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Abstract 

Finite strip eigen-buckling methods are introduced and validated through finite element eigen-

buckling studies for calculating the local, distortional, flexural, and flexural-torsional elastic 

buckling of open thin-walled steel columns with periodic perforations. The goal in developing 

these simplified elastic buckling prediction methods is to provide an alternative to often 

cumbersome thin shell finite element modeling and, in research to come, the tools to accurately 

predict capacity of cold-formed steel rack sections, including the influence of holes, without the 

need for physical testing. For local buckling, an elastic plate buckling coefficient is derived with 

an energy solution considering hole size and frequency. The coefficient, which is lower to reflect 

the influence of holes on local buckling, is represented as a reduced cross-section element 

thickness in a finite strip analysis. For distortional buckling, the reduction in transverse web 

bending stiffness bracing the compression flanges is found to be a function of the planar net and 

gross areas of the perforated web element and is used to the modify web thickness in a finite strip 

analysis. For global buckling two viable methods are proposed for calculating the elastic 

buckling load including hole patterns. The first is a weighted average approach employing the 

classical cubic buckling equation and the second is simply to multiply the buckling load of the 

unperforated member by a ratio of the weighted average to gross-section properties of moment of 

inertia for flexural buckling and the St. Venant torsion constant for flexural-torsional buckling.  

 

1. Introduction 

This paper presents and validates approximate methods for characterizing the elastic buckling 

behavior of thin-walled steel columns with periodic perforation patterns typical of cold-formed 

steel rack columns. The elastic buckling solution methods are also potentially applicable to hot-

rolled steel columns with periodic perforations, slit steel thermal studs, acoustic cold-formed 

steel metal decks, and cellular structures in the aerospace industry. 

 

Steel pallet rack columns are punched with hole patterns along their length to accommodate rack 

shelf connections as shown in Fig. 1. The influence of these perforations on column compressive 

strength is treated in the U.S. with the Rack Manufacturers Institute’s (RMI) Q factor method 

(RMI 2008) and in Europe with the European Committee for Standardization’s (CEN) 

modification to the effective width method (CEN 2009). Both the Q factor method and the 
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modified effective width method rely on stub column tests to characterize the reduction in local 

buckling strength from perforations. In the RMI design approach, the Q factor ignores the 

influence of holes on distortional and global buckling capacities, both of which have been shown 

to decrease with the presence of holes (Hancock 1984; Moen and Schafer 2009a; Sarawit 2003). 

For these reasons, the RMI has begun exploring a more general, equation-based alternative to 

strength prediction through the efforts of researchers in the U.S. and Europe (e.g., Casafont et al. 

2012), with a focus on the Direct Strength Method. This research was conducted in support of 

these efforts.  

 

 
Figure 1: Storage rack a) assembly and b) shelf connection (UNARCO 2012) 

 

The current state-of-the art in open thin-walled steel column design is the Direct Strength 

Method (DSM) (AISI 2007; Schafer 2008). A designer using the DSM will determine the critical 

elastic buckling loads for local (Pcr), distortional (Pcrd), and global or Euler buckling (Pcre) with 

finite strip eigen-buckling analysis of the column cross-section. These elastic buckling 

parameters are used to calculate slenderness values that are input into design equations to predict 

column capacity. 

 

Perforations affect behavior of open thin-walled steel cross-sections and thus affect local, 

distortional, and global critical elastic buckling loads. Axial and bending stiffness of perforated 

elements (e.g., web and flange) is reduced, which can amplify local buckling deformation and 

decrease post-buckling capacity (Yu and Davis 1973). Cross-section deformation from 

distortional buckling is also amplified because the presence of web holes decreases the 

stabilizing influence of the web on the section (Hancock 1984; Moen and Schafer 2009a; Moen 

et al. 2013). Perforation patterns reduce global stiffness and capacity of the cross-section 

(Sarawit 2003) but reduction of these values is typically less severe than local or distortional 

buckling.  

 

The DSM now addresses observed effects of discrete perforations in cold-formed steel columns 

and beams, for example a C-section wall stud with punched holes at 24 in. on center. The critical 

elastic buckling loads (Pcr, Pcrd, Pcre) are calculated including the influence of holes with 
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approximate classical plate and column buckling hand solutions and extensions to traditional 

finite strip analysis (Moen and Schafer 2009a; Moen and Schafer 2009b). The presence of holes 

typically reduces Pcr, Pcrd, and Pcre, causing cross-sectional and global slenderness to increase, 

for example λc = (Py/Pcre)
0.5

, which results in a decrease in predicted capacity. The DSM 

equations also address the possibility of inelastic buckling and yielding of the net cross section at 

a hole by limiting the column capacity to Pynet = AnetFy. A final check of the three limit states 

results in the column capacity including the influence of holes, i.e., Pn = min(Pne, Pn, Pnd). 

 

Periodic perforations differ from discrete perforations in that they are smaller in size, are more 

tightly spaced, may contain more than one row of holes across the web or flanges of a cross-

section, and are arranged in a pattern over the length of the member. Past research on the topic of 

columns with periodic perforations is of wide variety and has only recently considered the DSM 

(Casafont et al. 2012). An investigation of elastic buckling and strength of local and distortional 

modes for thermal studs was performed by Kesti (2000). Sarawit (2003) examined elastic local 

and global buckling and strength of three different rack sections. A method that forgoes elastic 

buckling prediction to find column strength and considers two different rack sections was lead by 

Davies (Davies et al. 1998). Pu and a team of researchers investigated the effect of multiple 

perforations in hot-rolled and cold-formed steel stub columns (Pu et al. 1999). Channel stub 

columns that featured circular (Rhodes and Schneider 1994) and slotted (Rhodes and Macdonald 

1996) perforations were also tested. Hancock researched the effect perforations have on elastic 

distortional buckling and distortional buckling strength of three rack sections (Hancock 1984). 

 

This paper investigates new finite strip approaches for calculating Pcr, Pcrd, and Pcre including 

the influence of periodic perforations. The methods are validated with thin-shell finite element 

eigen-buckling models of common rack cross-sections featuring web perforation patterns and 

recommendations are presented in a format consistent with the American Iron and Steel 

Institute’s (AISI) North American Specification for the Design of Cold-Formed Steel Structural 

Members. The elastic buckling prediction results are compared to methods developed at the 

Polytechnic University of Catalonia (Casafont et al. 2012), to be known as Catalan prediction 

methods herein. 

 

2. Thin Shell Finite Element Eigen-Buckling Parametric Studies 

Seven perforation parameters were identified to potentially affect elastic local, distortional, and 

global buckling for rack sections: longitudinal perforation dimension, longitudinal perforation 

pitch, transverse perforation dimension, transverse perforation pitch, member shape, member 

thickness, and member length. A series of ABAQUS eigen-buckling analyses were conducted to 

examine the effect of these parameters on elastic buckling. The boundary and loading conditions 

of the models used in the analyses are shown in Fig. 2. 

 

Cross-section shapes in this study (Fig. 3 and Table 1) were chosen to be similar to rack 

members in previous research (Casafont et al. 2012; Sarawit 2003). Base metal thicknesses used 

in this research were 1.8 mm, 2.0 mm, 2.5 mm. Fig. 4 and Table 2 show perforation dimensions 

and nomenclature. Perforation edge spacing in the transverse and longitudinal directions (sle and 

ste) was selected to be half of the perforation pitch (sl and st). The number of holes in a local 

buckling half-wave is equal to Lcr/sl for the longitudinal direction and nt for the transverse, 

where Lcr is the local buckling half-wavelength. Two column lengths were considered – 
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2.5Lcrd,nh and 4Lcrd,nh rounded up to the nearest 2ho for modeling purposes, where Lcrd,nh is the 

cross-section distortional buckling half-wavelength, calculated in the finite strip software 

CUFSM (Li and Schafer 2010) neglecting the influence of holes. These physical lengths were 

selected because they can accommodate local, distortional, and global buckling deformations 

expected in rack members. Models were separated into two data sets: one featuring models with 

a set pitch and two transverse rows of web perforations typical of rack sections, another featuring 

varied pitch and row parameters. 

 

 
Figure 2: Finite element model boundary and loading conditions 

 

To reduce the amount of variables tested, four two-letter perforation combinations were assigned 

to each permutation of member shape and length (Table 3). Each letter combination considered 

nt and Lcr/sl values in Table 2 associated with the letter combination’s perforation dimensions. 

For example, one of the four perforation combinations assigned to models where shape = 3, L = 

2.5Lcrd, and t = 1.8 mm was “CE”. The “CE” combination represents hole patterns where Lh = 

“C” and dh = “E”, i.e., Lh = 0.25ho and dh = 0.125ho. This case tests patterns with the following 

numbers of holes: 

 

1. Lcr/sl = 1  nt = 1, 2, 3 

2. Lcr/sl = 1.5  nt = 1, 2, 3 

3. Lcr/sl = 2  nt = 1, 2, 3 

 

or 9 permutations. The “CE” combination also represents the case where Lh = “E” and dh = “C”, 

i.e., Lh = 0.125ho and dh = 0.25ho. These hole dimensions test the following numbers of holes: 

 

1. Lcr/sl = 1  nt = 1, 2 

2. Lcr/sl = 1.5  nt = 1, 2 

3. Lcr/sl = 2  nt = 1, 2 

4. Lcr/sl = 3  nt = 1, 2 

 

or 8 permutations. So for the letter combination “CE”, a total of 17 different models were tested. 
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Table 1: Shape Dimensions 

Shape ho bo D θ b2 D2 

 (mm) (mm) (mm) (deg) (mm) (mm) 

1 72 36 18 - - - 

2 72 72 18 - - - 

3 72 36 13.4 63.4 30 12 

4 72 90 21.2 45 39 15 

5 108 30 17.5 59.0 33 15 

 

 
Figure 3: Shapes  

 
Table 2: Perforation Schedule 

Hole Dimension Dimension Rack Data Set Full Data Set 

(Lh or dh)/ho Name Lcr/sl nt Lcr/sl nt 

0.375 A 1.5 - 1, 1.5 1 

0.313 B 1.5 - 1, 1.5 1 

0.250 C 1.5 - 1, 1.5, 2 1, 2 

0.188 D - 2 1, 1.5, 2 1, 2 

0.125 E - 2 1, 1.5, 2, 3 1, 2, 3 

0.094 F - 2 1, 1.5, 2, 3 1, 2, 3 

 

sle sl

st

ste

Lh

dh

ho

i = 1 i = 2 i = nl

j = nt

j = 1

.  .  . .  .  .

.  .  .

L
 

Figure 4: Column Perforation Nomenclature 
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Table 3: Column Schedule 

t L/Lcrd Shape 

(mm)   1 2 3 4 5 

1.8 

2.5 

FF AA DD CC EE 

AB AC AD AE AF 

CD BE BF BD BC 

EF DF CE CF DE 

4 

DD FF CC EE BB 

AF AB AC AD AE 

BD CF BE BC CD 

CE DE DF EF BF 

2 

2.5 

AA CC EE BB FF 

AC AD AE AF AB 

BF BC BD BE CE 

DE EF CF CD DF 

4 

EE DD BB AA CC 

AE AF AB AC AD 

BC BD CD BF BE 

DF CE EF DE CF 

2.5 

2.5 

BB EE AA FF DD 

AD AE AF AB AC 

BE BF BC CE BD 

CF CD DE DF EF 

4 

CC BB FF DD AA 

AC AB AD AF AE 

BF CD BE BD BC 

DE EF CF CE DF 

 

Buckling modes of the finite element models were visually identified by finding the buckled 

half-wave with the greatest magnitude (using color topography featured in Fig. 5a and 5b) and 

classifying the mode based on that deformation’s length and shape. This method allowed for the 

distinction to be made when local and distortional buckling mixed (Fig. 5a and 5b), and for other 

mixed mode cases. The lowest modes that exhibited local, symmetric distortional, asymmetric 

distortional, flexural, and flexural-torsional buckling were recorded.  

 

The influence of perforation patterns on elastic buckling for the models studied can be found in 

Table 3; note that the subscripts h and nh denote perforated and unperforated models. For most 

cases the presence of holes decreased the buckling loads. The increase in the critical elastic local 

buckling load (max of 1.25 in Table 3) was caused because perforations can sometimes change 

the quantity and length of the local half-waves (Moen and Schafer 2009b). 
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Table 3: Effect perforations have on finite element results (1282 models)  

Mode Flexural Buckling 

Flexural-Torsional 

Buckling Distortional Buckling Local Buckling 

 

Pcre,f,h/Pcre,f,nh)ABAQUS (Pcre,ft,h/Pcre,ft,nh)ABAQUS (Pcrd,h/Pcrd,nh)ABAQUS (Pcr,h/Pcr,nh)ABAQUS 

Min 0.72 0.83 0.63 0.48 

Max 0.99 1.00 1.04 1.25 

Mean 0.92 0.97 0.95 0.91 

 

 
Figure 5: Elastic buckling modes: (a) distortional buckling, (b) local buckling 

 

Critical local buckling modes typically featured half-wave deformations with the greatest 

magnitudes concentrated at both ends of the column (Fig. 5b). Symmetric distortional buckling 

was prone to mixing with local buckling, as shown in Fig. 5a, and perforations caused half-

wavelengths to vary in length. Pertaining to asymmetric distortional buckling (Fig. 6a and 6b), 

several observations were made. Double curvature of the web forced local buckling deformations 

to the flanges in asymmetric distortional mode mixing and because most models featured flange 

stiffeners; the five models featuring mode mixing were limited to shape 2 which did not feature 

flange stiffeners. Asymmetric distortional buckling never governed for shape 1 as the stiffness of 

the web in double curvature was increased due to the shape’s small flange to web ratio. 

Asymmetric distortional buckling governed more often in longer members – compare 380 cases 

where L = 4Lcrd,nh to 1 case where L = 2.5Lcrd,nh. It is believed that the longer half-wavelengths 

of asymmetric compared to symmetric distortional buckling combined with the finite length of 

the models contributed to member length influencing which mode governed. Flexural-torsional 

buckling governed global buckling for all models and never featured mode mixing as Pcre,ft was 

always much lower than Pcr and Pcrd. Flexural buckling had a tendency to mix modes with 

distortional buckling – this was identified by flanges bending outward as the shape buckled in 

the weak axis direction. Fig. 6b and 6c show flexural-torsional and mixed flexural and 

distortional buckling mode shapes. 

 

Finite strip elastic buckling methods are introduced in the following sections that attempt to 

reflect the behavior observed in the finite element analyses while being simple and accessible to 

designers.  
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Figure 6: Models exhibiting a) local-asymmetric-distortional buckling interaction, b) asymmetric-distortional 

buckling, c) flexural-torsional buckling, and d) flexural-symmetric-distortional buckling interaction 

 

3. Global Buckling of Thin-Walled Steel Columns with Periodic Perforations 

 

3.1 Flexural Buckling  

The critical elastic flexural buckling load including the influence of periodic perforations, Pcre,f,h, 

is approximated as 

 

 
g
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nhfcrehfcre
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I
PP ,,,,   (1) 

 

where 

 

 Iavg =
IgLg + InetLnet

L
. (2) 

 

The Euler buckling load without perforations, calculated with classical equations or finite strip 

analysis, is Pcre,f,nh and Inet and Ig are the net and gross cross-section moment of inertia about the 

weak or strong axis. In the cases studied herein, Lnet = nlLh is the total length of net section along 

the column and Lg = L - Lnet. 

 

3.2 Flexural-Torsional Buckling  

The critical elastic buckling load for flexural-torsional buckling, Pcre,ft,h, including the influence 

of periodic perforations is approximated as 
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The elastic modulus is E, the shear modulus is G, and KL, KxLx, and KtLt are the effective column 

lengths about the axis of bending, the x centroidal axis, and torsional axis respectively. The x 

distance from the centroid to the shear center for the weighted cross-section is xo,avg. The 

weighted average radius of gyration about the shear center is calculated using ro,avg = (rx,avg
2
 

+ry,avg
2
 + xo,avg

2
)
0.5

 where rx,avg and ry,avg are the weighted average radii of gyration about the 

centroidal axes calculated using rx,avg = (Ix,avg/Aavg)
0.5

 and ry,avg = (Iy,avg/Aavg)
0.5

. The weighted 

average moment of inertia about the centroidal axes are Ix,avg and Iy,avg and Aavg is the weighted 

average area of the cross-section. The weighted average area Aavg should not be substituted for 

the gross cross-section area Ag in the denominator because Ag accounts for the conversion of 

stress to force at member ends. The warping torsion constant at the net section is Cw,net. This net 

section property (as well as the net section properties needed to calculate xo,avg, Ix,avg, Iy,avg, Aavg, 

and Javg) can be determined with the section property calculator in CUFSM by setting the 

element thickness to zero at the hole locations in the cross-section. All weighted average 

properties are calculated in the same manner as Eq. 2. 

 

The above approach can be cumbersome, and therefore an alternative approach for calculating 

Pcre,f,h is proposed that can be directly applied with finite strip analysis 

 

 
g

avg

nhftcrehftcre
J

J
PP ,,,,   (7) 

 

where Pcre,ft,nh is the critical elastic flexural-torsional buckling load of the unperforated shape that 

can be calculated using finite strip analysis, Jnet and Jg are the net and gross section St. Venant 

torsion constants, and Javg is the weighted average St. Venant torsion constant calculated in the 

same manner as Eq. 2. Accuracy of the proposed methods is evaluated in the following section.  

 

3.3 Validation 

Flexural and flexural-torsional buckling prediction results using Eq. 1 (classical and finite strip 

solutions), Eq. 3, Eq. 7 and the Catalan method are compared in Table 5. The comparisons are 

presented both for the models that most represented typical rack perforations and for all the 

models considered. The more complicated classical weighted average approach in Eq. 1 and 3 

and the simple version in Eq. 1 and 7 (using CUFSM for both) are all accurate predictors of 

flexural and flexural-torsional buckling loads. The Casafont et al. (2012) method is accurate for 

flexural-torsional buckling however the COV is high for flexural buckling. This can be explained 

by the method being prone to exhibit distortional buckling at half-wavelengths equal to member 

length and the batch program used to retrieve results was not sophisticated enough to determine 

all cases where this occurred. Visually investigating higher buckling modes may improve the 

Catalan method’s accuracy. 
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Table 5: ABAQUS to predicted statistics for global buckling 

Mode Flexural Buckling
1 

Flexural-Torsional Buckling 

Data Set Rack Sections All Sections Rack Sections All Sections 

No. of Models 47 1155 54 1282 

Method Mean COV Mean COV Mean COV Mean COV 

Eq. 1 and 7 (CUFSM) 0.95 0.03 0.96 0.04 0.98 0.01 0.99 0.02 

Eq. 1 and 3 (Classical) 0.91 0.07 0.92 0.06 0.99 0.02 1.00 0.05 

Casafont et al. 2012 0.95 0.13 0.99 0.11 1.06 0.03 1.06 0.04 

1. Finite element eigen-buckling analyses did not exhibit flexural buckling within first 150 modes calculated for 

Shape 4 models where L = 2.5Lcrd,nh. 

 

4. Distortional Buckling of Thin-Walled Steel Columns with Periodic Perforations 

 

4.1 Prediction Method 

The critical elastic distortional buckling load including the influence of web periodic 

perforations, Pcrd,h, is approximated in a finite strip analysis by reducing the thickness of the 

cross-section web to  
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A finite strip reference stress is applied to the modified cross-section and Pcrd,h is taken as the 

minimum buckling load on the distortional buckling branch of the elastic buckling curve.  

 

4.2 Supporting Derivation 

The method proposed in Section 4.1 is a variation of that developed by Moen and Schafer 

(2009a). A simply-supported web plate equal in length to the distortional half-wavelength of the 

unperforated cross-section is modeled with an imposed rotation along the longitudinal edges of 

the plate that varied in magnitude proportional to a half sine wave, mimicking the behavior of the 

web in distortional buckling. Moments at the longitudinal edges of the plates corresponding to 

the imposed deflection were recorded to determine rotational stiffness of the web plate. Fig. 7 

shows the loading and boundary conditions of the web rotational restraint study.  

 

 
Figure 7: Web rotational restraint loading and boundary conditions 
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If Kθ,h and Kθ,nh are assumed to be the average cumulative transverse rotational stiffness of plates 

with and without perforations, an equation describing the reduced thickness of the web plate can 

be developed. This equation was derived by Moen and Schafer (2009a) as 
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Based on the results from the finite element model in Fig. 8, it is concluded that the reduction in 

transverse web bending stiffness within a distortional buckling half-wave can be represented 

using the ratio of the web’s planar net area (nlntLhdh) to the web’s planar gross area along the 

column (Lho) 
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Figure 8: Transverse rotational stiffness of web plates with periodic perforations 

 

Although the distortional buckling half-wavelength is not required to calculate Pcrd,h it is still 

interesting to mention that Lcrd typically increased with the presence of perforation patterns. As 

web rotational stiffness decreased, half-wavelength generally increased and of the contributing 

factors, perforation length had the greatest contribution.  
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4.3 Validation 

Prediction accuracy for the finite strip distortional buckling method is presented in Table 6. 

Accuracy of the method proposed in Section 4.1, i.e., reducing the web thickness using Eq. 8 in a 

finite strip analysis, is consistent with the approach in Casafont et al. (2012). This is not 

surprising since both approaches are founded on the same idea that web perforations reduce 

transverse bending stiffness. 

 
Table 6: ABAQUS to predicted statistics for distortional buckling  

Data Set Rack Sections All Sections 

No. of Models 54 1282 

Method Mean COV Mean COV 

Eq. 8 0.97 0.08 1.02 0.09 

Casafont et al. 2012 1.11 0.09 1.13 0.10 

 

5. Local Buckling of Thin-Walled Steel Columns with Periodic Perforations 

 

5.1 Prediction Method 

The critical elastic local buckling load including the influence of periodic perforations, Pcr,h, is 

approximated in a finite strip analysis by reducing the thickness of each stiffened element in a 

cross-section containing perforations to 
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where μ is Poisson’s ratio, longitudinal and transverse hole shape factors are α and β, and the 

longitudinal and transverse hole location factors are X
*
 and Y

*
. 
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A finite strip reference stress is applied to the modified cross-section and Pcr,h is taken as the 

minimum buckling load on the local buckling branch of the elastic buckling curve.  
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5.2 Supporting Derivation 

The reduced thickness in Eq. 11 was derived using a plate buckling coefficient including the 

influence of perforations. A Rayleigh-Ritz energy solution was employed where equilibrium in 

the deformed state considers the strain energy of the plate at the perforations to be absent. This 

can be shown as 

 

 0)(  WUU hnh  (16) 

 

where Unh is the strain energy of the deformed plate, Uh is the total strain energy at the location 

of the perforations, and W is the external work applied to the plate by a uniform traction load, 

Ncr. The strain energy equations compute the strain energy of the deformed plate using an 

approximation of the buckled shape, shown in Eq. 17 (Chajes 1974). The assumed deformation 

considers a simply supported plate able to deform in multiple half sine waves in the longitudinal, 

x, and transverse, y, directions.  
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In Eq. 17, m is the number of half sine waves in the longitudinal direction, n is the number of 

half sine waves in the transverse direction and A is an array of arbitrary constants that define the 

magnitude of displacement for each combination of m and n. This equation does not consider the 

influence of holes on the shape and size of buckling deformations. 

 

Solving for the critical elastic traction load, Ncr, is done in a similar manner taken by Chajes 

(1974). This approach yields  
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The plate buckling coefficient considering perforations, kh, has been simplified by the following 

assumptions:  

 

1. Longitudinal perforation spacing is equal to the length of the web plate divided by the 

number of longitudinal holes, i.e., sl = L/nl. 

2. Transverse perforation spacing is equal to the width of the web plate divided by the 

number of transverse holes, i.e., st = ho/nt. 

3. The perforated pattern is aligned symmetrically on the web plate. In conjunction with 

assumptions 1 and 2, this gives us edge spacings equal to half their respective pitch, 

i.e., sle = sl/2 and ste = st/2. 

4. The ratio of web plate length to width (L/ho) is a positive integer. 

5. Perforations do not affect the number of longitudinal and transverse half waves that 

correlate to the minimum value of knh, i.e. m = L/ho and n = 1. 

 

For long perforated plates, assumptions 1, 3, and 4 are good approximations for all cases and are 

met by our models. Without assumption 5, kh considers the effect of perforations on the critical 
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number of half-waves (though not the shape of the half-waves); however, in doing so, one needs 

to iterate to determine the minimum value of kh. Assumption 5 is seen as a practical 

approximation, as it allows for kh to be solved directly. This is justified because differences 

between considering and not considering assumption 5 were infrequent (28 out of 1282 times) 

and had minimal effect when they did occur (the minimum value of kh,min/kh,assumption was 0.926). 

The resulting simplification of kh becomes 
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where α and β (Eq. 12 and 13) are constants related to the size of perforations relative to the size 

of the assumed buckling deformations and X and Y (Eq. 20 and 21) are step functions that 

account for the perforation pattern position relative to buckled half waves. Represented by 

multiplying nlntX or nlntY is the cumulative sum of the effect that each perforation has on strain 

energy due to that perforation’s location within a buckling deformation in the longitudinal or 

transverse direction. For example, if X equals zero, then a case is described where the position 

effect of each hole in the longitudinal direction, when taken collectively, is nlnt(0), or net zero. If 

X is equal to negative one, holes are only aligned in a position that removes the most strain 

energy from the system, i.e., on the points of maximum deflection. If X is equal to positive one, 

holes remove the least strain energy from the system and thus are positioned on the points with 

zero deflection. The same logic can be applied to Y in the transverse direction. 
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An equation for the reduced thickness of the web plate (Eq. 22) can be derived by comparing 

equations for the critical buckling stress of a plate considering perforations. 
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When substituting the hole location factors, X and Y, into Eq. 19 and assuming the plate to be 

long, i.e., knh = 4, Eq. 22 simplifies to become similar to the recommended reduced thickness in 

Eq. 14. ABAQUS to predicted means from this method (0.84 for rack models and 0.96 for all 

models)reveal a fundamental difference in buckling behavior between rack sections and all 

sections tested that is not accounted for – the number of holes per longitudinal and transverse 
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half-waves affects local buckling capacity. Addressing this can be done in one of two ways: 

either by determining a new deformation function, w, which considers holes’ effect on displaced 

shape or by adjusting X and Y, which can be seen as an approximation of a new deformation 

function. The latter was done in an effort to forgo additional complexity. 

 

The first step taken to modify X and Y was examining extreme cases of local buckling to gather 

insight into how deformations may affect longitudinal and transverse behavior of local buckling. 

Though the assumption was made that buckled half-waves are equal in length and width, this is 

not always the case as shown in Fig. 9. These extrema show the number of transverse half-

waves, n, will always equal the assumption of one, but they also show the assumption that the 

number of longitudinal half-waves, m, is equal to L/ho to be incorrect. It is hypothesized that for 

long plates, a single optimum cumulative strain energy effect in the longitudinal direction will be 

reached by m, regardless of perforation pattern, if m is allowed to step toward the lowest energy 

solution. This is analogous to X having one possible coefficient as it represents the effects of 

holes in regards to m and thus represents the lowest energy solution. Iteration to find the lowest 

value of kh is eliminated by this assumption. Because rack sections are cases where nlho/L = 1.5 

and because these sections were predicted so poorly by the method using X and Y, the new 

single coefficient for X should not equal zero. In addition, it is logical to assume holes should 

have a negative effect on strain energy, however, the likelihood of each hole aligning at a peak or 

valley of deformations is low as half-waves are allowed to buckle freely in the longitudinal 

direction. Thus it is expected the value of X should be between negative one and zero. For the 

transverse direction, since n will always equal one, the location of holes in relation to the buckled 

half-wave is more accurately known, allowing for multiple coefficients to be considered for Y. 

When examining Fig. 9, for cases where only one hole is located along the width of the web, 

there seems to be little effect on the shape of the transverse half-wave compared to the case 

without holes, thus Y should not have an effect on strain energy and in turn equal zero. Other 

cases in Fig. 9 show buckled half-waves to change in shape in the transverse direction, where 

levels of maximum strain energy are extended some distance over the width of the plate. This 

suggests that when previously, holes had a net zero effect, the cumulative strain energy lost will 

be positive, thus making a new Y somewhere between negative one and zero. 

 

 
Pcr,h,ABAQUS/Pcr,nh,ABAQUS  

1.00 1.25 0.83 0.48 0.54 

No. of Models 

30 2 4 3 2 

Mean(Pcr,h,ABAQUS/Eq. 11) 

0.98 1.29 0.88 0.90 0.84 

Figure 9: Local buckling extrema 

 

The second step taken to modify X and Y was performing a graphical optimization to determine 

the modified factors X
*
 and Y

*
 (Eq. 14 and 15) considering observations in step one. 

Optimization (Fig. 10) confirmed the modified position factor in the transverse direction, Y
*
, 

should be taken as zero when nt was equal to one because for all cases of X
*
, ABAQUS to 

predicted mean values were near unity. For other cases, optimization confirmed that the position 
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factor in the longitudinal direction should not equal to zero in order to minimize COV values. 

The values of -0.5 for X
*

 and -1.0 for Y
*
 were selected because these values minimized the COV 

values for cases where nt was greater than one and provided accurate mean prediction for all 

cases.  

 

 
Figure 10: Graphical optimization of mean and COV, values in terms of ABAQUS to predicted 

 

5.3 Validation 

The finite strip local buckling method proposed in Section 5.1 is demonstrated to be an accurate 

predictor of critical elastic local buckling load including perforation patterns as shown in Table 

7. The local buckling predictions are slightly unconservative on average, however the low COV 

compared to the Casafont et al. (2012) demonstrates the benefits of including plate buckling 

behavior in the prediction.  

 
Table 7: ABAQUS to predicted statistics for local buckling 

Data Set Rack Sections All Sections 

No. of Models 54 1282 

Method Mean COV Mean COV 

Eq. 11 0.92 0.05 0.97 0.08 

Casafont et al. 2012 0.86 0.14 0.80 0.22 
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6. Conclusions 

Finite strip analysis methods for calculating the critical elastic global, distortional, and local 

buckling loads of thin-walled steel columns with periodic perforations are presented. The global 

buckling approach employs a ratio of the weighted average section properties to the gross section 

properties to reduce the Euler buckling load, and this same approach is extended to flexural-

torsional buckling, providing a simple, general, and accurate finite strip approach to treating hole 

patterns. A reduced web thickness approach originally derived for discrete holes was extended to 

perforation patterns to include their influence on distortional buckling. Reducing the web 

thickness in a finite strip analysis simulates the loss of transverse stiffness bracing the 

compressed flanges from distortional buckling deformation. As the transverse stiffness 

decreases, i.e., as more hole area aggregates in the web, the distortional buckling half-

wavelength increases. For local buckling, an energy solution of a perforated plate was employed 

to derive a reduced thickness equation that can be applied to any stiffened element in a cross-

section containing perforation patterns. The cross-section is modified with these calculated 

reduced thicknesses, and then a finite strip analysis is performed to obtain the reduced local 

buckling load. The accuracy of the approximate methods were verified with a thin-shell finite 

element elastic buckling database of over 1200 models with varying cross-section, hole pattern, 

and hole size parameters. Research is ongoing to apply these new methods in the Direct Strength 

Method and compare strength predictions to test data. 

 

References 
American Iron and Steel Institute (AISI). (2007). North-American Specification for the Design of Cold-Formed Steel 

Structural Members. S100-07. 

Casafont, M., Pastor, M., Bonada, J., Roure, F., Pekoz, T. (2012). “Linear buckling analysis of perforated steel 

storage rack columns with the Finite Strip Method.” Thin-Walled Structures, Vol. 61, Dec. 2012, pp. 71-85. 

Chajes, A. (1974). “Chapter 6 – Buckling of Plates.” Principles of Structural Stability Theory, Prentice Hall, 

Englewood Cliffs, NJ., pp. 238-302. 

Davies, J.M., Leach, P., Taylor, A. (1998). “The design of perforated cold-formed steel sections subject to axial load 

and bending.” Thin-Walled Structures, Vol. 29, Nos. 1-4, pp. 141-157. 

European Committee for Standardization (CEN). (2009). Steel static storage systems – Adjustable pallet racking 

systems – Principles for structural design. EN 15512:2009. 

Hancock, G.J. (1984). “Distortional buckling of steel storage rack columns.” Proceedings of the Seventh 

International Specialty Conference on Cold-Formed Steel Structures, St. Louis, MO., Nov. 13-14, 1984, pp. 

345-373. 

Kesti, J. (2000). Local and distortional buckling of perforated steel wall studs. Report TKK-TER-19. Laboratory of 

Steel Structures, Helsinki University of Technology. 

Li, Z., Schafer, B.W. (2010) “Buckling analysis of cold-formed steel members with general boundary conditions 

using CUFSM: conventional and constrained finite strip methods.” Proceedings of the 20th International 

Specialty Conference on Cold-Formed Steel Structures, St. Louis, MO., November, 2010. 

Moen, C.D., Schafer, B.W. (2009a). “Elastic buckling of cold-formed steel columns and beams with holes.” 

Engineering Structures, Vol. 31, No. 12, pp. 2812-2824. 

Moen, C.D., Schafer, B.W. (2009b). “Elastic buckling of thin plates with holes in compression or bending.” Thin 

Walled Structures, Vol. 47, No. 12, pp. 1597-1607. 

Moen, C.D., Schudlich, A., von der Heyden, A. (2013). “Experiments on cold-formed steel joists with unstiffened 

web holes.” Journal of Structural Engineering (to appear). 

Pu, Y., Godley, M.H.R., Beale, R.G., Lau, H.H. (1999). “Prediction of Ultimate Capacity of Perforated Lipped 

Channels”. Journal of Structural Engineering. ASCE, Vol. 125, No. 5, May 1999, pp. 510-514. 

Rack Manufacturers Institute (RMI). (2008). Specification for the Design, Testing and Utilization of Industrial Steel 

Storage Racks. MH16.1-2008. 

Rhodes, J., Schneider, F.D. (1994). “The Compressional Behaviour of Perforated Elements”. Proceedings of the 

Twelfth International Specialty Conference on Cold-Formed Steel Structures, St. Louis, MO., Oct. 18-19, 1994, 

pp. 11-28. 

292



 

Rhodes, J., Macdonald, M. (1996). “The Effects of Perforation Length on the Behaviour of Perforated Elements in 

Compression”. Proceedings of the Thirteenth International Specialty Conference on Cold-Formed Steel 

Structures, St. Louis, MO. Oct. 17-18, 1996, pp. 91-101. 

Sarawit, A.T. (2003). Cold-formed steel frame and beam-column design. Report 03-03. School of Civil and 

Environmental Engineering, Cornell University. 

Schafer, B.W. (2008). “Review: the Direct Strength Method of cold-formed steel member design”. Journal of 

Constructional Steel Research. Vol. 64, Nos. 7-8, 2008, pp. 776-778. 

UNARCO Pallet Rack & Warehouse Storage Systems. (2012). Pallet Rack Photo Gallery. <www.unarcorack.com/> 

(Jan. 15, 2012). 

Yu, W.W., Davis, C.S. (1973). “Cold-Formed Steel Members with Perforated Elements”. Journal of the Structural 

Division. ASCE, Vol. 99, No. ST10, Oct. 1973, pp. 2061-2077. 

293


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Table of Contents

