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Abstract 

This work presents and discusses the results of a GBT-based numerical investigation concerning the 

local, distortional and global buckling behavior of lipped channel and zed-section cold-formed steel 

purlins restrained by steel sheeting and subjected to an uplift loading. Strengthened (lapped) joints, 

commonly employed at internal supports to preclude the occurrence of local/distortional buckling 

phenomena, are also investigated and a strategy to determine “optimal strengthening lengths” is devised. 

The sheeting restraint is modeled by means of elastic translational and rotational springs, located at the 

purlin upper flange, and the joint strengthening is modeled by doubling the cross-section wall thickness. 

For validation, the GBT-based results are compared with ANSYS shell finite element model values. 
 
 
1. Introduction 

The last two decades have witnessed a significant reduction in the use of heavy sheeting in industrial 

buildings (e.g., fiber cement roof sheets), as they have been increasingly replaced by lighter sheeting, such 

as cold-formed steel sheeting, which is more cost-efficient  and easier/quicker to construct/erect (e.g., 

Davies 1991). This is because the hook bolts, previously used to connect the roof sheeting to the cold-

formed steel purlins, have been gradually replaced by self-drilling screws, which lead to a higher 

structural efficiency of the purlin-sheeting assembly (e.g., Freitas 2004). Thus, it is economically 

advantageous (and makes full structural sense) to base the purlin design on the joint behavior of the whole 

purlin-sheeting assembly, instead of adopting the traditional approach of viewing the purlins as 

independent/isolated members. For instance, in the case of purlins subjected to uplift loading, the sheeting 

restraint changes the buckling mode nature from lateral-torsional to lateral-distortional, as shown in Fig. 1. 
 
The structural efficiency of open-section thin-walled steel purlins connected to roof sheeting and acted 

by wind uplift can only be adequately assessed after acquiring in-depth information on the mechanics 

of its buckling behavior, a task involving (i) the identification of the relevant buckling modes and (ii) the 

calculation of the associated critical buckling (bifurcation) stresses. However, since these purlins 

(i) are partially restrained by the roof sheeting, both laterally and torsionally, (ii) display very slender 

cross-sections, making them highly susceptible to local, distortional and global instability phenomena, 
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Figure 1: Lateral-distortional buckling mode configuration of lipped channel and zed-section purlins restrained by 

roof sheeting and subjected to an uplift uniformly distributed load. 
 
and (iii) often exhibit lapped (strengthened) joints over the internal supports, the assessment of their 

structural response constitutes a very complex task, requiring the performance of either (i) costly and 

carefully planned experimental test programs or (ii) complex and time-consuming (including data input 

and result interpretation) shell finite element analyses. A very promising alternative is the use of one-

dimensional models (beam finite elements) based on Generalized Beam Theory (GBT), a beam theory 

incorporating genuine folded-plate concepts (e.g., Silvestre & Camotim 2002a,b or Camotim et al. 2004). 

In particular, GBT-based beam finite elements can accurately assess the local, distortional and global 

buckling behavior of thin-walled single and multi-span beams, handling both arbitrary loadings and 

localized flange displacement and/or rotation restraints in cross-sections located along the beam length – 

such restraints are modeled as elastic translational and/or rotational springs (Camotim et al. 2008, 2010). 
 
The aim of this work is to present and discuss the results of a numerical (GBT-based) investigation 

concerning the local, distortional and global buckling behavior of lipped channel and zed-section cold-

formed steel purlins (i) restrained by steel sheeting and (ii) subjected to uplift distributed loads. Particular 

attention is devoted to assessing (i) how the restraints provided by the sheeting influence the buckling 

behavior of single and multi-span purlins, and also (ii) what is the minimum joint strengthening (lapped) 

length required to preclude the occurrence of local buckling effects near multi-span beam intermediate 

supports, thus making it possible to suppress the purlin vulnerability in this zone with the least added 

material. The sheeting restraint is simulated by means of elastic translational and rotational supports 

(springs) located at the purlin upper flange mid-width. The joint strengthening is modeled by doubling the 

purlin wall thickness along the whole lapped length, while assuming full continuity. The numerical 

results presented and discussed are obtained through (i) GBT-based beam finite element analyses and, for 

validation/comparison purposes, also by means of (ii) ANSYS (SAS 2009) shell finite element analyses. 
 
 
2. GBT-Based Beam Finite Element Formulation for Purlin/Sheeting Systems 

The performance of a GBT-based structural analysis involves two main tasks, namely (i) a cross-section 

analysis, aimed at identifying the deformation modes and evaluating the associated modal mechanical 

properties, and (ii) a member analysis (first order, buckling, vibration, etc.), involving the solution of the 

appropriate differential equilibrium equations and the interpretation of the (modal) results obtained. In 

order to incorporate elastic restraints in a GBT buckling analysis, two main approaches can be followed. 

In the first one, which is only valid for members uniformly restrained along their axes, the restraints are 

incorporated into the cross-section analysis, i.e., are taken into account when calculating the cross-section 

deformation modes (Schardt 1989, Davies et al. 1994). In the second approach, which is more general 

and allows handling members continuously and discretely restrained along their axes, the elastic restraints 

are included in the member analysis as constraint equations, i.e., the deformation modes are calculated 

without restraints (Camotim et al. 2008). Moreover, retaining the “classical” cross-section deformation 



modes (axial extension, bending, torsion, distortion, etc.) contributes to a clearer structural interpretation 

of the results − this fact played a key role in opting for the second approach in this work. 
 
Consider the prismatic thin-walled member with arbitrary open cross-section depicted in Fig. 2, where x, 

s and z are local coordinates along the member axis, cross-section mid-line and wall thickness, thus 

leading to member mid-surface displacement components u(x,s), v(x,s) and w(x,s) expressed by 
 

 )()(),( , xsusxu xkk φ=  )()(),( xsvsxv kk φ=  )()(),( xswsxw kk φ=  ,   (1) 

 
where (i) (.),x≡ d(.)/dx, (ii) the summation convention applies to subscript k, (iii) functions uk(s), vk(s), 

wk(s) are displacement components of deformation mode k, obtained from the GBT cross-section 

analysis, and (iv) φk(x) are mode amplitude functions defined along the member length. 
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Figure 2: Prismatic thin-walled member with an arbitrary open cross-section and local coordinate axes. 

 
2.1 Total potential energy 

The member equilibrium equations including the elastic constraints (springs) are obtained from the 

variational condition 
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where (i) Ω is the structural system volume (n plates), (ii) L is the member length, (iii) Uδ  is the first 

variation of the strain energy, given by the tensor product between the internal stresses σij (σxs≡τxs) and the 

strain variations δεij (δεxs≡ δγxs) associated with the buckling action/mode, (iv) δUs is the first variation of 

the potential energy of continuous and discrete springs with stiffness κ and K (distributed along the 

longitudinal axis R and located at points P, respectively), (v) ∆ is the spring generalized displacement, 

and (vi) x−σΠδ  and τΠδ  are the works done by the pre-buckling longitudinal normal ( 0
xxσ ) and shear 

( 0
xsτ ) stresses, deemed constant with their final values and statically equivalent to the (longitudinally 

varying) internal forces, moments and bimoments, over the strain variations δεij.  
 
In this work, the modeling of the restraint provided by the sheeting to the purlin comprises continuous or 

discrete translational and rotational springs with stiffness ky and kθ (continuous) or Ky and Kθ (discrete), 

which provide restraint against (i) the horizontal displacements (along Y) and (ii) mid-width rotations 

(about X) of the purlin upper flange − Fig. 3 illustrates the case of discrete springs, where a is the 

longitudinal spacing between consecutive restraints (i.e., between the points where the sheeting/purlin 

joints are deemed materialized). 



 
Figure 3: Discrete elastic springs spaced by a. 

 
Then, the variational form of the equilibrium conditions reads 
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where (i) Cik, 

1
ikD , 2

ikD  and Bik are second-order tensors providing the member linear stiffness, (ii) fR.ik and 

FP.ik are the generalized forces associated with the continuous and discrete translational and rotational 

springs, (iii) λ is the load parameter and (iv) x
jikX −σ  and τ

jikX  are the geometric stiffness tensors stemming 

from the pre-buckling longitudinal normal stresses 0
xxσ  ( 0

1W , 0
2W , 0

3W  and 0
4W  concern the compressive 

axial force, major/minor axis bending moment and bi-moment) and shear stresses 0
xsτ  (minor/major axis 

shear and bi-shear associated with the major/minor axis bending moment and bi-moment gradients). 

The components of these tensors and vectors are given by (E, υ and G are the material Young’s modulus, 

Poisson’s ratio and shear modulus) 
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where (i) Hj(s) is the first moment of (i1) a cross-section zone, with respect to the major/minor axis 

(j=2 or 3), or of (i2) a sectorial area zone, with respect to the shear centre (j=4) and (ii) vj(xP, sP) and 

wj,s(xP, sP) are the transverse displacement and flexural rotation at P due to deformation mode j. 
 
2.2 Finite element implementation 

In order to be able to carry out the purlin buckling (bifurcation) analysis, a GBT-based finite element 

was implemented. This was achieved by approximating the modal amplitude functions φk(x) using 

standard Hermite cubic polynomials, 
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Introducing (7)-(8) into (3) and carrying out the integrations over Le, one obtains the finite element linear 

stiffness matrix [K
e
] and geometric stiffness matrix [G

e
], which are given by  
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and the summation convention applies to subscript l (l=0,1,2,3), associated with the order of the Wlj term 

− the l
prT  and l

prS  components incorporate the longitudinal stress gradient and shear stress effects. Finally, 

one last word to mention that, as it would be logical to expect, the elementary geometric stiffness matrix 

[G
e
] is symmetric, even if its evaluation involves the two asymmetric matrices τ

jikX  and l
prS . 

 
The member buckling equations are then obtained by assembling the finite element matrices, which 

leads to the eigenvalue problem 
 

 }{}]){[]([ 0dGK =− λ  ,   (12) 
 

Where (i) λ is the load parameter (all applied stresses depend linearly on λ), (ii) [K] and [G] are the 

member overall linear and geometrical stiffness matrices and (iii) {d} is the generalized modal amplitude 

vector (its components are the problem unknowns). The buckling (bifurcation) loads are the eigenvalues 

of (9) and the corresponding buckling mode shapes are the associated eigenvectors. 
 



3. Buckling Behavior of Continuously Restrained Simply Supported Purlins 

This section addresses the buckling behavior of simply supported purlins submitted to uplift uniformly 

distributed loads applied along the shear centre axis, which means that they do not cause torsion (see 

Fig. 4). In order to simulate the restraints provided by the roof sheeting, continuous translational and 

rotational elastic springs, with stiffness ky and kθ, are continuously (along the whole purlin length) attached 

to the upper flange mid-points. Two cross-sections are considered, namely lipped channels and zed-

sections, and their mid-line dimensions and material properties are given in Fig. 5, which also shows 

the GBT cross-section discretizations adopted. Each of them leads to 13 deformation modes and Figs. 

6(a)-(b) display the in-plane shapes of the eight most relevant ones (for each cross-section): modes 2-4 are 

global (major and minor axis bending and torsion − the axial extension mode 1 is not shown), modes 5-6 

are distortional and the remaining three deformation modes (≥ 7) are local. 
 

 

 (a) (b) 

Figure 4: (a) Structural model with the load point of application and (b) pre-buckling normal stress distributions. 

 

 

 

 

 

 

 

 
 (a) (b) 

Figure 5: Geometries and GBT discretizations adopted: (a) lipped channel and (b) zed-section. 
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(b) 

Figure 6: In-plane shapes of the eight most relevant GBT deformation modes: (a) lipped channel and (b) zed section. 
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Figs. 7(a)-(b) show the variation of the critical buckling moment Mcr with the beam span L for the four 

sheeting restraint conditions corresponding to all possible combination of continuous translational 

and rotational springs with null and infinity stiffness values (ky and kθ equal to 0 or ∞). Besides the GBT-

based results, obtained with 10 equal-length finite elements (continuous lines), these figures also display, 

for validation and comparison purposes, some values determined by means of ANSYS shell finite element 

analyses, adopting fine SHELL63 element meshes (white circles). As for Figs. 8(a)-(b), they show the 

GBT-based mid-span cross-section buckled shapes concerning the combinations of purlins lengths and 

restraint conditions indicated in Figs. 7(a) (lipped channels) and 7(b) (zed-sections). Finally, (i) Figs. 

9(a)-(d) and 10(a)-(d) provide the GBT modal participation diagrams concerning the critical buckling 

modes of the lipped channel and zed-section purlins exhibiting the various restraint conditions, and (ii) 

Figs. 11(a)-(c) show, for ky=kθ=∞ and L=40, 400, 800 cm, several representations of the purlin critical 

buckling mode shapes: (i) GBT modal amplitude functions and (ii) ANSYS and GBT 3D views. The close 

observation of the buckling results displayed in all these figures prompts the following remarks: 

(i) The GBT and ANSYS buckling moments virtually coincide (all differences below 3.0%), despite the 

huge disparity between the d.o.f. numbers involved in applying each model. For instance, for 
 

 
Figure 7: Variation of the critical buckling moment Mcr with L: (a) lipped channel and (b) zed-section purlins. 

 

 
Figure 8: Variation with L of the (a) lipped channel and (b) zed-section purlin mid-span cross-section buckled shape. 
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Figure 9: GBT modal participation diagrams of the lipped channel purlin critical buckling modes: (a) ky=kθ=0,  

(b) ky=kθ=∞; (c) ky=∞ + kθ=0 and (d) ky=0 + kθ=∞. 
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Figure 10: GBT modal participation diagrams of the zed-section purlin critical buckling modes: (a) ky=kθ=0,  

(b) ky=kθ=∞, (c) ky=∞ + kθ=0 and (d) ky=0 + kθ=∞. 
 
 L=800 cm the GBT results were obtained with 360 d.o.f. (10 equal-length beam finite elements), 

while the ANSYS ones required considering about 16000 d.o.f. (i.e., about 45 times more). 

(ii) The comparison between the various figures clearly shows that the critical buckling behaviors of the 

lipped channel and zed-section purlins are extremely similar (practically identical). Therefore, 

unless otherwise specifically mentioned, the comments and remarks included in the next items 

apply to both the lipped channel and zed-section purlin buckling results. 

(iii) For L ≤ 200 cm, the buckling behavior is independent from the restraint conditions − note that the 

four buckling curves plotted in Figs. 7(a)-(b) are practically coincident. This is due to the fact that the 

critical buckling modes, combining participations from local and/or distortional modes, do not 

involve upper flange horizontal displacements or rotations − see the buckled shapes (I) and (II) in 

Figs. 8(a)-(b). Moreover, it is worth noting that, within this length range, the critical moment 

values are strongly influenced by shear buckling, as shown by Bebiano et al. (2007) and illustrated in 

Fig. 11(a), concerning L=40 cm − note the typical inclined shear buckles near the end supports. 



 
(a) 

 

 
(b) 

 

 
(c) 

Figure 11: GBT and ANSYS 3D views and GBT modal amplitude functions concerning the critical buckling mode shapes of 

lipped channel and zed-section purlins with ky=kθ=∞ and (a) L=40 cm, (b) L=400 cm and (c) L=800 cm. 
 
(iv) For L > 200 cm, Figs. 9(a)-(d) and 10(a)-(d) reveal the sudden emergence and subsequent dominance 

of the global modes 3 (minor axis bending) and 4 (torsion), which logically entails a strong influence 

of the sheeting restraint on the purlin buckling behavior, clearly visible in Figs. 7(a)-(b). 



(v) In the unrestrained purlins (ky=kθ=0), flexural-torsional buckling occurs and a very pronounced Mcr 

drop takes place. The buckled shapes (III) in Figs. 8(a)-(b) show that the horizontal displacement of 

the point of translational restraint is minute, making it logical to anticipate that the influence of ky 

will be negligible. This assertion is confirmed by the almost coincidence between the buckling 

curves associated with ky=kθ=0 and ky=∞ + kθ=0. However, it is worth noting that this minute 

horizontal displacement is slightly larger for the zed-section purlins, which provides the explanation 

for the (barely) perceptible differences between the two above buckling curves − with the adopted 

scale, there is literally no difference between their lipped channel counterparts. It will be shown in 

section 4 that this behavioral difference separating the lipped channel and zed-section buckling 

behaviors has some impact on the effects due to the translational spring (finite) stiffness. 

(vi) For ky=0 + kθ=∞, the Mcr vs. L curve is qualitatively similar to that concerning ky=kθ=0, but naturally 

corresponds to higher critical buckling moments due to the added rotational stiffness. On the other 

hand, the modal participation diagrams shown in Figs. 9(d) and 10(d) show that the rotational 

restraint leads to a decrease in the participation of mode 4 (torsion), which is “compensated” by the 

increased contributions of mode 3 (minor axis bending) and, mostly, mode 5 (symmetric distortion) 

− these contributions, required to suppress the upper flange rotation, increase with the purlin length L. 

The buckled shapes (V) in Figs. 8(a)-(b) illustrate the buckling modes of these restrained purlins, 

which are characterized by the occurrence of (vi1) horizontal displacements of the upper flange, due 

to mode 3, and (iv2) lower flange distortion, due to mode 5 − this deformation mode participation 

is responsible for the designation lateral-distortional buckling. 

(vii) For ky=kθ=∞, the previous horizontal displacements (due to kθ=∞, i.e., occurring for ky=0 + kθ=∞) 

are fully restrained, thus causing a significant Mcr increase (the purlin stiffness is higher) stems from 

the lower participation of deformation mode 3, compensated by larger contributions from modes 

4 and 5. The buckled shapes (IV) in Figs. 8(a)-(b) provide clear evidence of the occurrence of a 

lateral-distortional buckling mode that does not involve upper flange horizontal displacements − this 

instability phenomenon was investigated and reported by Hancock et al. (2001). In order to assess 

the quantitative benefits associated with restraining the upper flange horizontal displacements (in 

addition to restraining its torsional rotations), consider the lipped channel purlins with L=400 cm and 

L=600  cm: Mcr increases by (vii1) 75.6% and 345.5%, with respect to ky=kθ=0, and by (vii2) 72.4% 

and 181.8%, with respect to ky=0 + kθ=∞. 

(viii) The Mcr vs. L curve for ky=kθ=∞ exhibits two distinct branches associated with lateral-distortional 

buckling, concerning single and two half-wave lower flange distortional deformations. This can be 

clearly visualized by observing the (viii1) critical buckling modes shapes and (viii2) mode 5 and 6 

amplitude functions of the L=400 cm and L=800 cm purlins, which are shown in Figs. 11(b)-(c). 

(ix) It is worth noting that the influence of ky is completely different for kθ=0 and kθ=∞: quite strong in the 

second case and practically non-existent in the first one − the translational spring is “activated” only 

if the upper flange rotations are restrained (this triggers the emergence of horizontal displacements). 

(x) Finally, attention is called to the fact that the Mcr value depends on the purlin span L (indeed, it is 

proportional to qcr L
2
). This explains why the Mcr vs. L curve does not descend monotonically 

within the whole span range − this would obviously be the case for a qcr vs. L curve. 
 
 
4. Influence of the Translational/Rotational Restraint Stiffness on the Purlin Buckling Behavior 

This section addresses the influence of the amount of translational and/or rotational restraint stiffness, 

provided by the roof sheeting, on the buckling behaviors of the simply supported lipped channel and zed-



section purlins. The numerical results presented and discussed concern purlins with two different lengths, 

namely L=400, 600 cm, and discretely restrained against the upper flange horizontal (in-plane) translations 

and rotations. The restraints are modeled by means of equally spaced elastic supports (i) with stiffness 

values Ky (translation) Kθ (torsion) and (ii) located at a=40 cm intervals, corresponding to the distance 

between adjacent self-drilling screws. The above numerical results consist of critical moments obtained 

through GBT beam finite element and ANSYS shell finite element analyses − while the former involved 

360 or 540 d.o.f. (L=400 cm or L=600 cm − 10 or 15 equal-length beam finite elements), the latter required 

around 12000 or 14000 d.o.f. (i.e., now about 30 times more − recall that this ratio was 45 in section 3). 
 
Figs. 12(a)-(b) show the variations of Mcr with Kθ, for the four combinations between L=400, 600 cm 

and Ky=0, ∞. As for Fig. 12(c), it concerns the restraint condition defined by Ky=0 + Kθ=∞ and depicts 

the longitudinal profiles of the upper flange mid-point (the point of translational restraint, if Ky≠0) 

horizontal displacements − δ=δ (x/L). Then, Figs. 12(d)-(e) display the variation of Mcr with Κy, again 

for L=400, 600 cm but now only for Kθ=∞, making it possible to identify the minimum translational 

restraint stiffness required to “virtually preclude” the occurrence of upper flange horizontal displacements 

(for Kθ=∞). Finally, Figs. 13(a)-(b) compare the (i) mode 3, 4 and 5 amplitude functions and (ii) mid-

span cross-section deformed configurations, for L=600 cm and Ky=Kθ=0 or Ky=0 + Kθ=5 kNm/rad − note 

that the modal amplitude functions are practically the same for the lipped channel and zed-section purlins. 

The analysis of all these buckling results makes it possible to draw the following conclusions: 

(i) As before, there is an excellent correlation between the Mcr values provided by the GBT and ANSYS 

buckling analyses − indeed, the differences never exceed 5.0%. 
 

 
Figure 12: (a) Lipped channel and (b) zed-section purlin Mcr vs. Kθ  curves, (c) critical buckling mode upper flange horizontal 

displacements for Ky=0 + Kθ=∞, and (d) lipped channel and (e) zed-section purlin Mcr vs. Ky curves. 



 
Figure 13: GBT critical buckling mode modal amplitude functions and mid-span cross-section buckled shapes 

concerning lipped channel and zed-section purlins with L=600 cm and (a) Ky=Kθ=0 or (b) Ky=0 + Kθ=5 kNm/rad. 
 

(ii) As it would be logical to expect, Mcr increases with Kθ for all the eight purlins considered here. The 

Mcr vs. Kθ curve exhibits an initial (small Kθ values) portion that is rather steep (larger slopes for 

L=600 cm), followed by a smooth asymptotic increase towards the value associated with Kθ=∞. 

Due to the high initial slopes, Mcr(∞) is always considerably above Mcr(0) − the difference is more 

relevant for L=600 cm than for L=400 cm, for cumulative reasons (higher Mcr(∞) and lower Mcr(0)). 

(iii) The Mcr increase stems from the fact that the nature of the critical buckling mode changes. Figs. 

13(a)-(b) shows the mid-span cross-section buckled shapes concerning L=600 cm, Ky=0 and Kθ=0 or 

Kθ=5 kNm/rad. It is worth noting that the emergence of mode 5 (symmetric distortion) cancels 

the flange rotation due to mode 4, thus leading to the occurrence of lateral-distortional buckling. 

(iv) For the two lengths considered, the amount of rotational stiffness required to “almost fully restrain” 

the purlins is fairly low. Adopting the criterion Mcr ≥ 0.95 Mcr(∞) to ensure a “fully restrained” purlin, 

one has (Kθ)min=5 kNm/rad, for L=400 cm, and (Kθ)min=8 kNm/rad, for L=600 cm (in both purlins). 

(v) Logically, Mcr also increases with Ky for the four purlins analyzed (only with Kθ=∞). The Mcr vs. Ky 

curves, which are qualitatively similar to their Mcr vs. Κθ counterparts, show that the influence 

of Ky is much more pronounced for L=600 cm than for L=400 cm − the Mcr(∞)/Mcr(0) ratios are 

equal to 1.33 and 1.05, respectively. On the other hand, adopting the criterion Mcr ≥ 0.99 Mcr(∞) to 

ensure a “fully restrained” purlin, one has (Ky)min=1 kN/cm (lipped channel) or (Ky)min=2 kN/cm (zed-

section), for L=400 cm, and (Ky)min=8 kN/cm (lipped channel and zed.section), for L=600 cm. 

(vi) There are no significant differences between the Mcr values obtained for purlins restrained by 

continuous and “equivalent” (with the same “overall resultant”) discrete restraints. For instance, for 

Ky=Kθ=∞, Mcr is about 4% lower in the case of equally spaced discrete restraints (a=40 cm), for 

either L=400 cm and L=600 cm. Therefore, the consideration of continuous restraints, far simpler 

to model that their discrete counterparts, provides fairly acceptable purlin critical buckling results. 

(vii) Finally, it is worth noting that the Mcr increase with Kθ is more pronounced for Ky=∞. As mentioned 

earlier, this fact stems from the occurrence of non-negligible upper flange horizontal displacements 

for Ky=0 − they are shown in Fig. 12(c), where the larger values for L=600 cm are clearly visible 

(recall that these displacements are practically if, in addition, one has Kθ=0). This means that the 

absence of horizontal displacements increases the rotational restraint efficiency. Moreover, note that 

this effect is more relevant in the zed-section purlins, which is due to the fact that the vertical loading 

causes pre-buckling biaxial bending (see Fig. 4(b)). 
 
4.1 Rotational Stiffness Assessment 

In order to illustrate the assessment of the ability of commonly used steel roof sheets to provide adequate 

rotational restraint to purlin upper flanges, a numerical example is presented next. It concerns the 

evaluation of the rotational stiffness of a slender (Class 4, in the Eurocode 3 EN1993-1-3 nomenclature − 



CEN 2005) trapezoidal steel sheet (E=205 GPa and ν=0.3) exhibiting the geometry depicted in Fig. 14. 

This evaluation was made according to the methodology prescribed in clause 10.1.5.2 of EN1993-1-3 

(CEN 2006), taking into account both the (i) steel sheet bending flexural stiffness and (ii) purlin-sheet 

connection stiffness, associated in series. The numerical results obtained are based on (i) the purlin cross-

section dimensions given in Fig. 5, (ii) a distance s=200 cm between adjacent purlins and (iii) a spacing 

a=40 cm between consecutive self-drilling screws. They consist of (i) CD.C=88.3 kNm/rad (rotational 

stiffness stemming from the steel sheet bending), (ii) CD.A=5.3 kNm/rad (rotational stiffness provided by 

the connection between the steel sheet and purlin) and (iii) Kθ=5.0 kNm/rad (overall rotational stiffness, 

combining the two above contributions). It is worth noting that: 

(i) The rotational stiffness stemming from the trapezoidal steel sheet bending is about 17 times higher 

than that of its purlin-sheet connection counterpart: 88.3 kNm/rad vs. 5.3 kNm/rad. Since the two 

stiffening contributions are associated in series, the overall rotational stiffness is just a tiny fraction 

below the value due to the purlin-sheet connection: 5.0 kNm/rad. 

(ii) The calculated overall rotational stiffness (Kθ=5.0 kNm/rad) (ii1) virtually coincides with the (Kθ)min 

value obtained for L=400 cm and (ii2) falls quite below its L=600 cm counterpart: (Kθ)min=8 kNm/rad. 

(iii) In view of the above values, it is readily concluded that the sizeable beneficial effect stemming from 

the rotational stiffness provided by the whole roof sheeting system should be taken into account 

when calculating the purlin critical buckling moment Mcr. In this particular case, for L=400 cm, 

the stiffness value provided even ensures “full rotational restraint”. 

(iv) Since the overall rotational stiffness is governed by the purlin-sheet connection flexibility, its increase 

has a strong impact on the purlin critical buckling behavior. One straightforward way of achieving a 

higher CD.A value (and, therefore, also a higher Kθ value) is to adopt purlins with wider flanges. 
 

(mm) 

Figure 14: Illustrative example: trapezoidal steel sheet geometry. 
 
 

5. Continuous Purlins −−−− Strengthening of Intermediate Support Regions 

In practice, many cold-formed steel purlins exhibit multiple spans and are subjected to non-uniform 

bending moment diagrams combining positive (sagging) and negative (hogging) regions. This fact makes 

their buckling behavior rather complex, as it may (i) combine local, distortional and global features and 

(ii) involve a fair amount of localization (e.g., the occurrence of local and/or distortional buckling in the 

vicinity of intermediate supports, where relevant moment gradients occur and little restraint can be 

offered to the slender bottom/compressed flanges). Even so, it seems fair to say that the amount of 

research devoted to the structural behavior of cold-formed steel purlins under non-uniform bending is 

still relatively scarce. In this context, it is worth noting the recent works of (i) Pham & Hancock (2009), 

who proposed a design criterion based on the Direct Strength Method (DSM) for purlin-sheeting systems, 

(ii) Zhang & Tong (2008) and Dubina & Ungureanu (2010), who studied the structural behavior of lapped 

connections over the intermediate supports in multi-span cold-formed steel zed-section purlin systems. 
 
One possible way of improving the continuous purlin resistance against local or distortional buckling 

and/or failure in the vicinity of intermediate supports consists of strengthening that region. This can be 



done by means of several procedures that basically amount to doubling the purlin wall thickness along the 

strengthened length. Fig. 15 illustrates one of those procedures, which is employed when the purlin is 

continuous over the intermediate support: a plain channel “sleeve” is bolted around the lipped channel 

purlin along the strengthening length − both the purlin and “sleeve” share the same wall thickness. 

Alternative procedures, unavoidable in purlins connected at an intermediate support location, consist of (i) 

adopting a bolted “sleeve” to “cover” the joint (lapped joint) or (ii) joining/bolting the connected purlins 

along a finite length centred at the intermediate support (overlap joints) − the two purlins can be joined 

internally (“one inside the other”) or externally (“one next to the other”). However, in all cases it is not 

clear which is the “optimal strengthening/lap/overlap length”, i.e., the minimum length that needs to be 

strengthened in order to preclude the occurrence of local or distortional buckling and/or failure. 
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Figure 15: Detail of the “sleeve” strengthening of a continuous lipped channel purlin intermediate support region. 

 
A GBT-based strategy to estimate the optimal (minimum) strengthening/lap/overlap length in continuous 

purlins is proposed and illustrated in this work. It involves the performance of a GBT buckling analysis 

of the un-strengthened purlin, in order to identify the length of the intermediate support region where 

significant local and/or distortional deformation occurs − the criterion adopted consists of taking the 

length between the left and right most deformed (locally and/or distortionally) cross-sections, which 

can be easily identified from the observation of the GBT modal amplitude functions. 
 
The illustrative example presented and discussed concerns the cold-formed steel lipped channel two-span 

purlin depicted in Fig. 16(b), with length L=8.0 m and the cross-section dimensions and material 

properties given in Fig. 16(a). The purlin (i) is acted by a uniformly distributed gravity load applied along 

the shear centre longitudinal axis, which causes only pre-buckling major-axis bending (diagram shown in 

Fig. 16(b)), (ii) has end sections locally/globally pinned and able to warp freely, and (iii) rests on an 
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Figure 16: Two-span purlin (a) cross-section dimensions and (b) loading and 1
st
-order elastic bending moment diagram. 



intermediate support that restrains all the in-plane cross-section displacements. Moreover, it is assumed 

that the purlin continuity over the intermediate support in ensured by an overlap joint, which means that 

doubling the wall thickness along the strengthened length provides an adequate structural model. Finally, 

one last word to mention that the restraints provided by the roof sheeting are not considered in this 

study − i.e., the purlin is analyzed with an unrestrained upper flange. 
 
Fig. 17(a) displays the GBT modal amplitude functions concerning the critical buckling mode of the 

behavior of the un-strengthened two-span purlin. On the other hand, Fig 17(b) provides ANSYS 3D views 

of the same critical buckling mode shape, obtained by discretizing the purlin into a fine SHELL181 finite 

element mesh. At the outset, note that the GBT and ANSYS critical buckling (uniformly distributed) loads 

virtually coincide: qcr.GBT=10.82 kN/m and qcr.ANSYS=10.71 kN/m (1.03% difference). Then, the observation 

of the two buckling mode representations given in Figs. 17(a)-(b) prompts the following remarks: 

(i) The GBT and ANSYS buckling mode representations are in a very close agreement – this fact 

is particularly striking around the intermediate support (see the zoomed detail in Fig. 17(b)). 

(ii) The purlin buckling action involves mostly the more or less close vicinity of the intermediate 

support − Fig. 17(a) shows that there are (ii1) major contributions from the distortional modes 

5-6 and also (ii2) non-negligible ones from the local modes 7-8 (note that such a detailed structural 

identification cannot be obtained from the output of the ANSYS shell finite element analysis). 

(iii) Fig. 17(a) clearly shows that the distortional deformations (modes 5 and 6 amplitude functions) 

exhibit maximum values at cross-sections located about 270mm to the left and to the right of the 

intermediate support. 

(iv) Since the mode 5 and 6 amplitude functions have the same sign, the bottom/compressed flange 

rotations caused by theses two deformation modes are additive (see Fig. 6(a)), which explains the 

very pronounced rotation of this flange in the intermediate support region − see Fig. 17(b). 

(v) The global modes 3 and 4 (minor-axis bending and torsion) play a lesser role – their contributions 

are only meaningful well inside the purlin spans, i.e., quite far away from the intermediate support. 
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Figure 17: (a) GBT and (b) ANSYS representations of the un-strengthened purlin buckling mode shape 
 
Following the GBT-based strategy devised, purlin strengthening consists of considering an overlap length 

equal to 540 mm, corresponding to the region (centered on the intermediate support) exhibiting the most 

locally and/or distortionally buckled configuration. This would be the optimal (minimum) overlap length, 

in the sense that it involves the highest ratio between the critical buckling load increase and the amount of 

added material. In order check the validity of this assertion, the next step consists of analyzing the 

buckling behavior of a purlin strengthened by an overlap length of 540 mm. Figs. 18(a)-(b) show the 

GBT and ANSYS representations of the strengthened critical buckling mode, which corresponds to 



buckling loads qcr.GBT=15.17 kN/m and qcr.ANSYS=15.15 kN/m (now a 0.13% difference) − in both analyses 

the influence of the overlap length was modeled by doubling the purlin wall thickness. After observing 

these novel buckling results one readily concludes that: 

(i) The strengthening procedure led to a very considerable critical buckling load increase: 40.2%. 

(ii) Concerning the critical buckling mode shape, the overlap length has the net effect of significantly 

altering its nature and characteristics. Indeed, it is evident that (ii1) the purlin overlap region 

remains practically unbuckled and (ii2) the purlin critical buckling is triggered by a combination 

of distortional (modes 5 and 6) and global (modes 3 and 4) deformations, both occurring mostly 

far away from the intermediate support (their maximum values take place in the mid-span regions) − 

note the substantial increase of the global deformation contribution. Moreover, there are also lesser 

participations from the local modes 7 and 8. 

(iii) Although no real optimization study was carried out, it seems logical to expect that an overlap length 

of 540 mm is not very far from the “optimal length” to strengthen the two-span purlin against the 

occurrence of local and/or distortional deformations in the vicinity of the intermediate support. 
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Figure 18: (a) GBT and (b) ANSYS representations of the strengthened (overlapped) purlin buckling mode shape 

 
 
6. Concluding Remarks 

This work presented and discussed the results of a GBT-based numerical investigation concerning the 

local, distortional and global buckling behavior of simply supported lipped channel and zed-section cold-

formed steel purlins restrained by steel sheeting and subjected to a uniformly distributed uplift load. 

After providing the main concepts and procedures involved in the development of a GBT buckling 

formulation specifically aimed at the problems under scrutiny, the investigation began by considering 

purlins continuously restrained against the upper flange horizontal (in-plane) displacements/translations 

and torsional rotations. For various restraint stiffness combinations, it was determined how the critical 

buckling moment and mode shape vary with the purlin length − a relevant finding consisted of the fact 

that the translational restraint can only be meaningfully mobilized if a significant torsional restraint is also 

present. Next, the focus shifted to discretely restrained purlins with two typical lengths and the GBT 

analyses were employed to quantify the minimum translational and rotational stiffness values that are 

required to ensure an “almost full upper flange restraint”. Moreover, it was also shown that the 

minimum rotational stiffness can be fairly easily attained with commonly used trapezoidal steel sheeting, 

attached to the purlin upper flange by means of self-drilling screws. 
 



Then, the paper closed with a study on the strengthening of a two-span lipped channel purlin, subjected 

to a uniformly distributed gravity load, against the occurrence of local and/or distortional deformations in 

the vicinity of the intermediate support, due to the high hogging bending moments. A GBT-based 

strategy to estimate the optimal/minimum strengthening/lap/overlap length was devised and illustrated. Its 

application to the above purlin was proven very effective in identifying/determining an optimal/minimum 

overlap length ensuring that the purlin critical buckling is not triggered close to the intermediate support. 
 
Finally, its is worth noting that several GBT-based results were compared with values yielded by ANSYS 

shell finite element analyses − the virtually perfect agreement found, both in terms of critical buckling 

moments/loads and mode shapes, provided adequate validation of the developed GBT formulation. 
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