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Abstract 
The objective of this study is to provide a prediction method for characterizing the complete 
moment-rotation (M-θ) response of cold-formed steel (CFS) members in bending. The work is 
an ancillary effort related to the National Science Foundation funded Network for Earthquake 
Engineering Simulation (NEES) project: CFS-NEES (www.ce.jhu.edu/bschafer/cfsnees). The 
goal of CFS-NEES is to enable performance-based seismic design for cold-formed steel framed 
buildings. A basic building block of performance-based seismic design is nonlinear structural 
analysis. For cold-formed steel members, which suffer from local and distortional buckling, 
existing codes provide peak strength and approximations for stiffness loss prior to peak strength, 
but no estimation of post-peak M-θ behavior. Complete M-θ response is necessary for nonlinear 
structural analysis of CFS framed buildings. In this research, existing data, obtained by 
experiments and finite element analysis, are processed to examine the complete M-θ response in 
cold-formed steel beams. Using a modification of the simplified model introduced in ASCE 41 
for pushover analysis, the M-θ response is parameterized into a simple multi-linear curve. The 
parameters include the initial stiffness, fully effective limit, reduced pre-peak stiffness, peak 
moment, post-peak plateau, and post-peak rotation at 50% of the peak moment. It is shown 
herein that the parameters of this multi-linear M-θ curve may themselves be readily predicted as 
a function of either the local slenderness or distortional slenderness of the cross-section, as 
appropriate. Accuracy of the proposed M-θ approximation is assessed. The impact of utilizing 
the full M-θ response in a single and multi-span CFS beam is demonstrated. The proposed 
prediction method for M-θ provides a necessary step in the development of nonlinear structural 
analysis of CFS systems.  
 
1. Introduction  
Cold formed steel (CFS) enjoys a wide and growing base of application in civil structures. 
Although design codes provide full guidance for strength prediction and partial guidance for 
stiffness of CFS members, member ductility and post-peak response is not addressed.  
 
Collapse analysis of a CFS building system (i.e. a building comprised of load bearing cold-
formed steel framing), whether for static loads, wind loads, progressive collapse, or seismic 
design is predicated on knowledge of the nonlinear response of the components and connections 
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that make up a building. Simple determination of the force or moment redistribution in a CFS 
building system after one member fails may not be accurately completed with current 
knowledge, requiring current design to ignore system effects and instead concentrate on first 
member failure. Given that CFS cross-sections are typically locally slender they have a more 
complicated and less forgiving moment-rotation response than compact hot-rolled steel beams. 
Therefore, simple elastic-perfectly plastic response as commonly used in steel analysis is not 
typically appropriate for CFS members.   
 
Further, since much of the nonlinear response in CFS building systems is typically related to the 
shear walls, CFS member response has not been pursued in much detail. Regardless, this lack of 
understanding has consequences. For example, in CFS seismic design, buildings are detailed 
with the goal of concentrating all nonlinear response in pre-tested shearwalls. The capacity of 
other members (or connections) to absorb any of the deformation (energy) is ignored – as is the 
potential for redistribution of forces – leading to model predictions divorced from reality and 
structural systems that do not achieve full economy.        
 
For modeling collapse, particularly under dynamic (seismic) loads, no current method provides 
guidance on member ductility of CFS members. Without fundamental information on CFS 
member ductility system modeling for CFS structures to collapse, or under dynamic loads, is 
impossible. This paper attempts to take the initial steps toward providing this needed information 
for CFS beams. Existing experiments and finite element analysis in local and distortional 
buckling are processed as the basis of this study.   
  
2. Existing data 
The experiments of Yu and Schafer (2003, 2006, and 2007) and finite element (FE) analysis 
results of Shifferaw and Schafer (2010), on local and distortional buckling of CFS beams, are 
utilized herein as the available moment-rotation response of CFS beams. The tests were 
performed in 4 point bending with paired CFS beams composed of industry standard lipped channel 
and lipped zee specimens varying from 92 to 305 mm (3.62 to 12 in.) deep and from 1.09 to 2.46 mm 
(0.043 to 0.097 in.) thick. The centerline dimensions of seventeen cross-sections from Yu an 
Schafer (2003, 2006), those having Mtest>0.95My, were selected for the FE analysis study. From 
these centerline dimensions the thickness was varied from 1.37 to 3.42 mm (0.0538 to 0.1345 
in.), resulting in 187 different FE models. The modeling focused on CFS sections that can 
develop inelastic reserve; i.e., sections with a peak bending capacity greater than the moment at 
first yield (and thus presumably the most favorable post-peak M-θ response).  
 

 
 Figure 1: Elevation view of overall test arrangement for four point bending test 

 
The most important parameters in the analysis of the structural behavior of CFS members are the 
failure mode and the cross-section properties. Therefore, the experimental work realized by Yu 
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and Schafer (2003, 2006, and 2007) is composed of two test runs carried out on industry standard 
CFS C and Z-sections. The testing setup (Fig.1) was carefully designed in the first series to allow 
local buckling failure to form while restricting distortional and lateral-torsional buckling. The 
corrugated panel attached to the compression flange was removed in the constant moment region 
in the second tests series so that distortional buckling was then unrestricted. 
 
Shifferaw and Schafer (2010) used the experiments of Yu and Schafer (2003, 2006) to develop 
and validate an ABAQUS nonlinear collapse shell finite element (FE) model focusing on local 
and distortional buckling limit states in typical lipped channel and lipped zee CFS sections. The 
goal of these analyses was not to recreate the tests but rather to provide an idealized model that 
could consistently provide local and distortional buckling failure modes in a computationally 
efficient manner. The selected model includes only the central 1.63 m (64 in.) constant moment 
region from the tests and employs special boundary conditions at the ends and along the flanges.  
 
2.1 Conversion of data 
To facilitate the studies herein, the raw data from the tests and FE models were down-sampled to 
10 pre-peak points, each one in increments of 10% of the displacement at peak strength.  

 
Figure. 2:  digitized points (1-10) shown 

for test 8C068-4E5W 

 
Figure. 3:  digitized points (1-10) shown 

for FE model 8C0685lt11 
 
Based on the force levels corresponding to 10% pre-peak displacement increments, post-peak 
data was determined. Due to the low density of available data, methods; such as fitting a 3rd 
order polynomial immediately after the peak strength was completed for the experimental results 
(Fig. 2) while for the finite element analysis results the full curve (Fig. 3) was utilized.  
 
2.2 Examination of pre-peak stiffness by available data 
The secant stiffness for all available experimental data is calculated and reported in a previous 
study (Ayhan and Schafer 2011). Secant stiffness values were obtained for the Effective Width 
Method (EWM) (AISI-S100-07) and Direct Strength Method (DSM) (AISI-S100-07 Appendix 
1) and compared against the measured values in Fig. 4. In this figure the horizontal axis is the 
cross-section slenderness (either local or distortional). As the moment increases the cross-section 
slenderness increases and the predictive methods proceed from fully effective to partially 
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effective and the stiffness reduces. Neither the EWM nor the DSM method for reducing the 
stiffness (Ie) follows the same “shape” as the test data as the section stiffness reduces. 
 

 
(a) local buckling 

 
(b) distortional buckling 

Figure 4: Comparison of DSM and EWM Ieff results with (a) local and (b) distortional tests 
 
The EWM provides cross-section specific predictions of the reduced stiffness. The reductions 
initiate earlier and are more severe than the observed stiffness reductions. The DSM method 
provides a singular prediction as a function of cross-section slenderness – so all sections reduce 
stiffness in the same manner. The predicted DSM reductions follow the mean of observed 
stiffness, but much scatter remains. The EWM reductions generally follow the same shape as the 
DSM reductions. The DSM reductions provide an upperbound to the EWM reductions. 
 

Table 1: Summary of Test-to-Predicted Ratios for Ieff by EWM and DSM 
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    TESTS ABAQUS MODELS 

L
O

C
A

L
 

  n 24 24 21 9 7 76 76 76 76 76 
DSM µ 0.97 1.01 0.99 0.99 1.00 0.62 0.68 0.89 0.96 0.98 

 
CV 0.15 0.13 0.03 0.01 0.00 0.36 0.35 0.23 0.13 0.07 

 
min 0.70 0.75 0.93 0.98 1.00 0.06 0.07 0.12 0.28 0.54 

 
max 1.19 1.23 1.06 1.00 1.00 1.12 1.16 1.02 1.00 1.00 

EWM µ 1.13 1.17 1.07 0.99 1.00 0.61 0.67 0.89 0.96 0.98 

 
CV 0.18 0.15 0.07 0.01 0.00 0.34 0.33 0.23 0.13 0.07 

 
min 0.77 0.83 0.98 0.98 1.00 0.06 0.07 0.12 0.28 0.54 

  max 1.54 1.55 1.27 1.00 1.00 0.95 1.01 1.00 1.00 1.00 

D
IS

T
O

R
T

IO
N

A
L

 

  n 22 22 20 9 7 78 78 78 78 78 
DSM µ 0.97 1.00 0.98 0.97 1.00 0.68 0.74 0.93 0.98 0.98 

 
CV 0.21 0.19 0.11 0.04 0.00 0.34 0.32 0.14 0.05 0.07 

 
min 0.43 0.46 0.62 0.88 1.00 0.13 0.14 0.25 0.60 0.54 

 
max 1.43 1.42 1.18 1.01 1.00 1.13 1.18 1.01 1.01 1.00 

EWM µ 1.03 1.06 1.02 0.98 1.00 0.64 0.70 0.92 0.96 0.98 

 
CV 0.20 0.19 0.11 0.04 0.00 0.29 0.28 0.14 0.13 0.07 

  min 0.46 0.50 0.68 0.89 1.00 0.13 0.14 0.25 0.28 0.54 
  max 1.48 1.46 1.20 1.02 1.01 0.92 0.98 1.01 1.00 1.00 

Note: n=number of tests used, µ=average, CV=coefficient of variation 
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A statistical summary comparing EWM and DSM to the measured data is provided in Table 1 for 
both test and FE models. Many of the models fail at strengths greater than the moment at first 
yield and thus experience stiffness reduction due to yielding, not local or distortional buckling. 
As a result, only those tests or FE models with capacity less than the moment at first yield are 
included in the statistical summary of Table 1. 
 
Focusing on the accuracy of the stiffness prediction at peak displacement (δpeak), the statistical 
summary of Table 1 shows that neither the EWM nor DSM methods provide a highly accurate 
stiffness prediction method. In comparison with the tests of Yu and Schafer (2003, 2006) the 
DSM approach is modestly more accurate, and arguably simpler than the EWM. Interestingly, 
although the EWM provides a cross-section specific stiffness prediction its coefficient of 
variation is still higher than DSM; thus the scatter is not improved by this additional effort. 
However, Table 1 shows both methods to be lacking when compared to the FE models; further 
work is clearly needed. 
 
3. ASCE 41 M-θ  definitions  
The latest in a series of documents developed to assist engineers with the seismic assessment and 
rehabilitation of existing buildings (FEMA 273, 1997; FEMA 356, 2000) is ASCE/SEI 41 
(2007). These documents provide a comparison of generalized deformation (Δ) and force 
demands (Q) for different seismic hazards against deformation and force capacities for various 
performance levels to provide a performance-based seismic engineering framework. 

	  
Q Q Q 
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Δ 
g g g e d d,e 

Type 1 curve Type 2 curve Type 3 curve 
Δ Δ 

 
Figure 5: Component force-deformations curves of ASCE 41 (2007) 

 
The ductile performance of steel structures is highly dependent on the ability of its members to 
dissipate energy by means of hysteretic behavior. The amount of dissipated energy is usually 
correlated with area under the force-deformation/moment-rotation curve. ASCE/SEI 41 (2007) 
provides three basic types of component force-deformation curves (Fig. 5, where Q=M and Δ=θ, 
all parameters are define in ASCE 41).  The acceptance criteria for each type are defined 
depending on the performance level.  
 
ASCE 41 does not include explicit predictions for CFS members; therefore, here ASCE 41 
backbone ‘curve fitting’ exercises are realized for CFS members. An ASCE 41 Type 1 curves 
assume an elastic range followed by a plastic range including strain hardening, then a post-peak 
strength degraded range. This is modified for CFS members, which instead have a pre-peak fully 
effective (elastic) range, pre-peak partially effective range, a peak which is typically less than the 
yield capacity of the beam, and then a post-peak strength-degraded range.  
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4. Characterization of CFS M-θ  with ASCE 41-like models 
The area under the moment-rotation curve, which defines the energy dissipated, is one 
measurement of ductile behavior. Therefore, equating the area under the original curve to the 
modelled curve is the first aim for the the characterization of the multi-linear moment-rotation 
models developed here. This was completed in two pieces, pre-peak energy and post-peak 
energy; so that over/undershooting pre-peak energy is not over/under compensated for in the 
post-peak range. Besides, the shape of the moment-rotation curve has an important effect on  
characterization of the ASCE 41-like M-θ models. As Type 1 (Fig. 5) curve includes both pre-
peak stiffness loss and post-peak moment degradation features, it was selected as best able to 
represent the behavior of CFS beams. Accordingly, Model 1, Model 2, and Model 1a (Fig. 6-8) 
are generated to examine the available data.  The test data of Yu and Schafer (2003, 2006) and 
the FE results of Shifferaw and Schafer (2010) are down-sampled and converted from load-
displacement to moment-rotation and then ASCE41-like models are “fit” to the data.  
 
The optimization problem, to define the parameters which are needed to characterize CFS 
moment-rotation response via the Type 1 curve, is solved in MATLAB. The error considered 
was calculated as the sum of squares of the difference of pre-peak area under the curves and 
difference of post-peak area under the curves. The key point in selecting from the three moment-
rotation models obtained, are the curve shape and its ability to properly capture the energy. 
 
In the optimization the model parameters are defined as matrix p as follows (see Fig. 9 – 11) 
 
 p = [M1 k1 M2 k2 Δθ ΔM θ4] (1) 
  
where M1 is the elastic moment, k1 is the elastic stiffness, M2 is the peak moment, k2 is the 
second stiffness between elastic and the peak point, Δθ is the rotation step after the peak point 
and ΔM is the moment drop after the peak point, and θ4 is the maximum rotation where the 
modeled M-θ curve terminates. The rotations are defined by the selected model parameters as 
follows: 
 

 
1

1
1 k
M

=θ  (2) 

 

 
2

12
12 k

MM −
+=θθ  (3) 

 
 θθθ Δ+= 23  (4) 
 
The parameters are constrained in the error minimization as θ1>0, θ1< θ2< θ3< θ4 and M1>0, 
M2>M1, M3<M2, M3>0. 
 
The ‘fit’ is sensitive to initial conditions. Ultimately, the initial conditions constrained the model 
such that the initial stiffness, peak moment, and maximum rotation match the available data 
exactly. The initial conditions are as follows: 
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 )0.9max(M=M t1i  (5) 
 
 )50%Mat  (evaluated k=k prepeak-tt1i  (6) 
 
 M2i=max(Mt) (7) 
 
 )/kM- )/(M-(M=k 1i1i2i1i2i2i θ  (8) 
 
 0) ))max(M(at  -)0.8M(at ( = ttpostpeak-tti ≥Δ θθθ  (9) 
 
 )0.5max(Mor  )min(M-)max(M=M tpostpeak-ttiΔ  (10) 
 
 )0.5M(at or  )max(= postpeak-ttt4i θθθ  (11) 
 
where the subscript “t” denotes ‘test’ and “i” an ‘initial’ guess in the optimization. 
 
4.1 Model 1: post-peak plateau and strength drop 
 

 
Figure 6: Model 1 backbone curve 

 
Table 2: Variables defining M-θ curve of Model 1 

point no rotation moment stiffness parameters selected 
1 θ1 M1 k1 M1, k1 
2 θ2 M2 k2 M2, k2 
3 θ3, Δθ M2 0 Δθ 
4 θ3, Δθ M3, ΔM ∞ Δθ, ΔM 
5 θ4 M3, ΔM 0 θ4, ΔM 
6 θ4 0 ∞ θ4 

 
Model 1 includes pre-peak stiffness loss and a post-peak moment degradation which is described 
as a combination of post-peak plateau and strength drop (Fig. 6). This shape is defined with 6 
points, see Table 2. Parameters which are necessary to characterize this model were selected and 
used to solve the optimization problem. 
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4.2 Model 2: post-peak plateau and stiffness loss 
The shape of Model 2 is differentiated from Model 1 by the post-peak moment degradation. The 
post-peak region employs a post-peak plateau and stiffness loss (Fig. 7). The aim is to reflect real 
behavior of CFS beams. This curve is composed of five critical points, which are defined in 
Table 3.  

 
Figure 7: Model 2 backbone curve 

 
Table 3: Variables defining M-θ curve of Model 2 

point no rotation moment stiffness parameters selected 
1 θ1 M1 k1 M1, k1 
2 θ2 M2 k2 M2, k2 
3 θ3, Δθ M2 0 Δθ 
4 θ4 M3, ΔM k3 θ4, ΔM 
5 θ4 0 ∞ θ4 

 
4.3 Model 1a: post-peak bilinear stiffness loss 
The post-peak strength loss is composed of a bilinear stiffness loss curve in Model 1a (Fig. 8). 
The critical points to define this shape are given Table 4. An additional parameter (M4) is needed 
to characterize Model 1a. The vector of controlling parameters is revised as following: 
 
 p = [M1 k1 M2 k2 Δθ ΔM θ4 M4] (12) 
 

 
Figure 8: Model 1a backbone curve 
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Accordingly, a constraint of M3>M4>0 is added and initial conditions are modified with the 
following: 
 
 )/2)-( = 2i4ii θθθΔ  (13) 
 
 max(Mt))/2- )(at ( =M 4iti θMΔ  (14) 
 

Table 4: Variables defining M-θ curve of Model 1a 
point no rotation moment stiffness parameters selected 

1 θ1 M1 k1 M1, k1 
2 θ2 M2 k2 M2, k2 
3 θ3, Δθ M3, ΔM k3 Δθ, ΔM 
4 θ4 M4 k4 θ4, M4 
5 θ4 0 ∞ θ4 

 
4.2.4 Characterization of results and recommendation 
The multi-linear ASCE 41-like models (Model 1, Model2, Model 1a) were fit separately to the 
down-sampled data generated from the tests of Yu and Schafer (2003 and 2006) and the FE 
models of Shifferaw and Schafer (2010). Several “fits” were pursued, four are detailed here. Two 
of the “fits” use all available data and the others limit the data to only Mpostpeak >50%Mt-postpeak. 
For both, “fits” are realized by either minimizing sum squared error on all 7 model parameters 
termed the “full fit”, or by fitting only k2, Δθ, and ΔM termed the  “const. fit”. The constrained 
fit (abbreviated “const. fit”) constrains the initial stiffness (k1) and the peak (θ2, M2) as well as 
the final moment (M4) to be the same as the test, also only in Model 1a final rotation (θ4) is also 
fixed to be the same as the test in the “const. fit”.   
 
Typical fitted M-θ of Model 1, Model 2 and Model 1a for local and distortional buckling test 
data of Yu and Schafer (2003, 2006) are realized and results for test 8C068-4E5W (Yu and 
Schafer 2003), termed L11 here is provided in Fig. 9. Although all models equate pre- and post- 
peak energy accurately, Model 1a and Model 2 do not fit the observed post-peak M-θ response 
for either the local or distortional buckling test data of Yu and Schafer. Model 1 provides the best 
efficiency for equating both the M-θ shape and the energy dissipated to produce general design 
expressions.  
 
Even if Model 1a seems to provide more reliable characterization of M-θ behavior for the four 
point bending tests and simulations, there is no suitable way to predict M4, the post-peak moment 
capacity of Model 1a.  Model 1 gives more applicable results as error residuals are reasonable 
(generally less than 1x10-10) and M-θ backbone follows a similar path to the available data. 
Therefore adaptation of Model 1 is recommended. 
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Figure 9: Typical fits for local buckling test result of 8C068-4E5W 

 
5. Design parameterization and prediction for CFS-NEES: Model1 
A systematic design method for predicting the parameters of the M-θ backbone curve, applicable 
to all CFS beams failing in either local or distortional buckling is needed. The Model 1 (Fig. 6) 
“const. fit” with the data limited to Mpostpeak >50%Mt-postpeak is employed for the parameterization 
conducted here. The objective is to create functional relationships that predict the Model 1 
parameters, as predicted in the preceding optimization. 
 
5.1 Local buckling 
Due to the large range of observed M-θ behavior it is not possible to provide fixed values for the 
Model 1 parameters as is typical, for example, in ASCE 41. However, existing design does 
provide insights on how to predict many of the Model 1 parameters. For example, the peak 
moment capacity (M2), is known to be well predicted by the Direct Strength Method (DSM) of 
AISI-S100. DSM uses local cross-section slenderness (λ) as the key variable for predicting 
strength, where:  
 

 



cr

y

M
M

=λ  (15) 
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My is the elastic yield moment, and Mcr is the elastic critical local buckling moment. 
Specifically, if the peak moment M2 is set to Mn in the existing DSM provisions, then  
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Figure 10: Peak moment strength as a function of local slenderness 

 
Note, the provisions for λ < 0.776 were adopted in AISI-S100 in February 2011 based on the 
work of Shifferaw and Schafer (2010). Performance of these expressions against the available 
data is provided in Fig. 10. Schafer (2008) provides additional discussion and validation of the 
DSM approach. 
 
A key parameter for CFS beams in Model 1 is the rotation at the peak moment (M2). It is known 
that locally slender cross-sections have a reduced stiffness so the rotation at peak (θ2) can be 
significantly larger than the elastic rotation (i.e. M2/k1 where k1 is the initial elastic stiffness, also 
known as ke). Fig. 11 provides θ2 normalized by the yield rotation θy (θy=My/k1 or My/ke) as a 
function of local slenderness. Somewhat remarkably, the available data exhibits a clear trend 
with local slenderness and a simple expression is proposed as shown in the figure: 
 

 
λθ

θ 12 =
y

 (16) 

 
This simple expression provides a means to determine the reduced stiffness that occurs due to 
local buckling, unlike existing stiffness predictions (Section 3) this stiffness method is decoupled 
from the strength prediction. 
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Figure 11: Peak rotation (θpeak=θ2) as a function of local 

slenderness 
Figure 12: “Fully effective” moment (M1) as a function 

of local slenderness  
 
With the peak point anchored the development of the design method may now turn to other 
Model 1 parameters. Specifically, the pre-peak behavior must be completed, by determining 
either M1 or θ1 – it is assumed k1 (the elastic stiffness) is known. It is typical in current CFS 
beam design to determine the moment at which a section becomes “partially effective”, for 
Model 1, this moment is M1. Therefore, M1 is explored directly here, as shown in Fig. 12. 
 
The scatter in prediction of M1 (Fig. 12) is greater than for M2 (Fig. 11). Nonetheless, the trend 
with respect to local slenderness remains. A simple expression is fit to the data: 
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The proposed relation between M1 and local slenderness is a departure from current practice 
because (a) it disconnects the stiffness prediction from the strength prediction, and (b) it implies 
that the local slenderness (λ) must be as small as 0.650 for the section to be fully effective. 
Current design assumes that when the strength reaches My (i.e., λ = 0.776) the section is fully 
effective. In the proposed expressions a CFS beam must exhibit moderate inelastic reserve 
capacity if it is to be fully effective (elastic) up to its peak moment. 
 
The post-peak performance has greater scatter in the observed data than the peak and pre-peak 
behavior. Fig. 13 provides θ4 for the available data versus local slenderness as proposed below:  
 

 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

>

=

1 if15.1

1 if15.1

4
14







λ
λ

λ
λ

θ
θ

λl
y

 (18) 



 13 

  
a) for limeted number b) for all data 

Figure 13: Maximum rotation as a function of local slenderness  
 
Finally, this leaves the post-peak parameters Δθ and ΔM in need of prediction expressions. In 
general Δθ is intended to capture post-peak yielding; theoretically this is only significant for 
sections with inelastic reserve. Fig. 14 provides the post-peak yielding Δθ as a function of local 
slenderness for the available data.  

  
Figure 14: Post-peak yielding (Δθ) as a function of local 

slenderness 
Figure 15: Post-peak moment drop (ΔΜ) as a function of 

local slenderness (note Mpeak=M2) 
 
The scatter is large in Fig. 14 and many sections that have strength below My exhibit some post-
peak yielding. However, for simplicity it is proposed that only sections with strength greater than 
My be predicted to have nonzero Δθ. The following expressions are proposed for use and shown 
in Fig. 14: 
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Table 5: Design expressions for local buckling 
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Finally, the post-peak moment drop (ΔM) is explored. Note (Δθ,ΔM) + (θ2,M2) = (θ3,M3), so 
determination of ΔM is the final necessary parameter for Model 1. The post-peak moment drop is 
provided as a function of local slenderness for the available data in Fig. 15. For some of the data 
little or no moment drop is observed, this occurs in models where sufficient post-peak rotation 
was not explored (either the test or the FE model was stopped before reaching high post-peak 
rotations). Thus, the data with post-peak moment drop is the most important. In the absence of a 
definitive theory it is presumed that a 50% moment drop exists for all sections with some local 
buckling strength reduction (λ>0.776) otherwise the moment drop increases from zero as the 
local slenderness increases via: 
 

 5.01
776.0

/11
1.1

2

≤⎟
⎠

⎞
⎜
⎝

⎛
+−=

Δ λ
M
M  (20) 

 
Taken together the prediction method for developing the CFS-NEES Model 1 backbone curve in 
local buckling is provided in Table 5. 
 
5.2 Distortional buckling 
Distortional buckling is evaluated in the same manner as local buckling and similar design 
expressions are arrived at. Fig. 16 provides the same information as Figures 10-15 for local 
buckling. Table 6 provides a summary of the proposed design expressions and Table 7 
summarizes the quantitative performance of both the local and distortional buckling method. 
 
Fig. 16(a) indicates that DSM maybe employed to predict the peak strength. Fig. 16(b) shows 
again that the rotation at the peak moment may be readily predicted as a function of cross-section 
(distortional in this case) slenderness. The rotation at peak moment (θ2) in the distortional 
buckling data (Fig. 16b) is slightly greater than the local buckling data (Fig. 11), so the proposed 
expression (see Table 6) reflects this. The notion that distortional buckling modes experience 
greater stiffness reductions than local buckling failures is not commonly recognized in the 
literature. The fully effective moment, M1, Fig. 20(c), exhibits significant scatter and similar to 
the local buckling case (Fig. 12) a convenient expression that generally provides an M1 slightly 
below M2 is selected as shown in Fig. 20(c) and reported in Table 6. 
 
The post-peak Model 1 parameters are captured in Figure 16(d-f) and are arrived at in a similar 
fashion to the local buckling results. The maximum rotation (θ4, Fig. 16(d)) is set equal to 1.5 
times the rotation at peak moment (θ2) when λd>1, exactly the same as in the local buckling case. 
The inelastic plateau (Δθ, Fig. 16(e)) is only allowed for members predicted to have strength 
greater than My, and otherwise follows that available data as closely as possible. The moment 
drop expression (ΔM, Fig. 20(f)) follows the same basic expression as local buckling and 
assumes a 50% drop in moment for sections which experience any reduction in strength due to 
distortional buckling (i.e., Mnd<My, λd>0.673). 
 
Overall the quantitative performance of the method is summarized in Table 6. In general the 
approach is a more conservative predictor than for local buckling, but provides an appropriate 
method for design. 
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(a) peak moment (Mpeak or M2) (b) rotation at M2 (θpeak or θ2) 

 

 

(c) fully effective moment (M1) (d) maximum rotation (θ4) 

  
(e) inelastic plateau (Δθ)  (f) post-peak moment drop (ΔM)  

Figure 16: CFS-NEES Model 1a parmaters for available data as a function of distortional slenderness, proposed 
design expressions indicated by solid lines 
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Table 6: Design expressions for distortional buckling 
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The accuracy of prediction method for M-θ is qualitatively provided in Fig. 10-15 for local 
buckling and in Fig. 16 for distortional buckling, a quantitative assessment of the accuracy of the 
prediction method is provided in Table 7. Consistent with the figures variation (standard 
deviation) can sometimes be significant; however, taken in total the method performs 
surprisingly well. 
 
Table 7: Test-to-predicted statistics for proposed design method for generating CFSNEES Model 1 backbone curves 

  
  ratio of test (or FE) - to - predicted for  

  
  Energy fully eff. limit eff. k peak drop 

 
    Pre-peak Post-peak M1 ksec θ2 M2 ΔM 

for 
ΔM>0.20M2 

lo
ca

l  

tests mean 1.00 1.03 1.36 1.00 1.06 1.03 0.84 0.97 
st. dev. 0.32 0.61 0.13 0.15 0.20 0.08 0.32 0.09 

FE 
models 

mean 1.18 1.09 1.21 1.01 1.06 1.046 0.400 1.07 
st. dev. 0.71 1.06 0.14 0.15 0.20 0.024 0.467 0.10 

all 
data 

mean 1.16 1.08 1.23 1.01 1.06 1.04 0.45 1.06 
st. dev. 0.66 1.01 0.14 0.15 0.20 0.03 0.45 0.10 

di
st

or
tio

na
l  

tests mean 0.89 0.84 1.26 1.01 0.98 0.98 0.75 0.86 
st. dev. 0.26 0.41 0.00 0.16 0.16 0.13 0.31 0.21 

FE 
models 

mean 1.10 1.56 1.21 1.08 1.07 1.10 0.73 0.91 
st. dev. 0.55 0.81 0.07 0.19 0.40 0.04 0.37 0.27 

all 
data 

mean 1.08 1.48 1.21 1.08 1.06 1.08 0.73 0.90 
st. dev. 0.52 0.77 0.07 0.19 0.39 0.06 0.37 0.26 

 
 

Table 8: Comparison of design expressions results with EWM and DSM for pre-peak stiffness 

  
ksecant-test/ksecant-predicted at 

  
dpeak 0.9δpeak 0.8δpeak 0.7δpeak 0.6δpeak 0.5δpeak 0.4δpeak 0.3δpeak 0.2δpeak 0.1δpeak 

m
ea

n 

LOCAL BUCKLING FEA models 
       DSM 0.62 0.68 0.74 0.79 0.84 0.88 0.92 0.95 0.97 1.00 

EWM 0.61 0.67 0.73 0.79 0.84 0.89 0.92 0.95 0.97 1.00 
D.Exp. 0.95 0.97 0.97 0.95 0.91 0.91 0.92 0.94 0.94 0.93 

LOCAL BUCKLING TESTS 
     DSM 0.97 1.01 1.02 1.02 1.01 0.99 0.98 0.98 0.99 1.00 

EWM 1.13 1.17 1.16 1.15 1.11 1.07 1.03 1.00 0.99 1.00 

D.Exp. 0.98 0.98 0.97 0.95 0.93 0.94 0.95 0.98 1.01 1.08 
DIST + BUCKLING FEA models 

       DSM 0.71 0.77 0.83 0.88 0.91 0.94 0.96 0.98 0.99 1.00 
EWM 0.65 0.71 0.77 0.83 0.89 0.93 0.96 0.97 0.99 1.00 
D.Exp. 1.02 1.05 1.05 1.03 0.98 0.91 0.92 0.96 0.96 0.97 

DIST - BUCKLING TESTS 
       DSM 0.97 1.00 1.01 1.01 0.99 0.98 0.97 0.96 0.97 1.00 

EWM 1.03 1.06 1.07 1.07 1.04 1.02 0.99 0.99 0.98 1.00 

D.Exp. 0.99 1.00 1.03 1.02 0.99 0.95 0.97 0.99 1.06 1.16 
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Table 8 provides a comparison of pre-peak stiffness between the traditional methods of Section 4 
(EWM and DSM) and the newly proposed characterization, abbreviated as “D.Exp” in the table. 
The new expressions are simple in form and provide much improved accuracy over the available 
approaches. These new expressions are recommended for design. 
 
6. Future Work 
Significant future work remains, most notably (a) performing additional cyclic testing to verify 
and expand the proposed design method based on monotonic testing, (b) implementing the 
proposed expressions in an analysis framework such that ASCE 41 style pushover analysis can 
be explored in real structures, and (c) developing companion expressions that address moment-
curvature instead of moment-rotation to provide a more fundamental set of expressions for 
implementation in analysis. 
 
7. Conclusions 
Knowledge of the moment-rotation (M-θ) response of cold-formed steel beams is fundamental to 
the success of cold-formed steel structures. Existing monotonic test and finite element data 
provide a characterization of the backbone M-θ response of cold-formed steel beams failing in 
local and distortional buckling limit states. Simplified multi-linear models in the spirit of ASCE 
41 formulations are fit to existing data by insuring pre-peak and post-peak energy balance is 
maintained between the model and the original data. The derived model parameters, e.g. the 
moment at which pre-peak nonlinear stiffness engages (M1) or the available rotation at a pos-
peak moment level 50% of the peak value (θ4) are then examined to determine if a simple 
method may be used in their prediction. It is found that local and distortional cross-sectional 
slenderness are adequate explanatory variables for parameterizing the simplified M-θ model 
parameters – and simple design expressions are developed for predicting unique M-θ curves for 
all cold-formed steel cross-sections in local or distortional buckling. The developed expressions 
are shown to adequately predict the available data and provide an improvement for pre-peak 
stiffness prediction when compared to existing methods. In addition, for the first time, post-peak 
predictions of ductility are available for cold-formed steel beams. Much work remains, but the 
research demonstrates the viability of a significant expansion of the Direct Strength Method 
philosophies to the prediction of post-peak member behavior and provides a tool for further 
exploring the nonlinear response of cold-formed steel systems. 
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