerical data are considered together, 

the overall application of the DSM-F and DSM-P procedures leads to φ=0.87 and φ=0.85, values 

practically coincident with that recommended by the NAS (2007) − φ=0.85. Therefore it may be readily 

concluded that the value φ=0.85, which is employed when applying the current DSM, can also be safely 

adopted with the proposed DSM-F and DSM-P procedures. Additionally, the DSM-F approach was also 

tested for the pin-ended columns − recall that it uses Eqs. (3) and (5) and differs from the current DSM in 

the fact the global strength curve is replaced by the one proposed by Young (2004). The resistance factor 

values obtained are (see Table 5) φ=0.65 (experimental), φ=0.56 (numerical) and φ=0.60 (experimental 

and numerical), well below the value recommended by the NAS (2007) − φ=0.85. Therefore, the DSM-F 

approach can be adopted for pin-ended plain angle columns if φ=0.60 is adopted (an even lower value 

would be required to enable the application of the current DSM), which lowers significantly the strength 

of any column due to the high scatter of the DSM-F predictions. The authors rather prefer the use of a 

new “local” buckling curve (i.e., the DSM-P approach), leading to less scattered predictions, together 

with the recommended resistance factor φ=0.85 − it is a more rational approach, reflecting the different 

mechanics of the pin-ended and fixed-ended plain angle behaviors. 
 

Table 5: LRFD resistance factors φ calculated according to AISI (2007) − DSM-F and DSM-P procedures 

 Fixed-Ended Columns Pin-Ended Columns 

 DSM-F DSM-F DSM-P 

 Test Num. Test+Num. Test Num. Test+Num. Test Num. Test+Num. 

n 41 89 130 37 28 65 37 28 65 

CP 1.078 1.035 1.024 1.087 1.119 1.048 1.087 1.119 1.048 

Pm 0.980 1.023 1.010 1.007 0.800 0.918 1.133 1.103 1.120 

VP 0.145 0.105 0.120 0.288 0.237 0.285 0.245 0.111 0.198 

φ 0.81 0.89 0.87 0.65 0.56 0.60 0.79 0.95 0.86 

 
Finally, it is worth mentioning that Ganesan & Moen (2010, 2012) recently investigated whether the 

LRFD strength reduction factor for DSM design of cold-formed steel compression members can be 

increased above its current value of φ=0.85, since this specific value was established about twenty years 

ago (AISI 1991), on the basis of 264 column tests. They considered a much larger set of concentrically 
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loaded column tests, namely 675 tests involving columns with plain channels, lipped channels, angles, Z-

sections and hat-sections. In the particular case of concentrically loaded (i.e., without the eccentricity 

L/1000) angle columns, Ganesan & Moen (2010) found that the current DSM resistance factor, based on 

75 test results (50 and 25 for plain and lipped angles, respectively) is φ=0.71. They argued that this very 

low value is due to the high coefficient of variation of test-to-predicted ratios for angle columns and 

concluded that “…fundamental research on the mechanics of angle compression members is needed to 

improve existing design methods… The low values for the resistance factor for angle columns indicate 

that the fundamental behavior of angle section columns is yet to be completely understood and there is a 

need for more research in the future”. The work reported in this paper showed that the proposed DSM-

based approach is accurate and, above all, is also mechanically sound because (i) it separates the 

provisions for fixed-ended and pin-ended columns, due the qualitative and quantitative differences 

involving the effective centroid shift responsible for the interaction between flexural-torsional (“local”) 

and (minor-axis) flexural buckling, and (ii) it incorporates a recently developed (for fixed-ended columns 

only) global strength curve − this curve, which can be applied to both pin-ended and fixed-ended 

columns, is able to capture the strong influence of minor-axis flexural buckling (either critical or non-

critical) on the column post-buckling behavior and strength. The fact that these relevant features are not 

contemplated in the current DSM is at the root of the inadequacy (Dinis et al. 2012) and very low load 

resistance factor (Ganesan & Moen 2010, 2012) associated with its application to equal-leg angle columns
9
. 

 
It is still worth mentioning that the angle column problem addressed in this work is the simplest one: 

concentrically loaded plain equal-leg angle columns. Yet, the ultimate strength estimates provided by the 

current design methods (Main Specification and DSM) are not as good as those obtained for more 

complex sections, such as plain or lipped channels. The consideration of other relevant aspects, like load 

eccentricities, leg asymmetries or stiffened legs, only “hides” the pure, but rather singular, behavior of 

concentrically loaded plain equal-leg angle columns, which deserves to be investigated on its own. It is 

expected that the above effects can be successfully handled by a DSM approach similar to the one 

proposed in this work within specified limits, provided that the buckling loads involved are evaluated 

rigorously and account for all the relevant effects − the DSM pre-qualification procedure will be very 

helpful in the specification of those limits. 

 

5. Conclusion 

After summarizing recent findings concerning the buckling, post-buckling and ultimate strength 

behaviors of fixed-ended and pin-ended short-to-intermediate equal-leg angle columns, the paper 

addressed their design by means of a DSM-based approach. Since short-to-intermediate angle columns 

buckle in flexural-torsional modes “almost akin” to the local buckling modes exhibited by columns with 

other cross-section shapes, the first step consisted of adopting the “DSM concept” of local/global 

interactive failure. The curve proposed by Young (2004), in the context of fixed-ended columns, was 

adopted to estimate the column global strength, as it was found to provide more accurate fixed-ended 

and pin-ended column ultimate strength estimates than the current DSM curve. 
 
The recent disclosure of distinct mechanical features in the post-buckling and ultimate strength behaviors 

of fixed-ended and pinned ended columns, showing that the latter are much more prone and sensitive to 

the occurrence of interaction between flexural-torsional (“local”) and global buckling modes, led to the 

                                                 
9
 In particular, the local strength curve does not capture adequately the peculiar behavioral features associated with angle column 

flexural-torsional buckling. 
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adoption of a different “local” strength curve for each end support condition. While the current DSM 

local strength curve is retained for fixed-ended columns, a new strength curve was proposed for pin-

ended columns. This last curve makes it possible to capture the effective centroid shift effects, much more 

relevant in pin-ended columns that in fixed-ended ones, quite accurately. 
 
The DSM-based approach proposed for the design of fixed-ended and pin-ended equal-leg angle columns 

(i) adopts the “local”/global interactive failure concept and (ii) uses distinct procedures (“local” strength 

curves) for fixed-ended (DSM-F) and pin-ended (DSM-P) columns, thus reflecting more closely the 

actual angle column behavior. This design approach was shown (i) to provide fairly accurate ultimate 

strength predictions for a wide column slenderness range, while retaining the simplicity of the current 

DSM application, and (ii) to exhibit an overall performance that compares favorably with those displayed 

by the other methods available in the literature to design angle columns. Moreover, it was also shown that 

the LRFD resistance factor φ=0.85, employed with the current DSM, can also be safely adopted when 

applying the proposed DSM approach. 
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