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Abstract

Vertical and horizontal plate stiffeners are designed for the steel infill plate of the steel plate wall
(SPW) systems to improve buckling stability and to prevent early elastic buckling of infill plates.
Nevertheless, a lack of analytical model exists that are capable of replicating stiffened plates’
load-displacement behavior. In this paper, an analytical method is proposed that is capable of
modeling the load-displacement behavior of stiffened infill plates for steel plate wall (SPW)
systems. The analytical model is an addendum to the previously proposed plate frame interaction
(PFI) method used for determining the shear load-displacement of unstiffened steel infill plates
of SPW systems. To evaluate the proposed model, the predictions of this model are compared to
results obtained from tests previously conducted, as well as those gained from finite element
(FE) analyses performed for this study. Considering the simplicity of the analytical mode, the
result of the evaluation indicates that the model is providing the stiffness and strength of
stiffened infill plates with an average error of -7% and 15% respectively.

1. Introduction

The steel shear wall (SPW) system has been used in a number of buildings in Japan and North
America as part of the lateral force-resisting system, in the past there decades (Astaneh-Asl,
2001). In earlier days, SPWs were treated like vertically oriented plate girders and design
procedures tended to be overly conservative. Web buckling was prevented through extensive
stiffening or by selecting an appropriately thick web plate, until more information became
available on the post-buckling characteristics of web plates.

In today’s designs, the SPW system is designed to buckle elastically, develop a tension field and
finally yield under extreme loading (Kharrazi, 2005). To increase the elastic buckling capacity,
the common practice is to increase the web thickness, or to use horizontal or/and vertical plate
stiffeners. To analyze and design SPW systems, mainly two well-known analytical methods
exist, which are: a). the strip model (Driver et al., 1994; Timler and Kulak, 1983), and b). the
plate frame interaction (PFI) model (Sabouri- Ghomi et al., 2005, and Kharrazi, 2005).

In the strip model, the infill panel is modeled using strips that are only carrying axial tension
load. The strip model is limited when it comes to wall configurations with opening or stiffeners
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(Rezai, 1999).0n the other hand, the PFI model is a general method capable of modeling a wide
range of SPW configurations. These configurations include walls with and without opening, with
and without plate stiffeners, as well as walls with thin or thick infill plates (Sabouri-Ghomi and
Roberts, 1991; Sabouri- Ghomi, 2001; Sabouri- homiet al., 2005; Kharrazi, 2005). The PFI
model can determine shear force and displacement values that corresponded to pre- and post-
critical buckling state, post-yield state and ultimate capacity of an individual panel.

In this paper, an analytical model is proposed to predict the behavior of the stiffened steel infill
plate under pure shear load, using the PFI model. This analytical rational is an addendum to the
PFI model established by Sabouri-Ghomi and Roberts, (1991); Sabouri-Ghomi, (2001); Sabouri-
Ghomi et al., (2005); and further developed by Kharrazi, 2005. The effectiveness of this rational
is then valuated by comparing its results to those obtained from experimental studies, and finite
element (FE) analysis.

2. Experimental study

Takahashi et al. (1973) conducted a series of experimental and FE studies on stiffened thin plated
SPWs in the early 1970s (Takahashi et al., 1973). They conducted quasi-static cyclic tests of 12
one-storey infill plate and 2 two-storey specimens in two phases. For the first phase of testing, 12
one-storey infill plate specimens were tested with overall width and height dimensions of
2100mm and 900mm, respectively, and with steel plate thicknesses of 4.5, 3.2 and 2.5mm. The
parameters investigated were the spacing and width of stiffeners on both sides, or on one side of
the steel panels together with the strength, hysteresis curve and post-buckling behavior of steel
panels. The specimens were considered as quarter-scaled SPWs in comparison to typical
building dimensions. All specimens had vertical or vertical and horizontal stiffeners welded on
one or both sides of the steel plate with the exception of one specimen. The boundary frames
were extremely stiff members so that any mid-height bending deformation is small enough to be
considered negligible. These highly stiff frame members were connected using pin-hinges at
both ends. All specimens were cyclic loaded along their diagonals with the aim of creating a
relatively pure shear in the steel panels. The stiffener configurations of the tested SPW
specimens are shown in Figures 1 to 3. Outcomes of the first test phase showed that all
specimens were able to withstand large deformations and exhibited very stable and ductile
behavior. It was reported that in some specimens the steel panels underwent global buckling,
because the width of the transverse stiffeners (as a result their moment of inertia) were small. In
other tests, local buckling was reported in the sub-panel, due to the relatively large spacing of
associated stiffeners (with high moment of inertia). In addition, elastic buckling of the panel, as
well as, plastic buckling were observed. Specimens with double-sided stiffeners indicated
stability improvements better than those with one-sided stiffeners. For infill plates designed with
stiffeners that have a relative high moment of inertia, the hysteresis diagram was observed to
take the shape of a spindle. Figure 4(a) displays the hysteresis curve of specimens constructed of
2.3 mm thick steel plates without stiffeners; (specimen P-2.3). Figure 4(b) shows the hysteresis
curve of the specimen with the same plate thickness but with horizontal and vertical stiffeners;
(specimen P-2.3-M2-60).

The material specifications and dimensions of the tested samples are given in Table 1. In Table 1

each specimen is named based on their configuration and dimension. Each sample name consists
of four parts: in the first part, P and PR stand for unstiffened and stiffened infill panel,
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respectively. The first set of numbers (second part of the naming convention) represents the
thickness of the infill plate in millimeters, and the third part represents the type of configuration
as shown in Figures 1 to 3. The last part indicates the width of the stiffeners. Only the first
sample (P-2.3) is made of infill plate without stiffeners. From the experimental study, the P-2.3,
PR-3.2-M2-15, PR-4.5-M1-15, and PR-4.5-G-10 specimens were observed to undergo elastic
global buckling, which was related to the stiffeners being too slender (Takahashi et al., 1973).
The sub-panels of the PR-2.3-M2-60 specimen were observed to undergo elastic local buckling
and the resistance of the infill panel is found to be mostly because of the post-buckling - tension
field action. The steel infill plates of the PR-4.5-M1-55, and PR-4.5-M1-35 specimens
experience buckling as they reached their shear yield point. The rest of the specimens were
observed to undergo plastic (local) buckling in their sub-panels. The backbone of the hysteresis
obtained from the tests results are shown in Figure 5. These figures also contain results from
analytical and numerical analyses done as part of this study, which will be explained next.

4. Finite element analysis

All specimens were modeled using FE method. Both, the specimens with double-sided stiffeners,
as well as, the specimens with one-sided stiffeners were modeled. In the modeling of the
specimens, SHELL S4R elements were used using the commercial available FE analysis
software ABAQUS/Explicit version 5.7. SHELL S4R is suitable for analyzing thin to
moderately-thick shell structures. It is a 4-node element with six degrees of freedom at each
node: translations in the X, y, and z directions, and rotations about the x, y, and z-axes. SHELL
S4R is well-suited for linear, large rotation, and/or large strain nonlinear applications. Change in
shell thickness is accounted for in nonlinear analyses. To account for buckling deformation, the
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solver including the large deformation was selected. Figure 6 shows a sample mesh of the
modeled specimens. The results obtained from the finite element analysis are plotted in Figures 5
to 16 together with the backbone curve. In this figures, to simplify the backbone further as well
as to make the comparison of these curvature easier, a bi-linear curve is plotted for each
backbone curve. The stiffness and strength from the FE analysis are tabulated in Table 2.

Shear stress (M>a)
Shear stress (MPa)

Figure 4: Hysteresis behavior of a) an unstiffened (P-2.3) and b) a heavily stiffened steel
plate wall (PR-2.3-M2-60) (Takahashi et al., 1973)
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Figure 6: Snap shot of the meshed model (PR-2.3-M2-60)

5. Stiffened plate behavior prediction using PFI method

The stiffened steel plate infill panel under shear load could generally buckle in two modes: (1)
global buckling mode, and (2) local buckling mode (Figure 7). Stiffeners are designed to force
the buckling of the infill plate from a global buckling mode to a localized buckling in the sub-
panels (i.e. local buckling mode). To achieve a local buckling mode, steel panels are typically
stiffened using vertical and horizontal stiffeners. Global buckling occurs when stiffeners are too
slender (or have low moment of inertia). As a result, the entire steel infill plate is going to
globally buckle including the plate stiffeners (Figure 18). To predict the infill panels behavior,
including the overall load-displacement, and the sub-panels buckling mode, an analytical model
is proposed in here using the PFI method and the classical buckling theory (Sabouri-Ghomi et.
al, 2007).

5.1 Global Buckling Mode

The critical shear buckling stress for the global buckling mode is obtained assuming the steel
panel with orthotropic stiffness. That means the stiffened steel plate was considered with two
different stiffness values in each global direction. The critical buckling shear stress for the global

mode, 7, is obtained from (Timoshenko, 1961, and Sayed-Ahmed, 2001):
K 72
ra = (D}D) )25 <7, (1)
3
D, - El, N Et : @)
s,  121-v?)
El 3
D, =—"+ Et > (3)
s, 12(-v
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t is the thickness of the steel plate, as well as, I, and I, are the stiffeners moment of inertia
around the X and Y axes, respectively. b and d are width and height of the infill plate,
respectively. E is the module of elasticity, v is the Poisson ratio, and s, , s, are the stiffeners

spacing in X and Y directions, respectively (Figure 3). z,, stands for shear yield stress of the

steel plate, which is 7 :%5, and 7, is the yield stress of the steel plate. K, is the global

buckling factor, (which is a function of Dx , Dy , b, d , as well as the steel plates boundary
condition. The minimum value of K, for plate to frame connection with pinned and rigid

characteristics is 3.64 and 6.9, respectively (Sabouri-Ghomi et. al, 2007).

5.2 Local Buckling Mode

The elastic-critical shear buckling stress, 7, for local buckling of sub-panels (surrounded by the

crl

stiffeners) is obtained from the classical stability equation (Timoshenko, 1961):

2

K7z°E [t

Tert = : N < Tsy (4)
121-v7) s,

where K, is the local buckling factor obtained from:

2
S S
K, =5.35+4 > | for L>1 (5)
Sy S,
2
S S
K, =535 = | +4 for —L<1 (6)
Sy S,

In Equation 4, the stiffener-to-plate connections are considered pinned connections (i.e. hinged
boundary condition).

5.3 Shear Load-Displacement
Once the overall static buckling behavior of the infill plate is determined, the post buckling shear
load displacement can be calculated. To draw the shear load-displacement diagram, the limiting

elastic shear displacement U, , and the shear strength of the web plate, F,, is needed to be
determined. These values are obtained from the PFI method (Sabouri-Ghomi et al., 2005, and
Kharrazi, 2005):

20,

E sin 20) )

o sin 260

U, =d(Ce +
G

Fo =bt(zy + (8)

where 7 is the critical buckling shear and is determined using the minimum value resulted from

Equations 1 and 4, @ is the angle of inclination for the tension field (which is in this paper for
simplicity considered 45 degrees), and the shear yield values, o, is obtained from:
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3tz +3r,0,5iN20+0,, —0, =0 9)

and the elastic module of shear, G, from:
E

B 2(1+v) (10)

where o is the yield stress of the steel plate.

Using these values the limiting elastic shear displacement, we U and the shear strength of the
web plate, F,, , are obtained for all the tested specimens and are tabulated in Table 3. These

values are obtained using the module of elasticity, E , equal to 210 GPa and the Poisson ratio, v
, equal to 0.3. The tabulated results are plotted in Figures 5 to 16. In these figures, the hysteresis
curve is represented by its backbone curve. Each figure includes not only the result from the PFI
method but also the FE results.

Figure 7: Buckling deformation of stiffened plate: global buckling mode (left),
and local buckling mode (right)

6. PFI Evaluation using Experimental Study

To evaluate the proposed model, the results of this model are compared to those obtained from
the test and the FE method. Primary aspects of this model such as stiffness, and yielding strength
of the steel plate were the criteria used to assess the effectiveness of the proposed rational.

The error values for the stiffness, and for the yield strength of the infill panel is given in Table 4.
This table compares FE result with test results (i.e. the bi-linear simplification), as well as, the
results of the proposed analytical model with the test results (i.e. the bi-linear simplification). It
also includes the comparison of FE outcomes with the results of the proposed analytical model.
The model is capable to predict the stiffness with an average error of -7%, and the overall
strength of the infill panel with an error of 15%. A negative percentage means that the value is
under predicted. The FE method is capable to predict the stiffness with an average error of 9%,
and the yield strength of the infill panel with an error of 10%. Comparing the outcomes of the
analytical model and the FE model, an average error of -14% was found for predicting the
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stiffness and an average error of 5% was determined for predicting the overall strength of the
infill panel.

Given the simplicity of the rational method, it could be considered as an alternative approach,
(when approximations needed quickly), to the existing numerical modeling techniques, and
resulting in outcomes that could be used for design of stiffened SPW systems.

7. Conclusions

In this paper, an analytical model was proposed for stiffened infill panels using the PFI method.
The model is capable to predict the buckling mode that is weather the infill panel has buckled in
local buckling mode or global buckling mode. To derive this analytical model, the classical
buckling relations were used. To evaluate the proposed model, the outcomes of FE analyses
conducted for this study and previous experimental studies were utilized.

In this paper, the proposed analytical model, which is also used in the PFI method, was found to
predict the SPW systems behavior with acceptable error. The model is capable to predict the
stiffness with an average error of -7%, and the overall strength of the infill panel with an error of
15%. Given the simplicity, the analytical model is a very simple approach for analysis and
design of this type of infill plates.
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