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Abstract 
The objective of this paper is to explore the flexural bracing requirements in cold-formed steel 
stud walls using an all-steel design philosophy, i.e., bracing that employs mechanical bridging 
alone, without sheathing. Bracing strength and stiffness demands in cold-formed steel framed 
walls must be adequate to ensure safety, but not overly conservative so that the requirements 
cannot be practically met. The current cold-formed steel design specification, AISI-S100-12, 
requires the brace for a single compression member to have stiffness equal to twice the ideal 
brace stiffness, but related proposals for braces in multiple stud walls including brace force 
accumulation and minimum brace stiffness have not yet been adopted. Elastic critical load and 
second order elastic analyses are conducted herein to determine an adequate level of stiffness for 
a single braced compression member, and relationships between strength and stiffness for braced 
multiple studs to that of a single stud. Statistics of measured member imperfections are 
incorporated to provide an equivalent imperfection for multiple stud walls. Design by second 
order analysis is utilized to determine how alternating the direction of studs affects strength and 
stiffness requirements. For a single braced compression member, the impact of allowing a 
minimum of 4/3 of the ideal brace stiffness, instead of twice, is explored as an alternative to 
current requirements. New design expressions for brace stiffness and strength, incorporating the 
notion of a minimum brace stiffness, and the equivalent imperfection, are provided. The new 
expressions provide the designer with greater flexibility in developing solutions that meet the 
necessary stiffness and strength. 
 
 
1. INTRODUCTION 
The current cold-formed steel design specification, AISI-S100-12, requires the following brace 
strength and stiffness for an individual compression member:   
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where, Fbr,1 is the required brace strength, βbr,1 is the required brace stiffness, Pr is the required 
axial compression on the member being braced, φ is the resistance factor, Lb is distance between 
braces, and n is the number of braces along the length of the stud. 
 
The development of the preceding bracing provisions is explained in Sputo and Turner (2006) 
and in Sputo and Beery (2008). They essentially follow the pioneering work of Winter (1960), 
and parallel AISC-360-10 and the contributions of Yura, Helwig, (see e.g. Yura and Helwig 
2009) and others as summarized in Ziemian (2010). The background of these bracing provisions 
is discussed in the following section to provide the fundamental expressions from which minor 
modifications are recommended herein. 
 
 
2. BACKGROUND 
 
2.1 Illustration of basic bracing behavior 
Ideal brace stiffness, βi, for a single mid-height brace is defined as the brace stiffness such that 
the elastic critical buckling load (Pcr) with the bracing equals pure second mode buckling, i.e.: 
 

 Pcr =
π 2EI

L / 2( )
2

 (3) 

 
where E is the material modulus, I the moment of inertia, and L the column length. Increasing the 
brace stiffness beyond βi will not increase the elastic buckling load of the column. This is 
numerically illustrated through an elastic critical buckling load analysis in MASTAN2 (McGuire 
et al. 2000) as shown in Fig. 1(a). In the example the pin-ended column is modeled as a 
362S162-68 [50 ksi] stud (AISI S200-12) with L = 96 in., and E = 29,500 ksi. The brace is 
modeled as a simple truss element with stiffness: 
 

 β =
EAbr
Lbr

 (4) 

 
where Lbr = 24 in. and E = 29,500 ksi. To find βi, the brace area, Abr, is incremented until the 
buckling load equals Pcr of Eq. (3).  
 
To illustrate how the bracing force evolves a second order (geometric nonlinear) elastic analysis 
of the column with an initial first mode imperfection of peak magnitude Δ0 = L/1000 is 
conducted at varying levels of β as illustrated in Fig. 1(b). Brace forces for an ideal brace β = βi 
are infinite – i.e., the member cannot develop the desired second mode behavior when starting 
from an initially imperfect geometry. However, developing the second mode Pcr is possible for 
higher brace stiffness, and the brace force required decreases as the brace becomes stiffer.  
 
Practically, the AISI-S100-12 provisions (following current practice), utilize twice the ideal 
brace stiffness: 2βi. This brace stiffness insures that the brace forces are minimized and provides 
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a significant tolerance for provided brace stiffness as brace forces demonstrate little change 
around 2βi. However, lower brace stiffness, e.g. 1.33βi also provides reduced brace forces, and in 
cases where it is practically infeasible to provide 2βi may provide equally adequate bracing. 
 

 
Figure 1: Single stud braced at mid-height (a) buckling load, and (b) brace force, vs. brace stiffness 

 
2.2 Bar spring model 
Stiffness and strength requirements for a mid-height brace of a single stud can be derived from a 
classic bar spring model. Consider the model of Fig. 2(a) with axial load P, stud height L, brace 
stiffness β, and lateral deflection of the stud at mid-height Δ. The ideal brace stiffness, βi, is 
found by summing the moment about the deformed geometry of the bottom half of the free-body 
diagram (Fig. 2(b)):  
 

 
2 2
LP Δ

Δ β=  (5) 

 
and setting the axial compressive load equal to the column buckling load, P=Pcr, then: 
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To determine the brace force we first note that the force in the brace is simply: 
 ,1brF βΔ=  (7) 
 
Considering the model with initial imperfection Δ0 (Fig. 2(c)) and again summing the moment in 
the deformed geometry: 
 

 0( )
2 2
LP Δ

Δ Δ β+ =  (8) 

 
Rearranging to solve for mid-height displacement: 
 

 0

4

P
L P

Δ
Δ

β
=

−
 (9) 

 
Applying Eq. (9), when the critical buckling load (P = Pcr) is applied to the stud with a brace of 
stiffness β = βi, the deflection of the stud at mid-height will be large (theoretically Δ = ∞). When 
Pcr is applied to a stud having initial imperfection Δ0 with a brace at mid-height of 2βi, the stud 
will deflect Δ0. Using Eq. (7) with Δ0 = L/1000, the resulting brace force is 0.8% of the applied 
load: 
 

 
,1 0

82 0.8%
1000br i

P LF P
L

β Δ == =
 (10) 

 

 
Figure 2: Free body diagrams (a) bar spring model, (b) deformed geometry of an initial straight column, and (c) 

deformed geometry of a column with initial imperfection 
 

335



 

Requiring braces with twice the critical brace stiffness may be conservative. At a brace stiffness 
of 1.33βi the brace forces are double that of a brace with 2βi stiffness, but still remain small (refer 
to Fig. 2(b)). Using Eqs. (9) and (7) with β=1.33βi and P=Pcr yields a brace force of 1.6% of the 
applied load, P: 
 

 0 0
031.33

4

cr

cr cr

P P
L P PP

Δ Δ
Δ Δ

β
= = =

−−
 (11) 

 
 ,1 01.33 3 1.6%br iF Pβ Δ= =  (12) 
 
Decreasing the brace stiffness from 2βi to 1.33βi doubles the required brace force (from 0.8%P to 
1.6%P) but is still manageable. Thus, a designer potentially has some greater flexibility in terms 
of required stiffness if the new required strength can be accommodated.  
 
2.3 Flexible column model 
The bar spring model is an idealization where the column is infinitely stiff. Realistically, the 
column flexibility plays a role in the solution as well. To illustrate these effects a numerical 
study with MASTAN2 and the same 326S162-68 stud column is performed. First a column 
model with only two elements is created to approximate the bar spring model. As the brace 
stiffness increased the brace force asymptotes to the value predicted by the bar spring model.  
 
Next, the column is modeled with 100 elements to accurately reflect the column bending and the 
initial half sine wave imperfection. Analyses are completed for various brace stiffness as 
summarized in Table 1. Even with large brace stiffness, the brace force asymptotically reaches a 
33.6% greater brace force than predicted with the two element bar spring model. This is a result 
of the flexibility of the column; the column deflects 33.6% greater than predicted by the bar 
spring model, and hence through Eq. (7) the brace force must also increase. A 600S200-118 
column was also modeled to study the effects of column stiffness on brace force. It was 
determined that the 33.6% difference in brace force is independent of column stiffness. 
 

Table 1: Comparison of brace force for various brace stiffness and columns 
  362S162-68 600S200-118 
β/βi Fbr (%P) 

Eq.’s 7,9  
Fbr (%P) 

 MASTAN2 
% 

difference 
Fbr (%P) 

MASTAN2 
% 

difference 
100 element stud 

1.3 1.733 2.336 34.77 – – 
2 0.800 1.072 33.95 – – 
10 0.444 0.594 33.67 0.596 34.01 
100 0.404 0.540 33.61 0.541 33.85 
1000 0.400 0.535 33.55 – – 

2 element stud 
1.3 1.733 1.397 19.432 
2 0.800 0.728 8.972 
10 0.444 0.440 1.063 
100 0.404 0.405 0.207 
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Specifying either 2βi or 1.33 βi yields a true brace force that is approximately 34% greater than 
the brace force calculated with the bar spring model, Eq. (13), i.e. 
 
 Fbr ,1,true =1.34Fbr ,1  (13) 
 
Considering Eq. (13) one finds that Fbr is ~1%P for a 2βi brace, and ~2%P for a 1.33βi brace. 
 
 
3. MULTIPLE STUD WALL WITH MID-HEIGHT BRACING 
 
3.1 Previous Research 
Sputo and Beery (2008) conducted a study to determine strength and stiffness requirements for 
multiple stud walls with identical same imperfections. Using a similar procedure for determining 
βi for single studs, brace cross sectional areas (all braces having the same area) were incremented 
until the wall reached 2nd mode buckling for an elastic critical load analysis. As 2βi is required 
for design, the analysis was re-run with 2βi braces and the resulting end brace force recorded. 
 
Sputo and Berry (2008) determined that there is a direct linear relationship between brace force 
and number of studs: 
 

 [ ], ,1br n s brF n F=  (14) 
 
and the required brace stiffness is related to the stiffness of a single stud as:  
 
 2

, ,1 0.4 0.5  for 1br n br s s sn n nβ β ⎡ ⎤= + >⎣ ⎦  (15) 
 
where ns is the number of studs in walls braced on one end, Fbr,n is the maximum brace force, 
and βbr,n is the required brace stiffness. In this case Fbr,1 refers to the required brace force of a 
single braced column as determined through the same structural model. 
 
The above equations are an empirical fit to the results obtained through the elastic critical load 
analysis. Interestingly, the results do not reflect a general second order elastic analysis. Further, 
the equations do not shed any light on the mechanics of the brace stiffness and strength 
requirements for multiple braced studs, thus further exploration is conducted.  
 
3.2 Derivation 
Consider a multiple stud wall braced at one end. Brace forces accumulate through the wall 
system as they approach the end support, theoretically linearly per Fig. 3(a). Each brace behaves 
as a spring, thus the equivalent stiffness of the system can be calculated as the stiffness resulting 
from a springs in series: 
 

 2 3 4 5

eq

F F F F F F
β β β β β β

= + + + +  (16) 
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Note, that practically the bracing stiffness is a constant β as a single member is used for the 
bracing (bridging). A more efficient solution would be to use stiffer bracing as the forces 
accumulate, and this could be accommodated in Eq. 16. Nonetheless, solving Eq. (16) for βeq: 
 

 
( )

1

11 2 3 4 5

sn

eq
i
iβ

β β
−

=

⎛ ⎞
= = ⎜ ⎟+ + + + ⎝ ⎠

∑  (17) 

 
The equivalent stiffness of the wall system is reduced due to the brace force accumulation. 
Therefore, the required stiffness of braces in a multiple stud wall increases and is related to the 
required stiffness of a single braced stud, as given in Eq. (18),  
 

 , ,1
1

sn

br n br
i
iβ β

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (18) 

 
3.3 Comparison with Sputo and Beery proposed expressions 
The theoretical expression of Eq. (18) is compared with MASTAN2 analysis (multiple 362S162-
68 studs with equal L/1000 imperfections) and the empirically derived expression of Sputo and 
Beery, Eq. (15), in Fig. 4(a). The theoretical expression overly predicts the required brace 
stiffness, and Eq. (15) better tracks the simulation results. Eq. (15) was empirically fit to 
MASTAN2 analysis, so the agreement is not a surprise; however, here full second order elastic 
analysis was conducted to determine the brace stiffness as opposed to elastic critical load 
analysis used in Sputo and Beery.  
 
The primary error in the theoretical model develops from the assumed force accumulation. Only 
for infinitely stiff bracing do the forces develop per Fig. 3(a). For practical brace and column 
stiffness some of this load is transferred into the column supports, and in fact for the studied case 
the force accumulation is as provided in Fig. 3(b). The error in assuming linear brace force 
accumulation is modest, as show in Fig. 4(b). Further, assuming linear brace force accumulation 
is simple and provides a mechanical match between assumed brace forces, Eq. (14), and 
stiffness, Eq. 18, but does lead to a more conservative formulation.  
 

 
Figure 3: Brace force distribution for a 5 stud wall (a) theoretical with ∞βi studs, and  

(b) from numerical model with 2βi studs, (F = Fbr,1) 
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3.5 “No” accumulation for +/- L/1000 alternating imperfections 
It is important to recognize that the direct accumulation of the bracing force is due to the 
assumption that all of the studs have maximum imperfections and all imperfections are in the 
same direction. If one considers the case of “flipped” studs, where the stud orientation is flipped 
from stud to stud, resulting in + and - imperfections along the stud wall the bracing forces no 
longer accumulate, as illustrated in Fig. 4(b). The accumulation is only a function of the 
imperfection, not the brace stiffness, as confirmed by completing analysis at 1.33βi as well as 
2βi; neither of which lead to accumulation when “flipped” studs are employed. Note, in addition 
that this conclusion impacts the required brace stiffness, as the brace force in Eq. (16) now is 
always just F, so the required bracing stiffness only increases linearly in this case. 
 

 
Figure 4: (a) brace stiffness ratio, and (b) brace force ratio, vs. number of wall studs 

 
3.6 Expected accumulation for random imperfections 
The use of L/1000 for imperfection magnitude is related to the history of maximum measured 
imperfections in structural steel columns (Ziemian 2010) and has over time been utilized as a 
manufacturing tolerance in steel studs as well. As detailed in Zeinoddini (2011) expected 
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imperfections in cold-formed steel studs are less than L/1000. Based on available data the 
probability that a random imperfection in a single stud is less than L/1000 is 95%. 
 
Now consider a wall with ns studs. The brace force accumulates based on the actual 
imperfections. Most of the imperfections (95% of the time!) are considerably less than L/1000. 
For n studs, we seek an imperfection level that has the same confidence level as L/1000 for a 
single stud. That is, what average level of imperfection can one have 95% confidence won’t be 
exceeded? This was addressed in Zeinoddini (2011) and is found to be: 
 

 Δ0 =1.69
L / 3054
ns

+ L / 2242  (19) 

 
At n=1 (one stud) the equivalent imperfection is L/1000 as n increases the result asymptotically 
approaches the average of the imperfection measurements: L/2242. 
 
For a 5 stud wall the equivalent imperfection is L/1442. Using Eqs. (7), (9), and (14), the 
maximum brace force for a 5 stud wall with equivalent imperfection can be compared. With 2βi 
braces and equivalent imperfection of L/1442, Fbr,1 = 0.55%P and Fbr,5 = 2.8%P compared with 
Fbr,5 = 4.0%P for Δ0 = L/1000. For 1.33βi braces and Δ0 = L/1000, Fbr,1 = 1.1%P and Fbr,5 = 
5.5%P, which is 31% less than studs with Δ0 = L/1000, where Fbr,5 = 8.0%P. 
 
4. RECCOMENDATIONS FOR DESIGN 
 
4.1 Required stiffness and strength for single stud 
It is recommended that bracing design utilize slightly more freedom than current approaches. 
Therefore, it is proposed that the brace stiffness be allowed to be as little as 1.33βi:  
  

 βbr ,1 ≥1.33βi =1.33
4Pr
L

"

#
$

%

&
'  (20) 

 
Further, the actual brace stiffness should be used to determine the brace force (thus higher 
stiffness is rewarded, but not required). Utilizing Eq.’s (6), (7), and (9) for the simple case of a 
single mid-height brace this results in: 
 

 Fbr ,1 =1.34βbr ,1Δ = 1.34βbr ,1
Δ0

βbr ,1 / βi( )−1
=1.34βbr ,1

L /1000
βbr ,1 / βi( )−1

 (21) 

 
Note, Eq. (21) utilizes the empirically determined “true” brace force by increasing the bar-spring 
model solution by 1.34. If βbr,1 = 2βi Eq. (21) results in Fbr,1 = 0.01072Pr, essentially the same 
bracing force as current design of Eq. (1). However, in the preceding formulation lower brace 
stiffness is allowed.  
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4.2 Required stiffness and strength for wall with multiple studs (anchored on one end only) 
Extending the philosophy of bracing for one stud to multiple studs the required bracing stiffness 
is recommended to be greater than 1.33 time the ideal stiffness, taking into account the 
increasing forces in the bracing per Eq. (18). The required brace stiffness is 
 

 βbr ,n ≥1.33βi i
i=1

ns

∑
#

$
%
%

&

'
(
(=1.33

4Pr
L

#

$
%

&

'
( i

i=1

ns

∑
#

$
%
%

&

'
(
(  (22) 

 
This required stiffness increases quickly. Use of the lower 1.33βi provides some relief, but as 
noted previously, part of the difficulty is the use of the same brace for bracing all studs, which 
becomes progressively less effective as the brace forces accumulate. To determine the brace 
force it is first worthwhile to note the equivalent brace stiffness from the multiple stud system, 
from Eq. (17): 
 

 βeq = βbr ,n i
i=1

ns

∑
"

#
$
$

%

&
'
'

−1

 (23) 

 
Now, assuming a linear accumulation of the brace force, but taking advantage of the equivalent 
imperfection size as the number of studs increase (Eq. 19), then the maximum brace force 
developed at the anchor of the braces is: 
 

 Fbr ,n = ns1.34βeqΔ = 1.34βeq
Δ0

βeq / βi( )−1
=1.34βeq

1
βeq / βi( )−1

1.69L
3054 ns

+
L
2242

"

#

$
$

%

&

'
'
 (24) 

 
4.3 Discussion 
The recommended brace stiffness (Eq. 22) and brace strength (Eq. 24) may be compared to the 
earlier proposals of Sputo and Beery (2008). The comparison of expressions for brace stiffness 
are provided in Fig. 5(a) and indicate that use of a lower required brace stiffness may be 
beneficial in some cases, but the accumulation results in significant challenges in field 
implementation. The comparisons of required brace forces, as provided in Fig. 5(b), is slightly 
more complicated as the developed forces are a function of the provided stiffness and the 
imperfection magnitude. As illustrated in Fig. 5(b), if the minimum brace stiffness (1.33βi) is 
used and it is assumed that the imperfections are all at maximum values (L/1000) the maximum 
brace force for 10 studs is greater than 20%Pr! If the notion of a statistically equivalent 
imperfection is employed, i.e., Eq. (19), then the maximum brace force for 10 studs reduces to 
13%Pr. If a higher brace stiffness is provided (2βi) and Eq. (19) is again used for the initial 
imperfection, as in the proposed Eq. (24), then the maximum brace force for 10 studs is reduced 
to 7%Pr. The results indicate that controlling brace forces is realistic and possible (stiffness is a 
greater challenge). In addition, the results indicate the large range of possible design solutions 
available to the engineer trying to provide adequate brace stiffness and strength. 
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(a)  

(b)  
Figure 5: Comparison of expressions for (a) brace stiffnessa, and (b) brace force, vs. number of wall studs 

 
An important addition in bracing design per AISI-S100 (2012) is the allowance for direct second 
order elastic analysis, as completed in this paper, to replace Eq.’s (1) and (2). This method can be 
utilized to great advantage for non-standard cases, such as in the study conducted herein with 
alternating imperfections. In addition, non-standard bracing configurations, with changing brace 
numbers, brace stiffness, struts that remove partial brace forces, etc. all can be included directly 
in the analysis and use to determine brace forces in design. 
 
This paper addresses only stud flexural buckling. Bracing strength and stiffness requirements for 
discrete bridging in flexural-torsional buckling are not currently available. Direct second order 
elastic analysis using a beam element that properly accounts for flexural-torsional buckling is 
one possible design option. In this case Green et al.’s (2006) work provides some estimation of 
the torsional bracing stiffness available from standard stud bridging details, and Zeinoddini 
(2011) provides expected imperfection magnitudes in camber and twist including analogs to Eq. 
(19) for these imperfections. Direct development of the bracing stiffness and strength in 
combined buckling modes (like flexural-torsional buckling) can be challenging, see Vieira and 
Schafer (2013) for a solution to this problem utilizing sheathing bracing that could be extended 
to discrete bracing. 
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5. CONCLUSIONS 
Bracing strength and stiffness requirements for stability bracing against flexural buckling of a 
single column or a multiple column wall with a mid-height brace are investigated. Classical bar-
spring solutions are compared with direct second order analysis using numerical (beam finite 
elements) solutions and empirically shown to differ by 34%. The origins of the brace stiffness 
requirements to be twice the ideal brace stiffness are revisited, and the impact of utilizing lower 
brace stiffness explored. For multiple stud walls, the accumulation of required bracing stiffness 
is demonstrated through a simple model of braces in series and assuming linear accumulation of 
brace force. Initial imperfections have a significant impact on brace forces. For example, it is 
theoretically shown that for the case of alternating imperfections, brace forces do not 
accumulate. For multiple stud walls an equivalent imperfection (with the same probability of 
exceedance in multiple stud walls as L/1000 in a single stud) is recommended to replace the use 
of maximum L/1000 imperfections. These findings are drawn together into a recommended 
method that provides required brace stiffness and strength requirements. The method allows the 
designer to use as little as 4/3 the ideal brace stiffness, and incorporates the beneficial equivalent 
imperfection when determined brace forces. The resulting method provides the design greater 
flexibility in developing an adequate bracing system and complements new provisions for 
analysis-based calculation of bracing strength and stiffness requirements. 
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