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Abstract 
AASHTO and AISC specifications had adopted Basler’s interaction equation. AASHTO LRFD 
specifications, however, have completely neglected the interaction effect of bending on the shear 
strength since the 3rd edition in 2004.  AISC LRFD specification followed suit from the 13th 
edition in 2005.  In this study, revisited are the interaction equations specified in design codes 
that were developed for bare-steel sections.  The interaction effect in composite sections was also 
investigated.  It was found that neglecting the interaction could lead to unsafe designs when 
shear buckling is not associated web failures.  The interaction should not be neglected when web 
failures are governed by yielding due to combined bending and shear regardless of whether 
sections are composite or noncomposite.   
 
1. Introduction 
The interaction equation derived by Basler (1961) had long been used in AASHTO LRFD 
Specifications until it was first completely discarded in the 3rd edition (2004).  The commentary 
of AASHTO LRFD Specifications (2004) reads: “White et al. (2004) shows that the equations of 
these specifications sufficiently capture the resistance of a reasonably comprehensive body of 
experimental test results without the need to consider moment-shear interaction.”  The 3rd edition 
(2005) of AISC LRFD Specification followed suit.   
 
However, it needs to be noted that most of the previous experimental tests investigated plate 
girders having slender web panels in which shear buckling takes place first prior to shear 
yielding under pure shear condition.  Since the Basler’s interaction was derived without 
considering shear buckling, it may overestimate the interaction effect when web failures are 
associated with shear buckling.  However, the neglect of the interaction can lead to significantly 
unsafe designs when web panels fail due to yielding under combined bending and shear as in the 
Basler’s model.  Eurocode 3 (2006) still requires checking the bending and shear interaction for 
the design of steel plate girders.  In this paper, the interaction equations specified in design codes, 
which were formulated for bare-steel sections, were revisited.  Also, the moment-shear 
interaction in composite sections was theoretically investigated. 
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2. Bare-Steel Sections 
 
2.1 Interaction Equations Specified in Design Codes 
 
2.1.1 Basler’s Interaction Equation 
Basler (1961) developed his interaction equation assuming a simple stress distribution shown in 
Fig. 1 for bending moments greater than the flange moment fM  that is the maximum bending 

moment that can be carried by the flanges.  The flange moment fM can be written as: 
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where ra  ratio of the web area to the flange area.  

 

 
Fig. 1 Stress distribution assumed in Basler’s interaction model 

Basler disregarded local buckling of the web due to shear.  Assuming 2.0ra   conservatively, 

the Basler’s interaction equation becomes  
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 For simplicity, Eq. 2 may be rewritten as: 
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Eq. 3 became the basis for AASHTO LRFD and AISC specifications.   It is valid when an 
applied bending moment M  is in between fM  and yM .  The shear strength becomes 0.6 pV

 
when the bending moment is equal to yM .  
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2.1.2 Interaction Equations in Eurocode 3 
Using the simple stress diagrams shown in Fig. 1 as in Basler’s model, the following equation 
can be obtained for compact sections where local shear buckling of the web does not take place 
prior to shear yielding: 
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Eq. 4 gives zero shear strength when the bending moment reaches the plastic moment pM . EN 

1993-1-1 (2003) of Eurocode 3 uses an empirically-modified version of Eq. 4 based upon 
experimental test results: The web panels are able to carry a considerable shear even when 
sections reach the plastic moment.  Omitting the partial safety factor, the interaction given in EN 
1993-1-1 (2003) can be rewritten as: 
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Eq. 5 for a section having the area ratio 1.11ra  ( 0.783f pM M  ) is plotted in Fig. 2. 

 

 
 

Fig. 2 Interaction Equation (Eq. 5) in Eurocode 3: 0.783f pM M   

 
The shear strength at plastic moment pM

 
becomes 0.5 pV .  Eq. 5 is only for cross sections in 

class 1 and 2.  EN 1993-1-5 (2006) of Eurocode 3 modified Eq. 5 by simply replacing pV
 
with 

.bw RV  in order to cover the whole classes (1, 2, 3, and 4) of cross sections as: 
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.bw RV
 
is the shear strength of the web panel under pure shear.  
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2.2 Investigation of the AASHTO and Eurocode 3 Equations 
 
2.2.1 Basler’s Interaction Equation 
The interaction equation (Basler 1961) was developed for noncompact sections, in which the 
maximum bending capacity is yM .  Yet, the application of the Basler’s interaction equation was 

extended to compact sections in AASHTO LRFD and AISC specifications with little adjustments. 
Omitting the resistance factors, the interaction equation in AASHTO (1998) turns into the 
original form of Eq. 3 as: 
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The only difference is that pV  and yM  were replaced with nV  and nM , respectively.  For 

compact sections without shear buckling, Eq. 7 becomes 
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Eq. 8 dictates that the shear strength V at pM is 0.6 pV , which

 
is the same as that obtained 

at yM from Eq. 3.  This is contradictory to the original Basler’s model.  This means that Eq. 8 is 

not applicable to compact sections.  
 
Also, it needs to be noted that the Basler’s equation was developed for web panels where shear 
buckling is not associated with the failure.  Whether it is also applicable to web panels in which 
web failures are associated with shear buckling will be examined later. 
 
2.2.2 Interaction Equation specified in Eurocode (3)  
Eq. 5 specified in Eurocode 3 (2003) was also originally intended for web panels in which web 
failures are not associated with shear buckling.  There have been no theoretical studies reported 
investigating the interaction behavior in plate girders having web panels in the shear buckling 
zone presumably due to complexities involved.  For this reason, Eurocode 3 (2006) transformed 
Eq. 5 into Eq. 6 for a broad use with just minor adjustments.  Herein, the applicability of Eq. 6 to 
web panels in the shear buckling zone is examined.  
 
Consider a compact plate girder having the following geometric and material properties: wD t  = 

90; ra  = 1.11; and yF  = 345 MPa, where  D   web depth; wt   web thickness.  For od D  = 2.0, 

the web panel falls into the elastic buckling zone according to AASHTO specifications as can be 
seen from Fig. 3, where od  is transverse stiffener spacing.  Its shear strength nV under pure shear 

is 0.804 pV  and nV  is equivalent to .bw RV  in Eurocode 3 (2006).  Although the values of nV  and 

.bw RV  are not the same due to the difference in the associated postbuckling theories, there should 

be no problem in using nV  instead of .bw RV  as long as Eq. 6 is theoretically valid.   
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Assuming the bending moment M is 0.9 pM , Eq. 6 gives the nominal shear strength equal to 

0.84 ( 0.675 )n pV V for od D  = 2.0.  When od D  = 0.5, the web panel falls into the shear yield 

zone as can be seen from Fig. 4 but Eq. 6 still gives the same reduction factor 0.84 at the same 
bending moment.  The web panel with od D  = 0.5 will, therefore, fail by yielding due combined 

bending and shear when 0.9 pM M  and 0.84 pV V .  It means that as long as an applied shear 
does not exceed 0.84 pV for the given bending moment 0.9 pM M , yielding will never take place.  

The shear strength 0.804n pV V of the web panel with od D  = 2.0 under pure shear is less 

than 0.84 pV .  Although shear reaches 0.804 pV , yielding under combined bending and shear will 

never take place.  This implies that shear failure governs the design for od D  = 2.0.  The 

reduction factor 0.84, which was originally intended to consider yielding under combined 
bending and shear, is meaningless for the web with od D  = 2.0.  The shear strength 

0.804n pV V  under pure shear, therefore, should be taken as the nominal shear strength for the 

web with od D  = 2.0.  This finding also means that the Basler’s interaction equation should not 

directly applied to noncompact sections when shear buckling is associated with web failures. 
 

 
 Fig. 3 AASHTO shear strength curve for 345yF  MPa and 2.0od D 

 

 
Fig. 4 AASHTO shear strength curve for 345yF  MPa and 0.5od D   
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2.3 New Methodology to Determine Nominal Shear Strength for Webs in Shear Buckling Zone 
It has been shown that the direct application of Eq. 6 to web panels falling into the shear 
buckling zone could result in a considerable underestimation of the nominal shear strength.  
Unlike the case of sections having web panels falling into the shear yield zone, developing a 
generally-applicable interaction equation is virtually not feasible when web failures are 
associated with local buckling.  This is not only because the methods to assess the shear strength 

nV under pure shear including postbuckling strength differ from theory to theory and from code to 

code but also because of complexities involved.   
 
As demonstrated above, the shear strength nV  determined under pure shear condition can be 

taken as the nominal shear strength if it is less than the reduced shear strength V determined 
without considering local shear buckling.  That is to say, there is no need to consider the 
interaction if web panels fail by shear.  When nV  is greater than the reduced shear strength 

V determined without considering local shear buckling, yielding due to combined bending and 
shear takes place first prior to shear failure and therefore, the reduced shear strength V should be 
taken as the nominal shear strength. 
 
3. Composite Sections 
Composite sections are often used in bridge constructions in order to maximize the contribution 
of concrete decks to bending resistance.  Basler’s interaction equation (Basler 1961), which was 
derived for noncomposite sections, had long been applied to composite sections in AASHTO 
LRFD and AISC specifications without any theoretical background until the interaction effect 
was totally neglected.  Due to lack of studies regarding composite sections, it has yet to be 
testified whether the interaction effect could be safely neglected in composite sections or not.  In 
this study, a theoretical investigation was carried out to assess the interaction effect on the shear 
strength of composite girders.  The shear-carrying capacity of concrete is not considered. 
Composite sections are categorized into two types according to whether they are under positive 
bending or negative bending.  
 
3.1 Composite Sections in Positive Bending 
 
3.1.1 Interaction Equation 
As in the case of bare-steel sections, the flange plastic moment fM  including the concrete 

moment, first of all, needs to be determined in order to assess the interaction effect for a given 
bending moment.  If an applied bending moment is less than or equal to the flange plastic 
moment, there is no interaction as in bare-steel sections.  When the maximum compressive force 
in the effective concrete area is greater than the sum of the forces in the top and bottom flanges 
at yield, the neutral axis at fM

 
will be within the concrete.  Otherwise, the neutral axis at fM  

will be within the top flange.  
 
As the bending moment increases beyond the flange plastic moment fM , the web will begin to 

participate in carrying the bending moment approaching the plastic moment pM .  Fig. 5 (a) 

depicts shear stresses xy  for an applied shear force V
 
in the web prior to applying bending 

moment.  When the whole web reaches the yield condition as per the von Mises yield criterion, 
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the bending stress x will be uniform as shown in Fig. 5 (b).  The stress distribution shown in Fig. 

5 is identical to another distribution given in Basler (1961) known to be more accurate (Salmon 
and Johnson 1996).  
 

 
Fig. 5 Idealized stress distributions: (a) shear stress; (b) bending stress 

As per the von Mises yield criterion, the bending stress in the web x  at yield is given by: 
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where yF is the yield stress of the web. 

 
For a given bending moment M ,   can be determined by considering force and moment 
equilibrium in the composite section.  Once   is determined, the reduced shear strength V can 
be computed using Eq. 10 as: 
 

  

21
p

V

V
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3.1.2 Adjustment of Interaction Equation (Eq. 11) 
The shear strength approaches zero as   approaches 1.0.  At the plastic moment,   becomes 1.0. 
As done in Eq. 5 for bare-steel section, the adjustment may be necessary for loadings of high 
moment. In this study, the adjustment starts from 0.5  , which corresponds to the yield 

moment of bare-steel sections.  Eq. 11 gives / 0.8666pV V  at 0.5  .  Setting the reduced shear 

strength at pM , i.e. when 1.0  , equal to 0.5 pV , the following equation can be obtained: 
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When  exceeds 0.5, Eq. 12 is to be used instead of Eq. 11.  Eqs. 11 and 12 are plotted in Fig. 6. 
 

 
 

Fig. 6 Interaction curves: Eq. 11 and Eq. 12 

3.1.3 Determination of Nominal Shear Strength  
It needs to be noted that Eq. 11 and Eq. 12 were also formulated considering yielding due to the 
combined action of bending and shear.  Therefore, they should not be directly applied to the web 
panels in which failures are associated with shear buckling.  
 
If the reduced shear strength V obtained from Eq. 11 or Eq. 12 is less than the shear strength nV  
that is determined under pure shear, then yielding due to the combined action of bending and 
shear will take place first before the web panel develops the shear strength nV .  In this case, the 

reduced shear strength V should be taken as the nominal shear strength as in bare-steel sections.  
If V is greater than nV , shear failure will take place prior to yielding due to combined bending 

and shear and therefore, nV  becomes the nominal shear strength.  

 
3.1.4 Design Example 
The interaction behavior of a composite section under positive bending, which was used as 
design examples in AISI (1995), was investigated.  Fig. 7 shows a composite section with the 
plastic neutral axis within the top flange: '

cf = 30 MPa; yF  = 345 MPa; wD t = 126.79;  pM = 

29.05 x 109 N-m.  The neutral axis at fM is within the concrete: .f Md = 188 mm; and fM = 20.97 

x109 N-mm (= 0.72 pM ).  

 
When the bending moment M, for example, is 25.0 x 109 N-mm (86.06 % of pM ), 

 
is 0.483. 

The reduced shear strength V determined from Eq. 12 is 0.8756 pV , which V falls below the 

AASHTO nV curve for /od D = 0.5 shown in Fig. 4.  This means yielding due to combined 
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bending and shear governs the web failure so that the reduced shear strength V should be taken 
as the nominal shear strength.  But, when /od D = 2.0, the reduced shear strength V  falls above 

the curve as shown in Fig. 3 and therefore, there is no need to consider the interaction.  
 

3227.5 mm

245 mm

55 mm

1775 mm

14 mm

28mm X 575 mm

50mm X 575 mm  
 

Fig. 7 Composite section in design example  

 
3.2 Composite Sections in Negative Bending 
As per AASHTO LRFD (2010), composite sections in negative bending are to be treated as 
noncompact sections.  Neglecting the concrete in tension, a composite section subjected to 
negative bending is composed of the reinforcing bars and the steel girder.  In practice, composite 
sections subjected to negative bending are usually designed such that the sum of areas of the 
reinforcing steels and top flanges is close to the area of the bottom flange.  In turn, the interaction 
effect of bending on shear can be assessed following the procedure proposed for noncompact 
bare-steel sections in the companion paper.  
 
4. Summary and Concluding Remarks 
In this study, a theoretical investigation was carried out in order to evaluate the effect of bending 
moment on the shear strength of bare-steel and composite steel plate girders.  The results are 
summarized as follow: 
1. Basler’s interaction equation should not be directly used for compact sections.  Also, it could 
result in too conservative designs for web panels falling into shear buckling zone. 
2. The interaction equation (Eq. 6) specified in Eurocode 3 (2006) cannot be directly applied to 
web panels falling into shear buckling zone. 
3. For web panels in the shear buckling zone, the smaller one between the shear strength under 
pure shear and the reduced shear strength determined without considering shear buckling could 
be taken as the nominal shear strength.   
4. The current provisions in AASHTO and AISC Specifications completely neglect the 
interaction effect regardless of web slenderness ratios.  When web panels fall into the shear yield 
zone, neglecting the interaction effect, however, could lead to unsafe designs (up to 50% as can 
be seen from Fig. 2). 
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