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Abstract 
The paper describes the derivation of a seven degrees of freedom beam finite element which 
enables the effects of local/distortional buckling deformations to be accounted for. The 
development of local/distortional buckling reduces the rigidity of the section against axial 
straining, minor and major axis flexure, as well as twisting. The reduction in rigidity can be 
determined by increasing the level of axial strain, minor axis curvature, major axis curvature or 
twist, and at each level of deformation subjecting a single or a few local/distortional buckles to 
small changes in axial compression, minor and major axis bending, and torsion. This analysis is 
performed prior to the frame analysis and produces arrays of tangent rigidities ((EA)t, (EIz)t, 
(EIy)t, (EIw)t) and other tangential stiffness terms for increasing values of generalised strains (

, , ,x z y x    ). Incorporating the reduced rigidities in the beam element formulation requires 

changes to the tangential stiffness matrix.  
 
The seven degree of freedom element is developed in the framework of the OpenSees software. 
The paper sets out the tangential stiffness matrix for a locally/distortionally buckled element and 
shows that close agreement can be obtained between the beam analysis which incorporates 
reduced rigidities and analysis using full shell finite element discretisation. The purpose of the 
developed element is to make beam-element analyses readily available for analysing the 
structural response of locally/distortionally buckled frames. This is particularly relevant for 
determining the additional second order moments resulting from the increased sway induced by 
the reduction in flexural and warping rigidity. This effect is becoming increasingly important to 
quantify as cold-formed steel sections are being produced in increasingly thinner gauges and 
subject to local/distortional buckling in the ultimate limit state. Yet, the associated additional 
second order moments are presently not considered in the AISI S100-2007 Specification for the 
design of cold-formed steel structural members. 
 
 
1. Introduction 
Beam-element-based analyses of structures are regarded as general and practical tools for actual 
industrial use, and have been proven capable of accurately predicting ultimate loads and tracking 
load-displacement curves for compact sections (Ziemian, R. D. 1990). However, this is not the 
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case for structures with non-compact and slender cross-sections, because traditional beam-
column element theories assume that the cross-section remains undistorted throughout the 
analysis, and thus are not capable of considering deformations of the cross-section.  
 
The primary effect of local/distortional buckling can be perceived as merely the reduction of the 
member stiffness against overall compression, bending and torsion. Consequently, the overall 
behaviour of the structure can be achieved by using the stiffness of the locally/distortionally 
buckled cross-section rather than the stiffness of the undistorted cross-section in beam element 
analyses. This method has been successfully used for bifurcation analyses of locally buckled 
members (Rasmussen, K. J. R. and Hasham, A. S. 1997; Young, B. and Rasmussen, K. J. R. 
1997). This paper presents a method to include local/distortional buckling effects in 
geometrically nonlinear beam-element-based analyses where local/distortional buckling 
deformations are taken account of by simply reducing the rigidities of the section. The reduction 
of the tangent rigidities are determined by means of a priori finite element analyses of short 
lengths of members.  
 
The Open System for Earthquake Engineering System (OpenSees) (Mckenna, F. T. 1997) was 
chosen as the research tool to perform beam element analysis. As a first step, the original 
OpenSees source codes were modified to include warping effects of open compact sections. 
Details can be found in (Zhang, X., Rasmussen, K. J. R. and Zhang, H. 2012). In this paper, the 
analysis is developed further to allow for local/distortional deformations. 
 
The accuracy of the presented beam element analysis program accounting for local/distortional 
buckling is checked against benchmark problems analysed separately using full shell finite 
element discretisation in (ABAQUS 2009). Good agreement is achieved for both single members 
and frames. 
 
2. Application of cross-sections 
The presented analysis method is applicable to doubly symmetric open sections that may develop 
local/distortional buckling. Examples of application are I-sections (Figure 1(a)), back-to-back 
lipped channel sections (Figure 1(b)) and other non-regular sections (Figure 1(c)). 
 

  
                 (a)                                                     (b)                                                     (c) 

Figure 1: Examples of applicable cross-sections 
 
3. Local and global systems 
The present theory utilizes the co-rotational Lagrangian (CL) approach to formulate non-linear 
beam-column elements. In this approach, the deformational response is captured at the level of 
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the local reference frame, whereas the geometric non-linearity induced by large displacements is 
considered in the transformation matrices relating local and global quantities. 
 
The vector of global degrees of freedom N  and the vector of local degrees of freedom n  are 
defined as follows, 
 

 ' '
1 1 1 1 2 3 1 2 2 2 4 5 6 2={ , , , , , , , , , , , , , }b bu v w u v w       N   (1) 

 

 ' '
1 2 3 1 4 5 6 2={ , , , , , , , , }l l l b l l l b e       n   (2) 

 
where the components of the vectors are shown in Figure 2. Note that 1bθ and 2bθ are the warping 
degrees of freedom. 

 
 

Figure 2: Element local and global degrees of freedom 
 
4. Formulation of stiffness matrix with consideration of local/distortional buckling 
In the modified OpenSees codes, the axial strain ( ) is expressed as (Alemdar, B. N. 2001),  
 

 2 2 2 2 21 1 1
' ( ') ( ') '' '' '' ( )( ') '' ''

2 2 2
u v w yv zw y z y w z v                (3) 

 
where , ,u v w

 
are the local displacements of the shear centre of the cross-section,   is the twist 

rotation about the shear centre, (the centroid and the shear centre coincide for doubly-symmetric 
section), ,y z  are the local coordinates of an arbitrary point of the cross-section in the principal 
axis system, and ( , )y z   is the principal sectorial coordinate of the arbitrary point. The local 
coordinate axes (y,z) and the local displacements of shear centre (u,v,w) are shown in Figure 3. 
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Figure 3: Coordinate axes and shear centre displacements      

 
The variation of    is expressed as, 
 
 2 2' ' ' ' ' ( '' '' '') ( '' '' '') ( ) ' ' ''u v v w w y v w w z w v v y z                           (4) 
 
In the present formulation for thin-walled sections, shear strains due to bending and warping 
torsion are neglected, and the shear strain due to uniform torsion is assumed to vary linearly 
through the thickness of component plates with zero mid-plane value (Rasmussen, K. J. R. 
1997). The shear strain due to uniform torsion is given by (Pi, Y. L., Trahair, N. S. and 
Rajasekaran, S. 1992) 
 
 2 zn     (5) 

 
where n is a coordinate perpendicular to the tangent of the mid-surface at an arbitrary point and 

z  is the twist, 

 

  1
'

2z v w v w           (6) 

 
By assuming the twist due to bending can be ignored, the shear strain due to uniform torsion can 
be approximated by 
 2 'n     (7) 
 
and its variation is  
 
 2 'n     (8) 
 
The normal and shear strains are assembled in the strain vector, 
 
 ]T ε=[ ,   (9) 
 
The variations of the strain components may be expressed in matrix form, 
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

 

 

  
 

ε Y Γ   (10) 

 
where Y and  are functions of the coordinates (y,z,,n) and generalised displacements (

, , ,u v w  ), respectively, 
 

 
2 21 0

0 0 0 0 0 2

y z y z
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        
             
     
     

       

Γ   (12) 

 
The variation of the virtual generalised strain vector () is expressed as, 
 
 1d Γ N v   (13) 

 
where 
 

 1

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

d

v w

w

v







  
    

 
   
 
 

 

N   (14) 

 

  Tu v w v w              v   (15) 

 
In developing an equation for v, shape functions are introduced to express the axial 
displacement (u), the transverse displacements (v,w) and the twist rotation ( ) as continuous 
functions of the longitudinal coordinate (x). A linear function is chosen for the axial 
displacement, while cubic Hermitian functions are chosen for the transverse displacements and 
twist rotation,  
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  (16) 

 
where n is the element nodal displacement vector in the local system, given by Eqn. (2). 
 
The shape functions can be expressed in the following form, 
 

 

1

1 2

1 2

1 2 3 4

[0 0 0 0 0 0 0 0 ]
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N

  (17) 

 
With the aid of Eqn. (16),  v  can be expressed using the element nodal displacement vector n, 
 
 2d v N n   (18) 

 
where 
 

 

'
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' '
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' '
1 2

'' ''
1 2
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1 2

1 2 3 4

' ' ' '
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'' '' '' ''
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 
 
 
 
 
 
 
 
 
 
 
 
  

N   (19) 

 
By combining Eqns (13,18),  the variation of the generalised strain vector can be expressed as, 
 
 1 2d d  Γ N N n   (20) 

 
The equilibrium equations are now derived using the Principle of Virtual Work. The internal 
virtual work is obtained as, 
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0 0 0

T TT T
i

V V L

W dV dV dx       ε σ Γ Y σ Γ D   (21) 

 
where the stress () and stress resultant (D) vectors are defined as, 
 

 


 

  
 

σ   (22) 

 

  Tyz

T

A

TBWMMPdA   σYD
0

  (23) 

 
The terms of the stress resultant vector (D) can be expanded as, 
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 
 
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











D   (24) 

 
where P, Mz, My, W, B and T are the axial force, bending moment about the z-axis, bending 
moment about the y-axis, Wagner stress resultant, bimoment and uniform torque respectively. By 
substituting Eqn (20) into Eqn (21), the virtual internal work is obtained as, 
 
 T

iW  n p   (25) 

 
where p is the internal force in the local system, defined as, 
 

 
0

2 1
T T

d d

L

dx  p N N D   (26) 

The virtual external work is defined as,  

 T T
e ext extW   N Q n FQ   (27) 
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where Qext is the vector of external loads in the directions of the global degrees of freedom, and 
F is the transformation matrix, as detailed in (Zhang, X., Rasmussen, K. J. R. and Zhang, H. 
2011). 
 
Using the virtual work principle, Wi=We, the equilibrium equations are obtained by combining 
Eqns (25,27) and utilising that n is arbitrary, 
 
 ext p FQ 0   (28) 

 
The element stiffness matrix is obtained from the variation of Eqn. (28). Alternatively, since p is 
derived from the virtual internal work, the element stiffness matrix may be obtained from the 
variation of the virtual internal work,  
 

 
0 0

2 2 T T

i

V V

W dV dV     ε σ ε σ   (29) 

 
The 1st term of Eqn. (29) requires the 2nd variation of the generalised strain vector, obtained by 
substituting Eqns (10,20) into Eqn. (29) and utilizing Eqn. (23),  
 

 
0 0 0

2
2 1 2 2

T T T T T T
d d d d

V L L

dV dx dx          ε σ n N N D n N GN n   (30) 

 
where matrix G is termed the stability matrix in local coordinates and is given by, 
 

 

0 0 0 0 0 0 0 0
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 
 
 
  

G   (31) 

 
The 2nd term of Eqn. (29), 

0

T

V
dV  ε σ , requires an expression for the variation of the stress 

vector (). This is dependent on the material (elastic or inelastic) and on whether the analysis 
involves local/distortional buckling of the cross-section. In the presence of local/distortional 
buckling, this term may be developed using the variation of the stress resultant vector (D), 
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T T TT

V V L
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  (33) 

 
The matrix St is termed the tangential rigidity matrix and is defined as, 
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where the tangent rigidity terms are given by, 
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By substituting Eqns (20,33) into Eqn. (32), the term 

0

T

V
dV  ε σ  is obtained as, 
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Combining Eqns (29,30,36),  the variation of the virtual internal work can be expressed as, 
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where, as shown above, p is the variation of the internal force vector in the local system. The 
element local stiffness matrix (Kl) is obtained as,  
  

  
00

211222

L

ddt
T
d

T
d

L

d
T
dl dxdx δδδδδδ NNSNNGNNK   (38) 

 
5. Calculation of tangent rigidities 
The tangent rigidities of the locally/distortionally buckled member can be determined from a 
non-linear post-local or post-distortional buckling analysis of a length of member as described in 
(Young, B. and Rasmussen, K. J. R. 1997). The calculated reduced rigidities can subsequently be 
read as input data to the non-linear beam element analysis program. In the post-local or post-
distortional buckling analysis, the length of the member should be chosen to ensure that both 
local and distortional buckling deformations develop freely, but global buckling is avoided. For 
sections subject to local buckling only (e.g., an I-section), a length of one local buckling half-
wavelength can be chosen, and the applied deformation may be applied by the use of rigid bars 
(plates) attached to the component plates such that the end displacements vary linearly according 
to the required deformation. For sections subject to distortional buckling only (e.g., back-to-back 
lipped channel sections with relatively small lips), the distortional buckling mode is associated 
with longitudinal displacements which are restrained when applying end displacements 
corresponding to major or minor axis bending or warping torsion. Consequently, to reduce the 
influence of such restraint on the distortional buckling deformations, it is convenient to analyse 
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lengths of members that allow multiple distortional buckles, say five, to develop. The analyses of 
one or numerous local/distortional buckles produce tangent rigidities that are average values for 
the length of member analysed. 
 
The vector of generalised strains is given by, 
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where, for a short length of member, the nonlinear terms in v and w may be ignored. Hence, in 
the post-local and post-distortional buckling analyses, small increments of generalised stain may 
be applied as, 
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Considering Eqns (35,40), the tangent rigidities can be calculated as, 
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 (41) 

 
The tangent shear modulus tG  is assumed to be equal to the full shear modulus G , so that 

( )tGJ GJ . This implies that the uniform torsion rigidity is assumed not to be affected by local 

or distortional buckling, which has been validated for the case of elastic local buckling 
(Rasmussen, K. J. R. 2004). 
 

231



 

Beam elements subject to bending or combined compression and bending require different 
combinations of axial straining and curvature to be considered while calculating tangent 
rigidities. The combinations are here obtained by applying distributions of the longitudinal strain 
() defined by  = -1.0, -0.9,……,1.0 as shown in Figure 4 for major axis bending, where   is 
defined as the ratio of the strain in the bottom flange to the strain in the top flange, such that  = 
-1.0 represents the case of pure compression and  = 1.0 represents the case of pure bending. For 
each combination of bending and compression, the local/distortional buckling half-wavelengths 
may be obtained from a finite strip analysis program, e.g. THIN-WALL (Papangelis, J. P. and 
Hancock, G. J. 1995) or CUFSM (Schafer, B. W. and Adany, S. 2006). 
 
In determining the tangent rigidities, a locally/distortionally buckled cell of a certain length was 
analysed using the geometric nonlinear finite element analysis in (ABAQUS 2009). The cell was 
subjected to increasing levels of compression, bending and warping, and at each level, small 
displacements were applied at the ends to produce additional small pure axial strain, curvature 
about the major and minor axes or warping, as per Eqn. (40). For each additional small 
generalized strain, the changes of the stress resultants were computed by appropriate integration 
of the stress over the area. Hence, the tangent rigidities could be obtained as the ratios of the 
change of stress resultant to the change of generalized strain, as expressed in Eqn. (41). See 
(Rasmussen, K. J. R. 1997; Young, B. and Rasmussen, K. J. R. 1997) for further details.  
 

 
Figure 4: Load combinations defined in strain for major axis bending  

 
6. Incorporation of reduced rigidity into program OpenSees 
It is well known that the stiffness of a member reduces as a result of local/distortional buckling 
of the cross section, which may be expressed generically as: 
 
 ( )t gEI EI   (42) 

  
where EI  and ( )tEI  can be any tangent rigidity. When the section is not locally/distortionally 

buckled, the geometric reduction factor g  is unity and ( )tEI EI . A similar expression has 

been incorporated in AISC specification (AISC 360-10 2010) to take account of stiffness 
reduction due to member yielding.  
 

L 

  

  

N M 
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The basic principle of the presented method is to find appropriate reduction factors ( g ) for each 

tangent rigidity term. In the nonlinear beam element structural analysis, the reduction of tangent 
rigidities depends on the extent of local/distortional buckling as well as the particular 
combination of the internal stress resultants (P, Mz, etc.). Thus g  

is not a constant factor but 

rather, it may change at each increment throughout the analysis. 
 
Using g-factors, the tangent rigidity matrix can be expressed as, 
 

 

( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( )

z y p w

z z yz pz zw

y yz y py yw

p pz py

g EA g ES z g ES y g EI p g ES w

g ES z g EI z g EI yz g EI pz g EI zw

g ES y g EI yz g EI y g EI py g EI yw

t
g EI p g EI pz g EI py

EA ES ES EI ES

ES EI EI EI EI

ES EI EI EI EI

EI EI EI

    

    

    

  
S

( ) ( ) 0

( ) ( ) ( ) ( ) ( ) 0

0 0 0 0 0

pp pw

w zw yw pw w

g EI pp g EI pw

g ES w g EI zw g EI yw g EI pw g EI w

EI EI

ES EI EI EI EI

GJ

 

    

 
 
 
 
 
 
 
 
 
 
 

  (43) 

 
where the unreduced rigidities can be calculated according to the geometry the cross-sections, 
and the g -factors are defined as, 
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For members with doubly-symmetric cross-sections subject to pure compression, due to the 
symmetry of the cross-section and the local/distortional buckling mode, only the diagonal terms 
of the tangent rigidity matrix (Eqn. (34)) and ( )p tEI  are non-zero during the analysis. Thus the 

matrix simplifies to, 
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For doubly-symmetric cross-sections subject to pure bending or combined compression and 
bending, other off-diagonal terms than ( )p tEI become non-zero as local/distortional buckling 

deformations develop. The effects of these terms were checked by switching on and off each 
term separately in the tangent rigidity matrix (St) during the verification analyses. It has been 
verified that for a doubly-symmetric cross-section in bending or combined compression and 
bending, in addition to the ( )p tEI

 
term, the off-diagonal ( )yw tEI  must also be considered. The 

tangent rigidity matrix simplifies to, 
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Figure 5 explains why the ( )yw tEI -term develops when local/distortional buckling deformations 

occur. As per Eqn. (41), the tangent rigidity ( )yw tEI  is the change of minor axis bending moment 

( yM ), that occurs as a result of a change of twist strain ( '' ), divided by '' . (It is also 

the change of bimoment ( B ), that occurs as a result of a change of minor axis curvature ( ''w
), divided by ''w ). Since yM zdA   , it is clear from Figure 5 that once the section is 

locally/distortionally buckled, the change of longitudinal stress (  ) caused by a small 
additional warping strain ( '' ) is uneven in the two flanges and hence, a minor axis bending 

moment ( yM ) is produced. This implies that the ( )yw tEI -term is non-zero. As will be shown in 

Section 6, the term can have a substantial influence on the structural response. 
 
The element local stiffness matrix (Kl) can be obtained from Eqn. (38) by substitution of 
Eqn. (45) or (46) for St. 
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Figure 5: Plate deformation under bending and stresses caused by ''  

 
On completion of an iteration, the increment in stress resultants (D ) needs to be obtained. In 
the OpenSees framework, increments in stress resultants are obtained by integration of 
increments in stress over the cross-section as per Eqn. (24). Thus, to comply with the Opensees 
framework, expressions for the stress increments () are here developed. 
 
Eqn. (33) may be rewritten as, 
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By using the definition of each term of the cross-section rigidities 
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Eqn. (47) may be rewritten as, 
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where,  
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The reduction factors are incorporated into OpenSees by means of multi-dimensional arrays. In 
general, the tangent rigidities ((EA)t, (ESz)t, (EIz)t, etc) are functions of the generalised strains 

, , ,x z y x    ), which define the deformed state of the locally/distortionally buckled length of 

member. In elastic analyses, the process is to systematically subject the locally/distortionally 
buckled cell(s) to increasing levels of one generalised strain, while keeping the other generalised 
strains constant, and at each combination of generalised strains, apply additional small 
generalised strain and calculate the tangent rigidities as per Eqn (41), as explained in Section 4. 
The tangent rigidities are thereby determined for combinations of discrete values of generalised 
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strains. Provided the generalised strains are finely spaced, particularly near the strain 
combinations causing local/distortional buckling, the tangent rigidities may be obtained by linear 
interpolation between the discrete values stored in the multi-dimensional arrays. 
 
Thus the tangent rigidities are to be calculated for a large number of combinations of generalised 
strains. Depending on the particular application and required level of accuracy, they may be 
assumed to be functions of less than the full set of generalised strains ( , , ,x z y x    ), as 

discussed further in Section 6. For the presented method to be useful in engineering practice, it is 
also necessary to derive simple expressions for the reduction factors (g) that can be implemented 
directly into the global analysis without the need for determining the factors a priori by a 
separate analysis of a locally/distortionally buckled cell(s). However, this latter step is beyond 
the purpose of the present paper which aims to show that the general method is accurate.  
 
Note that the Wagner strain ( W ) is not considered as a generalised strain in determining tangent 

rigidities in the present analysis. A separate study was carried out on locally buckled doubly-
symmetric beams in pure bending and locally buckled doubly-symmetric columns in pure 
compression by varying the tangent rigidities associated with the Wagner strain ( ( )p tEI and 

( )pp tEI ) from their full unreduced values ( pEI , ppEI ) to zero. It was found that the global 

response was insensitive to the values of ( )p tEI and ( )pp tEI  and hence, no attempt was made to 

determine the rigidities rigorously by subjecting the locally buckled cell(s) to twist rotation ( '  ) 

in addition to generalised strains ( , , ,x z y x    ) generated by longitudinal displacements. For 

convenience, in this paper, the reduction factors ( )
pg EI  and ( )

ppg EI
 
were set equal to ( )g EA . 

 
7. Comparison of beam and shell element analyses 
The proposed beam element method was verified by comparison with shell finite element 
analysis results of locally buckled beams under pure bending, which were obtained using the 
commercial software ABAQUS. Only elastic analyses were performed. An I-section was chosen 
for the analyses, the geometry of which is shown in Figure 6. The beams were simply supported 
at both ends. Warping and twisting deformations were restrained at the ends while flexural 
rotations were free to occur. 
 

  
Figure 6: Geometry of the cross-section (dimensions in mm) 
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For the presented method, the modified Displacement Based Beam-Column Warping Element as 
introduced in (Zhang, X., Rasmussen, K. J. R. and Zhang, H. 2012) was employed, using a total 
of twenty elements along the member. In the ABAQUS model, rigid plates were attached to both 
ends of the member. Contact between the member ends and the rigid plates was modelled by 
means of node-to-surface contact pairs. A reference node, which was used to apply load and 
boundary conditions, was defined for each rigid plate. 
 
The member lengths were chosen to be 4 m and 5 m, producing corresponding slenderness ratios 
(Ley/ry) of 133 and 167, respectively. An overall imperfection was superimposed onto the perfect 
geometry in the shape of the elastic overall buckling mode for flexural buckling about the y-axis. 
The magnitude of the imperfection at mid-length was chosen to be 1 mm. The material was 
assumed to be elastic. The Young’s modulus and Poisson’s ratio were 200000 MPa and 0.3 
respectively.  
 
Because the beams were subjected to uniform bending, the main deformation causing local 
buckling was major axis curvature ( z ). The tangent rigidities ( ( ) , ( ) , ( ) , ( )t z t y t w tEA EI EI EI ) 

were therefore assumed to be functions of only x  and z , where the axial strain (x) had to be 

considered to maintain zero axial force (P=0) after the development of local buckling. However, 
the tangent rigidity ( )yw tEI , which encapsulates the coupling between minor axis bending and 

warping, is primarily associated with flexural-torsional buckling deformations, and so was 
assumed to be a function of z , y and x . An imperfection in the shape of the local buckling 

mode with magnitude 0.012 mm (0.01 tf) was introduced in the analysis determining tangent 
rigidities. 
 
Figures 7-10 plot the applied moment versus in-plane deflection and applied moment versus out-
of-plane deflection for the 4 meter and 5 meter beams. For the 5 meter beam, two different cases 
were considered in the presented method. In case 1, the off-diagonal term ( )yw tEI

 
is ignored 

while assembling the stiffness matrix, whereas in case 2, the term ( )yw tEI
 
is considered, as 

shown in Figures 7 and 8. It can be seen from Figures 7 and 8 that there are significant 
discrepancies between the load-deflection curves for case 1 and ABAQUS. The discrepancies 
demonstrate that for a given applied moment, the stress resultants My and B may be significantly 
underestimated after the occurrence of local buckling when the ( )yw tEI  term is ignored. The 

results from case 2 show good agreement with the ABAQUS results. The discrepancies are 
within 5 percent for the in-plane deflection curves throughout the analyses. For the out-of-plane 
deflection curves, good agreement is achieved near the ultimate load, whereas small differences 
can be observed during initial lateral buckling.  
 
It can be concluded from the results shown in Figures 7-10 that unlike beams with compact 
sections which laterally buckle suddenly at the flexural-torsional buckling load, the lateral 
buckling of the beams with slender sections develops gradually after reaching the 
local/distortional buckling load. This phenomenon can be explained by reference to the ( )yw tEI

 
term. As shown in Figure 11, which illustrates the relationship between ( )yw tEI

 
and major axis 
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curvature (v''), ( )yw tEI
 
is triggered soon after the occurrence of local buckling, and rapidly 

assumes values that are comparable to yEI  and wEI . The presence of the ( )yw tEI
 
term reduces 

the section’s resistance to flexural-torsional buckling and leads to a more rapid growth of lateral 
deflections for a given applied moment. 
 

 
Figure 7: Moment in-plane deflection (5 m) 

 

 
Figure 8: Moment out-of-plane deflection (5 m) 

 

 
Figure 9: Moment in-plane deflection (4 m) 
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Figure 10: Moment out-of-plane deflection (4 m) 

 

 
Figure 11: Relations between ( )yw tEI

 
and ''v   

 
8. Conclusions 
A nonlinear analysis method for locally/distortionally buckled members has been presented and 
applied to doubly symmetric sections. The method allows localized cross-sectional deformations 
such as local and distortional buckling to be captured in simple beam-element-based nonlinear 
analyses, thus enabling non-compact or slender sections to be modeled without discretization of 
the cross-section in shell or plate finite elements. The method has been verified by comparison 
with ABAQUS shell element results of simply supported beams under pure bending. Good 
agreement was achieved for the load-deflection curves. The necessity of including off-diagonal 
terms in the analysis while calculating out-of-plane flexural-torsional buckling displacements 
was also presented and explained.  
 
The paper demonstrates how the effect of local/distortional buckling can be captured in the 
beam-element analysis by using tangent rigidities in place of full section rigidities (e.g. ( )z tEI  in 

place of zEI ) in calculating the element stiffness matrix. The determination of tangent rigidities 

is discussed in detail in the paper as are approximate ways of determining the rigidities. While 
the paper shows that the response of locally buckled beams can be accurately predicted using 
beam elements with reduced tangent rigidities, the ultimate aim of the presented analysis is to 
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produce a tool for practicing engineers that feature simple expressions for the reduction of the 
section rigidities caused by local/distortional buckling in a similar way to the -factors currently 
specified in the AISC-360 Specification to account for the reduction in rigidity caused by 
yielding. Research is ongoing to determine such simplified expressions. 
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