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Abstract 

Present paper deals with the numerical modeling of the lateral torsional buckling phenomenon of 
rolled or welded steel profiles. More precisely, the definition of initial imperfections is of 
concern, the aim being here to investigate the influence of both geometrical and material 
imperfections on the bending resistance of such members. In this respect, present developments 
investigate the influences of several initial imperfections that are usually taken into account in 
FEM shell-modeling: stress-strain relationship, residual stresses, weak axis initial imperfection, 
initial torsional twist, local plate imperfections... The results of hundreds of GMNIA 3 
calculations are reported, and the influences of these parameters on the carrying capacity are 
compared. Finally, recommendations for FE-modeling are given. 

1. Introduction – Motivation 

Present paper deals with the use of finite element models to simulate the behavior of members 
with respect to the Lateral Torsional Buckling (LTB) phenomenon. In particular, FE-modeling 
by means of shell elements is of concern. Indeed, the development of calculation software and 
pre and post-processors (e.g. meshing tools) in the last two decades has been such that resorting 
to FEM-shell models to investigate LTB or other structural phenomena has become a “standard” 
practice. Still, the numerical models need to be validated, preferably towards test results. 

The latter step however reveals to be quite delicate to perform, especially in terms of load 
application and practical support conditions (so-called “fork conditions”); in addition, 
experimental tests usually require significant amounts of time and money. Then, even if this 
“validation step” is crucial, temptation to resort solely to numerical tools is important, since, 
further to being considerably faster and economical, they allow for an effective gathering of 
reference results. Moreover, it becomes possible to isolate the influence of a single parameter 
(e.g. influence of the beam length), which, from a scientific point of view, goes without 
comparison. 

In this context, information on initial imperfections to be considered in the numerical 
computations appears to be a key aspect, namely concerning the geometrical ones. Further, the 
definition of “standard” initial imperfection sets within parametric studies is decisive. 
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If such information seems to be well recognized and worldwide-accepted for flexural buckling 
(Beer 1970), scarce and misleading recommendations are available in the literature for the 
particular case of LTB, where one may found as much choices for initial imperfections as 
authors or researchers who studied LTB from a numerical point of view. One may cite in a non-
exhaustive manner the works of Ofner (1997), Greiner (2000), RFCS (2002), Silva (2007), 
Talamona (2008), Knobloch (2008), Mendonça (2008), Kindman (2011)… 

As a consequence, it becomes almost impossible to accurately compare and/or validate results 
between authors, nor to clearly define which types of imperfections and their corresponding 
amplitudes should be considered in FEM calculations. 

In order to contribute filling this lack of guidance, present paper intends at providing information 
on the FEM modeling of the most relevant imperfections, i.e. those having a potential influence 
on the carrying capacity of steel members towards LTB. Section 2 first describes the FEM shell 
models that have been used as a basis for present study; Section 3 then focuses on the influence 
of residual stresses distributions, while Section 4 deals with various initial geometrical 
imperfection patterns. Finally, Section 5 proposes practical recommendations for a sound 
introduction of imperfections in the modeling of LTB. 

2. Description of FEM models – Modeling of imperfections 

2.1 FEM (shell) models 

Extensive series of numerical computations have been led with the use of non-linear FEM 
software FINELg (2012), continuously developed at the University of Liège and Greisch 
Engineering Office since 1970. This software offers almost all types of FEM types of analyses, 
and present investigations have mainly been resorting to so-called MNA (Materially Non-linear 
Analysis), LBA (Local Buckling Analysis) and GMNIA analyses. Use of quadrangular 4-nodes 
plate-shell finite elements with typical features (Corotational total Lagrangian formulation, 
Kirchhoff’s theory for bending) has been made. Density and quality of the different meshes used 
here has been preliminarily assessed, and several modeling specificities are further described 
below. 
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Figure 1: FEM-treatment of web-to-flange junction 

First, the web-to-flange zone has been receiving a specific treatment (see Fig. 1). Within shell 
modeling, this region indeed suffers from i) an overlap of material, and from ii) the disregarding 
of so-called “flange radius” areas. In order to get closer to the real characteristics of such steel 
cross-sections, an additional node has been placed within the web height, at the exact vertical 
position of the centroid of the radius zone. In addition to being linked with the elements of the 
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web, this node bears an additional beam element, oriented in the x direction, whose (square) 
cross-section area is equal to that of the radius zones minus the overlapped area. This extra beam 
element allows for nearly-exact cross-sectional properties of the shell element in comparison to 
analytical (catalogue) ones; it is also given the same constitutive law as the one of the plate 
elements. 

In terms of support conditions, two main aspects have been distinguished for the definition of the 
reference “fork conditions” at the member’s ends. The first one concerns the treatment of in-
plane cross-sectional local supports. These have been defined as Fig. 2a shows, and consequently 
provide i) local lateral support to possible local buckling owing to concentrated support 
reactions, as well as ii) global cross-section fork condition supports, namely lateral and vertical 
deflections, as well as torsional twist. 
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Figure 2: Support conditions 

The second aspect deals with the possible axial displacements (“x-oriented”) of the end cross-
section nodes. In order to allow for a maximum number of four global degrees-of-freedom of the 
end cross-section (i.e. axial displacement, rotations y, z and warping), use of linear constraints 
has been made between the flange and web nodes. While a maximum of four nodes may 
experience a “free” longitudinal displacement, all other nodes’ x-displacements linearly depend 
on the longitudinal displacements of the “x-free” nodes to respect a global cross-sectional 
displaced configuration, as Fig. 2b shows. 

For sake of symmetry, the four nodes at the flanges tips have been chosen as the “x-free” ones, 
and all other nodes are consequently the “x-constrained” ones. Doing so allows for a sufficiently 
correct treatment of the global cross-section behavior, given the usual levels of displacements 
and rotations reached within present study. It also avoids the usual technique of superposing 
additional stiff elements along the flanges and webs of the end-sections (Semi-Comp 2007) that 
aim at preventing local instabilities but may generate numerical troubles. This modeling 
technique has been shown to be very effective from a numerical point of view (Semi-Comp 
2007), and was validated and adopted in many FEM studies. 

The application of any external loading at the member’s ends (i.e. strong and weak axis bending 
moments and/or axial forces) is straightforward, and has been implemented by means of suitable 
distributions of concentrated forces at the flanges tips, see Fig. 3a. As a further feature of the 
adopted linear constraints relationships, this way of introducing end forces is seen to avoid any 
unintended stress concentrations, see Fig 3b. 
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Figure 3: a) Applied loads at flanges tips b) Isolines of stresses under major axis constant bending moment 

2.2 Modeling of material imperfections and strain-hardening 

Material imperfections have been accounted for by means of so-called “residual stresses” 
distgributions. These “membrane” stresses are indeed known to have an influence on the 
carrying capacity of beams in an LTB failure mode, and several patterns have been studied and 
compared (Fig. 4). 
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Figure 4: Possible residual stresses distributions 

An important number of “standard” residual stresses distributions may be found in the literature 
(Tebedge 1973, Grimault 1985, DIN 1990). As an example, the triangular distribution “type A” 
may be proposed with a maximum residual stress equal to either 0.3 fy (IPE sections) or to 0.5 fy 
(HE-shapes), depending on the dimensions of the cross-section. 

Basically, 3 different types of distributions have been considered here, so-called triangular, 
parabolic and welded types. They are defined so that the various stresses distributions are in 
auto-equilibrium, preferably within each plate. 

In addition to various distributions of stresses along the cross-section, the particular cases of 
triangular and parabolic distributions may refer to either the actual yield stress fy or to a reference 
fy

* = 235 N/mm2 one. This aspect is studied in more detail in Section 3. 

The  –  constitutive laws adopted herein have consisted in one of the 3 distributions of Fig. 5. 
These are frequently used in numerical studies, and are generally assumed to represent the actual 
behavior of structural steel in a suitable way. In order to refer to a single  –  curve in the 
following, the influence of each constitutive law on the LTB response of IPE 500 and HEB 300 
members has been investigated, and results are presented in Figs. 6a and 6b. 
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“Standard” LTB situations have been considered here, i.e. constant applied bending moment and 
fork end conditions. 
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Figure 5: Investigated  –  stress-strain laws 
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Figure 6: Influence of stress-strain law – a) IPE 500 – b) HEB 300 (S355 steel) 

Figs. 6a and 6b, as well as many of the figures following, plot the obtained numerical results in 
terms of LT – LT curves, where LT is defined as the relative slenderness to LTB 
LT = (MRk / Mcr)

0.5, MRk and Mcr being the strong axis pure bending resistance and the elastic 
critical bending moment, respectively. LT is defined so that the ultimate bending moment 
Mult = LT MRk, i.e. LT can be interpreted as a “penalty” on the pure cross-section resistance 
owing to instability effects. 

As can be seen, the differences between the curves appear to be systematically negligible, except 
for very stocky (short) members where strain-hardening is seen to have an influence. However, 
in such situations the member is so short that it can hardly still be considered as a beam member. 
Therefore,  –  “type III” (i.e. elastic – plateau – strain-hardening) has been kept in the 
following FEM computations. 

It shall also be noticed that for some high LT values, the FEM curves may “cross” the Euler 
curve; this may be explained by the fact that i) for such long members, the observed levels of 
curvature are such that the assumptions of the Euler curves (namely small rotations) may no 
longer be fulfilled, and ii) because the corresponding profiles partially mobilize weak axis 
resistance, the weakest cross-section being almost rotated 90° about the x-axis. This influence is 
even more observed for the HEB section since its relative weak axis resistance Mz,Rk is greater 
than for the IPE section. 
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It may be noted that Figs. 6a and 6b also refer to the following set of initial imperfections: 
 Residual stresses: parabolic distributions + reference to fy

* values; 
 Geometrical imperfections: “type 1” + no local imperfections (see § 2.3). 

This specific combination of imperfections has been established as a reference set of initial 
imperfections and is frequently referred to in the following. 

2.3 Modeling of geometrical imperfections 

Initial geometrical imperfections have been basically introduced through adequate modifications 
of node coordinates, i.e. the initial geometry slightly differs from the ideal one. Both global and 
local imperfections have been taken into account; global initial geometrical imperfections 
usually consist in the superposition of i) a weak axis (lateral) initial default and of ii) an initial 
torsional twist, see Fig. 7. They both vary sinusoidally from zero at the member’s ends to a 
maximum at mid-span, and each amplitude can be set independently. Alternatively, the 
combined global imperfection may be seen as the one obtained through adequate lateral 
displacements of both the top and bottom flanges, see Table 1. 

         
Figure 7: Global imperfections (magnified) 

In the following, several combinations and amplitudes have been investigated, and are 
schematically represented by Figs. 13, 15 and 17. Table 1 also summarizes the various 
amplitudes studied. 

Table 1: Definitions of initial global geometrical imperfections 

Geom. imperf. type lat. global
1 ini

1 lat. top flange lat. top flange 
1 L / 1 500 L / (2 000 h) 11 L / 12 000 5 L / 12 000 
2 L / 1 000 0 L / 1 000 L / 1 000 
3 0 L / (1 000 h) L / 2 000 – L / 2 000 
4 L / 1 500 4 L / (1 500 h) L / 500 – L / 1 500 
5 L / 2 000 L / (2 000 h) 3 L / 4 000 L / 4 000 
6 L / 1 000 L / (2 000 h) 5 L / 4 000 3 L / 4 000 
7 L / 500 L / (2 000 h) 9 L / 4 000 7 L / 4 000 
8 L / 4 000 L / (2 000 h) L / 2 000 0 
9 L / 2 000 0 L / 2 000 L / 2 000 

10 L / 1 500 – L / (2 000 h) L / 4 000 3 L / 1 000 
11 L / 1 000 – L / (1 000 h) L / 2 000 3 L / 2 000 

1. lat stands for initial (lateral) imperfection, and ini for the initial torsional twist 
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Besides global “member” defaults, initial local geometrical imperfections may be taken into 
account, again by means of modified node coordinates. They shall allow for the potential 
influence of local instabilities on the member’s behavior, and are defined with analogy to plate 
instability modes, i.e. with a combination of sinusoidal “half-waves” in both directions of the 
considered plate. For both web and flanges, square half-wave patterns have been introduced with 
an amplitude of a / 400, where a stands for the length of the considered “square” panel (see 
Eurocode 3 Part 1.5 “Plates” Annex C (CEN 2005). 

It is to be noted that, again, the definition of the local imperfections in the web is fully 
independent from that of the flanges: depending on the cross-section dimensions, a flange may 
be “buckled” in a considerably different configuration from that of a web, in terms of both 
amplitude and “wavelength”. Finally, local imperfections have been defined so that they do not 
affect the web-to-flange region, which is assumed to remain unaffected by initial geometrical 
imperfections and rigid, even in cases where local buckling occurs. 

 
Figure 8: Local imperfections (magnified) 

3. Influence of residual stresses distribution 

3.1 Residual stresses patterns 

Present paragraph investigates the influence of the distribution of residual stresses on the 
carrying capacity of steel beams towards LTB. Figs. 9a and 9b present the obtained results, for 
various residual stresses patterns on an IPE 500 and on an HEB 300, respectively. 
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Figure 9: Influence of residual stresses pattern – a) IPE 500 – b) HEB 300 
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Again, reference is made to an elastic – plateau – strain-hardening constitutive law (“type III” 
with fy = 355 N/mm2, see Fig. 5), with “type 1” geometrical imperfection and no local 
imperfections. Further, triangular (“type A”) and parabolic (“type B”) distributions refer to 
residual stresses distributions with respect to a conventional yield stress of 235 N/mm2, while the 
“welded” (“type C”) distribution obviously refers to the actual yield stress, within the zones 
thermally affected by welding. 

As can be seen, few differences between the triangular and parabolic distributions appear, unlike 
for the welded distribution. This typical behavior has been reported by other authors, through 
both beam and shell element modeling (Lam 2002, Greiner 2000), even with more complex and 
“accurate” distributions of the welded residual stresses. The differences are however worth 13%, 
which appear to be non-negligible. Fig. 10 also proposes the results corresponding to a member 
under fork conditions acted by a single-sided end moment (i.e. triangular bending moment 
distribution along the member, load case B), where the same tendencies may be observed. 
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Figure 10: Influence of residual stresses pattern and bending moment distribution 

Finally, Fig. 11 proposes a magnified view of the deformed shape of the FEM mesh once the 
sole parabolic residual stresses have been accounted for, i.e. prior to the application of any 
bending action. It can be seen that the resulting effect is similar to the application of a tension 
normal force, however of very low value, as a result of auto-equilibrated stresses. 

 
Figure 11: Deformed shape after numerical auto-equilibrium procedure (IPE 500, amplified 500 million times) 

3.2 Influence of yield stress 

As a complement to previous paragraph, present section relates to the yield stress to be referred 
to within the adopted distribution of residual stresses. As already explained, unlike the “welded” 
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situation which obviously refers to the actual yield stress fy, the triangular and parabolic 
distributions may be found in the literature to be relative to either the actual fy, or to a reference 
fy

* = 235 N/mm2 one. Figs. 12a to 12d show the obtained results, for steel grades S235, S355, 
S460 and S690, respectively. 

First, the different figures confirm the expected penalizing influence of a welded residual stresses 
distribution, whatever the yield stress. Second, the influence of referring to the actual yield stress 
for the parabolic (or triangular) distributions is seen to be non-negligible, obviously for high steel 
grades. The divergence “measured” on these curves between a fy

* and a fy reference value for the 
residual stresses distributions may reach 8%. Hence, a decision to consider a reference to fy or fy

* 
clearly has to be made. According to experimental results within this field, it appears that 
preference should be given to fy

*. 
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Figure 12: Influence of yield stress fy on IPE 500 cross-section – a) S235 – b) S355 – c) S460 – d) S690 

4. Influence of geometrical imperfections 

4.1 Weak axis imperfection 

This paragraph is devoted to the influence of the lateral (weak axis) initial geometrical 
imperfection on the member’s response to LTB. All the following results show how several 
initial amplitudes of the weak axis default may affect the bending resistance of the steel girder. 
Common features of the presented results are, again: 

 Constant bending moment distribution along the member; 
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 Parabolic residual stresses distributions, with respect to fy
*; 

 fy = 355 N/mm2; 
 Constant initial torsional twist equal to L / (2000 h), see Table 1; 
 No local geometrical imperfections. 
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Figure 13: Designation for initial geometrical imperfection shape type 

Figs. 14a and 14b below are relative to geometrical imperfections types 5, 1, 6 and 7 (see 
Fig. 13). As can be seen, “reasonable”4 lateral imperfections, i.e. from L / 2000 to L / 1000, cause 
little differences on the observed resistance. However, a L / 500 amplitude drops the L / 1000 
resistance down to 10% in the worst cases; this situation is however usually outside fabrication 
tolerances, and may not be considered. Therefore, a realistic amplitude of the initial lateral 
default should lead to satisfactory results, given “standard” sets of imperfections (initial torsional 
twist, residual stresses). 
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Figure 14: Influence of weak axis imperfection – a) IPE 500 – b) HEB 300 

4.2 Initial torsional twist 

The second “geometrical” parameter that has been investigated is the amplitude of the initial 
torsional twist. Obviously, since the phenomenon of LTB generates x-axis torsional rotations, an 
initial torsional twist ought to be considered, with amplitude to be defined. Fig. 15 lists a series 
of initial torsional twists accounted for in the FEM simulations, from zero to 4 L / (1500 h) (see 
also Table 1). 

Figs. 16a and 16b plot the obtained results, for the reference case of constant bending moment 
and fork support conditions, on a S355 member with a parabolic residual stresses distribution. 

                                                 
4 Experimental measurements show that within Europe’s production, a realistic average value of steel member’s 
initial bow imperfection amplitude lies around L / 1000, where L is the length of the member. 
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Figure 15: Designation for initial geometrical imperfection shape type 
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Figure 16: Influence of initial torsional twist – a) IPE 500 – b) HEB 300 

As can be seen, except for the (unrealistic) case of “type 4” geometrical imperfection pattern, all 
results are very close, for the IPE 500 profile as well as for the HEB 300. This indicates that 
reasonable amplitudes for the initial torsional twist may be seen as adequate to initiate the 
phenomenon. Further, a comparison between reasonable geometrical imperfection patterns 
“type 2” (no initial torsional twist) and “type 3” (no initial global cross-sectional weak axis 
default) shows that the influence of the lateral geometrical imperfection has probably more 
influence than an initial torsional twist. A combination of both geometrical defaults is then seen 
to be the most appropriate. 

4.3 Tension flange imperfection 

Present paragraph focuses on the initial lateral imperfection given to the tension flange, i.e. on its 
influence (amplitude of global cross-section lateral default + initial torsional twist) on the 
carrying capacity towards LTB. 

This focus may appear somehow surprising, since it would at first be expected that the 
imperfection given to the (upper) flange in compression rules the member’s behavior. It has 
however been sometimes suggested (Villette 2004) that the imperfection given to the tension 
flange might be a leading parameter on the resistance to LTB. 

Therefore, Fig. 17 sets of imperfections have been investigated, and Figs. 18a and 18b present 
the obtained results, for an IPE 500 and an HEB 300 cross-section, respectively. As can be seen, 
in the particular case of the IPE 500 section, the differences between the various curves are 
negligible. However, the HEB 300 results show a 10% difference for slenderness values greater 
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than 1.0, in the way of a higher influence of the initial torsional twist, i.e. the initial lateral 
imperfection of the tension flange does not appear as a governing factor. 
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Figure 17: Designation for initial geometrical imperfection shape type 
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Figure 18: Influence of initial tension flange imperfection – a) IPE 500 – b) HEB 300 

One may also notice that this influence is stronger for the HEB 300 cross-section, which is due to 
the fact that the weak axis resistance of the HEB 300 is relatively stronger than that of the 
IPE 500, thus the less important influence of the top flange imperfection. 

4.4 Influence of local imperfections 

Figs. 19a and 19b below intend at investigating a possible influence of local geometrical 
imperfections. Reference is again made to S355 members with parabolic residual stresses and 
initial global geometrical imperfections according to “type 1” definition. 
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Figure 19: Influence of local imperfections – a) IPE 500 – b) HEB 300 
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As can be seen, the curves “with” and “without” local defaults are fully coincident, indicating 
that such initial imperfections may be “omitted” in the modeling; this is mainly justified by the 
fact that the investigated cross-sections do not comprise any highly slender component, so that 
the influence of local buckling on the global behavior remains negligible. 

4.5 Use of eigenmodes for the definition of the imperfect geometry 

This final subsection deals with the use of LBA-obtained eigenmodes for the definition of the 
initially-imperfect geometry. For this purpose, relevant eigenmodes have been used to derive the 
initial geometrical imperfection. A “scale factor” of L / 1000 has been used to set the top flange 
maximum lateral imperfection at mid-span. Figs. 20a and 20b report on the obtained results. 
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Figure 20: Effect of the use of eigenmodes for the geometrical imperfection shape – a) IPE 500 – b) HEB 300 

As can be seen, the differences between the “hand-defined” and the “eigenmodes” curves are 
negligible for the constant bending moment situation (LC A). Little difference may however 
appear for load case B, for about 3%. This may be explained through the fact that the maximum 
initial lateral default of the “eigenmode” situation is no longer located at mid-span, unlike the 
one for the “hand-defined” situation that still is. 

5. Recommendations for FEM modeling 

As a summary of the performed investigations, the following features may be recommended for 
the modeling of LTB: 

 No strain-hardening may be considered in the  –  law. This may be in contradiction 
with the recommendations proposed in the informative Annex C of Eurocode 3 Part 1.5 
(CEN 2005); 

 For rolled profiles, parabolic or triangular residual stresses patterns in auto-equilibrium 
along each individual plate are recommended, with a reference yield stress fy

* equal to 
235 N/mm2; 

 No local geometrical imperfections are needed, provided that the different plates of the 
cross-section do not belong to the “slender” range (i.e. no “Class 4” elements); 

 Combination of global cross-section lateral imperfection with initial torsional twist ini 
seems adequate, with reasonable amplitudes (“type 1” for example); 

 Use of eigenmodes as initial imperfect shape is suitable, provided a careful scaling of the 
initial amplitude (L / 1000 is recommended). 
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Figure 21: Recommended sets of initial imperfections 

6. Conclusions 

In this paper, investigations towards the influence of imperfections on the FEM modeling of the 
LTB phenomenon have been led. Typical influences of the constitutive law definition, of the 
residual stresses adopted distributions and of geometrical initial imperfections (both local and 
global) have been studied, through adequate shell models. More than 700 results of FEM 
simulations show that i) an adequate and reasonably realistic set of residual stresses, initial 
lateral imperfection and torsional twist lead to consistent results, and that ii) such “standard” 
definitions may be used in FEM-led parametric studies. Detailed recommendations for FE 
modeling (type and amplitudes) are also finally given. 
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