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Abstract 
 
A new strength prediction approach is presented for open web joists partially braced by a 
standing seam roof. The approach employs the existing AISC column curve to calculate top 
chord flexural buckling capacity using the critical elastic buckling load including standing seam 
roof bracing stiffness.  Recently derived buckling load equations are presented that account for 
lateral stiffness provided by the roof and the parabolically varying axial load from a uniform 
vertical pressure along the span. A new hybrid experimental-computational protocol is 
introduced for approximating standing seam roof lateral stiffness for systems without and with 
intermediate bridging.   The strength prediction approach is demonstrated to be accurate for a 
small set of experiments, however a larger scale validation effort is still needed. 
 
 
1. Introduction 
 
Open-web steel joists are a staple of modern metal building construction.  These joists typically 
span over 40 ft. between primary portal frames, supporting a roof skin that serves as the barrier 
to rain, snow, and wind.   A common type of metal building roofing system supported by open-
web joists is the standing seam roof  (Fig. 1). Metal clips are through-fastened along the joist top 
chord and then the two edges of a metal roof panel are plastically folded with a special seaming 
machine around the clips, forming a watertight seal.   

 
The standing seam clips are designed with a sliding mechanism to accommodate roof elongation 
and contraction from changes in temperature while still providing vertical support to the roof.  
Because the clips are through-fastened to the top chord, they can provide some lateral bracing if 
the roof panels are properly anchored to the eave and ridge.  The roof panels can also envelop or 
“hug” the top chord under gravity loads, providing additional lateral restraint. A common 
question asked by joist manufacturers and metal building engineers is “how much top chord 
lateral support is provided by a standing seam roof and can this lateral bracing be counted on in 
the flexural design of a joist?”  
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Figure 1: Standing seam roof supported by an open-web joist 

There is clear experimental evidence that a standing seam roof can provide partial lateral 
restraint to a joist top chord. Holland and Murray (1983) evaluated the influence of standing 
seam clip type, top chord size, and bridging location on joist capacity using a vacuum chamber. 
Similar tests by Sherman and Fisher (1997) demonstrated that joist capacity decreased with 
increasing clip height because as clip height increases the lateral stiffness of the clip decreased 
and the offset of the roof from the top chord reduced the “hugging” effect.   
 
Sherman and Fisher emphasize in their paper that the standing seam panel must be soundly 
connected to stiff eave and ridge members to ensure that the lateral bracing forces have a load 
path to the primary framing.  They measured these bracing forces in their tests on a two-joist 
system and used the experimental results to validate engineering expressions for predicting 
required roof panel capacity that were motivated by Winter (1958).   Sherman and Fisher point 
out that for multiple joists the required bracing force provided by the roof is cumulative and that 
for sloped roofs the gravity load in the direction of the bracing forces should also be considered 
in the total force demand. 
 
One of the only existing analytical capacity prediction methods for joists braced by a standing 
seam roof was developed by Hodge (1986), a master’s student advised by Professor Theodore 
Galambos.  Hodge and Galambos treated the joist top chord as a column with an initial 
geometric imperfection, discrete springs at the clip locations (hugging was not considered), 
discrete supports at the bridging lines, and a parabolically varying axial load.  Second order 
elastic-plastic analysis of the column (joist top chord) was conducted by solving simultaneous 
slope deflection equations describing moment equilibrium at nodes along the column, where the 
node locations were at each clip (spring) location, bridging line, and end support. Hodge 
compared his capacity predictions to the Holland and Murray (1983) tests, however the 
validation was deemed unsatisfactory because of the lack of sweep imperfection measurements 
in the experiments.  Also, Hodge mentions that the Fortran program used to solve the second-
order analysis was quite slow.   
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This paper builds on Hodge and Galambos’s analytical model to provide a general strength 
prediction method for open-web steel joists braced by a standing seam roof.  The prediction 
method utilized classical stability solutions, modern structural analysis tools, and existing code 
equations.  Specifically, the existing AISC column curve is used to predict top chord capacity 
using closed formed equations for the critical elastic buckling load of the top chord including 
roof stiffness and bridging. A protocol for approximating the roof stiffness is outlined that uses 
vacuum chamber test data and second order elastic analysis in a structural analysis program (e.g., 
MASTAN2, SAP2000, RISA2D). The strength prediction method is verified with a small set of 
recent experiments.  More validation is needed though and the authors are hopeful that others 
will conduct similar tests to evaluate the accuracy of the following strength prediction approach. 
 
2. Strength Prediction Method 
 
The proposed strength prediction method is for a top chord lateral flexural buckling limit state of 
an open-web joist partially restrained by a standing seam roof loaded with a uniformed 
distributed gravity load. The joist top chord is assumed to behave as a column experiencing 
flexural buckling deformation under a parabolically varying axial load without (Fig. 2a) or with 
discrete supports (Fig. 2b) at the bridging lines and at the ends of the member. The top chord is a 
singly symmetric member if the two angles are assumed to act together (they are typically 
welded together every 24 in.) and therefore flexural-torsional buckling comprises two of the 
three buckling modes when solving the classical cubic buckling equation (Chajes 1974). 
However, in this prediction method, only flexural buckling is considered because the diagonal 
and vertical web stems in combination with the roof are assumed to suppress torsional 
deformation.   

 
(a)  

 
(b) 

Figure 2: Top chord boundary conditions, loading, and lateral support (a) without and (b) with bridging lines 
 
A uniformly distributed lateral spring with magnitude K (force/length/length) simulates a 
smeared effect of clip stiffness and hugging along the top chord.  This is different from the 
Hodge (1986) treatment where only the clip stiffness at discrete locations was considered in the 
prediction. 
 

cre  

K

EIy

P

X

Z

Z

Parabolic  
axial  load

cre

K

EIy

P

Z

Fixed  in  the  Z-direction  
at  bridging  locations



For an open-web joist partially braced by a standing seam roof and failing by lateral flexural 
buckling of the top chord (Fig. 2), the ultimate capacity, Pn, is approximated with the AISC 
column curve equations, reformatted such that the global buckling slenderness, kL/r, is 
represented instead as λc=(Py/Pcre)0.5 
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where Py=AFy , A is the gross cross-sectional area of the top chord, Fy is the top chord steel yield 
stress, and Pcre is the critical elastic buckling load of the joist top chord.  The column curve 
represented in Eq. (1) is used in both hot-rolled steel (AISC) and cold-formed steel (AISI) codes, 
and therefore this proposed strength prediction method is applicable to top chord angles made 
from either material. The calculation of Pcre can be performed with an elastic eigen-buckling 
analysis in a structural analysis program, for example, MASTAN2 (MASTAN2/version 3.3) or 
SAP2000 (SAP2000/Advanced version 14.0.0) with similar models shown in Fig. 2.  
 
Approximate hand methods are also available to calculate Pcre. A closed form solution for the 
case of a joist without bridging was recently derived from numerical studies (Cronin 2012)  
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where L is the joist span.  Equation (2) is a linear fit to the slightly nonlinear exact solution 
shown in Fig. 3. 

 
Figure 3: Flexural column buckling on an elastic foundation with a parabolically varying axial load 

When intermediate bridging lines brace the top chord, then Pcre can be approximated by 
assuming the top chord acts as a pinned-pinned column on an elastic foundation between 
bridging lines, where the length of the column, L, is the distance between the bridging lines 
nearest midspan  
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Equation (3) represents the classical solution for a column with a constant axial load on an elastic 
foundation (Chen and Lui 1987) shown in Fig. 4. The axial force in the joist will be varying with 
the moment between bridging lines, however for typical bridging spacings it is reasonable and 
conservative to assume that the axial load is constant for this case. 

 
Figure 4: Flexural column buckling on an elastic foundation with a constant axial load 

 
Once Pcre is used in Eq. (1) to calculate Pn for the top chord, joist capacity can be converted to a 
distributed load, wn, with units of force per length  
 

  
 
wn =

8Pnd
L2  

 (4) 

 
where d is the distance between centroids of the top and bottom joist chords. 
 
There are several inherent assumptions in this strength prediction approach that may or may not 
be valid depending upon the joist type, standing seam roof details, and building boundary 
conditions. Catenary tension in the top chord is ignored which is most likely a conservative 
assumption.  Sudden lateral slip of the standing seam roof clips when the roof is under load is 
neglected. Downward local bending of the top chord caused by concentrated forces at the clip 
locations is ignored.  A P-M interaction equation could be employed if there is concern that the 
web stem spacing is too large.  The standing seam roof is assumed to be able to provide the 
distributed spring stiffness K and to have the capacity to carry the associated bracing forces.   A 
procedure for approximating K and the bracing force demand with a standard vacuum chamber 
test and computer analysis is presented in the next section. 
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3. Roof Stiffness 
 
The lateral stiffness provided by the standing seam roof to the top chord is influenced by many 
variables including clip type, clip height, the presence of insulation between the panel and the 
joist, panel profile and gage.  The failure pressure also plays an important role because for roofs 
with a lower capacity joist, envelopment of the top chord will be minimal, while for a stronger 
joist top chord hugging may be the dominant contributor to lateral stiffness.    
 
The procedure presented in the following paragraphs for approximating K employs experimental 
data from a vacuum box test. The procedure is implemented by measuring the lateral 
displacement of the joist top chord relative to the roof at multiple points along the span, and then 
a structural analysis program is used to solve for K that results in the best match between the 
displaced shape in the structural analysis and the measured displaced shape of the joist.  
 
The first step is to start with a vacuum box test and measure the displacement of the joists 
relative to the standing seam roof near failure as shown in Fig. 5a.  To be consistent with the 
assumptions in the prediction method that the roof eave and rafter boundary conditions are rigid, 
the roof edges should be reinforced with through-fastened angles and also braced at intermediate 
points along the span, for example, as shown in Fig. 5b. The initial sweep imperfection shape 
and magnitudes along the span should be measured and recorded.    It is recommended that three 
tests to failure be performed to ensure that statistical variations can be averaged in the final 
determination of K.  
 
Once the experiments are complete, a computer model is constructed where the top chord is 
simulated as a pinned-pinned column with distributed springs along its length (similar to Fig. 2).  
The measured imperfection shape and magnitudes are imposed on the initial geometry of the 
model (so if three tests were performed then there would be three models), and a parabolically 
varying axial load is applied.   A second order elastic analysis of the top chord including the 
imperfections and measured joist top chord section properties can then be run multiple times 
while varying the spring stiffness K .  The roof stiffness K that minimizes the difference between 
the predicted and measured displacements from the experiment is averaged between the three 
tests and then used in Eq. (2), Eq. (3) or in an eigen-buckling analysis to approximate Pcre.  The 
total bracing force demand can also be approximated by adding up all the spring forces in the 
model. It is essential when employing the joist strength prediction method described herein that 
K be experimentally determined for each combination of roof system variables (e.g., clip height, 
panel profile, insulation thickness).     

     
                                   (a)                                                                                                    (b) 

Figure 5: Vacuum box experiment details: (a) measurement of joist top chord lateral displacement relative to 
roof, and (b) proposed roof bracing details 
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4. Test-to-Predicted Comparison 
 
The prediction method is compared to tested values from a recent experimental program for 
joists with and without bridging (Fehr 2012). The roof stiffness K was solved iteratively with 
elastic second order analysis and then used to predict joist capacity for roof systems without and 
with bridging.  The test results are compared to predictions in Table 1, where the top chord 
critical elastic buckling load, Pcre, was calculated with Eq. (2) for the tests without bridging and 
with eigen-buckling frame analysis in MASTAN2 for the cases with bridging.     
 
The test-to-predicted mean and COV for the results in Table 1 are 1.08 and 0.12 respectively, 
demonstrating the prediction method is viable for the conditions considered. One caveat is that 
the favorable statistics may be biased because K was derived from the same tests used to 
compare with the predictions.  Nonetheless, the approximated roof stiffness K increases on 
average with decreasing clip height and increasing failure pressure, both trends that are 
consistent with engineering intuition and with results from Sherman and Fisher (1996). 
 
Joist capacity for the tests with bridging are also calculated using the simplified method for Pcre 
in Eq. (3).  The capacity Pn in Table 2 is more conservative than using an eigen-buckling 
analysis in MASTAN2 (compare to Tests 1-4 in Table 1) however the strength prediction 
approach is still viable for the cases considered.  The conservatism comes from the assumption 
that the top chord is a column with warping free boundary conditions at the bridging locations. 
 

Table 1:  As-tested and predicted roof stiffness and joist capacity 

 
 

Table 2:  As-tested and predicted 24K4 joist capacity including bridging, Pcre calculated with Eq. (3) 

 
 
 
 
 
 
 

Test Joist 
Type

Clip 
Height 

(in.)

Insulation 
Thickness 

(in.)

Thermal 
Blocks

Bridging Locations, 
x= (ft.)

Failure 
Pressure 

(psf)

Ptest 
(kips) Fy (ksi) K (kips/in./in.) Py 

(kips)
Pcre 

(kips)

Number of 
predicted half-

waves
!c Pn (kips) Ptest/Pn

1 24K4 3-5/16 2 !"# 9.6, 19.2, 28.8, 38.4 24.2 20.0 58.0 0.0015 47.6 27.2 5 1.32 22.9 0.87
2 24K4 3-5/16 2 !"# 9.6, 19.2, 28.8, 38.5 30.4 25.1 58.7 0.0016 48.5 27.9 5 1.32 23.4 1.07
3 24K4 3-5/16 2 !"# 19.2, 28.8 29.7 24.6 58.5 0.0032 47.1 26.7 4 1.33 22.5 1.09
4 24K4 3-5/16 2 !"# 19.2, 28.9 30.8 25.1 57.8 0.0065 45.7 35.2 3 1.14 26.5 0.95
5 24K4 3-5/16 2 !"# N/A 30.0 24.9 57.5 0.0034 45.1 26.5 2 1.30 22.1 1.12
6 24K4 3-5/16 2 !"# N/A 29.2 24.2 58.5 0.0025 46.6 23.1 3 1.42 20.2 1.20
7 24K4 3-5/16 6 !"# N/A 29.0 23.9 58.5 0.0026 46.9 23.2 3 1.42 20.4 1.18
8 24K4 3-5/16 6 !"# N/A 32.4 26.8 59.4 0.0032 48.9 26.0 4 1.37 22.8 1.17
9 24K4 3-5/16 2 $% N/A 27.3 22.7 59.3 0.0063 48.6 35.6 2 1.17 27.5 0.83

10 24K4 3-5/16 2 $% N/A 26.8 22.0 59.2 0.0032 48.0 25.8 3 1.36 22.7 0.97
11 24K4 2-1/4 2 $% N/A 24.4 19.9 58.7 0.0025 47.7 23.0 2 1.44 20.1 0.99
12 24K4 2-1/4 2 $% N/A 38.0 31.0 59.2 0.0058 42.8 31.2 5 1.17 24.1 1.29
13 24K4 3-3/4 2 !"# N/A 23.5 19.5 57.6 0.0027 45.9 24.0 2 1.38 21.0 0.93
14 24K4 3-3/4 2 !"# N/A 23.8 19.8 57.3 0.0019 45.5 20.3 3 1.50 17.8 1.11
15 24K8 3-5/16 2 !"# N/A 58.2 49.0 56.9 0.0083 70.9 62.3 3 1.07 44.0 1.11
16 24K8 3-5/16 2 !"# N/A 52.4 43.5 58.8 0.0040 72.8 44.2 3 1.28 36.5 1.19
17 24K12 3-5/16 2 !"# N/A 76.1 64.1 56.2 0.0062 105.9 69.4 2 1.24 55.9 1.15
18 24K12 3-5/16 2 !"# N/A 79.0 67.0 58.2 0.0073 108.5 74.3 3 1.21 58.9 1.14

Test Joist 
Type

Clip 
Height 

(in.)

Insulation 
Thickness (in.)

Thermal 
Blocks

Bridging Locations, 
x= (ft.)

Failure 
Pressure 

(psf)
Ptest (kips) Fy (ksi) K 

(kips/in./in.) Py (kips) Pcre (kips)
Number of 

predicted half-
waves

!c Pn (kips) Ptest/Pn

1 24K4 3-5/16 2 !"# 9.6, 19.2, 28.8, 38.4 24.2 20.0 58.0 0.0015 47.6 23.2 1 1.43 20.3 0.98
2 24K4 3-5/16 2 !"# 9.6, 19.2, 28.8, 38.5 30.4 25.1 58.7 0.0016 48.5 23.7 1 1.43 20.8 1.21
3 24K4 3-5/16 2 !"# 19.2, 28.8 29.7 24.6 58.5 0.0032 47.1 24.7 1 1.38 21.7 1.13
4 24K4 3-5/16 2 !"# 19.2, 28.9 30.8 25.1 57.8 0.0065 45.7 23.8 1 1.39 20.9 1.20



5. Concluding Remarks 
 
A new strength prediction approach is presented for open web joists partially braced by a 
standing seam roof. The approach employs the AISC (AISI) column curve to calculate top chord 
flexural buckling capacity based on the top chord’s critical elastic buckling load.  Recently 
derived buckling load equations are summarized that account for lateral stiffness provided by the 
roof and the parabolically varying axial load from a uniform vertical pressure along the span. A 
new hybrid experimental-computational protocol is introduced for approximating standing seam 
roof lateral stiffness.   The strength prediction approach was verified with a small set of 
experiments.   Additional experimental verification is needed to fully validate the approach as a 
general prediction method for open web joists braced by a standing seam roof. 
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