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Abstract 
In practical applications, compression members in trusses or bracing systems are often composed 
of hollow sections with slotted gusset plates on both ends. Either a bolted connection with splice 
plates on both sides or a welded connection are used to achieve a concentric configuration. In 
recent application cases, members of this type were designed with unusually long gusset plates at 
their ends, leading to reduced load bearing capacities. 
In the present paper, the load carrying behavior of such members is shown by means of realistic 
numerical calculations. The resulting compression member capacities are compared with the 
design models for flexural buckling as they are commonly employed in practice. 
It will be shown that these models significantly overestimate the compression member capacity – 
particularly in cases with low slenderness. Interestingly, imperfection forms similar to the second 
eigenmode often lead to the most critical design situation. The influence of residual stresses due 
to the welding of the gusset plate to the slotted hollow section is also studied in detail. 
On the basis of these numerical results, an improved engineering design recommendation for the 
practical verification of the gusset plate stability could be developed, which should be used in 
addition to the conventional member buckling verification. 
 
 
1. Introduction and motivation for a comprehensive study 
Members in trusses as well as members of bracings are often designed with hollow sections 
(rectangular – RHS or circular – CHS) and slotted gusset plates on both ends. Either a bolted 
connection with splice plates on both sides or a welded connection are used to achieve a 
concentric configuration. Two typical examples are shown in Fig. 1. 
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Within the literature, a lot of studies are available dealing with the load transfer from the gusset 
plate to the hollow section (e.g. Zhao R. (2009) and references there), however the focus is 
placed on tension applications, excluding buckling phenomena. 
In past detailing practice, the buckling resistance was sufficiently warranted by performing a 
buckling check for the hollow section itself, since the gusset plates were usually very short and 
had a negligible effect on the buckling length and/or were not the subject to significant second-
order out of plane bending. However,  more recent detailing practice led to free lengths L1 of the 
gusset plates that are significantly larger than old design tradition. 
As will be shown in the following, the limited cross-sectional bending capacity of the gusset 
plate can also lead to a significant reduction of the overall compression strength of the member. 
Only for very slender members a conventional buckling verification – even when taking account 
of the potentially increased buckling length due to the reduced bending stiffness in the joint 
region – is sufficient to guarantee structural safety.  
 
If, in addition to a long gusset plate, an eccentric joint configuration is chosen (e.g. directly 
bolted without splice plates) a further, significant reduction of the member compression capacity 
is observed. In this case design recommendations are given in Unterweger (2010). 
 
2. Simplifications and parameter range of the study 
In order to study the load bearing capacity of hollow sections with slotted gusset plates on both 
ends, some simplifications were introduced, shown in Fig. 3. In this figure,  the studied geometry 
with the chosen symbols and notations is presented as well. The two studied border cases for 
boundary conditions of the gusset plate are: - pinned (BC1) and, - fully clamped (BC2) ends, 
with rigid support out of plane (in both cases). 
 
In the study described here, squared hollow sections were analyzed, ignoring the fillets at the 
edges (b = h) and leading to the area A0, second moment of area Jz0 and radius of gyration rz0. 
However, the final results can be shown to also be valid for rectangular and circular hollow 
sections. The free length L1 of the gusset plate was varied between L1 = 1,0 · h ÷ 2,0 · h. The 
height of the gusset plate h1 was fixed with h1 = 1,3 · h, which is typical for practical 
applications. 
 
The slotted length Ls, which was chosen to be Ls = 1,75 · h, is of great significance and 
represents a minimum value: this length is at least necessary in order to utilize the full axial and 
bending capacity of the member at the end of the gusset plate, due to the load introduction from 
the gusset plate into the hollow section. This was also verified within the comprehensive FEM-
study, which will be presented in section 4. 
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Figure 6: Compressive Strength of a column – alternative approach 

 
Based on the second order theory approach in Fig. 6, it is now possible to show the utilization of 
the relevant gusset-plate section capacity in axis 1. In Fig. 7, a typical example of a hollow 
section member (RHS: h = b = 200, t = 10 mm) of length L0 = 8000 mm is shown. 
 
The member compression strength of Pn = 840 kN given in Fig. 7a is based on the proposed 
verification in Fig. 4, using the effective length factors 1 in Fig. 5 and the buckling curve a of 
the Eurocode (2012). The shape of the imperfections is based on the 1st buckling eigenmode 
(simplified in a sine-wave form) in Fig. 7a and on the 2nd mode (simplified, with eequ in section 1 
of Fig. 7) in Fig. 7b. 
 
When the load is thus set equal to the theoretical resistance Pn = 840 kN, only the hollow 
member has sufficient section capacity. In the gusset plate section 1 – particularly for the 
imperfections based on the 2nd mode – the utilization factors UF1 are significantly higher than 1, 
and this even if the increased plastic section capacity is used (UF1,pl). 
 
This means that the compression strength based on the buckling verification of the member with 
increased, equivalent buckling length (see Fig. 4) significantly overestimates the buckling 
capacity of the member with slotted gusset plates, because the gusset plate section 1 (and not the 
mid-span cross-section of the HS member) determines the ultimate capacity, as well as the fact 
that imperfections based on the 2nd mode must also be considered. 
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Figure 7: Practical example of a hollow section member with slotted gusset plates; Reduced buckling strength due to 

reduced section capacity in section 1 of the gusset plate 
 
 
 
4. Simulation of the realistic load bearing behavior of members with slotted gusset plates 
The realistic load bearing behavior of members with slotted gusset plates, shown in Fig. 3, was 
studied in detail, based on numerical FEM-calculations. 
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gusset plate section are shown. If a reduced plastic capacity curve – with a linear interaction 
between axial force and bending moment - is used for the gusset plate, the intersection point with 
the deformation curve (U3 = e1,0 · fII) gives the result of the design model (N/Npl,RHS = 0,28 in 
Fig. 12). 
 
This compressive strength is in good agreement with the real ultimate load of approximately 
N/Npl,RHS = 0,29, albeit the latter features higher deformations U3 = 20 mm. 
 

 
Figure 12: Deformation and cross-sectional resistance at the relevant gusset plate section for pinned ends 

 
This simple design model works for all types of geometrical imperfections (as described in Fig. 
10) and for both buckling modes. It is worth mentioning  that - for the deformation U3 based on 
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the simple elastic 2nd order amplification factor,  the relevant ideal buckling load Ncr,i must 
always be considered.  
Table 1 summarized some additional examples. The results of the simple engineering design 
model (NEng.model) are compared with the FEM-calculations (NGMNIA). 
 
It can be seen that - for the eigenmode-affine imperfections, with equal amplitudes, see Fig. 10a- 
nearly in all cases the 2nd modes lead to the lower ultimate compressive strength. 
 
In the case of a member with clamped ends at the gusset plate (BC2 in Fig. 3), the design model 
is more complex due to the fact that the overall moment Mges caused by the deformation w1 at the 
member end must be splitted in two individual parts for the two relevant sections I and 1, see 
Fig. 13. 
 
Table 1: Load bearing capacities NR [kN] for the variation of geometric imperfection shapes only (based on Fig. 10); 

RHS 100/200/10, t1 = 28, L1 = 400 mm 

end 
support 

length 
L0 [m] 

Ncr,1 
Ncr,2 

eigenmode-affine; e0,max = L0/750 Gusset plate inclination 
e1,0 

[mm] 
NGMNIA 

[kN] 
NEng.model 

[kN] 
e1,0 

[mm] 
NGMNIA 

[kN] 
NEng.model 

[kN] 
BC 1 
pinned 

4,0 1.184 
1527 

4,51 
5,33 

670 
707 

680 (+1,5 %) 
708 (+0,1 %) 

4,0 
4,0 

697 
772 

707 (+1,4 %) 
786 (+1,8 %) 

8,0 954 
1.313 

4,45 
10,6 

611 
514 

615 (+0,7 %) 
497 (-3,3 %) 

4,0 
4,0 

646 
726 

633 (-2,0 %) 
740 (+1,9 %) 

12,0 595 
1.213 

2,78 
14,6 

497 
430 

497 (0 %) 
412 (-4,2 %) 

4,0 
4,0 

521 
700 

467 (-10,4 %) 1

716 (+2,3 %) 
BC 2 
fully 
clamped 

4,0 4.642 
5.199 

3,27 
5,32 

1.386 
1.241 

1.361 (-1,8 %) 
1.217 (-2,0 %) 

4,0 
4,0 

1.373 
1.340 

1.300 (-5,3 %) 
1.313 (-2,0 %) 

8,0 1.791 
4.697 

1,13 
8,65 

1.213 
1.086 

1.357 (+12 %) 
1.012 (-6,8 %) 

4,0 
4,0 

1.312 
1.351 

1.064 (-19 %) 1

1.302 (-3,6 %) 
1. not relevant, because buckling of the member determined (section m) 

 
The proposed design model for this cases focuses now on section I, because at this location a 
design verification of the welded connection is needed as well. The moment in section I can 
conservatively be estimated to amount to about 70 % of Mges, due to the fact that the simple 
engineering model underestimates the deformation w1 by using fII. In partial compensation of 
this error,  it can be shown that at section I the full plastic section capacity can be utilized. 
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Note: Based on execution codes EN 1090-2 (2008) and EN ISO 13920 (1996). Different 
imperfection amplitudes may be considered on the basis of other national or industry-specific 
tolerance requirements. 
 

b) geometric equivalent imperfections at the gusset plate (section 1) 
e1,equ = fequ · e1,0 = 2.0 · e10 = 2.0 · L1/100 ≥ 4 mm 
Note: The factor fequ is a very conservative assumption, based on the study of the effects of 

residual stresses due to welding of the connection between gusset plate and member. 
 

c) verification 
 pinned ends (BC1): (only reduced plastic section capacity available) 

 ௗܰ ∙ ݁ଵ,௘௤௨ ∙
ଵ

ଵିே೏ ே೎ೝ,భ⁄
൑ ଵ,௣௟,ோௗܯ ∙ ൫1 െ ௗܰ ଵܰ,௣௟,ோௗ⁄ ൯ (5) 

 
 fully clamped ends (BC2): 

 0,7 ∙ ௗܰ ∙ ݁ଵ,௘௤௨ ∙
ଵ

ଵିே೏ ே೎ೝ,భ⁄
൑ ଵ,௣௟,ோௗܯ ∙ ቀ1 െ ൫ ௗܰ ଵܰ,௣௟,ோௗ⁄ ൯

ଶ
ቁ (6) 

- End moment MI (basis for weld connection design) 

ூௗܯ  ൌ 0,7 ∙ ௗܰ ∙ ݁ଵ,௘௤௨ ∙
ଵ

ଵିே೏ ே೎ೝ,భ⁄
 (7) 

 
Note 1: - the ideal buckling load Ncr,1 for the 1st mode must always be used 
Note 2: - the plastic section capacity M1,pl,Rd and N1,pl,Rd of the gusset plate are defined (with 

Fyd … design value of the yield stress), respectively: 

ଵ,௣௟,ோௗܯ  ൌ
௛భ∙௧భ

మ

ସ
∙ 	;௬ௗܨ ଵܰ,௣௟,ோௗ ൌ ݄ଵ ∙ ଵݐ ∙  ௬ௗܨ
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